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Abstract: This study tested if, in elite basketball players’ training, the integration of a cognitive
component within a multi-component training (MCT) could be more effective than an MCT with
motor components only to improve both physical and cognitive skills. To this purpose, we designed
an MCT focussed on sprint and agility incorporating a cognitive-motor dual-task training (CMDT)
focussed on decision-making speed. Specific tests on sprint, agility and decision-making, and
event-related potential (ERP) during the latter test were evaluated before and after the intervention.
Thirty elite basketball players were recruited and divided into an experimental group executing
CMDT integrated into the MCT and a control group performing the motor MCT (without cognitive
components). The MCT with CMDT session was performed by four athletes simultaneously that
executed different circuits. One circuit was the CMDT which was realized using interactive devices.
Results on physical performance showed that only the experimental group improved in sprint
and agility and also shortened response time in the decision-making test. At the neural level, the
experimental group only shows an increase in the P3 ERP component, which has been associated
with a series of post-perceptual cognitive functions, including decision-making. In conclusion, CMDT
implemented within an MCT, likely stimulating more than physical training cortical plasticity, could
be more effective than a motor MCT alone in improving the physical and cognitive skills of elite
basketball players in five weeks only.

Keywords: cognitive-motor dual-task training; multi-component training; electroencephalographic
(EEG); decision-making; decision speed

1. Introduction

Selecting the appropriate training is fundamental for reaching peak performance in any
sport. In open-skill sports, the coordination of technical, physical, and mental components
to be trained may represent a real challenge for coaches and sport psychologists. Multi-
component training (MCT) may help improve in the same training session physical fitness,
playing technique, cognitive performance, and consequently, the sport performance of
athletes. In the same training session, MCT usually incorporates two or more exercise
components such as agility, balance, speed, strength, or technique. MCT is usually used
in athletes as warmup training to prevent injuries [1] but was hardly used inside training
sessions [2,3], and the use of cognitive components was never considered. There is also
evidence that in basketball players, MCT can improve anaerobic power and capacity, agility,
and vertical jump height [4].

Another way to help coaches and sports psychologists train technical, physical, and
mental components in a single session could be using cognitive-motor dual-task training
(CMDT), in which cognitive and motor skills are trained simultaneously. CMDT is proven
to be more effective than cognitive and motor training alone in improving both motor and
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cognitive performance [5]. CMDT can be designed to train specific motor and cognitive
functions and has been successfully applied to improve dribbling performance in a pro-
fessional basketball player [6–8]. CMDT uses technological devices to pace the athlete’s
exercise and give immediate feedback about performance [9] and may use visuomotor
response tasks during exercise programs [10,11].

Thus, based on these considerations, we here evaluated an MCT focused on sprint and
agility incorporated into CMDT on decision-making speed that has not yet been studied in
the literature.

In addition, to study the neural correlate of the possible CMDT effects, the event-
related potentials (ERPs) method was used to analyze the brain activity associated with
decision-making processes during the go/no-go task. To this aim, the P3 ERP component
was considered because it is widely recognized to reflect cognitive processes associated
with post-perceptual processing, such as stimulus evaluation and decision-making [12–15].
Decision-making is the cognitive process of controlling for the presence of task-relevant
stimuli and mapping these onto appropriate responses [16]. The P3, with a medial centro-
parietal scalp distribution, is evoked by stimuli evaluation in tasks that require any form of
action, such as a response to targets [12,17–19]. The P3 amplitude positively correlated to
response time (for normative data, see [20]) and with greater confidence in the decision [21].
Considering that the P3 amplitude facilitates responding based on the decision we expect
after the MCT combined with CMDT, larger P3 and faster response time in the experimental
group only.

In the present study, we sought to prove if the use of CMDT within an MCT could be
more effective than a motor MCT alone in improving the physical and cognitive skills of
elite basketball players. To this aim, we designed an MCT focussed on sprint and agility
with the addition of a CMDT focussed on decision-making speed.

2. Materials and Methods
2.1. Participants

Thirty young basketball players (15 females and 15 males with ages ranging from
15 to 17 years) were recruited for the study. All athletes were part of the “Stella Azzurra
Basketball Academy Rome” sport society. The sample size was determined using the
G*power 3.1.9.7 statistical program for 2 × 2 within-between repeated measure test. We set
the effect size f at 0.281 based on the mean significant partial eta squared effect size obtained
in [6–8], which used a similar statistical design. The α level was set at 0.05, and the desired
power (1−β error probability) at 0.95 [22]. The inclusion criteria were: no injuries prior to
preliminary testing, being actively involved in competitive basketball for at least 6 years,
and competing regularly in under-18 championships. Both parents of all participants
gave their informed consent before participating in this study in accordance with the
Declaration of Helsinki after approval by the local ethical committee of the University of
Rome “Foro Italico”.

2.2. Study Design

In order to evaluate the efficacy of the proposed training, a randomized-control trial
was applied to elite basketball players using the 10 m sprint and change of direction (COD)
tests as sprint and agility outcomes. The Go/No-go task was used to evaluate the decision-
making speed. This task, in which participants produce motor responses to targets and
do not respond to non-targets, is widely used to study the neural basis of motor response
evaluation and execution [12].

A graphical representation of the experimental procedure is in Figure 1. Before
and after the experimental protocol, all participants completed specific tests for sprint
performance, COD (physical tests), and the Go/No-go for decision-making speed, which
was performed during electroencephalographic (EEG) recording. Physical tests were
executed two days before and after EEG recording. Cognitive tasks and EEG recordings
were performed one day before and after EEG recording.
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Figure 1. Experimental procedure.

Participants were randomly assigned to two groups using a random table: 15 in the
experimental group (Exp) and 15 in the control group (Con). Then, groups were balanced
for sex to avoid potential sex-related bias, as found in [8]. Groups did not differ in age or in
expertise. Regarding expertise, the McKinney classification [23] suggests an elite level.

2.3. Physical Tests

Two physical tests based on sprint and COD, fundamentals of basketball, were used
to verify the treatment effects on performance. These tasks were based on linear speed
capabilities. More specifically, the 10 m sprint test was used to measure acceleration and
COD to test agility. These tests were conducted on the basketball court. Photocells were
used to record completion time in seconds. In addition, one semaphore (Witty-SEM device
described below) was placed in front of the athletes. The semaphore showed a countdown
(e.g., 3-2-1), and after displaying, the number 1 became black. Then, with a random interval
(1–5 s), the semaphore became green, indicating the athletes to start, in separate sessions,
the sprint or the COD test. In the sprint test, athletes performed a linear 10 m run-up to
the “stop” position signaled by the photocells. In the COD test, athletes were placed in
front of the countdown semaphore, but additionally, the green starting signal was an arrow.
Depending on the direction of the green arrow given, they had to sprint right or left for
5 m (marked by a cone), change direction, run back for 10 m up another cone, change
direction again, and finally run for another 5 m back to their central starting position. All
the exercises were repeated three times, and the best time for each athlete was taken into
account. In order to verify the reliability of the test, the three repetitions were submitted
intraclass correlation calculating the intraclass correlation coefficient (ICC) for two-way
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mixed effects. This analysis showed high correlations among repetition for both the pre
(ICC = 0.78) and the post-test (ICC = 0.79), indicating good inter-rater reliability of the test.

2.4. Go/No-Go Task

This task was performed during EEG recording in a sound-attenuated, dimly little
room. Athletes were comfortably seated in front of a computer screen at a distance of
114 cm from their eyes with a response pad positioned under their right index finger. A
yellow fixation point (diameter 0.15 × 0.15◦) on a black background was present in the
center, and that never disappeared during the experimental session. Four visual stimuli (i.e.,
square configurations subtending 4 × 4◦ and consisting of vertical and/or horizontal bars)
were randomly visualized for 250 ms with equal probability (p = 0.25); the stimulus–onset
asynchrony varied from 1 to 2 s to prevent stimulus prediction and ERP overlaps with
previous and following stimuli. Participants had to press a response button with the right
index finger as soon as possible only when target stimuli (two out of four) resulted on the
screen (p = 0.5) and to withhold the motor response when non-target stimuli compared
(p = 0.5); time reaction and accuracy were equally emphasized by the experimenter. The
order of presentation of the four targets or non-targets was randomized between runs. The
duration was 2 min for each run with a pause interleaved. Ten runs were administered,
allowing us to obtain 400 trials for each stimulus category in approximately 30–40 min,
depending on the participant’s rest time during the experimental session. The response
time (RT) for target stimuli was taken as an index of decision-making speed.

2.5. EEG Recording and Analysis

EEG data were recorded using a 64-channel EEG system (Brainamp™ amplifier) with
active electrodes (Acticap™) and software (Recorder 1.2 and Analyzer 2.2.2), all by Brain
Products GmbH (Munich, Germany). The electrodes were mounted according to the
10–10 international system and referenced to the average of the M1–M2 electrodes. The
EEG was amplified, digitized at 250 Hz, band-pass filtered using a Butterworth zero-phase
filter (0.01–40 Hz and 50 Hz notch filter; second order), and stored for offline analyses.
The eye movements were controlled by electrooculogram (EOG) recorded by the third
BrainAmp amplifier (ExG type) in bipolar modality. Horizontal EOG was recorded with an
electrode pair over the left and right outer canthi of the eyes, while vertical EOG (VEOG)
was recorded with an electrode pair below and above the left eye. Electrode impedances
were kept below 5 KΩ. The corrections of blink and vertical eye movement artifacts
were automatically signed by means of the independent component analysis. Data were
then submitted to automatic artifact rejection, excluding EEG with amplitudes exceeding
the threshold of ±70 µV. In order to evaluate the post-stimulus ERP activity, EEG was
segmented into 1000 ms epochs, starting 100 ms before and ending 900 ms after stimulus
onset and using the first 100 ms (−100/0 ms) as the baseline. Target and non-target trials
were averaged separately. In order to select the intervals and electrodes to be taken into
consideration in statistical analysis, the “collapsed localizer” method was used [24], in
which a localizer ERP is obtained by collapsing (averaging) all experimental conditions. In
order to identify the interval of analysis, the global field power (GFP) was calculated. The
GFP describes the ERP spatial variability at each time point considering all scalp electrodes
simultaneously, resulting in a reference-independent descriptor of the potential field. The
300–800 ms post-stimulus interval was used to identify the P3 component, and within
this interval, the timeframe in which the GPF was larger than 80% of its maximum value
was used for further analysis. This GFP approach selected one interval from 480 ms to
580 ms in which the mean amplitude was calculated in all conditions for statistical purposes.
The electrodes with an amplitude larger than 80% of the maximum value in the intervals
selected by the collapsed localizer were jointed in spatial pools and considered for statistical
analysis. Two foci of activity were clearly present for P3: centroparietal distribution for
target trials and a medial frontocentral distribution for non-target trials. The P3 was then
represented by a pool for target trials containing CP1, CPz, CP2, P1, Pz, and P2 electrodes
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(centroparietal pool), and for non-target trials, P3 was represented by a pool containing C1,
Cz, C2, FC1, FCz and FC2 electrodes (frontocentral pool).

2.6. CMDT Protocol

Both groups performed the same week program (e.g., five 3 h basketball training
sessions and a match during the weekend). Included in their training, they performed
two 30 min physical sessions on sprint and agility. For the Con, the physical session was
an MCT, including four circuits repeated once, including sprint/agility and core-balance
exercises. The Exp performed the same physical sessions with the same exercise circuits
but simultaneously performed specific cognitive tasks. The intervention duration was
five weeks.

The CMDT constituted the experimental treatment and was inserted concurrently with
the sprint/agility tasks. The CMTD required the simultaneous execution of tasks requiring
efficient working memory, fast decision-making, and response speed. The exercises were
organized in short routines that alternated with an exercise and core stability. The CMDT
was realized using six Witty-SEM devices (Microgate, Bolzano, Italy) that, with different
heights, were positioned in front of athletes aligned or in a semicircle. Each Witty-SEM de-
vice was composed of a led screen displaying patterns of three colors, emitting sounds, and
interacting with users thanks to proximity sensors. These devices are shown in Figure 2a.
The CMDT consisted of four exercises requiring physical-specific skills such as sprint,
speed, footwork, and CODs and, at the same time, required tasks such as discriminative
responses, visual search, target matching, and number ordering, promoting cognitive
functions including visual speed, working memory, and decision-making (Figure 2b). The
task difficulty (exposure time, inter-stimulus interval, number of items) was adaptively
modulated according to the athlete’s performance.
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2.7. Statistical Analysis

The Shapiro-Wilk’s W test was performed for all measures, confirming their normal
distributions. In order to test the assumption of homoscedasticity, the Levene test for
equality of variance was performed, showing no violation of the sample homoscedasticity.
After this preliminary testing, all measures (except for the P3) were submitted to 2 × 2
ANOVAs with Group (Exp vs. Con) and Intervention (Pre-test vs. Post-test) as factors.
The P3 was submitted to 2 × 2 × 2 ANOVA with Trial (Go vs. No-go) as an additional
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factor. For significant comparisons, effect sizes were reported in terms of partial eta squared
(ηp

2). For post-hoc comparisons, the Bonferroni correction was used to compensate for
multiple comparisons. The overall alpha level was fixed at 0.05. All statistical analyses
were performed using the Statistica 12.0 software (StatSoft Inc., Tulsa, OK, USA).

3. Results
3.1. Physical Tests

ANOVA on the sprint test indicated that the effect of the Group was not significant
(F1,28 = 0.8, p = 0.394). The effect of the Intervention (F1,28 = 27.7, p < 0.001, ηp

2 = 0.497) and
the interaction (F1,28 = 16.0, p < 0.001, ηp

2 = 0.363) were significant. Post-hoc comparisons
showed that in the post-test, the completion time of the Exp (2.41 s SD = 0.11) was shorter
(p < 0.001) than the Pre-test time (2.54 s SD = 0.10). In the Con, the difference between the
Pre-test (2.53 s SD = 0.19) and the Post-test (2.51 s SD = 0.14) was not significant (Figure 3a).
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Figure 3. Physical test results. (a) 10 m sprint test of the experimental (Exp) and control (Con) groups
and the pre (Pre) and post-test (post). (b) change of direction (COD) test completion time of the Exp
and Con groups in the two tests. Vertica bars indicate 0.95 confidence intervals ** p < 0.01.

ANOVA on the COD test indicated that the effect of the Group was not significant
(F1,28 = 0.2, p = 0.652). The effect of the Intervention (F1,28 = 4.5, p = 0.036, ηp

2 = 0.148) and
the interaction (F1,28 = 11.4, p = 0.002, ηp

2 = 0.289) were significant. Post-hoc comparisons
showed that in the Exp, post-test, the completion time (5.73 s SD = 0.28) was shorter
(p = 0.003) than the pre-test time (5.92 s SD = 0.34). In the Con, the difference between the
Pre-test (5.90 s SD = 0.30) and the Post-test (5.91 s SD = 0.32) was not significant (Figure 3b).

3.2. Go/No-Go Task

ANOVA on the RT in the Go/No-go task showed that the Group effect was non-
significant (F1,28 = 0.3, p = 0.428) while the Intervention effect (F1,28 = 21.3, p < 0.001,
ηp

2 = 0.451) and the interaction (F1,28 = 4.9, p = 0.035, ηp
2 = 0.160) were significant. Post-hoc

comparisons showed that the Exp Intervention only was effective (pre-test 477 ms SD = 53;
post-test 431 ms SD = 47, p < 0.001), but not the control training (pre-test 478 ms SD = 56;
post-test 461 ms SD = 48).

3.3. ERP Results

Figure 4 shows the ERP waveforms of the two groups before and after the intervention
and for the target (Figure 4a) and non-target (Figure 4b) conditions. The P3 is labeled and
had a mean peak latency of 463 ms with a centroparietal distribution for target trials and a
medial frontocentral distribution for non-target trials.
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The ANOVA on the P3 amplitude showed a non-significant effect of the Group factor
(F1,28 = 2.6, p = 0.117). The effects of the Intervention (F1,28 = 5.9, p = 0.022, ηp

2 = 0.174) and
of the Condition (F1,28 = 4.5, p = 0.042, ηp

2 = 0.139) were significant. The Treatment*Group
interaction was also significant (F1,28 = 6.2, p = 0.021, ηp

2 = 0.175). Post-hoc comparisons
showed that in the Exp, the P3 amplitude in the post-test (8.96 µV SD = 1.06) was larger
(p = 0.007) than the amplitude in the pre-test (7.03 µV SD = 0.92). For the Con, the difference
between the Pre-test (6.71 µV SD = 0.87) and the Post-test (6.74 µV SD = 0.89, p = 0.008)
was not significant. The P3 amplitude (7.72 µV SD = 0.96) for the Go condition was larger
(p = 0.042) than the P3 for the No-go condition (6.99 µV SD = 0.91). P3 amplitudes are
shown in Figure 5 for both the target (Figure 5a) and non-target (Figure 5b) conditions.
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4. Discussions

In the present study, we tested if the use of a novel CMDT implemented within an
MCT could be more effective than a motor MCT alone in improving the physical and
cognitive skills of elite basketball players in just five weeks. We also aimed to confirm if
the previously observed CMDT efficacy on sport performance could also be extended to
physical performance such as sprint and agility. In addition, the effect on decision speed
and the neural correlates of post-sensory decision-making processes were also investigated.

Results showed that the experimental MCT (with CMDT) intervention strongly im-
proved both sprint and agility, while the standard MCT (without CMDT) was ineffective.
This evidence shows that the CMDT could be effective, not only on sport-specific accom-
plishment, as previously shown for the dribbling fundamental [6–8], but also on general
physical performance. The fact that the experimental intervention was effective for both
sprint and agility implies that it may have a broad range of benefits for physical perfor-
mance. Sprinting and agility are important components of many sports and physical
activities, and improving these abilities could lead to better performance in a variety of
contexts. These findings support the existing literature on the benefits of these two skills.
Sprinting and agility benefit athletic performance by, for example, improving attacking
or defending abilities during a game [25]. At the cognitive level, the experimental treat-
ment improved response speed, likely increasing post-perceptual attentional allocation and
decision-making processes. The neural basis of this effect has been identified in the increase
in the P3 ERP component, which has been associated with a series of post-perceptual
cognitive functions, including decision-making [26]. Results confirm that ERP is a valid
tool to empirically constrain the neural chronometry of perceptual decision-making [27].

This result could be explained by the fact that a key aspect of the experimental training
was anticipation and quick identification of task-relevant stimuli in variable situations.
These skills are particularly important in sport training, as highlighted in the “Situation
Model of Anticipated Response consequences of Tactical” (SMART) training [28]. In this
training model, the decision-making processes in sports are affected by implicit and explicit
learning and can be trained by also proposing video feedback on game situations. The
SMART model includes specific predictions based on the complexity of a situation, which
can be manifested in the number of choice options, the visual information available, and
the speed with which the decision needs to be made. Indeed, the experimental protocols
in which the athletes are involved include these elements; in fact, it is a complex training
in which motor exercises and cognitive tasks must be handled simultaneously and in a
circuit, and the number of choice options varies from both motor and cognitive perspective.
Regarding the decision-making speed, it is manipulated mainly by the cognitive exercise
because the system proposes a time-adaptive exercise where the more athletes respond
correctly, the faster and more challenging exercises become. Moreover, the combination of
MCT and CMDT forced the athletes to move quickly from one circuit to the next, further
stimulating decision speed.

In all tests, the control treatment was ineffective likely because physical training
requires months to reach substantial results [29,30], especially in basketball [31], and the
short training duration (five weeks) was not enough. As previously shown [6–8], this
negative result concurs to confirm the strength and efficiency of the training proposed here,
which could allow professional players appreciable results in just a few weeks.

Future studies could consider different sport disciplines to generalize the results,
follow-up analyses to monitor the effect’s duration over time, and could evaluate whether
a longer training covering an entire season could be even more effective.

5. Conclusions

Concluding CMDT implemented within an MCT could be more effective than a motor
MCT alone in improving the physical and cognitive skills of elite basketball players in just
five weeks. The results refute the idea that, in CMDT, cognitive exercise is just a distraction
to motor exercise [32], so using cognitive exercise in an MCT, strength and conditioning
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coaches could use this innovative training to obtain more benefits than standard MCT in
less time.

The combination of motor and cognitive exercise may boost physical training effects in
any athlete, likely because the effort to adapt and change behavior in response to complex
and enriched experiences may induce neural network plastic changes by the acquisition
and execution of multiple motor and cognitive skills during training.
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