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Abstract: Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers, with five-year
survival rates around 10%. The only curative option remains complete surgical resection, but due
to the delay in diagnosis, less than 20% of patients are eligible for surgery. Therefore, discovering
diagnostic biomarkers for early detection is crucial for improving clinical outcomes. Metabolomics
has become a powerful technology for biomarker discovery, and several metabolomic-based panels
have been proposed for PDAC diagnosis, but these advances have not yet been translated into the
clinic. Therefore, this review focused on summarizing metabolites identified for the early diagnosis
of PDAC in the last five years. Bibliographic searches were performed in the PubMed, Scopus and
WOS databases, using the terms “Biomarkers, Tumor”, “Pancreatic Neoplasms”, “Early Diagnosis”,
“Metabolomics” and “Lipidome” (January 2018–March 2023), and resulted in the selection of fourteen
original studies that compared PDAC patients with subjects with other pancreatic diseases. These
investigations showed amino acid and lipid metabolic pathways as the most commonly altered,
reflecting their potential for biomarker research. Furthermore, other relevant metabolites such as
glucose and lactate were detected in the pancreas tissue and body fluids from PDAC patients. Our
results suggest that the use of metabolomics remains a robust approach to improve the early diagnosis
of PDAC. However, these studies showed heterogeneity with respect to the metabolomics techniques
used and further studies will be needed to validate the clinical utility of these biomarkers.

Keywords: pancreatic cancer; metabolomics; biomarkers; early diagnosis; systematic review

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is among the ten tumors with the highest
mortality worldwide, approximately 500,000 in the year 2020, and this is expected to reach
800,000 by the year 2024 [1]. The most important risk factors associated with PDAC are
diabetes and chronic pancreatitis [2], although there are others such as alcohol [3], cigarette
smoking [4], obesity [5] and family history of PDAC [6]. The five-year survival rate is
alarmingly low, only 5%, mainly attributed to late detection. This is because symptoms
typically manifest in an advanced stage of the disease, resulting in a significant number
of patients being diagnosed when the disease is incurable [7]. However, in patients un-
dergoing curative surgical resection, this survival value rises to 25% [8]. Unfortunately,
the vast majority of patients are diagnosed with unresectable disease (80–90%) with the
serum carbohydrate antigen 19-9 (CA19-9) being the only approved marker for PDAC
management. This marker is characterized by a limited usefulness due to its low speci-
ficity and sensitivity, leading to high false positive and negative rates [9,10]. This scenario
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emphasizes the importance of developing tools for the early detection of PDAC when the
tumor is operable [11].

Metabolomics is a powerful technology that can be used to discover tumor biomark-
ers. One of the most-studied samples for metabolite analysis is tumor tissue, which has
provided promising candidate molecules [12]. However, there is a need for further studies
to find less invasive biomarkers for PDAC diagnosis, such as those detectable in peripheral
blood. In recent years, different studies have been carried out to determine panels of
metabolites obtained in plasma samples from PDAC patients, with promising results [13].
In addition, precursor lesions are found with increasing frequency and can be targets for
early detection of this tumor type [14]. Among them, non-cystic lesion pancreatic intraep-
ithelial neoplasia (PanIN), intraductal cystic papillary mucinous neoplasms (IPMN) and
mucinous cystic neoplasms (MCN) with high dysplasia stand out due to their correlation
with the development of invasive carcinoma [15]. Other non-invasive samples such as
urine and saliva have also been used to determine early biomarkers in PDAC. In fact,
Radon et al. [16] identify three markers, LYVE-1, REG1A and TFF1, with a sensitivity of
80% and a specificity of 76.9% that can be found in urine samples from patients with PDAC.
In saliva samples, Sugimoto et al. [17] identified 48 metabolites in patients with PDAC. Of
these, five metabolites (intercept, phenylalanine, tryptophan, ethanolamine and carnitine)
obtained an area under the receiver operating characteristic curves (AUC) value of 0.993.
However, the results were not conclusive, requiring more studies to validate their activity
as early detection markers.

Finally, most studies investigate biomarkers using samples from healthy subjects as
controls. However, one of the main problems in the study of biomarkers in PDAC is
that they may be elevated in other non-malignant pancreatic pathologies. An example
is the expression of CA19-9, which is expressed in up to 40% of patients with chronic
pancreatitis [18]. However, it is important to highlight the relevance of studies that compare
patients with PDAC with those with benign pancreatic diseases, especially those that
increase the risk of developing this type of tumor. Mahajan et al. [19] showed the utility
of an optimized and validated metabolic signature based on lipids to discriminate PDAC
from chronic pancreatitis with a sensitivity of 77.3% and a specificity of 89.6%, with an
overall precision of 82.4%.

Therefore, the aim of this systematic review is to discuss the most recent literature
on metabolite biomarkers identified for the early diagnosis of PDAC and their potential
clinical applicability in this pathology. Given the importance of finding highly sensitive and
specific biomarkers, this review focuses only on studies that include comparisons between
PDAC patients and those with other pancreatic diseases.

2. Materials and Methods
2.1. Research Question

This systematic review focuses on compiling all studies from the last five years that
propose metabolite panels for the early diagnosis of PDAC by comparing samples from
patients with this pathology with those with premalignant or non-malignant pancreatic
lesions. This systematic review focuses on the last five years, continuing the review by
Long et al. [20] that covers up till the year 2017. This systematic review was conducted
according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) 2020 statement [21]. The literature published more than five years ago was
considered outdated and not included in the analysis. The registration of this review with
the International Prospective Register of Systematic Reviews (PROSPERO) was requested,
identification number CRD42023434856.

2.2. Inclusion Criteria

This systematic review included studies proposing a differential metabolite panel
in patients with PDAC, including comparisons with patients with premalignant or non-
malignant pancreatic lesions such as chronic pancreatitis or diabetes mellitus. For inclusion,
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articles were also required to be published in English between January 2018 and March
2023 and to have an accessible full text.

2.3. Exclusion Criteria

Articles in which the type of cancer analyzed was different from PDAC or in which
only healthy individuals were used as controls were excluded. Also excluded from the
analysis were studies with insufficient information on the data provided and revision
articles such as systematic reviews, reviews, meta-analyses, books or editorials.

2.4. Data Sources

The literature search was performed in the following electronic databases: Pubmed,
SCOPUS and Web of Science. The search strategy was based on Medical Subject Headings
(MeSH) criteria using “Biomarkers, Tumor”, “Pancreatic Neoplasms” and “Early Diagno-
sis” descriptors and synonyms, resulting in the following search equation in the Pubmed
database: ((Biomarkers, Tumor[MeSH Terms]) OR (“Biomarkers, Tumor”[Title/Abstract])
OR (“Biomarker*”[Title/Abstract]) OR (“marker*”[Title/Abstract])) AND ((Pancreatic
Neoplasms [MeSH Terms]) OR (“Pancreatic Neoplasm*”[Title/Abstract]) OR (“Pancreas
Neoplasm*”[Title/Abstract]) OR (“Pancreatic ductal adenocarcinoma”[Title/Abstract]) OR
(((“Pancreas”[Title/Abstract]) OR (“Pancreatic”[Title/Abstract])) AND ((“Cancer*”[Title/
Abstract]) OR (“Tumor*”[Title/Abstract]) OR (“Tumour*”[Title/Abstract]) OR (“Neo-
plasm*”[Title/Abstract]) OR (“Malignancy”[Title/Abstract]) OR (“adenocarcinoma”[Title/
Abstract]) OR (“adenoma”[Title/Abstract]) OR (“carcinoma”[Title/Abstract])))) AND
((Early Diagnosis[MeSH Terms]) OR (“Early Diagnosis”[Title/Abstract]) OR (“Screen-
ing”[Title/Abstract]) OR (“Early Detection”[Title/Abstract]) OR (“Premature Diagnosis”
[Title/Abstract]) OR (“Premature Detection”[Title/Abstract])) AND ((“Metabolite*”[Title/
Abstract]) OR (“Metabolomic*”[Title/Abstract]) OR (“Metabolome”[Title/Abstract]) OR
(“Metabonomic*”[Title/Abstract]) OR (“lipidome”[Title/Abstract]) OR (“Lipidomic*”[Title/
Abstract])). Syntactic modifications were made to this search equation to make it compati-
ble with the other databases mentioned above. The search was limited by filters for articles
published from 1 January 2018 to 17 March 2023.

2.5. Study Selection

Two independent investigators (C.J.L. and G.P.) reviewed the articles obtained after
the database searches. Duplicates were eliminated and articles meeting inclusion/exclusion
criteria were selected by first reading the title and abstract and subsequently reading the
full article. The two authors performed the selection of the studies separately, compared
their results and made a joint decision.

2.6. Data Extraction

After the articles were selected, the data were extracted independently by the authors
(G.P. and C.J.L.) according to the Cohen kappa statistical test for agreements (more than
0.8) [22]. Two other authors (O.M.G.V. and M.P.) reviewed the articles if disagreements
between C.J.L. and G.P. could not be resolved by consensus. The data were extracted by
G.P., C.J.L., O.M.G.V. and M.P and classified in tables according to the characteristics of
the patient cohorts included in the studies (country; sample type; data set; study groups;
number of subjects; cancer stage; age mean; male/female ratio) and according to the results
of the differential metabolite expression analysis (list of metabolites and diagnostic values:
AUC; sensibility; specificity; accuracy). Missing data were indicated by ‘not reported (NR)’.
The data were sorted according to the type of sample used, except for those studies in
which multiple types of samples were analyzed, which were grouped according to the
sample in which the differential metabolites were found.
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3. Results

Figure 1 represents the flow diagram included in this systematic review. We started a
total of 176 articles selected from three databases, Pubmed (n = 57), Scopus (n = 50) and Web
of Science (n = 69). After eliminating duplicate articles and reviewing the inclusion and
exclusion criteria by title and abstract reading, 60 articles were selected. Of these, 47 articles
were eliminated after a review of the inclusion and exclusion criteria by full-text reading.
Thirteen articles resulted from the full-text screening, to which one article was added
through bibliographic search. Finally, 14 articles were included in this systematic review.
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Figure 1. Flow diagram of articles included in this systematic review.

After conducting a comprehensive systematic review, a total of 14 articles were identi-
fied that met the predetermined inclusion and exclusion criteria. These selected articles in-
vestigated various potential metabolite-based biomarkers for PDAC by analyzing different
sample sources. Out of the 14 articles, 2 utilized serum samples, 1 employed tissue samples,
5 utilized plasma samples and 2 explored other fluid samples (Figure 2A). Furthermore,
four articles combined multiple sample sources to enhance their findings. Additionally,
6 of the 14 articles used validation sets to confirm the reliability of their obtained results.
A very relevant aspect was the determination of the control groups used to compare the
metabolomic biomarkers found in PDAC. In fact, the use of chronic pancreatitis (seven
articles) and premalignant lesions (five articles), including at least one of their subtypes
(IPMN, MCN and SCN), was remarkable. In addition, other pancreatic pathologies were
represented, such as cystadenoma (one article), pancreatic neuroendocrine tumor (one
article), diabetes mellitus (two articles), pancreatic cyst (two articles) and a mix of other
types of pancreatic cancer (one article). Furthermore, two other pathologies were included
as controls: liver cirrhosis (one article) and colorectal cancer (one article) (Figure 2B). Most
of the studies were from European countries (five articles) and China (four articles). Further-
more, three studies with cohorts from the USA and two studies from Japan were included
(Figure 2C). Based on the type of metabolic analysis carried out to obtain the different
metabolites (Figure 2D), it can be seen that 50% of the articles used UHPLC/MS, with NMR
being the second most used technique.
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Figure 2. Graphical representation of the main characteristics of the studies included in this sys-
tematic review: (A) type of sample tested: serum, tissue, plasma, other fluids and articles with
various samples. (B) Different types of controls included in the reviewed articles: pancreatitis,
premalignant lesions, diabetes mellitus, pancreatic cyst and others. (C) Provenance of the cohorts:
China, USA, Europe, Japan. (D) Techniques used for metabolomic analysis: UHPLC/MS (ultrahigh-
performance liquid chromatography/mass spectrometry), including UHPLC/MS, UHPLC/QTOF-
MS (UHPLC/quadrupole time-of-flight—MS) and UHPLC/ESI-QTOF-MS (UHPLC/electrospray
ionization QTOF-MS); NMR (nuclear magnetic resonance), including 1H NMR (one-dimensional
proton NMR) and HR-MAS NMR (high-resolution magic angle spinning NMR) and other tech-
niques including MRM-MS (multiple reaction monitoring—MS), IEC (ion-exchange chromatogra-
phy), GC-MS (gas chromatography-MS), LC–MS/MS (liquid chromatography-MS/MS), SPE-LC–
MS/MS (solid-phase extraction—LC-MS/MS), UHPSFC/MS (ultrahigh-performance supercritical
fluid chromatography/MS), HPLC (high-performance liquid chromatography), CE-TOF/MS (CE,
capillary electrophoresis).

The obtained results are presented in two tables. Table 1 shows differences in terms of
the origin of the cohorts studied. The average ages for the distinct types of patients analyzed
were as follows: patients with PDAC, 66.4 (±4.6); pancreatitis, 55.5 (±6.8), premalignant
lesions (IPMN, MCN and SCN), 61.7 (±9.5) and, finally, healthy subjects, 61 (±6.1) years
old. Relevant information regarding the male/female ratio was found in the different study
pathologies to be 1.2 in PDAC patients, 4 in pancreatitis, 0.82 in premalignant lesions and
1.11 in healthy individuals. Table 2 shows the most important results, highlighting the
metabolites that were discovered, tested or validated. Based on this, the data of sensitivity,
specificity and precision, as well as the AUC, for the different combinations of metabolites
are presented.
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Table 1. Principal demographic characteristics of the studies included.

Study Cohort
Country Samples Data Set Study Groups Cancer Stage (n) Age

Mean M/F

[12] China

Tissue Discovery

PDAC (51) I (13), II (19), III
(12), IV (7) 60.9 29/22

Precursor lesions (14): IPMN (3),
MCN (4), SCN (7) - 55.35 8/6

Paired nontumor pancreatic tissue (40) - 63.35 23/17

Serum Training

PDAC (80) I (17), II (19), III
(23), IV (21) 61.2 48/32

Precursor lesions (36): IPMN (15), MCN
(9), SCN (12) - 58.05 23/13

Healthy subjects (48) - 60.35 31/17

Serum Validation

PDAC (22) I (8), II (14) 66.91 11/11
Precursor lesions (27): IPMN (6), MCN

(7), SCN (14) - 59.15 15/12

Healthy subjects (27) - 58.37 17/10

[23] China Tissue Discovery
PDAC (15) - NR NR

Benign pancreatic disease (13):
Cystadenoma and congenital cyst NR NR

[24] United
States

Tissue and
plasma

Training
(tissue),

validation
(plasma)

PDAC (19) IA, IB, IIA 61.57 13/6
Benign pancreatic disease (15):

pancreatitis and pancreatic
cystic neoplasms

50.73 6/9

Precursor lesions (20): IPMN (14),
MCN (3), others (3) - 57.9 7/13

Colorectal adenocarcinoma (28) - 60 NR

[25] China Serum Whole
data

Unresectable PDAC (36) III (9), IV (27) 63 NR
Resectable PDAC (36) I(30), II (6) 59 NR

[26]
Czech

Republic Serum

Training
(Phase III)

PDAC (430) T1, T2, T3, T4 NR 219/211
Healthy subjects (246) - NR 122/124

Pancreatitis (22) - NR 13/9

Validation
(Phase III)

PDAC (116) T1, T2, T3, T4 NR 56/60
Healthy subjects (16) - NR 6/10

[27]
Czech

Republic Plasma Whole
data

PDAC (43) - 67 26/17
Healthy subjects (29) - 63 10/19

T2DM (34) - 68 18/16
RODM (59) - 65 27/32

[28] Sweden

Plasma Whole
data

PDAC (10) - 76 6/4
IPMN LGD (20) - 68 10/10
IPMN HGD (10) - 74 3/7

SCNs (5) - 47 0/5

Cyst fluid Whole
data

PDAC (15) - 71 7/8
IPMN LGD (29) - 70 12/17
IPMN HGD (8) - 76 3/5

SCNs (5) - 47 0/5

[29] China Plasma Whole
data

PDAC (26) - 64.74 14/12
DM (27) - 56.93 14/13

Healthy subjects (23) - 60.22 12/11

[30] United
States Plasma

Training
(Cohort 1)

PDAC (20) IB (2); IIA (1); IIB
(7); IV (10) 70.4 10/10

Healthy subjects (10) - 60.2 4/6
Healthy subjects (60) - 62.0 30/30

Chronic pancreatitis (10) - 61.6 6/4

Training
(Cohort 2)

PDAC (9) IA (2); IIA (2); IIB
(2); IV (4) 73.1 3/6

IPMNs (34), MNC (11), SCN (6) - 62.2 19/32

Validation
PDAC (39)

IA (6); IB (10);
resectable No TNM

data (22)
62.0 21/18

Healthy subjects (82) - 62.8 43/39
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Table 1. Cont.

Study Cohort
Country Samples Data Set Study Groups Cancer Stage (n) Age

Mean M/F

[31] United
States Plasma Whole

data

IPMN (10) - 66 6/4
Localized PDAC (10) - 63 4/6

Locally advanced PDAC with nodal
disease (10) - 70 6/4

Unresectable metastatic (10) - 64 6/4
PNET (10) - 64 8/2

[32] Lithuania Plasma Whole
data

PDAC (50) IA (4); IB (4); IIA
(5); IIB (21); III (16) 65.5 28/22

Other pancreatic cancers (18) - 63.5 10/8
Chronic pancreatitis (7) - 58 4/3

[33] Germany

Plasma
Exploratory

study

PDAC (34)
IB (1); IIA (4); IIB

(8); III (11)
and IV (10)

64 15/19

Chronic pancreatitis (43) - 50 36/7
Liver cirrhosis (20) - 56 15/5

Healthy subjects and non-pancreatic
disease control blood donors (104) - 53 49/55

Serum and
plasma

Training

PDAC (158): serum (80) and plasma (78)
IA (2); IB (3); IIA
(18); IIB (59); III

(22); IV (54)
70 102/56

Chronic pancreatitis (159): serum (79)
and plasma (80) - 50 136/23

Liver cirrhosis (80): serum (80) - 61 60/20
Non-pancreatic disease control blood

donors (77): serum (77) - 55 51/26

Plasma Validation

PDAC (79) IA (1); IIA (11); IIB
(28); III (26); IV (13) 69 37/42

Chronic pancreatitis (80) - 51 62/18
Non-pancreatic disease preoperative

patients (80) - 68 42/38

[34] Japan Urine Validation
PDAC (67) - 72 48/19

Pancreatitis (11) - 67 8/2
Healthy subjects (9) - 69 9/0

[35] Japan Saliva Development
PDAC (39) III (6), IVa (12),

IVb (21) 66.1 21/18

Chronic pancreatitis (14) - 51.1 11/3
Healthy subjects (26) - 50.8 13/13

DM, diabetes mellitus; F, female; HGD, high-grade dysplasia; IPMN, intraductal papillary mucinous neoplasm;
LGD, low-grade dysplasia; M, male; MCN, mucinous cystic neoplasm; NR, not reported; PDAC, pancreatic ductal
adenocarcinoma; PNET, pancreatic neuroendocrine tumor; RODM, recent-onset diabetes mellitus; SCN, serous
cystic neoplasm; T2DM, type 2 diabetes mellitus.
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Table 2. The performances of the principal metabolites obtained from included studies.

Study Sample Metabolomics
Approach Data Set More Relevant

Comparison Results (Metabolites) AUC (CI-CI) Sens. (%) Spec. (%) Accuracy (%)

[23] Tissue HR-MAS NMR Discovery PDAC vs. benign
pancreatic disease

Lactate and ethanol > in PDAC.
Methylene of lipid (L-CH2),

myo-inositol, phosphocholine and
glycerophosphocholine < in PDAC

NR NR NR NR

[24]

Tissue UHPLC/ESI-Q-
TOF-MS

Discovery

Early PDAC
vs. benign

pancreatic disease

6-metabolite panel: 5-hydroxy-
tryptophan, LysoPE (18:2), PC
(16:0/16:0), PC (18:0/22:4), PE

(17:0) and SM (d18:1/16:0)

0.95 (0.78–1) 90 85 NR

High-risk PDAC
vs. benign

pancreatic disease

6-metabolite panel: 5-hydroxy-
tryptophan, LysoPE (18:2), PC
(16:0/16:0), PC (18:0/22:4), PE

(17:0) and SM (d18:1/16:0)

0.46 (0.21–0.73) NR NR NR

12 metabolites: 1-Indanol (with
12 different m/z) 0.836 (0.57–0.98) NR NR NR

Plasma MRM-MS Validation
Early PDAC
vs. benign

pancreatic disease

6-metabolite panel:
5-hydroxytryptophan, LysoPE

(18:2), PC (16:0/16:0), PC
(18:0/22:4), PE (17:0) and SM

(d18:1/16:0)

Failure in the analysis
due to discordant

metabolite abundance
results with respect

to tissue.

NR NR NR

[27] Plasma 1H NMR Whole data

PDAC vs.
healthy subjects

Increased: 3-hydroxybutyrate
and mannose

Decreased: creatine, ornithine,
alanine, uridine, serine, histidine,

carnitine, glutamine, glycine,
threonine, lysine and methionine

NR NR NR NR

T2DM vs.
healthy subjects

Increased: glucose
Decreased: 18 metabolites

(ornithine, uridine, histidine
and glutamine)

NR NR NR NR

PDAC vs. T2DM

Increased: 3-hydroxybutyrate, pro-
pylene glycol, mannose, propionate,

glutamate and tryptophan
Decreased: creatine, alanine, valine,

proline and lysine

NR NR NR NR

PDAC vs. (T2DM and
healthy subjects)

Increased: 3-hydroxybutyrate,
mannose and glutamate

Decreased: creatine, alanine, valine,
proline and lysine

NR NR NR NR
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Table 2. Cont.

Study Sample Metabolomics
Approach Data Set More Relevant

Comparison Results (Metabolites) AUC (CI-CI) Sens. (%) Spec. (%) Accuracy (%)

[28] Plasma UHPLC/MS Whole data
(HGD or PDAC) vs.

(LGD or SCNs)

Bacterial metabolite trimethylamine
oxide (9.12 µM) 0.82 (0.65–0.94) 80 90 NR

Taurochenodeoxycholate (204 nM) 0.73 (0.56–0.87) 80 70 NR

[29] Plasma UHPLC/MS Whole data

PDAC vs. (DM and
healthy subjects)

Increased: lysoPC (22:6), lysoPC
(20:3) and 1,2,4-nonadecanetriol

Reduced: lysoPC (16:0)
NR NR NR NR

(PDAC and DM) vs.
healthy subjects

Increased: lysoPC (20:4), deoxy-
adenosine, asparaginyl-histidine and

vaccenyl carnitine
Reduced: phytal, 2 (R)-hydroxy-

docosanoic acid, behenic acid,
catelaidic acid, 2-hydroxyphytanic acid,

phytosphingosine, cerebronic acid,
docosanamide and eicosenoic acid

NR NR NR NR

PDAC vs. healthy
subjects

Combination 1: lysoPC (22:6),
catelaidic acid, cerebronic acid,

docosanamide and
asparaginyl-Histidine

0.882 (0.846–0.918) 81.6
(76.0–87.2)

87.3
(83.4–91.2)

85.2
(82.1–88.3)

Combination 2: lysoPC (16:0),
catelaidic acid, cerebronic acid,

nonadecanetriol and
asparaginyl-histidine

0.974 (0.958–0.991) 89.0
(84.7–93.3)

90.6
(86.1–95.1)

88.6
(86.4–90.9)

Combination 3: lysoPC (22:6),
catelaidic acid, cerebronic acid,

docosanamide and
asparaginyl-histidine

0.879 (0.848–0.909) 83.4
(78.1–88.7)

89.6
(86.0–93.2)

86.5
(84.3–88.8)

Combination 4: lysoPC (16:0), lysoPC
(16:1), lysoPC (22:6) and lysoPC (20:3) 0.860 (0.823–0.896) 84.8

(78.5–91.1)
83.1

(77.8–88.3)
83.7

(80.1–87.4)

Combination 5: lysoPC (16:0), lysoPC
(16:1), lysoPC (22:6) and lysoPC

(20:3), catelaidic acid, cerebronic acid,
docosanamide, nonadecanetriol and

asparaginyl-histidine

0.919 (0.887–0.952) 89.4
(85.3–93.5)

77.3
(71.4–83.2)

84.1
(80.8–87.4)

CA19-9 0.821 (0.765–0.874) 79.1
(74.5–82.6)

82.6
(76.5–89.4)

81.3
(77.8–83.4)
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Table 2. Cont.

Study Sample Metabolomics
Approach Data Set More Relevant

Comparison Results (Metabolites) AUC (CI-CI) Sens. (%) Spec. (%) Accuracy (%)

[29] Plasma UHPLC/MS Whole data PDAC vs. DM

Combination 1 (same as PDAC vs.
healthy subjects) 0.586 (0.534–0.638) 50.3

(43.9–56.6)
62.9

(57.5–68.3)
58.6

(55.6–61.5)
Combination 2 (same as PDAC vs.

healthy subjects) 0.631 (0.580–0.682) 54.7
(49.3–60.0)

61.3
(54.4–68.3)

54.7
(52.2–57.2)

Combination 3 (same as PDAC vs.
healthy subjects) 0.569 (0.516–0.622) 46.3

(39.8–52.7)
61.2

(54.3–68.1)
54.7

(51.6–57.9)
Combination 4 (same as PDAC vs.

healthy subjects) 0.723 (0.691–0.754) 63.5
(58.9–68.1)

69.6
(64.1–75.1)

67.7
(64.1–71.3)

Combination 5 (same as PDAC vs.
healthy subjects) 0.680 (0.632–0.729) 58.9

(53.5–64.3)
67.1

(60.9–73.2)
65.9

(62.6–69.2)

[30] Plasma UHPLC/MS

Training PDAC vs. healthy
subjects

5-marker metabolite panel: (N1/
N8)-acetylspermidine (AcSperm),
DAS, lysoPC (18:0), lysoPC (20:3)

and an indole-derivative

0.903 (0.818–0.989) NR NR NR

CA19-9 0.859 (0.743–0.975) NR NR NR

Protein (CA19-9, TIMP1 and LRG1) 0.948 (0.883–1.000) NR NR NR

Protein (CA19-9, TIMP1 and
LRG1) + metabolite multiplex panel 0.972 (0.928–1.000) NR NR NR

Validation
PDAC vs. healthy

subjects

Indole-derivative 0.726 (0.631–0.822) 23.1 (95%
specificity)

11.3 (95%
sensitivity) NR

LysoPC (18:0) 0.842 (0.764–0.920) 51.3 (95%
specificity)

26.3 (95%
sensitivity) NR

LysoPC (20:3) 0.841 (0.757–0.925) 48.7 (95%
specificity)

11.3 (95%
sensitivity) NR

AcSperm 0.755 (0.659–0.852) 33.3 (95%
specificity)

27.5 (95%
sensitivity) NR

DAS 0.801 (0.712–0.890) 51.3 (95%
specificity)

27.5 (95%
sensitivity) NR

5-marker metabolite panel 0.892 (0.828–0.956) 66.7 (95%
specificity)

43.3 (95%
sensitivity) NR

CA19-9 0.800 (0.708–0.891) NR NR NR

Protein (CA19-9, TIMP1 and LRG1) 0.863 (0.782–0.946) NR NR NR

Protein (CA19-9, TIMP1 and
LRG1) + metabolite multiplex panel 0.924 (0.864–0.983) NR NR NR
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Table 2. Cont.

Study Sample Metabolomics
Approach Data Set More Relevant

Comparison Results (Metabolites) AUC (CI-CI) Sens. (%) Spec. (%) Accuracy (%)

[31] Plasma UHPLC/MS Whole data

Higher correlation
with disease state

than CA19-9

Four metabolites: lysine,
propionyl-carnitine,
C5-acylcarnitine and
dodecanedioic acid

NR NR NR NR

PNET High: uric acid, methionine NR NR NR NR

IPMN High: amino acid NR NR NR NR

Locally advanced
PDAC High: fatty acid and polyamines NR NR NR NR

Metastatic PDAC High: TCA cycle metabolites NR NR NR NR

Local PDAC No predominance of specific
principal components NR NR NR NR

[32] Plasma
Ion-exchange

chromatography Whole data

PDAC vs. (OPC and
chronic pancreatitis)

Ornithine, threonine,
phenylalanine, glycine, arginine,

histidine, glutamine,
3-methylhistidine and citruline

NR NR NR NR

PDAC vs. OPC

Ornithine, threonine,
phenylalanine, lysine, valine,

arginine, histidine, asparagine,
glutamine, 3-methylhistidine

and citruline

NR NR NR NR

Different PDAC stages

Inverse correlation between plasma
histidine concentrations and PDAC
stage. U-shaped curves from stage

I to stage IV were observed for
tyrosine, proline, glycine, arginine,

serine and threonine

NR NR NR NR
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Table 2. Cont.

Study Sample Metabolomics
Approach Data Set More Relevant

Comparison Results (Metabolites) AUC (CI-CI) Sens. (%) Spec. (%) Accuracy (%)

[33]

Plasma

GC-MS;
LC–MS/MS;

SPE-LC–MS/MS

Validation/test

PDAC (all stages) vs.
chronic pancreatitis

Biomarker signature 0.94 (0.91–0.97) 89.9 (81–95.5) 91.3
(82.8–96.4)

90.6
(84.9–94.6)

CA19-9 0.85 NR NR NR

Resectable PDAC
(stages IA-IIB) vs.

chronic pancreatitis
Biomarker signature 0.93 90.0

(76.3–97.2)
91.3

(82.8–96.4)
90.8

(84.2–95.3)
CA19-9 0.84 NR NR NR

PDAC (all stages)
vs. don-

pancreatic controls

Biomarker signature 0.9 NR NR NR

CA19-9 0.89 NR NR NR

Resectable PDAC
(stages IA-IIB) vs. Non-

pancreatic controls

Biomarker signature 0.88 NR NR NR

CA19-9 0.88 NR NR NR

Plasma and
serum

Training

PDAC (all stages) vs.
chronic pancreatitis

Biomarker signature: CA19-9 and
nine metabolites (Proline; SM

(d18:2,C17:0); PC (C18:0,C22:6);
isocitrate; sphinganine-1-phosphate

(d18:0); histidine; pyruvate; Cer
(d18:1,C24:0); SM (d17:1,C18:0))

Plasma: 0.96
(0.93–0.98)

Serum: 0.88

Plasma:
94.9 (87–97) Plasma: 85 Plasma:

90 (86–91)

CA19-9 Plasma: 0.88
Serum: 0.8 NR NR NR

Resectable PDAC
(stages IA-IIB) vs.

chronic pancreatitis

Biomarker signature Plasma: 0.99
Serum: 0.81

Plasma: 98.2
(93.3–99.4) Plasma: 85 Plasma: 91.6

(89.2–92.2)

CA19-9 Plasma: 0.91
Serum: 0.7 NR NR NR

PDAC (all stages) vs.
liver cirrhosis

Biomarker signature Serum: 0.87 NR NR NR
CA19-9 Serum: 0.79 NR NR NR

Resectable PDAC
(stages IA-IIB) vs. liver

cirrhosis

Biomarker signature Serum: 0.79 NR NR NR

CA19-9 Serum: 0.7 NR NR NR

PDAC (all stages) vs.
healthy subjects

Biomarker signature Serum: 0.95 NR NR NR
CA19-9 Serum: 0.88 NR NR NR

Resectable PDAC
(stages IA-IIB) vs.
healthy subjects

Biomarker signature Serum: 0.87 NR NR NR

CA19-9 Serum: 0.79 NR NR NR
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Table 2. Cont.

Study Sample Metabolomics
Approach Data Set More Relevant

Comparison Results (Metabolites) AUC (CI-CI) Sens. (%) Spec. (%) Accuracy (%)

[12] Serum UHPLC/Q-TOF-MS

Training

PDAC vs. healthy
subjects

Proline, creatine and palmitic acid 0.854 (0.842–0.865) 80 79.2 79.7
Proline, creatine and palmitic

acid + 19-9 0.919 (0.911–0.928) 82.5 89.6 85.2

Early PDAC vs.
healthy subjects

Proline, creatine and palmitic acid 0.880 (0.864–0.896) 88.9 79.2 83.3
Proline, creatine and palmitic

acid + CA19-9 0.900 (0.886–0.915) 86.1 85.4 85.7

PDAC vs.
precursor lesions

Proline, creatine and palmitic acid 0.865 (0.800–0.931) 76.3 86.1 NR
CA19-9 0.806 (0.719–0.892) 75 86.1 72.2

Proline, creatine and palmitic
acid + CA19-9 0.917 (0.868–0.966) 86.3 86.1 NR

CA19-9 negative
PDAC patients vs.
healthy subjects

Proline, creatine and palmitic acid 0.851 (0.840–0.863) 75.4 70.1 72

Validation

Early PDAC vs.
healthy subjects

Proline, creatine and palmitic acid 0.83 (0.792–0.866) 76.2 70.4 72.9
Proline, creatine and palmitic

acid + 19-9 0.949 (0.933–0.966) 85.7 81.5 83.3

Early PDAC vs.
precursor lesions

Proline, creatine and palmitic acid 0.852 (0.736–0.967) 86.4 77.8 NR
CA19-9 0.757 (0.616–0.897) 77.3 74.1 73.5

Proline, creatine and palmitic
acid + CA19-9 0.909 (0.825–0.993) 81.8 88.9 NR

[25] Serum UHPLC/Q-TOF-MS Whole data Unresectable PDAC vs.
resectable PDAC

Oleic acid 0.965 (0.922–0.991)

NR NR NR

Linoleic acid 0.979 (0.945–0.998)
Palmitic acid 0.984 (0.957–1)

Linoelaidyl carnitine 0.965 (0.918–0.992)
2-Octenedioic acid 1 (1–1)

3R,7R-1,3,7-Octanetriol 0.984 (0.949–1)
LysoPE (P-16:0/0:0) 0.981 (0.947–1)

3-Hydroxyanthranilic acid 0.957 (0.902–0.989)

[26] Serum UHPSFC/MS

Training and
Validation

PDAC vs.
healthy subjects

CA19-9 0.854 70.33 97.33 79.08
Lipids 0.983 95.97 90.46 94.18

CA19-9 + lipids 0.989 95.97 92.75 94.93

Training PDAC vs.
healthy subjects

The lipid species with the highest
relevance are SM (41:1), SM (42:1),

Cer (41:1), Cer (42:1), SM (39:1),
LysoPC (18:2) and PC (O-36:3)

NR NR NR NR
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Table 2. Cont.

Study Sample Metabolomics
Approach Data Set More Relevant

Comparison Results (Metabolites) AUC (CI-CI) Sens. (%) Spec. (%) Accuracy (%)

[34] Urine HPLC Validation
Normal pancreas,

PDAC and pancreatitis

CA19-9 NR 74.6 83.3 76.5
UP NR 55.2 70 58.6
CP NR 41.8 85 51.7

CA19-9 + UP NR 83.6 57.9 77.9
CA19-9 + CP NR 86.6 68.4 82.6

CA19-9 + UP + CP NR 89.6 52.6 81.4

[35] Saliva CE-TOF/MS Development
Normal pancreas,

PDAC and chronic
pancreatitis

Alanine, N1-acetylspermidine,
2-oxobutyrate and
2-hydroxybutyrate

0.887 (0.784–0.944) NR NR NR

[28] Cyst fluid UHPLC/MS Whole data

(SCN and LGD) vs.
(HGD and PDAC)

Acyl-C4 (0.237 µM) 0.83 (0.69–0.93) 80 80 NR
Acyl-C4-OH (0.0751 µM) 0.79 (0.67–0.90) 80 80 NR

Acyl-C2 (6.94 µM) 0.78 (0.65–0.89) 80 70 NR
Acyl-C6 (0.0374 µM) 0.77 (0.63–0.89) 80 80 NR

Choline (7.06 µM) 0.78 (0.65–0.89) 70 80 NR
Succinate (2.89 µM) 0.80 (0.67–0.91) 90 70 NR
Fumarate (1.11 µM) 0.76 (0.62–0.89) 70 80 NR

Malate (20.5 µM) 0.78 (0.64–0.90) 70 80 NR

SCN vs. PDAC

5-Oxoproline (247 µM) 1 (1–1) NR
Glutamine (264 µM) 1 (0.935–1) NR

Ethanolamine phosphate 1 (0.935–1) 100 90 NR
D-Glucose 0.971 (0.871–1) 100 90 NR

HGD vs. PDAC

Indole 0.89 (0.655–1) 90 90 NR
L-Adrenaline 0.85 (0.63–0.98) 90 70 NR

Malate 0.78 (0.52–0.96) 70 80 NR
S-Adenosyl-L-methionine 0.83 (0.61–0.96) 70 90 NR

Dopamine 0.83 (0.635–0.96) 60 90 NR
Tryptophan 0.82 (0.61–0.96) 80 70 NR

1H, one-dimensional proton; AUC, area under the curve; CE, capillary electrophoresis; Cer, ceramide; CI, confidence interval; CP, coproporphyrin; DAS, diacetylspermine; DM, diabetes
mellitus; ESI, electrospray ionization; GC, gas chromatography; HGD, high-grade dysplasia; HP, high-performance; HR, high-resolution; IPMN, intraductal papillary mucinous
neoplasm; LC, liquid chromatography; LGD, low-grade dysplasia; LysoPC, lysophosphatidylcholine; LysoPE, lysophosphatidylethanolamine; MAS, magic angle spinning; MCN,
mucinous cystic neoplasm; MRM, multiple reaction monitoring; MS, mass spectrometry; NMR nuclear magnetic resonance; NR, not reported; OPC, other pancreatic cancers; PC,
phosphatidylcholine; PDAC, pancreatic ductal adenocarcinoma; PNET, pancreatic neuroendocrine tumor; Q-TOF, quadrupole time-of-flight; RODM, recent-onset diabetes mellitus; SCN,
serous cystic neoplasm; Sens, sensitivity; SM, sphingomyelin; SPE, solid-phase extraction; Spec, specificity; T2DM, type 2 diabetes mellitus; UHPLC, ultrahigh-performance liquid
chromatography; UP, uroporphyrin.
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4. Discussion
4.1. Metabolites in Tissue

Since metabolism is a hallmark of cancer, many researchers have focused their efforts
on identifying metabolite-based biomarkers in different types of samples. PDAC is be-
ing extensively tested to determine the most effective types of samples and most reliable
biomarkers. In this context, tumor tissue is a very rich source for the search of biomarkers,
so many researchers have investigated this type of sample to discover metabolites with
diagnostic value. Recently, Zhao et al. [12] conducted one of the most extensive studies
using nontargeted metabolomics analysis based UHPLC-Q-TOF/MS in pancreatic tissue
(PDAC and nontumor) and serum samples. First, they analyzed 105 tissue samples derived
from 32 early PDAC, 19 late PDAC, 14 benign pancreatic neoplasms and 40 paired normal
pancreatic tissues. Subsequently, they built a training set (n = 164) including serum sam-
ples from 80 PDAC patients (36 early and 44 late stages), 36 benign pancreatic neoplasms
patients and 48 healthy subjects. In this study, 14 candidate biomarkers (amino acids and
fatty acids) were significantly altered in both serum and tissue samples. A validation
study with an independent cohort (n = 76) provided a panel to discriminate PDAC from
non-PDAC including proline, creatine and palmitic acid. The diagnostic performance
of the panel showed an AUC value to discriminate PDAC from healthy individuals of
0.854 and PDAC from benign pancreatic neoplasms of 0.865. Similarly, in the validation
cohort, the AUC values were 0.830 and 0.852 for the two comparisons, respectively. Fur-
thermore, the authors demonstrated that the combination of the metabolite panel and
CA19-9 increased the diagnostic yield to discriminate early PDAC from benign conditions
compared with the panel or CA19-9 individually (AUC = 0.909, 0.852, 0.757, respectively).
In addition, the biomarker panel was also able to discriminate CA19-9-negative PDAC
patients (n = 20, 25% of PDAC cases) from healthy controls, providing a sensitivity of
75.4% and specificity of 70.1% (AUC = 0.851). In the same line, Unger et al. [24] enrolled
19 early PDAC patients (I and II stages), 15 patients with benign conditions (9 paired normal
pancreas, 5 pancreatitis and 1 benign pancreatic cyst), 20 patients diagnosed with high-risk
premalignant lesions and 28 invasive colon cancer patients. These authors developed a
six-metabolite panel (5-hydroxytryptophan, lysophosphatidylethanolamine (lysoPE) (18:2),
phosphatidylcholine (PC) (16:0/16:0), PC (18:0/22:4), phosphatidylethanolamine (PE) (17:0)
and sphingomyelin (SM) (d18:1/16:0)) that accurately discriminated early PDAC from
benign cases (AUC = 0.95), reporting an 85% specificity and 90% sensitivity. This panel was
not able to discriminate high-risk conditions from the benign group (AUC 0.46) and failed
to classify colon cancer samples, suggesting PDAC specificity. Unfortunately, the validation
studies carried out in plasma samples did not show reproductible abundance results. Re-
cently, a study analyzing pancreatic tissue from humans (15 PDAC and 13 benign pancreatic
lesions) and Sprague Dawley rats was performed using HR-MAS NMR [23]. Higher levels
of lactate and ethanol and lower concentrations of methylene of lipid (L-CH2), myo-inositol,
phosphocholine and glycerophosphocholine were detected in PDAC patients in relation to
the control group. Interestingly, glycerophosphocholine, phosphocholine and myo-inositol
showed lower concentrations in PDAC (humans and rats) than controls and, conversely,
methanol showed higher levels. The authors did not determine the discriminatory ability
of these metabolites and did not perform validation studies.

The higher lactate levels reported may derive from the well-known Warburg effect, an
adaptive process through which tumor cells increase glucose uptake and its conversion
to lactate [36]. In fact, lactate has been suggested as a prognostic biomarker in cancer,
as high levels have been correlated with poor survival [37]. The Warburg effect also
rewrites amino acid and lipid metabolisms [38], which could explain the dysregulation
of proline or phospholipids such as PC and PE observed in PDAC patients. Furthermore,
the dysregulation of palmitic acid levels found in the reviewed studies is in line with the
association between elevated concentrations of this metabolite and increased metastatic
capacity [39], suggesting a perturbed fatty acid metabolism in the context of PDAC.
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4.2. Metabolites in Serum

The clinical implementation of the discovered biomarkers requires that they can be
detectable in easily accessible and minimally invasive biological sources, so peripheral
blood is one of the most desirable fluids for this purpose due to its reproducibility in
clinical routine. Serum metabolome and intestinal microbiota have been related in patients
with PDAC (n = 72) who were divided into two groups according to tumor resectability
(36 PDAC stages I and II and 36 PDAC stages III and IV) [25]. Serum samples analyzed us-
ing UHPLC-Q-TOF/MS showed differential levels of some amino acids, lipids, fatty acids
and carnitine derivatives between both groups of patients. Particularly, oleic acid, linoleic
acid, palmitic acid, linoelaidyl carnitine, 2-octenedioic acid, 3R, 7R-1,3,7-octanetriol, lysoPE
(P-16:0/0:0) and 3-hydroxyanthranilic acid individually yielded an excellent diagnostic
value (AUC > 0.9). In addition, the abundance of palmitic acid, oleic acid, linoelaidyl carni-
tine and 2-octenedioic acid was positively correlated with certain intestinal microorganisms
(g_Anaerostipes, g_Alistipes, s_indistinctus, s_catus and s_formicigenerans) but negatively with
others (g_Cloacibacterium, s_reuteri and s_hathewayi). Further studies will be needed to cor-
roborate these results. Recently, Wolrab et al. [26] conducted a wide study to determine the
serum lipidomic profile in PDAC patients. It included three experimental phases focused
on discovery, qualification and verification, each of them with training and validation
cohorts. In Phase I and II, the authors investigated the differences between healthy controls,
PDAC and pancreatitis patients by using different methods for the analysis (UHPSFC/MS,
shotgun MS and MALDI-MS) and then comparing the results between three laboratories
worldwide. Their results showed a different lipidomic profile between healthy controls
and PDAC patients, independent of the tumor stage. The discriminatory capacity was
comparable across the different methods used. Equally, the results in Phase I and Phase
II showed similar patterns between the concentrations of the main dysregulated lipids.
Finally, in Phase III, they investigated the applicability of serum lipidomic analysis for
distinguishing PDAC and control samples. The chosen method was UHPSFC/MS, and
830 samples were interrogated in the training set, including PDAC and chronic pancreatitis
patients and healthy individuals. Their results showed that the lipid species SM (41:1),
SM (42:1), ceramide (Cer) (41:1), Cer (42:1), SM (39:1), lysoPC (18:2) and PC (O-36:3) were
the most relevant to discriminate PDAC patients and healthy controls. Interestingly, they
also observed better diagnostic performance to distinguish both groups when the lipids
were combined with CA19-9 (AUC = 0.989) compared to the metabolites or CA19-9 alone
(AUC = 0. 983 and 0.854, respectively). Furthermore, they found that the concentration of
SM (41:1) and Cer (41:1) was downregulated in PDAC, in contrast to healthy controls and
pancreatitis samples, in which they were similar, suggesting that lipidomic analysis could
be a good approach for discriminating PDAC from chronic pancreatitis.

The results reported in serum-based studies suggest an alteration in lipid metabolism
related to PDAC, since these are metabolites commonly obtained as potential biomarkers
for this pathology when compared to different groups (benign pancreatic disease and
healthy conditions). In fact, it has been demonstrated that lipids play a key role in the
progression and dissemination of tumors [40]. The synthesis of fatty acids is enhanced in
various types of cancer and is one of the main metabolic adaptations of tumor cells. These
fatty acids serve as combustible for tumor cells and important processes such as energy
production or membrane biogenesis [41]. Fatty acids and other lipid-related molecules
have shown alterations in PDAC patients [42]. Due to their importance in tumorigenesis
and taking into account the previous studies discussed, lipids could be a promising target
for biomarker discovery.

4.3. Metabolites in Plasma

Plasma, a sample substance that offers advantages in terms of minimal invasiveness
and routine collection in clinical settings [43], was present in eight of the fourteen studies
of the review. PDAC patients were compared with different pancreatic diseases such as
precancerous pancreatic cysts, chronic pancreatitis, pancreatic neuroendocrine tumors or
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diabetes mellitus. Considering that pancreatic cysts have a prevalence of 49.1%, it is impor-
tant to develop strategies to differentiate benign pancreatic cysts from premalignant cysts,
which may lead to PDAC [44]. Therefore, one of the studies compared plasma samples
from PDAC patients and those with precursor pancreatic lesions such as IPMNs. In this
context, Morguell et al. [28] used metabolomics approaches to validate previous markers
and identify novel candidates of disease progression in plasma and cyst fluid from patients
diagnosed with PDAC (n = 10), IPMNs, either low-grade dysplasia (n = 20) or high-grade
dysplasia (n = 10) and benign serous cystic neoplasm (SCN) (n = 5). Using UHPLC/MS,
they identified novel markers of IPMN status and disease progression, including amino
acids, carbohydrates, conjugated bile acids, free and carnitine-conjugated fatty acids, purine
oxidation products and trimethylamine oxide. They showed that levels of the potentially
bacterial metabolites, trimethylamine oxide (AUC = 0.82) and taurochenodeoxycholate
(AUC = 0.73), correlated with cyst bacterial enrichment. The microbiome appears to be
closely linked to cancer-associated inflammation, making bacterial metabolites promising
biomarkers for detecting PDAC [45].

In order to find biomarkers for the early detection of PDAC, some studies also used
samples derived from patients with chronic pancreatitis. Mayerle et al. [33] conducted a
comprehensive study consisting of both exploratory and identification phases comparing
plasma and serum from PDAC patients with samples obtained from chronic pancreatitis,
cirrhosis patients and healthy donors. A validation study using plasma from 79 PDAC,
80 chronic pancreatitis and 80 patients with non-pancreatic disease was also conducted
to evaluate the discriminative power of the metabolic signature. Among 477 metabolites
identified using GC-MS and LC-MS/MS, a biomarker panel of 9 metabolites and CA19-9
showed excellent ability to discriminate between PDAC (all stages) and chronic pancreatitis
during the second phase (AUC = 0.96) and was successfully validated in the third one
(AUC = 0.94). This discriminatory potential also showed excellent results in terms of
distinguishing patients with resectable PDAC (stages I and II) from chronic pancreatitis
in both the identification (AUC =0.99) and validation (AUC =0.93) phases. This signature
included proline, SM (d18:2,C17:0), PC (C18:0,C22:6), isocitrate, sphinganine-1-phosphate
(d18:0), histidine, pyruvate, Cer (d18:1,C24:0) and SM (d17:1,C18:0). An alteration in the
metabolism of sphingolipids has been previously described in patients with PDAC [46,47].
Therefore, given the excellent diagnostic value obtained in this ambitious study and the
clinically relevant controls included in the analyses, the implementation of this biomarker
panel could improve the detection of PDAC in clinical practice. Tumas et al. [32] focused
on searching for differences in plasma amino acid concentrations between PDAC (n = 50)
and chronic pancreatitis (n = 7) or other pancreatic cancers (n = 18). Ion-exchange chro-
matography showed the differential expression of several amino acids between PDAC and
patients with other cancers and between PDAC and a combined group including patients
with other cancers or chronic pancreatitis. There was also a significant inverse correlation
between PDAC stage and plasma histidine levels. Dysregulated amino acid expression
could result from the increased demand to support the high growth and proliferation rate
of pancreatic tumor cells. In addition, it has been reported that glutamine and arginine can
promote cell proliferation and the growth of tumors [48].

On the other hand, another very extensive study based on the discovery, training
and validation phases was performed for the early detection of PDAC by using plasma
samples [30]. For this purpose, the discovery assay comparing patients with PDAC,
chronic pancreatitis and benign pancreatic cysts and healthy individuals resulted in a
five-metabolite panel that was also checked in a training (PDAC and healthy groups). A
validation study was then performed in an independent cohort of 39 PDAC patients and
82 healthy controls. The results showed that this five-metabolite panel (acetylspermidine,
diacetylspermine, an indole derivative and two lysoPCs) efficiently discriminated PDAC
from healthy subjects (AUC = 0.903 and 0.892 in the training and validation sets, respec-
tively) and exceeded the predictive ability of CA19-9 alone (AUC = 0.859 and 0.800 in
the training and validation sets, respectively). Remarkably, when the panel was com-
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bined with a previously validated protein-based biomarker panel (CA19-9, LRG1 and
TIMP1), the diagnostic performance was improved in both the training and validation sets
(AUC = 0.972 and 0.924, respectively). Although this panel had an encouraging diagnostic
yield, it should be noted that patients with chronic pancreatitis and benign pancreatic
cysts were only included as controls in the discovery phase, but not in the final stages
of training and validation. In addition, Moore et al. [31] performed UHPLC/MS analysis
on samples derived from patients with PDAC (localized, locally advanced, metastatic),
pancreatic neuroendocrine tumor or IPMN to assess whether metabolites could differentiate
PDAC stages. Although four of them (lysine, propionyl-carnitine, C5-acylcarnitine and
dodecanedioic acid) showed high correlation to PDAC, none distinguished malignancy
progression. Furthermore, each disease group was associated with a group of metabolites:
elevated amino acids were associated with IPMN, high levels of uric acid and methionine
with pancreatic neuroendocrine tumor, locally advanced PDAC was associated with high
fatty acids and polyamines and metastatic PDAC with elevated tricarboxylic acid (TCA)
cycle. Local PDAC did not show overexpression of specific metabolite groups. Increased
fatty acid synthesis is one of the most important aberrations in cancer cell metabolism,
as it is widely recognized that fatty acids are essential for carcinogenesis and tumor cell
survival [49]. Similarly, polyamine metabolism is also deregulated in several types of
tumors, including PDAC [50,51].

Diabetes mellitus is another pancreatic pathology with increased risk for PDAC [52].
Therefore, some researchers analyzed this group of patients for biomarker discovery. In
particular, in this review, two of the studies carried out with plasma samples compared
both diseases [27,29]. First, Xu et al. [29] compared the plasma metabolic profiles of PDAC
patients (n = 26) with diabetes mellitus (n = 27) and healthy volunteers using UPLC-HRMS.
The results showed high expression of lysoPC (22:6 and 20:3) and 1,2,4-nonadecanetriol
and low lysoPC (16:0) in the PDAC group versus the diabetes group. In fact, a panel
including lysoPC (22:6), catelaidic acid, cerebronic acid, nonadecanetriol and asparaginyl-
histidine discriminated PDAC from healthy controls (AUC = 0.974; 89% of sensitivity and
91% of specificity). However, the panel used to distinguish PDAC from diabetes (lysoPC
(16:0, 16:1, 22:6 and 20:3)) did not provide any remarkable results (AUC = 0.723). Second,
Michálková et al. [27] investigated the association of PDAC (n = 43) with type 2 diabetes
mellitus (T2DM) (59 recent-onset and 34 long-term) through metabolomic analysis of
blood plasma using 1H NMR. Seven healthy controls were also included in the study. A
panel of eight metabolites (increased levels of 3-hydroxybutyrate, mannose and glutamate
and decreased levels of creatine, alanine, valine, proline and lysine) was proposed and
successfully tested to discriminate PDAC from patients with T2DM and from healthy
controls. They also suggested that PDAC significantly alters the metabolic pathways
of tryptophan and propionate, as the levels of these two metabolites were shown to be
elevated in PDAC but not in T2DM patients in comparison to healthy controls. In addition,
a predictive model was developed and tested in patients with recent-onset T2DM. As a
result, six of these patients were classified as PDAC, and an adequate correlation with
the prediction was observed as one of the patients eventually developed PDAC and three
of them were later diagnosed with chronic pancreatitis. According to these results, 3-
hydroxybutyric acid is implicated in promoting PDAC cell growth and progression by
fueling the TCA cycle [53], while glutamate has been reported to increase the risk of
precancerous pancreatic lesions becoming malignant [54].

4.4. Metabolites in Other Fluids

Among the other fluids used to obtain metabolites for early diagnosis in PDAC, urine,
saliva and cystic fluid were found. There are few studies in this regard, although we can
find some, such as the work of Ikeura et al. [34], who conducted a test for two metabolites
in urine, uroporphyrin and coproporphyrin. These authors carried out a prospective
study in a Japanese population of 67 patients with PDAC, comparing the results obtained
for these two metabolites in 11 patients with pancreatitis and 9 healthy controls. They
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collected urine samples from patients and controls before and after the administration
of 5-aminolevulinic acid. This causes uroporphyrin levels to increase in patients with
PDAC. This metabolite may be considered as a novel biomarker for the detection of PDAC.
Furthermore, both can be combined with CA19-9, increasing its sensitivity from 74.6% to
89.6%. By using saliva samples, Asai et al. [35] carried out a study in a cohort of 53 patients,
14 with chronic pancreatitis and 39 with PDAC (6 patients in stage III and 33 in stage
IV), and 26 controls. In this study, they used saliva samples to validate a set of four
metabolites, alanine, N1-acetylspermidine, 2-oxobutyrate and 2-hydroxybutyrate, which
provided an AUC of 0.887 in the discrimination between PDAC patients (all stages) and
chronic pancreatitis. Cystic fluid was used by Morguel et al. [28] in a cohort involving
15 PDAC cases, 37 patients with IPMN (8 of high and 29 of low grade) and 5 patients
with SCN. From the cystic fluid, these authors validated a total of 161 metabolites, of
which the most prominent were acyl-carnitines (4, 4-OH, 2, 5), choline, succinate, fumarate
and malate. The acyl-carnitine group was highlighted as the best discriminator between
PDAC or high-grade and non-cancerous cysts (SCN and low-grade IPMN). Among these
metabolites, acyl-C4 was the one with the highest AUC, with a value of 0.83. However,
the succinate presented the highest sensitivity, with a value of 90%. Regarding specificity,
all the compounds presented values of 80% except acyl-C2 and succinate, which showed
values of 70%. Despite the fact that the use of these fluids for the early detection of PDAC
is rare, there are more and more studies that develop or validate a set of metabolites for
them, since fluids such as urine or saliva are obtained easily without being invasive for
the patient.

4.5. Metabolic Pathways

MetaboAnalyst was used to analyze the altered metabolic pathways in PDAC ac-
cording to the most relevant metabolites found in this systematic review. The results of
the pathway analysis are presented graphically in Figure 3. The enrichment of certain
metabolites in a pathway was calculated based on raw p-value < 0.05 and also considering
the adjusted p-value of the false discovery rate (FDR) < 0.05, due to the large number of
pathways tested. These data are collected in Table S1. Furthermore, a pathway impact
value derived from topology analysis equal to or greater than 0.2 was considered significant.
A total of nine pathways were detected related to the metabolites significantly associated
with PDAC, as shown in Table 2.

4.5.1. Amino Acid Metabolism

Interestingly, five of the significantly perturbed metabolic pathways were related
to amino acid metabolism, including (i) arginine biosynthesis, (ii) arginine and proline
metabolism, (iii) alanine, aspartate and glutamate metabolism, (iv) glycine, serine and
threonine metabolism and (v) phenylalanine, tyrosine and tryptophan biosynthesis. Amino
acids play an important role as substrates for maintaining the energetical requirements of
cancer cells. The reprogramming of amino acid metabolism is one of the mechanisms of
cancer to adapt to nutrient-poor situations in the tumor microenvironment (TME) [55].

Two of the pathways that we found to be significantly altered in PDAC are related
to arginine: arginine biosynthesis and arginine and proline metabolism. The alteration
of arginine metabolism in PDAC has been previously described [56]. Arginine is a non-
essential or semi-essential amino acid involved in several biological functions such as cell
proliferation, survival and protein synthesis, and it also acts as a precursor for the synthesis
of molecules involved in tumorigenesis and tumor progression in PDAC, such as nitric
oxide and polyamines, among others [57,58]. Arginine biosynthesis upregulation has been
reported in pancreatic tumors [59]. Arginine metabolism facilitates PDAC progression,
and its depletion has been associated with the suppression of cell invasion, migration and
proliferation and the promotion of autophagy and apoptosis. [56,60]. Indeed, PDAC with
low argininosuccinate synthetase 1 expression, an enzyme involved in de novo arginine
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synthesis, may be sensitive to arginine deprivation therapy, such as arginine deiminase,
making it a potential therapeutic strategy [61].
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On the other hand, arginase overexpression, key in arginine metabolism, has been
associated with obesity, which is known to predispose to PDAC [62]. In addition, ornithine
produced by arginase serves as a precursor for proline synthesis, which supports collagen
production [61]. This proline-rich collagen favors the PDAC cell metabolism, promoting
tumor cell survival [63].

One of the most significantly altered pathways is alanine, aspartate and glutamate
metabolism, which are non-essential amino acids related to different pathways implied
in PDAC metabolism. Alanine can be converted to pyruvate, which can be oxidized in
the TCA cycle or used to synthesize glucose through gluconeogenesis. Sousa et al. [64]
demonstrated that stroma-associated pancreatic stellate cells secreted alanine and other non-
essential amino acids that served as fuel for the TME of PDAC. In this line, Parker et al. [65]
described how PDAC cells increased the expression of alanine transporters, while cells
lacking transporters showed impaired metabolism, leading to decreased tumor growth.

With regard to glutamate and aspartate, both participate in transamination reactions
where an amino group is transferred to a keto acid to form new amino acids. The resulting
keto acids (pyruvate, oxalacetate) serve as intermediates of the TCA cycle. Meanwhile, new
amino acids such as aspartate, alanine and glutamate are also produced.

The influence of glutamate in glucose metabolism has also been described. Li et al. [66]
showed that glutamate produced by nerve cells enhances glycolysis in PDAC cells, promot-
ing perineural invasion. Moreover, glutamine metabolism, which acts as a substrate for
the generation of glutamate, has been described as one of the main metabolic pathways
that fuels PDAC cells, together with glucose metabolism [48]. In fact, PDAC cells are espe-
cially sensitive to glutamine deprivation in the absence of asparagine [67]. These results

http://www.metaboanalyst.ca/
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provide evidence for the relevance of the glutamate/glutamine pathways in the context of
PDAC. Aspartate is one of the main metabolites obtained from mitochondrial glutamine
oxidation, and it is transported to the cytosol for nucleotide and protein biosynthesis [68].
Anglin et al. [69] demonstrated that aspartate plays an important role in the glutamine
metabolism reprogramming observed in PDAC by using knockdown models both in vitro
and in vivo.

Glycine, serine and threonine metabolism has also been shown to be enriched in
our analysis. Serine and glycine are two highly related non-essential amino acids ob-
tained by tumor cells through their extracellular uptake and/or intracellular synthesis,
which includes de novo serine synthesis and the reversible interconversion of serine into
glycine [70,71]. Thus, in a nutrient-starved environment, tumor cells are able to increase
the availability of these amino acids for the construction of macromolecules, protection
against oxidative stress and promotion of immunosuppression, therefore strongly support-
ing oncogenesis [70]. In fact, this de novo serine and glycine synthesis pathway has been
observed to be upregulated in patients with non-small cell lung cancer [72]. Closely related
to glycine and serine is the metabolism of threonine. Glycine can also be generated from
threonine by threonine dehydrogenase. In vitro studies on mouse embryonic stem cells
indicate that threonine deprivation promotes cell death by drastically reducing histone
methylation [73]. Threonine is also related to the pyruvate pathway, and it is produced
through the cleavage of threonine into glycine, which is converted to pyruvate by serine
hydroxymethyltransferase. The pyruvate route is an important pathway in PDAC (as
described below) since this amino acid can be obtained through different non-specific
metabolic routes [74].

One of the most-affected metabolic routes in PDAC patients was phenylalanine, tyro-
sine and tryptophan biosynthesis, which showed the highest impact index in our analysis
(Table S1). These aromatic amino acids are important precursors to biological compounds
necessary for the proper functioning of an organism, and their alteration can lead to the
development of various diseases, including cancer [75]. These three metabolites and inter-
mediaries of this pathway have been found to be altered in some investigations included
in this study, suggesting their use as PDAC biomarkers. Phenylalanine, tyrosine and
tryptophan are precursors of molecules with potential for malignancy, such as pheno-
lic and indolic compounds [75,76]. In particular, tryptophan has been reported as the
metabolite most frequently altered in several cancers [77], and it has been related to im-
munosuppression by inhibiting antitumor immune cell proliferation and favoring T cell
apoptosis, due to which it is being investigated as a target for cancer immunotherapy [78].
Furthermore, tryptophan metabolism involves the enzyme indoleamine 2,3-dioxygenase 1
(IDO1), which is a prognostic marker for PDAC that impacts on the maturation of dendritic
cells [79]. Phenylalanine metabolism has also been related to the modulation of immune
responses by affecting the proliferation and activation of T cells [76]. The connection
between this metabolic pathway and the antitumor immune response, together with the
fact that metabolic disturbances are an early event in cancer development, suggests the
feasibility of investigating this pathway to identify PDAC biomarkers. In fact, altered levels
of aromatic amino acids in the gastric juice of patients with early gastric cancer have been
reported [80]. Similarly, these three amino acids were shown to be dysregulated in plasma
samples derived from patients with esophageal cancer [81].

4.5.2. Carbohydrate Metabolism

Carbohydrate metabolism has also been shown to be disturbed in our pathway analy-
ses, revealing the role of the TCA cycle and pyruvate metabolism in PDAC. This metabolic
reprogramming is driven both extrinsically to the cell through interactions with stromal
cells and intrinsically by mutated KRAS signaling, which is very common in this type of
cancer [82]. Pyruvate metabolism is key in the cellular metabolic network, being a link
between the cytosolic and mitochondrial metabolisms. The cytosolic pyruvate can either
remain in the cytosol to be converted into lactate or it can be transported into the mito-
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chondria [83]. Specifically, lactate was one of the metabolites included in this systematic
review, and it was reported to be increased in PDAC patients [23]. This is in line with
the excessive production of lactate derived from glucose uptake by tumor cells observed
in cancer patients, leading to the acidification of TME and, consequently, to immuno-
suppression, metastasis and tumor angiogenesis [83,84]. Moreover, under conditions of
limited glucose, lactate can be incorporated into the TCA cycle and be a metabolic fuel
for tumor cells [84]. Other metabolites also involved in carbohydrate metabolism and
reported as PDAC biomarkers in this review are succinate, fumarate and malate, among
others. Hassan et al. [85] studied the serum metabolic profile of patients with breast cancer
and observed an altered carbohydrate metabolism in obese patients. On the other hand,
other authors demonstrated that the carbohydrate metabolism was related to the outcome
of chemotherapy in PDAC patients, showing upregulated levels of intermediates of the
TCA cycle and glycolysis, such as pyruvate, which were associated with non-response
after gemcitabine-based chemotherapy [86]. These data suggest a key role for carbohy-
drate metabolism in the development and poor prognosis of PDAC, making this metabolic
process a target in the search for biomarkers.

4.5.3. Lipid Metabolism

Pathway analyses also showed altered lipid metabolism, highlighting the importance
of glycerophospholipid metabolism and sphingolipid metabolism in PDAC, while linoleic
acid metabolism emerged among the pathways with the highest, although not significant,
impact (Table S1). Glycerophospholipid metabolism is currently understood as relevant
to cancer development and progression [87]. Among the lipids belonging to this pathway,
phosphatidylserine, PC and PE were suggested as biomarkers. Kaoutari et al. [88] found
a significant relationship between the expression of glycerophospholipids in PDAC and
the prediction of patient survival and resistance to gemcitabine, closely related to the
multi-drug resistance phenotype. Other authors such as Wang et al. [89] analyzed the
sphingolipid pathway in addition to the glycerophospholipid pathway, concluding that
both were deregulated in PDAC. Alterations in this lipid metabolism were also related
to the initiation and development of this tumor type. It has been seen that sphingolipid
metabolism is highly related to the different metabolic subtypes of PDAC. In their study,
Mahajan et al. [90] showed that the metabolism of sphingolipids can divide PDAC pa-
tients into three subtypes according to the altered metabolic pathways. By analyzing the
metabolic pathways of sphingolipids, glycolipids and phospholipids, it was observed
that the first subtype presented a mixed phenotype of metabolic pathways, while phe-
notype 2 showed an enrichment of and subtype 3 a reduction in these routes, with the
most commonly altered pathway being the sphingolipid metabolism. These metabolites
are related to the biosynthesis of unsaturated fatty acids, apoptosis and autophagy. In
relation to apoptosis, tumor cells can modify their metabolism to increase cell survival
and avoid cell death. This can be achieved through several routes, such as increasing the
levels of complex sphingolipids that have anti-apoptotic functions and, therefore, drug
resistance, or accumulating ceramide or sphingosine-1-phosphate to increase cell survival,
among others [91].

On the other hand, long-chain polyunsaturated fatty acids such as linoleic acid may
promote the progression of PDAC as they are related to the energy generation needed by
tumor cells to grow. This fatty acid has been shown to be significantly decreased in patients
with unresectable PDAC compared to patients with resectable PDAC [25]. Although no
significant FDR results (FDR > 0.05) were obtained related to the pathway of this metabolite
in the analysis carried out in this systematic review, it is a metabolic route with the highest
impact (Table S1). This may be due to the fact that there is evidence of the involvement of
fatty acids in the survival of the tumor cells and in the development of metastases [49].

Despite the fact that a number of new biomarkers for the early diagnosis of PDAC
have been reported in recent years, there is no firm molecular list to be implemented in
clinical routine. Our results support those of Long et al. [20] in their previous review
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on metabolite-based biomarkers in PDAC, with amino acid metabolism being the most
enriched, highlighting the (i) alanine, aspartate and glutamate, (ii) glycine, serine and
threonine and (iii) arginine and proline pathways. In addition, after analyzing the results of
the present systematic review, we suggest that the phenylalanine, tyrosine and tryptophan
biosynthesis pathway, also related to amino acid metabolism, is altered in PDAC patients.
Moreover, based on our results, we propose that lipid metabolism should be considered
as a target in the search for biomarkers since it is significantly altered in PDAC patients.
In addition, unregulated glycolysis is a hallmark of cancer, and several metabolites of this
pathway have been studied as potential biomarkers, such as glucose and lactate in PDAC
tissue and body fluids, although metabolomics is constantly evolving.

One of the most outstanding limitations that we can find after carrying out this review
is the lack of information about the patients in some articles, such as data related to the
tumor phase. Another limitation is related to the techniques used in the selected articles,
highlighting the need to standardize methodologies used by different authors to allow
translational comparisons of the results obtained. Furthermore, it is necessary to underline
the importance of the metabolite validation stage, as it consolidates the findings obtained
during the initial discovery phase. Although this step is present in most of the articles,
it is not available for all metabolites, requiring more studies to validate the relevance of
the data obtained. In addition, the diagnostic value of the metabolites studied has not
been indicated in all the articles analyzed, which is very important to develop an accurate
panel for the early detection of PDAC. On the other hand, the lack of information regarding
all the metabolites identified in the reviewed articles could result in additional metabolic
pathways involved in PDAC not reported in this review, since our pathway analysis was
performed with the most relevant metabolites listed by the authors.

5. Conclusions

PDAC is a highly lethal disease with a low survival rate due to its late diagnosis.
Current diagnostic markers, such as CA19-9, have limited sensitivity and specificity, high-
lighting the need for new biomarkers for early detection. Metabolomics has emerged as
a promising approach to identify potential biomarkers for this disease. Our systematic
review shows promising metabolite panels with diagnostic capacity to be applied in clinical
oncology to the diagnosis of PDAC, demonstrating the potential of this technology to
identify new diagnostic biomarkers for this tumor type. Some of the studies discussed
in this review used samples from patients with pre-malignant lesions at high risk for
PDAC. However, to our knowledge, no metabolomics-based fingerprints have yet been
found to classify this group with acceptable accuracy. Therefore, studies that include this
group of patients for the biomarker discovery phase are necessary in order to anticipate
the development of PDAC. Promising candidates for future metabolite studies based on
the results of the present systematic review should focus on the key components of two
main perturbed metabolic processes: amino acid and lipid metabolisms. In this sense, it
would be interesting to study tryptophan and glutamine as promising candidate molecules
from amino acid metabolism and pyruvate-related metabolites such glycine, alanine and
threonine. Regarding the metabolism of lipids, SM and PC, which have been detected in
tissue, plasma and serum samples, could represent reliable biomarkers for early PDAC
detection. In addition, the association of metabolite panels with CA19-9 has been shown to
provide greater diagnostic performance. Nevertheless, it is also important to investigate
potential biomarkers in CA19-9-negative patients, as they constitute about 25% of PDAC
cases according to previous observations. Although metabolites are one interesting ap-
proach to improve the prognosis of PDAC patients through early detection, further studies
will be necessary for their validation as useful pancreatic cancer biomarkers.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo13070872/s1, Table S1: Result from pathway analysis.
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