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Abstract: Sweet basil (Ocimum basilicum) leaves are rich in bioactive compounds that present thera-
peutic benefits for human health. Ultrasonic-assisted extraction (UAE) is frequently used to obtain
phenolic compounds from plants/herbal sources. However, few works have developed multi-variable
studies to find the optimal conditions to extract the maximum amount of compounds, especially
when applied to UAE via a sonotrode. The purpose of this work was to perform a multi-variable
study by employing a Box–Behnken design to collect the highest active compound content from
Ocimum basilicum leaves. The efficacy of the design was endorsed by ANOVA. The studied parameters
for UAE via a sonotrode were the ethanol/water ratio, amplitude, and time. The analyzed responses
were the rosmarinic acid, the sum of phenolic acids, and the sum of phenolic compounds content. The
optimal conditions were found to be 50% ethanol/water, 50% amplitude, and 5 min. Twenty bioactive
compounds were identified by HPLC-ESI-TOF-MS when the extract was collected by applying the
optimal conditions. Ocimum basilicum may be appreciated as a valuable source of important bioactive
substances for pharmaceutical use.

Keywords: sweet basil (Ocimum basilicum); ultrasonic-assisted extraction via a sonotrode; Box–
Behnken design; HPLC-ESI-TOF-MS

1. Introduction

Extracts obtained from the leaves of Ocimum basilicum (sweet basil), belonging to the
Lamiaceae family, present many active components, such as monoterpene hydrocarbons,
oxygenated monoterpenes, oxygenated sesquiterpene hydrocarbons, sesquiterpenes, triter-
penes, flavonoids, aromatic compounds, etc. These compounds have been reported to
exhibit antibacterial, antifungal, antiviral, antiproliferative/anticancer, anti-inflammatory,
antioxidant, antiulcer, insecticidal, and tissue-repair-promoting properties [1,2]. Among
them, rosmarinic acid is a natural phenolic acid compound, structurally formed as an
ester of caffeic acid and 3,4 dihydroxyphenyllactic that was first discovered in Rosmarinus
officinalis, but it is present in most plants belonging to the Lamiaceae family, such as Ocimum
basilicum [3,4]. It is recognized for its antioxidant qualities which allow it to neutralize

Molecules 2023, 28, 5286. https://doi.org/10.3390/molecules28135286 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules28135286
https://doi.org/10.3390/molecules28135286
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-0611-9139
https://orcid.org/0000-0003-1283-0717
https://orcid.org/0000-0002-1236-8465
https://orcid.org/0000-0003-0723-5163
https://doi.org/10.3390/molecules28135286
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules28135286?type=check_update&version=2


Molecules 2023, 28, 5286 2 of 14

free radicals, restricting oxidative effects in human cells and the proliferation of cancer cell
lines [5]. Moreover, many other therapeutic effects have been reported, such as hepatopro-
tective [6,7], lung protective [8,9], and cardioprotective [10,11] responses, highly connected
with antioxidant and anti-inflammatory activities [12]. In addition, Dahchour et al. de-
scribed that this phenolic compound presents benefits for anxiety and depression [3]. One
good use of biomass resources, which generates added value from technological devel-
opments, requires finding feasible, economic, and sustainable answers to problems of
extraction, separation, purification, etc. To the present date, plant active substances are
still traditionally extracted using hazardous and non-green solvents, such as methanol,
ethyl acetate, acetone, dichloromethane, chloroform, hexane, etc. One of the disadvantages
of processing with those solvents is that it requires complete elimination of them before
being used as nutraceuticals or ingredients for the food, cosmetics, and pharmaceutical
industries. Some natural extracts are also obtained through traditional techniques such as
steam distillation, which must then be purified, and usually demand a high energy input.
Due to the need for ecological processes and products, “green chemistry” promotes a large
amount of research on the extraction and treatment of renewable raw materials to obtain
natural products and molecules considered “building blocks” for fine chemistry through the
development of safer, more sustainable industrial processes with less environmental impact.
Thus, emerging pressurized fluid technologies use green and environmentally friendly
solvents, as well as microwave-assisted extraction and ultrasound-assisted extraction [13].

Several methods have been reported for the extraction of phytochemicals from the
leaves of Ocimum basilicum. Most methods are meant for the extraction of active sub-
stances from this plant by using either organic solvents [14–16], hydro-distillation [16–18],
or microwave-assisted extraction with or without solvents [19–21]. Recently, ultrasound-
assisted extraction (UAE) has gained attention. Ultrasonic baths and sonotrode equip-
ment are two common instruments used for this purpose. Recently, a few works have
reported the use of bath ultrasound for the extraction of active compounds from Ocimum
basilicum [22–24]. Ultrasound baths impart a cheap and simple way to deliver ultrasound
energy and allow for the use of a large assortment of solvents as extractants. However, the
reproducibility is low, and the irradiation power is lower. Focused ultrasound systems over-
come those problems [25]. Ultrasonic sonotrodes focus their energy on a particular sample
zone, imparting more efficient cavitation in the fluid, which is an advantage over ultrasonic
baths. Moreover, the higher intensity imparted by the ultrasonic probe system produces
a much higher force in comparison to the ultrasonic bath (up to 100 times greater) [26].
Hence, it can increase the extraction rate from the plant material. Other advantages of UAE
via a sonotrode are reduced extraction time, which allows for the use of green solvents,
reduced energy consumption, and a safe extraction procedure, among others [27].

Although UAE has been previously reported in a few works for the bioactive com-
pounds of Ocimum basilicum leaves, the studies have some limitations. For instance,
Da s et al. studied different time conditions [22], Hashemi et al. studied different tem-
perature values [24], and Ahmadi et al. varied both [22,24,28]. However, only Hashemi
et al. used UAE via a sonotrode, and none of them identified the compounds via high-
performance liquid chromatography with an electrospray ionization (ESI) source operating
in negative mode and a time-of-flight (TOF) mass detector (ESI) (HPLC-ESI-TOF-MS) or
developed a multi-variable design to optimize the extraction conditions [23]. From our
knowledge, the unique work that describes a multi-variable study for the extraction of basil
was the one reported by Soares et al. using an ultrasonic bath, but they did not take into
account individual compounds [29].

The aim of this work was to develop a multi-variable study using a Box–Behnken
design to obtain the highest active compound content from Ocimum basilicum leaves.
Optimized factors of UAE via a sonotrode, such as ethanol/water composition, extraction
time, and amplitude, were established. The identification and quantification of bioactive
substances in the extracts were performed by HPLC-ESI-TOF-MS.
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2. Results and Discussion
2.1. Identification of Polar and Other Compounds in Ocimum basilicum Extracts by
HPLC-ESI-TOF-MS

Ocimum basilicum leaf extracts obtained by UAE were analyzed by HPLC coupled to
MS with a TOF analyzer. Active substances were identified by rendering their mass spectra,
bearing in mind the data reported in the literature and, when available, by co-elution with
commercial standards and using several databases. A total of 20 compounds were detected
in the extracts collected from Ocimum basilicum leaves, of which 7 have been identified in
basil leaves for the first time. All the identified compounds are shown in Table 1 with their
retention time, experimental and calculated m/z, error (ppm) and score (%), main m/z in the
source fragments, and molecular formulae. In Figure 1, a representative chromatogram
of the basil leaf extracts analyzed by HPLC-ESI-TOF-MS is shown, whereby the numbers
shown correspond to the peaks of Table 1.

Table 1. Identified compounds in Ocimum basilicum leaf extracts by HPLC-ESI-TOF-MS.

Peak Time
(min)

Experimental
m/z

Calculated
m/z

Error
(ppm)

Score
(%)

Molecular
Formula

m/z in the
Source

Fragments
Compound Name

1 0.42 133.0139 133.0137 1.5 100 C4H6O5 - Malic acid

2 0.57 191.0551 191.0556 −2.6 98.91 C7H12O6 111.0082 Quinic acid isomer a

3 1.09 191.0549 191.0556 −3.7 100 C7H12O6 133.0282 Quinic acid isomer b

4 1.19 175.0599 175.0606 −4.0 99.95 C7H12O5 133.0271 Isopropylmalic acid
isomer a

5 2.15 175.0605 175.0606 −0.6 100 C7H12O5 133.0293 Isopropylmalic acid
isomer b

6 4.30 179.0340 179.0344 −2.2 100 C9H8O4 133.0287 Caffeic acid

7 5.43 387.1653 387.1655 −0.5 100 C18H28O9
207.1017;
179.0712

Tuberonic acid
glucoside

8 6.33 855.2519 855.2559 −4.7 95.08 C38H48O22
179.0699;
161.0605 Sesaminol triglucoside

9 8.29 473.0705 473.0720 −3.2 99.95 C22H18O12 293.0287 Chicoric acid isomer a

10 8.87 359.0768 359.0767 0.3 100 C18H16O8 133.0292 Rosmarinic acid
isomer a

11 9.04 609.1469 609.1456 2.1 100 C27H30O16 300.0279 Quercetin-rutinoside

12 9.51 473.0740 473.0720 4.2 99.17 C22H18O12 293.0308 Chicoric acid isomer b

13 9.74 359.0778 359.0767 3.1 100 C18H16O8 133.0289 Rosmarinic acid
isomer b

14 9.78 717.1451 717.1456 −0.7 97.38 C36H30O16 161.0246 Salvianolic acid

15 10.21 593.1498 593.1506 −1.3 99.96 C27H30O15 285.0395 Luteolin hexoside
deoxyhexoside

16 13.38 803.3701 803.3701 0.0 100 C38H60O18

503.3382;
357.1906;
315.1796;
161.0463

Stevioside

17 13.58 313.0707 313.0712 −1.6 100 C17H14O6 161.0235 Cirsimaritin isomer a

18 13.82 313.0702 313.0712 −3.2 100 C17H14O6 161.0233 Cirsimaritin isomer b

19 14.74 345.1696 345.1702 −1.7 100 C20H26O5 283.1692 Rosmanol

20 14.92 491.0983 491.0978 1.0 100 C26H20O10 179.0345 Isosalvianolic acid
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Figure 1. Base peak chromatogram of the compounds identified in the basil leaf. Numbers 1–20
correspond to the peaks in Table 1.

Corresponding to peak 1 at 0.42 min with the m/z 133 and the molecular formula
C4H6O5, the compound was identified as malic acid, which has been found previously in
foods such as unripe apples, grapes, watermelons, cherries, in vegetables such as carrots
and broccoli [30], and in Bryophyllum [31] and Raphanus sativus [32] leaves. It is well known
that malic acid in leaves is naturally involved in the regulation of stomatal opening and
closing [33]. In addition, the malic acid derivative isopropylmalic acid isomers a and b
were identified at 1.19 and 2.15 min (peak 4 and 5, respectively) with the m/z 175 and m/z in
the source fragment 133, which corresponds to malic acid. It is an intermediate product
in the production of the amino acid leucine previously described in several herbs and
spices including sweet basil leaves [34]. The organic acid quinic acid isomers a and b were
detected at 0.57 and 1.09 min (peaks 2 and 3, respectively) with the molecular formula
C7H12O6. At 4.3 min (peak 6) with the m/z 179 and the molecular formula C9H8O4, the
compound was identified as caffeic acid. Chicoric acid isomers a and b were detected at
8.29 and 9.51 (peaks 9 and 12, respectively), presenting the m/z 473. Corresponding to
peaks 10 and 13 with a molecular formula of C18H16O8, the compounds were identified
as rosmarinic acid isomers a and b, respectively. These compounds have previously been
described in basil leaves by other authors [35–37]. Corresponding to peak 11 at 9.04 min
and with the m/z 609 with an ion fragment at m/z 300, the compound was identified as
quercetin rutinoside [38]. Peaks 17 and 18 with the m/z 313 correspond to cirsimaritin
isomers a and b, respectively. This triterpenic acid has previously been found in basil
leaves [39].

Otherwise, some compounds have been identified here for the first time. With a molec-
ular formula of C27H30O15 (peak 15) at 10.21 min, the compound was identified as luteolin
hexoside deoxyhexoside in agreement with its m/z in the source fragment 285 according to
Mekky et al., who previously described it in sesame oil [40]. At 9.78 min (peak 14) with the
m/z 717 and the predicted molecular formula of C36H30O16, the detected compound was
proposed to be salvianolic acid as previously described in basil [38]. In the same way, isosal-
vianolic acid was identified at 14.92 min (peak 20). Peak 7 at 5.43 min with the m/z 387 and
its source m/z fragments 207 and 179 was identified as the compound named tuberonic acid
glucoside, also known as 12-hydroxyjasmonic acid glucoside, which was first identified in
potato [41] and has also been found in other matrices such as lemon verbena [42] and thyme
leaf [43]. The compound sesaminol triglucoside (PubChem CID:101394490) was identified
at 6.33 min (peak 8) with the m/z 855 according to its source fragments 179 and 161. It has
previously been described in sesame [44]. Peak 16, with the m/z 803 and its source m/z
fragments 503, 357, 315, and 161, was identified as stevioside, in agreement with the Foodb
database (FooDB ID: FDB013538). It has previously been described in stevia leaves [45],
and this is the first time it has been described in basil leaves. Peak 19 at 14.74 min at m/z
345 presented a molecular formula of C20H26O5 with an ion fragment at m/z 283 and was
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identified as rosmanol. This compound has previously been identified and quantified in
rosemary and sage [38].

2.2. Fitting the Model

The Box–Behnken experimental design established for the optimization of the condi-
tions for UAE via a sonotrode is presented in Table 2. The evaluated independent factors
were ethanol/water (v/v) (X1), amplitude (%) (X2), and time (min) (X3) at three levels, and
the response variables to study were the sum of rosmarinic acid, the sum of phenolic acids,
and the sum of phenolic compounds in order to maximize them.

Table 2. Experimental Box–Behnken design of the conditions of extraction (independent factors)
and the experimental results (response variables) obtained, expressed with the average ± standard
deviation.

Independent Factors Response Variables

X1 X2 X3 Y1 Y2 Y3

Run Ethanol/
Water (v/v)

Amplitude
(%)

Time
(min)

Rosmarinic Acid
(µg/g d.w.)

The Sum of Phenolic
Acids (µg/g d.w.)

The Sum of Phenolic
Compounds (µg/g d.w.)

1 20 60 5 206.59 ± 0.28 1053.93 ± 1.41 1091.82 ± 1.48

2 100 60 5 18.19 ± 0.06 18.19 ± 0.06 24.63 ± 0.09

3 20 60 45 238.12 ± 0.32 1177.45 ± 1.56 1224.58 ± 1.64

4 100 60 45 149.26 ± 0.21 330.65 ± 0.50 383.61 ± 0.60

5 20 20 25 254.64 ± 0.34 1142.60 ± 1.50 1185.53 ± 1.58

6 100 20 25 8.26 ± 0.03 8.26 ± 0.03 8.44 ± 0.03

7 20 100 25 61.24 ± 0.11 570.75 ± 0.78 580.83 ± 0.80

8 100 100 25 33.92 ± 0.07 92.39 ± 0.20 142.17 ± 0.29

9 60 20 5 317.40 ± 0.41 1302.98 ± 1.69 1358.20 ± 1.78

10 60 20 45 253.07 ± 0.34 1108.33 ± 1.47 1149.89 ± 1.55

11 60 100 5 412.44 ± 0.53 1396.61 ± 1.82 1459.35 ± 1.93

12 60 100 45 142.60 ± 0.21 863.03 ± 1.17 909.48 ± 1.26

13 60 60 25 420.13 ± 0.46 1458.90 ± 1.87 1559.45 ± 2.04

14 60 60 25 406.35 ± 0.53 1419.25 ± 1.56 1522.60 ± 2.03

15 60 60 25 415.72 ± 0.51 1437.80 ± 1.23 1545.94 ± 1.94

As can be seen from the results, the sum of rosmarinic acid ranged between 8.26 and
420.13 µg/g d.w., the sum of phenolic acids ranged between 8.26 and 1458.90 µg/g d.w.,
and the sum of phenolic compounds ranged from 8.44 to 1559.45 µg/g d.w. In all cases, the
minimum values corresponded to run 6 when using 100% ethanol, an amplitude of 20%,
and 25 min; meanwhile, the maximum values were at the intermedium conditions (60%
ethanol, 60% amplitude, and 25 min).

The experimental results were analyzed by adjusting them to a second-order poly-
nomial regression (Equation (1)). The regression coefficients and analysis of variance
(ANOVA) of the model and the results for the response variables for Ocimum basilicum are
exhibited in Table 3.
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Table 3. Regression coefficients and analysis of variance (ANOVA) of the model for the response
variables for Ocimum basilicum.

Y1 Y2 Y3

Regression
Coefficients

Rosmarinic Acid
(µg/g d.w.)

The Sum of Phenolic Acids
(µg/g d.w.)

The Sum of Phenolic Compounds
(µg/g d.w.)

Effect p-Value Effect p-Value Effect p-Value

β0 254.74 0.0004 * 755.43 0.0001 * 793.21 0.0000 *

Linear

β1 −226.90 0.0035 * −851.32 0.0003 * −856.61 0.0003 *

β2 −75.48 0.0305 * −187.85 0.0061 * −180.20 0.0059 *

β3 1.66 0.9133 23.95 0.2467 37.55 0.1140

Crossed

β12 149.79 0.0143 * 327.99 0.0036 * 369.21 0.0025 *

β13 7.74 0.7108 94.47 0.0414 * 113.11 0.0261 *

β23 −134.62 0.0176 * −169.47 0.0134 * −170.78 0.0117 *

Quadratic

β11 267.63 0.0012 * 753.92 0.0002 * 800.74 0.0001 *

β22 66.23 0.0197 * 231.24 0.0020 * 262.67 0.0014 *

β33 −22.82 0.1365 39.68 0.0615 60.76 0.0246 *

R2 0.9855 0.9980 0.9967

p-model 0.0010 * 0.0000 * 0.0000 *

p lack of fit 0.3525 0.2467 0.1140

* Significant at α ≤ 0.05

The analysis of the model was performed for the three response variables. According
to previous reports, the level of significance was α < 0.05 in order to enhance the number of
meaningful variables [46,47]. The constants (β0) were significant for all of the responses
(p < 0.05). For all of the response variables, the independent factors ethanol/water (X1)
and amplitude (X2) showed significant effects in their linear (β1 and β2, respectively) and
quadratic forms (β11 and β22, respectively) (p < 0.05). Moreover, the effect of all the crossed
terms β12, β13, and β23 were significant for the response variables studied. In the case
of the sum of phenolic compounds, a significative effect of the que quadratic regression
coefficient of time (X3) was also found (β33).

An analysis of variance (ANOVA) was performed after discarding the non-significant
terms at α > 0.05. The models showed high determination coefficients between the in-
dependent factors and response variables (R2 > 0.9). Le Man et al. (2010) stated that a
model is acceptable when R2 > 0.75 [48]. In addition, the p-values of the lack-of-fits were
non-significant (p > 0.05). This parameter was used to verify the adequacy of the model,
indicating that the model fits properly (Table 2). Moreover, the p-values of the models were
lower than 0.05 for all of the models, making them statistically acceptable.

2.3. Establishment of Optimal Conditions

The three-dimensional plots showing the effects of ethanol/water % (v/v) (X1) with ampli-
tude (%) (X2) (Figure 2a,d,g), ethanol/water % (v/v) (X1) with time (min) (X3) (Figure 2b,e,h),
and amplitude (%) (X2) with time (min) (X3) (Figure 2c,f,i) on the rosmarinic acid, the sum
of phenolic acids, and the sum of phenolic compounds content are presented in Figure 2.
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Figure 2. Response surface graphs (a–i) showing the combined effects of the independent factors:
ethanol/water (v/v), time (min), and amplitude (%) for the responses of rosmarinic acid (a–c), the
sum of phenolic acids (d–f), and the sum of phenolic compounds (g–i) expressed as µg/g d.w.

In Figure 2a,d,g, the maximum rosmarinic acid, the sum of phenolic acids, and the sum
of phenolic compounds content, respectively, were obtained with 40–50% ethanol/water
and almost the whole range of amplitudes. In Figure 2b,e,h, the higher values were
observed at 50% ethanol/water and for the whole range of time used for the three groups
of compounds studied. And in Figure 2c,f,i, the maximum amount of compounds was
obtained at approximately 50–100% amplitude and up to 10 min.

At 100% ethanol, when increasing the time, Tungmunnithum et al. [49] had the same
tendency of increasing rosmarinic acid in Plectranthus scutellarioides L. leaves, as shown
here (Table 2, runs 2 and 4).

In this work, we found that higher rosmarinic acid content was observed when
increasing the power but reducing the time (Table 2, runs 9, 10, 11, and 2). This means
that at a higher amplitude, time plays a more crucial role in increasing or reducing the
rosmarinic acid content. Caleja et al. [50] in Melissa officinalis L. only saw differences
in the content of rosmarinic acid, at fixed ultrasound power, with time at intermedium
ethanol percentage; meanwhile, at extreme times, it showed no effect, and the same
was true in this work (Figure 2b). Therefore, in contrast, when using the intermedium
value of ethanol/water, higher extraction of rosmarinic acid is achieved with this solvent,
maintaining the amplitude at the lowest or highest level but increasing the time, resulting
in decreasing the content (Figure 2c).
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The maximum values found under the medium amplitude condition could be justified
by the higher temperature achieved in the process due to the effect of ultrasound, which
can deteriorate the compounds. This effect also occurs when described in microwave
extractions when high temperatures are used [51]. The higher ultrasound amplitude causes
an increment in the temperature and pressure in the system [52,53]. Yang et al. also reported
that extreme ultrasound forces may generate degradation of the substances due to the high
temperature and pressure [54]. This finding is in agreement with a study conducted by
Lanjekar et al. on poly-phenolic antioxidant extraction from waste mango peel [55] and the
work published by Zheng et al. about phenolic compounds’ extraction from foxtail millet
bran using UAE [56].

In addition, high time values may result in greater degradation of the target com-
pounds or degradation of the matrix due to higher exposition to ultrasound forces, indeed
when higher amplitude values are applied [51]. Moreover, the increment in the extraction
time enhances the solution concentration, reducing the cellular osmotic pressure [57]. The
result is in agreement with the results reported by Junchi et al., who extracted polysaccha-
rides from Ginkgo biloba leaves [58]. On the other hand, an ethanol concentration higher
than 60% did not increase the extraction rate, which may be caused by the change in the
polarity of the solvent, which generates a negative effect on the extraction yield [59,60]. Sim-
ilar responses have been described with other plant materials such as Myrtus communis [61]
and Solanum torvum Sw [62] leaves.

2.4. Confirmation of the Optimal Extraction Parameters by a Sonotrode in Ocimum
basilicum Leaves

After the optimal conditions were established by the response surface three-
dimensional plots, the accuracy of the mathematical model was predicted, which consti-
tuted the final step of the RSM. The optimal conditions to obtain the highest rosmarinic
acid amount, the sum of phenolic acids, and the sum of phenolic compounds from Ocimum
basilicum and the predicted and obtained values of each response are presented in Table 4.

Table 4. Optimized conditions for UAE via a sonotrode for Ocimum basilicum leaves.

Optimal Conditions

Ethanol/water (v/v) 50

Amplitude (%) 50

Time (min) 5

Rosmarinic acid Sum of phenolic acids Sum of phenolic compounds

Predicted value (µg/g d.w.) 529.97 ± 59.37 1657.15 ± 86.09 1749.04 ± 80.91

Obtained value (µg/g d.w.) 531.00 ± 2.65 1695.33 ± 5.03 1762.00 ± 19.29

CV (%) 0.14 1.61 0.52

Briefly, the optimal conditions established were 50% ethanol/water (v/v), 50% ampli-
tude, and 5 min. These values were found near the central point of ethanol/water and the
amplitude. This performance is comparable with previous reports by our research group
about the extraction of anthraquinones from Heterophyllaea pustulata [50] and by other
authors for the UAE of antioxidant compounds from Ficaria kochii [63]. On the other hand,
different behavior was observed for the time, which represented the minimum used value.
These results may be explained by the fact that this ultrasound model decreases process
times and due to the higher degradation of the compounds of interest or degradation of the
matrix due to higher exposition to ultrasound forces, as mentioned in the above section.

The obtained predictable values under the optimal conditions were 529.97 ± 59.37 µg/g d.w.
for rosmarinic acid content, 1657.15 ± 86.09 µg/g d.w. for the sum of phenolic acids, and
1749.04 ± 80.91 µg/g d.w. for the sum of phenolic compounds. Good agreement between
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the experimental and predicted values for all of the responses was found with a coefficient
of variation lower than 2% in all cases. A few works have investigated different aspects of
basil composition and extraction methods. Hashemi et al. reported the highest rosmarinic
acid content and total phenolics (determined using the Folin–Ciocalteu method) for samples
treated at 40% amplitude and 45 ◦C, reaching a maximum value of 156 mg/g [24]. The
study highlighted the significant influence of temperature on the rate of rosmarinic acid
extraction. Ahmadi et al. determined the optimum conditions for basil extraction, which
were 40 min at 62.82 ◦C. The total phenolic compounds, measured using the Folin–Ciocalteu
method, were reported to be 3922.485 mg/mL [64]. Soares et al. investigated the total
phenolic content of basil in extra-virgin olive oil through the Folin–Ciocalteu method,
which was reported as 135.94 mg GAE/kg. The results from these works indicated a higher
concentration of phenolic compounds compared to our study, which may be explained by
the fact that they determined the Folin–Ciocalteu reacting substances; meanwhile, in this
work, the specific phenolic compounds were determined by HPLC-ESI-TOF-MS.

On the other hand, the other authors only quantified basil essential oil compounds,
such as Silva et al., who measured linalool and estragole in basil, and Rajabi et al., who
measured trans-anethole, estragole, and para-anisaldehyde in basil [23]. Additionally,
Soares et al. evaluated different compounds such as alpha-thujene, beta-pinene, eucalyptol,
beta-ocimene, camphor, linalool, eugenol, alpha-pinene, camphene, sabinene, myrcene,
and limonene [29]. These compounds differ from the ones we evaluated in our study,
preventing a direct numerical comparison.

Overall, comparing the numerical data from our work with the studies previously
mentioned provides insights into the variations in basil composition and extraction meth-
ods. These differences highlight the importance of considering multiple studies to obtain a
comprehensive understanding of the chemical profile of basil.

3. Materials and Methods
3.1. Samples and Chemicals

Fresh leaves of Ocimum basilicum were commercially acquired from a Spanish super-
market in June of 2022. The fresh leaves were air dried, protected from sunlight, and kept
at an ambient temperature, and they were then micronized by employing a knife mill
provided by IKA Werke GmbH & Co. KG (Staufen, Germany) and sieved to 0.2 mm. Then,
the samples were stored in a freezer at −35 ◦C before analysis. HPLC-grade acetonitrile
and acetone were supplied by Merck KGaA (Darmstadt, Germany), and purified water was
obtained utilizing a Milli-Q system (Millipore, Bedford, MA, USA). Caffeic acid, quercetin,
and rutin were provided by Sigma-Aldrich (St. Louis, MO, USA).

3.2. Experimental Design

In order to optimize the experimental conditions to collect the maximum amount
of plant active substances in Ocimum basilicum leaves, a Box–Behnken design with three
variables was performed. The three independent variables involved in this work were the
ethanol/water ratio (X1), the amplitude of the ultrasound via sonotrode equipment (X2),
and the extraction time (X3), with three values for each one. The response variables (Y) were
the rosmarinic acid amount, the sum of phenolic acids, and the sum of phenolic compounds
determined by HPLC-ESI-TOF-MS (Table 2). The percentages of ethanol/water were 20,
60, and 100% (v/v), and the extraction times were 5, 25, and 45 min. These conditions
were selected considering previous reports on the extraction of rosmarinic-acid-related
compounds from Ocimum basilicum and other plants [30,64–66] and Ocimum basilicum
leaves [23,25]. Furthermore, the amplitudes of the sonotrode ultrasound equipment were
20, 60, and 100 (%), where the minor level was selected considering the preceding work
conducted in our laboratory regarding the extraction of phenolic substances from orange
by-products using UAE via a sonotrode [67].

In order to obtain the highest influence of unexplained variability in the responses
found, caused by extraneous aspects, the experiments were randomized. In this sense,
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15 sequences, along with the midpoint in triplicate, were tested (Table 1). The most suitable
implementation for modeling is response surface methodology (RSM). In this approach,
the second-order polynomial equation presented below (Equation (1)) is commonly used to
study the interrelation between the independent and response variables [65]. The assay
layout and evaluation of the most favorable UAE via the sonotrode settings in regard to
the greater amount of active compounds were performed employing Statistica 7.0 software
(StatSoft, Tulsa, OK, USA).

Y = β0 + ∑3
i=1 βi Xi + ∑3

i=1 βii X2
i + ∑3

i=1 ∑3
j=i+1 βij Xi Xj (1)

where Xi and Xj are the independent variables, Y is the response variable, and β0, βi, βii,
and βij are the constant, linear, quadratic, and cross-product coefficients, respectively [66].

3.3. Ultrasound-Assisted Extraction via a Sonotrode Applied to Ocimum basilicum Leaves

The procedure was performed by incorporating 0.25 g of Ocimum basilicum leaves with
10 mL of the chosen solvent. The ethanol used was absolute (>99% purity). A UP400St
ultrasonic processor (Hielscher, Germany) with a working frequency of 24kHz and the
sonotrode S24d3 were used. The ethanol/water ratio, US amplitude, and treatment time
were adjusted in agreement with the assay layout. Subsequently, the suspensions were
centrifugated at 6000 rpm for 10 min, and the supernatant was placed in a rotor evaporator
and resuspended in 1 mL of methanol/water 50/50 (v/v). Finally, the samples were filtered
with 0.2 µm nylon syringe membranes and kept at −18 ◦C until analysis.

3.4. Determination of Polar and Other Compounds in Ocimum basilicum Leaf Extracts by
HPLC-ESI-TOF-MSs

Ocimum basilicum leaf extracts collected when UAE via a sonotrode was applied with
different parameters was evaluated by an ACQUITY Ultra Performance LC system (Waters
Corporation, Milford, MA, USA) associated with an electrospray ionization (ESI) source
operating in negative mode and a time-of-flight (TOF) mass detector (Waters Corporation,
Milford, MA, USA). All measurements were carried out in triplicate. The active substances
were partitioned on an BEH Shield RP18 column (1.7 µm, 2.1 mm × 100 mm; Waters
Corporation, Milford, MA, USA) at 40 ◦C using a gradient previously stated by Verni et al.
2020 [68] and using water containing 1% acetic acid as mobile phase A and acetonitrile as
mobile phase B. The data were elaborated using MassLynx 4.1 software (Waters Corporation,
Milford, MA, USA).

4. Conclusions

A Box–Behnken experimental design of 15 experiments was successfully performed
to establish the optimal conditions of UAE via a sonotrode for Ocimum basilicum leaves to
achieve extracts with high content in phenolic compounds. The extracts were analyzed by
HPLC-ESI-TOF-MS, and a total of 20 compounds were identified, from which seven are
described here for the first time in basil leaves. The analysis of variance showed a high
correlation between the independent factors and response variables with determination
coefficients (R2) and p-model values indicating that the model fits properly. The optimal
conditions were established by RSM for the three responses studied (rosmarinic acid, the
sum of phenolic acids, and the sum of phenolic compounds), and 50% ethanol/water,
50% amplitude, and 5 min were selected. Under these optimal conditions, the response
variables were obtained experimentally and compared with the model predictions, and the
validation of the model was confirmed statistically. In conclusion, Ocimum basilicum should
be recognized as an important source of bioactive compounds, especially rosmarinic acid,
with relevance for their therapeutic employment.
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