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Abstract: In the framework of massive sensing and smart sustainable cities, this work presents an
urban distributed acoustic sensing testbed in the vicinity of the School of Technology and Telecommu-
nication Engineering of the University of Granada, Spain. After positioning the sensing technology
and the state of the art of similar existing approaches, the results of the monitoring experiment are
described. Details of the sensing scenario, basic types of events automatically distinguishable, initial
noise removal actions and frequency and signal complexity analysis are provided. The experiment,
used as a proof-of-concept, shows the enormous potential of the sensing technology to generate
data-driven urban mobility models. In order to support this fact, examples of preliminary density
of traffic analysis and average speed calculation for buses, cars and pedestrians in the testbed’s
neighborhood are exposed, together with the accidental presence of a local earthquake. Challenges,
benefits and future research directions of this sensing technology are pointed out.

Keywords: distributed acoustic sensing; urban mobility patterns; optical fiber; smart cities; massive
sensing

1. Introduction

The UN’s Sustainable Development Goals Report for 2022 [1] includes the analysis
of Goal 11 devoted to sustainable cities and communities stating that 99% of world’s
urban population breathe polluted air and, depending on the region of the world, few city
dwellers have convenient access to public transportation. In addition, often public spaces
in congested urban areas play a vital role in social and economic life, but are not widely
accessible. The first step to improve actual conditions in cities is learning realistic models
of their present mobility patterns usable to monitor urban settlements, implement smart
traffic management tools, and create sustainable smart mobility plans.

The paradigms of smart cities [2–4] and multimodal remote sensing [5,6] provide very
useful tools to obtain data transformable into knowledge, to face the challenges stated.
Massive amounts of data with very diverse formats and origins are analyzed using auto-
matic signal processing and Big Data approaches combined to understand what happens
and provide directions of change and improvement. Regarding the analysis of urban traffic,
approaches from the massive data retrieval and pattern extraction based on artificial intelli-
gence tools [7,8], traffic prediction models [9,10], to digital-twin based strategies [11,12] are
oriented to modify urban traffic once analyzed.

There is a wide range of sensing technologies that contribute to the monitoring of
urban traffic like, e.g., unmanned aerial vehicles [13], crowd-sensing of users’ mobile
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phones [14], traffic cameras [15], vehicles GPS [16], or satellite images [17]. The Internet of
Vehicles (IoV) approach [18] provides vehicles with smart devices such as wireless sensors,
onboard computers, GPS antennas, radar, etc., to collect and process large amounts of data
while enabling information interaction between vehicles.

In this multi-modal urban sensing scenario, the usage of communication optical fibers
as sensors to monitor mobility patterns has gained great interest. Distributed acoustic sens-
ing [19,20] is an emergent sensing technology based on the Rayleigh scattering phenomenon
occurring in an optical fiber when an interrogation light-wave faces its inhomogeneities.
Depending on the fiber’s refraction index, part of the incoming light-wave is backscattered
towards the interrogator and can be analyzed. If a local perturbation occurs along the
fiber (e.g., vibrations or changes in the fiber’s strain or temperature produced by moving
stimuli), its refraction index will change locally providing a proportional change in the
properties of the backscattered light-wave coming from the spatial point where the per-
turbation occurred. This capability of demodulating the magnitude and location of the
stimuli affecting the fiber, converts fibers into arrays of sensors adopting the concept of
distributed sensing versus traditional point sensors. Vibrations and strain or temperature
perturbations in the bandwidth of acoustic signals (up to the MHz regime) occurring along
the fiber are registered.

1.1. Distributed Acoustic Sensing and Urban Traffic Monitoring Overview

Perturbations along the fiber modulate the backscattered light-wave that travels back
to the interrogator. Once received, the stimuli demodulation can be performed in the
time domain, receiving the name of Optical Time-Domain Reflectometry (OTDR). Con-
ventional OTDR has been widely used to monitor static processes like fiber attenuation
for fault detection in telecommunication cables. However, it is not suitable to detect local
dynamic changes in the fiber refraction index, as expected in the distributed acoustic sens-
ing. For such a purpose, several approximations based on the analysis of the phase of the
backscattered light-wave have been proposed [21]. Coherent phase-OTDR [22,23] is based on
the complete phase recovery of the interferometry signal provided by optical mixing of the
backscattered and reference lights. It provides accurate dynamic measurements of strain at
the cost of high system complexity (requisite of laser coherence) and contestable long-term
stability. Phase-sensitive OTDR [24] is a simpler direct detection approach based only on
intensity variations of the interferometry signal, opposite to the phase recovery needed in
the coherent detection formulation. As a drawback, intensity variations of the interferom-
etry signal do not show linear dependence with the perturbation applied. Perturbations
are detected, but their quantification can only be achieved through a frequency sweep of
consecutive probe pulses representing an increase of the measurement time and complexity.
Chirped-pulse phase-sensitive OTDR (CP-ΦOTDR), mathematically formalized and demon-
strated in 2016 [21,25], preserves the direct detection advantages of Phase-sensitive OTDR,
avoiding the time-consuming frequency sweep needed. Consecutive interrogations are
substituted by a single probe pulse with a linear chirp. If the chirp-induced spectral content
is much larger than the pulse transform-limited bandwidth, the linear relationship between
the time-domain signal and its spectrum allows for the mapping of perturbation-induced
spectral shifts in the trace into local temporal trace delays. Then, the empirical mapping
of trace delays and ongoing changes of its group refractive index [26] serves to quantify
dynamic local perturbations along the fiber expected in distributed acoustic sensing.

The sensing possibilities of the distributed acoustic sensing (DAS) technology are used
in a wide range of application fields like active seismology and vertical seismic profiles gen-
eration [27], gas or petroleum deposits detection [28], ambient noise interferometries of the
Earth’s surface [29], passive seismic and volcano-seismic monitoring [30–32], security and
perimeters surveillance [33], or big infrastructures health monitoring [34], among others.

In the scope of urban traffic monitoring, the usage of DAS has experienced an im-
portant growth in the last years. Its longer monitoring range compared to the spatial
sparseness of point sensors due to their higher costs of installation and maintenance, its
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higher sampling rate compared to GPS or mobile phones, and its independence of weather
conditions together with its preservation of anonymity, have made it an attractive option.
Table 1 shows the most recent representative approaches of DAS for monitoring moving
vehicles and pedestrians. Detection, counting, measuring speed and other traffic flow
parameters are common objectives of all works. Signal processing is a key challenge for
several reasons: the backscattered ray-trace has low SNR and many events are spatially and
temporally overlapped, there are many sources of noise present in the sensing scenarios,
and the sensing capacity is very much dependent on the characteristic of the materials
solidary to the fiber among others. Frequency analysis and denoising strategies are com-
mon approaches. Supervised/unsupervised machine learning approximations are being
proposed in the last few years. A new approach will be introduced in our algorithm in
order to improve the performance of the system.

Table 1. Traffic monitoring through DAS approaches.

Reference Objective Signal Processing Sensing Scenario

patent, 2016, [35]
vehicles detection, traffic

flow, speed
measurements

[-] [-]

journal, 2018, [36]
vehicle detection and

counting, speed
estimation

wavelet-threshold
denoising and dual
threshold detection.

200 m. road in the
NanShan Iron mine

(China) during
seismic trial

congress, 2019, [37]

average speed, flow rate,
queue detection,

congestion detection,
journey times, traffic

count

[-] [-]

journal, 2020, [38] signatures of floats,
bands, motorcycles

detrending, filtering,
noise removal,

frequency analysis

2.5 km of fiber
underneath the Rose

Parade route,
Pasadena(USA)

congress, 2020, [39] detect pedestrian
footstep

convolutional neural
network

5km Pennsylvania State
University campus

journal, 2020, [40]
vehicle detection and
classification, vehicle

count, speed
measurement

wavelet denoising,
dual-threshold detection,

feature extraction,
vehicle classification

with SVM

320 m. campus road of
Beijing Jiaotong

University (China)

journal, 2020, [41]
vehicle detection,

counting and
characterization

frequency analysis,
template matching

4 km. Telecom. cable
running through Palo
Alto, CA, leased from
Stanford University IT

Services (USA)

journal, 2020, [42]
human locomotion
detection (walking,

running, different shoes)

frequency analysis,
shallow and deep
Neural Networks

15-m-long hallway.

journal, 2021, [43] vehicle counting, traffic
volume, average speed

detrending, filtering,
noise removal,

frequency analysis

37 km.
Caltech-Pasadena City

DAS array (USA).

conference, 2021, [44]

estimation of individual
simultaneous vehicles

velocity in multiple
lane roads

frequency domain
MUSIC beamforming

commercial telecom.
cable parallel to a main
road in Toulon(France).

journal, 2022, [45] speed and volume
estimate of traffic flow

frequency analysis, F-K
filtering for noise

removal

50 km. of telecom. cable
inside the city of

Hangzhou (China).

journal, 2022, [46]

counting and velocity
estimation for individual
vehicles in challenging

scenarios without
spatial/temporal

separation

self-supervised
deconvolution
autoencoder

14 km. commercial
telecomm. along a main

road connecting
Alba-la-Romaine,

Saint-Thomé,
and Valvignères

(France).
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1.2. Contributions of This Work

In the general technology framework presented, this work describes a distributed
acoustic sensing experiment deployed in the vicinity of the School of Techonology and
Telecommunication Engineering of the University of Granada, Spain. For several months
the mobility activity around the building has been recorded to explore the capacities of
DAS to extract urban mobility patterns. The contributions we present and the rest of the
work are organized as follows:

i. An implementation of the DAS technology in an urban environment with a wide vari-
ety of dynamic mobility patterns is presented. Section 2.1 describes the testbed used.

ii. The signal processing needed, the different types of mobile elements sensed and
feature extraction possibilities are exposed in Sections 2.2–2.4, respectively.

iii. Example applications derived from the processing of information obtained are shown
in Section 3 followed by a reflection about this sensing approach and its possibilities
and applications in Section 4.

2. Materials and Methods

The experiment described in this section lasted from the September 2022 until the
20 January 2023. Its main objective has been exploring the technology and obtaining
preliminary strategy conclusions applicable to further sensing campaigns.

2.1. Testbed Description and Calibration Process

A dark fiber double-loop was buried for the specific sensing objective around the
School of Technology and Telecommunication Engineering of the University of Granada,
Spain (ETSIIT). A High-Fidelity Distributed Acoustic Sensor based on the CP-ΦOTDR
technology ([21]) manufactured by the Spanish company Aragón PhotonicsTM has been
used. The sensor has a 1 n strain sensitivity, 6 m minimum spatial resolution (gauge length)
and up to 70 km reach. The setup provides strain-type data on near a kilometer of fiber,
with 10 m spatial sampling and 250 Hz temporal sampling.

Figure 1 shows the triangle-shaped outer fiber loop comprising 2 streets of 140 and
170 m of length (red and blue double arrows), a concrete wall of 140 m of length (yellow
double arrow), and an internal loop of 220 m (green oval arrow) surrounding a garden and
two prefabricated lecture rooms. The fiber is always buried except for concrete wall section
on which the fiber is uncovered, solidary to the wall for research purposes. Sampling
points (P1-P32 and M1-M20) are depicted as a result of a calibration process carried our
before monitoring activities. The sensor registers strain variations in the fiber resulting
from stimuli like pedestrians, public or private buses, cars, bicycles, etc. These data are
pre-processed for noise removal (see Section 2.2). Monitored strain registers can be directly
processed or converted into 2D energy maps, commonly known as energy waterfalls, used
as input to potential automatic labeling or classification systems.

Figure 2 shows the energy waterfall corresponding to the sensing circuit depicted in
Figure 1 for 25 min. The X-axis represents time, while the Y-axis represents the spatial
points of the extended double loop of the fiber. The color scale represents the strain’s
energy on each spatial point along time. The colored double arrows on the sides of the
waterfall indicate the portions of the school perimeter corresponding to each part of the
Y-axis in the waterfall. It is notable that the internal loop sensing the inside garden suffers
a kind of mechanical superconductivity. High energy appears simultaneously on many
spatial points, connected to the existence of a mobile event in other region of the waterfall.
This might be due to the existence of a deep concrete platform on top of which the garden
and prefabricated lecture rooms were located. This simultaneous energy transmission
becomes an specially challenging overlapping noise for sensing points M1-M20 . Energy
footprints related to events occurring in the inside garden are overlapped with useless
mechanical conduction footprints related to activity in other areas. The criterion used to
distinguish real mobility activity in the area from mechanical energy superconductivity
is that while the first one will present a certain small slope (space will be gone through in
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a certain time), the former one will occur simultaneously in spatial positions separated
from each other (that is, footprints would have somewhat infinite slope). Automatic event
detection approaches applied to the registers for counting applications (see Section 3) will
face this difficulty with the help of template matching strategies that favor real plausible
slope values.

Figure 1. Google MapTM view of sensing testbed installed in the Telecommunication and Computer
Science Engineering School of the University of Granada, Spain. Sensing points calibrated in the fiber
with spacial resolution of 10 m are depicted. Red markpoints correspond to the internal fiber ring,
while blue markpoints correspond to the external fiber ring. Four sensing areas are differentiated:
Periodista Rafael Gómez Mont street (red arrows), Periodista Daniel Saucedo Aranda street (blue
arrows), internal gardens of the School (green ellipsoid) and concrete wall in a side of the School
perimeter (yellow arrows). Sensing points P1 and P10 are the respective entrances/exits of a surface
and underground parking.

Figure 2. Example of energy waterfall of 25 min for the fiber deployment described in Figure 1.
All sensing points are depicted in the Y-axis, with the side color arrows indicating the spatial area
corresponding to each segment of the Y-axis.

2.2. Signal Processing

DAS technology has several sources of noise due to optical noises and ground-to-fiber
transfer effects, dependent on the fiber and characteristics and coupling [47]. In addition,
backscattered traces are low power signals. For these reasons, denoising approaches are
important to achieve quality SNRs. Added to these challenges, the occurrence of time
and space overlapped stimuli is other source of noise that can mask the mobile events
searched for. Our work presents a preliminary common denoising strategy devoted to
the acquisition of a baseline database of mobility patterns usable in further applications.
Approaches based on machine learning like [48] are considered for future implementations.
Figure 3 shows the four denoising steps followed proposed by the sensor manufacturer
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Aragon Photonics: signal thresholding is carried out to compensate for spurious strain
peaks based on the study of cumulative values. Then, signal variations are compared to
those of a reference portion of the fiber without stimuli. For this purpose, the output of two
consecutive median and mean filters applied to the reference strain is subtracted, obtaining
the strain variation ∆ε signal used in the analysis. Finally, using an iterative process on
both time and space dimension, temporal and spatial discontinuities are smoothed, again
making use of a median filter.

Figure 3. Steps for baseline noise reduction in strain registers.

Once the denoising step has been completed, a frequency analysis is performed. When
a moving event approaches a given sensing point, there are two simultaneous effects
taking place [43,46]. First there is a low-frequency (<3 Hz.) quasi-static deformation of
the subsurface due its weight pressing down on the road/ground. Such deformation is
transferred to the fiber leading to a strain of measurable amplitude, traveling at the speed
of the mobile event and more easily localized in time. Secondly, the interaction between the
vehicle tires/pedestrian and the road/ground generates high frequency (>3 Hz.) surface
waves that travel away from the source point at seismic speeds usable in interferometry
analysis. We have performed the reported two bands analysis during the experiments. Its
results will be shown in Sections 2.3 and 2.4.

2.3. Types of Events Registered

The School of Technology and Telecommunication Engineering is located in the north-
west of the city of Granada, relatively close a communication hub connecting the inner
city to a several of highways around it. It is inserted in the middle of a neighborhood with
buildings of homes. Public urban bus nº 9 goes through street Periodista Rafael Gómez
Montero (see Figure 1). Mobility patterns of workers and students relating to the School
have been continuously registered during the experiment together with those of the people
living in the area or traveling through it. There are footprints of different types of vehicles
interacting among them or with pedestrians often also monitored entering or exiting bus
nº 9. Under a first approach, we have distinguished three basic types of events: buses,
cars and pedestrians, with the objective of performing automatic detection and counting
and creating a master database with labeled examples. Such a baseline database will
permit further machine learning probabilistic approaches to find data classifiable as similar
or different types of events, mixtures of them, out-of-distribution events, etc. Figure 4
shows three example representations of the footprint registered for a bus (Figure 4a), a car
(Figure 4b) and a pedestrian (Figure 4c) moving parallel to the fiber in the testbed deployed.
Their waterfalls, corresponding strain variation matrices along time and space and the
spatially-averaged frequency spectrograms for the same footprints are depicted. Figures
show that buses have higher energy due their higher weight producing higher strain vari-
ations. A basic speed calculation based on the slope of the footprint (space divided by
time) shows that, as expected, the bus and the car have higher speeds than the pedestrian.
Spatial-average power spectral densities suggest different frequency contents for the three
types events that are further analyzed.
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(a)

(b)

(c)

Figure 4. Example visualizations of the canonic events detected in the monitoring testbed (bus, car
and pedestrian). (a) Energy waterfall, strain variation and spatial-average power spectral density
for a canonic bus example. (b) Energy waterfall, strain variation and spatial-average power spectral
density for a canonic car example. (c) Energy waterfall, strain variation and spatial-average power
spectral density for a canonic pedestrian example.

Figure 5 depicts the distribution of the frequencies with maximum energy for a small
database of buses, cars and pedestrians registered in the testbed. The analysis is performed
for the whole band of frequencies involved in the activity (from 0.1 Hz to 30 Hz) in the
left column subfigure, for the quasi-static band of activity (band 0.1–5 Hz) in the central
subfigure, and the high-frequency band (5 to 20 Hz) originated by the surface waves.
Buses show a higher content of frequencies around 10 Hz that are not that present in
cars nor pedestrians which generate very little surface waves. The low frequency band
(center subfigure) often used because its simpler analysis and time location, might not
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be the optimal band when distinguishing different types of events. Analyzing the whole
band provides more discriminative differences between events at the price of introducing
some noise.

Figure 5. Histograms of the frequency with highest energy for the three baseline events analyzed.
Three frequency bands are studied: complete band from 0.1 Hz to 30 Hz (left), quasi-static band from
0.1 to 5 Hz (center) and high frequency band 5Hz to 20 Hz (right).

2.4. Characterization of the Events

There are several approximations to study the strain-variation time series registered.
A possible analysis might include feature extraction, combination and measurement of their
discriminative potential, and their contribution to the interpretability of the data. Otherwise,
in the framework of Information Theory, many approaches focus on the complexity of the
time series searching for information contents from a mathematical viewpoint without
semantic analysis. In this framework, complexity is a magnitude widely used to quantify
the intricacy of a time series allowing choice of the forecasting methods to be applied [49].
The higher the complexity, the more information provided by the time series. That is,
complexity is low in regular time series and grows in chaotic ones. There are several
methods to measure complexity, Shannon Entropy [50] being a very commonly used
one. In recent literature, several other measures have been developed to quantify the
changes in complexity for biological signals [51] like electroencephalograms (EEG) [52],
electrocardiograms (ECG) [53,54] or magnetoencephalograms (MEG) [55]. Biological time
series of a healthy person are more regular than those of a diseased person that become
more complex. The same approximation is used in the fault diagnosis in machinery [56] or
in financial time series analysis [57].

In the context of our proposal and due the nature of the signals, events generating
strain variations in the fiber’s backscattered light (cars, buses or pedestrians passing by)
will produce changes in the complexity measures. Based on this hypothesis, approximate
entropy [58] (see Figure 6) and Hjorth parameters [59] (see Figures 7 and 8) are analyzed
by searching for their potential for mobile events discrimination and characterization.
The well-known Hjorth parameters of activity, mobility and complexity, transversely used
in all mentioned disciplines, are added to amplify the statistical information in the analysis.

Approximate entropy is calculated in the time domain. It measures the matches of a
pattern along the signal, calculating then the logarithmic frequency of repeatable patterns.
Time series containing many repetitive patterns have relatively small approximate entropy
values (the time series is more regular), while more chaotic or complex processes show
higher values. Hjorth parameters, although calculated in the time domain, also provide
meaning in the frequency domain. Activity gives a measure of the squared standard
deviation of the amplitude of the signal, being high if higher frequencies are present;
mobility is obtained as the square root of variance of the first derivative of the signal
divided by its variance. Complexity, defined as the ratio between the mobility of the first
derivative and the mobility of the signal, indicates how the shape of a signal is similar to
a pure sine wave providing an estimation of its bandwidth. Adapting window sizes to
frequency bands and possible range of events duration, complexity measures have been
analyzed for two frequency bands (0.1–2 Hz and 5–20 Hz) following the hypothesis of
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the different activity and events discriminability pointed out in Section 2.2. The result
of the analysis is shown for the same strain variation segment in Figures 6–8. Several
events detected have been indicated with different color arrows, with gray, orange and red
indicating the corresponding presence of a bus, a car or a pedestrian.

Results show the interesting potential of approximate entropy and Hjorth activity to
highlight the presence of a mobile event, removing noise in the strain variation matrices to
perform more accurate event detection. Exact event timing, important for applications like
event’s velocity calculation, can be improved through these parameters. Hjorth’s mobility
and complexity show a certain presence especially in the band 0.1–2 Hz that is under
analysis for a better usage.

(a)

(b)
Figure 6. Events detected in a segment of DAS register pointed at with red, yellow and gray arrows
indicating the presence of pedestrian, car or bus, respectively. (a) shows strain variations and
approximate entropy in the band 0.1–2 Hz. (b) shows strain variations and approximate entropy in
the band from 5–20 Hz.
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Figure 7. Events detected in a segment of DAS register pointed at with red, yellow and gray arrows
indicating the presence of pedestrian, car or bus, respectively. Strain-variation file segment processed
in the band 0.1–2 Hz. Corresponding Hjorth parameters.

Figure 8. Events detected in a segment of DAS register pointed at with red, yellow and gray arrows
indicating the presence of pedestrian, car or bus, respectively. Strain-variation file segment processed
in the band 5–20 Hz. Corresponding Hjorth parameters.
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3. Results

This section points out potential applications of the DAS monitoring to extract relevant
information for data-driven mobility models. Its objective is to show the flavors of what
can be accomplished with a deeper analysis of the data obtained. Data monitored in the
period from December 2022 to January 2023 have been analyzed and used as example.

3.1. Example of Mobility Changes on New Year’s Eve

Continuous monitoring was carried during the evening and night of the 31st of
December on New Years eve. Figure A1 in Appendix A shows four example waterfalls
of one hour of duration at different times (31 December at 4:00 pm, 9:00 pm and 11:00
pm, and 1 January at 00:00 am). It can be seen that different traffic densities are observed
at different times of the day. The last two subfigures show anthropologically interesting
information about human behaviors on New Year’s Eve. Urban traffic is especially low from
the 31 December at 11:00 pm until approximately 1 January at 00:30. Then, many cars start
moving during the whole night. This information is highly compatible with the Spanish
tradition of welcoming the new year inside homes with family or friends (eating 12 grapes
together at exactly 1 January at 00:00) and going out to celebrate afterwards. Figure 9
provides the automatic counting of buses, cars and pedestrians during the mentioned 24 h.
The counting has been performed using an image processing multiple template-matching
approach over the waterfall images [60]. It is remarkable that the number of cars in the one
hour gap starting at 00:58 am is higher than any other time of the day.

Figure 9. Automatic counting of the number of cars, pedestrians and buses carried out during the
monitoring example.

3.2. Example of Mobility during a Work Day

Figure 10 provides the same automatic counting of mobile events performed during
a work day (Figure 10, left). Differences compared to the patterns found in New Year’s
Eve (Section 3.1) are very clear. Traffic peaks are detected from 9:03 to 10:03 am and in
the afternoon/evening when the density of pedestrians is also higher. It is remarkable the
lower amount of buses and cars in the interval 14:00–15:00. The right subfigure depicts
the time interval between buses registered during the same day. Discarding the sporadic
presence of private buses that travel through Rafael Gomez Montero street, the figure
mainly measures the frequency of public bus nº 9 that commutes this neighborhood to
the center of Granada. The approximately constant rhythm of the bus is notable, with
slightly higher intervals between buses in the hours with higher traffic density. A deeper
analysis could be carried out, correlating these results with the traffic jam hours in other
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parts of the city. Figure 11 shows a preliminary speed analysis for the three types of
events during the monitoring period. Average speeds with their standard deviations are
plotted together with the number of events averaged. Speeds were calculated based on
the waterfall event detection approach. Further improvements for more exact calculations
based on characterization parameters described in Section 2.4 are under analysis.

Figure 10. Example hours of traffic during the monitoring example carried out January 9th 2023
from 09/01/2023 00:03:08 to 09/01/2023 23:03. Automatic counting of buses, pedestians and cars
(left subfigure). Average time interval between buses in minutes (right subfigure).

Figure 11. Average speed for the 3 types of events detected during the workday monitoring period.

3.3. Monitoring Access to the Schools’s Surface Parking

The left-side subfigure in Figure 12 shows the amplified detail of the School of Engi-
neering surface parking depicted in Figure 1. The right-side subfigure shows the strain
variation registered at the fiber sensing positions P3, P2, P1, M20, M21, M19, M9 and M8,
monitoring the parking and its entrance. The global activation of all sensing points at ap-
proximately 460 seconds is due to the presence of an urban bus passing by. Its high weight
produces mechanical vibrations monitored by all the sensors under analysis. Entering the
parking can only be occur following one of the two routes painted on blue in the left side
of Figure 12, and vehicles leaving the parking may only follow the directions marked in
red. Strain variations due to the presence of entering or exiting vehicles will be activated at
fiber positions M10, M9, and M8 if the vehicle enters the parking. If the vehicle leaves the
parking towards the left, fiber positions P1, P2 and P3 will be sequentially activated. That
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is what can be seen in the left-side subfigure during the seconds 100, 200 and 300, marked
with red arrows.

Figure 12. On the left, map and fiber position of outdoor parking; and on the right, acoustic energy
detected at the fiber positions in the map along 600 s: vehicles entering (red arrows) and leaving (blue
arrow) the park lot.

Another vehicle leaves the parking around second 400 (see red arrow marked), being
fiber positions P1, P2 and P3 inactive. It therefore can be concluded that the vehicle moves
towards the right.

Finally, a vehicle entering the parking can be detected at second 650 (marked by a blue
arrow). Positions P3, P2, and P1 are sequentially activated, and then positions inside the
car park, following the sequence M10, M9, and M8.

3.4. Urban Seismicity Monitoring

During the New Year’s Eve monitoring experiment, Figure A2 shows the energy
footprint of a local earthquake with an epicenter in the region of Almería (with a distance
of around 100 km to the testbed) registered the 31 December 2023 at 08:05:54 am local
time, with depth = 0 km and magnitude 4 Mw [61]. Figure 13 shows how simultaneous
and energetic strain variations are present in all spatial points with different magnitudes
depending on the transmission properties of each ground portion. The concrete wall located
approximately in the middle of the waterfall (see Figure 2) cannot register the earthquake
being the wall somehow unlinked from the Earth’s movement. Figure 14 depicts the spatial-
average frequency spectrogram during the earthquake, showing the well-known P-wave
first arrival with higher frequency contents generated by a fracture source mechanism,
followed by an S-wave with lower frequency contents extended longer in time with energy
exponential decay [62].

Figure 13. Strain variation of the earthquake registered the 31 December 2023.
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Figure 14. Spatial-average power spectral density for the earthquake observed.

Time-domain analysis of seismic P and S waves using a classic multi-component point
geophone would provide separate vertical and horizontal components related to P and S
phases, permitting polarization and shear waves analysis. Due to the single-component
nature of the DAS array and its measure of strain-rate rather than particle motion or
acceleration, it produces a single measurement of the changes in the fiber’s group refractive
index originated by the projection of the three components along the fiber. Given its interest
for the geophysical community, several approaches are under analysis at the moment to
overcome this limitation like the usage of helically wound fibers to measure strains in
three directions [63], usage of azimuthally varying 2D arrays for horizontal components
sensing [64] and machine learning complementary analysis [65].

4. Discussion

The work presents an experimental testbed for distributed acoustic sensing in urban
environments, devoted to the analysis of the mobility patterns in the surroundings of the
School of Technology and Telecommunication Engineering of the University of Granada.
Strain variations registered by the sensor are processed for noise reduction and filtered
in convenient frequency bands, identifying three basic types of events (cars, buses and
pedestrians) to initiate a preliminary automatic counting process. Hjorth parameters
and approximate entropy are explored as possible processing approaches to improve
automatic events detection and classification based on template matching. Several example
applications of the technology are shown. Time dependent density of traffic, intervals of
public bus arrivals, speed of pedestrian vehicles split into classes (to start with high/low
weight vehicles) are monitorable without interruption anywhere in the city having an
optical fiber installed. In addition, urban seismicity is also recordable with the subsequent
interest for urban locations with risk of seismic hazards. The benefits of having data-
driven mobility pattern models are many. Green urban planning strategies, sustainable
development plans, smart traffic managing applications or emergency evacuation plans,
among others, can be designed based on the knowledge provided by them.

Compared to other sensing technologies, the anonymity of the data, independence of
weather conditions, no need of maintenance or power supply for point sensors, or long
range and high spatial sampling frequency are remarkable advantages. The challenges of
distributed acoustic sensing are several, opening an interesting research framework for
future works. Strain variations have often low SNR and are dependent on the specific and
changing ground and fiber properties. Robust calibration and advanced noise removing
approaches are needed. The automatic detection and classification of events that are
often overlapped and merged offer the possibility to explore automatic unsupervised and
supervised approaches based on state-of-the-art machine learning strategies.
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Appendix A

Figure A1. Example hours of traffic during the monitoring example carried out 21 December 2022
from 31 December 2022 10:58:08 to 1 January 2023 9:58:13.

Figure A2. Example of local earthquake with magnitude 4 Mk with epicenter in Almería, registered
by the sensor the 31 December 2022.

References
1. United Nations. The Sustainable Development Goals Report 2022; United Nations Publications: New York, NY, USA, 2022.
2. Blasi, S.; Ganzaroli, A.; De Noni, I. Smartening sustainable development in cities: Strengthening the linkage between smart cities

and SDGs. Sustain. Cities Soc. 2022, 80, 103793. [CrossRef]
3. Biyik, C.; Abaresho, A.; Paz, A.; Ruiz, R.A.; Battarra, R.; Rogers, C.D.F.; Lizarraga, C. Smart Mobility Adoption: A Review of the

Literature. J. Open Innov. Technol. Mark. Complex. 2021, 7, 146. [CrossRef]
4. Savithramma, R.M.; Ashwini, B.P.; Sumathi, R. Smart Mobility Implementation in Smart Cities: A Comprehensive Review on

State-of-art Technologies. In Proceedings of the 4th IEEE International Conference on Smart Systems and Inventive Technology
(ICSSIT), Tirunelveli, India, 20–22 January 2022.

5. Runyu, F.; Jun, L.; Weijing, S.; Wei, H.; Jning, Y.; Lizhe, W. Urban informal settlements classification via a transformer-based
spatial-temporal fusion network using multimodal remote sensing andtime-series human activity data. Int. J. Appl. Earth Obs.
Geoinf. 2022, 111, 102831.

6. Ahyun, L.; Kang-Woo, L.; Kyong-Ho, K.; Sung-Woong, S. A Geospatial Platform to Manage Large-Scale Individual Mobility for
an Urban Digital Twin Platform. Remote Sens. 2022, 14, 723.

7. Loder, A.; Ambühl, L.; Menendez, M.; Axhausen, K.W. Understanding traffic capacity of urban networks. Sci. Rep. 2019, 9, 16283.
[CrossRef] [PubMed]

http://doi.org/10.1016/j.scs.2022.103793
http://dx.doi.org/10.3390/joitmc7020146
http://dx.doi.org/10.1038/s41598-019-51539-5
http://www.ncbi.nlm.nih.gov/pubmed/31704955


Remote Sens. 2023, 15, 3282 16 of 18

8. Serok, N.; Havlin, S.; Blumenfeld Lieberthal, E. Identification, cost evaluation, and prioritization of urban traffic congestions and
their origin. Sci. Rep. 2022, 12, 13026. [CrossRef]

9. Huang, A.J.; Agarwal, S. Physics-Informed Deep Learning for Traffic State Estimation: Illustrations With LWR and CTM Models.
IEEE Open J. Intell. Transp. Syst. 2022, 3, 503–518. [CrossRef]

10. Medina-Salgado, B.; Sánchez-DelaCruz, E.; Pozos-Parra, P.; Sierra, J.E. Urban traffic flow prediction techniques: A review. Sustain.
Comput. Inform. Syst. 2022, 35, 100739. [CrossRef]

11. Jafari, S.; Shahbazi, Z. Designing the Controller-Based Urban Traffic Evaluation and Prediction Using Model Predictive Approach.
Appl. Sci. 2022, 12, 1992. [CrossRef]

12. Wu, J.; Wang, X.; Dang, Y.; Zhihan, L. Digital twins and artificial intelligence in transportation infrastructure: Classification,
application, and future research directions. Comput. Electr. Eng. 2022, 101, 107983. [CrossRef]

13. Butila, E.V.; Boboc, R.G. Urban Traffic Monitoring and Analysis Using Unmanned Aerial Vehicles (UAVs): A Systematic Literature
Review. Remote Sens. 2022, 14, 620. [CrossRef]

14. Liu, Z.; Jiang, S.; Zhou, P.; Li, M. A Participatory Urban Traffic Monitoring System: The Power of Bus Riders. IEEE Trans. Intell.
Transp. Syst. 2017, 18, 2851–2864. [CrossRef]

15. Fredianelli, L.; Carpita, S.; Bernardini, M.; Del Pizzo, L.G.; Brocchi, F.; Bianco, F.; Licitra, G. Traffic Flow Detection Using Camera
Images and Machine Learning Methods in ITS for Noise Map and Action Plan Optimization. Sensors 2022, 22, 1929. [CrossRef]
[PubMed]

16. Duan, Z.; Yang, Y.; Zhang, K.; Ni,Y.; Bajgain,S. Improved Deep Hybrid Networks for Urban Traffic Flow Prediction Using
Trajectory Data. IEEE Access 2018, 6, 31820–31827. [CrossRef]

17. Chen, Y.; Qin, R.; Zhang, G.; Albanwan, H. Spatial Temporal Analysis of Traffic Patterns during the COVID-19 Epidemic by
Vehicle Detection Using Planet Remote-Sensing Satellite Images. Remote Sens. 2021, 13, 208. [CrossRef]

18. Ji,B.; Zhang, X.; Mumtaz, S.; Han, C.; Li, C.; Wen, H.; Wang, D. Survey on the Internet of Vehicles: Network Architectures and
Applications. IEEE Commun. Stand. Mag. 2020, 4, 34–41. [CrossRef]

19. Bao, X; Chen, L. Recent progress in Distributed Optic Sensors. Sensors 2012, 12, 8602–8639. [CrossRef]
20. Lu, P.; Lalam, N.; Badar, M.; Liu, B.; Chorpening, B.; Buric, M.; Ohodnicki, P.R. Distributed optical fibre sensing: Review and

perspective. Appl. Phys. Rev. 2019, 6, 041302. [CrossRef]
21. Pastor-Graekks, J.; Martins, H.F.; Garcia-Ruiz, A.; Martin-Lopez, S.; Gonzalez-Herraez, M.R. Single-shot distributed temperature

and strain tracking using direct detection phase-sensitive OTDR with chirped pulses. Opt. Express 2016, 24, 13122.
22. Tu, G.; Zhang, X.; Zhang, Y.; Zhu, F.; Xia, L.; Nakarmi, B. The development of an Phi-OTDR system for quantitative vibration

measurement. IEEE Photonics Technol. Lett. 2015, 27, 1349–1352. [CrossRef]
23. Wang, Z.; Zhang, L.; Wang, S.; Xue, N.; Peng, F.; Fan, M.; Sun, W.; Qian, X.; Rao, J.; Rao, Y. Coherent Φ-OTDR based on I/Q

demodulation and homodyne detection. Opt. Express 2016, 24, 853–858. [CrossRef] [PubMed]
24. Juarez, J.C.; Taylor, H.F. Polarization discrimination in a phase-sensitive optical time-domain reflectometer intrusion-sensor

system. Opt. Lett. 2005, 30, 3284–3286. [CrossRef] [PubMed]
25. Fernández-Ruiz, M.R.; Costa, L.; Martins, F.H. Distributed Acoustic Sensing Using Chirped-Pulse Phase-Sensitive OTDR

Technology. Sensors 2019, 19, 4368. [CrossRef] [PubMed]
26. Koyamada, Y.; Imahama, M.; Kubota, K.; Hogari, K. Fiber-optic distributed strain and temperature sensing with very high

measurand resolution over long range using coherent OTDR. J. Light. Technol. 2009, 27, 1142–1146. [CrossRef]
27. Martuganova, E.; Stiller, M.; Norden, B.; Henninges, J.; Krawczyk, C.M. 3D deep geothermal reservoir imaging with wireline

distributed acoustic sensing in two boreholes. Solid Earth 2002, 13, 1291–1307. [CrossRef]
28. Young, C.; Shragge, J.; Schultz, W.; Haines, S.; Oren, C.; Simmons, J.; Collett, T.S. Advanced Distributed Acoustic Sensing Vertical

Seismic Profile Imaging of an Alaska North Slope Gas Hydrate Field. Energy Fuels 2022, 36, 3481–3495. [CrossRef]
29. Dou, S.; Lindsey, N.; Wagner, A.M.; Daley, T.M.; Freifeld, B.; Robertson, M.; Peterson, J.; Ulrich, C.; Martin, E.R.; Ajo-Franklin, J.B.

Distributed Acoustic Sensing for Seismic Monitoring of The Near Surface: A Traffic-Noise Interferometry Case Study. Sci. Rep.
2017, 7, 11620. [CrossRef]

30. Zhan, Z. Distributed acoustic sensing turns fiber-optic cables into sensitive seismic antennas. Seismol. Res. Lett. 2020, 91, 1–15.
[CrossRef]

31. Fernández-Ruiz, M.R.; Martins, H.F.; Williams, E.F.; Becerril, C.; Magalhães, R.; Costa, L.; Martin-Lopez, S.; Jia, Z.; Zhan, Z.;
González-Herráez, M. Seismic Monitoring with Distributed Acoustic Sensing from the Near-Surface to the Deep Oceans. J. Light.
Technol. 2022, 40, 1453–1463. [CrossRef]

32. Jousset, P.; Currenti, G.; Schwarz, B.; Chalari, A.; Tilmann, F.; Reinsch, T.; Zuccarello, L.; Privitera, E.; Krawczyk, C.M. Fibre optic
distributed acoustic sensing of volcanic events. Nat. Commun. 2022, 13, 1753. [CrossRef]

33. Tejedor, J.; Macias-Guarasa, J.;Martins, H.F.; Pastor-Graells, J.; Corredera, P.; Martin-Lopez, S. Machine learning methods for
pipeline surveillance systems based on distributed acoustic sensing: A review. Appl. Sci. 2017, 7, 841. [CrossRef]

34. Bado, M.F.; Tonelli, D.; Poli, F.; Zonta, D.; Casas, J.R. Digital Twin for Civil Engineering Systems: An Exploratory Review for
Distributed Sensing Updating. Sensors 2022, 22, 3168. [CrossRef] [PubMed]

http://dx.doi.org/10.1038/s41598-022-17404-8
http://dx.doi.org/10.1109/OJITS.2022.3182925
http://dx.doi.org/10.1016/j.suscom.2022.100739
http://dx.doi.org/10.3390/app12041992
http://dx.doi.org/10.1016/j.compeleceng.2022.107983
http://dx.doi.org/10.3390/rs14030620
http://dx.doi.org/10.1109/TITS.2017.2650215
http://dx.doi.org/10.3390/s22051929
http://www.ncbi.nlm.nih.gov/pubmed/35271072
http://dx.doi.org/10.1109/ACCESS.2018.2845863
http://dx.doi.org/10.3390/rs13020208
http://dx.doi.org/10.1109/MCOMSTD.001.1900053
http://dx.doi.org/10.3390/s120708601
http://dx.doi.org/10.1063/1.5113955
http://dx.doi.org/10.1109/LPT.2015.2421354
http://dx.doi.org/10.1364/OE.24.000853
http://www.ncbi.nlm.nih.gov/pubmed/26832468
http://dx.doi.org/10.1364/OL.30.003284
http://www.ncbi.nlm.nih.gov/pubmed/16389806
http://dx.doi.org/10.3390/s19204368
http://www.ncbi.nlm.nih.gov/pubmed/31601056
http://dx.doi.org/10.1109/JLT.2008.928957
http://dx.doi.org/10.5194/se-13-1291-2022
http://dx.doi.org/10.1021/acs.energyfuels.1c04102
http://dx.doi.org/10.1038/s41598-017-11986-4
http://dx.doi.org/10.1785/0220190112
http://dx.doi.org/10.1109/JLT.2021.3128138
http://dx.doi.org/10.1038/s41467-022-29184-w
http://dx.doi.org/10.3390/app7080841
http://dx.doi.org/10.3390/s22093168
http://www.ncbi.nlm.nih.gov/pubmed/35590858


Remote Sens. 2023, 15, 3282 17 of 18

35. Martin, R.; Bruce, G. Monitoring Traffic Flow. International Patent PCT/GB2016/053330, 26 October 2016.
36. Liu, H.; Ma, J.; Yan, W.; Liu, W.; Zhang, X.; Li, C. Traffic flow detection using distributed fiber optic acoustic sensing. IEEE Access

2018, 6, 68968–68980. [CrossRef]
37. Hall, A.J.; Minto, C. Using fibre optic cables to deliver intelligent traffic management in smart cities. In Proceedings of the

International Conference on Smart Insfrastructure and Construction, Cambridge, UK, 8–10 July 2019.
38. Wang, X.; Williams, E.F.; Karrenbach, M.; González Herráez, M.; Martins , H.F.; Zhan, Z. Rose Parade Seismology: Signatures of

Floats and Bands on Optical Fiber. Seismol. Res. Lett. 2020, 91, 2395–2398. [CrossRef]
39. Jakkampudi, S.; Shen, J.; Weichen, L.; Dev, A.; Zhu, T.; Martin, E. Footstep detection in urban seismic data with a convolutional

network. Lead. Edge 2020, 39, 654–660. [CrossRef]
40. Liu, H.; Ma, J.; Xu, T.; Yan, W.; Ma, L.; Zhang, X. Vehicle Detection and Classification Using Distributed Fiber Optic Acoustic

Sensing. IEEE Trans. Veh. Technol. 2020, 69, 1363–1374. [CrossRef]
41. Lindsey, N.J.; Yuan, S.; Lellouch, A.; Gualtieri, L.; Lecocq, T.; Biondi, B. City-Scale Dark Fiber DAS Measurements of Infrastructure

Use During the COVID-19 Pandemic. Geophys Res. Lett. 2020, 47, e2020GL089931. [CrossRef]
42. Peng, Z.; Wen, H.; Jian, J. Gribok, A.; Wang, M.; Huang, S.; Liu, H.; Mao, Z.H.; Chen, K.P. Identifications and classifications of human

locomotion using Rayleigh-enhanced distributed fiber acoustic sensors with deep neural networks. Sci. Rep. 2020, 10, 21014. [CrossRef]
43. Wang, X.; Zhan, Z.; Williams, E.F.; Herráez, M.G.; Martins, H.F.; Karrenbach, M. Ground vibrations recorded by fiber-optic cables

reveal traffic response to COVID-19 lockdown measures in Pasadena, California. Commun. Earth Environ. 2021, 2, 160. [CrossRef]
44. Ende, M.v.; Ferrari, A.; Sladen, A.; Richard, C. Next-Generation Traffic Monitoring with Distributed Acoustic Sensing Arrays and

Optimum Array Processing. In Proceedings of the 2021 55th Asilomar Conference on Signals, Systems, and Computers, Pacific
Grove, CA, USA, 31 October–3 November 2021; pp. 1104–1108.

45. Wang, H.; Chen, Y.; Min, R.; Chen, Y. Urban DAS Data Processing and Its Preliminary Application to City Traffic Monitoring.
Sensors 2022, 22, 9976. [CrossRef]

46. Van den Ende, M.; Ferrari, A.; Sladen, A.; Richard, C. Deep Deconvolution for Traffic Analysis with Distributed Acoustic Sensing
Data. IEEE Trans. Intell. Transp. Syst. 2022, 24, 2947–2962. [CrossRef]

47. Lindsey, N.J.; Rademacher, H.; Ajo-Franklin, J.B. On the broadband instrument response of fiber-optic DAS arrays. J. Geophys. Res.
Solid Earth 2020, 125, e2019JB018145. [CrossRef]

48. Van den Ende, M.; Lior, I.; Ampuero, J.P.; Sladen, A. A Self-Supervised Deep Learning Approach for Blind Denoising and
Waveform Coherence Enhancement in Distributed Acoustic Sensing Data. IEEE Trans. Neural Netw. Learn. Syst. 2021, early access.
[CrossRef] [PubMed]

49. Ponce-Flores, M.; Frausto-Solís, J.; Santamaría-Bonfil, G.; Pérez-Ortega, J.; González-Barbosa, J.J. Time Series Complexities and
Their Relationship to Forecasting Performance. Entropy 2020, 22, 89. [CrossRef] [PubMed]

50. Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
51. Gao, J.; Hu, J.; Tung, W. Entropy measures for biological signal analyses. Nonlinear Dyn. 2012, 68, 431–444. [CrossRef]
52. Fernández, A.; Gómez, G.; Hornero, R.; López-Ibor, J.J. Complexity and schizophrenia. Prog. Neuro Psychopharmacol. Biol.

Psychiatry 2013, 45, 267–276. ISSN 0278-5846. [CrossRef]
53. Chen, C.; Jin, Y.; Lo, I.L.; Zhao, H.; Sun, B.; Zhao, Q.; Zheng, J.; Zhang, X.D. Complexity Change in Cardiovascular Disease. Int. J.

Biol. Sci. 2017, 13, 1320–1328. [CrossRef]
54. Asgharzadeh-Bonab, A.; Chehel, M.; Mehri, A. Spectral entropy and deep convolutional neural network for ECG beat classification.

Biocybern. Biomed. Eng. 2020, 40, 691–700. ISSN 0208-5216. [CrossRef]
55. Rizal, A.; Hidayat, R.; Nugroho, H.A. Entropy measurement as features extraction in automatic lung sound classification. In

Proceedings of the 2017 International Conference on Control, Electronics, Renewable Energy and Communications (ICCREC),
Yogyakarta, Indonesia, 26–28 September 2017; pp. 93–97. [CrossRef]

56. Li, Y.; Wang, X.; Liu, Z.; Liang, X.; Liang, X.; Si, S. The Entropy Algorithm and Its Variants in the Fault Diagnosis of Rotating
Machinery: A Review. IEEE Access 2018, 6, 66723–66741. [CrossRef]

57. Olbrys, J.; Majewska, E. Approximate entropy and sample entropy algorithms in financial time series analyses. Procedia Comput.
Sci. 2022, 207, 255–264. ISSN 1877-0509. [CrossRef]

58. Pincus, A. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [CrossRef]
[PubMed]

59. Hjorth, B. EEG analysis based on time domain properties. Electroencephalogr. Clin. Neurophysiol. 1970, 9, 306–310. ISSN 0013-4694.
0)90143-4. [CrossRef] [PubMed]

60. Briechle, K.; Hanebeck, U. Template matching using fast normalized cross correlation. Proc. SPIE Int. Soc. Opt. Eng. 2001, 4387, 1–8.
61. IGN. Earthquake information. Available online: https://www.ign.es/web/ign/portal/ultimos-terremotos/-/ultimos-

terremotos/getDetails?evid=es2022zpswu (accessed on 25 June 2023).
62. García, L.; Alguacil, G.; Titos, M.; Cocina, O.; De la Torre, A.Ç.; Benítez, C. Automatic S-Phase Picking for Volcano-Tectonic

Earthquakes Using Spectral Dissimilarity Analysis. IEEE Geosci. Remote. Sens. Lett. 2020, 17, 874–878. [CrossRef]
63. Baird, A.F. Modelling the response of helically wound DAS cables to microseismic arrivals. In Proceedings of the First EAGE

Workshop on Fiber Optic Sensing, Amsterdam, The Netherlands, 9–11 March 2020; European Association of Geoscientists &
Engineers: Amsterdam, The Netherlands, 2020; pp. 1–5.

http://dx.doi.org/10.1109/ACCESS.2018.2868418
http://dx.doi.org/10.1785/0220200091
http://dx.doi.org/10.1190/tle39090654.1
http://dx.doi.org/10.1109/TVT.2019.2962334
http://dx.doi.org/10.1029/2020GL089931
http://dx.doi.org/10.1038/s41598-020-77147-2
http://dx.doi.org/10.1038/s43247-021-00234-3
http://dx.doi.org/10.3390/s22249976
http://dx.doi.org/10.1109/TITS.2022.3223084
http://dx.doi.org/10.1029/2019JB018145
http://dx.doi.org/10.1109/TNNLS.2021.3132832
http://www.ncbi.nlm.nih.gov/pubmed/34919525
http://dx.doi.org/10.3390/e22010089
http://www.ncbi.nlm.nih.gov/pubmed/33285864
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1007/s11071-011-0281-2
http://dx.doi.org/10.1016/j.pnpbp.2012.03.015
http://dx.doi.org/10.7150/ijbs.19462
http://dx.doi.org/10.1016/j.bbe.2020.02.004
http://dx.doi.org/10.1109/ICCEREC.2017.8226668
http://dx.doi.org/10.1109/ACCESS.2018.2873782
http://dx.doi.org/10.1016/j.procs.2022.09.058
http://dx.doi.org/10.1073/pnas.88.6.2297
http://www.ncbi.nlm.nih.gov/pubmed/11607165
http://dx.doi.org/10.1016/0013-4694(70)90143-4
http://www.ncbi.nlm.nih.gov/pubmed/4195653
https://www.ign.es/web/ign/portal/ultimos-terremotos/-/ultimos-terremotos/getDetails?evid=es2022zpswu
https://www.ign.es/web/ign/portal/ultimos-terremotos/-/ultimos-terremotos/getDetails?evid=es2022zpswu
http://dx.doi.org/10.1109/LGRS.2019.2934220


Remote Sens. 2023, 15, 3282 18 of 18

64. Hudson, T.S.; Baird, A.F.; Kendall, J.M.; Kufner, S.K.; Brisbourne, A.M.; Smith, A.M.; Butcher, A.; Chalari, A.; Clarke, A.
Distributed Acoustic Sensing (DAS) for natural microseismicity studies: A case study from Antarctica. J. Geophys. Res. Solid Earth
2021, 126, e2020JB021493. [CrossRef]

65. Jreij, S.F.; Trainor-Guitton, W.J.; Morphew, M.; Chen Ning, I.L. The Value of Information From Horizontal Distributed Acoustic
Sensing Compared to Multicomponent Geophones Via Machine Learning. J. Energy Resour. Technol. 2021, 143, 010902. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1029/2020JB021493
http://dx.doi.org/10.1115/1.4048051

	Introduction
	Distributed Acoustic Sensing and Urban Traffic Monitoring Overview
	Contributions of This Work

	Materials and Methods
	Testbed Description and Calibration Process
	Signal Processing
	Types of Events Registered
	Characterization of the Events

	Results
	Example of Mobility Changes on New Year's Eve
	Example of Mobility during a Work Day
	Monitoring Access to the Schools's Surface Parking
	Urban Seismicity Monitoring

	Discussion
	Appendix A
	References

