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Introduction: Developing reliable seismic catalogs for volcanoes is essential for
investigating underlying volcanic structures. However, owing to the complexity
and heterogeneity of volcanic environments, seismic signals are strongly affected
by seismic attenuation, which modifies the seismic waveforms and their spectral
content observed at different seismic stations. As a consequence, the ability
to properly discriminate incoming information is compromised. To address this
issue, multi-station operational frameworks that allow unequivocal real-time
management of large volumes of volcano seismic data are needed.

Methods: In this study, we developed a multi-station volcano tectonic
earthquake monitoring approach based on transfer learning techniques. We
applied two machine learning systems—a recurrent neural network based on
long short-term memory cells (RNN–LSTM) and a temporal convolutional
network (TCN)—both trained with a master dataset and catalogue belonging to
Deception Island volcano (Antarctica), as blind-recognizers to a new volcanic
environment (Mount Bezymianny, Kamchatka; 6 months of data collected from
June to December 2017, including periods of quiescence and eruption).

Results and discussion: When the systems were re-trained under a multi
correlation-based approach (i.e., only seismic traces detected at the same time
at different seismic stations were selected), the performances of the systems
improved substantially. We found that the RNN-based system offered the most
reliable recognition by excluding low confidence detections for seismic traces
(i.e., those that were only partially similar to those of the baseline). In contrast,
the TCN-based network was capable of detecting a greater number of events;
however, many of those events were only partially similar to the master events
of the baseline. Together, these two approaches offer complementary tools
for volcano monitoring. Moreover, we found that our approach had a number
of advantages over the classical short time average over long time-average
(STA/LTA) algorithm. In particular, the systems automatically detect VTs in a
seismic trace without searching for optimal parameter settings, which makes
it a portable, scalable, and economical tool with relatively low computational
cost. Moreover, besides obtaining a preliminary seismic catalog, it offers
information on the confidence of the detected events. Finally, our approach
provides a useful tentative label for subsequent analysis carried out by a human
operator. Ultimately, this study contributes a new framework for rapid and easy
volcano monitoring based on temporal changes in monitored seismic signals.
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1 Introduction

Active volcanoes are often monitored by different ground
and space-based instruments, which provide essential data for
understanding the volcanic system, quantifying impacts, mitigating
risk, and contributing to the preparedness of governments and
society as a whole (Barsotti et al., 2020; Barsotti et al., 2023).
However, identifying transitions in volcanic state is complex and
involves the study of various physics processes. Given the large
volumes of data now available from permanent monitoring seismic
networks, volcanic seismology plays a critical role in volcano
monitoring.

Volcanic dynamics generate an exchange of energy with the
surrounding medium that propagates in the form of elastic or
seismic waves. Owing to the complexity of volcanic processes,
these seismic waves can have varying characteristics in both the
time and frequency domains (Ibáñez et al., 2000). Identifying and
characterizing these signals with the aim of associating them with
internal dynamic processes is a key scientific challenge. Accurate
recognition (identification and classification) is the basis for
developing eruption forecasting based on precursors (Sparks et al.,
2012; McNutt et al., 2015; Machacca et al., 2023), and is critical for
improving knowledge of volcanic dynamics. Signals are generally
classified based on the source model built to explain them. Low
frequency signals (LF), such as so-called long period (LP) events
and some types of volcanic tremor (TR), are associated with fluid
dynamics. However, the most common type of seismic signal
recorded in many volcanic environments is volcano tectonic (VT)
earthquakes (Chouet, 2003). VT earthquakes are the consequence
of stress-induced fluid dynamics inside the volcano (Roman and
Cashman, 2006). In general, the source mechanisms of VT events
can be described using classical approaches in seismology (Aki and
Richards, 2002). However, as indicated by (Chouet and Matoza,
2013), owing to the involvement of fluids, this task is very complex
in many volcanic environments. VTs are commonly considered
to be potential precursors (McNutt and Roman, 2015), and so
new methodologies and advances, including the use of artificial
intelligence (AI), are increasingly being used to improve their
recognition.

A key aspect of VT seismicity is that it contains much more
information than that presented in each waveform. Recent studies
have performed source modeling analysis (Sigmundsson et al.,
2018; Sigmundsson et al., 2022; Cubuk-Sabuncu et al., 2021), focal
mechanisms analysis, and 4D tomography showing the temporal
evolution of volcanic structures in (Abacha et al., 2023). (Díaz-
Moreno et al., 2015) used spatial and temporal analyses of VT foci
evolution; for example, in their study, VTs generated during magma
injection were assumed to reflect the effect of hydraulic fracturing,
highlighting areas of the crust where stress was propagating as
a consequence of magma migration. Seismic tomography allows
us to reconstruct the internal structure of a volcano and infer
the physical and dynamic characteristics of the volcanic system

by studying the travel times of the first arrivals of VT waves
(i.e., tomography of velocity (D’Auria et al., 2022), or by studying
their loss of energy (i.e., attenuation tomography (Prudencio et al.,
2013; Castro-Melgar et al., 2021) showed that volcanic structures
are highly attenuating, which causes the waveform of the recorded
signals to undergo strong changes, including loss of a large part
of their spectral component, especially in the high frequency
range. Similarly, (Titos et al., 2018), showed that VT earthquakes
can be confused as LP-type events at a certain distance, which
has consequences for the interpretation of internal dynamics of
the volcanic system. However, these approaches all require data
from large numbers of reliable earthquakes. Therefore, developing
effective approaches that allow real-time management of large
volumes of seismic data has become an important challenge.

Recent advances inmachine learning (ML) have encouraged the
development of advanced automatic data processing and analysis
pipelines. Typically, new automatic approaches are built by learning
from large seismic catalogues. These data-driven systems have
proven to be very efficient tools in an ever-changing and streaming
data environment; however, they have remarkably poor learning and
adaptability outcomes owing to the incompleteness of many seismic
catalogues. Nonetheless, building complete and reliable catalogues
is technically challenging owing to the high cost of data-labelling.
This issue has grown in importance in light of recent work, since
catalogue-based learning can introduce bias when constructing
predictive monitoring tools.

In this study, we developed a new automatic multi-station
system for exclusively recognizing and labelling VT earthquakes.
As discussed, owing to attenuation, many LP events annotated
in seismic catalogues could actually be highly attenuated VT
earthquakes. Therefore, we employed a multi-station process to
improve the identification of VTs. To control for bias derived

TABLE 1 Classification accuracy (acc. %), number of parameters tuned, and
training times for optimal configurations of the recurrent neural network
based on long short-termmemory cells (RNN–LSTM) and temporal
convolutional network (TCN) architectures using themaster catalogue
(Deception Island volcano, Antarctica).

RNN-LSTM TCN

Test 1 acc. (%) 86.61 82.82

Test 2 acc. (%) 80.13 80.10

Test 3 acc. (%) 82.05 84.99

Test 4 acc. (%) 89.09 78.74

Avg. acc. (%) 84.47 81.66

No. of parameters 219,455 63,105

Training time (s) 16,834 2,073

Notes: A cross-validation procedure with four dataset partitions was used. Classification
accuracy corresponds to frames or windows properly classified. Training times are reported
in seconds and correspond with those of one partition. Bold values represents best
architecture in terms of accuracy and parameters.
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FIGURE 1
Transfer learning methodology used to develop the new volcano seismic monitoring system.

from seismic catalogue incompleteness, we employed transfer
learning techniques (Weiss et al., 2016), which are helpful in
domain-adaption problems, where the objective is to develop
a monitoring system focused on available domain-specific data
(Anantrasirichai et al., 2018; Titos et al., 2018; Bueno et al., 2019;
Titos et al., 2019; Lapins et al., 2021; Jozinović et al., 2022). In
contrast, our newmonitoring systemdoes not require prior domain-
specific knowledge. Assuming a scenario in which there is no
previous information related to the seismic dynamics of the volcano,
instead of building a system from scratch (which would require
an expensive data-labelling process), we used a recurrent neural

network based on long short-term memory cells (RNN–LSTM)
and a temporal convolutional network (TCN) (Titos et al., 2018;
Titos et al., 2022) trained with a master catalogue belonging to
Deception Island volcano (Antarctica) as a baseline. These models
were then used as blind-recognizers for a different volcanic
environment, that of Mount Bezymianny (Kamchatka). When these
systems were re-trained under a multi correlation-based approach,
where only reliable seismic traces identified at the same time at
different seismic stations were selected and manually labeled, the
performance of the systems improved substantially, resulting in a
remarkable capability of confidently recognizing seismic traces. In
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FIGURE 2
(A) Geological framework of Bezymianny volcano and (B) seismic
station locations used in this study. Figure obtained and modifies from
Google Earth resources.

summary, our approach provides a rapid and easy-to-use framework
for real-time monitoring of temporal changes in seismic signals at
any volcano.

2 Experimental framework and
methodology

2.1 Methodology and experimental settings

In this study, we developed a new real-timemulti-station seismic
monitoring system for volcanoes without any prior knowledge
within a transfer learning framework. Although some classical ML
techniques such as Markov models have been used in sequence
modeling tasks, neural networks (NN), including both RNN
and TCN architectures (LeCun et al., 2015; Lea et al., 2016), have
optimal temporal modeling capabilities. By generating a spatio-
temporal sequence of hierarchical features, both architectures
have been applied in complex and emerging geosciences research
fields, including seismo-volcanic monitoring (Titos et al., 2018;
Bueno et al., 2021), climate change (Yan et al., 2020), remote sensing
(Račič et al., 2020), and human activities recognition (Nair et al.,

2018). Accordingly, in this work, an RNN based on long short-
term memory cells (RNN–LSTM) and a TCN (Titos et al., 2018;
Titos et al., 2022) trained with a master catalogue belonging to
Deception Island volcano (Antarctica) were proposed as a baseline.
These were then used as a blind-recognizer for the data from a
different volcanic environment, Mount Bezymianny (Kamchatka).
The master database belonging to Deception Island volcano is
unbalanced; however, it has been thoroughly reviewed by experts
on the volcano. According to (Titos et al., 2018), the Deception
Island dataset is composed of five seismic categories: background
noise (BGN), tremor (TR), hybrid (HYB), VTs, and LPs; Table 1
summarizes the performances of the two approaches (RNN–LSTM
and TCN) using the master catalog, based on the percentage of
events correctly recognized.

Then, assuming a scenario in which the monitoring agency does
not have any previous information related to the seismic dynamics
of a volcano, a new monitoring tool was obtained as follow (see
Figure 1):

1. Data parameterization: Raw streaming data belonging to
each seismic station within the new volcanic environment
were parameterized following the parameterization scheme of
(Titos et al., 2018) to obtain the baseline systems.

2. Preliminary seismic catalog: By utilizing parameterized
streaming traces as inputs, the pre-trained system generates
a preliminary seismic catalog that consists of identified events
along with their respective timing and probabilities assigned
to each event class. It is important to note that when applying
transfer learning without any domain-adaptation process, the
seismic categories detected in a new volcanic environment
will correspond to the seismic categories used in the master
catalogue.Therefore, since the parameterization scheme adopted
here was based on the spectral content of the seismic traces,
events completely different from those described in the master
catalog were categorized into these classes, based on their
spectral similarity.

3. Probabilistic event detection: Using the preliminary seismic
catalog, a probabilistic event selection process was used to obtain
a new dataset from which to re-train or adapt the pre-trained
system (RNN-LSTMorTCN) for the new volcanic environment.
This process involved five steps:

• The seismic station detecting the largest number of events
was selected as the reference station (RS).

• For each detected event at the RS, the confidence of
the detection was analysed using a probabilistic event
detection matrix with per-class probabilities output by the
softmax layer (this layer is useful in multiclass classification
problems as it converts the output values of the neural
network into probabilities to each possible class). We
assumed that low per-class probabilities reflect a change in
the description of the analysed information.Therefore, only
reliable events (those whose per-class probabilities were
greater than a given threshold) were selected.

• For each previously selected event, a multi correlation-
based approach was applied to identify if they could be
detected at the same time at different seismic stations. If
the same event was reliably detected (per-class probabilities
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FIGURE 3
Total number of volcano tectonic (VT) earthquakes detected by (A) a recurrent neural network based on long short-term memory cells (RNN–LSTM)
and (B) a temporal convolutional network (TCN) before and after the re-training process.

FIGURE 4
Monthly per-station cumulative distribution function (CDF) for the recurrent neural network based on long short-term memory cells (RNN–LSTM)
before re-training. The x-axis represents the probabilities assigned by the models to those events detected as volcano tectonic (VT) earthquakes; the
y-axis represents the normalized cumulative sum of events predicted within that class. (A) August 2017. (B) October 2017. (C) December 2017.

greater than a given threshold) at the same time at least two
seismic stations, it was included as a training instance.

• Once the new training set was created, all instances were
manually analyzed and newly labeled by experts in order to
refine the bounding of the events.

• Finally, the pre-trained systems were re-trained using the
new dataset and labels.

4. The final stage comprised further iterations of the probabilistic
event detection (see point 3 above) in order to reach an optimal
level of performance.

Thepipeline used for this study is suitable for application to other
baseline systems and parameterization schemes.

2.2 Geological framework: Bezymianny
volcano

Bezymianny volcano (55.6°N, 160.3°E) is an explosive
basaltic–andesitic stratovolcano belonging to the Klyuchevskaya
(KVG) volcanic group on the Kamchatka Peninsula, Russia. It
is located in the central depression of Kamchatka (CKD), which
covers > 4,000 km2 between the Sredinny and Eastern ridges. This
region marks the northeastern corner of the Pacific subduction
plate, which is formed by the Kuril–Kamchatka and Aleutian
trenches (Figure 2A). According to its eruptive history, the volcano
was considered inactive for more than 1,000 years (Braitseva and
Kiryanov, 1982), until the lateral eruption in 1956. Bezymianny has
experienced an active period since 2000, with more than 15 eruptive
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FIGURE 5
Monthly per-station cumulative distribution function (CDF) for the recurrent neural network based on long short-term memory cells (RNN–LSTM) after
re-training. The x-axis represents the probabilities assigned by the models to those events detected as volcano tectonic (VT) earthquakes; the y-axis
represents the normalized cumulative sum of events predicted within that class. (A) August 2017. (B) October 2017. (C) December 2017.

FIGURE 6
Monthly per-station cumulative distribution function (CDF) for the temporal convolutional network (TCN) before re-training. The x-axis represents the
probabilities assigned by the models to those events detected as volcano tectonic (VT) earthquakes; the y-axis represents the normalized cumulative
sum of events predicted within that class. (A) August 2017. (B) October 2017. (C) December 2017.

episodes (Van Manen et al., 2010). Among its recent eruptive
episodes, that of 20 December 2017 (Girina et al., 2018) produced
an eruption column that exceeded 15 km in height, representing
a potential hazard to air traffic (Neal et al., 2009; McGimsey et al.,
2014). The seismic database associated with this eruption is reliable
and complete; therefore, it was selected for testing the approach
developed in this study.

The seismic data used in this study were collected by a
temporary network composed of 10 seismic stations, installed
during the 2017–2018 period (Koulakov et al., 2021). However,
only data corresponding to four stations (Figure 2B) were selected.
Criteria for selecting the seismic stations were motivated by
both the availability and quality (signal-to-noise ratio) of the
data. In addition, to further determine the reliability of the

monitoring system proposed, two additional eruptive phases (a
pre-eruptive stage characterized by little activity and a syn-
eruptive stage with tens of thousands of events) containing 6
months of seismic data from June to December 2017 were also
selected.

3 Results

In this study, we analyzed results for four seismic stations over
a 6 month period. However, to facilitate discussion of the results,
here, we focus on VTs detected during 3 months of data, —August,
October, and December 2017—which correspond to quiescent, pre-
eruptive, and syn-eruptive phases, respectively.
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FIGURE 7
Monthly per-station cumulative distribution function (CDF) for the temporal convolutional network (TCN) after pre-training. The x-axis represents the
probabilities assigned by the models to those events detected as volcano tectonic (VT) earthquakes; the y-axis represents the normalized cumulative
sum of events predicted within that class. (A) August 2017. (B) October 2017. (C) December 2017.

FIGURE 8
Overview of short time average over long time-average (STA/LTA) triggering thresholds in this work.

3.1 RNN-LSTM outcomes

Figure 3A summarizes the VTs detected by the pre-trained
RNN–LSTM system before and after re-training using the new
(Bezymianny volcano) dataset. Contrary to expectations, the
number of VTs detected at some stations using the RNN–LSTM
remained constant or decreased after being re-trained. Figures 4,
5 show comparisons of the monthly per-station cumulative
distribution function (CDF) before and after the re-training process,
representing the probabilities and normalized cumulative sums of
events predicted as VTs. Before re-training, while a high number
of events were detected, the confidence of such detections was
low. More specifically, in August 2017 (Figure 4A), almost 70% of

the events detected had probabilities of between 35% and 55%; in
October and December 2017 (Figures 4B, C), except at station BZ06
(where 50% of the events detected had probabilities of < 55%),
no recognized event exceeded 55%. After re-training, there was a
clear change in the trend, with fewer recognized VT earthquakes
depending on the station (Figure 3) but much higher confidences
of the detections (Figure 5).

3.2 TCN outcomes

Figure 3B summarizes the VTs detected by the pre-trained TCN
system before and after re-training using the new (Bezymianny
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FIGURE 9
Number of volcano tectonic (VT) earthquakes detected hourly on 14
August 2017 using the short time average over long time-average
(STA/LTA) trigger algorithm and the re-trained recurrent neural
network based on long short-term memory cells (RNN–LSTM). Results
obtained by both architectures have been compared with human
operator criteria

volcano) dataset. Figures 6, 7 show comparisons of the monthly
per-station CDF before and after the re-training process. In
contrast to the RNN–LSTM, the TCN architecture saw an increase
in the total number of earthquakes detected after being re-
trained but a significant decrease in the confidence of the
recognitions. Before re-training, 90% of events were detected
with probabilities of > 80%; after re-training, depending on the
station, only 40%–60% of recognized events had probabilities of
> 80%.

3.3 STA/LTA comparison

To determine the robustness of our system, we compared our
results before and after re-training to those of a classical approach,
the short time average over long time-average (STA/LTA) trigger
algorithm (Trnkoczy, 2009). We selected a single day on which
several hundred earthquakes occurred and analyzed the results on
an hourly timescale. Given that the TCN always detected a greater
number of events than the RNN–LSTM, we assumed that the VTs
detected by the RNN–LSTM were a subset of those detected by the
TCN and selected only those events for analysis. On the chosen

FIGURE 10
Recognition analysis before and after re-training of the recurrent neural network based on long short-term memory cells (RNN–LSTM). Before
re-training, the system labeled seismic traces partially matching with volcano tectonic (VT) earthquakes as VTs with low probability. After re-training,
only high confidence VTs were detected and labeled; low probability events were categorized as undefined events. (A) Example of a low probability
(52%) VT earthquake detected before re-training. (B) Example of a low probability VT earthquake (60%) labeled as ‘undefined’ after re-training. With the
purpose of enhancing visualization, the raw seismic signals were subjected to a filtering process, limiting the frequency range between 1 and 20 Hz.
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FIGURE 11
Spectrograms and power spectral densities (PSD) of different events belonging to Bezymianny volcano and Deception Island. (A) Volcano tectonic (VT)
earthquake from Deception Island. (B) Volcanic tremor (TR) event from Deception Island. (C) VT from Bezymianny volcano.

day, the RNN–LSTM did not recognize any VTs before it was re-
trained; after re-training, all of the VTs recognized had previously
been categorized as TR events.

Figure 8 presents an overview of the STA/LTA triggering
thresholds. For proper operation of the STA/LTA algorithm, four
parameters should be tuned: the short window length (STA), long
window length (LTA), activation threshold level, and deactivation
threshold level. The STA/LTA trigger parameter settings are always
a tradeoff among sensitivity and specificity. While sensitivity may
also include a tolerable number of false triggers, specificity correctly

detects only particular instances, therefore decreasing the number
of detections. Considering that the algorithm computes the average
absolute amplitude of a seismic signal in two consecutive moving-
time windows, only events exceeding pre-set values describing the
triggering thresholds of both STA and LTA were identified. Figure 9
compares the number of VTs detected hourly during 14 August
2017, by the STA/LTA trigger algorithm and re-trained RNN-
LSTM architecture; overall, the results show that the RNN–LSTM
recognized a higher number of VTs than the STA/LTA algorithm
(782 vs. 648).
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FIGURE 12
Recognition analysis before and after re-training of the temporal convolutional network (TCN). Before re-training, the system labeled seismic traces
partially matching with volcano tectonic (VT) earthquakes as VTs with high probability; low probability events were marked as ‘undefined’. After
re-training, all seismic traces having high frequencies and variable length were detected as VTs; however, only clear VT earthquakes were detected with
high probability. (A) Example of a high probability VT earthquake (99%) detected before retraining, in which several earthquakes occurring closely
together in a short timeframe have been classified as a single event following the volcanic dynamics to the master catalog. Since the system does not
detect background noise windows between the two earthquakes due to the multi-resolution dilated skip connections between layers, it labels the two
earthquakes as one. (B) Example of a low probability (70%) VT earthquake detected after re-training. With the purpose of enhancing visualization, the
raw seismic signals were subjected to a filtering process, limiting the frequency range between 1 and 20 Hz.

4 Discussion

4.1 RNN-LSTM considerations

The noticeable difference in the performance of the system
after re-training can be explained from a geophysical perspective.
First, owing to the noisy content registered in the new volcanic
environment, it is possible that many of the events detected before
the re-training were low probability VTs (or mis-recognized VT)
corresponding to seismic traces characterized by high frequencies
and variable length. Since the system fitting approach is a
density estimation problem and such seismic traces partially match
observed VT features in the master catalog (Deception Island), the
estimated probability density function and its parameters cannot
explain the underlying distribution of the new input data; as such,
it assigns a low probability. Figure 10A provides a clear overview
of this issue, in which a seismic trace partially matches with source
earthquakes with a low probability (52%).

Second, many of the VTs detected after re-training were
originally recognized as TR, which can be explained by the
differences between the learned representation at source and target
underlying distributions. Figure 11 shows the spectrograms and
power spectral densities (PSD) of VTs from Bezymianny volcano

and Deception Island, and a TR from Deception Island. The figure
shows very similar spectral energy distributions. The beginning of
the Deception Island TR (Figure 11B) has a short and overlapped
package of high frequency waves (up to 20 Hz). These high
frequency signals are associated with the explosive step of pressure
in the source region when LP events are generated near the seismic
station (no visible exponential decay in frequency is observed)
and with small earthquakes. At Bezymianny volcano, many VTs
have a higher energy component at low frequencies (Figure 11C);
therefore, as our parameterization scheme performs energy analysis
by frequency bands that are more sensitive in lower frequencies,
the pre-trained system failed to recognizing these energetic low
frequency VT events. After re-training, the global number of
recognized VTs was similar, but confidence of the detections was
much higher.

In summary, the system (i.e., the probability distribution and
associated parameters) is fixed to maximize a likelihood function
that best explains the joint probability distribution of the new
volcanic dynamics (in this case, Bezymianny volcano). As a result,
following re-training, only confident VTs were detected and labeled.
Those previously mis-recognized as TR were now confidently
detected, while those events with low probabilities (< 65%) were
labeled as undefined events (e.g., Figure 10B). Such events require
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FIGURE 13
Potential false triggers corresponding to short duration energy changes recognized by the short time average over long time-average (STA/LTA) model.
(A) Spectrogram of the seismic signal selected. (B) High pass filtered seismogram. (C) short time average over long time-average (STA/LTA) triggering
results. Owing to lack of prior knowledge, the recurrent neural network based on long short-term memory cells (RNN–LSTM) model discounted these
events as volcano tectonic (VT) earthquakes, since the duration was shorter than the average duration of VT earthquakes in the Deception Island
catalog. With the purpose of enhancing visualization, the raw seismic signals were subjected to a filtering process, limiting the frequency range
between 1 and 20 Hz.

careful review by experts. As conclusion, before re-training, only
VTswith probabilities of> 80% could be included in the new catalog;
after re-training, all VTs detected with probabilities of > 65% could
be easily identified.

4.2 TCN considerations

The noticeable difference in the performance of the system
after re-training can be explained by the greater specialization
ability of TCN compared with RNN–LSTM owing to the multi-
resolution dilated skip connections between layers and deeper
hierarchical features.The new Bezymianny volcanic dynamics often
exhibit consecutive seismic events that bear partial resemblance to
earthquakes occurring closely together in a short timeframe. Before
retraining, the system could avoid recognizing such new volcanic
dynamics based on high frequencies and short length as isolated
events. Therefore, when such concatenated events were detected,
focusing only on those volcanic dynamics that were similar to the
master catalog, the system considered them all as a whole, not as
isolated events (Figure 12A).

In summary, before re-training, the system labeled seismic
traces partially matching with earthquakes as high probability VTs,

while low probability events were labeled as ‘undefined’. After
re-training, all seismic traces with high frequencies and variable
length were detected as VTs, decreasing the number of undefined
events. However, only clear VTs were detected with high probability.
Figure 12B shows an example of a detected low probability (70%)
VT. Before re-training, this seismic trace was labeled as ‘undefined’
with a high probability of assignment to VT (> 90%). After re-
training, the system decreased the probability of assignment to VT.
In this way, before re-training, many VTs were mis-recognized; after
re-training, all VTs detected with probabilities higher than of > 85%
could be included in the new catalog.

4.3 STA/LTA considerations

However, in some time slots, STA/LTA detected a greater
number of events.These resultsmay be explained by the nature of the
STA/LTA algorithm, its trigger parameter settings, and the grammar
imposed on the proposed models, which was responsible for
improving the interpretability of the models based on geophysical
knowledge of the volcano (Titos et al., 2018).

Since there was no previous information related to the seismic
catalog, the STA/LTA triggering thresholds were fixed so that the
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FIGURE 14
Potential masked events, for which the short time average over long time-average (STA/LTA) algorithm computed the average absolute amplitude of a
seismic signal from two consecutive moving-time windows containing a low energy event immediately following a very high energy event. The
average energy masks the occurrence of the low energy event, decreasing the number of recognized events. (A) Spectrogram of the seismic signal
selected. (B) High pass filtered seismogram. (C) short time average over long time-average (STA/LTA) triggering results. With the purpose of enhancing
visualization, the raw seismic signals were subjected to a filtering process, limiting the frequency range between 1 and 20 Hz.

system was more sensitive than specific. The goal was to obtain as
much information as possible, and all energy changes, even small
ones, were detected. This scenario resulted in a tolerable number
of false triggers. In contrast, the RNN–LSTM (and TCN) system
imposed the use of grammar (a set of rules) based on geophysical
knowledge of Deception Island volcano to improve interpretability.
The average duration of seismic events belonging to the master
dataset (Deception Island) in combination with the per-class
probabilities output by the models in the new volcanic environment
allowed us to check that the predictions were consistent with the
expected lengths of events. Since no information was provided on
the average duration of the seismic-volcanic events of the new
volcanic environment, the grammar only recognized those events
that, on average, had durations that were greater than or similar
to those described in the master dataset. Events whose durations
were less than the average duration of events in the master database,
even if recognized with high per-class probabilities, were labeled as
background noise or unknown events.

For the time slots in which STA/LTA detected a greater number
of VT events compared with RNN–LSTM, many of the events
recognized by the STA/LTA model corresponded to short duration
energy changes (Figure 13). In contrast, the RNN–LSTM model
discarded these events (i.e., labeled them as background noise when
the output VT per-class probabilities were low and as unknown

events when the output per-class probabilities were high) since the
durations were shorter than the average duration of VT earthquakes
at Deception Island.

For the time slots in which STA/LTA detected a lower number
of VT events compared with the re-trained RNN–LSTM, a possible
explanation is the behavior of the STA/LTA algorithm in a seismic
swarm state. Seismic swarms, which are a common volcanic
phenomenon, involve a sequence of seismic events that occur within
a relatively short period of time within a very local area. Given that
the STA/LTA algorithm computes an average absolute amplitude of
the seismic signal in two consecutive moving-time windows, when
a low energy event occurs immediately after a high energy event, the
averaging process masks the occurrence of the least energetic one,
decreasing the number of recognized events (Figure 14). In contrast,
as the RNN–LSTM analyzes signals based on spectral features, it has
the ability to analyze a concatenated occurrence of events, such as
that observed during a seismic swarm.

Based on our results, once it has been re-trained and the
average duration of the seismic-volcanic events has been fixed,
our RNN–LSTM has a number of advantages over STA/LTA. In
particular, the system will automatically detect VTs present in the
seismic trace without searching for optimal parameter settings,
which makes it a portable, scalable, and economical tool with
relatively low computational cost. Another important advantage is
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FIGURE 15
Robustness of the obtained seismic catalogs based on per-class probabilities output by the models. (A) Example of an earthquake recognized as a
volcano tectonic (VT) earthquake with relatively high probability from at least two different seismic stations. (B) Example of an attenuated earthquake
recognized as a VT, noise, or undefined event depending on the seismic station. With the purpose of enhancing visualization, the raw seismic signals
were subjected to a filtering process, limiting the frequency range between 1 and 20 Hz.

that, besides obtaining a preliminary seismic catalog (composed
of several types of events), it offers information on the confidence
of the recognition. Importantly, for multi-station seismic networks,
these probabilities will serve to obtainmore reliable seismic catalogs.
The recognition of an event characterized by high frequencies
at one station provides an indisputable condition to obtain a
reliable label at another station where the event has been attenuated
or is virtually unrecognizable. An example of this scenario is
shown in Figure 15, in which one earthquake is included in the
new seismic catalog by both techniques (STA/LTA and RNN-
LSTM), while an attenuated one, in addition to presenting difficulty
during detection using classical techniques owing to threshold
adjustment, could only be considered as an earthquake using our
multi-station analysis. Finally, our approach provides a very useful
tentative label for subsequent analysis carried out by a human
operator.

5 Conclusion

This study provides a comprehensive analysis of how to
build a multi-station seismo-volcanic monitoring system based on
transfer learning techniques. We evaluated the ability of several
operational systems trained using a master seismic catalogue (from
Deception Island volcano) to adapt to a new volcanic environment
(Bezymianny volcano), without prior domain-specific knowledge.

Our results are significant in at least two major respects. First,
transfer learning is shown to offer a robust, effective, and rapid
alternative when developing volcano-seismic event monitoring
systems in volcanic environments without any previous knowledge
or seismic catalogue. Second, depending on the architecture used
as a baseline, the final behavior of the system (and consequently
the results obtained) can be different. We found that RNN-
based systems offer the most reliable recognition by excluding
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low confidence detections for seismic traces that are only partially
similar to those of the baseline. In contrast, TCN-based networks
are capable of detecting a greater number of events; however, many
of those events are only partially similar to the master events of
the baseline (i.e., the confidence of detections is low). Considering
these findings and drawing upon our experience as a guiding factor,
we can firmly conclude that among the overall count of events
identified as earthquakes, those exhibiting amembership probability
surpassing 80% after retraining, can be considered accurately
classified. Together, these two approaches offer complementary
tools for volcano monitoring, and volcanological observatories
should choose the approach that best meets their needs; that is,
RNN–LSTM for fine-grained seismic catalogs and TCN for coarse-
grained seismic catalogs.

Finally, our study provides a basis for more sophisticated weakly
supervised models that could be useful in developing universal
monitoring tools able to work accurately across different volcanic
systems, even when faced with scenarios without prior domain-
specific knowledge.
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