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Abstract
1.	 Rear-edge tree populations are experiencing a combination of higher tempera-

tures and more intense droughts that might push individuals beyond their toler-
ance limits. This trend towards rising atmospheric [CO2] is concurrent with an 
increase in intrinsic water use efficiency (iWUE), which theoretically enhances 
photosynthesis and decrease evapotranspiration rates, consequently improving 
tree resistance to drought. However, it remains unclear whether iWUE is favour-
ing tree growth under current climate conditions, particularly when climate and 
iWUE legacy effects are simultaneously considered.

2.	 We evaluated this question with an extensive sampling along Iberian rear-edge 
(dry) populations comprising four mountain ranges and two distinct altitudes. We 
simultaneously examined the effects of climate and iWUE on secondary growth 
using annually resolved basal area increments (BAIs) for the period 1901–2017. 
We used linear mixed models including second-order autocorrelation and 1-year 
legacy effects of iWUE and summer drought.

3.	 BAI and iWUE increased across the studied period. iWUE increase was driven 
by changes in atmospheric CO2 concentration and water availability during the 
growing season. Climate and iWUE exerted direct and lagged effects on beech 
growth. Water availability during growing season was the main driver of tree 
growth, combining direct and indirect effects through its impact on iWUE. Legacy 
effects of water availability and iWUE were more important than growing season 
conditions. The net effect of iWUE shifted when lagged effects were considered, 
resulting in a net negative impact on tree growth.

4.	 Synthesis: Our results reveal that climate and iWUE legacy effects must be con-
sidered to assess the net iWUE effect on secondary growth. Considering lagged 
effects, the current increase in iWUE is constraining tree growth. Modelling ef-
forts of tree growth response to climate warming should include climate and 
iWUE legacy effects to adequately assess terrestrial ecosystem carbon balance.
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1  |  INTRODUC TION

This century, atmospheric CO2 concentration has increased above 
the 400 ppm mark. Under increased CO2 levels, trees experience the 
duality of the stress caused by warmer temperatures and drought, 
and the advantage of increased intrinsic water use efficiency. The 
relative interplay between both factors could push species towards 
the limits of their climate niches (Antão et al., 2022). A progressive 
rise in temperature might lead to taxonomic replacement through 
changes in the relative fitness of the species (Loarie et al.,  2009). 
Even if the entire species should cope equally with these pressures, 
populations close to the distribution edge may experience nonlinear 
responses to climate constraints as they are already growing under 
conditions approaching their tolerance limits (Illés & Móricz, 2022). 
Understanding the combined impacts of climate change and higher 
intrinsic water use efficiency (iWUE) in rear-edge populations is 
paramount, since these forests can play the role of the proverbial 
canary in a coal mine in foreseeing how a warmer climate will affect 
future forest distribution and productivity.

Higher atmospheric CO2 concentrations increase photosyn-
thetic rates (A) by alleviating C uptake limitation (Sun et al., 2014). 
In parallel, higher CO2 concentrations have been shown to decrease 
stomatal conductance (gs) during drought (Medlyn et al.,  2001), 
thereby enabling plants to mitigate the impact of water scarcity 
(Soulé & Knapp,  2006). Higher primary production (A) and lower 
water loss (gs) result in higher iWUE. However, the effects of CO2 
increase on plant drought response are complex and involve physio-
logical adjustments at different scales in time and space (De Kauwe 
et al., 2021; Jiang et al., 2021). This research avenue is of great in-
terest because it could lead to a negative feedback mechanism on 
climate system (Wang et al.,  2020). In fact, despite the presence 
of other limiting factors (Terrer et al., 2019), these positive effects 
may overtake climatic constraints as photosynthetic activity has in-
creased globally (Huntingford & Oliver, 2021). However, it is not yet 
known whether the balance between CO2 fertilization and drought 
stress will be positive in drought-prone areas such as Mediterranean 
forests (Keenan et al., 2011).

Despite the wealth of studies relating iWUE and tree growth, no 
conclusive support for a positive relationship has emerged (Peñuelas 
et al.,  2011). The lack of evidence has been attributed to climate 
change constraints overcoming the beneficial effects of iWUE on 
tree growth (Norby et al., 2010). To account for this climate effect, 
the correct formulation should be that the influences of climate and 
iWUE on growth are simultaneous. As a result, the question shifts 
from whether iWUE drives higher tree growth over time to whether 
iWUE favours tree growth under current climate conditions (Heilman 
et al., 2021). Moreover, an adequate consideration of such a ques-
tion must incorporate some degree of climate legacy (Marqués 
et al., 2022; Ogle et al., 2015), including lagged effects of iWUE, since 
resilience to drought and future tree growth have already been re-
lated to previous iWUE (Wen et al., 2022; Wu et al., 2020).

Mediterranean rear-edge beech Fagus sylvatica L. populations 
are already experiencing a warmer and drier climate. Warmer 

springs have a positive effect, promoting longer growing seasons 
(Jeong et al.,  2011), albeit at the expense of a higher risk of late 
frost defoliation (Olano et al., 2021; Sangüesa-Barreda et al., 2021). 
Beech is a drought sensitive species (Ruehr et al., 2009), albeit is 
hydraulic vulnerability, measures as a 50% loss of conductivity 
(P50), shows a significant variation between −2.8 and −3.8 MPa 
(Stojnić et al.,  2018; Walthert et al.,  2021). Summer droughts af-
fect beech trees by causing a moderate to severe reduction in 
gas exchange, driving premature leaf wilting and shedding (Bigler 
& Vitasse,  2021). Thus, the reduction in summer precipitation is 
particularly worrisome, especially in combination with warmer 
temperatures, which amplify the evapotranspirative demand. In 
fact, growth declines in rear-edge populations have already been 
reported (Jump et al.,  2006), and studies have predicted a rapid 
decline (Martínez del Castillo et al., 2022). Strikingly, despite their 
vulnerability to drought, beech forests in Spanish rear-edge popula-
tions growing under dry summer conditions show a lower response 
to growing season precipitation than in core (wet) populations 
(Muffler et al.,  2020), while experiencing a strong legacy effect 
from the previous summer's precipitation (Hacket-Pain et al., 2016; 
Marqués et al., 2022; Olano et al., 2022). iWUE has been reported 
to favour beech growth (Gonzalez de Andres et al., 2018; Rezaie 
et al.,  2018), so its recent increase associated with higher atmo-
spheric CO2 concentration may serve to mitigate the adverse 
effects of warmer and drier conditions. Moreover, beech popula-
tions occupy a large altitudinal gradient at their rear edge (Costa 
et al.,  1997), with constraints shifting from greater water limita-
tions at lower (dry) elevations to lower temperatures at higher al-
titudes. Thus, we expect that the impact of climate warming and 
rising iWUE may vary across altitudes.

To understand the simultaneous effect of changes in iWUE and 
climate on tree growth for the period 1901–2017, we collected wood 
samples from beech forests in four mountainous regions along the 
southwestern Iberian coast. In each region, we accounted for the 
altitudinal effect by sampling at both the upper and lower boundar-
ies of the forests. Our first step was to elucidate the relative contri-
butions of atmospheric CO2 and climate variability on beech iWUE. 
Subsequently, we tested the combined effect of iWUE and climate 
on growth. We hypothesized that beech growth is positively influ-
enced by climatic factors that promote xylogenesis, such as spring 
temperatures (Rossi et al., 2008), and those that favour cambial cell 
division, such as wet and cool summers that favour water availability 
during the growing season (Peters et al.,  2021), with iWUE exert-
ing a positive effect by reducing water loss (Heilman et al., 2021). 
We also hypothesized that the previous year's conditions will exert 
a similar lagged (legacy) effects on tree growth through changes 
in hydraulic structure and/or resource levels among other factors 
(Galiano et al., 2011; Huang et al., 2021; Olano et al., 2022; Peltier 
et al.,  2016; Zweifel & Sterck,  2018). Moreover, we expected di-
verging tree growth responses, dependent on altitude; low-altitude 
populations will respond more strongly to precipitation and iWUE, 
whereas high-altitude populations will be more responsive to higher 
spring temperatures.
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2  |  MATERIAL S AND METHODS

2.1  |  Study area and sampling design

We sampled beech forests in four mountain ranges in the Iberian 
Peninsula across the species southwestern distribution range 
(Figure 1). In each mountain range we selected four plots of mature 
forest at different altitudes (Table S1): two plots at the upper bound-
ary of the local forest and two at the lower boundary (Figure 1). The 
plots sampled ranged from 1045 to 1619 m a.s.l. In each plot, we se-
lected eight dominant or codominant trees that were georeferenced 
with submeter-level accuracy using a GPS (Trimble Geo 7X), and 
from these we extracted three wood cores per tree at 1.3 m height 
using Pressler increment borers. Sampling took place between 2017 
and 2018, with some trees being revisited in 2019 for additional core 
collection.

2.2  |  Basal area increment

Two of three cores for each tree sampled were air-dried and mounted 
on wooden supports. The cores were gradually sanded down with 
increasingly finer sandpaper until the cellular structure could be as-
sessed. Tree-ring series of the cores were visually cross-dated and 

measured with a minimum resolution of 0.01 mm using a VELMEX 
(Inc.) measuring system, and the cross-dating quality checked using 
COFECHA (Holmes, 1983). We converted ring-width measurements 
into basal area increments (BAIs), which were used as a measure of 
secondary growth rates, since BAI provides a more robust estimate 
of growth than ring width (Biondi & Qeadan, 2008). BAI was calcu-
lated as the annulus between consecutive annual rings, assuming a 
circular shape of the stem using the bai.out() function in the dplR 
package (Bunn, 2008) in R (R Core Team, 2022).

2.3  |  Estimation of intrinsic water use efficiency

To assess changes in annual intrinsic water use efficiency, we 
evaluated 13C/12C isotope ratios (δ13C) in tree rings correctly 
dated within the studied period (1901–2017). For each mountain 
and altitude, we selected the 10 oldest individuals that showed 
high Pearson correlations with the local master chronology and 
had no missing rings. The third core from each of these individu-
als was used to obtain its 13C/12C signature. The first step was to 
create a cross-sectional planar surface on the cores using a sledge 
microtome (H. Gärtner/F. H. Schweingruber, WSL, Birmensdorf, 
Switzerland). High resolution images of the core's surface were ob-
tained using the CaptuRING device (García-Hidalgo et al., 2022). 

F I G U R E  1  Beech Fagus sylvatica distribution (in red) across Central and Southern Europe (a), detail of four sampling locations (b) and 
sampling schema across Piedras Luengas (Palencia) sampling location, showing 300 m altitudinal gradient (c).
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The images were used to properly cross-date the tree-ring series 
from these cores with the previously created master chronologies 
using CooRecorder 9.6 (Cybis Elektronik & Data AB). The sec-
ond step was to separate the annual rings from each core with 
a scalpel under a binocular lens (Nikon SMZ8000, Nikon), merg-
ing the rings corresponding to the same year for each mountain 
range and altitude. The samples for each year of formation, and 
for each site and altitude, were homogenized and powdered using 
a mixer mill (Retsch MM400, Retsch GmbH). Cellulose was not ex-
tracted as several studies show good correlations between δ13C 
in cellulose and wood, and therefore both show similar relation-
ships with atmospheric CO2 and climate (Roden & Farquhar, 2012; 
Taylor et al., 2008). The wood powder was weighed into tin cups 
and combusted at 1000°C in an elemental analyser (NA1500 se-
ries 2, Carlo Erba Instruments), CO2 was separated by gas chroma-
tography and carried by a current of helium towards an interface 
attached to an isotope ratio mass spectrometer (Deltaplus XP, 
Thermo Electron) where the ratio 13C/12C was analysed. The 
measurements obtained were expressed as the relative difference 
between the sample 13C/12C ratio (parts per thousand, ‰) and the 
standard V-PDB, resulting in δ13Cplant. This parameter was used 
to calculate isotopic discrimination (Δ; Farquhar & Richards, 1984; 
McCarroll & Loader,  2004). We then calculated the iWUE (ex-
pressed in μmol of CO2 per mol of H2O), using available data of 
δ13C in atmospheric CO2 (Graven et al.,  2017) and atmospheric 
CO2 concentrations (see Supplementary Materials for a detailed 
description of iWUE calculation).

2.4  |  Statistical analyses

In the first stage, we assessed the temporal trend of iWUE and BAI 
along the studied period (1901–2017) at different altitudes. We per-
formed linear mixed-effects models considering iWUE and BAI as 
dependent variables and including the following as fixed factors: 
time in years as a continuous term, altitude as a two-level nominal 
factor, and the interaction between both terms. Mountain range was 
conceived as a random intercept. Predictors were tested in a back-
ward model selection using ΔAICc (Burnham & Anderson, 2002).

Next, we performed two different modelling approaches: (i) to 
elucidate the relative importance of atmospheric CO2 concentration 
and climate variability on beech iWUE; and (ii) to test the effect of 
the combination of iWUE and climate on BAI. Prior to modelling, 
all continuous independent variables were standardized to z-scores 
to make all estimated coefficients comparable. Then, we built a full 
generalized additive mixed model (for iWUE) and a full linear mixed-
effects model (for BAI) using, in both cases, mountain range as a 
random intercept. In addition, since iWUE and BAI showed strong 
temporal autocorrelation, both the first- and second-order tempo-
ral autocorrelations were considered. In both modelling approaches, 
we performed model selection to test the validity of variables and 
interaction terms as predictors of iWUE and BAI. The model selec-
tion was computed using maximum likelihood (ML). The model with 

the lowest ΔAICc was the best model and computed again using 
restricted maximum likelihood (REML; Zuur et al., 2009). The best 
models were finally compared using ΔAICc with the equivalent null 
models, in which all covariates were set as constant but retained a 
random structure. Normalized residuals were extracted and checked 
for normality and homoscedasticity in all the best models to verify 
models' assumptions.

To test the combined effects of CO2, current and past summer 
climate conditions, and altitudinal position on iWUE, we performed a 
general additive mixed model (gamm). We fitted CO2 with a smooth 
function to enable potential nonlinear responses of iWUE due to the 
sharp change in atmospheric CO2 concentration over the study pe-
riods. The remaining terms were fitted as linear functions. The full 
gamm included altitudinal position (low vs. high), summer and past 
summer accumulated precipitation and summer mean temperature, 
as well as the interactions between summer temperature and pre-
cipitation, and altitude and summer precipitation for past and cur-
rent growth years. Summer conditions were selected because it is 
when the greatest carbon fixation occurs.

Since BAI is determined by a set of concurring factors, including 
conditions from the immediate past few years, we designed a more 
sophisticated model that considers the effects of iWUE (current and 
previous year), summer climatic conditions (current and previous), 
May temperature and altitude on BAI. The climate parameters were 
selected according to previous information on the main climate drivers 
of growth in these forests (Olano et al., 2022). We performed a linear 
mixed model for the studied period (1901–2017). Full model included 
the following terms: altitude (low vs. high), previous and current year 
iWUE, summer temperature and precipitation, and the interactions of 
summer temperature and precipitation for previous and current grow-
ing year, as well as the interactions of altitude with May temperature 
and current and previous summer precipitation and iWUE.

All analyses were performed in R (R Core Team, 2022). Statistical 
models were performed using lme function from nlme (Pinheiro 
et al., 2017) and gamm function from mgcv package (Wood, 2017). 
Model selection was performed using the dredge function of MuMIn 
(Barton & Barton, 2015).

3  |  RESULTS

BAI and iWUE increased during the study period, albeit showing 
strong interannual variability (Figure 2, Table 1). BAI was affected by 
the interaction between altitude and year, with BAI increasing more 
rapidly at high-altitude sites (Figure 2). In contrast, the best model 
for iWUE only included the effect of year.

The best generalized additive mixed model included the effect of 
CO2 as well as summer precipitation and temperature on iWUE, with 
the nonrandom part of the model explaining a large fraction of total 
variance (R2

m
 = 0.34). iWUE increased in response to enhanced CO2 

levels, but not in a linear fashion as reflected by the estimated de-
grees of freedom of 2.283 in the smooth term reflect (Table 2). The 
rate of iWUE increase slowed at higher CO2 concentrations, with a 
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    |  5Journal of EcologyOLANO et al.

F I G U R E  2  Temporal trends of (a) basal area increment (BAI) and (b) intrinsic water use efficiency (iWUE) for 1901–2017 models. Solid 
(blue and orange) lines report averaged time series for each altitude and shaded areas depict their mean confidence limits. Straight lines 
show the predicted values obtained in linear mixed-effects models (Table 1). In the case of iWUE, since no significant differences between 
altitudes were found, only one regression line is shown.

BAI iWUE

Predictors Estimates SE p Estimates SE p

(Intercept) −71.43 8.88 <0.001 −247.83 11.95 <0.001

Year 0.04 0.00 <0.001 0.16 0.01 <0.001

Altitude [Low] 27.62 12.54 0.028

Year × Altitude [Low] −0.01 0.01 0.024

Observations 944 944

Marginal R2 0.112 0.365

Conditional R2 0.184 0.531

p < 0.05 in bold.

TA B L E  1  Results of basal area 
increment (BAI) and intrinsic water use 
efficiency (iWUE) best models (Table S2) 
fitted to assess altitudinal and temporal 
effects.

iWUE Predictors Estimates SE p

Linear terms Intercept 71.84 3.23 <0.001

T Sum 2.10 0.42 <0.001

P Sum −1.16 0.21 <0.001

T Sum × P Sum −0.61 0.20 0.002

Smooth term CO2 (edf = 2.283) 4.23 1.54 0.006

Observations 928

Marginal R2 0.340

Conditional R2 0.687

p < 0.05 in bold.

TA B L E  2  Summary of the best 
generalized additive mixed model for 
intrinsic water use efficiency (iWUE). T 
Sum stands for summer mean T, P Sum for 
summer accumulated precipitation and 
edf for estimated degrees of freedom of 
the smooth term.
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slope shift at about 338 ppm (Figure 3). Precipitation had a negative 
effect and temperature a positive effect, the interaction of the two 
resulting in an enhanced iWUE in dry and warm summers (Figure S1).

BAI was controlled by a complex set of factors including iWUE 
and climate factors at different timepoints, as well as their interac-
tion with altitude (Table  3). BAI benefitted from warm conditions 
during the early growing season (May temperature) and, to a lesser 
extent, by the wet conditions during summer. Previous summer con-
ditions had a stronger impact on BAI with cool and wet summers 
having a positive effect (Table 3, Figure S2). The effect of previous 
summer precipitation was modulated by altitude, with precipitation 
making more of an impact at low altitudes (Figure  4a). The effect 
of iWUE on BAI was complex: growth year iWUE had a positive 
effect on BAI, while previous year iWUE exerted a negative effect 
on BAI, given secondary growth was reduced following years with 
high iWUE. However, this effect again varied with altitude, with a 
stronger effect being observed at higher altitudes (Figure 4b). The 

estimated coefficient for the previous year's iWUE was four times 
higher than that for the current year's iWUE resulting in an overall 
strong negative effect of iWUE on secondary growth rate.

4  |  DISCUSSION

Climate and iWUE exerted a combination of direct and lagged effects 
on beech growth in rear-edge populations in the Iberian Peninsula. 
Water availability, dependent on both precipitation and temperature 
in the summer, was the main driver of tree growth, affecting it both 
directly and through the control of iWUE at different timescales. 
The effect of iWUE shifted dramatically from positive to negative 
when 1-year lagged responses were considered. These results reveal 
the complexity with which climate and iWUE drive beech growth in 
dry regions. Furthermore, this highlights the need to consider legacy 
effects to determine the influence of iWUE on tree growth.

iWUE has increased in response to the rise in atmospheric CO2 
concentration, which has steadily increased, culminating in current 
levels being 25% greater than those at the beginning of 20th cen-
tury. This phenomenon occurred across the board, regardless of the 
location. However, the impact of CO2 on iWUE was not temporally 
uniform, with the intensity of the effect decreasing in the latter 
part of the study period, as observed for other terrestrial ecosys-
tems (Adams et al., 2020). The causes behind this pattern are not 
clear; this reduction has been attributed either to a CO2 saturation 
effect (Waterhouse et al.,  2004), or to the occurrence of nutrient 
or climate limitations on photosynthetic activity (Norby et al., 2010; 
Wang et al., 2020). However, in our case climate limitation could be 
discarded as a cause, since iWUE increased in response to dry and 
warm (limiting) climate conditions. This response seems to be the 
norm in water-limited areas in the Mediterranean climate (Andreu-
Hayles et al., 2011; Olano et al., 2014, 2017; Peñuelas et al., 2011), 
suggesting that carbon gain reduction is more intense than stoma-
tal conductance reduction. Therefore, warmer, and drier conditions, 
such as those found in Mediterranean areas, would be expected to 
exacerbate rather than decrease iWUE values.

iWUE increase was concurrent with an overall higher second-
ary growth rate, as indicated by the positive relationship between 
BAI and iWUE (Table 3). A parallel increase in iWUE and BAI follows 
the global trend of CO2 fertilization effect, driving higher global ter-
restrial carbon uptake with a relative reduction in water use (Cheng 
et al., 2017). Nevertheless, this fertilization effect is not ubiquitous, 
with a frequent disconnection between iWUE and growth being 
observed (Andreu-Hayles et al.,  2011; Peñuelas et al.,  2011). This 
could be interpreted as a decoupling of iWUE and BAI in the case 
of severe drought. Tree age and forest management are additional 
factors explaining the decoupling of secondary growth and iWUE 
since the level of intertree competition is usually the main factor ex-
plaining tree growth (Gómez-Aparicio et al., 2011; Luo et al., 2020). 
Therefore, age structure and forest management history should be 
considered to accurately explain the relationship between iWUE and 
secondary growth (del Río et al., 2017; Linares et al., 2010).

F I G U R E  3  Effect of CO2 on intrinsic water use efficiency 
(iWUE). Triangles depict observations by altitude (blue upper 
looking upward, high altitude, orange looking downward, low 
altitude) and the solid line is the iWUE prediction from the 
generalized additive mixed model where CO2 is expressed as a 
smoothing function of with 2.283 estimated degrees of freedom. 
Altitude did not show significant effect in this relationship.
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A more thorough analysis of secondary growth drivers improved 
our insight into the combined impact of iWUE and climate on BAI. 
Secondary growth was promoted by climatic factors, with a direct 
effect on xylogenetic activity; the conditions that promoted second-
ary growth were warmer conditions at the beginning of the grow-
ing season (May) and higher water availability during the summer. 
Furthermore, cambial cell division requires a temperature threshold 
to be met to initiate (Rossi et al., 2008), and warmer conditions pro-
mote longer growing seasons (Jeong et al., 2011), which could re-
sult in larger secondary growth rates (Chen et al., 2022), particularly 
in Mediterranean mountain forests (Gao et al., 2022; Martínez del 
Castillo et al., 2016). Moreover, higher temperature increases cam-
bial cell division rate, particularly in the initial stages of the grow-
ing season (Rossi et al., 2014). However, in forests where growth is 
drought constrained, the major limitation on xylogenesis shifts from 

being temperature to water availability later in the growing season 
(Cabon et al., 2020; Camarero et al., 2010; Olano et al., 2014), with 
cambial division rate as well as vessel lumen size being determined 
by cell turgor (Olano et al., 2022; Peters et al., 2021). Interestingly, 
iWUE had a positive effect on BAI suggesting that a higher effi-
ciency in water use during the growing season might limit water 
loss and maintain cell turgidity, as well as increased rates of cell di-
vision. This agrees with the observed overall positive relationship 
between iWUE and secondary growth during dry periods (Heilman 
et al., 2021).

Interestingly, the conditions during the previous year's growing 
season were the most relevant in the model, revealing the impor-
tance of delayed effects of climate and iWUE on beech secondary 
growth (Ogle et al., 2015). The impact of wet and cool conditions 
in the previous summer was higher than growing season summer 

Predictors Estimates SE p

(Intercept) 8.60 0.58 <0.001

iWUE 0.20 0.12 0.103

iWUEt−1 −0.88 0.20 <0.001

Altitude [Low] −0.76 0.72 0.294

T May 0.53 0.11 <0.001

P Sum 0.22 0.09 0.014

T Sumt−1 −0.78 0.17 <0.001

P Sumt−1 0.55 0.13 <0.001

WUE t−1 × Altitude [Low] 0.65 0.25 0.010

T Sumt−1 × P Sumt−1 0.33 0.08 <0.001

Altitude [Low] × P Sumt−1 0.29 0.17 0.081

BAI Observations 928

Marginal R2 0.120

Conditional R2 0.138

p < 0.05 in bold.

TA B L E  3  Summary of the best linear 
mixed model for basal area increment 
(BAI). T Sum stays for summer mean 
T, and P Sum for summer accumulated 
precipitation.

F I G U R E  4  Graphical representation of predicted basal area increment (BAI) computed by the marginal effects of (a) summer precipitation 
of the previous year and (b) previous year intrinsic water use efficiency (iWUE).
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precipitation. The strong response of secondary growth to previous 
summer conditions within beech rear-edge populations is well doc-
umented (Hacket-Pain et al., 2016; Martinez del Castillo et al., 2019, 
2022; Olano et al., 2022; Rozas et al., 2015) and it has been hypoth-
esized that dry and warm conditions promote beech masting in the 
next year, draining tree resources for secondary growth (Hacket-
Pain et al., 2015; Nussbaumer et al.,  2021). In the case of iWUE, 
our model also shows that this lagged effect is related to a stronger 
response of iWUE to the previous year's conditions, which is four 
times higher than in the current year (Table 3). Furthermore, con-
trary to our expectations, an opposite effect was observed for pre-
vious and current years iWUE, resulting in an overall negative effect 
of iWUE on beech growth.

Beech trees respond to drought by minimizing cavitation risks 
and diminishing water loss through stomata down-regulation 
(Leuschner,  2020). Evapotranspiration reduction occurs at the ex-
pense of lowering overall gas exchange, with a resulting reduction 
in carbon uptake (Bréda et al., 2006), in turn causing an overall in-
crease in iWUE. The effect of this stomata closure, and the resulting 
decrease in carbon uptake, has an effect on phloem transport from 
leaves to consumer and storage organs (Dannoura et al., 2019; Ruehr 
et al.,  2009). Temporal changes in nonstructural carbohydrates 
(NSCs) have been proposed as a secondary growth legacy mechanism 
(Kannenberg et al., 2019). Therefore, the combination of low precip-
itation during the previous summer and high iWUE could have an 
adverse effect on carbon assimilation, affecting NSC storage and its 
availability for canopy formation and the onset of secondary growth 
during the subsequent growing season (Wong et al., 2003), as well 
as a potentially higher inversion to reproduction (Hacket-Pain et al., 
2015). In response to drought stress, carbon storage is prioritized 
over growth (Galiano et al.,  2017) to prevent the higher mortality 
risk associated with low NSC levels (Fierravanti et al., 2019; Galiano 
et al.,  2011). Xylogenesis demands large NSC loads (Deslauriers 
et al., 2009; Oberhuber et al., 2011), with interindividual variability in 
NSC levels correlated with individual performance: individual trees 
with higher stem NSC loads exhibit higher secondary growth rates 
(DeSoto et al., 2016; Pérez-de-Lis et al., 2016; von Arx et al., 2017). 
Moreover, the effect of NSC storage in the previous year might be 
concurrent with changes in xylem configuration associated with 
water availability since vessel size and its conductive capacity are di-
rectly controlled by water availability during vessel formation (Olano 
et al.,  2022). Under dry conditions, beech produces xylem with 
higher resistance to embolism and lower conductivity at the expense 
of a reduction in lagged secondary growth (Herbette et al.,  2021) 
due to higher xylem production costs (Hacke et al., 2001). Thus, the 
combination of xylem structure, cavitation history and cavitation re-
pair costs (McDowell & Sevanto, 2010; Trifilò et al., 2014) might neg-
atively impact on growth (Anderegg et al., 2013). The lagged effect 
of the previous year's conditions might therefore be a consequence 
of concurrent changes in NSC levels and the tree's hydraulic path-
way (Galiano et al., 2011; Pérez-de-Lis et al., 2017).

In contrast to previous evidence of drought decline at beech 
lowest populations in Eastern Spain (Jump et al., 2006; Peñuelas & 

Boada, 2003), secondary growth increased along the study period, 
probably due to the increasingly earlier onset of the growing season. 
Although observed at both elevations, there was a larger secondary 
growth increase at higher altitudes, since greater limitations in water 
availability at lower altitudes might reduce the gains associated with 
longer growing seasons, as suggested by the stronger response to 
precipitation. Interestingly, larger growth rates at high altitudes have 
been sustained despite the recent increase in the frequency of late 
frost events (Olano et al., 2021; Sangüesa-Barreda et al., 2021). This 
suggests that the benefits of a warmer growing season may out-
weigh the reductions in growth due to sporadic late frost defolia-
tions. In contrast to previous results in beech rear edge, we found no 
differences in iWUE trend across altitudes (Peñuelas et al., 2008). 
However, the effect of previous year iWUE differed across altitude, 
with higher altitude showed a higher negative responsiveness to the 
previous year's iWUE, suggesting greater limitations caused by the 
previous year's reserves.

Our results remark that climate effects and temporal legacies 
must be combined to adequately assess the effect of iWUE on 
secondary growth. In fact, the initial positive impact of iWUE on 
tree growth was reversed by the following year's delayed effect. 
Moreover, considering this delayed effect on tree growth revealed 
a strong environmental control over beech growth. Thus, the lower 
responsiveness of Iberian rear-edge beech populations to summer 
drought (Muffler et al.,  2020) is only an effect of the considered 
timescale, hence the inclusion of temporal legacy effects is critical 
to understand beech's response to future climatic contexts.
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SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.
Figure S1. Graphical representation of summer precipitation × 
temperature based on the best gamm model. Lines and colours 
depict predicted intrinsic water use efficiency (iWUE) values and 
points represent observations.
Figure S2. Graphical representation of summer precipitationt−1 ×  
temperaturet−1 based on the best lme model. Lines and colours 
depict predicted basal area increment (BAI) values and points 
represent observations.
Table S1. Altitude and meteorological traits of the sampling sites and 
mean tree age (± standard error). Annual and summer (June–August) 
precipitation and mean temperature obtained from gridded data 
from CHELSA v2.1 for the 1980–2018 period (Karger et al., 2018a, 
2018b). This climatic repository provides higher spatial resolution 
(1 km) but does not fully cover the study period (1901–2017).
Table S2. Backward AICc model selection among models accounting 
for linear trends in basal area increment (BAI) and intrinsic water use 
efficiency (iWUE). Candidate models are ordered from the more 
complex model to the simplest and show the Akaike Information 
Criterion corrected for small samples (AICc), the difference between 
the AICc of the best model and the candidate model (ΔAICc) and the 
number of parameters in the model (df).
Supplementary Materials. Intrinsic water use efficiency (IWUE) 
calculation.
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