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The brain is in a state of perpetual reverberant neural activity, even in the absence of
specific tasks or stimuli. Shedding light on the origin and functional significance of such
a dynamical state is essential to understanding how the brain transmits, processes, and
stores information. An inspiring, albeit controversial, conjecture proposes that some
statistical characteristics of empirically observed neuronal activity can be understood by
assuming that brain networks operate in a dynamical regime with features, including the
emergence of scale invariance, resembling those seen typically near phase transitions.
Here, we present a data-driven analysis based on simultaneous high-throughput
recordings of the activity of thousands of individual neurons in various regions of
the mouse brain. To analyze these data, we construct a unified theoretical framework
that synergistically combines a phenomenological renormalization group approach
and techniques that infer the general dynamical state of a neural population, while
designing complementary tools. This strategy allows us to uncover strong signatures
of scale invariance that are “quasiuniversal” across brain regions and experiments,
revealing that all the analyzed areas operate, to a greater or lesser extent, near the edge
of instability.

criticality | neuroscience | scaling | renormalization group

The brain of mammals is in a state of continuous ongoing activity even in the absence
of stimuli or specific tasks (1–3). Shedding light on the origin and functional meaning
of such an energy-demanding baseline state of background dynamics and its interplay
with input-evoked activity are challenging goals, essential to ultimately understand how
different brain regions represent, process, and transmit information (4–6). Following the
fast-paced development of powerful neuroimaging and electrophysiological technologies
such as two-photon calcium imaging (7) and neuropixels probes (8), recent years have
witnessed important advances in our understanding of these issues.

An inspiring hypothesis—which aims to become a general principle of brain dynamical
organization—posits that neuronal networks could achieve crucial functional advantages,
including optimal information processing and transmission, by operating in the vicinity of
a critical point (9–15). Using the jargon of statistical physics, this implies that the network
operates in an intermediate regime at the border between “ordered” and “disordered”
phases (9, 12, 16–25). Criticality, with its concomitant power-laws has been hypothesized
to entail functional advantages for information processing such as, e.g., an exquisite
sensitivity to perturbations and a huge dynamic range (13, 16) to name a few. Moreover,
it also gives rise to the emergence of a broad spectrum of spatio-temporal scales, i.e., scale
invariance or simply “scaling” (13, 26, 27).

In spite of its conceptual appeal and thrilling implications, the validity of this so-
called “criticality hypothesis” as an overarching principle of dynamical brain organization
remains a controversial issue (see, e.g., refs. 28–30). Therefore, novel theoretical
approaches and more-stringent experimental tests are much needed to either prove
or disprove this conjecture and, more in general, to advance our understanding of the
mechanisms underlying brain ongoing activity.

From the theoretical side, it is crucial to refine the conjecture itself and discern
what type of criticality is the most pertinent to describe brain activity (10, 13).
Different possible scenarios have been explored; among them (13): i) the edge of activity
propagation, with scale-free avalanching behavior (9, 12, 18, 31), ii) the edge of a
synchronization phase transition (13, 25, 32–35), iii) the edge of a stable-unstable
transition, often called “edge of chaos” but to which we will refer as “edge of instability”
hereon (14, 15, 36, 37), and iv) statistical criticality (10, 38).

From the empirical side, evidence of putative brain criticality often relies
on the observation of scale-free bursts of activity, called “neuronal avalanches”
(9, 21, 33, 39–41), long-range spatio-temporal correlations (42, 43), statistical
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critical-like patterns of activity (10, 38) the analysis of whole-
brain models fitted to match empirically observed correlations
(44–47), etc. Recently, with the advent of modern techniques
enabling simultaneous recordings of thousands of neurons,
complementary experimental evidence revealing the existence
of scaling in brain activity—which might or might not stem
from underlying criticality (10, 13, 30, 48)—has emerged
from unexpected angles. Among these, let us mention i) a
novel renormalization-group approach which identified strong
signatures of scale-invariant activity in recordings of more than
a thousand neurons in the mouse hippocampus (49–51), ii)
the direct inference—using linear response theory and methods
from the physics of disordered systems—of “edge-of-instability”
type of critical behavior in neural recordings from the macaque
monkey motor cortex (37), and iii) the discovery of an unexpected
power-law distribution, which revealed scale invariance in the
spectrum of the covariance-matrix from tens of thousands of
neurons in the mouse visual cortex (6).

What all these works have in common, is the fact the they use
specifically designed, powerful mathematical tools to analyze vast
amounts of high-throughput data.

Here, we bring these diverse approaches to a common ground
and develop complementary tools leveraging them synergistically
in order to analyze state-of-the-art neural recordings in diverse
areas of the mouse brain (52). As shown in what follows, these
analyses strongly enhance our understanding of scale-invariance
and possible criticality in the brain. In particular, they allow us to
elucidate the emergence of quasiuniversal scaling across regions
in the mouse brain and to conclude that all such regions are, to
a greater or lesser extent, posed close to the edge of instability.

Theoretical Framework and Open-Ended
Questions

For the sake of self-containedness, let us briefly discuss the three
innovative theoretical approaches cited above, along with some
open questions that we pose (further technical details are deferred
to the Methods).

(A) Renormalization Group Approach to Neuronal Activity. The
renormalization group (RG) is retained as one of the most
powerful ideas in theoretical physics, allowing us to rationalize
collective behavior—at broadly diverse observational scales—
from the properties of the underlying “microscopic” components,
and to understand, for instance, the emergence of scale invariance
(27). In a remarkable contribution, Meshulam et al. developed
a phenomenological RG approach to analyze time series from
large populations of simultaneously recorded individual spiking
neurons and scrutinize their collective behavior (49, 50). The
method, similar in spirit to Kadanoff’s blocks for spin systems
(27), allows one to construct effective descriptions of time-
dependent neural activity at progressively larger “coarse-grained”
scales. Notably, a number of nontrivial features—generally
attributed to scale-invariant critical systems—emerge from the
application of such RG analyses to recordings of more than 1,000
neurons in the hippocampus while the mouse is moving in a
virtual-reality environment. These features include among others:
i) a non-Gaussian (fixed-point) distribution of neural activity at
large scales, ii) nontrivial scaling of the activity variance and
autocorrelation time as a function of the coarse-graining scale,
and iii) a power-law decay of the spectrum of the covariance
matrix (49, 50).

A limitation of this type of phenomenological RG analysis is
that, even if it is capable of uncovering scale invariance, it does not

allow discerning what kind of putative phase transition could be
at its origin. Moreover, doubts have been raised about the possible
interpretation of the results as stemming from criticality (see refs.
53 and 54 and below).

In any case, leaving aside for the time being these caveats, one
can wonder whether the observed scaling features are shared
by other brain regions or if they are instead specific to the
mouse hippocampus. Is there any kind of universality or at least
“quasiuniversality” (in the sense of scaling exponents showing
limited variability) in the neural dynamics across brain regions
despite their considerable anatomical and functional differences?
Is it possible to find empirical evidence that allows us to
discern whether the observed scaling actually stems from critical
behavior?

(B) Inferring the Dynamical Regime from Neural Recordings.
Dahmen et al. devised a general approach—based on linear-
response theory ideas and tools from the physics of disordered
systems—that allows one to infer the overall dynamical state
of an empirically observed neuronal population (see also refs.
14 and 15). In particular, this theoretical approach permits
us to estimate the distance to the “edge of instability” from
empirical measurements of the mean and dispersion of “spike-
count covariances” (also called “long-time-window” covariances)
across pairs of recorded neurons (37). Straightforward application
of this approach to neural recordings from motor cortex of awake
macaque monkeys at rest strongly supports the idea that such a
region operates in a critical regime with nearly unstable dynamics
(37). Thus, one can wonder whether other brain regions—for
instance, the hippocampus in (A)—can also be empirically proven
to be similarly close to the edge of instability.

Moreover, recently, Hu and Sompolinsky went a step further
and derived an analytical expression (based also on linear-response
theory for large random networks) for the full spectrum of
eigenvalues of the spike-count covariance matrix as a function
of its distance to the edge of instability. This provides us with
an alternative method to estimate the distance to the edge of
instability from empirical data. In particular, these analyses reveal
that the distribution of eigenvalues of the covariance matrix
develops a power-law tail as the network approaches the edge of
instability (55). The resulting nontrivial eigenvalue distribution
stems from the recurrent network dynamics near the edge of
instability (55) and it clearly differs from the Marchenko–Pastur
law for the correlations of independent random units (56).

Thus, an alternative way to infer the distance to the edge-of-
instability is to find the parameter value in the theoretical model
that best fits the empirically determined spectrum of spike-count
covariance matrices as obtained from actual data.

(C) Scaling in Optimal Input Representations. Stringer et al. (6)
studied experimentally and theoretically the spectrum of the
covariance matrix in neuronal populations in mouse primary
visual cortex (VISp) while the mouse was exposed to a very large
set of sequentially presented natural images (recording more than
104 neurons in parallel; Methods). From the resulting data, they
found that the spectrum of the covariance matrix obeyed “an
unexpected power law” (6): the n-th rank-ordered eigenvalue
scaled as n−µ with µ & 1 (although the exact value of this
exponent could be dependent on the noise model assumed for
the estimation, see ref. 57).

This power-law decay of the rank-ordered eigenspectrum was
somehow surprising; the authors were expecting a much faster
decay, as would correspond to a lower-dimensional representa-
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tion of the visual inputs. Notice that, here, by “representation”
one means neural activity that stems from or is correlated with
sensory or task-related inputs. On the other hand, the term
“dimension” is employed in the sense of “principal component
analysis” (PCA) (58), where the dimension is the number of
principal components required to explain a given percentage
of the total variance; often but not always (6) most of the
variability in neural data can be recapitulated in just a few
principal components or dimensions (59).

Remarkably, Stringer et al. were also able to show that the
power-law decay of the rank-ordered eigenvalues is not an artifact
directly inherited from the statistics of the inputs, but instead,
it could stem from a trade-off between the neural representation
of visual inputs being as high-dimensional as possible (i.e.,
including a large number of nonnegligible components in a PCA
analysis) and mathematically preserving its smoothness (i.e., its
continuity and differentiability). As a simple illustration of this
last abstract property, let us mention that the smoothness of the
representation prevents, for instance, that tiny variations in the
inputs dramatically alter the neural population activity, which
translates into a more robust encoding (6).

Let us finally recall that common knowledge in statistical
physics tells us that a power-law decay of the covariance-
matrix spectrum (i.e., of the “propagator”) is one of the most
remarkable generic trademarks of critical behavior, emphasizing
the emergence of a scale-free hierarchical organization of spatio-
temporal correlations (27). Indeed, this spectrum is one of the
objects studied in the phenomenological RG approach (A),
revealing a power-law decay (for the mouse hippocampus) with
an exponent µ < 1 (49), which violates Stringer et al.’s bound
for continuous neural representations (µ & 1).

The results by Stringer et al. trigger a cascade of questions:
Is the empirically observed scaling of the spectrum of the
covariance matrix a mere consequence of the external input
being represented in an optimal way? In other words, does the
covariance spectrum obey scaling also in the absence of inputs,
i.e., for resting state or ongoing activity? Is intrinsic criticality in
the network dynamics required to “excite” such a broad spectrum
of modes supporting optimal input representations? How come
the exponentµmeasured by Meshulam et al. in the hippocampus
is smaller than 1 in seeming contradiction with Stringer et al.’s
predictions?

Summing up: While A) allows us to detect and scrutinize the
presence of scaling in empirical recordings in a systematic and
quantitative way, B) provides us with practical tools to infer the
actual dynamical regime of the underlying neural network, thus
paving the way to ascribe empirically reported scaling to edge-of-

instability criticality, and C) sets the scene for relating criticality
to so far unexplored possible functional advantages for optimal
input representation.

In what follows, we use these methods in a synergetic way while
developing complementary tools to scrutinize scale invariance
and criticality across regions and across experiments in the
mouse brain, thus providing data-driven answers to most of the
previously raised questions.

Results

Most of the forthcoming analyses rely on the empirical electro-
physiological data presented by Steinmetz et al. in (52), where the
activity, x(t), of thousands of individuals neurons (in particular,
the precise times of their spikes) is simultaneously recorded at
a high (200 Hz) resolution in several mouse brain regions (as
illustrated in Fig. 1). These recordings include periods in which
the mouse is performing some specific task and some in which
it is in a “resting-state”. Therefore, we first separate both types
of time series and analyze the corresponding “resting-state” and
“task-related” activity independently, paying special attention to
the former. In addition, we also consider data from recordings of
mouse VISp from Stringer et al. (6) (Methods). In all cases, we
restrict our analyses to areas (as reported in Fig. 1) with at least
N = 128 simultaneously recorded neurons.

Quasiuniversal Scaling Across Brain Regions. We first employ
the phenomenological RG approach to scrutinize whether
nontrivial scaling behavior, such as the one reported in (49, 50)
for the CA1 region of mouse hippocampus, is observed in other
areas of the mouse brain. For the sake of clarity, let us summarize
the gist of the RG approach (further details in Methods as well as
in refs. 49 and 50), along with our main results.

Following the spirit of Kadanoff’s block, one seeks to perform
a coarse graining of N “microscopic variables”—i.e., single-
neuron activities in this case—to construct effective descriptions
at progressively larger scales. Nevertheless, given the absence
of detailed information about physical connections (synapses)
between neurons, a criterion of maximal pairwise correlation
(rather than the standard one of maximal proximity) is used
to block together pairs of neurons in a sequential way (49).
Let us remark that, for this, it is crucial to determine pairwise
correlations in a careful and consistent way; this requires the
choice of a suitable discrete time bin for each data set, for which
we have devised an improved protocol (SI Appendix, Time-Scale
Determination in the Extended Methods). In this way, the activity
time series of the two most correlated neurons are added together

Fig. 1. Schematic representation of the regions in the mouse brain considered in this work (using three different projections), together with their names and
corresponding acronyms. Credit: Allen Institute, Atlas brain maps: https://atlas.brain-map.org/atlas.
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and properly normalized, giving rise to effective time series for
“block-neurons” or simply “clusters” of size 2. One then proceeds
with the second most-correlated pair of neurons and so on,
until all neurons have been grouped in pairs. The process is
then iterated in a recursive way, so that after k coarse-graining
(RG) steps, there remain only Nk = N/2k block-neurons, each
recapitulating the activity of K = 2k individual neurons.

The distributions of activity values across block-neurons
at level k, Pk({x}), can be then directly computed for the
different steps of the RG clustering procedure, and from these
distributions, a number of nontrivial features can be identified
for all the considered mouse brain areas (52):

Non-Gaussian Probability Distribution of Block-Neuron
Activity. Fig. 2A shows the probability distribution Qk(x) of
nonzero activity values, x, of the coarse-grained block-neurons at
one of the RG steps (k = 5, i.e., K = 32). Observe also, in the
inset of Fig. 2A, the curve collapse obtained for sufficiently large
values of K as well as the presence of significant non-Gaussian
tails, as exemplified for one of the considered brain regions: the
primary motor cortex (MOp). This convergence of Qk(x) to
an asymptotic shape after a few RG steps, as observed for all
regions (SI Appendix, Fig. S1), suggests that a nontrivial fixed
point of the RG flow has been reached and that the emerging
distribution of activity is rather universal across brain regions in
resting conditions.

Scaling of the Activity Variance. As shown in Fig. 2B an
almost perfect scaling is observed for the variance M2(K ) of
the nonnormalized activity of block neurons, with an average
exponent α = 1.38 ± 0.08 across regions. In particular, we
measure αCA1 = 1.37± 0.03± 0.02 (mean + mean-absolute-

error of individual measurements + SD over experiments,
Methods) for the CA1 region within the hippocampus, which is
within errorbars of the value α = 1.56± 0.07± 0.16 reported
in ref. 50 for the same area. Notice that all these exponent values
are always in between the expected ones for uncorrelated (α = 1)
and fully correlated variables (α = 2), revealing consistently the
existence of nontrivial scale-invariant correlations.

Scaling of the “Free Energy”. This is defined as F (K ) =
− log(SK ), where SK is the probability for a block-neuron of
size K to be silent within a time bin. As shown in Fig. 2C , this
quantity exhibits a clear scaling with cluster size, with an average
exponent β = 0.79 ± 0.03 across regions (0.78± 0.04± 0.05
for CA1, to be compared with the value 0.87± 0.014± 0.015
reported in ref. 50).

Scaling of the Autocorrelation Time. Fig. 2D shows that de-
spite the very broad variability of intrinsic timescales for
individual neurons within each region (SI Appendix, Fig. S4),
dynamical scaling can be observed in the decay of the block-
neuron autocorrelation times τc(K ) (Methods) in all regions,
with an average exponent across regions z = 0.22± 0.05
(with zCA1 = 0.18± 0.03± 0.01 for CA1, in perfect agree-
ment with the one reported in ref. 50 for this region
(z = 0.22± 0.08± 0.10) and compatible also with the expo-
nent values reported in ref. 48 using a different approach). As an
additional test for dynamical scaling, we show in (SI Appendix,
Figs. S2 and S3) how the curves for the autocorrelation
functions at different coarse-graining levels collapse when time is
appropriately rescaled (as also illustrated in Fig. 2D, inset).

A

C D

B E

Fig. 2. Results of the phenomenological RG analyses of brain activity measured in 16 different mouse brain areas (A–D resting state activity). (A) Probability
distribution for normalized nonzero activity in block-neurons of size K = 32 across brain regions (main panel), as well as (inset) at 5 consecutive steps of the
coarse-graining for a representative region (MOp). (B) Variance of the nonnormalized activity as a function of the block-neuron size, K , in double logarithmic
scale (upper and bottom dotted lines, with slopes 2 and 1, mark the fully correlated and independent limit cases, respectively). (C) Scaling of the free energy Fk
as defined in Methods (the dotted line corresponds to the expected behavior for uncorrelated variables). (D) Inset: Decay of the autocorrelation function as a
function of the rescaled time t/�c for the MOp region; a different value of �c is used for each cluster size but, after rescaling, all data collapse into a common
curve. Main plot: scaling of the characteristic correlation time �c as a function of K in double logarithmic scale for the different areas. To facilitate the comparison
between areas with different numbers of neurons, the variance has been normalized as M2(K) = M2(K)/M2(K = 1), the probability of being silent rescaled to
F(K) = F(K)/F(K = 1) and the correlation time as �c(K) = �c(K)/�c(K = 2). In B–D, errorbars are computed as the standard deviation across split-quarters
of data, with lengths typically smaller than the marker size. (E) Comparison of the exponent values �, �,�, and z for resting-state (RS) and task-related activity
(Task). Horizontal line inside each box represents the sample median across regions, the whiskers reach the nonoutlier maximum and minimum values, and
the distance between the top (upper quartile) and bottom (lower quartile) edges of each box is the interquartile range (IQR). Outliers are represented with a
diamond marker. For the exponent �, the critical value �c = 1 has been marked with a dotted line.
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Scaling of the Covariance-Matrix Spectrum. By diagonalizing
the covariance matrix computed at different levels of coarse-
graining, it is possible to analyze how their corresponding spectra
decay with the rank of the eigenvalues and how their cutoffs
change with cluster size. As illustrated in Fig. 3, in all the
analyzed brain areas, there is a clear power-law scaling of the
eigenvalues with the rank, with an average exponent across
regions µ = 0.84± 0.14, as well as a common dependence
with the fractional rank (rank/K ), the latter manifested in the
collapse of the curves at different levels of coarse graining, much
as in ref. 49. Likewise, the value reported in ref. 49 for CA1
(µ = 0.76± 0.05± 0.06) is in perfect agreement with our mea-
sured value for the same region, µCA1 = 0.78± 0.08± 0.02.
Although we will address this point later on, let us for now
stress that µ is smaller or, at most, approximately equal to one
in all regions, seemingly suggesting discontinuity of the neural
representations (6).

For the sake of consistency, we have also verified that the
reported exponent values exhibit little variability upon changes
in the time-discretization bin, with the exception of the exponent
µ, for which we observe an increase on longer time-scales
beyond the typical inter-spike-interval of the population activity
(SI Appendix, Fig. S7).

Moreover, as it turns out, similar signatures of scale-invariance
to those reported for resting-state activity emerge in RG analyses
of neural recordings obtained while the mice are performing a
task (SI Appendix,Datasets in ExtendedMethods and (52) for more
details). This similarity is illustrated in Fig. 2E , which shows how
the dispersion and mean value of the scaling exponents across

regions are not significantly altered (P > 0.1 on a two-sample
t test for each exponent) when one compares resting-state and
task-related activity (SI Appendix, Fig. S7).

Finally, as a control test, we verified that the nontrivial scaling
features revealed by the RG analyses are lost for all areas when the
correlation structure of the data is broken either by i) reshuffling
the times of individual spikes in the time series; ii) shifting each
individual time series by a random time span while keeping
the sequence of spikes; or iii) shuffling spikes across neurons
(SI Appendix, Figs. S12–S14).

Dynamical State of Resting-State Activity Across Brain Regions
and Experiments. Despite the elegance and appeal of the RG
results—as originally presented by Meshulam et al.—their
straightforward interpretation as stemming from underlying
criticality has been questioned (53, 54). In particular, similar
scaling behavior was found to emerge in a (noncritical) model
of uncoupled neurons exposed to latent correlated inputs (53),
even if some level of tuning was required (Discussion). Thus, it is
not guaranteed a priori that the scaling behavior we just found
across brain regions stems from underlying criticality and the
RG approach does not allow us to provide an answer to this
question. Therefore, we resort to alternative methods to estimate
the dynamical regime of each brain region from empirical data as
described above (37, 55). For this, one needs to compute spike-
count covariance values across pairs of neurons, which measure
the pairwise correlations in time-integrated activity (i.e., the total
number of spikes) across samples (Methods).

Fig. 3. Scaling of the covariance matrix spectrum for the resting-state activity in clusters of size K = {16,32,64,128} (blue, yellow, green, and red markers,
respectively) in 16 different brain regions. Observe not only the decay of the rank-ordered eigenvalues as a power law of the rank but also the excellent collapse
of the cutoffs obtained after rescaling the eigenvalue rank by the total size K . For each region, we collect the average powerlaw exponent and its SD across
experiments, while errorbars (often smaller than the marker size) are computed as the SD across split-quarters of data (SI Appendix, Table S2).

PNAS 2023 Vol. 120 No. 9 e2208998120 https://doi.org/10.1073/pnas.2208998120 5 of 12

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 U
N

IV
E

R
SI

D
A

D
 D

E
 G

R
A

N
A

D
A

 B
T

C
A

 G
R

A
L

 U
N

IV
E

R
SI

T
A

R
IA

 o
n 

Se
pt

em
be

r 
7,

 2
02

3 
fr

om
 I

P 
ad

dr
es

s 
15

0.
21

4.
20

5.
97

.

https://www.pnas.org/lookup/doi/10.1073/pnas.2208998120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2208998120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2208998120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2208998120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2208998120#supplementary-materials


In particular, to compute meaningful covariances, one assumes
that neural activity is stationary, a condition that typically holds
during recordings of resting-state type of activity, but not as
much in task-related activity, for which network activity is
inherently input-driven and nonstationary. Therefore, we restrict
our forthcoming analyses to resting-state data (an augmented
Dickey–Fuller test was performed to check for stationarity in all
cases; SI Appendix, Table S1 and Stationarity of Spiking Statistics
in Extended Methods).

We also notice that the values of spike-count covariances
depend on the window sizes over which such counts are

measured (37). In what follows, we take sampling windows
of T = 1s, which are sufficient for autocorrelations to decay
while maximizing the number of samples over which spike-
count covariances are computed, thus limiting subsampling biases
(Fig. 4A an SI Appendix, Table S1).

Using the so-obtained empirical values of pairwise spike-
count covariances as measured for a given brain region, we now
consider two alternative methods to infer the distance to the
edge of instability of the underlying dynamical process. Both
methods rely on reproducing the statistics of the empirically
measured covariances by using a linear-response approximation.

A

B C

E F

D

Fig. 4. (A) Autocorrelations decay in the MOp region (gray lines correspond to 30 randomly chosen neurons, while red line denotes the average across all
neurons). Notice how autocorrelations vanish on a timescale of ∼ 1s. Inset: Decay of the average autocorrelation for the firing rates projected into the first
four principal components. (B) Distribution of pairwise covariance values in one of the considered brain regions (MOp). Observe the strong peak around 0
(as expected from theoretical approaches of “balanced networks” (60)) as well as the large dispersion of values (37, 55), including (asymmetric) broad tails.
(C) Dependence of the estimated value of �max on the number of neurons N in the sample. Each color corresponds to a region following the color code in
Fig. 1; for each region, we show 10 points, corresponding to subsamples of 10% to 100% of the total neurons recorded, using the experiment with a greater
number of recorded neurons for each area. Fitting the resulting values of �max for different values of N to Eq. 3 with a parameter 1 common to all regions
and extrapolating for large values of N, one observes a fast convergence to the very edge of instability. (D) Proximity to criticality in 16 different regions of the
mouse brain, as measured by the estimated largest eigenvalue �max—with �max = 1 marking the “edge of instability”—of the inferred connectivity matrix. The
regions are ordered according to their average �max and the error bars are calculated as SD over different experiments in the same region. (E) Covariance
eigenvalues distribution for an example region (MOp, blue histogram), together with the best-fitting Marchenko-Pastur (MP) distribution (green line, fitted
parameter �̂ = 1.00) and the best-fitting covariance eigenvalues distribution for a linear-rate model of randomly connected neurons (red line, fitted parameter
ĝ = 0.95). Inset: Close-up of the empirical eigenvalue distribution and corresponding fits in a log–log scale. Notice how the theoretical expression derived
in ref. 55 fits very well the long tail of large eigenvalues, whereas the MP distribution is upper bounded by 4�, where � is the mean value of the empirical
distribution (black dotted line). (F ) Estimated values of �max (first method, (37)) and g (second method (55)), including errorbars, for all the considered regions.
Inset: Deviation of the empirical distribution to the Marchenko–Pastur (MP) distribution versus deviation to the theoretical distribution for a recurrent network
(RC) of linear rate neurons close to the edge of instability.
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In particular, one assumes a linearized response for each neuron
i around a baseline state, i.e., a rate model:

ẋi(t) = −xi(t) + g
N∑
i=1

Jijxj + ξi(t), [1]

where ξ(t) is a vector of zero-mean Gaussian white noises
with 〈ξi(t)ξj(t + τ0)〉 = δijδ(τ0) and J is the matrix of synaptic
couplings, characterized by its mean (0) and variance (1/N ).
The coupling parameter g sets the overall connection strength
and, for this model, it also coincides with the spectral radius
of the effective connectivity matrix W ≡ gJ ; i.e., λmax = g,
where λmax = 1 identifies the edge of instability. Impor-
tantly, the long-time window covariance (or zero-frequency
covariance), Cij = lim1t→∞

1
1t 〈1si(t)1sj(t)〉, with 1si(t) =∫ t+1t

t (xi(t ′) − 〈xi〉)dt ′, can be easily seen to be related to the
connectivity matrix W via the simple matrix identity:

C = (I −W )−1(I −W )−T , [2]

where I is the identity matrix (55). This relation, which has
been proven to be remarkably general, holds as a very good
approximation for many different (nonlinear) models, including
spiking neural networks ((37, 61, 62) and (63) for a recent
review). Let us note that the entries of C can be estimated
from empirical data as the covariances of the number of spikes
in long-enough time windows (Methods and (37) for a more
detailed explanation). Nevertheless, owing to strong subsampling
problems, directly inverting the relation in Eq. 2 is not feasible
and one needs to resort to the following advanced techniques to
infer the value of g from empirically measured covariances.
(i) Estimations from the Statistics of Spike-Count-Covariance
Distributions. As illustrated in Fig. 4B for one of the selected
regions, the distribution of pairwise spike-count covariances is
sharply peaked around 0, but it exhibits significant tails revealing
the presence of heterogeneously correlated pairs. Recent work by
Dahmen et al. (37)—relying on a dynamical mean-field approach
and tools from the theory of disordered systems (such as spin
glasses)—allows one to infer the spectral radius in Eq. 2 from
empirically measured values of the mean (c̄) and SD (δc) of such
a distribution as

λmax =

√
1−

√
1

1 + N12 , [3]

where N is the total number of neurons in the population and
1 = (δc)/c̄ (see ref. 37 for details). In particular, this approach
predicts that, for large spectral radii, the width of the covariance
distribution is much larger than its mean in agreement with
experimental observations.

As a warning, let us remark that the inferred value of λmax
strongly depends on the number of neurons being recorded and,
since the available empirical data heavily subsamples each region,
the aforementioned approach actually underestimates the real
value of λmax , which becomes much closer to 1 in the limit of
tens of thousands of neurons (large N ). Thus, in Fig. 4C , we
plot the inferred values of λmax as a function of the number of
recorded cells, showing that the larger the neural population size,
the larger the value ofλmax . Moreover, because of this dependence
with the system size, it becomes difficult to compare the estimated
values across regions with different numbers of neurons recorded.
To avoid this limitation, we computed for each experiment

and region the normalized covariance width, 1, and then
applied Eq. 3, extrapolating to a common number of neurons
N = 104. In Fig. 4D, we show the distance to the critical
point thus estimated, with errorbars computed as the standard
deviations across experiments in each region. Notice that most
values lie on a very narrow window between 0.96 and 0.99, with a
mean value λmax = 0.978±0.009, close to the edge of instability
(SI Appendix, Table S1 and Fig. 4F ).
(ii) Estimations from the Eigenvalue Spectrum of C. Hu and
Sompolinsky (55) recently derived an analytical expression for the
distribution of eigenvalues of the spike-count covariance matrix
for a recurrent random network of linear rate neurons, whose
dynamics follows Eq. 1.

Their analytical expression—which is rather robust to sub-
sampling effects—allows one to infer the network dynamical
state by fitting the actual empirically determined spectrum to the
theoretical distribution as a function of the only free parameter,
g (SI Appendix, Extended Methods and ref. 55).

In particular, Fig. 4E shows the best fit (g = 0.95) of the
empirically determined eigenvalue distribution for the MOp
region to the Hu–Sompolinsky distribution, together with a
(much worse) fit to the Marchenko–Pastur distribution (expected
for random uncorrelated time series), thus emphasizing the non-
trivial structure of the observed spike-count covariances, which
stem from recurrent quasicritical interactions. A summary of the
inferred g-values for all areas is shown in Fig. 4F (SI Appendix,
Table S1), which further illustrates the strong similarity between
the results obtained with the two employed methods, when the
original number of neurons in each experiment is considered.

Nontrivial Scaling Features Emerge in the RG Analysis of
Recurrent Random-Network Models at the Edge of Instability.
To close the loop, we wondered whether a simple model of
randomly coupled linear units, as the one defined by Eq. 1, is
able to reproduce other nontrivial scaling features as revealed
by phenomenological-RG analyses, beyond the spectrum of
covariances. In SI Appendix, Fig. S12, we show evidence that
such recurrent neural networks driven by noise generate patterns
of activity that reproduce many of the nontrivial scaling features
emerging out of the RG analyses when they are posed close to the
edge of instability (e.g., g = 0.95), while such nontrivial features
are lost in the subcritical regime (where trivial Gaussian scaling
emerges). In particular, the values of the exponents at the edge of
instability (α ≈ 1.28, z ≈ 0.21 and µ ≈ 0.78) are remarkably
similar to the ones measured across regions in the mouse brain
(SI Appendix, Table S2). The observation is rather striking given
that these exponent values come from a linear model of randomly
connected neurons, while real data are, most likely, generated by
more complex nonlinear dynamics on heterogeneous networks.
A recent work on universal aspects of brain dynamics (64) might
help shedding light on this result.

Nonuniversal, Input-Dependent Exponents in Task-Related
Activity. Saying that external stimuli shape neural correlations
in information processing areas is, to a certain extent, an obvious
statement. However, the fact that the spectrum of the activity
covariance matrix follows a very simple mathematical rule that ul-
timately ensures the smoothness of the internal representation of
inputs—as mathematically proved by Stringer et al. (6)—is quite
remarkable. In particular, these authors showed that the neural
representation for a d -dimensional (visual) input—that is to be
encoded collectively in the neural activity of the primary visual
cortex (VISp)—is constrained by the requirement of smoothness
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of the representation (i.e., continuity and differentiability of the
associated representation manifold) (6). Being more specific, for
these conditions to hold, the spectrum of the covariance matrix
needs to decay as a power-law with an exponent µ that must
be greater than 1 for continuity, and greater than 1 + 2/d—
where d is the dimension of the input ensemble (SI Appendix,
Datasets in Extended Methods)—for differentiability (6). Thus,
for sufficiently “complex” inputs, i.e., with large dimensionality
(d ), this exponent is constrained to take a value arbitrarily close
to (but larger than) unity, µ & 1.

On the other hand, in the previous RG analyses, we found
values of µ consistently smaller than 1—both under resting
conditions and in task-related activity—for all the considered
areas (Fig. 3), in agreement with ref. 49, but in seeming
contradiction with the predictions of Stringer et al. (6). How
come that we report values µ < 1 in all areas including sensory
information encoding ones, even when the mouse is exposed to
external stimuli? Does it mean that stimuli encoding violates the
requirements for efficient representation put forward by Stringer
et al. (6)?

At the core of this seeming paradox lies a data processing
method proposed by Stringer et al. that allows one to extract the
input-only related covariances from the overall “raw” covariance
matrix (6). The approach stems from the idea that population
activity can be decomposed into an input-related (or “input-
encoding”) subspace, which spans input-only related activity and
a complementary space—orthogonal to the former one—which
captures the remaining activity (65). In a nutshell, the so-called
cross-validated PCA (cv-PCA) method consists in repeating twice
the very same experiment and comparing the two resulting
raw covariance matrices; this comparison allows one to infer
which part of the covariance is shared by the two matrices
and is, hence, input-related (SI Appendix, section 6) and which
complementary part stems from unrelated background activity
(6). Unfortunately, given the nature of such an experimental
protocol, it is not possible to apply cv-PCA to the dataset of
Steinmetz et al. (52), extensively employed above, to other areas.

However, to prove that our RG results above (consistent with
µ < 1) are not in contradiction with the ones by Stringer et al.
(µ ≥ 1), we have extended the cv-PCA method (as explained
in detail SI Appendix, section 6) to be able to actually extract
from empirical data in ref. 6 not just the input-related covariance
matrix but also the time-series of input-related neural activity.
For this, the overall activity x(t) of a given neuron at time t is
projected into two separate subspaces, i.e., decomposed as

x(t) = ψ(t) + ε(t), [4]

whereψ(t) describes its input-related activity and ε(t) stands for
the remaining “orthogonal” activity, responsible for trial-to-trial
variability. This decomposition allows us to perform separate
RG analyses to input-related and background activity data. As
a consistency check, we also verified that the covariance-matrix
eigenspectrum associated with ψ(t) has no significant difference
with the one obtained from the standard application of cv-PCA
analyses in ref. 6 (SI Appendix, Fig. S16 for further details).

We now proceed to show the main results of applying
the phenomenological RG approach over the data of ref. 6
considering i) the original timeseries x(t), ii) the input-related
activity ψ(t), and iii) the background activity ε(t), with the
results averaged over three different mice.

(i) Analyzing the original data (i.e., x variables), one observes
again exponent values (α = 1.49± 0.08 and µ = 0.73± 0.08)
in agreement with the previously reported quasiuniversal values

for different mouse-brain areas (Fig. 5, together with SI Appendix,
Fig. S8 and Table S1), highlighting the robustness of our results
for very different recording techniques.

(ii) Considering the input-evoked activity (ψ) one finds that
the exponent α—which was rather robust when measured from
the overall activity data—is significantly altered (SI Appendix, Fig.
S8). More importantly, a significant increase in the exponent µ
is observed with respect to the original data analyses; it now
respects the theoretical boundary µ > 1 + 2/d (with d −→∞
in natural images) for the smoothness of the representation
manifold (Fig. 5). In addition, as also illustrated in Fig. 5, the
value of µ obtained from our RG analyses decreases as the input
dimensionality grows, in agreement with the theoretical results
and empirical findings in ref. 6.

(iii) Finally, considering only the residual “orthogonal” parts
(ε), we found slightly smaller values of µ with respect to the
original-data analyses for the two types of inputs considered (Fig.
5). We notice, however, that this background activity is not to be
confused with simple “white noise” as it exhibits correlations
with a nontrivial power-law spectrum. When looking at the
exponent α for the variance inside block-neurons, we did not
observe a significant change with respect to the overall-activity
case (SI Appendix, Fig. S8). This further supports the idea that
the observed scaling exponents in the overall original-data are
dominated by the higher-dimensional, background activity.

To summarize the previous results, Fig. 5 recaps the two
observed trends in the scaling exponentµ. On the one hand—for
data obtained using images of different intrinsic dimensionalities
(SI Appendix, Extended Methods)—we found the relationship
predicted and observed by Stringer et al. in ref. 6, namely that
for the input-related activity ψ , the value of µ decreases with
the complexity of the input signal, with a lower limit of µ = 1
for high-dimensional inputs. On the other hand, the exponent µ
decreases with the relative weight of background activity in the
data: the more input-related activity that is projected away, the
flatter the spectrum of the remaining orthogonal space.

As a side note, let us mention that—owing to the nature of
the experimental setup in ref. 6, in which stimuli are interspersed
with gray-screen interstimulus intervals—computation of actual
dynamical correlations are not meaningful in this case, so that we
purposely left aside the study of the dynamical scaling exponent z.

Fig. 5. Diagram showing the two observed trends in the power-law expo-
nent �, which characterizes the decay of the covariance-matrix eigenvalues
as a function of their rank. � decreases with the complexity of the input
when activity is projected into the task-encoding subspace (also called
representation manifold). On the other hand, for a fixed type of input, the
exponent decreases with the proportion of background, “noisy” activity in
the data, which lies in a higher-dimensional subspace orthogonal to the
representational manifold. Natural and low-dimensional image examples
have been adapted from ref. 6.
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Likewise, the transformations carried on the overall data to extract
the input-related and orthogonal activity do not necessarily
preserve the biological significance of the zero-activity, making
the computation of the “free-energy” exponent β pointless.

Thus, in summary, application of the phenomenological RG
procedure to the data for VISp of Stringer et al. (6) reveals that the
overall activity exhibits clear signatures of scale invariance, sharing
its quasiuniversality with the previously analyzed regions, which
relied on a different dataset. Nevertheless, this overall activity
can be decomposed into input-related and noisy/orthogonal
activities: the scaling exponent for the covariance matrix in the
first case obeys the mathematical constraints derived by Stringer
et al., thus solving the seeming contradiction with the spectrum
of the overall data.

Discussion

Understanding how the brain copes with inputs from changing
external environments, and how information from such inputs
is transmitted, integrated, processed, and stored in a physical
substrate consisting of noisy neurons—exposed also to a stream
of other overlapping inputs—is one of the major challenges in
neuroscience. The fast development of novel technologies that
allow for the simultaneous recording of thousands of neurons
paves the way to quantitative analyses of brain activity with
unprecedented levels of resolution and detail, making it possible,
for the first time, to discriminate between different overarching
theories.

Here, we have taken advantage of high-throughput data,
together with state-of-the-art theoretical approaches to analyze
neuronal activity across regions and across experiments in the
mouse brain. One of our chief objectives was to make progress
in elucidating whether the so-called “criticality hypothesis”—
in some of its possible formulations—is supported by empirical
data. This goal has been tackled in two steps.

(i) The first step was to assess the presence or absence of scale
invariance or “scaling” in neural data, for which we extensively
rely on the phenomenological RG approach recently proposed
by Meshulam et al. (49–51): Our analyses here confirm the
existence of strong signatures of scaling in all the analyzed brain
regions, with exponent values taking quasiuniversal values with
only relatively small variations across experiments and areas (52).
The level of universality is not as precise as in critical phenomena,
i.e., in “nonliving matter” (though, even in Physics, critical
exponents can take nonuniversal, continuously varying values
depending, for instance, on structural heterogeneity/disorder
(see, e.g., ref. 31).

A particularly relevant open question is thus whether the
observed differences across regions can be related to the specific
functional role of each area. Even if we do not have a clean-
cut answer to this, let us make the following observation. One
parsimonious measure of the role of a (mouse) brain area is its
hierarchical score as recently determined (66), with low (high)
scores corresponding to sensory (higher-level) areas. Results in
Fig. 4D allow us to observe that sensory areas such as primary
cortices MOp and SSp (with low scores; see e.g., Figure 6 in ref.
66) tend to operate closer to the edge of instability than secondary
cortices (such as MOs) or areas in the prefrontal cortex (such as
ORB, PL, and ACA). This seems to suggest that there could exist a
relationship between the dynamical regime of a given area and its
hierarchical score, with low-score regions being more “critical”.
On the other hand, we do not observe a clear and consistent
trend in thalamic regions such as LGd, LP, MG, and PO. Thus,
more thorough and comprehensive studies would be needed to

draw solid conclusions on this possible connection between the
dynamical regime and hierarchical score.

(ii) The second step was to scrutinize whether the empirically
observed scale invariance stems from criticality or not. Thus, the
next sections are devoted to the discussion of this hypothesis at
the light of our results.

Criticality vs. Latent Dynamical Variables. Importantly, as
already mentioned, recent works (53, 54) have shed doubts on
the possible relation between the empirically found scaling in
neural recordings and actual criticality, as originally suggested
by Meshulam et al. (49, 50). In particular, Morrell et al.
constructed a very simple model of binary neurons which,
being uncoupled, cannot possibly exhibit collective behavior
such as phase transitions or criticality (53). In their setup, all
individual neurons are exposed to a large set of shared external,
time-correlated inputs, so-called “latent dynamical variables”
or simply “hidden variables”. Surprisingly enough, such a toy
model is able to reproduce—for a relatively broad region of the
parameter space, but requiring some degree of fine tuning—the
RG scaling with non-Gaussian activity distributions as well as a
set of exponents roughly compatible with those in actual neural
networks (with larger deviations for dynamical scaling) (49, 50).
This suggests that the empirically observed scale invariance in
neural recordings could possibly emerge as an evoked response
to shared external drivings rather than stemming from critical
dynamics (see however the discussion in ref. 38).

Let us recall that this type of dichotomy for the interpretation
of scaling—between critical behavior on the one hand and
a superposition of the simpler effects stemming from hidden
variables on the other—is a common theme in different branches
of science, being for example at the roots of discussions about the
meaning of the Zipf’s law in neural data (26, 30, 38, 67, 68).

Here, by employing a variety of tools, we have concluded that
all the empirically analyzed brain regions lie—to a greater or lesser
extent—at the edge of instability, i.e., in the vicinity of a critical
point separating stable from linearly unstable phases. Moreover,
we have also shown that a random network of linear units tuned
close to the edge of instability suffices to reproduce nontrivial
scaling features, with remarkably similar exponent values without
the explicit need of external fields. Let us caution, however, that
the previous results do not imply that external (latent) dynamical
inputs may not have an impact on the recurrent dynamics nor
on the observed scaling exponents. External inputs contribute
to set the network working point at which covariances (as well
as the stability matrix of the linear-rate model) are computed.
Furthermore, the observed differences in exponent values across
regions could stem from diverse exposures to latent fields from
other areas. Further empirical and theoretical studies would be
required to advance in this direction.

Edge of Instability and Optimal Representations. By applying
the phenomenological RG procedure to the data for VISp from
Stringer et al. (6), we found that the overall activity exhibits clear
signatures of scale invariance and shares its quasiuniversality with
the previously analyzed regions relying on a different dataset,
solving a seeming contradiction between our own results for
quasiuniversal scaling across brain regions and those in ref. 6.
However, the projection of the overall or “raw” activity into
input-representing and complementary/orthogonal space activi-
ties allowed us to conclude that the scaling exponent determined
from RG analyses in the first case obeys the mathematical
constraints derived by Stringer et al. Understanding how the
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brain performs this task, i.e., how it separates signal from noise,
is an open fundamental problem (see, e.g., ref. 69).

Let us also emphasize that given that all the analyzed regions
are near critical, they are bound to exhibit power-law decaying
covariance-matrix spectra. Thus, we conjecture that critical
behavior creates a broad range of covariance scales, needed for
neural networks to support optimal input representations with
power-law decaying eigenvalues. More research is needed to
confirm this conjecture and put it on firmer ground.

To further illustrate the possible relationship between power-
laws in the spectra of covariance matrices and optimal input
representations, let us mention that, in a related work, we have
recently designed and analyzed a simple machine-learning model
based on the paradigm of reservoir computing (70) to analyze
this problem in a well-controlled example. This model consists
of a recurrent network of coupled units/neurons, which receive
shared external inputs, giving rise to reverberating activity within
the network or “reservoir”. Contrary to other machine-learning
paradigms, the internal synaptic weights remain fixed during the
training process: Only a smaller subset of links connecting to a set
of readout nodes change during training, which makes reservoir-
computing a versatile tool for diverse computational tasks (71).
Inspired by the experiments of Stringer et al., we trained the
network on an image classification task. We refer the interested
reader to ref. 70 for further details. For our purposes here, it
suffices to recall that the best performance is obtained when the
tunable control parameters are set in such a way that the overall
dynamical state is very close to, but below, the edge of instability.
Moreover, within such an operational regime, the spectrum of
the covariance matrix obeys the mathematical requirement for
optimal representations, i.e.,µ & 1, as observed for actual neural
networks (6).

We find it quite suggestive that such a relatively simple
artificial neural network becomes optimal in a regime that
shares crucial statistical properties of the covariances with actual
neural networks in the (mouse) brain. Thus, we believe that
this machine-learning model may constitute a well-controlled
starting point to further investigate the interplay between internal
dynamics and external shared inputs in more realistic models of
brain activity and to scrutinize optimal input representations.

Avalanche Criticality vs. Edge-of-Instability. As already dis-
cussed, we have found strong empirical evidence of critical
behavior in the sense of vicinity to the edge of instability across
brain regions. This type of behavior—called traditionally “edge of
chaos” or “type-II criticality” in ref. 37—has long been (since the
pioneering works of Langton and others (72, 73)) theoretically
conjectured to be crucial for information processing in natural
and artificial neural networks. In this case, edge-of-instability
systems are characterized by the presence of many modes that
are close to become unstable, and thus there is a large repertoire
of possible dynamical states that can be excited, opening many
possible channels to information processing and transmission in
real time (13, 73, 74).

However, in the analyzed neural recordings, there are no large
fluctuations in the overall level of global activity across time,
in agreement with what was observed for the motor cortex of
awake macaque monkeys in ref. 37 and with the expectation for
“asynchronous states” in balanced networks (60). Nevertheless,
it is noteworthy that in some other empirical observations,
diverse levels of temporal variability in collective firing rates (i.e.,
oscillations) have been also reported together with the possibility
of bursts and avalanching behavior (9, 39, 41). Actually, as stated

in the Introduction, much attention has been previously paid to
“avalanche criticality” (referred as “type-I criticality” in ref. 37),
which is associated with networks in which there is an overall-
activity mode about to become unstable, thus generating scale-
free bursts of activity and possibly oscillations while the rest of
modes remain stable (25, 33, 35). It should be emphasized that
both types of criticality are not mutually exclusive as, in principle,
it is possible to have a whole set of eigenvalues, including the
overall-activity one, at the edge of instability. Thus, it seems
a priori possible to construct computational models exhibiting
both types of criticality in which the system can shift between
different regimes depending on its needs. In our view, it is likely
that actual brain networks exploit different ways of being critical
to achieve diverse functional advantages for different tasks.

Conclusions

We have developed a synergistic framework which relies
on recently proposed breakthrough approaches, but that also
extends and combines them to analyze state-of-the-art recordings
of the activity of many neurons across brain regions in the
mouse. We find that all regions exhibit scale invariance and that
all of them operate, to a greater or lesser extent, in a critical
regime at the edge of instability. Moreover, we have argued that
the resulting scaling in the spectrum of covariances might have
important functional applications for information storage, as
it facilitates the generation of optimal input representations. It
is our hope that the present work stimulates further research
on the remaining open questions and helps advance toward a
more comprehensive understanding of the overall dynamics of
brain networks and their emerging computational properties, as
well as to disentangle universal and nonuniversal aspects across
regions and behavioral states.

Materials and Methods

Phenomenological Renormalization-Group (RG) Approach. Let us briefly
outline the phenomenological RG approach introduced in refs. 49 and 50. Given
a set of N neurons, the empirically determined activity of the i-th neuron at a
given time tj is denoted by σi(tj), where j ∈ (1, T) labels a discrete number of
nonoverlapping time bins. Determining the most meaningful size of such time
bins is an important technical aspect (Next section); here, we just assume that
such an optimal time discretization is given.

As discussed in the main text, a criterion of maximal pairwise correlation is
employed to group neurons together at each step k of the RG procedure. In
particular, one considers the Pearson’s correlation coefficients

C(k)
ij = 〈δx(k)i δx(k)j 〉/

√
〈(δx(k)i )2〉〈(δx(k)j )2〉, [5]

whereδx(k)i = x(k)i −〈x
(k)
i 〉and x(k)i is the activity of the block-neuron i at step

k of the coarse-graining (we identify x(0)
i ≡ σi as the activity of neuron i before

coarse-graining), while averages are computed across the available discrete
time steps. At the beginning of each RG step, the two most correlated neurons,
i and j∗i, are selected, and their activities are added into a new coarse-grained
variable:

x(k+1)
i = z(k)i

(
x(k)i + x(k)j∗i

)
, [6]

where the normalization factor zki is chosen in such a way that the average

nonzero activity of the new variables xk+1
i is equal to one. Notice that, owing

to such a normalization criterion, activity values are not constrained to fulfill
xki (t) < 1. Then, one proceeds with the second most-correlated pair of neurons
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and so on, until a set of Nk coarse-grained “block neurons”, each containing the
summed activity of K = 2k original neurons, has been constructed.

Iterating this procedure, after k steps there remain only Nk = N/2k coarse-
grained variables or “block-neurons”, {xki }i=1,2...Nk , each recapitulating the

activity of K = 2k individual neurons. To figure out whether a fixed point
of the RG flow exists, one can study the evolution of the probability density
function for the activity of the coarse-grained variables,PK(x). Following (49), we
separated PK(x) for block-neurons of size K in two components: the probability
of being silent, SK , and the probability QK(x) of having nonzero activity x:
PK (x) = SKδ (x) + (1 − SK)QK (x). Trivially, if the original neurons were
statistically independent, one would expect (as a direct consequence of the
central limit theorem) to drive the activity distribution QK toward a Gaussian
fixed-point of the RG flow. As pointed out in ref. 49, the RG convergence to a
non-Gaussian fixed-point (i.e., invariance of the distribution across RG steps)
reveals a nontrivial structure in the data.

Another quantity of interest is the variance of the activity distributions as a
function of the size of the block neurons K:

M2(K) =
1
Nk

Nk∑
i=1

[〈(
σ

(k)
i

)2
〉
−

〈(
σ

(k)
i

)〉2
]
, [7]

where σ (k)
i is the summed activity of the original variables inside the cluster.

Notice that, for totally independent variables, one would expect the variance
to grow linearly in K (i.e., M2(K) ∝ K), whereas if variables were perfectly
correlated M2(K) ∝ K2. Nontrivial scaling is therefore characterized by
M2(K) ∝ Kα with a certain intermediate value of the exponent 1 < α < 2.

On the other hand, Fk = − log (SK) defines a sort of “free energy” for
the coarse-grained variables at the k-th RG step (49). As more and more of the

initial variables σi are grouped into cluster variables x(k)i , one would expect
that the probability of having “silent” block-neurons (i.e., the probability that
all neurons inside a cluster are silent) decreases exponentially with the size K
of the clusters, leading to: F(K) ∝ Kβ where β = 1 for initially independent
variables.

One can also wonder whether there is some type of self-similarity in the
dynamics at coarse-grained scales. Given that, commonly, fluctuations on larger
spatial scales relax with a slower characteristic time scale, we should expect the
time-lagged Pearson’s correlation function (or simply autocorrelation function)
of the coarse-grained variables to decay more slowly as we average over more
neurons. In particular, for step k of the RG flow, one has

C(k)(t) =
1
Nk

Nk∑
i=1

〈x(k)i (t0)x
(k)
i (t0 + t)〉 − 〈x(k)i 〉

2

〈(x(k)i )
2
〉 − 〈x(k)i 〉

2
. [8]

Assuming that correlations decay exponentially in time with a characteristic time

scale τ (k)c (i.e., C(k)(t) = e−t/τ
(k)
c ) at each coarse-graining level, dynamical

scaling implies that the average correlation function collapses into a single curve

when time is rescaled by the characteristic time scale: C(k)(t) = C(t/τ (k)c )
and that this time scale obeys scaling with the cluster size: τc(K) ∝ Kz where
z is the dynamical scaling exponent. Finally, as argued in ref. 49, if correlations
are self-similar, then we should see this by looking inside the clusters of size
K. In particular, the eigenvalues of the covariance matrix, i.e., the propagator,
which is scale-invariant at the fixed-point of the RG in systems with translational

invariance (49) must obey a power-law dependence on the fractional rank:
λ = B (K/rank)µ, where B is a constant andµ a decay exponent.

We estimate the goodness of each power-law fit by calculating the R-squared
value, comparing with an equivalent exponential fit (SI Appendix, Fig. S10) (75).
For the probability density of eigenvalues, we compute the log-likelihood ratios
between the estimated power-law and alternative exponential and lognormal
distributions (Extended Methods and SI Appendix, Tables S1 and S2).

Each exponent is expressedase = ē+MAE+σ , where ē is theaverage across
different experiments (possibly from different mice),MAE is the mean-absolute-
error, computed as the average across experiments of the experiment-specific
errors measured over split-quarters of data, and σ is the SD across experiments
(SI Appendix, Tables S1 and S2).

Measuring Covariances. Here, we use a general definition of covariance, as
described by the following equation:

csij = 〈(xi − 〈xi〉)(xj − 〈xj〉)〉. [9]

During the RG analysis and in estimations of the distance to the edge of instability,
the variable xi represents the number of spikes in a time bin of width1t, with
averages taken over all timebins, so that cij measures the pairwise correlation
of spike-count responses to repeated presentations of the same stimulus (or, in
our case, repeated sampling of resting-state activity under identical behavioral
conditions). Throughout this article, we referred simply as “covariance” when
correlations were computed in the RG analysis using the time bin given by
the geometric mean of neurons’ ISIs, which renders time series where the
average nonzero bin is populated by only one spike. In contrast, the term “long-
time-window” or “spike-count” covariance is left for the distance to criticality
analysis, in which 1t = 1s and the average nonzero bin in the time-series
contains between 3 and 7 spikes, depending on the region. We notice that
the later can also be written as the time integral of the time-lagged covariance
cij(τ ) (37):

cnij = lim
1t0−→∞

∫ 1t0

−1t0

1t0 − τ
1t0

csij(τ ) dτ . [10]

which, loosely speaking, removes time-dependent effects and puts the emphasis
onto pairwise heterogeneities.

Data, Materials, and Software Availability. Previously published data were
used for this work (52).
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