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1 Introduction

The AdS/CFT correspondence [1, 2] has been one of the most prominent theoretical handles
for studying systems which were very hard to tackle previously. It states that, in the low
energy limit, the large-Nc, N = 4 super Yang-Mills field theory in four-dimensional space
is equivalent to the type IIB string theory in AdS5 × S5 space. It has been widely applied
for the study of strongly coupled systems such as condensed matter systems, QCD and
hydrodynamics. Our current objective is to study the hydrodynamics of a relativistic fluid
using this correspondence.

Quantum chiral anomalies are very fascinating properties which arise in the context
of relativistic field theories of chiral fermions beyond perturbation theory [3–5]. Chiral
anomalies have played a very crucial role in the formulation of relativistic hydrodynam-
ics [6]. Anomaly-induced transport mechanisms have appeared on many occasions since the
80’s [7–10]. The axial current was the main topic in [11], and AdS/CFT correspondence
was first used to anomalous hydrodynamics in [12]. Recently a lot of attention is gained
by the effect of quantum anomalies on the hydrodynamics of otherwise conserved currents.
The chiral magnetic effect [13] and the chiral vortical effect [14–17] are two of such effects.
In the former, the axial anomaly induces a current parallel to the external magnetic field,
while in the latter a current is generated due to the presence of a vortex in the charged
relativistic fluid. It has been argued that these and other anomaly-induced effects may be
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produced in non-central heavy ion collisions at RHIC and LHC [18], inducing in particular
an event-by-event parity violation. These effects can also lead to anomalous transport
properties in some condensed matter systems, such as the Weyl semi-metals [19, 20].

In the past few years, these anomalous effects has been implemented in holography
giving a lot of insights. One of such works is [21], where they considered a holographic
model with a pure Chern-Simon term, and they computed the chiral magnetic conductivity
which exactly matches with the results of the weakly coupled system. This is due to the
fact that the anomalous conductivities have non-renormalization properties so that they are
independent of the coupling constant. Later on, this model was extended to incorporate
the effect of the energy-momentum tensor related to the energy current as well, and the
mixed gauge-gravitational Chern-Simon term was added in the gravitational action [22–24].
In these references the gauge fields were considered to be massless.

In a similar line of work, the authors of [25] have studied the dependence of the
anomalous transport properties with the mass of the gauge field which is introduced via
the Stückelberg mechanism. In their case, they have considered the probe limit. As a
consequence the sectors comprising of the correlators related to the energy-momentum
tensor were not accessible, in particular: i) the chiral vortical conductivity, ii) the chiral
vortical conductivity of energy current, and iii) the chiral magnetic conductivity of energy
current. In a sense, this model only comprises a pure gauge Chern-Simon term. Our goal in
the present work is to access those sectors and to study the chiral vortical effects as well. To
this end, we have considered the full backreaction of the gauge field onto the metric tensor,
and included in the action of the model a mixed gauge-gravitational Chern-Simons term.

The paper has been organized as follows. In section 2, we will discuss the model under
consideration and get the full backreacted numerical solution for the background. Next, we
will discuss in section 3 the Kubo formulae and their relation with the retarded Green’s
functions, i.e. the correlators. Using the AdS/CFT dictionary we will define these correlators
in terms of the boundary terms. In section 4 we will start presenting our results; first, we
will compare the results with the known results for the massless case [22], and after that, we
will present our main results regarding the behaviour of the two-point correlators including
the mass term for the gauge boson. We will discuss in the same section the effect of the
mixed gauge-gravitational Chern-Simons term in these correlators, and finally we will show
how the gauge boson mass affects the anomalous conductivities, namely the chiral vortical
conductivity, σV , the chiral vortical conductivity of energy current, σεV , the chiral magnetic
conductivity, σB, and the chiral magnetic conductivity for energy current, σεB. Finally, we
end with a discussion in section 5.

2 Holographic massive U(1) gauge theory

We consider a holographic model with a massive U(1) gauge boson that includes both a
pure gauge and a mixed gauge-gravitational Chern-Simon term in the action [22, 25]. The
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action of the model is

S = 1
16πG

∫
d5x
√
−g
[
R+ 2Λ− 1

4FMNF
MN

− m2

2 (AM − ∂Mθ)(AM − ∂Mθ)

+ εMNPQR(AM − ∂Nθ)
(
κ

3FNPFQR + λRA BNPR
B
AQR

)]
+ SGH + SCSK , (2.1)

where

SGH = 1
8πG

∫
∂
d4x
√
hK , (2.2)

SCSK = − 1
2πG

∫
∂
d4x
√
hKλnM ε

MNPQRANKPLDQK
L
R , (2.3)

are the Gibbons-Hawking boundary term, and a boundary term induced by the mixed
gauge-gravitational anomaly, respectively, which have been well discussed in [22]. θ is a field
which ensures gauge invariance (up to gauge anomalies), and thus the mass term enters in a
consistent way. As it is mentioned in [26–28], the Stückelberg term arises as the holographic
realization of dynamical anomalies. A comparison of the consistent form of the anomaly
for chiral fermions [3] with the variation of the action under axial gauge transformations,
allows to fix the anomaly coefficients to

κ = κp ≡ −
G

2π , λ = λp ≡ −
G

48π . (2.4)

See e.g. ref. [22] for a discussion. In the following we will refer to the values of eq. (2.4) as
the physical values of the anomaly coefficients.

The bulk equations of motion for the action of eq. (2.1) turn out to be

GMN − ΛgMN = 1
2FMLFN

L − 1
8gMNF

2 + m2

2 BMBN −
m2

4 gMNBPB
P

+ 2λεLPQR(M∇B
(
FPLRBN)

QR
)
, (2.5)

∇NFNM = −εMNPQR
(
κFNPFQR + λRABNPR

B
AQR

)
+m2BM , (2.6)

where we have defined a new field BM ≡ AM − ∂Mθ, so that in the following θ will not
appear explicitly anywhere. We have used the notation X(MN) ≡ 1

2(XMN +XNM ).
The ansatz for the background metric is a black hole solution in Fefferman-Graham

coordinates, which is given by [29, 30]

ds2 = −`
2

ρ
gττ (ρ)dτ2 + `2

ρ
gxx(ρ)d~x2 + `2

4ρ2dρ
2, (2.7)

where the boundary lies at ρ = 0 and the horizon at ρ = ρh, while ` is the radius of AdS.
The horizon ρh is chosen in such a way that gττ (ρh) = 0, and the temperature of the black
hole turns out to be

T = 1
2π

√
2ρhg′′ττ (ρh) . (2.8)
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The asymptotic expansion (ρ→ 0) of the solution of eq. (2.6) shows that the gauge field
near the boundary behaves as

BM (ρ) = a0ρ
−∆

2 + a1ρ
∆
2 +1 + · · · , (2.9)

where m2`2 = ∆(∆ + 2), with ∆ the anomalous dimension of the dual current [25]. The
first(second) term in eq. (2.9) corresponds to a non-normalizable(normalizable) mode. The
scaling dimension of the normalizable mode is (3 + ∆), and this puts an upper bound on
the value ∆ = 1. For ∆ > 1 the dual operators become irrelevant (in the IR), and so we
will be working in the range of values of ∆ below this bound.

2.1 Numerical solution for the background

In order to account for the chiral vortical effects within the present model, we will be
considering the full backreaction of the gauge field onto the metric. Plugging eq. (2.7) into
eqs. (2.5) and (2.6), the equations of motion for the background metric and gauge field turn
out to be

g′′xx(ρ)− g′xx(ρ)
ρ

+ 1
6`2ρ

gxx(ρ)
gττ (ρ)

(
m2`2

4 Bt(ρ)2 + ρ2B′t(ρ)2
)

= 0 , (2.10)

g′ττ (ρ)
(

1− ρg
′
xx(ρ)
gxx(ρ)

)
+ gττ (ρ)g

′
xx(ρ)
gxx(ρ)

(
3− ρg

′
xx(ρ)
gxx(ρ)

)
−1

3
ρ2

`2
B′t(ρ)2 + 1

12m
2Bt(ρ)2 = 0 , (2.11)

B′′t (ρ) + 1
2

(
3g
′
xx(ρ)
gxx(ρ) −

g′ττ (ρ)
gττ (ρ)

)
B′t(ρ)− `2m2

4ρ2 Bt(ρ) = 0 , (2.12)

where the gauge field has been chosen in the following way

BMdx
M = Bt(ρ)dt , (2.13)

so that Br = 0. We will solve numerically the above coupled differential equations with the
following boundary conditions

Bt(ρh) = 0 , lim
ρ→0

(
ρ∆/2Bt(ρ)

)
= µ5 , (2.14)

with µ5 being the source. As it is discussed in [25], in the presence of a finite gauge boson
mass, µ5 does not correspond to a thermodynamic parameter, but it is instead a coupling in
the Hamiltonian. As a result, different values of chemical potential correspond to different
theories. For completeness, we will provide the analytical solution of the background
equations of motion (2.10)–(2.12) for vanishing µ5. These are

gττ (ρ) = 1
ρ2
h

(ρ2
h − ρ2)2

ρ2
h + ρ2 , gxx(ρ) = 1 + ρ2

ρ2
h

, Bt(ρ) = 0 , (2.15)

while the temperature turns out to be T = 1
π

√
2
ρh
. For the metric tensor, we demand that

the solution is regular at the horizon, while at the boundary it reaches some constant value
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Figure 1. (color) Dependence of the background metric and gauge field with ρ. We display
the results for gxx(ρ) (blue), gττ (ρ) (orange), and ρ∆/2Bt(ρ) (green). We have chosen ∆ = 0.1
and µ5 = 0.5.

which we can always scale to set it to 1. Hereafter we will set the values of ` = 1 and ρh = 1
for our numerical calculations, which one can fix as such by using the scaling symmetry of
the metric tensor. This will set the units of all the quantities, i.e. µ5, Q, M , etc. We have
plotted in figure 1 the numerical solution of all the background fields, i.e. gxx(ρ), gττ (ρ)
and Bt(ρ). One may note from this figure that limρ→0

(
ρ∆/2Bt(ρ)

)
= µ5.

3 Kubo formulae and correlators

In this section, we will discuss the Kubo formulae needed to compute the anomalous
transport coefficients in our model, and set up the equations to evaluate these transport
properties. The Kubo formulae for the anomalous conductivities have been well studied [31].
The authors of this reference have shown that the chiral vortical conductivity for charge
and energy transport can be obtained from the following two-point functions

σV = lim
kc→0

i

2kc

∑
a,b

εabc〈JaT 0b〉|w=0 ,

σεV = lim
kc→0

i

2kc

∑
a,b

εabc〈T 0aT 0b〉|w=0 ,

(3.1)

where σV is the chiral vortical conductivity and σεV the chiral vortical conductivity of energy
current, respectively. The chiral magnetic conductivities for charge, σB, and energy, σεB,
current are given by

σB = lim
kc→0

i

2kc

∑
a,b

εabc〈JaJb〉|w=0 ,

σεB = lim
kc→0

i

2kc

∑
a,b

εabc〈T 0aJb〉|w=0 .

(3.2)
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To compute these correlators one can use the AdS/CFT dictionary [22, 32, 33]. Keeping
this in mind, we proceed with the perturbation of the fields, where the background is set
by the numerical solution as shown in figure 1. We will study the linear response of the
fluctuation, so that we split the metric and gauge field into a background and a linear
perturbation part, i.e.

gMN = g
(0)
MN + εhMN , BM = B

(0)
M + εbM . (3.3)

Then, we will follow the general procedure of Fourier mode decomposition [31]

hMN (ρ, xµ) =
∫

ddk

(2π)dhMN (ρ)e−iωt+i~k.~x , (3.4)

bM (ρ, xµ) =
∫

ddk

(2π)d bM (ρ)e−iωt+i~k.~x . (3.5)

Without the loss of generality, one can consider perturbations of frequency ω and momentum
k in the z-direction. In order to study the anomalous effect we will switch on the fluctuations
Bi, hit and hiz, where i = x, y. Following this, we will substitute (3.3) in the equations of
motion (2.5) and (2.6), and consider the resulting expressions at order O(ε).

Since we are interested in computing correlators at zero frequency, we can set the
frequency-dependent parts as zero in the equations, and solve the system up to first order in
k. In this limit, the fields hiz decouple from the system and take a constant value. Finally,
we can write the system of differential equations for the shear sector as

b′′i (ρ) + 1
2

(
g′xx(ρ)
gxx(ρ) + g′ττ (ρ)

gττ (ρ)

)
b′i(ρ)− ∆(∆ + 2)

4ρ2 bi(ρ) (3.6)

+
(

4iκkεijbj(ρ)√
gxx(ρ)gττ (ρ)

+ gxx(ρ)hi′t(ρ)
gττ (ρ)

)
B′t(ρ) + iλkεijh

j ′
t(ρ)Ω(ρ) = 0 ,

hi′′t (ρ)−
(
g′ττ (ρ)
2gττ (ρ) −

5g′xx(ρ)
2gxx(ρ) + 1

ρ

)
hi′t(ρ) + ρB′t(ρ)

gxx(ρ) b
′
i(ρ)

+∆(∆ + 2)Bt(ρ)
4ρgxx(ρ) bi(ρ) + iλkεijΦj(ρ) = 0 , (3.7)

where i, j = x, y. The explicit expressions of the functions Ω(ρ) and Φj(ρ) are given in
appendix A.

Asymptotic analysis of the fluctuations near the boundary (ρ → 0) up to the first
subleading order shows

bi(ρ) = b
(0)
i ρ−

∆
2 + b

(1)
i ρ

∆
2 +1 + · · · , (3.8)

hit(ρ) = hit
(0) + hit

(1)ρ2 + · · · , (3.9)
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where the leading order terms b(0)
i and hit(0) are the sources. From the holographic description

of the correlation functions, one can evaluate the one-point functions as

〈Ja〉 = δSren

δb
(0)
a

= − 2
16πG(∆ + 1)b(1)

a , (a = x, y) , (3.10)

〈T0a〉 = δSren
δhat

(0) = 1
16πG

(
2hat (0) + hat

(1)
)
, (a = x, y) , (3.11)

where Sren = S + Sct is the renormalized action, with S the action given in eq. (2.1) and
Sct the counterterm. The procedure to evaluate this counterterm is given in [22] and [25].
We find that the counterterm needed to renormalize this theory is the same as the one
given in [25], i.e. the mixed gauge-gravitational Chern-Simons term does not introduce
new divergences, and so the renormalization is not modified by it (see e.g. ref. [22] for a
discussion in the massless case). In this regards, we are not writing the counterterm Sct
explicitly. 〈Ja〉 and 〈T0a〉 correspond to current and energy-momentum tensor one-point
functions, respectively.1 Similarly, the two-point functions can be obtained by taking the
variation of one-point function with respect to the corresponding source term, i.e.

〈JaJb〉 = δ〈Ja〉
δb

(0)
b

, (a, b = x, y) , (3.12)

〈JaT0b〉 = δ〈Ja〉
δhbt

(0) , (a, b = x, y) , (3.13)

〈T0aJb〉 = δ〈T0a〉
δb

(0)
b

, (a, b = x, y) , (3.14)

〈T0aT0b〉 = δ〈T0a〉
δhbt

(0) , (a, b = x, y) . (3.15)

From the above expressions, it is clear that it is required the leading and subleading parts
of the asymptotic expansion of the fluctuations to evaluate the two-point functions we are
interested in. To do so we have solved numerically the coupled differential equations of the
fluctuations (3.6) and (3.7) and imposed suitable boundary conditions, i.e. i) regularity at
the horizon, and ii) sourceless condition at the asymptotic boundary.

4 Results

In this section, we will start presenting our results. Firstly, we will start with the massless
case (∆ = 0) and compare the results with the previous work done in [22]. In the second
part of this section, we will consider the massive case ∆ 6= 0, and study the dependence
of the two-point functions with ∆ for different values of µ5. In both cases, we will set
G = 1/(16π) so that the physical values of the anomalous couplings are κ = −1/(32π2)
and λ = −1/(768π2), cf. eq. (2.4). Later on, we will study the dependence of the two-point
functions with the parameters κ and λ. This is done to show that the parametric dependence
of the correlators is linear in these parameters, but values of κ and λ different from κ/λ = 24
are non-physical. In addition to this, to make a direct comparison with the previous work
in [25], all the anomalous correlators have been displayed normalized by |κ|−1.

1Ji and T0i are related with the fluctuations bi and hi
t, respectively, with i = x, y.
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4.1 Massless case

In the absence of mass, the correlators have been evaluated in [22, 25], leading to

〈JxT0x〉 = 〈JyT0y〉 =
√

3Q
4πG`3 ,

〈JxJy〉 = −〈JyJx〉 = κ
i
√

3kQ
2πGr2

h

− κ ikα6πG = −ik (3µ5 − α)
12π2 ,

〈JxT0y〉 = −〈JyT0x〉 = 〈T0xJy〉 = −〈T0yJx〉 = κ
3ikQ2

4πGr4
h

+ λ
2ikπT 2

G
,

= −ik
(
µ2

5
8π2 + T 2

24

)
, (4.1)

〈T0xT0x〉 = 〈T0yT0y〉 = M

16πG`3 ,

〈T0xT0y〉 = −〈T0yT0x〉 = κ
i
√

3kQ3

2πGr6
h

+ λ
4πi
√

3kQT 2

Gr2
h

= −ik
(

µ3
5

12π2 + µ5T
2

12

)
,

with M = r4
h

`2
+ Q2

r2
h

and Q = µ5r
2
h√

3
the mass and charge of the black hole solution computed

in Poincaré coordinates, with blackening factor

f(r) = 1− M`2

r4 + Q2`2

r6 . (4.2)

The Hawking temperature is given in terms of these black hole parameters as

T = r2
h

4π`2 f
′(rh) =

(
2r2
hM − 3Q2)

2πr5
h

. (4.3)

The parameter α in eq. (4.1) corresponds to the asymptotic value of the gauge field At for
ρ→ 0. In our case, we are assuming α = µ5 for ∆ = 0, cf. eq. (2.14). The other correlators
are vanishing in the massless case, i.e.

〈JxJx〉 = 〈JyJy〉 = 0 , 〈T0xJx〉 = 〈T0yJy〉 = 0 . (4.4)

While the correlators with the same indices are not induced by quantum anomalies (i.e.
they are non-anomalous) and they become real, the correlators with different indexes are
anomalous and they become imaginary. We will be comparing the numerical results with
the analytical expressions given in the above equations, eq. (4.1). We plot in figures 2 and 3
five independent non-vanishing correlators, while the other correlators are related to them
through the expressions given in eq. (4.1). In these and subsequent plots, it is understood
that it has been taken the limit k → 0 with k ≡ kz. In these figures the dots stand for the
numerical results, and the solid lines correspond to the analytic results of eq. (4.1). One
may observe that the numerical results are in good agreement with the analytic expression.
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Figure 2. Upper panel: plots of the correlators 〈JxJy〉 (left) and 〈JyT0y〉 (right) vs µ5. Lower
panel: plots of the correlators 〈JxT0y〉(left) and 〈T0yT0y〉 (right) vs µ5. These plots are obtained in
the massless case (∆ = 0).

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0
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4

μ5
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
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T
0
x
T
0
y
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k

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

Figure 3. Plot of the correlator 〈T0xT0y〉 vs µ5 in the massless case (∆ = 0).

4.2 Massive case

We will split our discussion into anomalous and non-anomalous correlators. We have found
that the above mentioned relations between different correlators still hold in the massive
case, i.e.

〈JxT0x〉 = 〈JyT0y〉 ,
〈JxJy〉 = −〈JyJx〉 ,
〈JxT0y〉 = −〈JyT0x〉 = 〈T0xJy〉 = −〈T0yJx〉 ,
〈T0xT0x〉 = 〈T0yT0y〉 ,
〈T0xT0y〉 = −〈T0yT0x〉 .

(4.5)
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Figure 4. (color) Plots for non-anomalous correlators vs ∆. Upper panel: plot of the correlators
〈JxJx〉 (left) and 〈JxT0x〉 (right) vs ∆. Lower panel: plot of the correlators 〈T0xJx〉 (left) and
〈T0xT0x〉 (right) vs ∆. We have considered in all the panels µ5 = {0, 0.1, 0.2} (blue, orange and green).

In addition to this, there are two more independent correlators, i.e 〈T0xJx〉 = 〈T0yJy〉 and
〈JxJx〉 = 〈JyJy〉. In this regard, we will be plotting only seven independent correlators.

4.2.1 Non-anomalous correlators

While the correlator 〈JxJx〉 is vanishing for ∆ = 0 (cf. section 4.1), we can see from the
figure 4 (upper-left panel) that this correlator starts picking up some finite value in the
massive case (∆ 6= 0). With the increase of ∆ the absolute value of this correlator increases
quite sharply, and gets even shaper with the increase in µ5. This property, i.e. an increasing
value of the (absolute value of the) correlator for increasing ∆ and for finite µ5, is a general
feature for all the non-anomalous coefficients as we will discuss below.

We can see from figure 4 (upper-right panel) that for µ5 = 0 the correlator 〈JxT0x〉 is
zero for all values of ∆. As the value of µ5 increases, 〈JxT0x〉 becomes finite and its value
increases with ∆ in a somewhat linear fashion. The slope of 〈JxT0x〉 vs ∆ also increases
with the increase of µ5.

In figure 4 (lower panel-left) we can see that even though the correlator 〈T0xJx〉 is
vanishing for ∆ = 0, for finite values of ∆ and µ5 this correlator is non-vanishing. More in
details, for a given finite value of µ5, the absolute value |〈T0xJx〉| increases quite sharply
with ∆. Notice that 〈T0xJx〉 was completely absent in the previous work [22], but we find
now that it is non-vanishing at finite µ5 in the massive theory.
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Figure 5. (color) Plot of the correlators 〈JyJx〉 (left) and 〈T0yT0x〉 (right) vs ∆ with µ5 =
{0, 0.1, 0.2} (blue, orange and green).
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Figure 6. (color) Plot of the correlator 〈JxT0y〉 vs ∆ with µ5 = {0, 0.15, 0.3} (blue, orange
and green).

Finally, we can see in figure 4 (lower-right panel) that 〈T0xT0x〉 is independent of ∆
for µ5 = 0, i.e. it has a constant value corresponding to the pressure term, a feature that
has been well discussed in [21–23, 25]. At finite chemical potential, this correlator increases
with ∆, a behavior which is sharper for larger values of µ5.

4.2.2 Anomalous correlators

We display in figure 5 (left) the behaviour of 〈JyJx〉 vs ∆. One can see that the absolute
value of this correlator increases with ∆, and the change is quite subtle. It is plotted in
figure 5 (right) the correlator 〈T0yT0x〉 vs ∆, and unlike the other correlator, its absolute
value decreases with the increase of ∆.

In figure 6 we have plotted 〈JxT0y〉 vs ∆. We find that the absolute value of this
correlator increases with the increase in ∆ and µ5. We have taken a different value of µ5
as compared to the other correlators, because for those values of µ5 the correlator did not
have any substantial changes. The new values of µ5 = {0, 0.15, 0.3} are chosen to make
these changes distinct in the figure. We can see from the figure that even in the absence
of µ5 this correlator is non-zero. This can be traced back to the temperature term, as
the temperature does not vanish for µ5 = 0. Finally, one may notice that in all the cases
the values of two point correlators tend toward the analytic values as given in (4.1) when
considering the limit ∆→ 0. This is also shown in the figures for the massless case.
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Figure 8. Left: plot of the correlator 〈JyJx〉 vs λ/|κp|. Right: plot of the correlator 〈JyJx〉 vs
κ/|κp| for λ = −1/(768π2). We have considered in both panels µ5 = 0.1 and ∆ = 0.1, while
κp = −1/(32π2).

λ and κ dependence. To study the dependence of the two-point functions with the
parameter λ, we will consider the case where we fix the values as µ5 = ∆ = 0.1 and
κ = −1/(32π2), and vary λ. Here we will only present the correlators that have a dependence
on λ, while the λ independent correlators are given in figure 11 of appendix B. We have
plotted in figures 7 and 8 (left) the dependence of the anomalous correlators with λ. One
can see that the behaviour is linear with λ in all the cases. The inset figures are given
to show that the corresponding correlators do not vanish at λ = 0. This is in fact true,
as the non-vanishing values arise due to the κ coupling, which leads to 〈T0xT0y〉 ∼ µ3

5κ

and 〈J0yT0x〉 ∼ µ2
5κ at λ = 0, with some contribution from ∆. In the case of 〈JyJx〉 the λ

dependence only arises in the massive case.
Setting the values of ∆ = µ5 = 0.1, λ = −1/(768π2) and varying κ, we see a similar kind

of linear behaviour with κ. The effect of κ is only seen in 〈T0xT0y〉, 〈J0yT0x〉 and 〈JyJx〉 as
shown in figure 8 (right) and figure 9. The non-anomalous correlators are independent of κ,
and they are displayed in figure 12 of appendix B. These correlators are in fact independent
of both the parameters κ and λ, and hence they are non-anomalous in nature even in the
massive theory. This means that they do not contribute to anomalous transport, unlike
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Figure 9. Plot of the correlator 〈T0yT0x〉 (left) and 〈JyT0x〉 (right) vs κ/|κp|. In both cases,
µ5 = 0.1, ∆ = 0.1, |κp| = 1/(32π2) and λ = −1/(768π2).

the correlators studied above which are associated to anomalous conductivities. This can
be seen in the Kubo formulae for anomalous conductivities, eqs. (3.1) and (3.2), as these
formulae involve Levi-Civita (εijz) symbols which runs over i = j = {x, y}. Hence, the
correlators with i = j = x and i = j = y do not lead to anomalous transport effects.

Anomalous conductivities. Finally, as a summary of the previous numerical results, we
now present the anomalous conductivities which are computed with the Kubo formulas (3.1)
and (3.2), i.e.

σV = − lim
k→0

1
k
Im〈JxT0y〉 , σεV = − lim

k→0

1
k
Im〈T0xT0y〉 , (4.6)

σB = − lim
k→0

1
k
Im〈JxJy〉 , σεB = − lim

k→0

1
k
Im〈T0xJy〉 . (4.7)

The results are displayed in figure 10. We can see from this figure that the chiral vortical
conductivity and the chiral magnetic conductivity for energy current are the same either at
zero or finite mass, i.e. σV = σεB, and these quantities increase with ∆. We also see in this
figure that the chiral vortical conductivity of energy current, σεV , decreases with ∆ but the
rate decreases rapidly. In the case of the chiral magnetic conductivity, σB , it increases with
∆ as shown in figure 10.

Regarding the other dependences of the anomalous conductivities, for instance the
dependence in the parameters κ and λ, it would be sufficient to study them from figure 7
and figure 8, as the two-point functions and the anomalous conductivities are related
through Kubo formulae. We conclude that for a given value of µ5 and ∆, the anomalous
transport coefficients: σV , σεB, σB and σεB; change linearly with the pure (κ) and mixed (λ)
gauge-gravitational Chern-Simon couplings. At the limit of vanishing mass, our results lead
to σB

µ5|κ| ' 16/3, which exactly coincides with the results in [21, 22, 25] where α has been
set to µ5 in both references. In order to reproduce the results of [21] where they have set
α = 0, our κ needs to be rescaled by a factor 3/2. Finally, let us emphasize that all the
correlators involving the energy-momentum tensor are completely new results at finite mass
(∆ 6= 0), i.e. σV , σεV and σεB.
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Figure 10. Upper panel: plot of σV (left) and σεV (right) vs ∆. Lower panel: plot of σB (left) and
σεB (right) vs ∆. We have considered µ5 = 0.15 in all the panels.

5 Discussion

We have studied the anomalous and non-anomalous conductivities in the holographic
Stückelberg model including both pure gauge and mixed gauge-gravitational anomaly terms.
To access the sectors concerning the energy-momentum tensor we have to consider the full
backreaction of the massive gauge field onto the metric tensor. We have evaluated the
numerical background solution and on this background, we have considered the fluctuations
of the fields. From these fluctuations, we have calculated the different correlators and
studied their behaviors with the relevant parameters of the model (µ5, ∆, κ and λ).

We have found that the correlators in the massless case match with previous results
in the literature [31]. Later on, we have studied the dependence of these correlators with
the mass of the gauge field, m2 = ∆(∆ + 2), and found that all the correlators explicitly
depend on the mass for a given non-zero value of µ5. One of the results that it is important
to emphasize here is that the non-anomalous correlators such as 〈JxJx〉 and 〈T0xJx〉 are
non-vanishing in the massive theory for finite values of µ5. Moreover 〈JxJx〉 is non-zero in
this theory even for µ5 = 0, while 〈T0xJx〉 is vanishing for µ5 = 0 independently of the mass.
These correlators are vanishing in the massless theory, independently of µ5. The mass of the
gauge field highly enhances the absolute value of the correlators, and this gets translated into
an enhancement of the anomalous conductivities. The behaviours of the correlators on the
pure gauge and mixed gauge-gravitational Chern-Simon couplings, κ and λ, were also studied.
We found that the correlators 〈JxJx〉, 〈JxT0x〉, 〈T0xJx〉 and 〈T0xT0x〉 are independent of
κ and λ, and hence they are non-anomalous in nature. They do not contribute to the
anomalous conductivities, as it can be seen from the Kubo formulae (3.1) and (3.2) as well.
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Finally, we have computed the anomalous conductivities and studied their dependence
with the mass of the gauge field (m). We have found that the chiral vortical conductivity,
σV , and the chiral magnetic conductivity for energy current, σεB, are equal and increase
with ∆. One interesting result is that there are contributions to σB coming from λ in
the massive theory, which was completely absent in the massless case. The conductivities
σB, σV and σεB increase with ∆, while the chiral vortical conductivity of energy current,
σεV , decreases with ∆. We have explicitly checked that all our numerical results for the
conductivities at finite mass tend to the known results at zero mass in the limit ∆→ 0. For
instance, it is known that at zero mass, the chiral magnetic conductivity is σB = −16

3 κµ5
when α = µ5, which implies that the ratio − σB

κµ5
= 16/3, independently of κ and µ5. As one

can see from figure 10 (left), our numerics produces in this limit σB/|κ| = 0.8 for µ5 = 0.15,
in agreement with the expected result. We have also checked the ratio − σB

κµ5
= 16/3 for

other values of κ and µ5.
This work can be extended in several ways. One possible extension could be to consider

the U(1)V × U(1)A gauge group. There are some studies in holography with this gauge
group, see e.g. refs. [25, 34, 35]. However, in these works: i) either the probe limit has
been considered so that the chiral vortical effect and the transport conductivities in the
energy-momentum tensor are not accessible, or ii) they correspond to studies for massless
gauge bosons. In particular, it would be interesting to study the interplay between the
anomalous and non-anomalous currents in the set-up of the full backreacted background
of ref. [35], both for massless and massive gauge bosons. We will explore these and other
issues in future works.
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A Explicit expressions for the functions Ω(ρ) and Φj(ρ)

These functions have been introduced in the equations of motion of the fluctuations (3.6)–
(3.7). Their explicit expressions are given by

Ω(ρ) =
4
[
gττ (ρ) (g′xx(ρ) + 2ρg′′xx(ρ)) + ρg′xx(ρ)g′ττ (ρ)

]
√
gxx(ρ)gττ (ρ)3/2 − 8ρ g′xx(ρ)2

gxx(ρ)3/2

√
gττ (ρ)

+
√
gxx(ρ)

gττ (ρ)5/2

[
4ρg′ττ (ρ)2 − 4gττ (ρ)

(
g′ττ (ρ) + 2ρg′′ττ (ρ)

)]
,

(A.1)

and

Φj(ρ) = b′j(ρ)

−8ρ2√gττ (ρ)g′xx(ρ)2

gxx(ρ)7/2 +
4ρ
(
gττ (ρ)

(
g′xx(ρ)+2ρg′′xx(ρ)

)
+ρg′xx(ρ)g′ττ (ρ)

)
gxx(ρ)5/2

√
gττ (ρ)

−
4ρ
(
gττ (ρ)

(
g′ττ (ρ)+2ρg′′ττ (ρ)

)
−ρg′ττ (ρ)2

)
gxx(ρ)3/2gττ (ρ)3/2



+bj(ρ)

8ρ2√gττ (ρ)g′xx(ρ)3

gxx(ρ)9/2 − 8ρ
√
gττ (ρ)g′xx(ρ)
gxx(ρ)7/2

(
g′xx(ρ)+2ρg′′xx(ρ)

)

+
4ρ
(
ρg′′xx(ρ)g′ττ (ρ)−ρg′xx(ρ)g′′ττ (ρ)+3gττ (ρ)g′′xx(ρ)+2ρgxx(3)(ρ)gττ (ρ)

)
gxx(ρ)5/2

√
gττ (ρ)

−
4ρ
(
−2gττ (ρ)g′ττ (ρ)

(
g′ττ (ρ)+2ρg′′ττ (ρ)

)
+2ρg′ττ (ρ)3+gττ (ρ)2

(
3g′′ττ (ρ)+2ρgττ (3)(ρ)

))
gxx(ρ)3/2gττ (ρ)5/2



+hj ′t(ρ)

B′t(ρ)

 16ρ2g′xx(ρ)
gxx(ρ)3/2

√
gττ (ρ)

+
8ρ
(
gττ (ρ)−ρg′ττ (ρ)

)
√
gxx(ρ)gττ (ρ)3/2

+ 8ρ2B′′t (ρ)√
gxx(ρ)

√
gττ (ρ)


+hj ′′t (ρ) 8ρ2B′t(ρ)√

gxx(ρ)
√
gττ (ρ)

. (A.2)

B Some additional results for the non-anomalous correlators

We show in this appendix the numerical results for the non-anomalous correlators as a
function of the anomalous parameters κ and λ, in the massive case (∆ 6= 0). The correlators
〈JxJx〉, 〈JxT0x〉, 〈T0xJx〉 and 〈T0xT0x〉, are displayed in figures 12 and 11. These correlators
turn out to be constant in both κ and λ. The lack of dependence in these parameters
implies that they lead to non-anomalous transport effects.
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