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Abstract: Recently, the number of traffic safety studies involving connected and autonomous vehicles
(CAVs) has been increasing. Due to the lack of information regarding the real behaviour of CAVs
in mixed traffic flow, traffic simulation platforms are used to provide a reasonable approach for
testing various scenarios and fleets. It is necessary to analyse how traffic safety is affected when key
parameter assumptions are changed. The current study conducts a sensitivity analysis to identify
the parameters used in CAV calibration that have the highest influence on traffic safety. Using a
microsimulation-based surrogate safety assessment model approach (SSAM), traffic conflicts were
identified, and a ceteris paribus analysis was conducted to measure the effect of gradually changing
each parameter on the number of conflicts. Afterwards, a two-at-a-time sensitivity analysis was
performed to explore the influence of simultaneously varying two parameters. The results revealed
that reaction time, clearance, maximum acceleration, normal deceleration, and the sensitivity factor
are key parameters. Studying these parameters two at a time revealed that low maximum acceleration,
when combined with other parameters, consistently resulted in the highest number of conflicts, while
combinations with short reaction time always yielded the best traffic safety results. This investigation
broadens the understanding of CAV behaviour for future implementation for both manufacturers
and researchers.

Keywords: connected and autonomous vehicles; surrogate safety measures; sensitivity analysis;
traffic microsimulation; traffic safety; traffic conflicts

1. Introduction

Connected and autonomous vehicles (CAVs) fundamentally differ from human-driven
vehicles (HDVs) in terms of their operational behaviour. CAVs can be adjusted to minimise
emissions, improve fuel savings, and harmonise traffic flow due to their shorter reaction
times [1–5]. Additionally, they are expected to change travel behaviour by generating new
demand for very young, elderly, or disabled individuals, being utilized for freight transport,
and impacting parking and ride-sharing patterns, thereby affecting the total vehicle miles
travelled [6]. Furthermore, CAVs can enhance traffic safety by adhering to traffic laws and
mitigating human driving errors [7].

An increasing number of new automobile models are being equipped with amenities
and advanced assistance systems, including adaptive cruise control, parking assist tech-
nologies, and self-driving capabilities. However, as CAVs are still in the testing stage, it
remains challenging to predict their actual behaviour and determine if they will deliver
the projected safety benefits. Consequently, significant research efforts are required to
develop a transportation system that optimally harnesses the potential advantages of CAVs.
The knowledge gained from research is essential for stakeholders to achieve incremental
improvements in CAV design and address complex questions related to legal, safety, and
regulation issues.

One common research approach to studying the safety impact of CAVs is through
traffic simulation considering different CAV market penetration rates [8]. Simulation tools,
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in general, allow for the comparison of multiple conditions under the same traffic input
and facilitate the study of various mixed traffic scenarios more quickly and easily than field-
based investigations. In CAV safety research, simulation is the most reasonable approach
since access to real CAV field data is still limited [8]. Consequently, numerous researchers
have endeavoured to conduct safety evaluation studies based on traffic simulations utilizing
surrogate safety measures (SSM).

Specifically, traffic safety is measured based on the calibration of various traffic flow
models to reflect CAV driving behaviour. Most literature studies have used unique calibra-
tion values for these parameters, estimated based on future CAV behaviour (e.g., [9–11]).
Nevertheless, further exploration is needed to understand the effect of CAV behaviour, and
an examination of which driving parameters may have a concrete effect on safety analysis
could provide valuable insights into the safety impact of CAV implementation for both
designers and researchers.

Despite a few studies that have attempted to explore the sensitivity of a limited number
of parameters related to CAV driving behaviour or tested different calibrated traffic models
for various levels of automation, no specific sensitivity analysis has been published for the
majority of commonly used parameters that calibrate CAV driving behaviour in relation to
their impact on traffic safety.

Therefore, the aim of this study is to thoroughly analyse CAV driving behaviour on
roads from a safety perspective. Specifically, this study conducts a sensitivity analysis
of traffic safety that, for the first time, aims to discover the effects of varying the values
of widely acknowledged driving parameters used in the calibration of CAV behaviour
in microsimulation models. A one-at-a-time sensitivity analysis is performed for each
parameter to identify the key parameters with a higher effect on traffic safety. Subsequently,
these significant parameters are analysed two at a time to gain a better understanding of
their simultaneous effects.

In other simulation-based traffic safety studies (e.g., [9–11]), traffic safety is determined
by analysing traffic conflicts identified using the surrogate safety assessment model (SSAM).
Traffic conflicts refer to observable non-crash incidents where there is a risk of accidents due
to interactions between various road users in terms of their spatial and temporal trajectories
if they do not alter their paths [12]. Conflicts have proven to be capable of reflecting traffic
safety on roads as they are highly correlated with crashes [8]. Traffic simulation outputs,
such as vehicle trajectories, are analysed using SSAM with predefined time-to-collision
(TTC) thresholds. Interactions in which the TTC values fall below a predefined threshold
are considered conflicts. Furthermore, statistical tests, such as one-way and two-way
analysis of variance (ANOVA), are conducted on the explored parameters.

The remainder of this paper is organised as follows: Section 2 presents a literature
review on the impact of CAVs on safety. Section 3 describes the methodology. The results
of the sensitivity analysis are presented and discussed in Section 4. Finally, in Section 5,
we draw conclusions from this study and discuss further developments and potential
future research.

2. Literature Review

Traffic simulation platforms provide a practical method for evaluating various sce-
narios and fleets, including the operation of connected and autonomous vehicles (CAVs).
The literature utilizes several traffic microsimulation platforms such as Aimsun, VISSIM,
PARAMICS, and SUMO, each with different traffic flow models. The findings of these stud-
ies are comparable, indicating that CAVs can improve traffic safety, especially in scenarios
with high penetration rates (e.g., [9–11]). However, each study used its own proposed
calibration parameters and values based on their estimation of future CAV behaviour. To
obtain useful simulation outcomes, the dynamic and stochastic nature of data, along with
the stochastic nature of traffic simulation models and internal calibration parameters, must
be considered [13]. Consequently, without a good understanding of the parameters that
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dominate a model during specific operations, the use of model-based algorithms in this
area becomes challenging [14].

The most relevant research to the current study, which evaluates the use of different
parameter values in simulation, was conducted by Xie et al. [15]. They calibrated SMARTS’s
model parameters for each automation level, controlled the percentage of different vehicle
types, and evaluated various data types from simulation runs to quantify the impact of au-
tonomous vehicles on traffic efficiency and safety. They explored the effect of varying some
parameters such as maximum acceleration, maximum deceleration, clearance, minimum
headway, aggressiveness factor, and reaction time on traffic efficiency (travel time) and road
safety (traffic conflicts) on freeways and urban streets with different traffic volumes. Their
general conclusion proposed that greater aggressiveness in car-following parameters and
shorter reaction times are key factors contributing to the improvement in traffic efficiency.
However, their study mainly focused on automation levels and not on parameter sensitivity
analysis. They calibrated all the model parameters’ values simultaneously among different
traffic demands and did not specifically investigate the impact of changing these param-
eters. Similarly, Miqdady et al. [16,17] proposed various values for Gipps’ car-following
and lane-change models among automation levels and vehicle types (passenger car, heavy
vehicle). However, like [15], they ran the various calibrated values simultaneously without
exploring the impact of changing these parameters.

The following paragraphs highlight the commonly used parameters for CAV calibra-
tion and discuss the values proposed in the literature, which justify the suggested values
used in the sensitivity analysis.

The parameters most commonly used are those related to car-following theory (lon-
gitudinal movement parameters), specifically acceleration and deceleration parameters.
Researchers agree on their importance in understanding the impact of CAVs on traffic
safety and efficiency [18,19]. However, other researchers have discussed the significance of
calibrating other less frequently used parameters, such as the lane-changing parameters, as
they believe that CAVs are expected to engage in more cooperative lane changes compared
to HDVs, directly impacting traffic efficiency and safety [18]. Other variables are also
assumed to have a crucial influence on traffic safety, although they were not frequently
considered in calibration due to limitations in microsimulation platforms. For example,
reaction time is a highly important parameter [19] that has recently been calibrated by
vehicle type with the introduction of the API in the Aimsun platform, leading researchers
to consider lower reaction times for CAVs.

Based on a comprehensive review of simulation-based studies that calibrated CAVs
in their models, the parameters were classified into three attribute types: (1) parameters
directly related to technology advancement (e.g., reaction time and clearance); (2) lon-
gitudinal movement parameters (e.g., acceleration, deceleration, speed oscillation, and
platooning); and (3) lateral movement parameters (e.g., lateral clearance, look-ahead dis-
tance, and overtaking-speed threshold). Each study used three to five different parameters
to calibrate CAV behaviour. Longitudinal movement parameters are the most acknowl-
edged parameters, indicating that the major expected changes in CAV driving behaviour
are related to this type of parameter. Therefore, the evaluated safety benefit of CAVs in the
literature could be highly correlated with the harmonisation of longitudinal traffic flow
and the enhancement of traffic safety.

This study suggests examining several parameters that are either frequently used in
CAV calibration or important from a traffic safety perspective.

On the other hand, Table 1 summarizes the proposed values for the sensitivity analysis
based on the discussion provided in this section regarding the literature values.

Figure 1 shows the parameters used in this study and the range of values found in the
literature for each of them.
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Figure 1. Parameter values used for CAV calibration in the literature.

Table 1. The proposed values to be tested for each parameter.

Parameter Values Used for CAV Calibration

Reaction time (s)

0.1 [16,17,20,21]
0.2 -
0.3 -
0.4 -
0.5 [15–17,22]
0.6 -
0.7 -
0.8 -

Clearance (m)

0.5 [19]
1.0 [15–17]
1.5 [15–17]
2.0 -

Max. acceleration (m/s2)

1.0 [3,16,17,22,23]
2.0 [15–17]
3.0 [18,24,25]
4.0 [5]

Normal deceleration (m/s2)
−2.0 [5]
−3.0 [16,17,22]
−4.0 [11,25,26]

Sensitivity factor

0.5 [25]
0.7 [16,17,25]
0.9 -
1.0 [16,17]
1.1 [16,17]
1.3 [26]

Platoon size (No.)

4.0 [27,28]
6.0 [27]
8.0 -
10.0 [27]

Lateral clearance (m)

0.2 -
0.3 -
0.4 -
0.5 -

Look-ahead distance factor

0.8–1.2 [16,17]
0.9–1.2 -
1.0–1.25 [16,17,21,25]
1.1–1.3 [16,17,25]

Overtake-speed threshold (%)

80 [21]
85 [16,17,25]
90 [16,17,20]
95 [26]

Note: The shaded values are the default values in the Aimsun models.
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Reaction time is one of the most proposed technology advancements in autonomous
driving [18–20]. However, reaction time is considered as a global parameter in modelling
platforms and cannot be changed during simulation. Aimsun Next, in its recent editions,
allows for the modelling of this feature for CAV modelling. As the majority of previous
studies used VISSIM for CAV simulations, this parameter was uncommon during cali-
bration. Zhang et al. [22] used a value of 0.5 s while simulating CAVs with an external
driver model extension. Other studies that have used the Aimsun Next platform assumed
that CAVs should react within 0.1 s [20,21]. In a sensitivity analysis study, Xie et al. [19]
applied different values (2.0, 1.5, 1.0, 0.5, and 0.0 s for CAV levels from Level 0 to Level 4,
respectively). As the default reaction time for HDVs in Aimsun platform is 0.8 s, and
considering the high impact associated with this parameter in traffic safety, this study
proposes the following values to be examined: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8 s.

The clearance between two vehicles in the standstill condition (i.e., the minimum stand-
still headway space) or the minimum gap is also an important parameter for safety consid-
erations. In general, CAVs are expected to maintain shorter distances than HDVs [18,20]. In
previous studies that used PTV–VISSIM models for modelling CAV, 1.2 m was suggested by
Stanek et al. [18] and 0.5 m was suggested by Sinha et al. [29], compared to the default value
in that model (1.5 m). Morando et al. [14], who used two calibrated models (ATKIN [19]
and PTV [30] models), utilised their suggested values for clearance (0.5 and 0.75 m). Using
the SUMO model, HDV clearances are averaged to 2.5 m, whereas they were suggested to
be 1.5 m for Level 2 and 1.0 m for Level 4 [2]. Xie et al. [15] used several values (1.0, 1.5,
2.0, 2.5, and 3.0 m) for different levels of automation (from Level 4 to Level 0, respectively).
This study also suggests testing the effect of changes in this parameter on traffic safety
using different values: 0.5, 1.0, and 1.5 m.

Regarding the wide review of CAV acceleration and deceleration, the maximum accel-
eration is the most frequent and debatable parameter used in CAV calibration (Figure 1).
Some studies have suggested lower values for CAVs than for HDVs [22,23], whereas others
have considered higher values [15,19,29]. Furthermore, others have maintained the same
behavioural pattern [1,18,24]. Karjanto et al. [3] explained that the corresponding value
should be related to the driving style. They suggested a higher value than for HDVs in the
case of an aggressive driving style, whereas a cautious driving style should be represented
by low values, similar to light rail transit values (1 m/s2) [3]. On the other hand, regarding
the level of automation, Guériau and Dusparic [23] suggested that the maximum accel-
eration will decrease with the level of automation; for Level 0, Level 2, and Level 4, they
suggested values of 2.5, 1.5, and 1.0 m/s2, respectively. However, Xie et al. [15] claimed
that this value should increase from Level 0 to Level 4 from 1.4, 1.6, 1.8, 2.0, to 2.2 m/s2,
respectively. In this study, the proposed values to be tested are the following: 1.0, 2.0, 3.0,
and 4.0 m/s2, whereas the default value for HDVs in Aimsun is 3.0 m/s2. Speed oscilla-
tions have also been reported in CAV traffic safety studies. However, the high correlation
between this parameter and acceleration causes one parameter to reflect the other.

The same pattern of assumptions is related to CAV deceleration. In particular, normal
deceleration has been presented within a wide range of values in the literature: between
−1.3 and −7.5 m/s2 (Figure 1). ATKINS [19] proposed a higher deceleration for au-
tonomous vehicles. Guériau and Dusparic [23] and Stanek et al. [18] did not suggest any
change between human and autonomous behaviours. However, the value reported by
Zhang et al. [22] for CAVs is lower than that for human driving. Regarding the maximum
deceleration, it was assumed to be the same for humans and autonomous driving in several
studies (e.g., [9,11,18–23]). They explained that it should not be affected by technology; it is
the capacity of the vehicle’s motor, which is an extreme value that is followed within both
cases with the same magnitude [18]. Thus, this study follows previous research by studying
traffic safety sensitivity using normal deceleration instead of maximum deceleration. The
suggested values to be analysed are −2.0, −3.0, and −4.0 m/s2.

Moreover, the sensitivity factor (that considers the effect of overestimating/underestimating
leader deceleration) is a valuable indicator of traffic safety. A value below 1.0 refers to an
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underestimation case, whereas a value above 1.0 indicates that the vehicle overestimates
the leader deceleration. To the best of our knowledge, only one study calibrated CAVs
using Aimsun and attempted to change this parameter in the LEVITATE project [25]. They
suggested two values: 0.7 for cautious driving and 0.5 for aggressive driving. They as-
sumed that, as a safety constraint, CAVs are more aggressive than HDVs, even when a
cautious driving style is adopted. This study suggests studying different values for both
cases (underestimation and overestimation): 0.5, 0.7, 0.9, 1.0, 1.1, and 1.3.

Finally, because a greater number of vehicles in a platoon reflects more braking
actions [27,28], the maximum number of vehicles in a platoon (platoon size) is important
for traffic safety. The default maximum platoon size for Aimsun is ten vehicles. However,
Aramrattana et al. [28] considered two, three, four, and five vehicles in their studies,
whereas Faber et al. [27] considered five, seven, and ten vehicles. This study tests the
following platoon sizes: four, six, eight, and ten vehicles.

Regarding lateral movement calibration, Stanek et al. [18] discussed that CAVs should
perform more cooperative lane changes, as they could occur at a higher speed. In addition,
they could be detected at smaller lateral distances. Nevertheless, lateral movement has
not been sufficiently investigated in simulation-based studies. Recently, Delpiano [31]
recommended a study of the lateral dimension according to CAV behaviour. Aimsun
developers demonstrated the feasibility of calibrating these parameters in their traffic
model. Several lateral parameters were investigated in this study. First, the lateral clearance
between vehicles was investigated; the average default value in the Aimsun is 0.3 m, and
0.2, 0.3, 0.4, and 0.5 m values are used for the sensitivity analysis.

Subsequently, the effect of modifying the distance zones used in the lane-changing
model and look-ahead distances was analysed. To adjust when lane changes are considered,
a factor for minimum and maximum look-ahead distances is defined for CAV behaviour.
For example, if the look-ahead distance is set to 200 m, the minimum look-ahead factor is
0.9 and the maximum look-ahead factor is 1.2, then the perceived distance will range from
180 m (calculated as 0.9 × 200) to 240 m (calculated as 1.2 × 200). All vehicles randomly
select distances within the range of 180–240 m using a uniform distribution. These values
are specified as a range in the Aimsun model to randomise the behaviour. Different values
have been assumed in the Aimsun calibration of CAV studies (1.25, 1.5 [21], 1–1.25, and
1.1–1.3 [25]). Since CAVs are expected to exhibit high cooperation during lane-changing,
the values in both studies are higher than the human driving range for both cautious and
aggressive driving styles. Based on previous studies and to explore the effect of lower
values, the following values are suggested for sensitivity analysis: 0.8–1.2, 0.9–1.2, 1–1.25,
and 1.1–1.3.

Finally, the study also analyses the speed threshold for overtaking (overtaking-speed
threshold). When the leading vehicle is slower than the overtake-speed threshold (%), it
will attempt to overtake. Previous Aimsun-based studies [21,25] have suggested lower
values than the human driving value (90%) for both cautious and aggressive driving
(80 and 85%, respectively). This study investigates four values (80, 85, 90, and 95%) to
cover all cases.

3. Methodology
3.1. Methodological Approach

CAVs are expected to influence traffic flow by introducing technological advances
that result in faster reaction times and shorter standstill distances (clearance). Additionally,
both acceleration and deceleration can lead to different longitudinal behaviours on the
road. Following and reacting to the leader’s movement may also vary in the future of
CAVs, indicating sensitivity to leader movement or different platoon sizes. Similarly, lateral
movements are assumed to change with the introduction of CAVs.

To understand how CAVs will affect traffic flow models and how these changes will
impact traffic safety, a sensitivity analysis is applied to the important variables in the
models. Figure 2 illustrates the methodological approach used for the sensitivity analysis.
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Figure 2. Framework of the applied sensitivity analysis.

The approach begins by identifying the main parameters to be analysed in the sensi-
tivity analysis, which are considered to have a crucial influence on CAV driving behaviour.

The parameters identified in Section 2 and their proposed different values are subjected
to a ceteris paribus analysis. This involves changing the value of one parameter in the
model while keeping all other parameters at their default values. This was accomplished
after running a statistically sufficient number of microsimulation runs for each value of one
parameter. Later, the vehicle trajectories (outputs) of these runs were introduced into the
safety analysis tool (SSAM) to identify the number of conflicts. SSAM is a commonly used
tool for extracting traffic conflicts based on TTC which is a widely used parameter for this
purpose [8]. Following Batsch et al. [32], a threshold of 1.5 s was established for identifying
critical scenarios, and the variance between the results of the examined values was tested
using analysis of variance (ANOVA) to assess the effect of varying the studied parameter
on traffic safety. If a statistically significant difference was observed among the examined
values of a particular parameter, it was considered a key parameter.

In other words, statistically, varying a parameter without showing a significant effect
on traffic safety indicated that this parameter is less important in CAV behaviour modelling.
In contrast, the parameters that showed a significant effect on traffic safety are considered
very important for CAV modelling and are forwarded to the next step. The following step
is a two-at-a-time sensitivity analysis, that is, by varying two parameters simultaneously
while keeping the others with the default value with a statistically sufficient number of
microsimulation runs for each proposed value. Again, the outputs of varying each of
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the two parameters are analysed using SSAM with the same TTC threshold (1.5 s). The
resulting number of conflicts is then subjected to two-way ANOVA to gauge the effect of
the tested combinations of values.

Particularly, one-way as well as two-way ANOVA were conducted using StataMP 16, with
a 95% confidence interval. Previously, the tests’ assumptions were verified. Shapiro–Wilk’s
test was used to test the normality. The dependent variable (number of conflicts) was
observed as normally distributed (i.e., p > 0.05) across each group of the independent
variables (parameters’ values) in the one-way analysis and across each combination of
independent variables (groups combining two values from two independent variables) in a
multivariate normality analysis. Homogeneity of variances was also checked at both stages;
Levene’s test of equality of error variances (based on means) was applied and the values
were always non-significant (p > 0.05), indicating that the assumption of homogeneity of
variances was supported.

3.2. Case Study and Traffic Validation

The road network selected to run the sensitivity analysis using Aimsun is a major
motorway segment in Granada city, Spain (GR-30) (see Figure 3). The three-lane motorway
segment is approximately 10 km in length, with ten access points (five entrances and
five exits). An Open Street Map was used to extract the details of the modelled segment
geometry (e.g., lane width, road curves, exits, and entrance details). Meanwhile, the
detectors installed in the area by the General Traffic Directorate (Dirección General de
Tráfico, DGT, Madrid, Spain) were used to collect the traffic flow, speed, and distribution
(passenger car, pc; or heavy vehicle, hv) data among the sections at 15 min intervals.
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The analysis period for the simulation was one hour under free-flow conditions. The
data were for a regular day with off-peak hours (10:00–11:00). The gathered data were as
follows: between 547–3570 pc/h and 89–260 hv/h for the GR-30 northbound, and between
809–3281 pc/h and 93–499 hv/h for the GR-30 southbound. The average reported speed
varied from 83 km/h to 118 km/h. The warm-up period was set to 15 min in accordance
with Wunderlich et al. [33] (based on the length of the road section and the average speed
of vehicles) to guarantee that the model generated a suitable demand for the network at
the starting time. To boost the simulation accuracy and reduce the likelihood of losing the
vehicle movement details, following earlier studies (e.g., [9,11]), a time step of 0.1 s was
used to generate the traffic operations.

The generated traffic operations were validated in terms of volume and speed by
vehicle type (pc, hv) and for 15 min intervals following the Roads and Maritime Services
modelling guidelines [34]. For more details about the validation process, refer to our
previous analysis [16]. A preliminary analysis [26] was conducted to assign a statistically
sufficient number of runs based on Shahdah et al.’s [35] equation, which was found to be
15 runs. Therefore, 15 runs were applied for each value for each parameter analysed in the
one-at-a-time analysis, and then 15 runs were applied for each pair of examined values of
the parameters analysed in the two-at-a-time sensitivity analysis. In total, 2985 runs were
conducted in this study: 615 runs for the one-at-a-time analysis and 2370 runs for the two-
at-a-time analysis after the significant parameters from a safety perspective were identified.

4. Results and Discussion
4.1. The Key Parameters

This study takes an important step toward understanding how the proposed changes
in CAV behaviour can affect road traffic safety. As outlined in the previous sections, some
parameters have been proposed to be analysed for calibrating CAV behaviour. The parame-
ters included the reaction time, clearance, maximum acceleration, normal deceleration in
the flow, sensitivity to leader deceleration, platoon size, lateral clearance, look-ahead dis-
tance, and overtaking-speed threshold. The results of changing their values one-at-a-time
were obtained as the number of simulation-based traffic conflicts.

The results are illustrated in Table 2. The shaded values represent the default values
in Gipps’ models (i.e., those related to human driving behaviour). Table 2 also shows the
number of conflicts as the average value of the 15 runs and the standard deviation for
each parameter value examined. The results of the ANOVA among the examined values
of each parameter appear with letters in the last column (Homogeneous Subgroups) to
identify statistically significant differences among the number of conflicts. The same letter
indicates the same homogeneous subgroup between the different values of that parameter.
Therefore, the parameters that showed only one letter are not considered for the next step
(two-at-a-time analysis).

Technology advancements provided by CAVs are proposed to decrease the reac-
tion time and change the clearance which promises to significantly enhance traffic safety.
Xie et al. [19] confirmed these predictions when they tested several values of reaction time
related to automation levels; shorter reaction times resulted in a lower number of conflicts in
both freeways and urban streets and within different traffic volumes. Our results also show
that the number of conflicts is highly sensitive to driver reaction time. Stanek et al. [18] also
emphasised the significant change that faster reaction time could produce in both shorter
headways and lane changes’ shorter gap acceptance. Table 2 shows that each 0.1 s change
in reaction time presented statistically significant differences (p < 0.05) in the number of
conflicts arisen, except for 0.2 to 0.5 s that shape two homogeneous groups. Reaction times
equal to 0.2 and 0.3 s represent group b, and reaction times equal to 0.3, 0.4, and 0.5 s
represent group c. Therefore, the main significant values are as follows: if compared to
the reference value (0.8), the first 0.1 and 0.2 s decreases (0.7 and 0.6 s reaction time) have
shown about 25 and 38% improvement, respectively, in traffic safety. Reaction times equal
to 0.3, 0.4 and 0.5 s have registered a value higher than 50% of conflict reduction, and a
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drop of about two-thirds of the default conflicts is reached with 0.2 and 0.3 s reaction times.
Lastly, a reaction time equal to 0.1 s improved traffic safety by about 77%.

Table 2. One-way ANOVA analysis results for the examined parameters.

Parameter Examined Values No. of Conflicts
Mean (std.)

Homogeneous
Subgroups *

Reaction time (s)

0.1 50 (10.32) a
0.2 74 (10.84) b
0.3 87 (10.70) b,c
0.4 99 (12.86) c
0.5 105 (18.07) c
0.6 137 (20.17) d
0.7 165 (19.23) e
0.8 218 (24.86) f

Clearance (m)

0.5 497 (95.22) a
1.0 218 (24.86) b
1.5 153 (13.32) c
2.0 141 (10.52) c

Max. acceleration (m/s2)

1.0 1613 (313.50) a
2.0 237 (32.95) b
3.0 218 (24.86) b
4.0 199 (28.34) b

Normal deceleration (m/s2)
−2.0 330 (96.01) a
−3.0 250 (56.93) b
−4.0 218 (24.86) b

Sensitivity factor

0.5 1299 (57.48) a
0.7 649 (44.17) b
0.9 211 (16.07) c
1.0 218 (24.86) c
1.1 546 (328.01) b
1.3 1517 (205.33) d

Platoon size (No.)

4.0 215 (25.57) a
6.0 202 (22.31) a
8.0 206 (24.90) a
10.0 218 (24.86) a

Lateral clearance (m)

0.2 208 (21.59) a
0.3 218 (24.86) a
0.4 202 (21.90) a
0.5 199 (23.79) a

Look-ahead distance factor

0.8–1.2 218 (24.86) a
0.9–1.2 222 (25.69) a
1.0–1.25 216 (23.86) a
1.1–1.3 210 (17.62) a

Overtake-speed threshold (%)

80 202 (26.38) a
85 200 (16.67) a
90 218 (24.86) a
95 214 (16.79) a

* Different letters (a, b, etc.) denote statistically significant differences (p < 0.05) between the values of one
parameter. Two or more values with the same letter denote a homogeneous subgroup. Note: The shaded values
are the default values in Aimsun models.

However, the results show that traffic safety does not show a high sensitivity to
clearance between vehicles under standstill conditions. However, the assertive driving
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style (0.5 m clearance) duplicated the traffic conflicts when compared with human driving
clearance (1 m). However, in a highly cautious driving style (if clearance is higher than
human-driven clearance) there is an improvement in traffic safety, but without statistically
significant differences (p > 0.05) between the two values analysed (1.5 and 2 m) with
percentages of traffic conflicts with respect to the default values equal to 70.2 and 64.7%,
respectively. Xie et al. [15] examined traffic safety among levels of automation (with
decreasing clearance by increasing automation level) and found higher traffic conflicts for
small clearances. They also highlighted that this effect increases with higher traffic volumes
(moderate and congested traffic conditions).

The behaviour related to longitudinal movement is expected to change with the
introduction of CAVs. As discussed in Section 2, a wide range of assumptions were made
in calibrating the car-following model parameters to represent CAV behaviour. In general,
Table 2 shows that low values of maximum acceleration and normal deceleration may
dramatically reduce traffic safety on the road (i.e., increase the number of conflicts), which
agrees with the results in [36]. However, this could change if all vehicles exhibit the same
cautious behaviour [37]. Table 2 also shows that the normal values around the default values
did not show statistically significant differences (p > 0.05). However, as these parameters
define the dynamics in the driving models, CAV behaviour calibration in the literature is
mainly dependent on these parameters [5,19,29]. Moreover, regarding previous studies
which calibrated CAV behaviour by assigning values of different parameters simultaneously
(including acceleration and deceleration parameters), the results were as follows: studies
which used low values (e.g., 1.0 and 1.5 m/s2) for CAV acceleration [22,23] presented a
considerable effect on traffic safety enhancement; however, they calibrated the acceleration
with other performance parameters that could enhance traffic safety on the road (i.e., with
low reaction time or lower speed deviation). On the other hand, the use of values around
the default value ([15,19,29]) did not significantly change the effect on traffic safety, which
is confirmed by our sensitivity analysis.

Another parameter could point out the car-following issue, which is the sensitivity
factor to leader deceleration. Both the underestimation (<1.0) and overestimation (>1.0)
of the leader deceleration on the road negatively affect traffic safety. Many errors in pro-
gramming, performance, or even the application of highly cautious or assertive driving
behaviour can lead to a CAV which behaves with a high sensitivity or very low sensitivity
with respect to its leader vehicle deceleration. Table 2 also presents an interesting finding.
Traffic safety is highly sensitive to these two situations, and is more sensitive in the overes-
timation case (when the sensitivity factor is above 1). For example, traffic safety will not be
statistically significantly affected (p > 0.05) if the leader deceleration is underestimated by
10% (sensitivity factor = 0.9), but this is not the case with an overestimation of 10% (sensi-
tivity factor = 1.1), which will multiply traffic conflicts by 2.5 times (from 100% to 250%)
which is in the same significant group as the underestimation of 30% of leader deceleration
(sensitivity factor = 0.7). This indicates that the aggressiveness of the vehicle deceleration
to its leader, which normally decelerates (overestimation), increases the potential of crashes
significantly when compared to the case when the vehicle maintains its normal deceleration
while the leader could present breaking behaviour.

The results related to platoon size are also analysed in this study. Four, six, eight,
and ten vehicles in a platoon did not show a statistically significant difference in traffic
safety (p > 0.05). Nevertheless, decreasing the number of vehicles in the platoon slightly
enhanced the traffic safety and decreased the number of traffic conflicts. This result was
previously reported by both [27,28], who explained that a higher number of vehicles in a
platoon reflects more braking actions which may result in a higher number of conflicts.

As CAVs could also affect traffic behaviour in lateral movements, this study selected
three parameters that reflect lateral movements and lane-changing manoeuvres to be
analysed. First, several values of lateral clearance between vehicles were tested, and the
results showed that increasing the lateral clearance could enhance traffic safety. However,
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there were no significant differences (p > 0.05). It should be highlighted that this analysis in
urban and/or congested cases could have a significant effect on traffic safety.

Moreover, the upstream distance to the point where the vehicle is aware of its target
lanes (look-ahead distance) for the lane-change process was studied by changing the range
of the minimum and maximum look-ahead factors. Owing to the projected facilitation
of CAV lane changing, all the ranges tested were for values above the default one. The
results did not show any statistically significant differences (p > 0.05) among the ranges
tested. The last parameter selected was the overtake-speed threshold. In the overtaking
case of the vehicle moving forward, whenever a vehicle is constrained to drive slower than
the overtake-speed threshold as a percentage of its desired speed, it will try to overtake.
The considered thresholds for overtaking did not show statistically significant differences
(p > 0.05) in the number of traffic conflicts. However, it can be indicated that the lower
thresholds provided by [21,25] have shown a slight enhancement in traffic safety, if com-
bined with very low values of reaction time and aggressiveness measures.

4.2. Key Parameters Combinations

The key parameters are those which have shown significant effects on traffic safety
while changing their values and are also widely used in CAV behaviour calibration. The
following non-key parameters were excluded before this step: platoon size, lateral clearance,
look-ahead distance factor, and overtaking-speed threshold. Subsequently, a two-at-a-time
sensitivity analysis accompanied by a two-way ANOVA was performed by combining the
key parameters. Figure 4 shows the results of the two-way ANOVA (using StataMP 16) on
the number of resulting conflicts (of 15 runs each at a two-way step value).
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Appendix A presents detailed results with numbers and significant groups.
The results obtained by combining the effects of the technology advancement param-

eters (reaction time and clearance) are shown in Figure 4a. Traffic safety is improved by
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simultaneously decreasing the reaction time and increasing clearance at the same time.
A short clearance (0.5 m) demonstrates the highest number of conflicts regardless of the
reaction time. However, the effect is smoothed with very short reaction times (below
0.3 s), which shows a number of conflicts lower than the result of the default value (i.e.,
when the reaction time is 0.8 s and clearance is 1.0 m). These results are in line with
Stanek et al.’s [18] discussion that CAVs will provide both shorter reaction time and clear-
ance together, which indicates that lower reaction times will overcome the risk derived by
lower clearance values.

The effect of another combination of key factors is illustrated in Figure 4b (reaction
time/maximum acceleration), where the default value is the combination 0.8 s and 3.0 m/s2.
A clear impact can be extracted; both the reaction time and maximum acceleration are
extremely significant parameters for traffic safety. Every small step in these parameters
generates a significant group (see Appendix A). In addition, combinations which include
low maximum acceleration (1 m/s2) reflect the highest adverse impact on traffic safety,
regardless of the reaction time. Nevertheless, the shortest reaction times (0.1 s, 0.2 s)
showed better safety in these cases. For the rest of the combinations with anything other
than 1 m/s2 maximum acceleration, a gradual improvement in traffic safety was registered
by decreasing the reaction time and increasing the maximum acceleration. Only two studies
have considered these two parameters at the same time ([16,22]). In [22], a low value of
acceleration (1 m/s2) was combined with a 0.5 s reaction time, and their results varied
between deteriorating and enhancing traffic safety on the road. However, their results
were related to a special road configuration and policy operation (exclusive lanes). On the
contrary, in [16], two different combinations for reaction time and maximum acceleration to
calibrate CAVs in the same traffic model were used (0.5 s and 1 m/s2; and 0.1 s and 1 m/s2).
They found similar results to this study (the combination 0.1 s and 1 m/s2 provided lower
number of conflicts).

A similar pattern was identified in the reaction time/normal deceleration case (Figure 4c),
with a default value 0.8 s and −4.0 m/s2. The scale clearly indicates that traffic safety
improves by simultaneously decreasing the reaction time and increasing the normal decel-
eration at the same time. The results agree with the findings in [16], where their calibrated
combination of 0.1 s and −3 m/s2 resulted in less conflicts than the 0.5 s and −3 m/s2

combination, indicating the crucial impact of the reaction time parameter.
Considering both reaction time and the sensitivity factor together (Figure 4d), in

comparison with the default combination (0.8 s and 1.0), the results underline that, in
general, traffic safety is more sensitive to reaction time as the number of conflicts decreases,
mainly while decreasing the reaction time. Very short reaction times (0.1–0.3 s) resulted
in the highest improvement in traffic safety, regardless of the fit of estimation of the
leader deceleration.

In contrast, the effect of under/over estimation of the leader deceleration (i.e., the
error in estimation) on traffic safety is adversely increased with an increase in the reaction
time to take action and averting traffic incidents. These results agree with the LEVITATE
project’s results ([20,25]), which after calibrating Gipps’ models for CAV behaviour with
two different combinations of reaction time and sensitivity factor (0.1 s and 0.5; and 0.1 s
and 0.7), they identified that the combination 0.1 s and 0.7 generated a smaller number of
conflicts. Likewise, [16] found that the 0.5 s and 1.1 combination generates a higher number
of conflicts than 0.1 s and 1.2.

Studying the effect of clearance and maximum acceleration together (with a default
combination of 1.0 m and 3.0 m/s2) reflects the following: combining both high clear-
ance/maximum acceleration values indicates a high traffic safety improvement (Figure 4e).
Most of these two-way examined values follow homogeneous groups and represent a
similar number of conflicts. The most significant groups with negative effects on traffic
safety were 0.5 m and 1 m/s2, and 1.0 m and 1.0 m/s2. A similar effect was demonstrated
by the clearance/normal deceleration combination (Figure 4f), with 1.0 m and −4.0 m/s2

as the default combination. Increasing both values resulted in an enhancement in traffic



Sustainability 2023, 15, 9990 15 of 21

safety. The combinations used in CAV calibration in [16] confirm the results of the current
study, in that there are slight differences while the clearance is larger than 1.0 m.

Figure 4g compares the differences among maximum acceleration and normal decel-
eration combinations, with 3 m/s2 and −4 m/s2 as the default combination. The figure
shows that combining low values of maximum acceleration (1 m/s2 or even 2 m/s2) with
different values of normal deceleration generates a significant negative effect on traffic
safety. However, none of the other combinations, even with low deceleration (−2 m/s2),
show statistically significant differences in the number of conflicts. Thus, traffic safety is
more sensitive to maximum acceleration. However, on the one hand, both factors are re-
garded as sensitive factors in CAV calibration and in driving behaviour in general ([18,19]).
And, on the other hand, as previously shown in this section, the changes regarding the two
factors are affected by the reaction time combined value as well.

Regarding the sensitivity factor/clearance combinations (Figure 4h) where the default
value is 1.0 and 1.0 m, an interesting result is shown: the under/overestimation of the
leader deceleration, even with high percentages (30%), could be overcome by introducing
sufficiently long clearance values (1.5, 2.0 m). However, shorter clearances (0.5, 1.0 m)
would adversely affect traffic safety if combined with under/overestimation cases. The
outcomes obtained by [37] showed that under large clearance values for CAVs (1.5 m), if
the sensitivity factor is near the default value (i.e., lower underestimation/overestimation),
a value equal to 1.1 resulted in better traffic safety than larger values (1.2).

In the sensitivity factor/maximum acceleration analysis (Figure 4i), where the default
value was 1.0 and 3.0 m/s2, the greatest traffic safety improvement was registered when
the sensitivity factor was equal to 0.9 or 1.0, and the maximum acceleration shifted between
2 and 4 m/s2 (i.e., the combinations 0.9 and 2.0 m/s2, 0.9 and 3.0 m/s2, 0.9 and 4.0 m/s2,
1.0 and 2.0 m/s2, 1.0 and 3.0 m/s2, and 1.0 and 4.0 m/s2) without statistically significant
differences among the means. A sensitivity factor of 0.7 also presented good safety val-
ues. This indicates that a low underestimation of leader deceleration (0.7 and 0.9) can be
addressed by increasing the maximum acceleration. On the other hand, high underestima-
tion/overestimation (sensitivity factor = 0.5 or 1.3) combinations show the worst results
regardless of the maximum acceleration applied. Keeping the default value of maximum
acceleration, LEVITATE [25] tested the values of 0.5 and 0.7 of the sensitivity factor and it
was found in traffic safety evaluation [20] that the 0.7 and 3.0 m/s2 combination resulted in
a lower number of conflicts than the 0.5 and 3.0 m/s2 combination, which is in agreement
with the current results.

Again, from the sensitivity factor/normal deceleration analysis (Figure 4j), where the
default value is 1.0 and −4.0 m/s2, the high sensitivity to leader deceleration (0.9 or 1)
presents the minimum brought-out traffic conflicts without statistically significant dif-
ferences among their means, regardless of the normal deceleration on the road (2, 3, or
4 m/s2). The logical relationship between these two parameters is shown in Figure 4j. If
the deceleration in traffic flow is already high (4 m/s2) and greatly underestimated (0.5 and
0.7), the risk will be higher, and traffic safety will worsen significantly. On the other hand,
a small overestimation of leader deceleration could be overcome by higher deceleration
values (the 1.1 and 4 combination). However, if the overestimation of leader deceleration is
high (1.3), the negative effect on traffic safety will be significant, although the deceleration
value is high (the 1.3 and 4 combination).

Likewise, under the same normal deceleration value (for example −3.0 and −4.0 m/s2),
the 30% underestimation shows significantly better traffic safety than that of 50% underes-
timation, which agrees with [20,25].

5. Conclusions

Estimating the behaviour of connected and autonomous vehicles (CAVs) poses a
challenge due to the limited availability and testing of these technologies among the general
public. As transportation researchers delve deeper into the behaviour and operational
constraints of CAVs, the sensitivity analysis applied in this study provides a reference
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point for gaining a comprehensive understanding of the effects on driving behaviour. This
broader knowledge will offer insights to designers and decision makers, aiding in the
enhancement of CAV programming to optimize traffic safety on the roads.

Therefore, this study aims to identify the critical behavioural driving parameters from
a traffic safety perspective using simulation-based statistical analysis, employing both
one-way and two-way ANOVA. Initially, the analysis is performed for each parameter
individually and subsequently for different combinations of two parameters.

The one-at-a-time sensitivity analysis of the parameters highlighted the significant
impact of varying the clearance, reaction time, sensitivity factor, maximum acceleration,
and normal deceleration on traffic safety. The reaction time parameter showed a negative
linear correlation with traffic safety. In addition, clearance, maximum acceleration, and
normal deceleration at extremely low values have exhibited an extremely negative impact
on traffic safety. A reasonable value for the sensitivity factor is recommended to be close
to 1.0. Furthermore, traffic safety is not significantly influenced by the lateral movement
parameters of motorways during off-peak traffic conditions. Finally, the platoons with four
and six vehicles provided better traffic safety than those with eight or ten vehicles.

The main findings of the study are as follows: Maximum acceleration of 1 m/s2

combined with any other parameter resulted in the highest number of conflicts. Among the
maximum acceleration/normal deceleration combinations, those of high acceleration and
deceleration yielded the best safety results. However, the maximum acceleration was more
sensitive within these combinations. Traffic safety improved by decreasing the reaction
time and simultaneously increasing the maximum acceleration or normal deceleration.
To mitigate a minor underestimation (−10% to −30%) of the leader’s deceleration, it is
advisable to increase the maximum acceleration and clearance. However, in the case
of high underestimation/overestimation (−50% and +30%) of the leader deceleration,
increasing the maximum acceleration is not sufficient to mitigate the negative effect on
traffic safety, whereas a larger clearance achieves this outcome. In reaction time/sensitivity
factor combinations, traffic safety is more sensitive to reaction time. Moreover, regardless
of the fit of the assessment of the leading deceleration, very short reaction times (0.1–0.3 s)
resulted in the largest reduction of conflicts.

However, this study has certain limitations. To date, CAV behaviour calibration
has been limited to simulations and assumptions, and a calibration with real data is
recommended for future studies. Moreover, the sensitivity analysis conducted in this
study was a two-at-a-time analysis. Further optimisation of traffic safety using sensitivity
analyses of all calibrated parameters are suggested to obtain the optimal combined effect
for these parameters. The values used in the sensitivity analysis were the mean values of
the studied parameters with normal distributions. To provide a better understanding of
the effects of calibrating these parameters, sensitivity analyses with different parameter
distributions (e.g., lognormal) should be applied. Finally, this study analysed a motorway
segment under free-flow conditions. Analysing different road sections, road types, and
traffic conditions may yield different results.
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Appendix A

This appendix presents the results of the two-way ANOVA for the key parameters
discussed in Section 4.2. The tables below show the following for each two key parameters:
the mean of the number of conflicts resulting from fifteen microsimulation-run analyses at
each combined value, standard deviation, and homogeneous group identified in each two-
way ANOVA (in each table, the same letter is used to indicate a homogeneous group with
no statistically significant differences, and different letters denote statistically significant
differences (p < 0.05)). The shaded cells in the table indicate the default values in the
Aimsun driving model [38].

Table A1. Two-way ANOVA results of reaction time vs. clearance.

Clearance (m)
0.5 1.0 1.5 2.0

Mean St.d Group Mean St.d Group Mean St.d Group Mean St.d Group

R
ea

ct
io

n
ti

m
e

(s
)

0.1 108 22.3 e,g,h 50 10.3 a,b,c 35 7.3 a,b 25 7.1 a
0.2 155 33.4 i 73 10.8 b,c,d,e,f 46 6.7 a,b 37 7.2 a,b
0.3 226 27.9 j 87 10.7 c,d,e,f 44 5.5 a,b 40 4.9 a,b
0.4 248 30.7 j,k 99 12.8 d,e,f,g 50 6.2 a,b,c 46 5.6 a,b
0.5 282 48.6 k 105 18.1 d,e,g,h 49 8.3 a,b,c 45 7.6 a,b
0.6 384 66.2 l 137 20.1 g,h,i 68 11.6 b,c,d,f 62 10.5 a,b,c,f
0.7 475 55.6 m 164 19.2 i 101 17.5 d,e,g,h 99 16.9 d,e,f,g
0.8 497 95.2 m 218 24.8 j 153 13.3 i 141 10.5 h,i,

Note: The shaded cells in the table indicate the default values in the Aimsun driving model [38]. The same letter
refers to a homogeneous group (no statistically significant differences).

Table A2. Two-way ANOVA results of reaction time vs. maximum acceleration.

Max Acceleration (m/s2)
1 2 3 4

Mean St.d Group Mean St.d Group Mean St.d Group Mean St.d Group

R
ea

ct
io

n
ti

m
e

(s
)

0.1 422 36.0 j 177 11.1 d,e,f,g,h 50 10.3 a,b 47 6.3 a
0.2 289 33.5 i 173 28.5 d,e,f,g,h 73 10.8 a,b,c,d 60 8.9 b,c,d
0.3 624 64.6 j 129 15.1 a,b,c,d,e,f,g 86 10.7 a,b,c,d,e 85 12.9 a,b,c,d,e
0.4 757 100.3 K 142 25.2 a,b,c,d,e,f,g 99 12.8 a,b,c,d,e,f 85 10.1 a,b,c,d,e
0.5 774 130.8 k,l 155 22.2 b,c,d,e,f,g,h 105 18.1 a,b,c,d,e,f 90 22.3 a,b,c,d,e
0.6 848 342.2 k,l 167 20.5 d,e,f,g,h 137 20.2 a,b,c,d,e,f,g 101 17.3 a,b,c,d,e,f
0.7 868 107.6 l 190 34.7 e,f,g,h,i 164 19.2 c,d,e,f,g,h 150 21.7 a,b,c,d,e,f,g,h
0.8 992 113.1 l 250 28.6 h,i 218 24.8 g,h,i 200 22.8 f,g,h,i,

Note: The shaded cells in the table indicate the default values in the Aimsun driving model [38]. The same letter
refers to a homogeneous group (no statistically significant differences).



Sustainability 2023, 15, 9990 18 of 21

Table A3. Two-way ANOVA results of reaction time vs. normal deceleration.

Normal Deceleration (m/s2)
2 3 4

Mean St.d Group Mean St.d Group Mean St.d Group

R
ea

ct
io

n
ti

m
e

(s
)

0.1 145 30.0 c,d,e 86 17.9 a,b 50 10.3 a
0.2 167 24.7 e,f,g 110 16.2 a,b,c 73 10.8 a,b
0.3 323 40.0 J 150 18.6 d,e,f 86 10.7 a,b
0.4 382 83.4 k 182 39.7 e,f,g,h 99 12.8 a,b,c
0.5 410 70.7 k 182 31.3 e,f,g,h 105 18.1 b,c,d
0.6 370 63.3 j,k 197 33.7 f,g,h 137 20.2 c,d,e
0.7 460 53.9 l 205 24.0 g,h 164 19.2 e,f,g
0.8 489 55.7 l 272 31.0 i 218 24.8 h

Note: The shaded cells in the table indicate the default values in the Aimsun driving model [38]. The same letter
refers to a homogeneous group (no statistically significant differences).

Table A4. Two-way ANOVA results of reaction time vs. sensitivity factor.

Sensitivity Factor
0.5 0.7 0.9 1.0 1.1 1.3

Mean St.d Group Mean St.d Group Mean St.d Group Mean St.d Group Mean St.d Group Mean St.d Group

R
ea

ct
io

n
ti

m
e

(s
)

0.1 36 9.7 a 36 12.2 a 38 11.2 a 50 10.3 a,b 64 18.2 a,b,c 202 59.1 c,d,e,f,g,h,i
0.2 57 15.5 a,b 54 18.4 a,b 57 16.8 a,b 73 10.8 a,b,c,d 93 13.7 a,b,c,d,e,f,g 279 41.3 h,I,j,k
0.3 112 7.6 a,b,c,d,e,f,g 84 16.1 a,b,c,d,e,f 64 9.8 a,b,c 86 10.7 a,b,c,d,e,f 223 23.7 f,g,h,i,j 355 44.6 j,k,l
0.4 146 9.9 a,b,c,d,e,f,g,h 76 19.7 a,b,c,d 76 11.8 a,b,c,d,e 99 12.8 a,b,c,d,e,f,g 309 57.0 i,j,k 719 274 p,q

0.5 183 5.9 b,c,d,e,f,g,
h,i 68 10.6 a,b,c 63 16.4 a,b,c 105 18.1 a,b,c,d,e,f,g 386 71.2 k,l 846 322.3 m,q

0.6 856 37.8 m,q 418 28.4 k,l,n 144 10.9 a,b,c,d,e,f,g,h 137 20.2 a,b,c,d,e,f,g 686 133.3 o,p 1045 141.5 r,s
0.7 984 43.5 m,r 453 39.8 l,n 235 29.0 g,h,i,j 574 19.2 a,b,c,d,e,f,g,h 915 177.7 m,r 1149 155.5 s
0.8 1299 57.5 t 649 44.2 o,p 211 16.0 d,e,f,g, h,i 218 24.8 e,f,g, h,I,j 546 328.0 n,o 1516 205.3 t

Note: The shaded cells in the table indicate the default values in the Aimsun driving model [38]. The same letter
refers to a homogeneous group (no statistically significant differences).

Table A5. Two-way ANOVA results of clearance vs. maximum acceleration.

Max Acceleration (m/s2)
1 2 3 4

Mean St.d Group Mean St.d Group Mean St.d Group Mean St.d Group

C
le

ar
an

ce
(m

)

0.5 3964 595.7 d 379 59.9 c 346 49.1 b,c 251 31.9 a,b,c
1 1612 313.5 d 237 32.9 a,b,c 218 24.8 a,b,c 199 28.3 a,b,c

1.5 284 59.7 a,b,c 148 16.5 a,b 153 13.3 a,b 168 16.2 a,b,c
2 114 20.2 a 131 38.2 a,b 141 10.5 a,b 183 22.3 a,b,c

Note: The shaded cells in the table indicate the default values in the Aimsun driving model [38]. The same letter
refers to a homogeneous group (no statistically significant differences).

Table A6. Two-way ANOVA results of clearance vs. normal deceleration.

Normal Deceleration (m/s2)
2 3 4

Mean St.d Group Mean St.d Group Mean St.d Group

C
le

ar
an

ce
(m

)

0.5 616 193.9 f 332 40.4 d,e 346 49.1 e
1 330 96.1 d,e 214 32.5 a,b,c 218 24.8 a,b,c

1.5 248 48.7 c,d 190 25.8 a,b,c 153 13.3 a,b
2 232 61.6 b,c 146 10.4 a 141 10.5 a

Note: The shaded cells in the table indicate the default values in the Aimsun driving model [38]. The same letter
refers to a homogeneous group (no statistically significant differences).
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Table A7. Two-way ANOVA results of maximum acceleration vs. normal deceleration.

Normal Deceleration (m/s2)
2 3 4

Mean St.d Group Mean St.d Group Mean St.d Group

M
ax

ac
ce

le
ra

ti
on

(m
/s

2 )

1 4175 620.5 b 2384 644.9 b 1612 313.5 b
2 1033 577.2 b 334 67.8 a 237 32.9 a
3 330 96.0 a 214 32.5 a 218 24.8 a
4 399 106.1 a 269 44.6 a 199 28.3 a

Note: The shaded cells in the table indicate the default values in the Aimsun driving model [38]. The same letter
refers to a homogeneous group (no statistically significant differences).

Table A8. Two-way ANOVA results of sensitivity factor vs clearance.

Clearance (m)
0.5 1.0 1.5 2.0

Mean St.d Group Mean St.d Group Mean St.d Group Mean St.d Group

Se
ns

it
iv

it
y

fa
ct

or 0.5 1745 56.9 c 1299 57.4 b,c 491 15.8 a 404 37.3 a
0.7 511 34.9 a 694 44.2 a,b 279 14.5 a 302 85.9 a
0.9 257 23.1 a 211 16.1 a 185 19.3 a 193 38.2 a
1.0 497 95.2 a 218 24.8 a 153 13.3 a 151 17.7 a
1.1 2582 2296 d 546 328.1 a 222 21.6 a 177 39.1 a
1.3 6972 1264 e 1516 205.3 c 179 7.9 a 181 22.6 a

Note: The shaded cells in the table indicate the default values in the Aimsun driving model [38]. The same letter
refers to a homogeneous group (no statistically significant differences).

Table A9. Two-way ANOVA results of sensitivity factor vs. maximum acceleration.

Max Acceleration (m/s2)
1 2 3 4

Mean St.d Group Mean St.d Group Mean St.d Group Mean St.d Group

Se
ns

it
iv

it
y

fa
ct

or 0.5 1626 99.7 g,h 1286 86.8 e,f,g 1299 57.5 e,f,g 1250 51.5 d,e,f
0.7 644 128.3 b,c 351 43.6 a,b 649 44.2 d,c 339 22.0 a,b
0.9 1488 755.7 e,f,g 203 16.1 a 211 16.1 a 184 18.3 a
1.0 1612 313.5 f,g,h 237 32.9 a 218 24.8 a 199 28.3 a
1.1 2456 547.4 i 1133 681.9 d,e 546 328.0 a,b,c 546 328.0 a,b,c
1.3 1368 273.4 e,f,g 1954 206.3 h 1516 205.3 f,g 885 224.1 c,d

Note: The shaded cells in the table indicate the default values in the Aimsun driving model [38]. The same letter
refers to a homogeneous group (no statistically significant differences).

Table A10. Two-way ANOVA results of sensitivity factor vs. normal deceleration.

Normal Deceleration (m/s2)
2 3 4

Mean St.d Group Mean St.d Group Mean St.d Group

Se
ns

it
iv

it
y

fa
ct

or 0.5 796 47.2 d,e 861 79.7 e 1299 57.5 f
0.7 379 35.5 a,b 378 26.5 a,b 649 44.2 c,d
0.9 264 26.9 a 235 32.7 a 211 16.1 a
1.0 330 96.0 a 214 32.5 a 218 24.8 a
1.1 1422 213.7 f,g 952 298.3 e 546 328.0 b,c
1.3 1581 170.7 g 1324 95.1 f 1516 205.3 g

Note: The shaded cells in the table indicate the default values in the Aimsun driving model [38]. The same letter
refers to a homogeneous group (no statistically significant differences).
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