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Generalized transverse momentum distributions (GTMDs), the Wigner
and the Husimi distributions of quarks in the pion are evaluated in a chiral
quark model at the one-loop level. Analytic expressions are obtained for
GTMDs, allowing for a qualitative discussion of their features, whereas the
Wigner and the Husimi distributions are obtained with numerical integra-
tion of simple formulas. We explain the features of the Wigner distribu-
tions, in particular their non-positivity. In our model, the Husimi distri-
butions, which are interpreted as coarse-grained Wigner distributions, are
not mathematically positive-definite, but the magnitude of their negative
values is tiny and occurs at large transverse momenta and impact parame-
ters. Hence, as expected, coarse graining leads to better-behaved functions
from the point of view of the probabilistic interpretation.
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1. Introduction

In this paper, we provide a nontrivial model example of the Wigner [1]
and Husimi [2] quark distributions in the pion at a low non-perturbative
quark-model energy scale [3], confronting the issue of positivity of these
distributions. Various kinds of partonic distributions are related to each
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other by integrations or by Fourier transforms (for the complete “genealogi-
cal tree”, see, e.g., Fig. 2 of [4]), in particular, the Wigner distribution is a
Fourier transform of the forward generalized transverse momentum distribu-
tion (GTMD) (see also [5–10]). Naturally, positivity of partonic distributions
is a necessary feature for their probabilistic interpretation. As a matter of
fact, it is highly nontrivial, and requesting that both (the forward) GTMD
and the Wigner distributions are positive definite relates to a difficult mathe-
matical problem of having both a function and its Fourier transform positive
definite [11].

Even in Quantum Mechanics, the Wigner distributions [12] are in general
not positive definite. A way of curing this problem with appropriate Gaus-
sian coarse graining was proposed by Husimi [13]. The construction leads
to a positive-definite phase-space density. A few years ago, the concept of
the Husimi distributions was introduced to the partonic physics by Hagi-
wara, Hatta, and Ueda [2, 14]. Using an example of the light-front quark
model wave functions from [8], these authors have shown that the corre-
sponding non-positive Wigner distribution is made positive via the Husimi
coarse graining.

In this paper, we work in a covariant one-quark-loop framework of low-
energy quantum field theoretical chiral quark models, complying to all the
Lorentz and gauge covariance requirements. As a result, both the charge
and momentum sum rules are satisfied. The model, supplemented with the
QCD evolution, was found to reasonably reproduce wide-ranging properties
of the pion, such as the parton distribution functions (PDFs) [15–17], the dis-
tribution amplitude [18], the generalized distribution functions (GPDs) [3],
the generalized form factors [19], the quasi-distribution amplitude [20], the
quasi- and pseudo-PDFs, GPDs, and the Ioffe-time distributions [21, 22], or
the double distribution functions [23].

Chiral quark models are generically intended to model hadron structure
at a low-resolution scale in a non-perturbative scheme where explicit gluonic
degrees of freedom are absent. All results of this paper pertain to a low non-
perturbative quark model scale of ∼ 330 MeV [3], which is defined as the
scale where quarks are the only degrees of freedom. We do not perform
the DGLAP evolution to higher scales, whereby gluons would be radiatively
generated, as this is highly nontrivial for GTMDs or their Fourier transforms.

We find that in our model, both the Wigner and the Husimi distribu-
tions are not positive definite. However, the negative values in the Husimi
distributions are very small compared to the Wigner distributions, so the
problem, though present mathematically, is from a “practical” point of view
significantly improved through the Husimi coarse graining.

The Wigner distributions in the light-front approach were recently stud-
ied in [24–27], where the non-positivity feature is also manifest.
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2. Definitions

We denote a generic four-vector as a = (a0,a, a3), with the bold face
indicating the transverse part a = (a1, a2). We also use aT ≡ |a|. The light-
cone coordinates are a± = (a0±a3)/

√
2, whence a · b = a+b−+a−b+−a ·b.

The symmetric kinematic convention (the Breit frame) is used, where the
momenta of the initial and final pions are, correspondingly, p± 1

2∆. We also
introduce a null vector n, whence

p =
(
p0,0, 0

)
, ∆ = (0,∆, 0) , n =

1

p0
(1,0,−1) . (1)

The initial and final pions are on mass shell, hence

p0 =
√
m2

π + 1
4∆

2 , (2)

where mπ is the pion mass. Covariantly,

n2 = 0 , p2 = m2
π− 1

4 t , t = −∆2 , p·n = 1 , p·∆ = 0 , ξ ≡ n·∆ = 0 ,
(3)

where the last condition reflects the vanishing skewness ξ for the considered
forward case. In the partonic framework,

k · n = x , (4)

where in the so-called symmetric convention, k is the average (before and
after the interaction) momentum of the probed quark (cf. Fig. 1).

+

k−p

Fig. 1. One-quark-loop diagram for the evaluations of the quark forward GTMDs in
chiral quark models. Condition (4) is understood and the transverse momentum k

is fixed, hence the loop integration is only over k−. The dashed lines indicate
the pion states and the solid line is the quark propagator. The distribution of
antiquarks is given by the crossed diagram.
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The leading-twist chirally even generalized transverse-momentum dis-
tributions (GTMDs) at zero skewness are defined via the following matrix
elements:

δabδαβGI=0(x,∆,k) + iϵabcτ cαβGI=1(x,∆,k) =
1

2

∫
dz−d2z

(2π)3
eix p+z−−ik·z

×
〈
πb

(
p− 1

2∆
) ∣∣ψ̄α

(
− z

2

)
γ+Lψβ

(
z
2

) ∣∣πa (p+ 1
2∆

)〉∣∣∣
z+=0

, (5)

where the superscripts in G indicate the isospin combinations, ψ stands for
the quark field, indices α and β represent the quark flavor, a, b denote the
isospin of the pions, while c is the isospin of the probing operator. The sym-
bol L, that makes the expression gauge invariant, is the staple-shaped [28]
Wilson line extending along the light-cone coordinate z−. A definition sim-
ilar to (5) holds also for the gluons, not considered here.

The good isospin combinations of GTMDs from Eq. (5) are related to
GTMDs of quarks and antiquarks as follows:

Gq,q̄(x,∆,k) =
1

2

[
GI=0(x,∆,k)± GI=1(x,∆,k)

]
. (6)

By general arguments of the Lorentz covariance, the function Gq(x,∆,k)
has the support x ∈ [0, 1], whereas G q̄(x,∆,k) has the support x ∈ [−1, 0].
It complies with the convention that∫

d2k Gq(x,∆ = 0,k) = q(x) ,∫
d2k G q̄(−x,∆ = 0,k) = −q̄(x) , (7)

where q(x) and q̄(x) are the (positive) parton distribution functions (PDFs)
of, correspondingly, quarks and antiquarks with the support x ∈ [0, 1].

3. GTMDs in chiral quark models at the one-loop level

For simplicity, from now on we work in the strict chiral limit of the
vanishing current quark mass. The model used in this paper is a nonlinear
realization of the chiral quark model, with the Lagrangian density

L(x) = ψ̄(x)
[
i/∂ − ω e−iγ5τaϕa(x)

]
ψ(x) . (8)

Here, ω denotes the (constituent) quark mass following from the dynami-
cal chiral symmetry breaking, τa are the Pauli isospin matrices, and ϕa is
the pion field, which is a Goldstone boson according to the Nambu–Jona-
Lasinio mechanism. The pion decay constant f = 86 MeV in the chiral limit.
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With the nonlinear realization, one maintains chiral symmetry without in-
troducing the σ field of the linear model, which results in simpler results
for the off-forward case (not studied here). From Eq. (8), we read out the
quark–pion vertex iω/f γ5τa.

At the one-quark-loop level, which corresponds to the leading-Nc quark-
model calculation, GTMDs are evaluated from the diagram of Fig. 1. From
definition (5) transformed into the momentum space, the Feynman rules
yield the following expression:

Gq(x,∆,k) =
Ncω

2

f2

∫
dk+dk−

(2π)4
δ
(
k+− x

)
Tr

[
γ+S

k− q
2
γ5Sk−pγ5Sk+ q

2

]
,

(9)
where

Sk =
i

/k − ω + iϵ
(10)

denotes the quark propagator and the trace is over the Dirac space. The
evaluation of the trace and the standard one-loop reduction yields the basic
structure

Gq(x,∆,k) =
1

2
[I− + I+ + (1− x)J ] . (11)

The one-loop functions appearing above are defined as

Is = −iNc ω
2

4π4f2

∫
dk+dk−

δ(k · n− x)

[(k − p)2 − ω2 + iϵ]
[(
k + s q2

)2 − ω2 + iϵ
] ,

J = −iNc ω
2t

4π4f2

∫
dk+dk−

× δ (k · n− x)

[(k−p)2− ω2 + iϵ]
[(
k+ q

2

)2− ω2+iϵ
] [(

k− q
2

)2− ω2 + iϵ
] , (12)

where s = ±1. Note that the definition of J includes the factor of t. The
arguments of all the functions in the above equations are (x,∆,k). However,
the distributive structure of Eq. (11) is generic and holds also for the Wigner
and the Husimi distributions discussed later on, or for the GPDs as derived
in [3]. The loop functions Is and J are evaluated explicitly in Appendix A.

4. Regularization

The evaluation of GPDs, which are integrals of GTMDs over d2k, re-
quires regularization since the two-point function Is is logarithmically di-
vergent. However, the need for regularization is physically motivated also
for finite quantities, in order to separate the hard momenta, not treated in
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low-energy models, and the soft momenta, crucial for the dynamics. The
spectral regularization [29] used in this paper, or the Pauli–Villars regular-
ization, may be carried out in an elegant way on the formulas for the loop
functions. The key feature here is that the product of the Klein–Gordon
propagators written in the Schwinger representation, appearing in the one-
loop functions such as (12) (cf. Appendix A), contains generically the factor
exp[−(α1+α2+. . .+αn)ω

2)], where αi are the Schwinger parameters. Then,
regularizations involving distributions of the quark mass ω lead to simple
(analytic) expressions1.

The spectral regularization [3, 29] amounts to the evaluation of the quark
loop integrals according to the prescription

ASQM =

∫
C

dωρ(ω)A , (13)

where A sands for an unregularized amplitude, ρ(ω) is a properly chosen
spectral density function, and C is a contour of integration in the complex ω
plane (cf. Fig. 1 in [29]). In SQM, one has a possibility to implement exactly
the vector meson dominance in the pion electromagnetic form factor, which
is successful phenomenologically. More details are provided in Appendix B.

5. Quark GTMD

With the formulas from Appendix A, it is straightforward to write down
the explicit formulas for the forward quark GTMD in SQM

Gq(x,∆,k) =
3M3

V

π

[
1(

4k2
++M

2
V

)5/2 +
1(

4k2
−+M

2
V

)5/2
]

+
3M3

V (1− x)∆2

2πk ·∆

[
1(

4k2
++M

2
V

)5/2− 1(
4k2

−+M
2
V

)5/2
]
, (14)

with the shorthand notation

k± = k ± 1

2
(1− x)∆ . (15)

The form of Gq exhibits explicitly the scaling

Gq(x,∆,k) = Gq[(1− x)∆,k] , (16)

1 Note that such a prescription is equivalent to subtractions, hence it may promptly
affect the positivity property of the parton distributions.
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where the arguments in the right-hand side indicate that Gq is a function
of the combination (1 − x)∆ (and k) only. This feature is specific to the
one-loop model in the chiral limit.

In Fig. 2, we plot Gq as a function of kT and (1 − x)∆T for a selected
value of the angle between k and ∆, namely ϕ = π/4 (for other values of ϕ
the results are qualitatively similar). We note that Gq is positive near the
origin, but at larger values of ∆T, it assumes negative values, indicated with
a lighter (blue) color.

Fig. 2. Quark forward (ξ = 0) GTMD of the pion in SQM, plotted as a function of
the quark transverse momentum kT and the combination (1 − x)∆T for a sample
value of the angle ϕ between k and ∆. The lighter (blue) color indicates negative
values of the distribution.

For the special case of ∆ = 0, Eq. (14) reduces to the kT-unintegrated
PDF and equals to

Gq(x,0,k) =
6M3

V

π
(
4k2 +M2

V

)5/2 , (17)

in agreement with [30]. The forward (ξ = 0) GPD is equal to [29]

Gq(x,∆) =

∫
d2k Gq(x,∆,k) =

M2
V

(
M2

V + t(x− 1)2
)(

M2
V − t(x− 1)2

)
2

, (18)

and the corresponding forward impact parameter distribution

q(x, b) =

∫
d2∆

(2π)2
e−i∆·bGq(x,∆)

=
M2

V

2π(1− x)2

[
bTMV

1− x
K1

(
bTMV

1− x

)
−K0

(
bTMV

1− x

)]
, (19)
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where K0 and K1 are modified Bessel functions (we correct a global minus
sign typo of [30]). This function is not positive definite at small values of
bT ≤ (1 − x)/MV z0, with z0 ≃ 0.596 fulfilling K0(z0) = z0K1(z0), and
actually at bT → 0 diverges logarithmically.

The electromagnetic and gravitational form factors are [19]

FV (t) =

1∫
0

dxGq(x,∆) =
M2

V

M2
V − t

,

θ2(t) = 2

1∫
0

dxxGq(x,∆) =
M2

V

t
log

(
M2

V

M2
V − t

)
. (20)

Clearly, FV (0) = θ2(0) = 1, expressing the charge and momentum (mass)
sum rules.

6. Wigner distributions

The Wigner distribution is the Fourier transform of the forward GTMD
from the momentum space, ∆, into the impact parameter space, b,

Wq(x, b,k) =

∫
d2∆

(2π)2
e−i∆·b Gq(x,∆,k) . (21)

The marginal distributions are the impact-parameter distribution∫
d2kWq(x, b,k) = q(x, b) , (22)

and the TMD distribution∫
d2bWq(x, b,k) = T q(x,k) = Gq(x,0,k) . (23)

The normalization from the double integration yields the quark PDF∫
d2b d2kWq(x, b,k) =

∫
d2k Gq(x,0,k) = q(x) . (24)

From Eq. (16) it follows that in our model, Wq obeys the scaling

Wq(x, b,k) =
1

(1− x)2
Wq[b/(1− x),k] . (25)
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Fig. 3. The quark Wigner distribution of the pion in SQM multiplied with (1−x)2,
plotted as a function of the quark transverse momentum kT and the combination
bT/(1 − x) for three sample values of the angle ϕ between b and ∆. The lighter
(blue) color indicates negative values of the distributions.
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With Eqs. (A.6) and (A.8) we get the following semi-analytic formula in
SQM:

(1−x)2Wq(x, b,k) =
1

π2
e−BTMV (BTMV +1) cos (2BTkT cosϕ)

−
[
∂2

∂b2T
+

1

bT

∂

∂bT

] 1∫
−1

dz
M3

V

2π2u5
e−

√
2BTu

×
[
BTu

(
2BTu+3

√
2
)
+3

]
cos (2BTkTz cosϕ) , (26)

where
u =

√
M2

V + 4k2T (1− z2) , BT =
bT

1− x
.

The first line in Eq. (26) originates from the two-point functions, whereas the
integral over the parameter z comes from the three-point functions specified
in Appendix A. The appropriate differentiation with respect to bT brings
down the factor of∆2 present in the integrand of the definition of the Wigner
transform (21). The transverse momentum and impact parameter marginal
distributions are checked to be given by Eq. (17) and Eq. (19) respectively.

The quark Wigner distribution of the pion obtained in our model is
plotted in Fig. 3. We clearly note an oscillatory character, following directly
from the form of the argument of the cosine functions in Eq. (26). The
contribution of the two-point functions Is contains cos(2BTkT cosϕ), hence
its zeros are at hyperbolas in the bT − kT plane at locations

bTkT =
(2j + 1)π

4 cosϕ
(1− x) , j ∈ Z . (27)

The contribution of the three-point loop function J contains an integral of
cos(2zBTkT cosϕ), with the rest of the integrand sharply peaked at z = ±1,
which results in a condition close to Eq. (27). The behavior of Eq. (27) is
clearly seen in Fig. 3. In particular, we note that the period of the oscillations
increases as 1/ cosϕ, and no oscillations occur at the boundaries bT = 0 or
kT = 0, or when b and k are perpendicular, i.e., ϕ = π/2.

7. Husimi distributions

Consider the smeared distribution

Hq(x, b,k) =
Λ2

π2λ2

∫
d2b′ d2k′ e−(b−b′)2/λ2−(k−k′)2Λ2Wq

(
x, b′,k′) , (28)
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where λ and Λ are the smearing parameters (with dimension of length). In
Quantum Mechanics, the choice Λ = λ warrants the positivity of (28), which
then becomes the celebrated Husimi distribution. Therefore, we follow [2, 14]
and fix Λ = λ in our field-theoretic model as well. The normalization is∫

d2b d2kHq (x, b,k) = q(x) . (29)

Note that Hq does not exhibit scaling analogous to Eq. (25) (unless we also
scaled λ with (1− x) and kept a separate Λ unscaled, which we do not do).
Since the scale in our model is the vector meson mass MV , we show the
case λ = MV , while other values lead to qualitatively similar results. The
procedure for obtaining the Husimi distributions in our model is outlined in
Appendix A.

The results for x = 0.8 and x = 0.2 are plotted, correspondingly, in
Figs. 4 and 5. We take ϕ = π/4, as the results for other angles are quali-
tatively similar. We notice that in SQM, the Husimi distributions are not
strictly positive, as at larger values of bT (bT ≳ 2 GeV−1 ≃ 0.5 fm), we find
broad regions with negative values. However, contrary to the case of the
Wigner distributions of Fig. 3, the distributions in these regions are very
shallow compared to the value of the function at the origin. One might say
that the positivity breaking has been cured to a large extent by the applica-
tion of the Husimi coarse-graining procedure, although mathematically the
problem does persist. The results are qualitatively similar at various values
of x, as can be seen by comparing Figs. 4 and 5.

Fig. 4. The Husimi distributions of quarks in the pion in SQM, plotted as a function
of the quark transverse momentum kT and the transverse coordinate bT for the
angle ϕ = π/4 between b and ∆, x = 0.8, and a sample value of the smearing scale
λ = 1/MV . The lighter color indicates negative values of the distributions.
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Fig. 5. The same as in Fig. 4, but for x = 0.2.

The problem of the lack of strict positivity of the Husimi distributions
in our field-theoretic model may possibly be traced back to the subtractive
nature of regularization, which also led to the non-positivity of the marginal
impact parameter distribution of Eq. (19). We note that a similar situation
was also encountered in the impact-parameter behavior of the double parton
distributions [23], where an analogous conflict between regularization and
positivity was faced. Further studies of this intriguing and genuine field
theoretic issue of regularization vs. positivity are left for future research.

8. Conclusions

Several merits of the model study presented in this paper should be
underlined. First, the model is simple but nontrivial, leading to a rich set
of results for various pion properties. In particular, the framework allows
to obtain the quark GTMD of the pion analytically. This GTMD complies
with all the formal requirements, in particular the resulting GPDs possess
polynomiality, with the charge and momentum sum rules satisfied, although
no factorization in the kinematic variables is present in the model. The
corresponding Wigner distribution contains one numerical integration, and
the Husimi distribution — two, with simple integrands. In the obtained
Wigner distribution, we can clearly see the origin and the pattern of the
oscillations leading to the breaking of positivity. In the Husimi distributions,
these oscillations are smoothed by coarse-graining. Although the Husimi
distributions in our model are not strictly positive, the negative values are
tiny and appear at larger values of the impact parameter, bT ≳ 0.5 fm.



Wigner and Husimi Partonic Distributions of the Pion in a Chiral . . . 7-A4.13

We thank Yoshitaka Hatta and Krzysztof Golec-Biernat for useful com-
ments. W.B. acknowledges the support of the National Science Centre,
Poland (NCN) grant 2018/31/B/ST2/01022 and E.R.A. of project PID2020-
114767GBI00 funded by MCIN/AEI/10.13039/501100011033 and Junta de
Andalucía grant FQM-225.

Appendix A

Loop functions

In this appendix we work with Euclidean momenta, corresponding to
their Minkowski counterparts, but denoted with the same symbols. An effec-
tive way [3] to evaluate the one-loop integrals with a momentum constraint
is to use the Schwinger representation of the Klein–Gordon propagator

1

k2 + ω2
=

∞∫
0

dα e−α(k2+ω2) . (A.1)

The two-point function from Eq. (12) is then expressed as

Is =
4Ncω

2

f2

∫
dk0 dk3
(2π)2

∫
dξ

2π
eiξ(k·n−x)

∞∫
0

dα

∞∫
0

dβ e−α[(k−p)2+ω2]−β[(k+s∆/2)2+ω2]

=
Nc

4π3f2

∞∫
0

dα

∞∫
0

dβ e
− (2k(α+β)+βs∆)2

4(α+β)
−(α+β)ω2

δ[x(α+ β)− α] , (A.2)

where the intermediate steps follow exactly [3]. In SQM, with Eq. (B.2), the
procedure yields

Is =
M3

V

4π3/2

∞∫
0

dα

∞∫
0

dβ (α+ β)3/2 e
− (2k(α+β)+βs∆)2

4(α+β)
−1
4 (α+β)M2

V δ[x(α+β)− α]

=
6M3

V

π
(
[2k + s(1− x)∆]2 +M2

V

)5/2 . (A.3)
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For the three-point function from Eq. (12), an analogous calculation
yields

J = −4Nc ω
2t

f2

∫
dk0 dk3
(2π)2

∫
dξ

2π
eiξ(k·n−x)

∞∫
0

dα

∞∫
0

dβ

∞∫
0

dγ

× e−α[(k−p)2+ω2]−β[(k+∆/2)2+ω2]−γ[(k−∆/2)2+ω2]

= −Nc ω
2t

4π3f2

∞∫
0

dhh

1∫
0

dy

1∫
0

dz θ(1− y − z)δ(1−y−z−x)

× e−h[k2+ω2+∆·k(y−z)+ 1
4
∆2(y+z)2] , (A.4)

where h = α+ β + γ, y = β/h, and z = γ/h. In SQM,

J = −
M3

V t

4π3/2

∞∫
0

dhh5/2
1∫

0

dy

1∫
0

dz θ(1− y − z)δ(1−y−z−x)

× e−h[k2+ 1
4
M2

V +∆·k(y−z)+ 1
4
∆2(y+z)2]

=
3M3

V ∆
2

πk ·∆

[
1(

4k2
− +M2

V

)5/2 − 1(
4k2

+ +M2
V

)5/2
]

(A.5)

in the notation of Eq. (15) used in the last line.
The Fourier transform of Is is elementary∫

d2∆

(2π)2
e−i∆·b Is(x,∆,k) =

∫
d2∆′

(2π)2
6M3

V e
−ib·

(
∆′− 2sk

1−x

)
π
[
M2

V +∆′2(1− x)2
]5/2

=
BTMV + 1

π2(1− x)2
e−BT(MV −2iskT) , (A.6)

with ∆′ = ∆ + 2sk/(1 − x) and the notation of Eq. (6) used. For the
case of the three-point function, it is useful to express it via the integral
representation

J/∆2 =
16M3

V

π3/2

∞∫
0

dh

1∫
−1

dz h5/2 e−h(4k2−4zk·∆+∆2+M2
V ) (A.7)

(for simplification, here we get rid of factor ∆2, which is later restored via
differentiation with respect to b). Carrying out first the Fourier transform
from ∆ to b, and then integrating over h yields the formula
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(1− x)2
∫

d2∆

(2π)2
J/∆2 =

1∫
−1

dz
M3

V

π2u5
e−

√
2BTu

×
[
BTu(2BTu+ 3

√
2) + 3

]
cos (2BTkTz cosϕ) (A.8)

in the notation of Eq. (6). The one-dimensional integral over z is left to be
done numerically.

To evaluate the Fourier transforms needed for the Husimi distributions,
it is convenient to rewrite Eq. (A.3) in the integral representation

Is =
4M3

V

π3/2

∞∫
0

dhh3/2 e−h(4k2s+M2
V ) , s = ±1 . (A.9)

Then the Gaussian integrations over b′, k′, and q are carried out in a
straightforward way, leaving a numerical integration over h. In the case
of the three-point function J , a completely analogous procedure is carried
out on expression (A.7), with the integrals over the h and z remaining as
numerical.

Appendix B

Spectral regularization

The spectral function is [29]

ρ(ω) =
1

2πi

1

ω

1(
1− 4ω2/M2

V

)5/2 , (B.1)

and the closed quark line is associated with the integral over a suitably
chosen contour C. The form of (B.1) implements vector meson dominance
in the pion electromagnetic form factor. For the present applications, we
need the formula∫

C

dω ω2ρ(ω) e−Aω =
A3/2M5

V

24
√
π

e−
AM2

V
4 , A ≥ 0 . (B.2)

In SQM, there is the following relation between the pion decay constant and
the vector meson mass:

f2 =
NcM

2
V

24π2
. (B.3)
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