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1 Introduction

The observation of neutrino oscillations firmly established that neutrinos have tiny masses
and mix in the weak charged current [1]. These properties clearly demonstrate that family
lepton numbers associated to the lepton flavors e, µ, τ are not conserved in nature. The
origin of both family lepton number violation and of neutrino masses can be naturally at-
tributed to the dimension five Weinberg operator [2] pointing to a natural scale of 1012 GeV.
If the new physics violating family lepton number appears only at this scale, then its ef-
fects, visible primarily on dimension six operators, are expected to be unobservably small.
These effects include those of charged lepton flavor violation (CLFV) that are expected to
be probed with much greater precision in the coming years.

In contrast, the discrepancy between the experimental and SM prediction for the muon
anomalous magnetic moment, (g − 2)µ or aµ, is a persistent anomaly that requires TeV
scale (or lower) new physics coupling to the muon that may or may not violate lepton
flavor. A dedicated program to decrease the experimental uncertainty by a factor of four is
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currently ongoing in Fermilab, with the first data analysis released in 2021, and the second
in 2023. The value for aµ combined from the results obtained in Fermilab and Brookhaven
is [3, 4] aExpµ = (11659205.9± 2.2)× 10−10, while the SM prediction from the Muon g − 2
Theory Initiative White Paper [5–25] is aSMµ = (11659181.0± 4.3)× 10−10, resulting in the
5.1σ discrepancy:

δaBSMµ = (24.9± 4.8)× 10−10. (1.1)

The SM prediction makes use of dispersion methods to calculate the hadronic contributions
that are the major source of uncertainty.1

By disregarding neutrino mass generation and minimally introducing new physics that
couples to the muon in a flavor conserving fashion or obeying minimal flavor violation, one
can explain aµ [35–38] and still easily avoid large CLFV effects. A critical review of the
minimal extensions with one or two new fields can be seen in ref. [39]; see also ref. [40]. If
the dominant new physics contribution occurs at 1-loop, a key ingredient is the presence
of a chiral enhancement that occurs by replacing one chiral flipping coupling involving the
muon Yukawa yµ ∼ 0.0006 by an order one coupling [35, 37, 38, 41, 42].

With new physics at the TeV scale, the dipole operator responsible for aµ should be
given by the dimension 6 operator ¯̀

µσ
αβHµRFαβ in the electroweak symmetric phase where

the necessary chirality flip µR → µL involves a Higgs insertion. Then the one-loop contribu-
tion to aµ can be separated into two classes [38, 41] depending on the location of the Higgs
insertion: (i) if it occurs in the external muon legs; (ii) if it occurs in one of the internal lines.
For contributions of type (i), there is no chiral enhancement because the Higgs insertion is
accompanied by the usual muon Yukawa yµ which also supplies a chiral flipping.2 If all new
fields are electroweak singlets, this is the only possibility. In contrast, chiral enhancement
is possible for contributions of type (ii) because the Higgs is attached to a vertex other
than the muon Yukawa. Enhancement occurs if this vertex is replaced by the top Yukawa
coupling (e.g., with the mediation of leptoquarks [47–49]) or the tau Yukawa coupling (e.g.,
with lepton flavor changing coupling with an additional Higgs doublet [88]). The large cou-
pling may also come from non-SM interactions such as with vectorlike leptons [37, 50, 51].
In all these examples, the new Higgs insertion also provides a chiral flipping.

With the presence of new scalars mixing with the SM Higgs, enhancement is also
possible through the couplings of these new scalars with the muon. In the Two-Higgs-
doublet model (2HDM), this feature is available for the types II/X or aligned version with
contributions enhanced by tan β (or, similarly, ζl for the aligned version). However, in
order to accommodate aµ, some of the scalars must be at the weak scale, which renders

1There is currently no consensus between the dispersion method and lattice results reported by the
BMW collaboration [26]. On the one hand, if the latter is used, the aµ discrepancy is reduced to 1.5σ
level. On the other hand, it disagrees with the R-ratio based prediction used in [5] by more than 2.1σ.
Comparison between different lattice groups is under way, with consistent results among them [27–33].
Nevertheless, most of these results stand for specific euclidean windows, not the full determination of
hadronic contributions to aµ. So an investigation of the source of incompatibility among the two approaches
is urgent, together with more high precision lattice results. See [34] for an recent evaluation of the different
euclidean windows using the dispersion method. In this work, we will adopt the result in eq. (1.1).

2It is possible to explain aµ with a type (i) contribution but either the new states in the loop need to lie at
the electroweak scale or lower; see e.g. [43–45] or the couplings are at the edge of perturbativity; see e.g. [46].
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only type X [52] or the aligned version [53–56] as possible candidates. For the muon specific
2HDM [57], it is possible to push the scalars to higher masses. In the MSSM, a similar
reasoning apply, where the main contributions are also enhanced by tan β, allowing to
accommodate aµ (see e.g. [58] for a review). However, differently from the 2HDM versions
mentioned, in the MSSM there are innumerous sources of flavor violation that need to be
properly suppressed [59, 60]; see e.g. [39] for an updated analysis.

In this work, we aim to connect the physics responsible for aµ with neutrino masses
generation so that the same mediators participate in both processes. We focus on TeV scale
mediators and we also seek minimality in their number. Two general features immediately
follow. Firstly, the seesaw scale has to be lowered to the TeV scale or lower and, secondly,
one certainly cannot impose family lepton number to be conserved so that the interplay with
CLFV is crucial. Simply lowering the mediator masses for the type I [61–63], type II [64–68]
or type III [69–72] seesaw models do not work because their contribution to aµ is nega-
tive [36, 73].3 In particular, adding any number of singlet RHNs to implement the type I see-
saw mechanism leads to a negative contribution to aµ [74] even in low-scale seesaw scenarios
such as the inverse seesaw [75–77] or the symmetry protected case [78]. This situation does
not change if the heavy particles do not participate in the generation of neutrino masses.

Focusing on the seesaw, there are many ways that the seesaw scale can be lowered. The
aforementioned inverse seesaw is the case with extended tree level mediators that brings
additional suppression due to approximate lepton number conservation. Another option
is to consider radiative generation; see ref. [79] for a review and refs. [80–89] for models
connecting aµ with radiative neutrino mass generation. Yet another way is to attribute
part of the smallness of neutrino masses to a vacuum expectation value (VEV) of a second
Higgs doublet that only couples to neutrinos. This is the neutrinophilic 2HDM (ν-2HDM)
for which the RHNs can be Majorana [90, 91] or Dirac [92–96]. Our focus will be on the
former as the Majorana mass will induce the chirality flip enhancing the aµ contribution.
An earlier attempt to connect neutrino masses with aµ considered this neutrinophilic 2HDM
with Majorana RHNs [91], where the interplay with CLFV was studied. However, in its
simplest form, the new contribution to (g − 2)µ were negative. Phenomenological studies
unrelated to aµ were performed in refs. [97–99]. A second Higgs doublet with small vev
also helps explaining the small neutrino mass in the recently proposed type IB seesaw [100,
101] where two Higgs doublets couple to the two RHNs that form a pseudo-Dirac pair of
an approximate U(1) symmetry. Other recent works connecting aµ with neutrino mass
generation can be seen in refs. [46, 102–106].

Here we show that the shortcomings of the ν-2HDM (and also the type IB seesaw) to
solve aµ can be overcome by introducing another field — a charged scalar singlet — to the
model so that a chirally enhanced contribution can be generated. This contribution has no
definite sign and allows the new fields to be at the TeV scale. Both the Majorana RHNs
and the charged scalar contributes to aµ while the RHNs and the neutrinophilic Higgs
doublets are responsible for neutrino masses. In particular, the RHN Majorana mass in

3Ref. [91] had considered the type II seesaw and its interplay with aµ but they did not consider the
correct sign of the contribution.
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Figure 1. Chirally enhanced contribution to muon g− 2 involving RHN NR and charged scalars.

the loop induces the necessarily chirality flip while the Higgs insertion occurs with scalars
and it is decoupled from the chiral flipping. Since lepton flavor violation is built in with
the TeV scale new physics, it is important to study the induced CLFV processes.

The outline of the paper is as follows. In section 2 we present the models and in
section 3 we show how they generate the neutrino masses with TeV scale mediators. Sec-
tion 4 shows the calculation for aµ and CLFV observables. Section 5 discusses the interplay
between obtaining the correct aµ and avoiding the constraints of CLFV processes. The
summary is given in section 6.

2 Models

We seek scenarios where aµ is explained with the participation of the righthand neutrinos
(RHNs) at one-loop at the same time that these heavy neutrinos generate the necessary
active neutrino masses through a low scale seesaw mechanism. More specifically, we require
a chiral enhanced contribution to aµ connecting µL with µR and then two more charged
scalars — one electroweak singlet and another residing in a doublet — are necessary to close
the loop as shown in figure 1. From the diagram it is clear that the chiral enhancement will
be proportional to the RHN Majorana mass MN which we require to be at the TeV scale.4

So we extend the SM by considering two Higgs doublets Φ1,Φ2, two5 righthanded
neutrino (RHN) fields NiR, i = 1, 2, and one singlet charged scalar ϕ+. The relevant part
of the Lagrangian involving the Higgs doublets and the righthanded neutrino fields is

−L ⊃ ¯̀
αhαΦeeαR + N̄iRλ

(1)
iα Φ̃†1`α + N̄iRλ

(2)
iα Φ̃†2`α + 1

2N̄iR(MR)ijN c
jR + h.c., (2.1)

where `α, α = e, µ, τ are the lepton doublets and Φe is Φ1 or Φ2 depending on the model.
The relevant interaction terms involving the charged singlet scalar is

−L ⊃ µϕΦT
2 εΦ1ϕ

− + fiαN̄iRe
c
αRϕ

− + h.c., (2.2)

where we choose µϕ real without loss of generality. The interaction term `cα`βϕ
+ is absent

owing to the symmetries of the specific models introduced below and then there is no
4This is one of the minimal possibilities considered in ref. [38] to explain (g− 2)µ and DM stabilized by

an unbroken Z2 leading to an inert Higgs doublet. Here the additional Higgs doublet has a small vev that
helps explaining small neutrino masses.

5These two neutrinos will generate the minimal number of two nonzero light neutrino masses but three
RHNs can be equally considered.
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radiative neutrino mass generation as in the Zee model [107].6 This absence also forbids
the generation of four-fermion operators `4 from tree level ϕ+ exchange.

One of the simplest models within the type I seesaw is to suppress the Dirac mass
term by attributing its origin to a Higgs doublet different from the rest, with tiny vacuum
expectation value. This is the neutrinophilic 2HDMmodel (ν-2HDM) [90] which is obtained
from (2.1) by imposing a Z2 where NiR,Φ1 are odd. As a consequence, λ(2) = 0 and
Φe = Φ2. The singlet scalar ϕ+ is additional and we assume it is odd so that the terms
in (2.2) are allowed. The resulting Lagrangian is

−Lν-2HDM ⊃ ¯̀
αhαΦ2eαR + N̄iRλ

(1)
iα Φ̃†1`α + 1

2N̄iRMNiN
c
iR

+ µϕΦT
2 εΦ1ϕ

− + fiαN̄iRe
c
αRϕ

− + h.c.
(2.3)

The doublet Φ2 ≈ HSM will be mostly the SM Higgs doublet while Φ1 ≈ Hν will be mostly
composed of non-SM higgses. Neutrino masses will depend solely on 〈Φ0

1〉 = v1 which will
be suppressed.

Another minimal possibility is to combine the righthanded neutrinos into a
(pseudo)Dirac pair through a U(1)N symmetry with charges [100, 101]

N1R ∼ Φ1 ∼ +1 , N2R ∼ Φ2 ∼ −1 . (2.4)

It leads to the Lagrangian

−LIb ⊃ N̄R1λ1αΦ̃†1`α + N̄R2λ2αΦ̃†2`α +MN c
R1NR2 + h.c. (2.5)

and the seesaw mechanism is dubbed seesaw type IB. Compared to (2.1), we are already
simplifying the notation in that λ(1)

1α = λ1α and λ(2)
2α = λ2α whereas λ(1)

2α = λ
(2)
1α = 0. The

other couplings depend on the choice of U(1)N charges for eRα and ϕ. We adopt the charges
eR ∼ −1 and ϕ− ∼ −2 so that

−LIb ⊃ hα ¯̀
αΦ1eRα + f2αN̄2Re

c
αRϕ

− + µϕΦT
2 εΦ1ϕ

− + h.c. (2.6)

To keep hτ within perturbative values, we need v1 & 10−2v and most of the suppression
for light neutrino masses should still come from the suppression of the Yukawas λjα. We
could flip the charges of eR and ϕ− and then replace Φ1 by Φ2 in the first term and N2R
by N1R in the second. But even in this case we cannot suppress v1 too much because the
dominant g − 2 contribution is proportional to v1λ2α. The third term softly breaks the
U(1)N symmetry7 which cannot be exact as a global symmetry to avoid unwanted massless
scalars. The model in ref. [100], for example, imposes a Z3 instead of U(1)N .

6A recent paper considered the Zee model for (g − 2)e,µ [88], where the couplings to charged singlet
are not relevant and aµ is explained by the contributions of the additional Higgs doublet with a chiral
enhancement at one-loop of at most the τ Yukawa. Ref. [89] considered the complementary case of two
charged scalar singlets and one RHN where neutrino masses are radiative but there is no chirally enhanced
contribution to aµ.

7The quadratic term Φ†2Φ1 should be added as well. The term ``ϕ+ remains forbidden.
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For both models, the charged scalar component that is dominant in the non-SM Higgs
doublet behaves as the charged scalar in the type I 2HDM and they are only constrained
by LEP [108]:

MH+ > 75 GeV . (2.7)

On the other hand, the singlet component couples solely with charged leptons and righthand
neutrino, implying that the model independent constraint from LEP does not apply. Since
we allow for a small mixing, we will consider that both charged scalars will have masses
around the electroweak scale or above.

3 Light neutrino masses

Light neutrino masses are generated from the type I seesaw, i.e., through the exchange of
RHNs in (2.1) at tree level. The generated effective Weinberg operator is

L = 1
2

¯̀c
αΓT

αi(M−1
R )ijΓjβ`β + h.c. , (3.1)

depending on the two Higgs doublets through

Γjβ = λ
(1)
jβ Φ̃†1 + λ

(2)
jβ Φ̃†2 . (3.2)

3.1 ν-2HDM model

For the ν-2HDM model, only Φ1 participates in the seesaw and λ(2) = 0. Then the neutrino
mass matrix is given by

Mν = −v2
1λ

(1)T
M−1
R λ(1) , (3.3)

where its lightness is partly explained by 〈Φ0
1〉 = v1 � v =

√
v2

1 + v2
2 = 174 GeV. If

MR ∼ TeV, we need

v1λ
(1)/v ∼

√
MRMν

v
.

√
1 TeV× 0.05 eV

v
∼ 10−6 . (3.4)

We can choose v1/v ∼ 10−6 in order to have λ(1) of order one to address the deviation in aµ.
Since we are focusing on the minimal case of two RHNs, the heavy neutrino Yukawa

coupling λ(1) is mostly fixed by the masses and mixing of light neutrinos. Using the Casas-
Ibarra parametrization, we can write for normal ordering (NO),

v1λ
(1)
1α = i

√
M1
(√
m2czV

†
2α −

√
m3szV

†
3α
)
,

v1λ
(1)
2α = i

√
M2
(√
m2szV

†
2α +

√
m3czV

†
3α
)
,

(3.5)

where cz = cos z and sz = sin z depend on the free complex angle z. We are taking
MR = diag(M1,M2) and the neutrino mass matrix in (3.3) is Mν = V ∗ diag(0,m2,m3)V †,
with V being the PMNS matrix. Therefore, besides the two CP phases in V , we have five
free parameters in the neutrino sector: M1,M2,Re(z), Im(z), tan β = v2/v1. Note that for
M1 = M2, the real part of z is not physical.
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For inverted ordering (IO), we have instead

v1λ
(1)
1α = i

√
M1
(√
m1czV

†
1α −

√
m2szV

†
2α
)
,

v1λ
(1)
2α = i

√
M2
(√
m1szV

†
1α +

√
m2czV

†
2α
)
.

(3.6)

The only difference in this case is that Mν = V ∗ diag(m1,m2, 0)V †.

3.2 Type Ib seesaw model

For the type IB seesaw model, the neutrino mass matrix coming from (3.1) is

(Mν)αβ = −v1v2
M

(λ1αλ2β + λ2αλ1β) , (3.7)

where va = 〈Φ0
a〉, a = 1, 2, and the Yukawa couplings are defined in (2.5). We choose

v1 < v2 because Φ2 is the doublet coupling to the charged leptons in (2.6). Adapting (3.4)
to this case with M ∼ TeV, we obtain

1
v

√
v1λ1αv2λ2β ∼

√
MRMν

v
.

√
1 TeV× 0.05 eV

v
∼ 10−6 . (3.8)

As in the ν-2HDM model, the Yukawa couplings λ1α and λ2α are mostly fixed by light
neutrino masses and mixing.

For NO, the Yukawa couplings can be parametrized as

λ1α = iκ

(
M

2v1v2

)1/2 [
+ i
√
m2 V

†
2α +

√
m3 V

†
3α

]
,

λ2α = iκ−1
(

M

2v1v2

)1/2 [
− i
√
m2 V

†
2α +

√
m3 V

†
3α

]
,

(3.9)

where we use a different but equivalent parametrization with respect to refs. [100, 101].
Flipping the sign in front of √m2 is equivalent and this sign can be absorbed by flipping
the sign of ν2L. The parameter κ is free and can be chosen real by rephasing N1R, N2R
with opposite phases. For IO, we can analogously parametrize

λ1α = iκ

(
M

2v1v2

)1/2 [
+ i
√
m1 V

†
1α +

√
m2 V

†
2α

]
,

λ2α = iκ−1
(

M

2v1v2

)1/2 [
− i
√
m1 V

†
1α +

√
m2 V

†
2α

]
.

(3.10)

Note that in the neutrino sector, besides the unknown CP phases, there are only three free
parameters: M, tan β, κ. This is the same number as the neutrinophilic case with equal
masses for the RHNs.

4 Dipole moments and CLFV

Using an effective theory approach, the operators relevant to lepton dipole moments and
charged lepton flavor violation (CLFV) processes are the photonic operators

Lγ-eff = −
(
CσRαβ ēαLσµνeβRF

µν + h.c.
)

−
(
CND-L
αβ ēαLγνeβL + CND-R

αβ ēαRγνeβR
)
∂µF

µν .
(4.1)
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Figure 2. Dipole and self-energy contribution to flavor changing processes.

The operator in the first line is the dipole contribution whereas the ones in the second
line are the non-dipole (ND) part. We can see that only the dipole part involves chirarity
flipping and chiral enhancement will be possible only for this term. The Wilson coefficients
at 1-loop can be obtained by matching the full theory with the effective theory through
appropriate 1-loop amplitudes. The relevant amplitudes come from the dipole (left) and
self-energy (right) diagrams in figure 2.

4.1 Dipole moments and `α → `βγ

The Wilson coefficient of the dipole operator contributes to the dipole moments and `α →
`βγ as

aα = −4mα

e
Re(CσRαα ) ,

dα = −2 Im(CσRαα ) ,

Br[`α → `βγ] = m3
α

4πΓα
(|CσRαβ |2 + |CσRβα |2) ,

(4.2)

where aα, dα are the contributions to the magnetic and eletric dipole moments, respectively.
These formulas assume that our covariant derivative in QED is Dµ = ∂µ + ieQAµ and
similarly for the SM.

For the ν-2HDM described in (2.3), Φ2 ≈ HSM and Φ1 ≈ Hν is almost inert with a
tiny vev. The chirally enhanced contribution to the dipole operator is given in figure 1,
with ϕ being the charged singlet, H+ being essentially the charged Higgs residing in Φ1
and h0 being the SM Higgs boson. The chiral enhancement comes from the NiR Majorana
masses,MNi , and these heavy neutrinos only couple to Φ1. The expected chirally enhanced
contribution is then of the form

CσRβα ∼
ev2µϕ

(4π)2Λ4λ
(1)
βi

†
MNif

∗
iα , (4.3)

where the transferred momentum is q2 = −m2
µ.

For the exact contribution we need to include the mixing between the charged higgs
H+ in the doublet and the scalar singlet ϕ+ coming from the µϕ term in (2.3) or (2.2).
The contribution in the scalar potential is

µϕϕ
−(Φ+

2 Φ0
1 − Φ0

2Φ+
1 )→ −µϕv ϕ−H+ , (4.4)

where vH+ ≡ v2Φ+
1 − v1Φ+

2 , vi = 〈Φ0
i 〉, is the physical charged Higgs field within the

doublets when µϕ = 0. The orthogonal direction is the charged Goldstone absorbed by

– 8 –
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the W . Considering arbitrary mass terms for H+H− and ϕ+ϕ−, the mixing term (4.4)
induces the mixing H+

ϕ+

 =

cγ −sγ
sγ cγ

S+
1

S+
2

 , (4.5)

with angle
sin 2γ = − 2µϕv

M2
S2
−M2

S1

, (4.6)

and S+
i are the charged scalars with masses MSi , i = 1, 2. We have chosen MS2 > MS1 .

Then the complete contribution arising from the diagrams in figure 2 is

16π2

e
CσRβα = cγsγ

v2
v

∑
j

λ
(1)
βj

†
f∗jα

MNj

[x2jfS(x2j)− x1jfS(x1j)] , (4.7a)

+ mα
v2

2
v2

∑
j

λ
(1)†
βj

[
c2
γ

M2
S1

f̃S(x1j) +
s2
γ

M2
S2

f̃S(x2j)
]
λ

(1)
jα (4.7b)

+mβ

∑
j

fT
βj

[
s2
γ

M2
S1

f̃S(x1j) +
c2
γ

M2
S2

f̃S(x2j)
]
f∗jα , (4.7c)

where xkj ≡M2
Nj
/M2

Sk
and the loop functions are [37, 38]

fS(x) ≡ x2 − 1− 2x log x
4(x− 1)3 ,

f̃S(x) ≡ 2x3 + 3x2 − 6x+ 1− 6x2 log x
24(x− 1)4 .

(4.8)

See appendix A for the details. We have checked that the contribution proportional to
(λ(1))2 matches ref. [99] for γ = 0.

Let us discuss the various contributions. The first contribution (4.7a) is the chirally
enhanced (left-right), reducing to (4.3) when MSi � MNj as fS(0) = 1/4 and we identify
Λ4 = 4M2

S2
M2
S1

(M2
S2
−M2

S1
). The contributions (4.7b) and (4.7c) are not chirally enhanced

(left-left and right-right respectively) as the chiral flip comes from the external lines. So
the chirally enhanced contribution is larger than the non-chirally enhanced contributions
by a factor

cγsγ
M2
S

mµMN
∼ cγsγ × 104 , (4.9)

for order one couplings and the numbers assume MN ∼ MSi ∼ TeV. Given the definition
of the angle γ in (4.6) the trilinear coupling µϕ cannot be arbitrarily small if we require
the chirally enhanced contribution to dominate:

|µϕ| & 1 GeV or |sγ | & 10−4 . (4.10)

The dominance of the chirally enhanced contribution is important because the non-chirally
enhanced contributions are positive definite and leads to a contribution to aµ which is nega-
tive definite, contrary to the experimental observation. They are similar to the contribution
of NR exchange in the usual seesaw models [36, 74].
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Observable Current limit Future limit
Br(µ→ eee) < 1.0× 10−12[109] 10−16[110]
Br(τ → µµµ) < 2.1× 10−8[111] 3.4× 10−10[112]
Br(τ → µee) < 8.4× 10−9[111] 2.9× 10−10[112]
Br(τ → eee) < 1.4× 10−8[111] 4.3× 10−10[112]
Br(τ → eµµ) < 1.6× 10−8[111] 4.3× 10−10[112]
Br(µ→ eγ) < 4.2× 10−13[109] 6× 10−14[113]
Br(τ → µγ) < 4.4× 10−8[109] 10−9[112]
Br(τ → eγ) < 3.3× 10−8[109] 3× 10−9[112]
Γconv
µ→e/Γ

capt
N < 7.0× 10−13[114]∗ 3× 10−17[115–119]∗∗/10−18[120]†

Table 1. Current and future limits for charged lepton flavor violating processes at 90% CL. For
µe conversion, the nucleous is Au (*) and Al (**) or Ti (†).

For the type IB model in (2.5) and (2.6), the estimate of the chirally enhanced contri-
bution analogous to (4.3) will be

CσRβα ∼
v2µϕ

(4π)2Λ4λ
†
β1Mf∗2α . (4.11)

Then we need λ1β to be of order one while λ2β needs to be suppressed due to neutrino
masses, cf. (3.8).

The complete contribution reads

16π2

e
CσRβα = cγsγ

v2
v

λ†β1f
∗
2α

MN
[x2fS(x2)− x1fS(x1)] , (4.12a)

+ mα
v2

2
v2λ

†
β1

[
c2
γ

M2
S1

f̃S(x1) +
s2
γ

M2
S2

f̃S(x2)
]
λ1α (4.12b)

+mβf
T
β2

[
s2
γ

M2
S1

f̃S(x1) +
c2
γ

M2
S2

f̃S(x2)
]
f∗2α , (4.12c)

where xi = M2
N/MS2

i
. We have neglected additional contributions proportional to λ∗2βλ2αv

2
1

which will be highly suppressed. Here the requirement (4.10) is equally necessary for order
one couplings.

In table 1 we show the current and future limits for different `α → `βγ. Limits for
other CLFV processes are also shown.

4.2 µ-e conversion in nuclei

A very stringent test for CFLV is the coherent µ−-e− conversion in a muonic atom of
nucleus (A,Z) by neutrinoless muon capture

µ− + (A,Z)→ e− + (A,Z) ,
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mediated in our case by the effective flavor-changing photon interactions in (4.1). We
neglect similar Z mediated processes which are suppressed by the Z mass. It should be
noticed that, contrary to µ → eγ decay, one needs to consider off-shell photon emission.
The general photonic µ−e transition amplitude is given by [121]

M = −eA∗µ(q)ūe(pe)
[
(fE0 + γ5fM0)γν

(
gµν − qµqν

q2

)
+ (fM1 + γ5fE1) iσµνq

ν

mµ

]
uµ(pµ) ,

(4.13)
where pµ and pe are the momenta of the muon and electron respectively, q = pµ− pe is the
transfered momentum, and fX ≡ fX(q2) are form factors. In the case of µ → eγ decay,
only the dipole part (fE1, fM1) contributes. The form factors can be written in terms of
the Wilson coefficients introduced in (4.1):

fE0 = (CND-L
eµ + CND-R

eµ ) q
2

2e, fM0 = (CND-L
eµ − CND-R

eµ ) q
2

2e, (4.14)

fE1 = −(CσReµ − CσR∗µe )mµ

e
, fM1 = −(CσReµ + CσR∗µe )mµ

e
. (4.15)

In the approximation pioneered by Weinberg and Feinberg [122], only the photonic
contribution is included in the calculation of the branching ratio of the coherent µ − e

conversion which is given by

Br[µN → eN ] ≡ Γ[µN → eN ]
Γcapt

= 8mµα
5Z4

effZ|Fp|2ξ2

Γcapt
. (4.16)

Here Zeff is an effective atomic charge due to averaging the muon wave function over the
nuclear density, Γcapt is the total muon capture rate, and ξ2 is obtained with knowledge of
the form factors

ξ2 = |fE0(−m2
µ) + fM1(−m2

µ)|2 + |fE1(−m2
µ) + fM0(−m2

µ)|2 , (4.17)

where we use the transferred momentum q2 = −m2
µ.

In general, the non-photonic part should be included as well, which is parametrized by
an effective four-fermion interaction containing quarks. In our particular case, these con-
tributions would come from box diagrams containing both the righthanded neutrinos and
charged scalars. Since the coupling between quarks and the charged scalars is suppressed
(it will be proportional to the ratio v1/v2), we can safely neglect these diagrams.

Finally, we rewrite the branching ratio in terms of the Wilson coefficients, to allow a
straightforward application to our model

Br[µN → eN ] =
4m3

µα
4Z4

effZ|Fp|2

πΓcapt

(∣∣∣∣CσReµ + mµ

2 CND−L
eµ

∣∣∣∣2 +
∣∣∣∣CσRµe + mµ

2 (CND−R
eµ )∗

∣∣∣∣2
)
.

(4.18)
In our case, for order one couplings and loop functions, the chiral enhanced part in the
dipole contribution will dominate the non-dipole part by a factor MSi/mµ ∼ MNk/mµ ∼
104 for the new fields in the TeV scale and sγ not too small as (4.10). In this case of dipole
dominance, the ratio Br[µN → eN ]/Br(µ → eγ) depends roughly only on the atomic
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A
ZNucleus Zeff Fp Γcapt(GeV)

27
13Al 11.5 0.64 4.64× 10−19

48
22Ti 17.6 0.54 1.70× 10−18

80
38Sr 25.0 0.39 4.62× 10−18

121
51Sb 29.0 0.32 6.72× 10−18

197
79Au 33.5 0.16 8.60× 10−18

207
82Pb 34.0 0.15 8.85× 10−18

Table 2. Values for Zeff , Fp, and Γcapt(GeV) for different nuclei [125, 126].

number of the nucleous [123] and we have checked it for our case. As for the non-dipole
part, we have found that the relative sign between CσR and CND in (4.18) is effectively
opposite to refs. [99, 124, 125].

At present, the best limit for this branching ratio comes from conversion in gold nu-
clei [114]: ΓAu

conv/ΓAu
capt < 7.0 × 10−13, where ΓAu

capt = 8.7 × 10−18 GeV. There are, however,
future experiments that aim to reduce the bounds on µ − e conversion by several orders
of magnitude [115–119]. Their aim is to achieve ΓAl

conv/ΓAl
capt < 3× 10−17 using aluminium

nuclei. The different effective parameters for different nucleous are shown in table 2.
The Wilson coefficient of the non-dipole part can be obtained for the ν-2HDM model as

16π2

e
CND-L
βα = v2

2
v2

∑
j

λ
(1)
βj

†
λ

(1)
jα

[
c2
γ

GS(x1j)
6M2

S1

+ s2
γ

GS(x2j)
6M2

S2

]
,

16π2

e
CND-R
βα =

∑
j

fT
βjf
∗
jα

[
s2
γ

GS(x1j)
6M2

S1

+ c2
γ

GS(x2j)
6M2

S2

]
,

(4.19)

where the loop function is

GS(x) = 2− 9x+ 18x2 − 11x3 + 6x3 log(x)
6(1− x)4 . (4.20)

The latter function is the same as G2(x) in ref. [99]. See details in appendix A. As
anticipated, there is no chiral enhancement for these coefficients.

For the type IB seesaw model, we analogously obtain

16π2

e
CND-L
βα = v2

2
v2λ

†
β1λ1α

[
c2
γ

GS(x1)
6M2

S1

+ s2
γ

GS(x2)
6M2

S2

]
,

16π2

e
CND-R
βα = fT

β2f
∗
2α

[
s2
γ

GS(x1j)
6M2

S1

+ c2
γ

GS(x2j)
6M2

S2

]
.

(4.21)

We could also consider the decay µ→ eee. In addition to the Wilson coefficients that
we already have, we will need to consider box diagrams. These diagrams have righthanded
neutrinos and charged scalars inside, whose contributions will be of the form

fiµfiefjefje, λiµλieλjeλje, λiµfieλjefje, fiµλiefjeλje
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In section 5 we will see that we need suppressed fie to evade CLFV constraints and still
be able to account for (g − 2)µ. In this case, only the contribution with λ survives which
is subdominant [99].

5 Solving (g − 2)µ avoiding CLFV

By considering only the dominant chirally enhanced contribution to the dipole term, we
can estimate the interplay between the necessary contribution to aµ and the necessary
suppression to avoid significant CLFV processes. The contribution to aµ in (4.2) necessary
to explain the experimental deviation (1.1) requires

|CσRµµ | ∼ |ReCσRµµ | ∼ 2× 10−9 GeV−1 . (5.1)

On the other hand, the current limit on µ→ eγ requires√
|CσRµe |2 + |CσReµ |2 < 4× 10−14 GeV−1 . (5.2)

So it is necessary that √
|CσRµe |2 + |CσReµ |2

|CσRµµ |
. 2× 10−5 . (5.3)

The expected future limit will decrease this number by a factor 2.6. A similar analysis on
the current limit on µe conversion in gold nuclei requires√

|CσRµe |2 + |CσReµ |2 < 10−12 GeV−1 , (5.4)

which implies √
|CσRµe |2 + |CσReµ |2

|CσRµµ |
. 5× 10−4 . (5.5)

The expected future limit in aluminium nuclei will greatly reduce the limit in (5.4) to
6× 10−15 GeV−1 and then the bound in (5.5) becomes 3× 10−6.

Now, let us see how our models can satisfy the hierarchy (5.3) between flavor changing
and flavor conserving couplings to the muon.

We start with the type IB seesaw model. We assume the dominance of the chirally
enhanced contribution and require |sγ | � 10−4 due to (4.10). In this model, to have
appreciable aµ, we need

λ∗1µf
∗
2µ ∼ O(1) . (5.6)

On the other hand, according to (5.3), we need |λ∗1µf∗2e|, |λ∗1ef∗2µ| to be less than 10−5. Since
λ1µ needs to be order one, we can adopt f2e = 0 for simplicity. In this case,√

|CσRµe |2 + |CσReµ |2

|CσRµµ |2
≈ |λ1e|
|λ1µ|

& 0.1 , (5.7)

from the dependence of λ1α on neutrino masses and mixing for NO or IO, cf. eqs. (3.9)
or (3.10), and (5.3) is never satisfied. Turning on the coupling f2e only worsens the situation
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and the type IB seesaw model augmented with a singly charged singlet cannot account for
(g − 2)µ without violating current bounds on µ→ eγ.

We now turn to the ν-2HDM model. For appreciable aµ, assuming the dominance of
chirally enhanced contribution, we need large µµ couplings:

λ
(1)
µ1
†
f∗1µ, λ

(1)
µ2
†
f∗2µ ∼ O(1) . (5.8)

For equal massesM1 = M2, to suppress CLFV processes, we need suppressed µe couplings:

|λ(1)
µ1
†
f∗1e + λ

(1)
µ2
†
f∗2e| . 10−5 , |λ(1)

e1
†
f∗1µ + λ

(1)
e2
†
f∗2µ| . 10−5 . (5.9)

Considering (5.8), the first combination vanishes if

f1e = f2e = 0 , (5.10)

while the vanishing of the second requires the orthogonality between f∗iµ and λ(1)
ie :

(f1µ, f2µ) = ζ(λ(1)
2e ,−λ

(1)
1e ) . (5.11)

The contribution to aµ then is proportional to

λ
(1)
µ1
†
f∗1µ + λ

(1)
µ2
†
f∗2µ = ζ(λ(1)

2e
∗
λ

(1)
1µ
∗
− λ(1)

1e
∗
λ

(1)
2µ
∗
) , (5.12)

which is mostly fixed from neutrino parameters. The mass degeneracy M1 = M2 and the
orthogonality condition (5.11) could in principle be justified by flavor symmetries [127]
which needs much more structure and will not be treated here. This links the coupling f
with λ so that all the terms in (4.7) scale as 1/v2

1. The vanishing (5.10) also makes the
BSM contribution to electron EDM negligible, making it easily compatible with the current
precise measurement [128, 129]. For the muon EDM, the combination (5.12) contributes
but it is equally negligible compared to the current limit [130].

Considering now the complete contribution to the dipole coefficient CσRβα in (4.7), the
turning off (or suppression) of the electron coupling (5.10) eliminates the f2 contribu-
tion (4.7c) for α = e or β = e. Analogously, the orthogonality condition (5.11) eliminates
the mixed (left-right) contribution (4.7a), i.e., the chiral enhanced contribution, to the
flavor transition µ → e if N1, N2 have equal masses. Then, only the λ2 term (left-left)
in (4.7c), which is not enhanced, contributes to µ→ eγ while the chiral enhanced part still
contributes dominantly to aµ. With the increasing of the mass difference ∆MN = M2−M1,
the chiral enhanced contribution also increases rapidly for µ→ eγ. In principle, we could
change the orthogonality condition (5.11) to keep the chiral enhanced part (4.7a) vanishing,
at the cost of devising a mass dependent condition. This vanishing could even be extended
to the whole dipole coefficient (4.7). We will keep the simple orthogonality condition (5.11),
and use the mass difference ∆MN as a quantifier of the degree of tuning.

With the orthogonality condition, the couplings fiα are completely determined by free
variables related to neutrinos masses (Im(z), M1 = M2 = MN ), the vev v1, and the scaling
parameter ζ. Note that the real part of z is not physical for M1 = M2. Thus, for fixed
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Figure 3. Allowed regions in the plane Im(z)× ζ for NO (left) and IO (right). Scalar masses and
sγ are fixed as (5.13) while MN = 1 TeV and v1 = x × 10−3 GeV with x = 1 (x = 2) for NO (IO).
The region above the gray (green) dashed lines are excluded by perturbativity on the couplings f1µ
(f2µ). The orange region is allowed by the present constraint on µN → eN , while the light red
region is related to µ→ eγ. The dark (light) blue region show the 1(2)-σ region allowed by (g−2)µ.
The crosses denote the benchmark points in (5.14). The mixing angles of the PMNS are fixed in
best-fit of [131] whereas δ = 218◦.

values of MN and v1, we can impose perturbativity bounds |fiα| < 4π as a function of Im z

and ζ. If the masses of the charged scalars and their mixing is also fixed, we can obtain
further bounds by requiring compatibility with (g − 2)µ and µ → eγ. For both NO and
IO, we choose

MS1 = 350 GeV , MS2 = 450 GeV , sγ = 0.1 . (5.13)

Figure 3 shows allowed regions in the plane Im(z)−ζ for (g−2)µ (blue), µ→ eγ (pink) and
µe conversion in Au (yellow). Perturbativity for fiα (dashed curves) is also shown. The left
(right) figure is for NO (IO) for whichMN = 1 TeV and v1 = 10−3 GeV (v1 = 2×10−3 GeV).
The mixing angles of the PMNS matrix are fixed in the best-fit of [131] while we choose
δ = 218◦. Using a different value of δ leads to different shapes and regions for this plot and
others that follow but the overall possibility of explaining (g − 2)µ and avoiding CLFV do
not change significantly. The change is larger for NO. For IO the variation is not significant.

As illustrated in the plot, the strongest constraint on Im(z) comes from µ→ eγ. There
is no visible constraint on ζ from µ → eγ because the chiral enhanced term was chosen
to vanish. The constraint on ζ will mainly come from (g − 2)µ, whose dominant chiral
enhanced contribution depends linearly on this variable. In turn, perturbativity bounds on
fij impose upper bounds on ζ. For each NO and IO, we see that the following benchmark
points account for (g − 2)µ still evading the current CLFV constraints:

(BM-NO) MN = 1 TeV , v1 = 10−3 GeV , z = 0.2i , ζ = 60 ;
(BM-IO) MN = 1 TeV , v1 = 2× 10−3 GeV , z = −0.1i , ζ = 60 .

(5.14)

Only v1 and z differ in the two points. The rest of the model parameters are fixed as (5.13).
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Figure 4. The same as figure 3, but for non-degenerate neutrino masses: M2 = 1.0001M1. Left:
NO. Right: IO.

For comparison and to assess the degree of tuning, we show in figure 4 the allowed
regions analogous to figure 3, with the same parameters, except for the lifting of the mass
degeneracy of RHNs to M2 = 1.0001M1. We can see that we lose compatibiliy between
(g− 2)µ at 1σ and µ→ eγ as the chiral enhanced term of the latter will not be completely
canceled. The region of compatibility for (g−2)µ is practically unchanged. We fix Re(z) = 0
but we have checked that variation of Re(z) may lead at most to a difference of a factor two.

We illustrate in figures 5–7 the interplay of the distinct contributions to g−2, µ→ eγ,
and µe conversion in Au respectively, using the benchmarks defined in (5.13) and (5.14).
In all the plots, we show the influence of the ζ parameter in the various contributions
for each observable. Starting with the contributions to g − 2, figure 5, we show that the
chiral enhanced term given by (4.7a) is dominant, easily explaining the present anomaly.
We also show in the figure that allowing for non-degenerate neutrino masses affects very
little. Considering µ → eγ, for non-degenerate masses the chiral contribution can easily
surpass the bound on µ → eγ. For the case of degenerate masses, the present bound can
be avoided for this benchmark, even though for the future limit this would not be the
case. The important point to notice is that all the contributions can be suppressed by
increasing v1 since all of them are proportional to v−2

1 under the orthogonality condition.
However, since only the chiral contribution is proportional to s2γ , we can still compensate
by increasing the value of sγ . This reasoning was applied when choosing the benchmark for
IO, where v1 is higher than the case for NO. At last, we comment on the present bounds on
µe conversion in Au, figure 7. We show that the non-dipole contribution given by (4.19) is
negligible compared to the dipole contribution given by (4.7). Moreover, as in the case of
µ→ eγ, if the neutrino masses are non-degenerate we can easily surpass the present bound.

To illustrate how the CLFV constraints are sensitive to the mass difference M2 −M1
of the RHNs, we can choose for NO the scaling v1 = 10−3 GeV

√
M1/TeV such that the
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Figure 5. The absolute value of the contributions for (g−2)µ as defined in eq. (4.7) as a function
of ζ, for the benchmarks defined in (5.13) and (5.14) (left is NO and right is IO). The red line
stands for the dominant chiral enhanced term (4.7a). The blue line refers to the λ2 term, (4.7b),
while the green line corresponds to the f2 term, (4.7c). Both the green and blue contributions are
negative, while the red one is positive. The dark (light) gray band corresponds to the 1(2)-σ region
allowed at present for (g−2)µ. The curves assumes M1 = M2 while the bands around them show
the variation for |M2/M1 − 1| ≤ 0.4.
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Figure 6. The contributions for µ→ eγ as defined in eq. (4.7) as a function of ζ, for the benchmarks
defined in (5.13) and (5.14) (left is NO and right is IO). The red line stands for the chiral enhanced
term (4.7a) while the blue line refers to the λ2 term, cf. (4.7b). The dashed (continuous) gray line
corresponds to the present (future) limits. Here, ∆ = M2/M1 − 1. The band around the blue line
shows how much this contribution varies if ∆ varies within |∆| ≤ 0.4.

Yukawas λ(1) in (3.5) has the overall scale fixed as

(λ(1)λ(1)†)11 = M1
v2

1

(
m2|cz|2 +m3|sz|2

)
∼ 0.05× |sz|2 , (5.15)

and the benchmark (5.14) is attained for M1 = 1 TeV. For the benchmark value we can see
that λ(1) ∼ O(0.1) and f is larger by ζ if respecting the orthogonality condition. For IO we
choose twice the value for v1 so that the benchmark (5.14) is also attained for M1 = 1 TeV.

We start with countour curves, shown in figure 8, for the current and future limit for
µ→ eγ as a function of Im(z) and M1 for different values of ∆ = M2/M1 − 1. We clearly
see that the curves move to the right as the mass difference increases showing that the con-
straints get stronger with the mass difference. The benchmark point, marked with a cross,
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Figure 7. The contributions for Br(µAu→eAu) as defined in eqs. (4.7) and (4.19) as a function of
ζ, for the benchmark defined in (5.13) and (5.14) (left is NO and right is IO). The red line stands
for the dipole contribution (4.7), which is dominant. Moreover, if the neutrino masses are chosen
non-degenerate, it can violate the present bound, given by the dashed gray line. The blue line is
related to the non-dipole contribution, (4.19). Here, ∆ = M2/M1 − 1. The band around the blue
line shows how much this contribution varies if ∆ varies within |∆| ≤ 0.4.
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Figure 8. Contours for µ → eγ for fixed ζ = 60, and varying M2/M1 − 1 = 0, 10−4, 10−3, 10−2

(respectively in blue, green, red and purple). The vev v1 = x × 10−3 GeV
√
M1/TeV scales with√

M1 so that the global scale for the Yukawa λ(1) is fixed. The continuous curves denote Br(µ →
eγ) = 4.2 × 10−13 (current) and the dashed ones denote Br(µ → eγ) = 6 × 10−14 (future). The
mass is MN = M1 and z is the parameter in (3.5) for NO (similarly for IO) with Re(z) = 0. Left:
NO with x = 1. Right: IO with x = 2. The cross denotes the benchmark points defined in (5.13)
and (5.14) for NO and IO.

is already excluded for ∆ = 10−4 for both NO and IO. In the future, this benchmark will be
excluded even for degenerate masses. A curve similar to the blue curve can be also found in
ref. [99] where they consider the pure ν-2HDM without the charged singlet and hence equiv-
alent to our case turning off fjα. The shape of the curve is not exactly the same because
their treatment of the Casas-Ibarra parametrization of the minimal case is not appropri-
ate. For certain curves, there are islands near M1 ∼ 102.3 GeV indicating a destructive
interference between the chiral enhanced contribution and the λ2 contribution in (4.7).
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Figure 9. Contours for Br(µN→eN) for fixed ζ = 60, and varyingM2/M1−1 = 0, 10−4, 10−3, 10−2

(respectively in blue, green, red and purple). The vev v1 = x × 10−3 GeV
√
M1/TeV scales with√

M1 so that the global scale for the Yukawa λ(1) is fixed. The continuous curves denote N = Au
(current) and the dashed denote N = Ti (future). The mass is MN = M1 and z is the parameter
in (3.5) for NO (similarly for IO) with Re(z) = 0. Left: NO with x = 1. Right: IO with x = 2.
The cross denotes the benchmark points defined in (5.13) and (5.14) for NO and IO.

In figure 9, we show similar contours for µe conversion in nuclei. We can see that the
future constraints will be much stronger than the current ones. Currently, a small mass
difference is still allowed but in the future the benchmark will be easily excluded.

Finally we briefly comment on the dependence of our results on the masses of the
charged scalars. The expression of the chiral enhanced contribution (4.7a) involves a can-
cellation between the contributions of the two charged scalars and it vanishes for degenerate
masses. So up to a certain point, increasing the mass difference leads to an increase in the
contribution to g− 2. This information can be seen in figure 10 where we show 1σ regions
satisfying the (g − 2)µ constraint in the MS1 and MN = M1 = M2 plane keeping the ratio
fixed as MS2/MS1 = 450/350 ≈ 1.29 (blue) and MS2/MS1 = 2 (gray). We can see that the
larger mass ratio allows a larger compatibility region with larger masses for the scalars and
the RHNs. The benchmark points defined in (5.13) and (5.14) correspond to the origin
of the plot in the corner of the blue region. Following this point to the right inside the
blue region would still allow the compatibility to (g− 2)µ but with decreasing contribution
to CLFV. We should remark that the mass difference of the charged scalars cannot be
arbitrarily large as this would require an increasingly large µϕ. The benchmark we have
chosen, given by (5.13), is conservative in this sense, since it assumes µϕ ∼ −30 GeV. For
higher values, for instance, −µϕ ∼ TeV, it will still be possible to explain (g − 2)µ with
masses of the charged scalars and the RHNs of O(TeV) given all other parameters fixed
as before. For even higher values of −µϕ ∼ 20 TeV, we can avoid future constraints on µe
conversion in nuclei and still satisfy (g − 2)µ.

Before ending this section, let us briefly discuss the collider phenomenology. Given new
particles with masses at the TeV scale, many BSM states can be searched for directly. Since
the type IB seesaw model cannot account for (g− 2)µ, we consider only the neutrinophilic
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Figure 10. 1σ regions for (g − 2)µ in the MS1 and MN = M1 = M2 plane for fixed ζ = 60,
sγ = 0.1 and two values of MS2/MS1 = 450/350 ≈ 1.29 (blue) and MS2/MS1 = 2 (gray). The vev
v1 = x×10−3 GeV

√
M1/TeV scales with

√
M1 so that the global scale for the Yukawa λ(1) is fixed.

Left: NO with x = 1 and z as in (5.14). Right: IO with x = 2 and z as in (5.14).

version in eq. (2.3) in which the neutrinophilic Higgs doublet Φ1 ∼ Hν essentially contains
only BSM states and their interactions with quarks are suppressed by the large tan β, just
as in the type I 2HDM. The interaction with quarks of the charged scalars within the
singlet ϕ+ are analogously suppressed and occurs only through mixing. Therefore, the
dominant production mechanism at LHC for the charged scalars present in the extended
neutrinophilic model will be through pair production qq̄ → γ∗(Z∗) → S−S+ [132, 133],
while the production of the gauge singlets NR will be highly suppressed [134] by the light-
heavy neutrino mixing |V`N | ∼ v1λ

(1)/MN ∼ 10−6 for MN ∼ TeV and v1 ∼ MeV. There-
fore, we will not consider the decay of NR.

The decay mode of the charged scalars S+
i depends on their masses relative to the

masses of the RHNs. If MSi < MNj , assumed in our benchmarks, and not so large
tan β = v2/v1, the decay of Si occurs dominantly through the Yukawa coupling to Φ2,
which contains a tiny admixture of S+

i . The dominant width to tb quarks is roughly

Γ(S+
i → tb) ∼ y2

t

tan2 β

MH±

16π , (5.16)

where we ignore the suppression by c2
γ or s2

γ . For large tan β, the dominant decay is through
Yukawa couplings λ(1) and f suppressed by the small mixing between the light and heavy
neutrinos with width

Γ(S+
i → `+α νj) ≈

MSi

16π
[
|ΓHjαai|2 + |Γϕjαbi|

2
]
, (5.17)

where ΓH = v1V
Tλ(1)T

M−1
R λ(1) = M̂νV

†/v1, Γϕ = v1V
†λ(1)†M−1

R f∗, (a1, a2) = (cγ ,−sγ),
(b1, b2) = (sγ , cγ). The term with ΓH is already present in the ν-2HDM without the charged
singlet [97, 98]. As we need f1µ, f2µ ∼ O(1) to solve (g − 2)µ, the contribution from Γϕ
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is larger. From a rough estimate, the decay (5.17) start to dominate for tan β & 106. In
contrast, if MSi > MNj , the charged scalars decay rapidly through the Yukawa couplings
λ(1) and f into charged leptons and NR. The latter will be long-lived and decay to W+`α
or Zνj with rates suppressed by the light-heavy neutrino mixing.

To conclude this section, we have seen that the solution for (g− 2)µ within our model
requires a sensitive balance of parameters to evade the strong bounds coming from CLFV
processes. In general, increasing sγ , increasing fjα or decreasing v1 will increase the chiral
enhanced contribution which dominates in (g − 2)µ but also in the CLFV processes if not
properly suppressed.

6 Summary

In order to connect the mechanism of neutrino mass generation with the (g− 2)µ anomaly,
we proposed to add a single charged singlet to the neutrinophilic 2HDM and a variant which
implements a low scale seesaw by attributing part of the smallness of neutrino masses to
a small vev. We studied two models: (a) the ν-2HDM version and (b) the type IB seesaw
version, both for the minimal case of two righthanded neutrinos. A chiral enhanced contri-
bution to (g−2)µ is generated through exchange of charged scalars and righthanded neutri-
nos, the latter also participating in the neutrino mass generation. As family lepton number
breaking is also brought to low scale, the chiral enhanced contribution generically leads to
large rates for CLFV processes. We find that the type IB seesaw implementation does not
have enough freedom to circumvent the constraints from CLFV while solving the (g − 2)µ
anomaly. The ν-2HDM version, on the other hand, has enough freedom to allow some
special cases where (g − 2)µ anomaly can be solved and yet avoiding the stringent CLFV
processes. Even in these special cases, the region of compatibility between (g−2)µ and cur-
rent CLFV is very restricted. One region for some choices of parameters is given in figure 3.
It is clear that our solutions are not restricted to the minimal case of two RHNs as this limit
can be mimicked in the presence of three righthanded neutrinos and more regions may open
up. In the future, experiments of µe conversion in different nuclei are expected to drastically
improve the limits and this kind of solution to the (g − 2)µ anomaly will be put to test.
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A Wilson coefficients

Here we describe briefly how we obtain the Wilson coefficients of the effective photonic
operators (4.1). The calculations are based on appendices B and C.
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A.1 ν-2HDM model

For the dipole part, the contribution (4.7b) comes from the LL part of the penguin diagram
leading to (B.2a) with the following couplings multiplying (C.1):

Nk − S+
1 : − eλ(1)

βk

† v2cγ
v
λ

(1)
kα

v2cγ
v

,

Nk − S+
2 : − eλ(1)

βk

† v2(−sγ)
v

λ
(1)
kα

v2(−sγ)
v

.

(A.1)

The masses should be attributed accordingly. The contribution (4.7c) comes from the RR
part of the penguin diagram leading to (B.2a), L-R exchanged, with the following couplings
multiplying (C.2):

Nk − S+
1 : − efT

βksγf
∗
kαsγ ,

Nk − S+
2 : − efT

βkcγf
∗
kαcγ .

(A.2)

The chirally enhanced contribution (4.7a) comes from LR part of the penguin diagram
leading to (B.2b), with the following couplings multiplying (C.4):

Nk − S+
1 : − eλ(1)

βk

† v2cγ
v
f∗kαsγ ,

Nk − S+
2 : − eλ(1)

βk

† v2(−sγ)
v

f∗kαcγ .

(A.3)

For the non-dipole part, there are only chirality preserving contributions. The integral
IµLL (B.2a) and the coefficient (C.3) should be multiplied by (A.1) while the analogous IµRR
should be multiplied by (A.2), resulting in the coefficients (4.19).

A.2 Seesaw type IB

The contribution (4.12b) comes from the LL part (B.2a) with the following couplings
multiplying (C.1):

N − S+
1 : − eλ†β1

v2cγ
v
λ1α

v2cγ
v

,

N − S+
2 : − eλ†β1

v2(−sγ)
v

λ1α
v2(−sγ)

v
.

(A.4)

The contribution (4.12c) comes from the RR part of (B.2a), L-R exchanged, with the
following couplings multiplying (C.2):

N − S+
1 : − efT

β2sγf
∗
2αsγ ,

N − S+
2 : − efT

β2cγf
∗
2αcγ .

(A.5)

The chirally enhanced contribution (4.12a) comes from LR part of the penguin diagram
leading to (B.2b), with the following couplings multiplying (C.4):

N − S+
1 : − eλ†β1

v2
v
cγf
∗
2αsγ ,

N − S+
2 : − eλ†β1

v2
v

(−sγ)f∗2αcγ .
(A.6)

Other combinations are forbidden by the pseudo-Dirac nature of N .
For the non-dipole part, there are only chirality preserving contributions. The integral

IµLL (B.2a) and the coefficient (C.3) should be multiplied by (A.1) while the analogous IµRR
should be multiplied by (A.2), resulting in the coefficients (4.21).

– 22 –



J
H
E
P
0
8
(
2
0
2
3
)
1
7
0

B Loop integrals

Our calculations for loop integrals and operators are similar to refs. [135, 136]. The fol-
lowing loop integrals come from self-energy diagrams and penguin diagrams in figure 2:

iILL =
∫

d4k

(2π)4
R/k

(k2 −M2
N )[(k − p)2 −M2

ϕ]

= iR

(4π)2
/p

2

{
1
ε

+ log µ̄2

M2
ϕ

+ hS(x) + p2

M2
ϕ

8f̃S(x)
}
, (B.1a)

iILR =
∫

d4k

(2π)4
RMN

(k2 −M2
N )[(k − p)2 −M2

ϕ]

= iR

(4π)2MN

{
1
ε

+ log µ̄2

M2
ϕ

+ 1− x+ x log x
1− x + p2

M2
ϕ

2fS(x)
}
, (B.1b)

iIµLL =
∫

d4k

(2π)4
R/k(p1 + p2 − 2k)µ

(k2 −M2
N )[(k − p1)2 −M2

ϕ][(k − p2)2 −M2
ϕ]

= − iR

(4π)2

{1
2γ

µ

[
1
ε

+ log µ̄2

M2
ϕ

+ hS(x)
]

+ 1
M2
ϕ

(q2γµ − /qqµ)1
6GS(x)

+ 1
M2
ϕ

[( /p1 + /p2)(p1 + p2)µ + (p2
1 + p2

2)γµ]2f̃S(x)
}
, (B.2a)

iIµLR =
∫

d4k

(2π)4
RMN (p1 + p2 − 2k)µ

(k2 −M2
N )[(k − p1)2 −M2

ϕ][(k − p2)2 −M2
ϕ]

= − iR

(4π)2
MN

M2
ϕ

(p1 + p2)µ2fS(x) , (B.2b)

where x = M2
N/M

2
ϕ and q = p2 − p1. These expression should be supplied with couplings

and enclosed by spinors ū(p2) and u(p1) to give the amplitudes. Simple chirality exchange
L ↔ R leads to identical expressions with the projector exchanged. We use dimensional
regularization with d = 4 − 2ε and retain only terms up to M−2

ϕ or M−2
N . The additional

loop function that appear is

hS(x) = 1− 4x+ 3x2 − 2x2 log x
2(1− x)2 . (B.3)

The result for ILL and IµLL match [135] for x→ 0 as 8f̃S(0) = 1/3 and GS(0) = 1/3.
For the last integral in (B.2b), we can use the Gordon-type identity where we can

replace
(p1 + p2)µ → −iσµνqν + /p2γ

µ + γµ /p1 . (B.4)

C Operators

The operators relevant to CLFV are the photon interactions written in (4.1). The operator
in the first line is the dipole contribution whereas the ones in the second line are the non-
dipole (ND) part. These Wilson coefficients at 1-loop can be obtained by matching the
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full theory with the effective theory through appropriate 1-loop amplitudes. The relevant
amplitudes lead to the expressions in (B.1) and (B.2) which comes from the self-energy
and dipole diagrams in figure 2. To obtain the full expressions, one only needs to add the
coupling constants and adapt the masses.

Let us focus first on the chirality preserving contributions. The coefficient of /p in (B.1a)
and of the γµ part in (B.2a) give rise to the operator ψ̄L /DψL, ψ being the collection of
lepton fields, and it should be removed by wave function renormalization. The coefficient
of /pp2 in (B.1a) and the last term in the square brackets in (B.2a) lead to the operator
ψ̄L( /DD2+D2 /D)ψL [135]. This operator can be replaced by ψ̄L /D

3
ψL with additional dipole

contributions. The former operator does not lead to relevant physical phenomena. The
result is that the last term in IµLL (B.2a) generates

δCσRβα = (−1)
(4π)2

1
2M2

ϕ

2f̃S(x)mα , (C.1)

while an analogous IµRR leads to

δCσRβα = mβ
(−1)
(4π)2

1
2M2

ϕ

2f̃S(x) . (C.2)

These contributions are chirality flipping after the use of the equations of motion. Finally,
the contribution proportional to GS(x) in (B.2a) leads to the non-dipole term with

CND-L
βα = (−1)

(4π)2
1

6M2
ϕ

GS(x) . (C.3)

A similar term comes from IµRR.
Let us now turn to the chirality flipping contributions. The coefficient of MN in (B.1b)

should be removed by lepton mass renormalization. The coefficient of p2MN in (B.1b)
and the coefficient of /p2γ

µ + γµ /p1 in (B.2b), after replacement (B.4), leads to the operator
ψ̄L /D

2
ψR which is not phenomenologically relevant. The dipole contribution (B.4) in (B.2b)

leads to
δCσRαβ = 1

(4π)2
MN

M2
ϕ

2fS(x) . (C.4)
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