
Information Sciences 645 (2023) 119334

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

Explaining time series classifiers through meaningful perturbation

and optimisation

Han Meng a,b,∗, Christian Wagner b, Isaac Triguero a,b,c,d

a Computational Optimisation and Learning (COL) Lab, School of Computer Science, University of Nottingham, United Kingdom
b Lab for Uncertainty in Data and Decision Making (LUCID), School of Computer Science, University of Nottingham, United Kingdom
c DaSCI Andalusian Institute in Data Science and Computational Intelligence, University of Granada, Granada, Spain
d Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain

A R T I C L E I N F O A B S T R A C T

Keywords:

Time series classification

Post-hoc explanation

Saliency-based explanation

Perturbation method

Optimisation approach

Machine learning approaches have enabled increasingly powerful time series classifiers. While
performance has improved drastically, the resulting classifiers generally suffer from poor
explainability, limiting their applicability in critical areas. Saliency-based methods designed
to highlight the critical features are one of the most promising approaches to improving this
explainability. Here, current techniques commonly rely on artificially perturbing the features,
using, for example, random noise or ‘zeroing’ these features. We first demonstrate that an
important drawback of these methods is that the perturbations used can result in unrealistic
assessments of the classifier, since the perturbations force the data outside their original
distribution. We articulate how this can result in poor identification of critical features, and
hence misleading explanations. In order to address this issue and identify the most important
features for the output of a black-box model, we propose a dual approach through meaningful
perturbation and optimisation. First, leveraging a mechanism originally proposed in image
analysis, a generative model is trained to create within-distribution perturbations of the input.
These are then used to reliably evaluate whether a set of features is critical. Second, a greedy-

based segmentation and identification strategy is proposed to search for the smallest set of critical
features. Experiments show that the proposed approach addresses the out-of-distribution problem
and identifies fewer critical features than existing methods. In combination, both aspects of
the proposed approach offer a qualitative advance towards generating meaningful and robust
explanations in the context of time series classification.

1. Introduction

Time Series Classification (TSC) is a hot research area in machine learning [1]. Unlike time series forecasting, which makes
predictions based on historical records, TSC focuses on categorising sequences of real values recorded in a temporal order; it is
encountered in various real-world applications [2,3]. In recent years, with the evolution of technology and the wide accessibility of
sensor data, e.g. via the Internet of Things, more and more time series data are becoming available. The need to exploit these data

* Corresponding author at: Computational Optimisation and Learning (COL) Lab and Lab for Uncertainty in Data and Decision Making (LUCID), School of Computer
Science, University of Nottingham, United Kingdom.
Available online 22 June 2023
0020-0255/© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

E-mail addresses: Han.Meng1@nottingham.ac.uk (H. Meng), Christian.Wagner@nottingham.ac.uk (C. Wagner), Isaac.Triguero@nottingham.ac.uk (I. Triguero).

https://doi.org/10.1016/j.ins.2023.119334

Received 14 September 2022; Received in revised form 12 June 2023; Accepted 16 June 2023

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ins
mailto:Han.Meng1@nottingham.ac.uk
mailto:Christian.Wagner@nottingham.ac.uk
mailto:Isaac.Triguero@nottingham.ac.uk
https://doi.org/10.1016/j.ins.2023.119334
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2023.119334&domain=pdf
https://doi.org/10.1016/j.ins.2023.119334
http://creativecommons.org/licenses/by-nc-nd/4.0/

Information Sciences 645 (2023) 119334H. Meng, C. Wagner and I. Triguero

drives advances of TSC models. Among such models, Artificial Intelligence (AI) techniques have achieved outstanding performance
[4,5]. However, many of these methods, e.g. deep learning, are black boxes, and their lack of explainability becomes an impediment
to deploying them in real-world applications, especially in critical areas, such as finance [2] and medicine [3]. Here, users who
employ these AI techniques need the reasons for the classification results to support them in making decisions or taking actions,
which has boosted the development of eXplainable AI (XAI).

Currently, XAI has undoubtedly achieved notable momentum in the AI community. One of the main aims of XAI is to provide
explanations for humans to help them understand and gain the appropriate trust in modern AI models. In the XAI literature, ex-

plainability refers to two distinct high-level concepts: post-hoc explainability or interpretability, and transparency (also referred to as
self-explainability, e.g. in [6]). The former captures the ability to explain a given output generated by an AI model, while the latter
describes the property of an AI model as being interpretable by a human,1 i.e. including its components, mechanisms and training
process. With respect to the former, post-hoc methods can usually be applied to a wide range of algorithms since many post-hoc
methods are model-agnostic [7]. Moreover, post-hoc methods will not affect the predictive performance of a classifier, while some
self-explainable classifiers sacrifice their performance for interpretability [8]. Although it is contested whether self-explainable meth-

ods have to sacrifice their performance for interpretability [9], post-hoc analysis approaches may relieve the builders of the model of
the burden of thinking about how to provide explanations and enable them to focus on the predictive performance only. In addition,
post-hoc analysis can provide different kinds of explanations, such as sample-based counterfactual explanations [10] or explanations
of the importance of each feature [11,12]. However, post-hoc analyses also face the risk of generating unreliable explanations, which
means that the explanations provided by post-hoc approaches may not faithfully reflect how the classifier works [9].

Based on their type, the explanations provided are classified into global explanations and local explanations [6]. Global explana-

tions aim to reveal the global behaviour of the classifier on the whole dataset, while local explanations focus on the behaviour on a
specific instance. Due to the heterogeneity of real-world datasets, a model might focus on different features when making predictions
on different sets of instances. Thus, the development of local instance-wise explanations has drawn increasing attention in recent
years [13], and is the main focus of the present paper.

Saliency (or feature importance) methods are among the most common approaches to providing explanations through post-hoc
analysis, where the most important features are identified for a certain input. They were originally proposed to explain computer
vision and language processing models and have also been adopted in the context of TSC [14,15]. In time series, the real values at
certain time steps can be regarded as features, similar to pixels in images. Typical ways to obtain saliency-based explanations in TSC
include gradient backpropagation-based methods [4] and perturbation-based methods [16]. Gradient-based methods compute the
gradients of the membership of a given class w.r.t. the input features to explain the classifier. Therefore, they can only be applied to
classifiers whose gradients are accessible. In contrast, perturbation-based methods are usually model-agnostic. They perturb certain
features and then measure the changes in the classification. In time series, most works perturb the features by replacing them with
zeros [16]. This is useful, as it allows the discovery of saliency by flagging features which are (or are not) relevant to a given
classification. However, they may result in inputs that are not aligned with the distribution of the training dataset. In the XAI field,
this is known as the out-of-distribution (OOD) problem [17]. It has been widely recognised in image [18] and language processing
[19] models, but in the context of TSC, it has not been articulated or received much attention. Building on our preliminary work
[20], the present paper mitigates the OOD problem by putting forward a novel generative model to learn the distribution of the
training dataset in order to generate within-distribution perturbed inputs for saliency discovery.

Another challenge for saliency discovery is to efficiently identify the smallest group of salient features. These features are nec-

essary for a classifier to predict a specific output. Inspired by Fong’s work in computer vision [21], saliency discovery in the TSC
context has been cast as an optimisation problem [14], which can informally be described as: what is the smallest feature set of the
current input that would maximally change the classifier’s output? The solution to such an optimisation problem provides a pathway to
help users focus on the minimal number of features necessary for the classifier to produce one output rather than another, something
which helps identify the reasons for this output. However, this solution can only be attained by an exhaustive search of a feature
space whose size increases exponentially with the dimension of the input features, and is an NP-hard problem [22–24]. One group
of current solutions uses gradient descent techniques, where an auxiliary neural network is trained to identify the salient features
[14,18,21]. However, in order to optimise the auxiliary neural network, these methods need the gradients of the classifiers. Another
group approximates the optimal solution to the optimisation problem by using search-based methods, including Beam Search [23],
Greedy method [24] and Genetic Algorithm [22]. These methods do not need the inner structures of the classifiers and can be applied
to any classifier. To the best of our knowledge, such search-based methods have not been explored in the context of TSC.

In the present paper, we propose a framework to tackle the OOD problem and the difficulty of searching for the smallest salient
feature set in the context of TSC. The specific contributions of this paper are summarised as follows:

• A novel model-agnostic framework is proposed to explain TSC through a post-hoc approach.

• The OOD problem in explaining TSC is articulated and addressed by designing a generative model to generate within-distribution
perturbed inputs.

• A novel greedy-based segmentation and identification search strategy is proposed to identify the key features that are necessary
for the classifier to produce a particular output.
2

1 The notion of who this human is, is a crucial aspect of assessing a model’s transparency, i.e. it may be transparent to its creating engineer, but not to an end user.

Information Sciences 645 (2023) 119334H. Meng, C. Wagner and I. Triguero

Fig. 1. An output, 𝑝 (𝑐|𝒙) = “2”, is produced by a classifier for a MTS. This MTS has 3 variables and the length of these sequences is 80, which is expressed by
𝒙 ∈ℝ3×80 .

• In addition to saliency explanations, this framework also provides counterfactual explanations based on the identified features
and the proposed generative model, which provides the users more insights into the working mechanisms of the classifier.

The remainder of this paper is organised as follows. Section 2 gives the background of this work. Then, in Section 3, the proposed
framework is described in detail. Section 4 and Section 5 provide detailed information about the experimental design and the
thorough analysis of the proposed framework, respectively. Section 6 provides the conclusion and descriptions of avenues for future
work.

2. Background

This section gives a brief overview of the work related to XAI in the context of TSC. First, the preliminaries for TSC are provided
in Section 2.1. After that, the classic saliency-based explaining methods adopted to explaining TSC are reviewed in Section 2.2. Then,
optimisation-based saliency identification techniques are introduced, and their advantages as well as challenges are discussed in
Section 2.3. Finding the smallest subset of relevant features may resemble the problem of feature selection [25], but it has different
goals and faces different challenges, which we believe necessary and useful to clarify. Therefore, we analyse these differences in
Section 2.4.

2.1. Time series classification

A time series is a sequence of real values recorded in temporal order. A time series can be univariate, where the values are
collected from only one sensor, or multivariate, where the real values are collected from multiple sensors. Nowadays, with the
advancement of technique, more and more multivariate time series are being collected, which makes classification as well as its
explanation more challenging. An example of a multivariate time series (MTS) can be seen in Fig. 1. In this paper, a time series
is denoted by 𝒙 ∈ ℝ𝐷×𝑇 , where 𝐷 is the number of variables (or the number of sensors from which the values are collected; for
univariate time series, 𝐷 = 1) and 𝑇 is the total number of time steps. In this paper, a value at a certain time step is regarded as one
feature. For example, 𝒙𝑖,𝑡 is the feature representing the value of the 𝑖-th variable at time 𝑡. A TSC can be denoted by 𝑝 (𝑐|𝒙), which
predicts the class 𝑐 of the input time series 𝒙. The remainder of this paper is going to target MTS, but the proposed explanatory
framework is also applicable to univariate time series.

2.2. Classic saliency-based explanation

Saliency-based methods are one of the most commonly adopted approaches to explain black-box classifiers [15]. The term “salien-

cy” was originally used in explaining image models, where the most important pixels for an output produced by a classifier are
highlighted in a saliency map [26]. In classic saliency-based explanations, a saliency map is obtained by assigning each input pixel
an importance score, which describes the influence of that pixel on the classifier’s output. However, this idea is also applicable to
explaining TSC. In a saliency map, the most important features are highlighted. An example of a classic saliency-based explana-

tion for a TSC is shown in Fig. 2a. Currently, methods providing classic saliency-based explanations for black-box classifiers can be
roughly categorised into three groups: gradient-based methods, perturbation-based methods, and the recently developed meaningful
perturbation-based methods.

Gradient-based methods: These methods are based on the assumption that when a salient feature varies locally, it will cause a
significant change in the output. The importance of one feature is evaluated by the gradient of the membership of a given class in
the output w.r.t. this feature. A large gradient is translated into a salient feature. Popular gradient-based methods include Simple
Gradient (SG) [26], Integrated Gradient (IG) [27], DeepLIFT [28], and others. These methods can provide saliency-based explanations
very quickly but their explanations might be misleading [29]. It is known that SG methods fail to model saturation [28]. Taking a
model, 𝑦 = max(0, 1 − 𝑥1 − 𝑥2), for example, as long as 𝑥1 + 𝑥2 > 1, the gradient of the output w.r.t. the input features will always
zeros, because in this case the model is “saturated” and its output will be always “0” no matter what the values of 𝑥1 and 𝑥2 are. IG
[27] is proposed to mitigate this issue. This method numerically calculates the path integral of the gradients of a certain output w.r.t.
an input feature to evaluate the importance of this feature. The path starts from a user-defined baseline and ends with the current
3

input. Therefore, IG needs a baseline to generate explanations. The authors of [27] set the baseline to “zeros” input, which might

Information Sciences 645 (2023) 119334H. Meng, C. Wagner and I. Triguero

Fig. 2. (a) A classic saliency-based explanation; (b) An optimisation-based saliency-based explanation. Typical saliency-based explanations focus on assigning each
feature with an importance score, while optimisation-based saliency-based explanations focus on identifying a group of features rather than exactly estimating the
importance of each feature.

Fig. 3. (a) Time series perturbed inputs generated by replacing features with zeros and plausible values that inferred from the training dataset; (b) An example of
the OOD problem in an image classification problem, where the centre region is perturbed by artificial strategies, including mean, blur, random, and plausible values
inferred from the dataset. (This image is taken from [18]).

risk feeding classifiers with inputs that classifiers did not observe during the training stage, which is known in the XAI domain as
‘the OOD problem’. Different baselines will result in different explanations, but the guidance for choosing a suitable baseline has not
been developed [30]. Similar to IG, DeepLIFT also needs to choose suitable baselines, which is not an easy task. In addition, since
these methods calculate the saliency based on gradients, they can only be applied to classifiers for which the gradients are accessible.

Perturbation-based methods: These methods perturb the input features and then measure the changes in the classifiers’ outputs.
These methods are based on the assumption that there are salient features whose perturbation will produce significant changes
in the output. LIME [11] is one of the most prominent of these frameworks and can also be regarded as a kind of perturbation-

based method, since the first step in the LIME framework is to generate perturbed inputs. The difference between LIME and typical
perturbation-based methods is that LIME needs to train a local proxy model to evaluate the importance of the features rather than
directly measuring the changes in the outputs. When using perturbation-based methods, one of the key points is how to perturb the
features. Currently, in the context of TSC, the features are perturbed by replacing them with zeros [31,16] or with the weighted
average of their neighbouring features [14]. However, these artificial perturbation operations might generate OOD inputs, as is
shown in Fig. 3a. In the context of time series, the OOD problem might not be as obvious to humans as it is in image problems,
as shown in 3b, but it might result in the same meaningless explanations as those in image problems. From Fig. 3b, the human
might easily judges that the artificially generated perturbed inputs are not aligned with the distribution of the original dataset. In
other words, the classifier did not observe such images during the training stage. Therefore, the behaviour of a classifier on these
OOD inputs might not faithfully reflect what it has learned from the training dataset, and thus, the provided explanations might be
meaningless.

Meaningful perturbation-based methods: These methods aim to mitigate the OOD problem in the classic perturbation-based meth-

ods. This is realised by replacing the features to be perturbed with plausible alternative values that are inferred from the distribution
4

of the training datasets, as shown in Fig. 3. Therefore, in this paper, we call these methods meaningful perturbation-based methods,

Information Sciences 645 (2023) 119334H. Meng, C. Wagner and I. Triguero

which means the perturbed inputs are meaningful to the classifier. In the literature, these methods are usually expressed through a
marginalisation form [19,18]:

𝑝(𝑐|𝒙⧵𝑟) = ∫ 𝑝(𝑐|𝒙∗
𝑟
,𝒙⧵𝑟)𝑝(𝒙∗𝑟 |𝒙⧵𝑟)𝑑𝒙∗𝑟

= 𝔼𝒙
∗
𝑟∼𝑝(𝒙∗𝑟 |𝒙⧵𝑟)[𝑝(𝑐|𝒙∗𝑟 ,𝒙⧵𝑟)] (1)

where 𝑟 denotes a subset of the input features, 𝒙𝑟 denotes a partition of the input 𝒙 = 𝒙𝑟 ∪ 𝒙⧵𝑟, and 𝑝(𝑐|𝒙⧵𝑟) denotes the classifier’s
output when features 𝒙𝑟 are perturbed by replacing them with plausible alternative values. The 𝑝(𝑐|𝒙⧵𝑟) can be also interpreted as the
output of the classifier when the 𝒙𝑟 are unknown (or removed from the input) [18], since the contributions of 𝒙𝑟 are marginalised
out [19,18]. The difference between 𝑝(𝑐|𝒙⧵𝑟) and 𝑝(𝑐|𝒙) measures the importance of 𝒙𝑟. The 𝑝(𝒙𝑟|𝒙⧵𝑟) in (1) describe the distribution
of plausible values of 𝒙𝑟 conditioned by 𝒙⧵𝑟, which guarantees that the perturbed inputs are aligned with the training datasets.
However, the exact distribution 𝑝(𝒙𝑟|𝒙⧵𝑟) is hard to achieve. Current promising approaches use generative models to approximate
this distribution from the training dataset [19,18], from which within-distribution perturbed inputs can be generated. Meaningful
perturbation-based methods have now been used to explain image models [18] and language processing models [19], but in the
context of TSC, their performance has not been explored.

2.3. Optimisation-based saliency computation

Optimisation-based saliency computations also aim to identify the most important features, but they reformulate their goal as:
what is the smallest feature set of the current input that would maximally change the classifier’s output? These methods focus on identifying
a group of features rather than assigning an importance score to each feature [21,18]. An example of this kind of explanation is
shown in Fig. 2b. Compared with classic saliency methods, optimisation-based saliency computations have their advantages. For
example, optimisation-based saliency explanations can help humans focus on the key features, which helps them to explore the
reasons for an output, while in a classic saliency explanation, humans have no insights into how many features they should focus on
to understand an output. Definitely, we can set a threshold for a classic saliency explanation to obtain a binary saliency map, where
the features whose importance scores are above this threshold are considered important but otherwise are not important. A suitable
threshold should ensure that the important features are identified and the unimportant features are excluded. However, it may be a
challenge to set a suitable threshold. The suitable thresholds might differ for different problems or even depending on the instances
belonging to the same problem.

Binary Input ∶ 𝑥1, 𝑥2, 𝑥3

Binary Classifier ∶ F(𝑥1, 𝑥2, 𝑥3) = 𝑥1 ∧ 𝑥2 ∧ 𝑥3

Current Input ∶ F(0,0,1) = 0

(2)

Another advantage of optimisation-based saliency explanations is that they avoid the difficulty of obtaining exact importance scores.
This difficulty comes from various aspects; one of them is model saturation [28]. For example, (2) shows a binary classifier of which
the three input features are also binary. The classifier produces “1” when all input features are “1”, otherwise it produces “0”.
Herein, a classification task, F(0, 0, 1) = 0, is going to be explained using classic perturbation-based saliency methods. If 𝑥1 and 𝑥2
are perturbed independently, which means that only one feature is perturbed each time, the classifier will maintain its prediction,
since the classifier is saturated to produce “0” as long as one of the input features is “0”. In this circumstance, both the importance
of 𝑥1 and 𝑥2 are evaluated as zero. However, if 𝑥1 and 𝑥2 are perturbed together by replacing them with “1”, the classifier will flip
its prediction. This means that 𝑥1 and 𝑥2 indeed make their contributions to the current prediction, but their contributions can only
be evaluated together. This means that to obtain the importance score of one feature we not only need to evaluate its independent
contribution by perturbing this feature alone, but we also need to evaluate its cooperative contributions with other features by
perturbing feature sets containing this feature. The evaluation of the exact importance needs to consider all subsets of the input
features, which is an NP-hard problem [22–24]. Therefore, the evaluation of an exact importance score is hard to achieve for many
real-world applications. In contrast, optimisation-based methods only focus on identifying a feature set that is effective at changing
the output of the classifier, for example in (2), they only need to identify the feature set {𝑥1, 𝑥2} and do not need to waste time on
estimating the importance score of these three features.

Although having advantages, optimisation-based saliency explanations face several challenges. The first comes from the difficulty
in identifying the smallest feature set, which can only be identified through an exhaustive search. Current solutions mitigate this
challenge through two kinds of approaches: optimising an auxiliary neural network selector [14,18] and using heuristic search
methods [23,22,24]. The former approaches adopt gradient descent optimisation methods to train an auxiliary neural network to
identify feature sets that can maximally change the classifier’s output. A sparsity penalty is added to the loss function to obtain a
small set. However, these approaches need the gradients of the classifiers, so they are not model-agnostic and cannot be applied
to classifiers whose gradients are not accessible. The approaches in the other group are model-agnostic and can be applied to
any classifier. Typical heuristic search methods adopted in saliency computation include Beam Search [23], Greedy method [24] and
Genetic Algorithm [22]. Currently, these methods are adopted in explaining language processing models [24,22], while in the context
of TSC, these methods have not been explored. The reason for this might be that MTS are usually high-dimensional, where these
5

search methods face challenges in searching for a good solution. One of the motivations of this paper is to address this challenge.

Information Sciences 645 (2023) 119334H. Meng, C. Wagner and I. Triguero

Another challenge that optimisation-based saliency methods face is the OOD problem. The basis of optimisation-based methods it
to judge whether a group of features can maximally change the classifier’s output. Currently, this is achieved through perturbation-

based methods by perturbing these features and evaluating the changes in the output. Therefore, similar to classic perturbation-

based saliency methods, optimisation-based saliency computations also need to address the OOD problem. However, many current
optimisation-based saliency methods do not consider the OOD problem [14,24,23].

2.4. Saliency-based explanation and feature selection

Saliency-based explanation may seem similar to the feature selection [25] and feature weighting problem [32], but it has different
goals and faces different challenges. Feature selection is to resolve a binary optimisation problem to select the most representative
features, while feature weighting is to solve a continuous optimisation problem so as to assign a weight to each feature. Both of
these problems are addressed in the data preprocessing stage, aiming to improve the model’s performance and enhance the model’s
interpretability. However, in this paper, the saliency-based explanation does not aim to improve the classifier’s performance but
rather to identify the relevant features for a given classification so as to explain a classifier which has been already trained. A
saliency-based explanation is only meaningful for a particular classification because the classifier might focus on different features
when making classifications for different inputs. So for each classification to be explained, a search operation needs to be carried out
separately. In contrast, feature selection (or feature weighting) only needs to do a search one time, during the model construction
stage. In terms of interpretability, feature selection (or feature weighting) might do better for global interpretability, since the number
of input features is reduced globally (or the weights of the features are the same globally), while saliency-based explanation aims to
provide local interpretability since the identified relevant features only help to explain the model’s behaviour on a specific input.

In addition to the different goals, saliency-based explanation also faces different challenges. Both feature selection and saliency-

based explanation need to evaluate the influence of certain features on the model. In feature selection, if we employ wrapper
methods [33], this is realised by training the same model with different features and then checking the accuracy (or whatever
metrics of interest we are maximising/minimising). If some features are important, removing them from the input will affect the
model’s performance significantly. However, in the context of saliency-based explanation, the model has been already trained before
looking for how to explain it, and the number of input features is fixed, so we can not physically remove features like that in the
feature selection. Therefore, how to evaluate the influence of certain features is a challenge that needs to be addressed in this paper.

Both feature selection and saliency-based explanation need to search over the input feature space to identify the smallest feature
set that includes all important or relevant features. For time series, feature selection is commonly adopted at the series level [34],
which means that each series is regarded as one feature. If one series is considered important, the whole series is maintained, but
otherwise, it is removed. However, this is not what we wish to obtain in a saliency-based explanation. A classifier might only focus
on a limited number of the features of a series to make a prediction. Therefore, we hope to search for the really necessary features
rather than the whole series. Of course, we can consider each feature of a time series individually and carry out search operations
to identify the necessary features. However, in this case, the search space would increase exponentially with the number of features,
which makes the problem hard to be addressed efficiently in the context of high-dimensional data [25,35,36]. Recently, in feature
selection for tabular data, Cooperative Coevolutionary Algorithms (CCs) have been used to address this challenge [36,35,25]. The
input features are first grouped into a number of groups. The features belonging to the same group have strong correlations. Then,
the same number of Evolutionary Algorithms (EAs) are carried out over each group and evolve cooperatively to search for the most
representative features. Through such a “divide and conquer” strategy, the original complex high-dimensional optimisation problem
is divided into a number of simple low-dimensional optimisation problems, which can be addressed more easily. However, such
a strategy is not suitable to be directly adopted for the TSC problem. For tabular data, each feature might have a clear meaning
for humans, while for time series, a feature at a specific time step might not be so meaningful. Humans might understand what a
time series means better by the features within the continuous time steps, for example, an up or down trend. Therefore, to provide
better interpretability of a TSC, a saliency-based explanation needs to consider how to search for the most important features within
continuous time steps rather than the isolated features.

3. Methodology

In this section, the problem that we are going to address is formulated in Section 3.1. Then, an overview of our proposed
framework is provided in Section 3.2. After that, the modules, including the design of the generative model (Section 3.3) and the
design of the search method (Section 3.4), which compose this framework, are described in detail.

3.1. Problem definition

Let 𝑝 (𝑐|𝒙) be a TSC that produces the class label of 𝒙. Assume that we have a particular input 𝒙∗ for which the classifier’s output
is 𝑝 (𝑐|𝒙∗) = 𝑐1. Our main goal is to explain, using a saliency-based explanation, why the classifier predicts that 𝒙∗ belongs to class
𝑐1 rather than another class. In the final explanation, the key features of 𝒙∗ that are necessary for the classifier to produce this
output are identified. If these features had not taken their actual values but other plausible values instead, the classifier would have
produced a different output. Therefore, in this paper, these key features are also called ‘supporting features’ and denoted by 𝒙∗

𝑠
. The

set 𝒙∗, which includes all input features, is definitely supporting. However, a smaller set would provide more insight into explaining
the output. Therefore, in order to provide better explanations, we are trying to find the smallest supporting feature set to help users
6

who use this classifier understands why 𝑝 (𝑐|𝒙∗) = 𝑐1.

Information Sciences 645 (2023) 119334H. Meng, C. Wagner and I. Triguero

Fig. 4. Explaining a classifier through a post-hoc approach. In the first step, the classifier is trained on an MTS training dataset. Then, the trained classifier is used to
classify an instance of the MTS, of which the output is explained in the third step.

3.2. Pipeline of the proposed framework

Fig. 4 shows the pipeline of the proposed framework that explains TSC through a post-hoc approach. Algorithm 1 provides the
corresponding pseudo-code for this framework. Since we are taking a post-hoc approach, a classifier 𝑝 is first trained on the dataset
before we try to explain. Then, an output is produced for a given instance, 𝒙. To explain this output, a generative model 𝐺 is trained
to learn the distribution of the dataset on which the classifier is trained (line 1 in Algorithm 1) and then used to generate perturbed
inputs for the input to be explained (line 5 in Algorithm 1). Since the training dataset of the classifier is fixed, the generative
model only needs to be trained one time and can be used to explain any input. The structure of the generative model and the training
strategy are described in Section 3.3. After that, a greedy-based segmentation and identification search method is designed to identify
the smallest supporting feature set of this input. This method is composed of segmentation (line 2 and line 10 in Algorithm 1) and
identification (lines 4 to 6 in Algorithm 1) steps. A detailed description of these two steps is provided in Section 3.4. The connection
between the proposed generative model and the search method is that the generative model is primarily used to create realistic inputs
for evaluating importance of specific features, while the greedy segmentation strategy is employed to identify the most important
feature set for a given output. During the greedy search process, the generative model is used to generate realistic inputs. Finally, an
explanation is generated for this output through a saliency map, where a small supporting feature set is identified.

Algorithm 1: The pseudo-code for the proposed framework .
Input : Time Series 𝒙, Classifier 𝑝, Training Dataset 𝐷

1 𝐺← Training the generative model;

2 Segments ← Segmentation(𝒙);
3 while True do

4 𝑾 0 ← Initialising saliency maps by Segments;

5 𝑾 𝑏𝑒𝑠𝑡 ← Searching for best saliency map by (𝒙, 𝐺, 𝑾 0 , 𝑝) ;

6 Identified Segments ←𝑾 𝑏𝑒𝑠𝑡 ;

7 if the length of the Identified Segment = 1 then

8 break;

9 end

10 Segments ← Segmentation (Identified Segments) ;
11 end
7

Return : 𝑾 𝑏𝑒𝑠𝑡

Information Sciences 645 (2023) 119334H. Meng, C. Wagner and I. Triguero

Fig. 5. The structure of the proposed generative model. The training data are generated by masking features within some randomly chosen time intervals. Then,
the generative model is trained to generate plausible alternative values for these masked features. To enhance the quality of the MTS generated by the generator, a
discriminator is added to distinguish the fake MTS (generated by the generative model) and the real MTS (sampled from the dataset).

3.3. Designing the generative model

The basis of this framework is to determine whether a group of features are supporting features, something which is accomplished
by (1). If 𝑝(𝑐|𝒙∗⧵𝑟) ≠ 𝑝(𝑐|𝒙∗), 𝒙∗

𝑟
are supporting features. Here, a generative model is designed for MTS to estimate the necessary

distribution, 𝑝(𝒙∗
𝑟
|𝒙∗⧵𝑟). The structure of the proposed generative model is shown in Fig. 5. In the following part of this section, first,

the method to generate the training data for this generative model is described. Then, we give a detailed description of the structure
of the generative model. Finally, the objectives to be optimised and the training strategy are given.

3.3.1. Training data generation

To train the generative model to estimate the distribution, 𝑝(𝒙∗
𝑟
|𝒙∗⧵𝑟), the first step is to obtain its inputs, 𝒙∗⧵𝑟, and outputs, 𝒙∗

𝑟
. We

sample MTS data from the dataset, and for each MTS, a binary mask is created to mask out certain features through element-wise
multiplication, 𝒙∗ ⊙𝑴 , creating an input for the generative model. The complementary components, 𝒙∗ ⊙ (𝟏 −𝑴), are the target the
generative model tries to generate.

3.3.2. Architecture of the generative model

The aim of the generative model is to create plausible values for 𝒙∗
𝑟

conditioned by 𝒙∗⧵𝑟. This is very similar to time series
imputation problems, where the missing components of a time series need to be filled in. However, in the missing values imputation
problem, they do not have the actual ground truth values. Therefore, imputation models attempt to learn the temporal dependence
of the time series using the observed values. The missing parts are then filled in based on the learned temporal dependence. In our
scenario, the time series we have are complete. We have the ground truth for each feature, so we do not need to predict them. Our
goal is to generate alternative plausible values for certain features, which can maintain the perturbed time series within the original
distribution. Nevertheless, although time series missing imputation models have a different goal, they can be applied in this situation.

Prior to this work, we compared the performance of various state-of-the-art methods for imputing missing values [37] with that of
two generative methods we designed. One of the methods is based on Transformers [38], and the other is based on Bidirectional RNNs
[39]. The results of this comparison are provided in the supplementary material.2 In those results we observe that the Transformer is
the best performing method, and that is why we have adopted it in this paper. Specifically, the original time series is first embedded
by a fully connected layer and then fed into a Transformer encoder, which is composed of several Transformer layers. Then, the
output of the Transformer encoder is fed into a fully connected layer followed by a hyperbolic tangent (tanh) activation function,
which aims to constrain the predicted values into [-1, 1].

However, it is important to note that the results presented in the supplementary material indicate that although the imputation
ability of the Transformers is superior to the other methods, that does not significantly influence the result of the final explanations
(i.e. the results of the deterioration test, see Table 3).
8

2 https://github .com /menghan1994 /ETSC _through _Meainingful _Perturbation _and _Optimisation.

https://github.com/menghan1994/ETSC_through_Meainingful_Perturbation_and_Optimisation

Information Sciences 645 (2023) 119334H. Meng, C. Wagner and I. Triguero

3.3.3. Optimisation objective

The generative model aims to produce the masked component. Therefore, one of the loss functions is a reconstruction loss:
𝑟𝑒𝑐 = ||(1 −𝑴) ⊙ (𝒙−𝐺(𝑴 ⊙𝒙))||2, where 𝐺 denotes the whole generative model. This loss measures the distance between the target
features of the original inputs and those generated by the generative model. In addition, to enhance the quality of the MTS generated
by the model, we adopt the adversarial training strategy. Specifically, we take the Wassersten Generative Adversarial Networks
(WGANs) [40] diagram to train the generative model. WGANs are a modification of the classic GANs [41] whose discriminator has
no activation function in its final layer. WGANs are better at learning stability and avoiding model collapse than are the classic GANs
[42]. In this paper, we use the gradient penalty proposed in [40] to implement the Lipschitz constraint. The adversarial loss is

𝑎𝑑𝑣 = 𝔼
𝒙∼ℙ𝑟

[𝐷(𝒙)] − 𝔼
𝒙̃∼ℙ𝑔

[𝐷(𝒙̃)] + 𝜆 𝔼
𝒙′∼ℙ𝑥′

[(‖‖∇𝒙′𝐷[𝒙′]‖‖2 − 1)2] (3)

where 𝐷 is the discriminator; 𝑃𝑟 is the training dataset distribution; 𝑃𝑔 is the fake dataset distribution from which the MTS are
generated by 𝒙̃ =𝑴 ⊙ 𝒙+ (1 −𝑴) ⊙ (𝐺(𝑴 ⊙ 𝒙)), being the combination of the generated masked features and the non-masked parts
of the real data; 𝑃𝑥′ is the distribution sampled uniformly along straight lines between pairs of points sampled from 𝑃𝑟 and 𝑃𝑔 [40];
𝜆 is a parameter that controls the strength of the gradient penalty.

3.3.4. Training strategy

Following the training diagram of GANs [41], the discriminator 𝐷 and the generator 𝐺 are optimised iteratively through stochastic
gradient descent. The discriminator is optimised by minimising the adversarial loss 𝑎𝑑𝑣 in (3) and the generator is optimised by
minimising the overall generative loss which is expressed by

𝑟𝑒𝑐 = 𝔼
𝒙∼ℙ𝑟

[𝑟𝑒𝑐 + 𝜆𝑑𝑖𝑠𝐷(𝒙̃)] (4)

where 𝜆𝑑𝑖𝑠 is a hyperparameter controlling the strength of the penalty of the adversarial loss.

3.4. Search-based method for saliency computation

The previous steps have provided the components necessary to judge whether a group of features are supporting features for the
given classification. The next step of our proposed framework is to find the smallest supporting feature set. However, the smallest
supporting feature set can only be obtained by an exhaustive search, which is impossible when the feature space is huge. Therefore,
we propose to use heuristic search-based methods to find approximate solutions within a reasonable time. This section first introduces
the objective (or fitness) function guiding the search. Then, we design a method to address the difficulties faced by classic search
methods when searching a huge feature space.

3.4.1. Fitness function for search-based saliency explanation

In this section, we are going to describe how to evaluate whether a saliency explanation is ideal or not and then formulate these
evaluation metrics as a fitness function. A smaller value of the fitness means a better saliency explanation.

First, the identified features in an ideal saliency explanation should be supporting features, which means that if these features
were replaced by other plausible values, the classifier would produce a different output. This is formulated as follows:

Sup(𝑾) =

{
1 if 𝑝(𝑐|𝒙) = 𝑝(𝑐|𝒙⧵𝑟)
0 if 𝑝(𝑐|𝒙) ≠ 𝑝(𝑐|𝒙⧵𝑟)

where 𝒙𝑖,𝑗 ∈ 𝒙⧵𝑟, if 𝑾 𝑖,𝑗 = 1

(5)

where the saliency map is represented by a binary mask 𝑾 ∈ℝ𝐷×𝑇 ; 𝑾 𝑑,𝑡 = 1 means the feature 𝒙𝑑,𝑡 is identified; Sup(𝑾) = 0 means
the identified features are supporting features. To calculate 𝑝(𝑐|𝒙⧵𝑟) using (1), it is necessary to sample from the distribution 𝑝(𝒙𝑟|𝒙⧵𝑟).
[43] has shown that keeping the dropout layer active during the inference stage and running the forward process multiple times is
equivalent to sampling from the learned distribution. Therefore, (1) can be reformulated as

𝑝(𝑐|𝒙⧵𝑟) = ∫ 𝑝(𝑐|𝒙∗
𝑟
,𝒙⧵𝑟)𝑝(𝒙∗𝑟 |𝒙⧵𝑟)𝑑𝒙∗𝑟

= ∫ 𝑝(𝑐|𝑔𝜽,𝝐̂(𝒙⧵𝑟),𝒙⧵𝑟)𝑑𝝐
= 𝔼𝝐̂∼𝑝(𝝐)𝑝(𝑐|𝐺𝜽,𝝐̂(𝒙⧵𝑟),𝒙⧵𝑟)

(6)

where 𝐺 represents the generative model; 𝑝(𝝐) is a product of Bernoulli distribution with probabilities of 1 − 𝑝, and 𝑝 represents the
dropout rate in the training stage; the 𝜽 represent the weights of the final fitted generative model.

Second, sparsity is also a desired property of an ideal explanation, which means that the size of the identified supporting feature
set should be small. This helps in providing clear explanations. This objective is expressed by

Spar(𝑾) = ‖𝑾 ‖1 (7)
9

where ‖⋅‖1 denotes the L1-norm of the binary mask 𝑾 . A smaller value of Spar(𝑾) means fewer features are identified.

Information Sciences 645 (2023) 119334H. Meng, C. Wagner and I. Triguero

Fig. 6. Proposed greedy-based segmentation and identification search method. The input MTS is segmented into several segments. In the following step, the smallest
supporting segments are identified through a binary search method. In the next segment step, the previously identified segments are further segmented into smaller
segments. Then, the adopted binary search model is implemented on these smaller segments. This process continues until the length of the segments is one.

Finally, similar to [14], we assume that in the context of MTS, features within continuous time steps provide more insights for
humans to understand the behaviour of a classifier than those scattered over discrete time steps. This is similar to the pixels in
images, where the pixels within a continuous region make more sense for humans than those scattered everywhere. Therefore, in
an ideal saliency explanation, we hope the identified features can be continuous in time, which can be realised by minimising the
following objective:

Conti(𝑾) = 1
𝐷𝑇

𝐷∑
𝑑=0

𝑇−1∑
𝑡=0

||𝑾 𝑑,𝑡 −𝑾 𝑑,𝑡+1|| (8)

The final fitness function for the task at hand is the combination of the above three objectives:

Fitness(𝑾) = 𝜆𝑒Sup(𝑾) + 𝜆𝑠Spar(𝑾) + 𝜆𝑐Conti(𝑾) (9)

where 𝜆𝑒, 𝜆𝑠, and 𝜆𝑐 are three parameters that control the priority of these objectives in the process of searching for an ideal
explanation. Finding supporting features has the highest priority, therefore, the fitness value of a saliency map, of which the identified
features are supporting features, should always be smaller than that of which the identified features are not supporting features. This
priority is realised by setting 𝜆𝑒 > 𝜆𝑠Spar(𝑾) + 𝜆𝑐Conti(𝑾) for any 𝑾 . Similarly, the sparsity requirement has the second priority,
which is maintained by setting 𝜆𝑠Spar(𝑾) > 𝜆𝑐Conti(𝑾) for any solution. Because Sup(𝑾) ⊂ [0, 𝐷𝑇] and Conti(𝑾) ⊂ [0, 1], in this
paper, we set 𝜆𝑒 = 10𝐷𝑇 , 𝜆𝑠 = 1.0 and 𝜆𝑐 = 0.1 to maintain the defined priority.

3.4.2. Greedy-based segmentation and identification search method

After defining the fitness function, the challenge we are facing now is how to obtain an ideal explanation in a reasonable time.
MTS are often high-dimensional, on which classic search methods face difficulties in obtaining ideal solutions. Here, we mitigate this
difficulty by the proposed greedy-based segmentation and identification search method, of which an overview is shown in Fig. 6.
The overall search operation is composed of a number of sequential sub-steps. Each sub-step contains two operations: segmentation
and identification. At the beginning, the original input MTS is segmented into a number of non-overlap segments. Each segment
10

contains the features within a certain time interval and is considered as one “super-feature” during the next identification step. In

Information Sciences 645 (2023) 119334H. Meng, C. Wagner and I. Triguero

Fig. 7. Treating MNIST images as MTS. Each image is regarded as an MTS with 28 time steps, each of which has 28 features.

the identification steps, a binary heuristic search method is used to search for the smallest group of supporting segments over the
feature space composed of these “super-features”. Then in the next segment step, the identified supporting “super-features” in the
previous identification step are further segmented into smaller segments, on which the binary search method is carried out again.
The two operations are carried out iteratively until the “super-features” can not be segmented further (the length of the identified
segments is one).

In the identification steps, we are dealing with a binary optimisation problem. In the literature, many classic heuristic methods
can be adopted, such as Genetic Algorithm (GA) [44] and Binary Particle Swarm Optimisation (BPSO) [45]. Both of these classic
methods have their advantages as well as limitations. In this work, we implement GA and BPSO in the identification steps. We
will show in the experiment that these two methods achieve very similar performance. One thing that has to be noted here is that,
although we take GA and BPSO, users can use any binary search method in the identification steps. We believe a suitable search
method will help in achieving better results. Besides, although we focus on the TSC context, the proposed greedy-based segmentation
and identification search strategy is more broadly applicable to any domain, such as images.

4. Experimental design

In this section, we are going to provide details of the experimental design. First, we describe the adopted TSC datasets and the
classifier we are going to explain. Then, the experimental parameters, including the hyperparameters of the generative model and the
settings of the adopted search methods, are provided. Finally, the benchmarking explaining methods that are going to be compared
with are presented, and the quantitative evaluation metric is described.

4.1. Datasets

To validate the performance of our proposed framework, we adopt the UEA TSC archive, which is a well-known benchmarking
archive containing 30 TSC datasets collected from a wide range of applications [46]. In addition, we also use the handwriting images
dataset, MNIST [47] in our experiments. Although it was not originally collected as an MTS, we can treat it as an MTS, as did
[15]. We take MNIST here for visualisation purposes, which helps to obtain some useful qualitative evaluations. The details of the
pre-processing methods are as follows.

UEA TSC Archive: Detailed information of these datasets can be obtained from [46] and a summary of these 30 datasets is given
in Table 1. As can be seen in the table, the time series in some datasets have too many features or time steps, e.g. DuckDuckGeese,
EigenWorms, MotorImagery, and PEMS-SF. Providing explanations for these problems is very time consuming. In this paper, we only
consider the 26 medium-size datasets. The datasets, including CharacterTrajectories (30%), InsectWingbeat (57%), JapaneseVowels
(45%), and SpokenArabicDigits (57%), have missing values, of which the percentage of the missing features are given in brackets.
We will first fill in the missing values in these datasets with zeros. In the following section, we will show that the classifier achieves
better performance than random guessing on these datasets. Since the main aim of this work is to explain the classifier, filling missing
values with zeros is acceptable. Second, the features of every dimension are normalised using the min–max normalization method
and then rescaled into [−1, 1]. The rescaling operation aims to keep the range of the real-world MTS be consistent with that generated
by the generative model, of which the activation function in the final layer is tanh.

Treating MNIST as an MTS: The original 28 × 28 images are treated as an MTS with 28 time steps, each of which has 28 features.
Here, the 𝑦-axis is treated as the time steps and the 𝑥-axis as the features, which is shown in Fig. 7. Similarly, the images are
normalised using the min–max normalization method and then rescaled into [-1, 1].

4.2. Classifier

The novelty of this paper is the model-agnostic framework that explains any classifier through a post-hoc approach. Designing a
high-performance TSC is not our goal. Therefore, we only implement a simple classifier based on RNNs for our experiments, where
Long Short Term Memory (LSTM) cells [48] are used to encode the whole MTS and the hidden states at the final step are fed into a
fully-connected layer followed by a soft-max layer to produce the probability of each class. The class with the highest probability is
regarded as the predicted class. In our experiments, the dimension of the hidden states of this classifier is set to 128. The accuracy of
the classifier on MNIST is 98%, while the accuracy of the classifier varies among the datasets in the UEA archive. As shown in Table 2,
the classifier performs excellently on some problems, such as JapaneseVowels, SpokenArabicDigits, and PenDigits. However, on other
11

problems, such as AtrialFibrillation, EthanolConcentration and FingerMovements, its performance is not better than random guesses,

Information Sciences 645 (2023) 119334H. Meng, C. Wagner and I. Triguero

Table 1

A summary of the 30 datasets in the UEA TSC Archive.

Dataset Training cases Test cases Dimensions Length Classes

0 ArticularyWordRecognition 275 300 9 144 25

1 AtrialFibrillation 15 15 2 640 3

2 BasicMotions 40 40 6 100 4

3 CharacterTrajectories 1422 1436 3 182 20

4 Cricket 108 72 6 1197 12

5 DuckDuckGeese* 50 50 1345 270 5

6 EigenWorms* 128 131 6 17984 5

7 Epilepsy 137 138 3 206 4

8 EthanolConcentration 261 263 3 1751 4

9 ERing 30 270 4 65 6

10 FaceDetection 5890 3524 144 62 2

11 FingerMovements 316 100 28 50 2

12 HandMovementDirection 160 74 10 400 4

13 Handwriting 150 850 3 152 26

14 Heartbeat 204 205 61 405 2

15 InsectWingbeat 30000 25000 200 22 10

16 JapaneseVowels 270 370 12 29 9

17 Libras 180 180 2 45 15

18 LSST 2459 2466 6 36 14

19 MotorImagery* 278 100 64 3000 2

20 NATOPS 180 180 24 51 6

21 PenDigits 7494 3498 2 8 10

22 PEMS-SF* 267 173 963 144 7

23 PhonemeSpectra 3315 3353 11 217 39

24 RacketSports 151 152 6 30 4

25 SelfRegulationSCP1 268 293 6 896 2

26 SelfRegulationSCP2 200 180 7 1152 2

27 SpokenArabicDigits 6599 2199 13 93 10

28 StandWalkJump 12 15 4 2500 3

29 UWaveGestureLibrary 120 320 3 315 8

* These 4 datasets are not considered in this paper. Providing explanations for these problems would be very time-consuming.

Table 2

The accuracy of the classifier and random guessing on the problems in UEA archive. The RNNs-based classifier performs well on the 17 datasets shown in bold.

Dataset Accuracy

RNNs Guess

0 ArticularyWordRecognition 0.89 0.04

1 AtrialFibrillation 0.33 0.33

2 BasicMotions 0.73 0.25

3 CharacterTrajectories 0.67 0.05

4 Cricket 0.79 0.08

7 Epilepsy 0.54 0.25

8 EthanolConcentration 0.27 0.25

9 ERing 0.79 0.17

10 FaceDetection 0.59 0.50

11 FingerMovements 0.52 0.50

12 HandMovementDirection 0.34 0.25

13 Handwriting 0.03 0.04

14 Heartbeat 0.70 0.50

Dataset Accuracy

RNNs Guess

15 InsectWingbeat 0.29 0.10

16 JapaneseVowels 0.94 0.11

17 Libras 0.71 0.07

18 LSST 0.62 0.07

20 NATOPS 0.86 0.17

21 PenDigits 0.99 0.10

23 PhonemeSpectra 0.14 0.03

24 RacketSports 0.76 0.25

25 SelfRegulationSCP1 0.53 0.50

26 SelfRegulationSCP2 0.69 0.50

27 SpokenArabicDigits 0.98 0.10

28 StandWalkJump 0.47 0.33

29 UWaveGestureLibrary 0.54 0.13

where we assume that the classifier also performs a random guessing classification. This means that the classifier’s outputs are not
dependent on the inputs. Under this circumstance, explaining the outputs through saliency maps does not make sense. Therefore,
we only take the datasets on which the classifier’s performance is notably better than random guesses in our experiments, which are
shown in bold in Table 2. Among them, 17 datasets shown in bold meet this requirement. The inputs in the test datasets are used in
our explaining experiments. To save experiment time, for the problems, InsectWingbeat, PhonemeSpectra, and SpokenArabicDigits,
we randomly sample 1000 inputs from the test datasets to do experiments while for other datasets all the inputs in the test dataset
are used in our experiments. Finally, 17 datasets are used in our experiment. In the supplementary materials, we also provide the
results for a convolutional-based classifier.

4.3. Experimental parameters

This section gives the parameters adopted for our experiments. In our experiments, we separately adopted the BPSO and GA
12

methods for the identification steps in our proposed framework. The BPSO method is implemented using the package provided by

Information Sciences 645 (2023) 119334H. Meng, C. Wagner and I. Triguero

[45] and the GA method is implemented by the package provided by Ryan Solgi.3 In our experiments, we tuned the parameters for
these two methods and the satisfying settings are shown as follows. For the BPSO method, the adopted parameters are

• Population size: 100 (the number of particles in the swarm)

• Inertia weight (w): 1 (the influence of a particle’s previous velocity on its current velocity)

• Cognitive coefficient (c1): 5 (the influence of a particle’s personal best position on its velocity update)

• Social coefficient (c2): 5 (the influence of the swarm’s global best position on the velocity update of a particle)

For the GA method, the adopted parameters are

• Population size: 100 (the number of candidate in the population)

• Mutation rate: 0.2 (the probability of altering one or more genes in an individual’s chromosome)

• Crossover rate: 0.5 (the probability of exchanging genetic material between two parent individuals during reproduction)

• Parents portion: 0.5 (the proportion of individuals in the population that are selected as parents for performing crossover and
mutation operations to generate offspring)

For these two methods, at the very beginning, the solutions are initialised randomly. Then, in the following optimisation sub-steps,
the initial solutions are set to be all-ones solutions. During the sub-steps, both of these two methods stop when the values of the
fitness function do not improve over 20 successive iterations.

4.4. Comparison methods

The saliency methods we are going to compare with are Gradient-based methods, LIME and LIME-G. These methods are widely
adopted to explain classifiers and taken as benchmarking methods in many works [15,14].

1. Gradient-based Methods: The first gradient-based method we consider is SG, where the saliency scores are obtained by directly
calculating the gradient of the probability of the predicted class w.r.t. the input features [26]. In addition, we also consider the
IG method, which numerically integrates the gradients along a path between the current input and a user-defined baseline [27].
Following the setting of [27], we set the baseline in our experiments to zero input.

2. LIME: LIME [11] provides importance scores by learning a transparent proxy model in the local region near the input. It first
perturbs the input data and creates a series of artificial data. We realise it by randomly selecting the features of the input MTS and
replacing them with zeros. Then, the classifier produces outputs for these artificial data. After that, a linear regression model is fitted,
of which the input features are binary vectors indicating the “presence” (by 1) or “absence” (by 0) of the corresponding original
features and the outputs are the probability score of the predicted classes. Finally, the absolute values of the weights of the fitted
linear model are regarded as the importance scores of the corresponding features.

3. LIME-G: The first step of LIME is to create a series of artificial data by perturbing the original input. This is realised through
zeros replacement, which might create OOD inputs. Similar to [49], we also implement LIME-G, where G indicates that the artificial
dataset is created with the help of the designed generative model. Specifically, to create one perturbed input, we randomly select a
number of original features to be perturbed and then generate possible alternative values for them using the generative model. Then,
the original features are replaced by these alternative values to create a perturbed input. The other steps in obtaining a saliency map
are the same as the LIME method.

4.5. Quantitative evaluation metric

The “best” saliency maps should compactly identify supporting features for the outputs, which means that the classifier could
produce a different output by perturbing a minimal number of features. Here, we use the quantitative metric adopted in [21,18] to
evaluate the performance of a saliency explanation. Specifically, for a given saliency explanation, we calculate the minimal number
of features that are necessary to be perturbed to change the classifier’s output. The final saliency maps of our method are binary.
Therefore, we can directly obtain this metric by calculating how many features are identified. However, classic saliency-based
methods assign each feature a saliency score. To make these saliency maps comparable with our method, we successively select
features in order of their saliency scores and then replace them with plausible values generated by the generative model until the
classifier produces a different output. Whether the classifier would produce a different output is estimated through (1), where 𝒙𝑟
represents the selected supporting feature. Finally, the selected features form binary saliency maps. Then, the number of the selected
features is regarded as this metric. In this paper, we call this metric Smallest Deletion Features (SDF).

5. Results and discussion

In this section, we are going to systematically evaluate the performance of our proposed framework. First, we quantitatively and
qualitatively evaluate the performance of the generative model in mitigating the OOD problem in Section 5.1, which is the basis
13

3 https://github .com /rmsolgi /geneticalgorithm.

https://github.com/rmsolgi/geneticalgorithm

Information Sciences 645 (2023) 119334H. Meng, C. Wagner and I. Triguero

Fig. 8. The performance of the generative model in creating plausible values for certain features. In (a) and (b), the blue time series are the original time series and
the red subsequences are generated by the generative model. In (c), the first column and second column are the original input and the input with some features
randomly selected and masked. The third column to last column is perturbed input created by the weighted average of neighbouring features [14], by random noise,
by the average values of corresponding dimensions and by the values created by the generative model, respectively.

for providing meaningful explanations. Further, the generative model will also be used in Section 5.2 to quantitatively evaluate
the explaining results provided by adopted methods. If the OOD problem is not addressed, in other words, if the generative model
does not approximate the distribution of the training dataset well, the evaluation methods will also be unfair. However, with only
saliency-based explanations, users sometimes might still not understand the working mechanism of the classifier. Fortunately, our
framework can provide counterfactual explanations, which will be described in Section 5.3. There are some stochastic processes in
the proposed framework, but the explanations provided of a given classification should not change when we repeat the explaining
process. Therefore, in Section 5.4, we carry out a stability analysis of the proposed framework. Finally, in Section 5.5, ablation studies
are carried out to analyse the contributions of the generative model and the proposed search strategy separately.

5.1. The performance of the generative model

We first qualitatively evaluate the performance of the generative model by visualising the perturbed inputs for the MNIST hand
writing data, which is shown in Fig. 8. In Fig. 8a and Fig. 8b, the blue time series are the original time series and the red subsequences
are generated by the generative model. The results show that the created values are closed to the target. In Fig. 8c, we also compare
the performance of the generative model with an artificial method on the instance in the MNIST dataset. As is shown in the figure,
some features are selected randomly and then perturbed through artificial methods and our generative model. For MNIST inputs, the
within-distribution inputs should look similar to digits written on the white background. We can easily judge that the inputs created
by the artificial methods do not meet this requirement. For example, noise is scattered over the background that should be white,
or the original sharp features become blurry or even missing. In contrast, the generative model creates suitable values to replace the
selected features, creating much more realistic inputs, which suggests that it performs better in creating within-distribution perturbed
inputs than do artificial methods.

In addition to the above qualitative evaluation, we can also quantitatively evaluate the performance of the generative model with
artificial methods. Inspired by [17], we cast this problem as the measurement of the model’s robustness to perturbation, which is
carried out as follows. For each input in the test dataset, a certain percentage of features is randomly selected and then perturbed
using zeros and random noise, as is common practice in the literature, and using the alternative values created by the generative
model. The percentages of features to be perturbed here are {20%, 50%}. Then, the accuracy of the classifier on these perturbed
inputs is measured, where the perturbed inputs are assumed to have the same labels as the original inputs. In this scenario, we expect
the performance of all classifiers to deteriorate in line with increases in the percentage of perturbed features. However, we also
expect that features replaced with random or arbitrary (e.g. zeros) replacement (which will tend to be OOD) will result in overall
worse performance compared to features replaced with within-distribution replacements –by the generative model proposed. The
experiment is repeated 50 times for each percentage of features to perturb, and the accuracy is shown through boxplots in Fig. 9.
Overall, the accuracy of the classifiers is higher on the perturbed inputs created by the generative model than on those perturbed
artificially, which suggests that the classifiers are more robust to the perturbed inputs created by the designed generative model. This
means that when some features are masked, the generative model could generate suitable alternative values, on which the classifier
might be able to make correct predictions, like the inputs created by the generative model in Fig. 8c. If these masked features are filled
with artificial values, creating input that the classifier did not observe during the training stage, like the artificial perturbed inputs in
14

Fig. 8c, the classifier’s behaviour might be unpredictable and have a higher probability of making wrong predictions. However, the

Information Sciences 645 (2023) 119334H. Meng, C. Wagner and I. Triguero

Fig. 9. Model’s prediction accuracy on the test datasets, when a certain number of features are perturbed using “zeros”, “random noise”, and alternative values
generated by the generative model. Better performance in creating within-distribution inputs yields higher model’s higher accuracy.

generative model does not always enjoy higher accuracy than artificial methods. For the InsectWingbeat dataset, perturbing by zeros
results in higher accuracy than the generative model. The reason might be that there are many missing values in this dataset (about
57%), and in our experiments, we fill them with zeros. In this circumstance, perturbing with zeros replacement might be a better
choice. However, for other datasets, the generative model consistently performs better in generating within-distribution perturbed
inputs than do the artificial methods.

5.2. Quantitative evaluation of explanations

In this section, we calculate the SDF scores to quantitatively evaluate the saliency explanation provided by the adopted explaining
15

methods. The calculation results are shown in Table 3. The results show that our method achieves the smallest SDF scores, which sug-

Information Sciences 645 (2023) 119334H. Meng, C. Wagner and I. Triguero

Table 3

The SDF results of the adopted saliency explaining methods (above) and the time required to obtain one explanation (below).

Dataset IG SG LIME LIME-G Proposed Framework

with BPSO with GA

ArticularyWordRecognition 349.00(25.75) 401.50(20.17) 645.00(38.77) 591.65(40.38) 83.50(7.23) 89.00(7.50)

0.02s(0.00) 0.01s(0.00) 5.30s(0.43) 9.31s(0.87) 27.59s(1.43) 34.02s(1.85)

BasicMotions 86.00(6.00) 465.00(26.92) 125.00(8.32) 130.70(10.04) 73.50(4.86) 60.00(3.22)

0.02s(0.00) 0.01s(0.00) 6.07s(0.56) 10.45s(0.87) 13.45s(0.90) 14.08s(0.83)

CharacterTrajectories 112.00(9.81) 84.50(7.63) 108.50(7.82) 93.27(6.53) 32.50(2.55) 28.00(2.75)

0.02s(0.00) 0.01s(0.00) 3.73s(0.20) 6.51s(0.58) 23.46s(1.58) 24.21s(2.28)

Cricket 8.49(0.54) 22.23(2.18) 25.62(2.02) 29.30(2.29) 12.12(1.06) 8.15(0.59)

0.08s(0.01) 0.05s(0.01) 29.26s(2.55) 29.90s(2.50) 142.43s(9.82) 141.92s(11.15)

Epilepsy 8.00(0.48) 63.50(3.36) 7.50(0.41) 6.42(0.36) 4.00(0.32) 5.50(0.45)

0.02s(0.00) 0.01s(0.00) 4.39s(0.29) 6.89s(0.53) 26.41s(1.89) 29.80s(2.94)

ERing 26.50(2.64) 56.50(4.49) 16.00(1.45) 14.86(1.18) 13.00(0.83) 12.00(0.67)

0.02s(0.00) 0.01s(0.00) 5.63s(0.36) 10.92s(1.09) 17.04s(1.16) 7.29s(0.72)

HandMovementDirection 70.50(4.45) 86.50(5.49) 372.00(36.72) 364.44(29.79) 72.00(6.93) 34.00(2.89)

0.03s(0.00) 0.02s(0.00) 8.56s(0.68) 13.16s(1.25) 102.22s(9.21) 101.71s(6.97)

InsectWingbeat 19.50(1.93) 65.50(4.29) 23.50(2.11) 44.00(2.56) 15.50(1.18) 14.02(0.77)

0.02s(0.00) 0.01s(0.00) 8.23s(0.67) 14.85s(0.98) 33.10s(9.79) 31.08s(1.59)

JapaneseVowels 84.00(6.08) 164.50(14.09) 101.50(6.32) 88.67(8.09) 38.50(1.99) 31.00(2.73)

0.02s(0.00) 0.00s(0.00) 7.89s(0.43) 10.67s(0.96) 43.57s(3.06) 12.30s(0.93)

Libras 7.50(0.54) 18.00(1.02) 8.50(0.76) 7.74(0.65) 6.00(0.46) 7.00(0.36)

0.03s(0.00) 0.00s(0.00) 4.93s(0.25) 7.67s(0.63) 5.06s(0.30) 4.80s(0.25)

LSST 12.50(0.95) 52.00(3.60) 10.50(0.71) 8.46(0.68) 13.00(1.23) 8.00(0.74)

0.02s(0.00) 0.01s(0.00) 5.18s(0.49) 8.46s(0.48) 7.22s(0.66) 6.58s(0.50)

NATOPS 446.00(42.97) 656.00(48.58) 822.50(73.36) 818.67(50.49) 111.50(8.38) 128.00(11.78)

0.03s(0.00) 0.01s(0.00) 10.66s(1.01) 18.98s(1.29) 10.59s(1.05) 9.04s(0.71)

PenDigits 5.00(0.47) 11.00(1.08) 5.50(0.50) 5.43(0.27) 3.00(0.26) 3.00(0.20)

0.01s(0.00) 0.01s(0.00) 3.17s(0.25) 4.27s(0.38) 2.12s(0.17) 2.27s(0.20)

PhonemeSpectra 77.00(6.94) 153.50(9.71) 562.00(120.66) 632.27(82.72) 79.00(5.19) 71.00(3.69)

0.02s(0.00) 0.01s(0.00) 8.09s(0.57) 15.24s(1.48) 50.25s(4.40) 46.93s(3.90)

RacketSports 34.50(1.94) 116.50(7.01) 44.00(2.26) 41.61(2.69) 25.50(1.46) 20.50(1.25)

0.03s(0.00) 0.01s(0.00) 4.32s(0.43) 6.54s(0.63) 4.93s(0.28) 5.16s(0.31)

SelfRegulationSCP1 16.00(1.38) 3.00(0.24) 3.00(0.24) 3.04(0.29) 3.00(0.22) 3.00(0.22)

0.03s(0.00) 0.02s(0.00) 9.22s(0.73) 10.47s(0.58) 35.51s(3.08) 38.70s(3.21)

SpokenArabicDigits 219.00(14.77) 935.50(75.66) 638.00(39.57) 688.94(64.33) 115.00(8.01) 93.50(5.86)

0.02s(0.00) 0.01s(0.00) 4.91s(0.44) 6.68s(0.46) 21.41s(1.42) 21.91s(1.58)

StandWalkJump 10.50(0.66) 25.00(1.40) 29.00(1.61) 30.58(1.81) 12.00(0.68) 8.00(0.44)

0.08s(0.01) 0.06s(0.00) 32.19s(2.13) 32.44s(1.66) 151.23s(14.26) 164.26s(14.31)

UWaveGestureLibrary 27.00(1.61) 29.00(1.48) 36.00(3.26) 38.26(3.65) 21.00(1.81) 22.50(1.23)

0.02s(0.00) 0.01s(0.00) 4.42s(0.34) 8.38s(0.74) 52.47s(3.50) 56.89s(3.79)

MNIST 104.00(10.06) 167.00(15.72) 90.50(8.30) 95.51(6.70) 27.50(2.36) 18.00(1.56)

0.02s(0.00) 0.00s(0.00) 4.01s(0.30) 7.98s(0.76) 9.43s(0.66) 10.71s(0.96)

gests that fewer features are identified in the saliency maps. This helps to provide better explanations. Our framework is compatible
with any binary search method, so we separately use the classic BPSO and GA methods in the identification steps of our framework.
The results show that these two methods attain a very similar performance, suggesting that our framework is not sensitive to the
adopted search method. Therefore, users can adopt the search method they want in the identification steps. From the aspect of time
expense, gradient-based methods are very fast, since they only need several times back-propagation. But our framework needs much
more forward propagation, and, besides, the generation of the perturbed inputs also takes time. Therefore, our method needs more
time. However, for most of the problems here, our method can provide explanations within 20 seconds. For some applications where
time constraints are not so strict, our method can be acceptable. However, if we take the quality of explanations into account, for
example, in the MNIST dataset, our method identifies about 30 important features. But the others identify nearly or more than 100
16

features. Therefore, it is worth sacrificing time for better explanations.

Information Sciences 645 (2023) 119334H. Meng, C. Wagner and I. Triguero

Fig. 10. Counterfactual explanations for instances taken from ERing (a) and RocketSports (b) dataset. The figures above are original time series, where the most
important features are highlighted. The figures below are counterfactual inputs, where the important features take alternative values. (c): Counterfactual explanations
for instances from MNIST dataset.

5.3. Counterfactual explanations

By now, we have shown that our framework can provide explanations through sparser saliency maps than other methods, from
which users can clearly identify the features that are relevant for the predicted class. However, only knowing which features are
relevant is not enough. People might want to see how these relevant features would affect the classifier’s output. If these features
took other values, what would be the output of the classifier? Answers to this question can provide more insights for ordinary people
to understand the classifier [10].

Fortunately, our framework can easily provide counterfactual inputs to answer this question. A counterfactual input is also a
concrete MTS, which is very similar to the original input but has a different class predicted by the classifier. The only difference
between the counterfactual input and the original input are the features identified in the saliency map. Our framework can easily
provide counterfactual inputs by replacing the identified features with alternative values generated by the designed generative model.
Examples of counterfactual inputs are shown in Fig. 10. These counterfactual inputs can further explain the classifier by telling users
how these features would affect the classifier’s output. For example, if the identified features of input with the label of “4”, took large
values (shown by dark pixels in the figure), the classifier would produce a label “9”.

5.4. Stability analysis

In this section, stability analyses on the explanation results are carried out. By stability, we mean that the explanations provided
should be reproducible, which means that the explanations provided for a given classification should not vary too much if we repeat
the explaining process multiple times. In our framework, there are stochastic processes existing in the heuristic search process and
the generation of the perturbed inputs, which makes it seem as if stability would be hard to achieve, as shown in Fig. 11, for the two
different explanations provided for one input in the CharacterTrajectories dataset when the explaining process is carried out multiple
times. However, we argue that this instability mainly results from a high number of degrees of freedom in the input space that can
change the output of the classifier. For example, the input shown in Fig. 11a is predicted as class “1”. However, the predicted class
can be changed into one of the other 19 classes by perturbing different features. During the heuristic search, the stochastic processes
make it uncertain which features are to be perturbed.

However, if we want to know what group of features of the input predicted as class “1” input, if replaced by other plausible
values, can lead the classifier to produce class “4”, will we obtain more stable explanations at the end? Answers to this question can
be obtained easily. We only need to modify the fitness function (5) to (10):

Sup(𝑾) =

{
1 if 𝑝(𝑐|𝒙⧵𝑟) ≠ desired class

0 if 𝑝(𝑐|𝒙⧵𝑟) = desired class (10)
17

where 𝒙𝑖,𝑗 ∈ 𝒙⧵𝑟, if 𝑾 𝑖,𝑗 = 1

Information Sciences 645 (2023) 119334H. Meng, C. Wagner and I. Triguero

Fig. 11. Different explanations are provided for the two inputs in the CharacterTrajectories datasets, where the most important features are highlighted by red lines.

Fig. 12. The saliency maps when the desired class is set to class “4” (a) and class “11” (c).

Fig. 12 shows the saliency maps when the desired class is assigned before explaining. It can be seen that the final saliency maps are
much more stable than that in the Fig. 11.

5.5. Ablation studies

In this section, we carry out ablation studies to analyse the contributions of the two key components in our framework, the
designed generative model and the greedy-based segmentation and identification search strategy.

5.5.1. Contribution of the generative model

Fig. 13 shows the saliency maps provided for given classifications using our framework but with different strategies for generating
the perturbed inputs, including using the generative model and using artificial perturbation methods (zeros and random noise). The
results show that the generative model really helps in generating satisfying saliency maps. The identified features are compact and lo-

cated in the really meaningful regions rather than scattered among the meaningless background. We believe that these improvements
result from the mitigation of the OOD problem.

5.5.2. Contribution of the greedy-based segmentation and identification strategy

We propose a greedy-based segmentation and identification search strategy to mitigate the challenge in searching over the huge
feature space. We compare the saliency maps provided using our proposed search strategy with those provided without this search
strategy. The latter saliency maps are provided by applying the same binary search algorithm (BPSO or GA) over the original feature
space, where each feature is considered as one segment. As shown in Fig. 14, without the proposed search method, the identified
18

features are scattered everywhere, while our method provides compact saliency maps. Because the proposed strategy regarded the

Information Sciences 645 (2023) 119334H. Meng, C. Wagner and I. Triguero

Fig. 13. The saliency maps provided by our framework but using different perturbation strategies, including using the generative model, using zeros, and random
noise.

Fig. 14. The saliency maps for the given inputs (a) provided with our proposed search strategy and (b) provided by applying binary search method directly over the
original features space.

features within continuous time steps as one “super-feature”, the final identified features also tend to be continuous in time. In
addition, our search strategy does better in terms of sparsity. On average for the MNIST, only 38.33 features are identified as
relevant with this strategy while without our strategy 69.09 features are so identified. Moreover, this strategy can also notably speed
up the explaining process: on average for the MNIST, it takes about 20 s to generate an explanation, but direct searching needs about
100 s.

6. Conclusions and future work

This paper promotes the development of XAI a step further in TSC. We develop a model-agnostic framework to provide saliency-

based explanations for TSC through a post-hoc approach. Two challenges are addressed in this work. First is the widely acknowledged
OOD problem. The accurate distribution of the training dataset might not be accessible. Therefore, we design a generative model for
MTS to approximate this distribution. The results of the experiments demonstrate that the classifiers are more resistant to perturbed
inputs produced by the generative model than to those produced by artificial perturbation techniques, which suggests that the
generative model is effective at producing within-distribution perturbed inputs. Another challenge comes from the huge search
space, which increases exponentially with the number of features an MTS has. This challenge is addressed by the proposed greedy-

based segmentation and identification strategy. The search space is significantly reduced, and on it, the classic search methods,
including BPSO and GA methods, can achieve satisfying results. The results of ablation studies show that the generative model
and the proposed search strategy are necessary components to provide satisfying explanations. Besides saliency-based explanations,
this framework has the potential to provide counterfactual explanations, which makes more sense to users and is very useful for
understanding the classifier. Although we focus on TSC problems in this work, our proposed framework can be applied to any
problem, such as image and language processing problems.

However, this framework does not go without its limitations. The critical point is the design of the generative model. If the
generative model can not effectively produce within-distribution perturbed inputs, the OOD problem can not be addressed, and the
final explanations might still be meaningless. Therefore, the performance of this framework is upper-bounded by the performance
of the generative model. In the future, we hope we can develop a more powerful generative model to improve this bound. Besides,
to provide an explanation, a search needs to be carried out separately, which is expensive in terms of time, making this framework
19

difficult to use for online applications. We will also do more work in providing explanations with high efficiency in the future.

Information Sciences 645 (2023) 119334H. Meng, C. Wagner and I. Triguero

CRediT authorship contribution statement

Han Meng designed the research, conducted the experiments, analyzed and wrote the manuscript. Isaac Triguero and Christian
Wagner contributed to the writing of the manuscript.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing
interests:

Han Meng reports financial support was provided by China Scholarship Council and University of Nottingham. Isaac Triguero
reports financial support and equipment, drugs, or supplies were provided by Spanish Scientific Research Council. Isaac Triguero
reports equipment, drugs, or supplies was provided by NVIDIA Corp.

Data availability

Data is available publicly as is highlighted within the paper.

Acknowledgements

The first author is funded by the University of Nottingham and the China Scholarship Council (CSC) from the Ministry of Education
of P.R. China. This work is also supported by projects A-TIC-434-UGR20 and PID2020-119478GB-I00. We gratefully acknowledge
the support of NVIDIA Corporation with the donation of the Titan Xp GPU used for this research.

Appendix A. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .ins .2023 .119334.

References

[1] J. Faouzi, Time series classification: a review of algorithms and implementations, in: Machine Learning (Emerging Trends and Applications), Proud Pen, 2022.

[2] P. Giudici, E. Raffinetti, Shapley-Lorenz explainable artificial intelligence, Expert Syst. Appl. 167 (2021) 114104.

[3] H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar, P.-A. Muller, Accurate and interpretable evaluation of surgical skills from kinematic data using fully
convolutional neural networks, Int. J. Comput. Assisted Radiol. Surg. 14 (2019) 1611–1617.

[4] R. Chen, X. Yan, S. Wang, G. Xiao, DA-Net: dual-attention network for multivariate time series classification, Inf. Sci. 610 (2022) 472–487.

[5] Z. Zheng, Z. Zhang, L. Wang, X. Luo, Denoising temporal convolutional recurrent autoencoders for time series classification, Inf. Sci. 588 (2022) 159–173.

[6] W. Ding, M. Abdel-Basset, H. Hawash, A.M. Ali, Explainability of artificial intelligence methods, applications and challenges: a comprehensive survey, Inf. Sci.
615 (2022) 238–292.

[7] U. Kamath, J. Liu, Explainable Artificial Intelligence: An Introduction to Interpretable Machine Learning, Springer, 2021.

[8] Z.C. Lipton, The mythos of model interpretability: in machine learning, the concept of interpretability is both important and slippery, Queue 16 (2018) 31–57.

[9] C. Rudin, Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead, Nat. Mach. Intell. 1 (2019) 206–215.

[10] Explanation sets: a general framework for machine learning explainability, Inf. Sci. 617 (2022) 464–481.

[11] M.T. Ribeiro, S. Singh, C. Guestrin, “Why should I trust you?” Explaining the predictions of any classifier, in: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2016, pp. 1135–1144.

[12] S.M. Lundberg, S.-I. Lee, A unified approach to interpreting model predictions, in: Advances in Neural Information Processing Systems, vol. 30, Curran Associates,
Inc., 2017.

[13] S. Tonekaboni, S. Joshi, K. Campbell, D.K. Duvenaud, A. Goldenberg, What went wrong and when? Instance-Wise Feature Importance for Time-Series Black-Box
Models, in: Advances in Neural Information Processing Systems, vol. 33, Curran Associates, Inc., 2020, pp. 799–809.

[14] J. Crabbé, M. Van Der Schaar, Explaining time series predictions with dynamic masks, in: Proceedings of the 38th International Conference on Machine Learning,
in: Proceedings of Machine Learning Research, PMLR, vol. 139, 2021, pp. 2166–2177.

[15] A.A. Ismail, M. Gunady, H. Corrada Bravo, S. Feizi, Benchmarking deep learning interpretability in time series predictions, in: Advances in Neural Information
Processing Systems, vol. 33, Curran Associates, Inc., 2020, pp. 6441–6452.

[16] J. Bento, P. Saleiro, A.F. Cruz, M.A. Figueiredo, P. Bizarro, TimeSHAP: explaining recurrent models through sequence perturbations, in: Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD’21, Association for Computing Machinery, New York, NY, USA, 2021, pp. 2565–2573.

[17] P. Hase, H. Xie, M. Bansal, The Out-of-Distribution problem in explainability and search methods for feature importance explanations, in: Advances in Neural
Information Processing Systems, vol. 34, 2021.

[18] C.-H. Chang, E. Creager, A. Goldenberg, D. Duvenaud, Explaining image classifiers by counterfactual generation, in: International Conference on Learning
Representations, 2019.

[19] S. Kim, J. Yi, E. Kim, S. Yoon, Interpretation of NLP models through input marginalization, in: Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), Association for Computational Linguistics, 2020, pp. 3154–3167.

[20] H. Meng, C. Wagner, I. Triguero, Feature importance identification for time series classifiers, in: 2022 IEEE International Conference on Systems, Man, and
Cybernetics (SMC), 2022, pp. 3293–3298.

[21] R.C. Fong, A. Vedaldi, Interpretable explanations of black boxes by meaningful perturbation, in: 2017 IEEE International Conference on Computer Vision (ICCV),
2017, pp. 3449–3457.

[22] Q. Du, J. Xu, Model-agnostic local explanations with genetic algorithms for text classification, in: The 33rd International Conference on Software Engineering &,
Knowledge Engineering, 2021.

[23] M.T. Ribeiro, S. Singh, C. Guestrin Anchors, High-precision model-agnostic explanations, in: Proceedings of the Thirty-Second AAAI Conference on Artificial
20

Intelligence, 2018.

https://doi.org/10.1016/j.ins.2023.119334
http://refhub.elsevier.com/S0020-0255(23)00919-2/bib5BF015AE9F93040A9C3ACC1468C81C59s1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bib293C07351ED55E701EA13AB38EAF4D03s1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bib4E92082BCCEDFABF2D2725BCAA622EADs1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bib4E92082BCCEDFABF2D2725BCAA622EADs1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bibCE1EB535EF8DC9A9812673C4CC0BB5E3s1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bibB38E58A9C154C5C0DA045106EABE409Ds1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bibC12EC6185E24982492C215ADCCF0BA7As1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bibC12EC6185E24982492C215ADCCF0BA7As1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bib4585D6E90AE6049FC065D63AD59BE713s1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bib82EDC60DF9BD0EB4F4507A0FACB87F20s1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bibCA504869489154BBBD8BD1FD980A6CB8s1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bib1EC351C61FCBDC97BBF94DC01D4AFED0s1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bib73A4F1A4390B6D7C4F0C164DC1248DEEs1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bib73A4F1A4390B6D7C4F0C164DC1248DEEs1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bibFE945BAE7351AADA3D25DBF4CB835FE8s1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bibFE945BAE7351AADA3D25DBF4CB835FE8s1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bibEDD7AED4306641FA97A62A051E897F7Bs1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bibEDD7AED4306641FA97A62A051E897F7Bs1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bib2DBBDE2830B7D47A101802B794FA9495s1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bib2DBBDE2830B7D47A101802B794FA9495s1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bibAA54FDB51A6D4D0320E1F61D9A8174E8s1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bibAA54FDB51A6D4D0320E1F61D9A8174E8s1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bib4BEB51B2812A8F2982B43989FFB0A240s1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bib4BEB51B2812A8F2982B43989FFB0A240s1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bib57F79EA8AB2CBD30F3A3B074A7E8553Ds1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bib57F79EA8AB2CBD30F3A3B074A7E8553Ds1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bibA269BF1C42511364F49713599A591403s1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bibA269BF1C42511364F49713599A591403s1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bibA99FF250F7DC73392AB59B4D4C109B19s1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bibA99FF250F7DC73392AB59B4D4C109B19s1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bib3CEE73EE9ADF278A31C6E6EF81F29603s1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bib3CEE73EE9ADF278A31C6E6EF81F29603s1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bib9CA9BAA85019821EAF4E7BA9623C03B5s1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bib9CA9BAA85019821EAF4E7BA9623C03B5s1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bib712DA2ECBD85998F0474E95DC1E2CD7Bs1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bib712DA2ECBD85998F0474E95DC1E2CD7Bs1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bibCB48BC54BA9D64FF7258022419BB981As1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bibCB48BC54BA9D64FF7258022419BB981As1

Information Sciences 645 (2023) 119334H. Meng, C. Wagner and I. Triguero

[24] K. Vafa, Y. Deng, D. Blei, A. Rush, Rationales for sequential predictions, in: Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, Online and Punta Cana, Dominican Republic, Association for Computational Linguistics, 2021, pp. 10314–10332.

[25] X.-F. Song, Y. Zhang, D.-W. Gong, X.-Z. Gao, A fast hybrid feature selection based on correlation-guided clustering and particle swarm optimization for high-

dimensional data, IEEE Trans. Cybern. (2021) 1–14.

[26] K. Simonyan, A. Vedaldi, A. Zisserman, Deep inside convolutional networks: visualising image classification models and saliency maps, in: Workshop at Interna-

tional Conference on Learning Representations, 2014.

[27] M. Sundararajan, A. Taly, Q. Yan, Axiomatic attribution for deep networks, in: D. Precup, Y.W. Teh (Eds.), The 34th International Conference on Machine
Learning, in: Proceedings of Machine Learning Research, PMLR, vol. 70, 2017, pp. 3319–3328.

[28] A. Shrikumar, P. Greenside, A. Kundaje, Learning important features through propagating activation differences, in: D. Precup, Y.W. Teh (Eds.), The 34th
International Conference on Machine Learning, in: Proceedings of Machine Learning Research, PMLR, vol. 70, 2017, pp. 3145–3153.

[29] J. Adebayo, J. Gilmer, M. Muelly, I. Goodfellow, M. Hardt, B. Kim, Sanity checks for saliency maps, in: S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N.
Cesa-Bianchi, R. Garnett (Eds.), Advances in Neural Information Processing Systems, vol. 31, Curran Associates, Inc., 2018.

[30] P. Sturmfels, S. Lundberg, S.-I. Lee, Visualizing the impact of feature attribution baselines, Distill 5 (2020) e22.

[31] R. Assaf, I. Giurgiu, F. Bagehorn, A. Schumann, MTEX-CNN: multivariate time series explanations for predictions with convolutional neural networks, in: 2019
IEEE International Conference on Data Mining (ICDM), 2019, pp. 952–957.

[32] I. Niño-Adan, D. Manjarres, I. Landa-Torres, E. Portillo, Feature weighting methods: a review, Expert Syst. Appl. 184 (2021) 115424.

[33] R. Kohavi, G.H. John, Wrappers for feature subset selection, Artif. Intell. 97 (1997) 273–324.

[34] R. Espinosa, F. Jiménez, J. Palma, Multi-surrogate assisted multi-objective evolutionary algorithms for feature selection in regression and classification problems
with time series data, Inf. Sci. 622 (2023) 1064–1091.

[35] M. García-Torres, F. Gómez-Vela, B. Melián-Batista, J.M. Moreno-Vega, High-dimensional feature selection via feature grouping: a variable neighborhood search
approach, Inf. Sci. 326 (2016) 102–118.

[36] X.-F. Song, Y. Zhang, Y.-N. Guo, X.-Y. Sun, Y.-L. Wang, Variable-size cooperative coevolutionary particle swarm optimization for feature selection on high-

dimensional data, IEEE Trans. Evol. Comput. 24 (2020) 882–895.

[37] W. Cao, D. Wang, J. Li, H. Zhou, L. Li, Y. Li Brits, Bidirectional recurrent imputation for time series, in: Advances in Neural Information Processing Systems,
vol. 31, Curran Associates, Inc., 2018.

[38] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. u. Kaiser, I. Polosukhin, Attention is all you need, in: Advances in Neural Information
Processing Systems, vol. 30, Curran Associates, Inc., 2017.

[39] M. Schuster, K.K. Paliwal, Bidirectional recurrent neural networks, IEEE Trans. Signal Process. 45 (1997) 2673–2681.

[40] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A.C. Courville, Improved training of Wasserstein GANs, in: Advances in Neural Information Processing
Systems, vol. 30, Curran Associates, Inc., 2017.

[41] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative adversarial nets, in: Advances in Neural
Information Processing Systems, vol. 27, Curran Associates, Inc., 2014.

[42] M. Arjovsky, S. Chintala, L. Bottou, Wasserstein GAN, arXiv, 2017.

[43] Y. Gal, Z. Ghahramani, Dropout as a Bayesian approximation: representing model uncertainty in deep learning, in: Proceedings of the 33rd International
Conference on Machine Learning, in: Proceedings of Machine Learning Research, vol. 48, PMLR, New York, New York, USA, 2016, pp. 1050–1059.

[44] M. Mitchell, An Introduction to Genetic Algorithms, MIT Press, 1998.

[45] L.J.V. Miranda, PySwarms, a research-toolkit for particle swarm optimization in python, J. Open Sour. Softw. 3 (2018).

[46] A. Bagnall, H.A. Dau, J. Lines, M. Flynn, J. Large, A. Bostrom, P. Southam, E. Keogh, The UEA multivariate time series classification archive, arXiv preprint,
arXiv :1811 .00075, 2018.

[47] Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition, Proc. IEEE 86 (1998) 2278–2324.

[48] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9 (1997) 1735–1780.

[49] C. Agarwal, A. Nguyen, Explaining image classifiers by removing input features using generative models, in: Proceedings of the Asian Conference on Computer
21

Vision (ACCV), 2020.

http://refhub.elsevier.com/S0020-0255(23)00919-2/bib0BEC066BB92646B50E5B77C32D5E96CAs1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bib0BEC066BB92646B50E5B77C32D5E96CAs1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bib67D6C81A5965F32B21B8A466CBE5636Ds1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bib67D6C81A5965F32B21B8A466CBE5636Ds1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bibB2267D629EA2973D596273D54A3CA2ABs1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bibB2267D629EA2973D596273D54A3CA2ABs1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bib4250A55A093ECD2B742786DC3E133FADs1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bib4250A55A093ECD2B742786DC3E133FADs1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bib2027ED5618C2B5695F303D7BA4BFB5A9s1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bib2027ED5618C2B5695F303D7BA4BFB5A9s1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bibE06AD8608E5660335F247448EA1FCE3Es1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bibE06AD8608E5660335F247448EA1FCE3Es1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bib1B439DB478F9558461215C6360DBE4FEs1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bibDCF5D79CBD88BF81BE91197D67A17D4Es1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bibDCF5D79CBD88BF81BE91197D67A17D4Es1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bib99BCBC4B64281D5988F164E641C4D55Fs1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bibF2E1018BBF0C2C8D1A228185C8F70D06s1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bib9155DEE7C450DD65C79A487BB19D5303s1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bib9155DEE7C450DD65C79A487BB19D5303s1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bib4851BA453FE7A62FBB2412F50B59D9C7s1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bib4851BA453FE7A62FBB2412F50B59D9C7s1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bibA3161E67E6FEE2AE784277410381C47Cs1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bibA3161E67E6FEE2AE784277410381C47Cs1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bib1B46C250B2A7A0F7D08474EC7CE10127s1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bib1B46C250B2A7A0F7D08474EC7CE10127s1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bib31E3B0E4211047EF95DE0BAD45123C1As1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bib31E3B0E4211047EF95DE0BAD45123C1As1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bib67065F2334A58C2845DA5B59CFA72175s1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bib266C8DE1D7A22216A29992156F1F6EFCs1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bib266C8DE1D7A22216A29992156F1F6EFCs1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bib45E164CDD564F2AFC2A2A87ED2D5B394s1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bib45E164CDD564F2AFC2A2A87ED2D5B394s1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bib31778FD25A226585FDFDBF848785BEE5s1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bibC5DE5A71FB95C7AAA3E7EBE66CACF34As1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bibC5DE5A71FB95C7AAA3E7EBE66CACF34As1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bib70004FA128C0500CF46405A04484D1F1s1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bibEB2275550AA97EB52C16474A271CEBE3s1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bib25FE3B9E14278B5B453078C96C1028BAs1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bib25FE3B9E14278B5B453078C96C1028BAs1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bib45FFB4454B91C4455CBA0AB030355F89s1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bibECA9158C08600CD86442DFD1C18A3C86s1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bib8BA8C4865B09705BC84A2C09773D1242s1
http://refhub.elsevier.com/S0020-0255(23)00919-2/bib8BA8C4865B09705BC84A2C09773D1242s1

	Explaining time series classifiers through meaningful perturbation and optimisation
	1 Introduction
	2 Background
	2.1 Time series classification
	2.2 Classic saliency-based explanation
	2.3 Optimisation-based saliency computation
	2.4 Saliency-based explanation and feature selection

	3 Methodology
	3.1 Problem definition
	3.2 Pipeline of the proposed framework
	3.3 Designing the generative model
	3.3.1 Training data generation
	3.3.2 Architecture of the generative model
	3.3.3 Optimisation objective
	3.3.4 Training strategy

	3.4 Search-based method for saliency computation
	3.4.1 Fitness function for search-based saliency explanation
	3.4.2 Greedy-based segmentation and identification search method

	4 Experimental design
	4.1 Datasets
	4.2 Classifier
	4.3 Experimental parameters
	4.4 Comparison methods
	4.5 Quantitative evaluation metric

	5 Results and discussion
	5.1 The performance of the generative model
	5.2 Quantitative evaluation of explanations
	5.3 Counterfactual explanations
	5.4 Stability analysis
	5.5 Ablation studies
	5.5.1 Contribution of the generative model
	5.5.2 Contribution of the greedy-based segmentation and identification strategy

	6 Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Supplementary material
	References

