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Abstract: Given gy > 0, I ¢ N U {0} and Ky, Hy > 0, let X be a complete Riemannian 3-manifold with injectiv-
ity radius Inj(X) > &p and with the supremum of absolute sectional curvature at most Kj, and let M +> X be
a complete immersed surface of constant mean curvature H € [0, Hy] with index at most I. For such M + X,
we prove a structure theorem which describes how the interesting ambient geometry of the immersion is orga-
nized locally around at most I points of M, where the norm of the second fundamental form takes on large local
maximum values.
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1 Introduction

Let X denote a complete Riemannian 3-manifold with positive injectivity radius Inj(X) and bounded absolute
sectional curvature. Let M be a complete immersed surface in X of constant mean curvature H > 0; we call M
an H-surface in X. The Jacobi operator of M is the Schrodinger operator

L =A+ |Ayl|? + Ric(N),

where A is the Laplace—Beltrami operator on M, |Ay|? is the square of the norm of its second fundamental form,
and Ric(V) denotes the Ricci curvature of X in the direction of the unit normal vector N to M; the index of M is
the index of L:

Index(M) = Rh_r)go Index(By(p, R)),

where Bj(p, R) is the intrinsic metric ball in M of radius R > 0 centered at a point p € M, and Index(By(p, R))
is the number of negative eigenvalues of L on By(p, R) with Dirichlet boundary conditions. Here, we have
assumed that the immersion is two-sided (this holds in particular if H > 0). In the case that H = 0 and the immer-
sion is one-sided, the index is defined in a similar manner using compactly supported variations in the normal
bundle; see Definition 2.1 for details.

The primary goal of this paper is to describe the structure of complete immersed H-surfaces F: M «+ X (also
called H-immersions) which have a fixed bound I € N U {0} on their index and a fixed upper bound H for their
constant mean curvatures H, in certain small intrinsic neighborhoods of points with sufficiently large norm |A |
of their second fundamental forms; see Theorem 1.2. When M has non-empty boundary, we will assume, after
a choice of some &g € (0, Inj(X)), that there is an upper bound A of |Ay| in the intrinsic gyp-neighborhood of
the boundary of M. Theorem 1.2 plays an important theoretical role in understanding global properties of such
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surfaces in much the same way that the local structure theorems of Colding and Minicozzi [7, 8] (for embedded
minimal surfaces) and of Meeks and Tinaglia [21] (for embedded H-surfaces with H > 0) play a fundamental
role in understanding global properties of complete embedded H-surfaces of finite genus, especially in the case
where X = R%. However, we point out that the results in this paper do not depend on the results for embedded
H-surfaces of Colding—Minicozzi and Meeks-Tinaglia; for applications of Theorem 1.2 to the global theory of
finite index H-surfaces in Riemannian 3-manifolds, see [18].

In the sequel, we will denote by Bx(x, r) (resp. Bx(x,1)) the open (resp. closed) metric ball centered at
a point x € X of radius r > 0. For a Riemannian surface M with smooth compact boundary oM, k(M) = Ia v Ke
will stand for the total geodesic curvature of 0M, where k; denotes the pointwise geodesic curvature of oM
with respect to the inward pointing unit conormal vector of M along oM.

Definition 1.1. For everyI € IN U {0}, &9 > 0 and Hy, A, Ko > 0, we denote by
A = A(I, Hy, &, Ao, Ko)

the space of all H-immersions F: M «+ X satisfying the following conditions:

(A1) X isacomplete Riemannian 3-manifold with injectivity radius Inj(X) > &¢ and absolute sectional curva-
ture bounded from above by Kj.

(A2) M isacomplete surface with smooth boundary (possibly empty), and when 0 M + 0, there are points in M
of distance greater than &, from oM.

(A3) H € [0, Hp] and F has index at most I.

(A4) IfOM + 0, then for any € € (0, co] we let

U(OM, €) = {x e M | dy(x,0M) < €}

be the open intrinsic e-neighborhood of 0 M. Then |Ay| is bounded from above by Ay in U(0M, &).

Suppose that (F: M +» X) € A and 0M + 0. For any positive &1 < & € [0, co], let
U(OM, €1, &2) = U(OM, &) \ U(OM, €1), U(OM, €1, &) = UOM, €2) \ U(OM, 7).

When oM = 0, we define U(M, &1, 00) = U(OM, &1, c0) as M.

In the next result, we will make use of harmonic coordinates ¢, : U — Bx(x, r) defined on an open subset U
of R3 containing the origin, taking values in a geodesic ball Bx(x, r) centered ata point x € X of positive radius r
less than the injectivity radius of X at x and with a C* control of the ambient metric on X; see Definition 2.2 for
details.

Theorem 1.2 (Structure Theorem for finite index H-surfaces). Suppose that gy > 0, Ko, Hp, Ag = 0,1 € N U {0}, and
T € (0, 1/10] are given. Then there exist A1 € [Ag, 00) and 61, § € (0, £9/2], with §1 < §/2, such that, for any

(F: M + X) € A = A(I, Hy, €, Ao, Ko),
there exists a (possibly empty) finite collection
Pr=Ap1,...,pr} C U(OM, &9, c0)

of points, k < I, and numbers rp(1), ..., rr(k) € [61, ‘%] with rp(1) > 4rp(2) > -+ > 45 1rp(k), satisfying the fol-
lowing properties:
(i) Portions with concentrated curvature: Given i = 1,..., k, let A; be the component of F‘l(EX(F(pi), re(i)))
containing p;. Then the following assertions hold:
(@ A;jc EM(pi, %rp(i)) (in particular, A; is compact).
(b) A; has smooth boundary and F(9A;) BEX(F(pi), re(i)).
(c) Fori#],

BM(pi, %T"F(i)) n BM(pj: ng(f)) =0.

In particular; the intrinsic distance between A; and A; is greater than %81 foreveryi+].
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Figure 1: The second fundamental form concentrates inside the intrinsic compact regions A; (in red), each of which is mapped through
the immersion F to a surface inside the extrinsic ball in X centered at F(p;) of radius r¢(i) > 0, with F(34;) OEX(F(p,-), re(i)). Although
the boundary dA; might not be at constant intrinsic distance from the ‘center’ p;, A; lies entirely inside the intrinsic ball centered at p;
of radius %r;(i). The intrinsic open balls By (p;, %rp(i)) are pairwise disjoint.

(d) It holds
i-1

5 .
[Awl(po) = maxidy| = max{1Aul(@) | p < M\ By 37 ()} > A
i ]-:1
see Figure 1.
(e) Theindex Index(A;) of A; is positive.
(i) Transition annuli: Fori=1,..., k fixed, let e(i) € IN be the number of boundary components of A;. Then there
exist planar disks D1, .. ., De(y € Trp,)X of radius 2rp(i) centered at the origin in T, X such that, if we set

Pi,h = (PF(p,-)(IDh); h € {1’ sy e(l)}’
where @,y denotes a harmonic chart centered at F(p;), see Definition 2.2, then

- . re(i
F@ 0 [Br (@0, re) \ Bx(Fp, 0]
consists of e(i) annular multi-graphs* Gi1, . . ., Gi (i over their projections to P 1, . . ., P; ¢(), with multiplic-

itiesmiz, ..., Miei) € N, respectively, and whose related graphing function u satisfies

lu()|
|x|

where we have taken coordinates x in each of the P; , and denoted by |x| the extrinsic distance to F(p;) in the
ambient metric of X; see Figure 2.

(iii) Region with uniformly bounded curvature: |Ay| < A1 on M := M \ Uf:l- Int(A;).

Moreover; the following additional properties hold:

O X, I(A) < I, where I(A;) = Index(A). _

(I) Geometric and topological estimates: Given i =1, ..., k, let m(i) := Zfl(zl)l m;n be the total spinning of the
boundary of A;, let g(A;) denote the genus of A; (in the case that A; is non-orientable, g(A;) denotes the genus
of its oriented cover?). Then m(i) > 2 and the following upper estimates hold:

(@) IfI(A;) =1, then A; is orientable, g(A;) = 0 and (e(i), m(i)) € {(2, 2), (1, 3)}.
(b) IfA; is orientable and I(A;) > 2, then m(i) < 3I(A;) — 1, e(i) < 3I(A;) — 2 and g(4A;) < 3I(A;) — 4.
(c) IfA; is non-orientable, then I(A;) > 2, m(i) < 3I(A;) — 1, e(i) < 3I(A;) - 2, and g(A;) < 6I(A;) - 8.

+|Vul(x) < 7, 1.1)

1 See Definition 2.3 for this notion of multi-graphs.

= 21 =
2 If ¥ is a compact non-orientable surface and £ — X denotes the oriented cover of £, then the genus of £ plus 1 equals the number
of cross-caps in X.
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Figure 2: The transition annuli: On the right, one has the extrinsic representation in X of one of the annular multi-graphs G in
F(A1) N [Bx(F(p1), re(1)) \ Bx(F(p1), re(1)/2)]; in this case, the multiplicity of the multi-graph is 3. On the left, one has the intrinsic
representation of the same annulus (shadowed); there is one such annular multi-graph for each boundary component of A;.

(d) x(A;) = -6I(A;) + 2m(i) + e(i), and thus

(|

1

k
Ai> > _61+2S+e,
=1

where
k

k
e=Ye(), S=) m().
i=1

i-1
(e) |k(A;) - 2rm(i)| < -%=, and so the total geodesic curvature k(M) of M along dM \ dM satisfies

m(i)

(V) + 2718] < %k,

and so
218 - <k < i K(A) < 271 + =K. (12)
2 4 2
) - fAl_ K > 37, and so .
- J K= —277)(( UAi> + J Kg > 3K. (1.3)
UL & T U

(I11) Genus estimate outside the concentration of curvature: If M is orientable, k > 1 and the genus g(M) of M is
finite, then the genus g(M) of M satisfies

0<g(M) - g(M)<3I-2.

(IV) Area estimate outside the concentration of curvature: If k > 1, then

k k
Avea(¥D) > 147 Y m()r()* = 210 Y, m(re(i)? > Area (
1

k
i=1 i= =1

&) 2 kst

(V) There exists a C > 0, depending on &, Ko, Hy and independent of I, such that

Cmax{1, Radius(M)} ifoM + 0,
Area(M) > ) i 14)
Cmax{1, Diameter(M)} ifoM =0,

where
Radius(M) = sup dps(x, 0M) € (0,00] ifOM + 0,
XeM
Diameter(M) = sup dp(x,y) ifoM = 0.
x,yeM

Inparticular, if M has infinite radius or if M has empty boundary and it is non-compact, then its area is infinite.
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The proof of the Structure Theorem 1.2 is carried out in Section 5, and it will be done by induction on the index
bound I. In the case I = 0, Theorem 1.2 is obtained by using curvature estimates for stable H-surfaces, and the
arguments in this special case generalize to the case where, for a given I € N, there exists a uniform curvature
estimate for the immersions in A = A(I, Hy, €9, Ao, Kp); see Section 5.1. A non-trivial step in the proof of Theo-
rem 1.2 involves an analysis of the local pictures on different scales for a sequence of complete Hy-immersions
Fy: My + X, with Hy € [0, Hp] and Index(Fy) < I, such that {sup|Am,|}» is unbounded (these local pictures
are limits of the Fj, after blowing up on certain scales). Although non-trivial, this analysis is simpler in the case
I =1 because in this case there is only one scale for the local pictures of Fp; this case is studied in Section 5.4.
The analysis of these local pictures in the general case is carried out in Section 5.5, and it is based on the lower
bounds obtained by Chodosh and Maximo [6] and Karpukhin [13] for the index of a possibly branched, com-
plete immersed minimal surface X in R3 with finite total curvature, in terms of its genus, total branching order,
and the number of its ends counted with multiplicity. After coming back to the original scale, these complex-
ity estimates will give upper bounds for the total geodesic curvature of the boundary of the portion M of M
defined in Theorem 1.2 (iii), as well as to give lower bounds in (III) on the genus of M in terms of I and the genus
of M when M is orientable. These geometric and topological bounds are obtained in Sections 5.6 and 5.7. What
this analysis demonstrates is that there is an organized hierarchy-type structure in the geometry of a complete,
immersed H-surface F: M + X near points of large, almost-maximal norm of the second fundamental form of
the immersion, from which the title of the paper is derived; this hierarchy structure of F around such special
points is described explicitly in Section 5.6 and plays an essential role in the proofs of our main results.

A key step in the proof of Theorem 1.2 is to obtain curvature estimates for a large portion of the H-surface
(F: M + X) € A in that theorem. These curvature estimates are obtained in Section 5.2 and they are based on
related curvature estimates for stable H-surfaces developed in Section A.

Observe that (1.4) is a lower bound for the area of an H-surface in a Riemannian 3-manifold X, described in
terms of an upper bound for its absolute mean curvature function |H|, a lower bound of the injectivity radius
of X and an upper bound of the sectional curvature of X. This area estimate is proven in Section 5.7 and fol-
lows from a more general area estimate and an intrinsic monotonicity of volume formula for n-dimensional
submanifolds with bounded length of their mean curvature vectors in m-dimensional Riemannian manifolds X
that have a lower bound for their injectivity radius and an upper bound for the sectional curvature of X. Both
of these auxiliary results are proven in our paper [17], and we include their statements (without proofs) in
this paper for the sake of completeness; see Propositions B.1 and B.3. In Proposition B.4, we state explicit scale
invariant weak chord-arc estimates for finitely branched minimal surfaces of finite total curvature in R3 in
terms of the index and total branching (also proven in [17]); these chord-arc estimates are applied in the proof
of Theorem 1.2 (i).

An important theoretical consequence of the Structure Theorem 1.2 is the existence of compactness results
for H-surfaces of bounded index in X. More specifically, in Section 6 we state and prove some compactness
results for sequences of complete immersions with constant mean curvature in A = A(I, Hy, &9, Ao, Kp), as
described in Theorem 1.2, in the particular case that the immersions are defined on connected surfaces without
boundary, the ambient space X is independent of the element in the sequence, and the image of each immersion
in the sequence intersects a fixed compact subdomain of X. In this case, the limit object that we encounter (after
passing to a subsequence) is a complete, possibly finitely branched immersion of constant mean curvature at
most Hy and index at most I.

In regards to the just mentioned compactness results in Section 6, it is worth mentioning the related
paper [3] by Bourni, Sharp and Tinaglia, where they give weak compactness results for a sequence of embedded
CMC hypersurfaces in a compact Riemannian manifold of dimension m with 3 < m < 7, provided that their areas
and Morse indices are bounded. As they remark in [3], their results were motivated by the derivation of the
genus-dependent area bounds for triply periodic CMC surfaces properly embedded in R® by Meeks and Tinaglia
in [22]; also the results in [3] and in our present paper are motivated by other recent works [1, 2, 4, 5, 15, 26],
which together help to describe the geometry of finite index CMC surfaces M embedded in closed Riemannian
3-manifolds and relationships between index, area and genus of such an M.
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In [18], we give applications of Theorem 1.2 to understand global properties of immersed H-surfaces M «+» X
of fixed finite index I, especially results related to the area and diameter of such an M when it is compact without
boundary; in particular, we deduce that the area of such an M (resp. the diameter) grows at least linearly (resp.
logarithmically) with the genus.

2 Index of one-sided H-immersions, harmonic coordinates and
multi-valued graphs

In Theorem 1.2, we referred to the index of one-sided minimal immersions, harmonic coordinates and finitely
valued multi-graphs. We will devote this section to give some details about these notions.

Definition 2.1. Given a one-sided minimal codimension-one immersion F: M + X in a Riemannian manifold X,
let M — M be the two-sided cover of M and let 7: M — M be the associated deck transformation of order 2.
Denote by A and |A|? respectively the Laplacian and squared norm of the second fundamental form of M and
let N: M — TX be a unitary normal vector field. The index of F is defined as the number of negative eigenvalues
of the elliptic, self-adjoint operator A + |A|> + Ric(N, N) defined over the space of compactly supported smooth
functions ¢: M — R such that ¢ o 7 = —¢.

Definition 2.2. Given a (smooth) Riemannian manifold X, a local chart (xy, ..., X,) defined on an open set U
of X is called harmonicif Ax;j =0foralli=1,...,n

Given Q > 1and a € (0, 1), we define (following [11, Definition 5]) the Cl%harmonic radius at a point xp € X
as the largest number r = r(Q, a)(xp) so that, in the geodesic ball Bx(x, r) of center x( and radius r, there is
a harmonic coordinate chart such that the metric tensor g of X is C-*-controlled in these coordinates. Namely,
if gij, i,j =1,..., n, are the components of g in these coordinates, then the following assertions hold:
1 07151']' < gij < Q& as bilinear forms.
(ii) It holds ag o8

1+a 0XZ W - aXZ’ )|
Lrsaliaiol: 2o

The C“-harmonic radius r(Q, a)(X) of X is now defined by

rQ, a)(X) = Xlorg( r(Q, a)(xo).

If the absolute sectional curvature of X is bounded by some constant Ky > 0 and Inj(X) > &y > 0, then [11, Theo-
rem 6] implies that, given Q > 1 and a € (0, 1), there exists C = C(Q, a, &9, Ko) (observe that C does not depend
on X) such that r(Q, a)(X) > C.

Definition 2.3. Let f: X « R® be an immersed annulus, let P be a plane passing through the origin and, let
I1: R® — P be the orthogonal projection. Given m € N, let 0;,: Py — P* = P\ {0} be the m-sheeted covering
space of P*. We say that £ is an m-valued graph over P if 0 ¢ (II - f)(%), the induced map

(o f)y: Hi(Z) = Z — Hy(P*) = Z

satisfies |[(IL o f).(1)] = m,and IT» f: & — P* has a smooth injective liftf: L — Py, through op,; in this case, we
say that X has multiplicity m as a multi-graph.

Given Q > 1and a € (0, 1), let X be a Riemannian 3-manifold and let (x1, X2, X3) be a harmonic chart for X
defined on Bx(xo, ), Xo € X, r > 0, where the metric tensor g of X is Ccl% controlled in the sense of Definition 2.2.
Let P ¢ Bx(xo, r) be the image by this harmonic chart of the intersection of a plane in R® passing through the
origin with the domain of the chart. In this setting, the notion of m-valued graph over P generalizes naturally
to an immersed annulus

f:Z e Bx(xo, 1),
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where the projection II refers to the harmonic coordinates. If f: £ s> Bx(xp, ) is an m-valued graph over P
and u is the corresponding graphing function that expresses f(X), we can consider the gradient Vu with respect
to the metric on P induced by the ambient metric of X. Both u and |Vu| depend on the choice of harmonic

coordinates around Xy (and they also depend on Q), but if % + |Vu|(x) < 7 for some 7 € (0, 7/10] and Q > 1
sufficiently close to 1, then
utl + |Vul|(x) < 2T
|x]

for any other choice of harmonic chart around x with this restriction of Q.

3 Finitely branched minimal surfaces in R? of finite index

In the process of finding local pictures of H-immersions as in Theorem 1.2, we will find complete, non-flat, finitely
branched minimal surfaces in R®. We will devote this section to obtain some properties of these surfaces which
will be useful in the sequel.

Definition 3.1. Let X be a smooth surface endowed with a conformal class of metrics. We say that a harmonic
map f: & — R3is a (possibly non-orientable) branched minimal surface if it is a conformal immersion outside
of alocally finite set of points By ¢ X, where f fails to be an immersion. Points in By, are called branch points of
f. Itis well-known (see, e.g., [23, Theorem 1.4]) that, given p € By, there exist a conformal coordinate (D, z) for
¥ centered at p (where D is the closed unit disk in the plane), a diffeomorphism u of D and a rotation ¢ of R®
such that ¢ o f o u has the form

7 (z9,x(z)) e Cx R ~ R®

for z near 0, where q € N, q > 2, x is of class C% and x(z) = 0(]z|%). The branching order B(p) € N is defined to
be q - 1. The total branching order of f is
B():= ) B().
peBs

The next result is a generalization of the well-known Jorge—Meeks formula [12] to the case of a possibly branched
and non-orientable complete minimal surface £ +» R® of finite total curvature and finite branching order. It is
well-known that each of the (finitely many) ends of X is a multi-graph of finite multiplicity over the exterior of
a disk in the plane passing through the origin and orthogonal to the extended value of the unoriented Gauss
map of X. We will use the term the total spinning of X to describe the sum of these multiplicities; for instance,
the classical Henneberg and Enneper surfaces each have one end and total spinning equal to three.

Proposition 3.2. Let & + R3 be a complete, finitely connected and finitely branched minimal surface with finite
total curvature, e ends with total spinning S, and total branching order B(X). Then

1 _
= jK +S-B(Z) = y(T) - e = x(%), 31
z

where K: L\ By — (—00, 0] is the Gaussian curvature function and T denotes the conformal® compactification
of L. Furthermore, if G: T — P denotes the extended unoriented Gauss map of &, then the degree of G satisfies

deg(G) = % J’K = ¥(@) mod 2. (32)
%

In particular,
S—-B(X)=e mod 2. (3.3)

3 Observe that £ admits an atlas whose changes of coordinates are conformal or anti-conformal.
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Proof. To prove each of the statements in the above proposition, it suffices to consider the special case that X is
connected, which we will assume holds for the remainder of the proof.

We first prove (3.2). Note that the total curvature Jz K equals 2 deg(G). First, consider the case that
deg(G) # 0. By [16, Theorem 1], deg(G) = y(£) mod 2, which proves that (3.2) holds in this case. If the degree
of the Gauss map is zero, then the image of the branched immersion is a flat plane, and we can view X as
a connected, finitely branched covering of the sphere. Hence, X is orientable with even Euler characteristic.
Thus, (3.2) holds in all cases.

Using the Gauss—Bonnet formula in the compact portion of £ obtained by removing pairwise disjoint disks
around its ends (viewed as points in Z) and the branch points of %, and taking the radii of the removed disks
going to zero, we obtain equation (3.1). Taking classes mod 2 in (3.1) and using (3.2), we obtain (3.3). O

We next recall a fundamental lower bound for the index I(f) of a connected, complete, possibly finitely
branched minimal surface f: £ + R3 with finite total curvature, which is due to Chodosh and Maximo [6]
and to Karpukhin [13]:

e
28(Z) +2 Z(d]- +1)-2B -5 ifXisorientable,

Jj=1

3I(f) > (3.4)

e
gy +2 Z(dj +1)-2B -4 if ¥ is non-orientable,
j=1
where g(Z) is the genus of I if X is orientable (resp. g(Z) is the genus of the orientable cover X of X if £ is not
orientable), e and B are respectively the number of ends and the total branching order of X, and for each end E;
of %, d; is the multiplicity of E; as a multi-graph over the limiting tangent plane of E;.

Inequality (3.4) has not been explicitly stated in the literature, so an explanation is in order. Ros [24] proved
that 3I(f) > 2¢(Z) using harmonic square integrable 1-forms on £ for a minimal immersion f: £ + R® with
finite total curvature, in order to produce test functions for the index operator of f. Chodosh and Maximo
[6, Theorem 1] improved Ros’ technique with an enlarged space of harmonic 1-forms which admit certain singu-
larities at the ends of X that take care of the spinning (multiplicity) of each end of such an immersion f, obtaining
a simplified version of (3.4) without the term -2B. Finally, Karpukhin [13, Proposition 2.3 and Remark 2.4]
included the study of branch points, although he made use of the original space of L?(X) harmonic 1-forms
considered by Ros. Formula (3.4) is the combined inequality that one can deduce from [6, 13].

Remark 3.3. (i) IfZXisorientable and the index of f is even, then all summands in (3.4), except for the -5 in the
right-hand side, are even. Therefore, the inequality still holds after adding 1 to the right-hand side of (3.4).

(ii) Inequality (3.4) can be expressed in a unified way regardless of the orientability character of £, if we use
the Euler characteristic. Recall that if X is orientable, then its Euler characteristicis y = y(£) = 2 - 2g(Z) — e,
while if ¥ is non-orientable, the Euler characteristic of its orientable cover is )((i) =2- Zg(f) — 2e,where e
is the number of ends of £, and so y = y(X) = 1 — g(£) — e. Thus, (3.4) reduces to

3I(f) > —x +2S+e—2B -3, 3.5)

where S = er:l d; is the total spinning of the ends of f (sometimes we will refer to S as the total spinning
of f).

Lemma3.4. Let f: & - R3 be a complete, connected, non-lat, finitely branched minimal surface with branch

point set By C L.

(i) Iff is stable, then X is non-orientable and f(Bsx) contains more than one point.

(i) IfX non-orientable with f(By) consisting of at most one point in R3, then I(f) > 2; in particular; if £ has exactly
one branch point, then I(f) > 2.

Proof. Assume that f: £ +> R® is stable. Also, suppose for the moment that X is orientable. Let g: T — $? be
the Gauss map extended to the conformal compactification I = £ U € of £ obtained after adding the set & of
its ends. Let C c I be the set of branch points of g. Let Q(¢) c $? be the complement of the union of a pair-
wise disjoint collection of open e-disks around the points in the finite set g(€ U By U C). For ¢ > 0 sufficiently
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small, the Schrodinger operator A + 2 has negative first Dirichlet eigenvalue on Q(¢), where A is the spheri-
cal Laplacian. Since glg-1(o)) £ 1(Q(g)) — Q(e) is a finite covering, each component of g~ (Q(¢)) is a smooth,
compact unstable domain. This contradicts that f is stable, which proves that X is non-orientable.

Since X is non-orientable and f is stable, the main result in [24] implies that By # @. To finish the proof of (i),
suppose that f(By) is a single point in R? (say the origin) and we will find a contradiction. The area density of &
at the origin is at least B(X) + [, where B(Z) is the total branching order of f and [ is the cardinality of By. Using
the monotonicity formula for minimal surfaces, the total spinning S of the ends of f is at least B(X) + I + 1.
Using (3.4), since g(Z) > 0 and e > 1, we have

3I(f) 2 g(£)+2) (dj +1) - 2B(Z) - 4
j=1

>25+2e—-2B(X)-4
>25-2B(X)-2

> 21

>0,

(3.6)

which contradicts that £ is stable and proves (i) of the lemma.

To prove (i), assume that £ is non-orientable and f(By) contains at most one point. If f is unbranched,
then, by [6, Theorem 1.8], the index of f is at least 2. So assume that By + 0. If I(f) = 1, then the calculation
in (3.6) implies [ = e = 1, and the total spinning S of the ends of f is B(X) + [ + 1 = B(X) + 2. But this implies that
S — B(2) is even and e is odd, which contradicts the last statement of Proposition 3.2. Hence, by (i) of the lemma,
I(f) = 2. O

4 Almost flat annular H-multi-graphs of bounded multiplicity

For the next lemma, we will need the following notation. For 0 < Ry < Ry, we let
A(R1,Ry) = {x e R®| Ry < |x] < Ry}

Observe that the statement of the next lemma is invariant under homotheties centered at the origin.

Lemma 4.1. Given 7 € (0, 1/10] and L > 0, there exists a; € (0, 7] such that the following property holds. Take

a € (0,a1], 0 < Ry < Ry/2, and a compact immersed annulus £ c A(R1, Ry) with 0% c dA(R1, Ry), satisfying the

following conditions:

(B1) X makes an angle greater than or equal to 7 — a with every sphere $%(r) of radius r € [Ry, R;] centered at
the origin.

(B2) Given R € [R1, Ry/2], the image of £ n A(R, 2R) through the Gauss map of £ is contained in the closed
spherical neighborhood of radius a centered at some point v(R) € $(1).

(B3) Length(Z N $?(R1)) < LoR;.

Then there exists m € N, m < % such that, for any R € [R1, R2/2], £ N A(R, 2R) consists of an m-valued graph

with respect to its projection to the plane v(R)* orthogonal to v(R), of a function u that satisfies

[u(x)|

x|

at every point x in its domain of definition. Furthermore, for each R € [R1, R;], the following properties hold:

(C1) |Length(X n $%(R)) — 2rmR| < fi(a)R, where fi = fi(a) € (0, 7] is a function that tends to zero as a — 0.

(C2) Theintrinsic distance between the two boundary components of & N A (R, R) is at most \/1 + 72/4(R — Ry).

(C3) |Area(Z N A(Rq,R)) - mm(R? - R%)l < fo(a)(R — R1), where f, = fa(a) € (0, 7] is a function that tends to
zeroas a — 0.

+|Vul(x) < %
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Proof. The first step in the proof consists of showing that, for 7 € (0, 7/10] and Ly > 0 given, assertions (C1)
and (C2) hold in the range R € [R1, 2R;] for some choice of m € N, m < ngl, depending on a compact immersed
annulus X satisfying (B1)-(B3) provided that 0 < a < a; and a; is sufficiently small.

Observe that if 0 < a < aj < 7/4, condition (B2) above for R = Ry implies that £ n A(Ry, 2R1) is a multi-
graph with respect to its projection to the plane v(R1)*. We call u the related graphing function, and m € N
its multiplicity. Taking a4 sufficiently small, (B2) guarantees that |Vu| can be made arbitrarily small. By condi-
tion (B1), the almost orthogonality of X with spheres S2(R) with R € [Rq, 2R4] implies that if ay is sufficiently

small, we have that % can also be made arbitrarily small. In particular, we have that

[u(x)|
|xI
in £ N A(R1, 2Rq) if aq is sufficiently small in terms of 7. Similar arguments show that the length of £ n S2(Rq)
differs from 2rmR; by a function of a that tends to zero as a — 0 (in particular, 2rm < Ly + 1 provided that ay
is sufficiently small). Thus (C1) holds in [R1, 2R;] for some function f; (a) that tends to zero as a — 0.
Regarding the validity of (C2) in the range [R1, 2R1], given R € [R1, 2R1] and given a point x € £ N S2(Ry),
let IT, ¢ R® be the plane passing through the origin that contains both v(R;) and x; without loss of generality,
assume IIy is the (x1, x3)-plane and v(R1) = (0,0, 1). Let I' be the component of £ n A(R1, R) N II that passes
through x and note that I' is a smooth embedded arc that can be parameterized using polar coordinates in II
by I'(r) = (r, 6(r)), r € [R1, R]. Next assume that a; is chosen less than or equal to arcsin(z/2) and we will prove
that (C2) holds. Property (B1) implies that the angle between I’ (r) and the radial outward pointing unit vector
field 9, is at most a;, which implies

T
Vv —
+IVul(0) < 5

2
T ()] < V1 + sin¥(a) < Jl Lz

Therefore, (C2) holds in [R1, 2R1].

The second step in the proof consists of demonstrating that (C1) and (C2) hold for every R € [R1, Ry]. To see
this, it suffices to iterate a finite number of times the above arguments replacing R1 by 2R1,4Ry, .. ., 2KR,, where
k € N is the first positive integer such that 2KR, > R, /2. Then we conclude that (C1) and (C2) hold in [Ry, R2/2],
and by iterating once again, replacing Rq by R, /2, we get that (C1) and (C2) hold in [R1, R3].

Finally, (C3) holds for every R € [R1, Rz] by (C1) and the co-area formula. O

Remark 4.2. Since the statement of Lemma 4.1is invariant under rescalings of the ambient metric, we conclude

that the last lemma holds if we replace the ambient space IR3 by a sufficiently small closed geodesic ball Bx(x, Rz)

centered at any point x € X of radius R, € (0, &9/2) (using harmonic coordinates, see Definition 2.2 and recall

that &g > 0 is a lower bound for Inj(X)) in the Riemannian 3-manifold X, with the following changes:

(D1) We replace the notion of Gauss map in hypothesis (B2) of Lemma 4.1 by parallel translation of the unit
normal vector to £ at a point q € £ n Bx(x, R,) along the corresponding radial geodesic arc joining the
point x to q.

(D2) We replace the upper bound in conclusion (C2) of Lemma 4.1 by +/1 + 72/3 times the extrinsic distance
in X between the two boundary components of [Bx(x, Ry) \ Bx(x, R1)] (here 0 < Ry < Ry/2).

Definition 4.3. Fix 7 € (0, 7r/10]. Let &3 € (0, &] be such that Remark 4.2 holds for any choice of extrinsic radii
Ry, Ry, with 0 < Ry < Ry/2 < Ry < & in X. Fix such Ry, Ry, choose 71 € (0, 7], and let m € IN be an integer to be
fixed later. Given x € X, we consider the collection

G(X; R1, Ry, T1, M)

of multi-graphical (immersed) H-annuli G c Bx(x, Rz)\ Bx(x, R1) (here H € [0, Hy]) with multiplicity m(G) <m,

such that G is “almost flat” in terms of 71, in the sense that G satisfies the following properties:

(ED) Gisanimmersed H-annulus in X, whose boundary 0G c Bx(x, R1) U dBx(x, Rz) consists of two closed
curves, one on each ambient geodesic sphere, and G is the graph over its projection to a “planar” disk
P = ¢x(IDyg,) (this map @ gives harmonic coordinates around x), where Dyg, ¢ Ty X is a planar disk of
radius 2R, centered at the origin in T, X, of a function u defined on a domain Q of the m(G)-sheeted cover
of the annulus Dyg, \ {0}.
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(E2) Given y in P, denote by |y| the distance to the point x in the ambient metric of X. Then the graphing
function that defines G satisfies
lu@y)l

by
Lemma 4.4. In the situation of Definition 4.3, there exist 83 € (0, §;] and 1 € (0, 7] such that, for everyr € (0, §3]
and G € §(x;r/2,r, 71, m), the geodesic curvature function of G N Bx(X, % r) along its intersection with d Bx (X, % r)
is everywhere positive and its integral, the total geodesic curvature k(G), satisfies

+|Vul(y) <71 inQ.

|k(G) - 2mtm(G)| < —. 4.1

S|~

Furthermore, every such graph G is stable.

Proof. Suppose that G, € §(x;rn/2, rn, Tn, m) has (rn, 7,) — (0, 0). Since 7, — 0, the image of the “Gauss map”
of G (in the sense of Remark 4.2 (D1)) is arbitrarily small. After rescaling the ambient metric on X by 1/rp,
we find related multi-graphs G;, = rl—n Gn with constant mean curvature (which is arbitrarily small if n is taken
sufficiently large). For n sufficiently large, G, is stable (and G, as well). This implies that there exist §; € (0, §;]
and 7] € (0, 7] such that, for every r € (0, §3] and G € §(x;r/2,r, 7}, m), G is stable.

From this point on, we will additionally assume that r, € (0, 6;] and 7, € (0, T{], while (4.1) fails to hold
for each n. Curvature estimates for stable constant mean curvature surfaces then imply that there exists C > 0
(independent of n) such that the norm of the second fundamental form of the intersection of G;, with A;‘,(%, %)
is less than C for all n, where

D=~ [Ba( o) \Bx(x, 2ma)]

Ar2 -
"(8’8 'n

Since 7, — 0, we conclude that the G; n A;‘l(g, %) converge as n — oo to a flat multi-graph G* in R® over the
annulus of inner radius % and outer radius % (and the convergence G, — G* is smooth in the interior of G*),
with some multiplicity m* at most m (thus the multiplicity m(Gy) of G, equals m* for n large enough). Clearly,
the total geodesic curvature of G* along its intersection with the sphere 01B(3/4) is 2zm*. Since the convergence
of the G;, to G* is smooth in Int(G*), we have that k(G,) = k(G;,) converges as n — oo to 2rm*, which equals
2m(Gy) for n large enough. Since - > 0, inequality (4.1) holds for n large enough, which is contrary to our
hypothesis, and so the lemma is proved. O

Definition 4.5. FixLy > 0andm € N, m < % Leta; = aj(Lo) € (0, 7] be the value given by Lemma 4.1 (recall
that 7 € (0, /10] is fixed). Choose 83 € (0, §2] and 77 € (0, a1] given by Lemma 4.4 such that (4.1) holds for every
G € S(x; 83/2, 63, T1, m).

Observe that both §3 and 71 depend on the values of Ly and m. We will describe later how to choose Lo and m in
order to give rise to 63 and 71 by Lemma 4.4, in order to define the values of §; and § that appear in Theorem 1.2.

5 The proof of Structure Theorem 1.2

Consider numbers gy > 0, Ky, Hp, Ag € [0,00), I € NU {0}, 7 € (0, 77/10], and let A = A(I, Hy, &9, Ag, Kp) be the
space of CMC immersions given in Definition 1.1.

5.1 The case of uniformly bounded second fundamental form and the proof of
Theorem 1.2 (V) in the general case

Suppose that the norms of the second fundamental forms of all immersions F € A are bounded by a constant A;
independent of F (clearly, one can assume A; > Ap). In this case, Theorem 1.2 holds with the choices k = 0 (there
are no radii rp(i) or components A;), 261 = § = 83 (this &3 is given by Definition 4.5 for (Lo, m) = (27 + 1,1)) and
M = M, because of the following reasoning.
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(F1)
(F2)
(F3)

Assertions (i), (ii), (I), (I), and (IV) of Theorem 1.2 are vacuous.

Theorem 1.2 (iii) holds by assumption and (III) reduces to g(M) = g(M).

We next prove that Theorem 1.2 (V) holds without the assumption that the norms of the second funda-
mental forms of all immersions F € A are bounded by a constant A; independent of F; this will complete
the proof of (V) in the general case. In order to find the constant C = C(&g, Ko, Hp) > 0 that satisfies (V),
we distinguish two cases.

(F3.A) First, suppose that 0M # 0. By (A2) in the definition of A, there exists a point pg € Int(M) such that

(F3.B)

Bu(po, €o) is contained in the interior of M. By inequality (B.5) in Proposition B.3,
Area(M) > Area(Bps(po, €0)) = Caé&o, 5.1)

where the constants

. rs
ry =I”2(80,K0,H0) >O, CA :mm{eo,g—} >0
0

are given by Proposition B.3. Given any y € M such that dy(y, M) > &, then (B.4) in Proposi-
tion B.3 gives
Area(M) > Area(By(y, dy(y, 0M))) = Ca dy(y, OM). (5.2)

Define Cy = min{C4 &g, C4} > 0, which only depends on &g, Ko, Hp but not on I. We claim that
Area(M) > Co max{1, Radius(M)}, (5.3)

which proves Theorem 1.2(V), in this case (F3.A): if Radius(M) < 1, then our claim follows
from (5.1). If Radius(M) > 1, then our claim follows from (5.2) since

Radius(M) = sup{dyu(y, OM) | dy(y, OM) > €}.

Next assume that dM = 0. Since the sectional curvature of X is bounded from above by Kj, the
Ricci curvature of X is bounded from above by 2Kj. It follows that there exists an

g1 = €1(Ko, Hp) > 0

such that, for any point x € X, the geodesic spheres of radius at most €1 are embedded with mean
curvature greater than Hy. By the mean curvature comparison principle, for any point p € M,
there is a least one other point ¢ € M such that the extrinsic distance satisfies dx(F(p), F(q)) > €1,
and hence the intrinsic distance satisfies dy(p, q) > €1. Define

Ch = min{sl, Z—%} >0,
where ry = ry(go, Ko, Hp) > 0is given by Proposition B.3, and let
C1 = min{Che1, Cy}.
Observe that C}L‘, C; depend only on €, Ky, Hp but not on I. We claim that
Area(M) > C; max{1, Diameter(M)}, (5.4)

which proves Theorem 1.2 (V), in this case (F3.B).

To prove that (5.4) holds, first note that if Diameter(M) = oo, then M is non-compact and it has
infinite area by Corollary B.2.

Assume now that Diameter(M) < co. Since M is compact, the Hopf—Rinow theorem ensures that
there exist points p, ¢ € M such that Diameter(M) = dp(p, q). Notice that for n € N such that
Diameter(M) > %, the triangle inequality implies

Diameter(M) — % = Radius(M \ BM(q, %))
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and so 1
Diameter(M) = nlLIEO Radius(M \ BM(q, E)) (5.5)

By our choice of ¢; and for n sufficiently large, the point p € M\ By(q, %) is at distance at
least &1 from o(M \ By(q, %)), and so in this case the restriction of the immersion F: M + X to
M\ By(q, %) satisfies the hypotheses of Proposition B.3. Therefore, by Proposition B.3 and (5.3)
with Cy replaced by Cq,

Area(M\BM(q, %)) >C max{l, Radius(M\ BM<q, %))} (5.6)

Hence,
Area(M) = nlLrgoArea(M\BM(q, %))

> nlLrElo (o] max{l, Radius(M\BM(q, %))} (by (5.6))

= C; max{1, Diameter(M)} (by (5.5)),

which proves that (5.4) holds.
From (F3.A) and (F3.B), we deduce that Theorem 1.2 (V) holds for the value C = min{Cy, C1}, regardless of
whether or not the norms of the second fundamental forms of all immersions F € A are bounded.
In the sequel, we will assume that there is no uniform bound for the norms of the second fundamental
forms of surfaces in A.

5.2 Stable pieces of H-surfaces in A and their curvature estimate

By Theorem A.1 and with the notation there, there exists a universal constant Cs > 0 such that, given a stable
H-immersion F: M « X,

Cs
A < — forall p € M. (5.7)
B) = Seinte, d(p, 030, 2] b
Define Cs: (0, &] — (0, co0) by
Co(e) = 1+ max]do, %} £ € (0, &l. 5.8)
minyé€, \/—K—O

It follows that if F: M «+ X liesin A = A(I, Hy, €9, Ao, Ko) and p € M satisfies |Ay|(p) > 63(8), then
p € U(OM, &, 00),

and the intrinsic ball centered at p of radius €/2 is unstable.

Lemma5.1. Let F: M + X be an element in A and let € € (0, &¢] be such that sup|Ay| > Cs(€). Then there exists
a finite subset {qy, . . ., qx} € U(OM, &y, 0o) with 1 < k = k(F) < I such that the following assertions hold:
() |Ap| achieves its maximumin M at q1, and for i = 2,..., k, |Ay| achieves its maximum in

M\ [By(q1,€)U---UBy(qi-1,8)] atq;.

(i) Foreachi=1,...,k |Aml(q) > Cs(g), and so the pairwise disjoint intrinsic balls By (q;, €/2) are unstable.
(iii) |Apm| < Cs(€) in M\ [Bu(q1,€) U---UBy(qx, €)], and so |Ay| is bounded on M.

Proof. Since sup|Ay| > Cs(€), we can find ¢} € M such that |Ay/|(q}) > Cs(¢). In particular, the intrinsic disk
BM(q;, €/2) is unstable. We now distinguish two possibilities: if |Ap| < Cs(g) on M\ BM(q;, €), then |Ay| is
globally bounded on M. Otherwise, there exists qg e M\ BM(qi, €) such that |AM|(q;) > Cs(e). In particular,
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BM(qg, £/2) is unstable. Observe that BM(qQ, €/2) and BM(qg, €/2) are disjoint. Again we discuss two possibili-
ties depending on whether or not [Ay| < Cs(e)on M\ [B M(q{, &)UB M(qg, £)]. In the first case, |A | is bounded
on M; in the second case, we repeat the argument of finding a point

q3 € M\ [Bu(q}, €) UBu(qy, ©)]

such that |Ay(q3) > Cs(€), Bu(qy, €/2) is unstable and the collection {By(q}, €/2) | i = 1,2, 3} is pairwise dis-
joint. Since the index of F is at most I, we cannot repeat this process of finding pairwise disjoint unstable domains
more than I times, say that we can do it k' < I times. Therefore, we conclude that |Ay| < Cs(¢) in

M\ [By(q},€) U+ UBy(qp, ©)];

in particular |[Ay| is bounded on M. We next replace qi by a maximum ¢; of |Ay| in M (which occurs in the
compact set By(q}, €) U+~ U By(q}., €)), qj by a maximum g, of |A | in

W1 = [Bu(qy, €) U+ UBy(qp, €)1\ Bu(qu, ),

if |Ap| restricted to W is greater than Cs(e), and repeat the process to obtain a finite set of points {q, . . ., qk}-
Observe that the number k of these points cannot be greater than I. Now the lemma holds. O

5.3 Strategy of the proof of Theorem 1.2

Given t > Cs(gp), let A be the subset of A consisting of those immersions F: M + X such that

sup{lAum|(p) | p € M} > t.

Similar arguments to those in Section 5.1 show that Theorem 1.2 holds for immersions in A \ A;, with the choices
k=0,A1 =t 261 = § = §3 given by Definition 4.5 for (Lo, m) = 27+ 1,1) and M = M. So the theorem will be
proven if we show that it holds for immersions in A; for some large ¢ > Cs(&o).

Observe that if I = 0, then Cs(gg) is a uniform bound for the norm of the second fundamental forms of
surfaces in A, and the theorem holds in this case.

The strategy to prove the theorem consists of proving the following two steps.

Step 1. Assertions (i)—(iii) of the theorem hold. This will be proven by induction on 7, by analyzing local pictures
of a sequence of immersions {F,: M, + Xp}n ¢ A whose second fundamental forms blow up as n — co. We
will do this in Sections 5.4 and 5.5.

Step 2. If (1)-(iii) of the theorem hold, then (I)-(IV) also hold for a possibly larger choice of A; (recall that we
proved Theorem 1.2 (V) in (F3) of Section 5.1). For this part, we will verify that the induction argument in step 1
can be carried out so that (I)-(IV) hold for F, with n large enough. This step will be done in Section 5.7, which
in turn needs some results in Section 5.6.

Our next goal is to complete step 1. Although not strictly needed in the induction process, we first explain
the arguments needed to prove the case I = 1 since they will help clarify why (i)—(iii) of the theorem hold for
I + 1 provided that they hold for I.

5.4 Proofs of Theorem 1.2 (i)-(iii) for I = 1

Assume I = 1. By previous arguments, we can assume that for each n > Cs(go) there exists an Hp-immersion
Fp: My > Xy in A such that sup|Ap,| > n with Hy, € [0, Ho]. We will next describe the local picture of any such
sequence {F,}, around points of concentrated norm of their second fundamental forms. As I = 1, Lemma 5.1
gives that for each n > Cs(go) there is a point p1(n) € U(OMpy, &, co) where |Ay, | achieves its maximum and
|Am,| < Cs(€0) in My \ By, (p1(n), €).
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5.4.1 Local pictures around points where |Ay| > t, for t sufficiently large

Next we will adapt some arguments in [20] to this immersed setting. Given n > Cs(go), observe that the (unique)
maximum of the function

hn: Bar, (p1(n), &) — [0, 00)

given by
hn = 1Am, | du, (+, 0By, (p1(n), €0)) (5.9)

isattained at p;(n). Define A, = |Ap, |(p1(n)). Following the arguments at the beginning of the proof of [20, Theo-

rem 1], we have the following assertions:

(G A, tends to infinity as n — co.

(G2) For r > 0 fixed, the sequence of extrinsic balls {A,Bx, (Fn(p1(n)), r/An)}n converges Cche a € (0,1), as
n — oo to the open ball B(r) of radius r centered at the origin 0 in R? with its usual metric, where we
have used harmonic coordinates in X, centered at p1(n) and identified p1(n) with 0.

(G3) The intrinsic balls A, B, (p1(n), r/An) can be considered to be a sequence of pointed immersions with
constant mean curvature H, /A, (observe that H,/A, is arbitrarily small for n sufficiently large) and non-
empty topological boundary.

(G4) For n large, the immersed surface A,By, (p1(n), r/An) passes through 0 with norm of its second fun-
damental form equal to 1 at this point. Furthermore, the norms of the second fundamental forms of
AnBu, (p1(n), r/An) are everywhere less than or equal to 1.

(G5) After extracting a subsequence, the A, By, (p1(n), r/A,) converge C1-¢ as mappings to a relatively compact
pointed minimal immersion f;-: £(r) «»> B(r) that passes through 0, with bounded Gaussian curvature and
index at most 1, |A2(r)|(6) =1and [Azn| < 1on X(r).

(G6) Defining £ = J,.; Z(r) and f: £ s R® by fl5= fr, we produce a complete pointed minimal immersion
with index at most 1, 0 € £, |Ax|(0) = 1 and |Az| < 1 on X.

Since f is not flat at the origin, the index of f is 1. In this setting, Lopez and Ros [14] proved that if X is
orientable, then f is either a catenoid or an Enneper minimal surface. On the other hand, [6, Theorem 1.8] gives
that £ must be orientable.

We next show that Theorem 1.2 ()-(iii) hold in this case I = 1 with the choice k = 1. Observe that the multi-
plicity of the end of the Enneper surface is m = 3, and the total multiplicity of the ends of a catenoid is 2. This
motivates the choice of Lj in the next paragraph. We next explain how to choose the constants A1, §1 and & that
appear in the main statement of Theorem 1.2.

Let a1 = a1(7) € (0, 7] be the constant given by Lemma 4.1 for Ly = 677 + 1; observe that the length of the
intersection of a catenoid or an Enneper minimal surface with a sphere $?(R) of sufficiently large radius R is
less than LoR.

We can also pick a smallest R > 0 (only depending on 7) so that the following properties hold:

(HO) The index of f{Z) N B(R/3) is 1.

(H1) f(Z)\ B(R/3) consists of one or two multi-graphs over its projection to a plane II ¢ R? that passes
though 0; here II is the limit tangent plane at infinity for f.

(H2) The image through the Gauss map of f of each component C; of f(X) \ B(R/3) is contained in the spher-
ical neighborhood of radius a;/2 centered at a point v € $?(1) perpendicular to II (thus, C; satisfies
condition (B2) of Lemma 4.1 with Ry = R/3 and a = a1/2).

(H3) f(X) makes an angle greater than 5 — % with every sphere $%(r) of radius r > R/3 centered at the origin
(so, C;j satisfies condition (B1) of Lemma 4.1 with Ry = R/3 and a = a;/2).

(H4) The length of each component of the intersection of f(X) with any sphere $%(r) centered at the origin and
radius r > R/3 is less than (Lo - %)r (hence each component of f(X) \ B(R/3) satisfies condition (B3) of
Lemma 4.1 with Ry = R/3).

Applying the estimate (B.7) in Proposition B.4 with I = 1 and B = 0, we deduce the following assertion:

(H5) By Proposition B.4(ii), the intrinsic distance in the pullback metric by f from 0 € X to any point in the
boundary of f~1(B(R/2)) is at most CZ, where C is defined there. Observe that (B.6) is not enough to
estimate this intrinsic distance, since it only gives that the intrinsic distance in the pullback metric by f
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from 0 € X to the boundary of f~1(B(R/2)) is at most

AL

L
2

Ny

Definition 5.2. Givenr € [R/2,4R], we denote by A,(r) c M, the connected component of
- r
(AnEn) ™ QB (Ea(pr(m)), 5-))

that contains p1(n).

Properties (H0)—(H5) and the convergence in (G5)-(G6) imply that, for A, large (in particular, for n sufficiently

large), the immersion A, Fj, satisfies the following properties:

(I0) Theindex of (AnFn)la,(r/2) equals 1.

(I1)  (AnFn)(An(4R) \ An(R/2)) consists of one or two multi-graphs over their projections to II. We let G, denote
any of these multi-graphs inside (1,F,)(An(4R) \ An(R/2)).

(12) The image of G, through the “Gauss map” of A,F, (defined through ambient parallel translation, see
Remark 4.2) is contained in the spherical neighborhood of radius a; centered at v (here we have identi-
fied R® with the tangent space to A, X,, at Fp(p1(n))).

(13) G, makesan angle greater than % — a1 with every geodesic sphere S(r) in A, X, centered at Fn(p1(n)) of
radius r € [R/2,4R)].

(14) Length[G, n S(R/2)] < LoR/2.

(I5) The intrinsic distance in the pullback metric by A,F, on M,, from p1(n) to any point in the boundary of
An(R/2), is at most (C/2 + 1)R.

Back in the original scale, observe that

An(r) C Fﬁl(EX(Fn(pl(n)), %)) foranyr e [§,4R],

and the following properties hold for n sufficiently large:

(JO) The index of Fp|a,(r/2) equals 1.

(J1)  Fnp(An(4R)\ Ap(R/2))is a union of one or two multi-graphs over their projections to II. We let G, denote
any of these multi-graphs.

(J2)  The image of G, through the “Gauss map” of Fj, is contained in the spherical neighborhood of radius a;
centered at v.

(J3) G, makes an angle greater than g — ay with every geodesic sphere S(r) in X, centered at Fp(p1(n)) of

radius

R 4R
re[m, )

(J4) Itholds

Length[Gn n 8(2%)] < ng%.

(J5)  The intrinsic distance in the pullback metric by F, on M,, from p1(n) to any point in the boundary of
An(R/2), is at most 1-(C/2 + 1)R.
Therefore, given
re[2- 2,
220" An
then
Gn N [Bx(Fn(p1(n)), 2r) \ Bx(Fa(p1(n)), 1)]

satisfies hypotheses (B1)—(B3) of Lemma 4.1 with the choices Ly = 677 + 1, inner radius r, outer radius 2r, and
a = a1. Our next step will be demonstrating that the outer radius, for which the hypotheses of Lemma 4.1 hold
for Fp, is bounded from below by some positive constant, independent of the sequence.
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5.4.2 Local pictures have a uniform size

Proposition 5.3. There exists 84 € (0, §3] (this 83 € (0, §2] was given in Definition 4.5 for the choices Ly = 67 + 1
and m = 3) such that the hypotheses of Lemma 4.1 hold for annular enlargements of the multi-graphs G, between
the geodesic spheres in X centered at F,(p1(n)) of radii Ry = 2% and Ry = 84, and with the choice a = 71 for
hypotheses (B1) and (B2) (this 71 € (0, a1] was also introduced in Definition 4.5).

Proof. Define ry as the supremum of the extrinsic radii r > 4R/A, such that annular enlargements of the G,
satisfy conditions (B1)-(B3) of Lemma 4.1 for the choices Ly = 677 + 1, inner radius Ry = %, outer radius Ry =,
and a = a;. We will prove the proposition by contradiction, so suppose r, — 0 as n — oco.

Rescale Fj, by expanding the ambient metric of X, by the factor 1/r, centered at F,(p1(n)) and denote the
resulting sequence of rescaled immersions by

1 1
—Fn: M, —Xn.
rnn n‘*"rnn

Our goal is to understand the limit of (a subsequence of) {%Fn} n.

Notice that 4R < A1, must go to infinity as n — co. Otherwise, rl"F,, is rescaled from F, on the scale of the
second fundamental form, and in that case we have proved that the subsequential limit of the rinFn is a catenoid
or an Enneper minimal surface, each of whose ends satisfies Lemma 4.1 for every outer radius (see properties
(HD)—(H3) above), contradicting the definition as a supremum of ry,.

As Aprp — oo, property (J0) implies that rlnFn has index zero away from the origin for n large; more pre-
cisely, the following property holds:

(¢) Foranys > 0and forevery n € IN sufficiently large (depending only on s), the portion of r—lnF n(Mp) outside
of the extrinsic ball of radius s centered at F,(p1(n)) is stable.

By curvature estimates for stable H-surfaces, we deduce that the sequence { - F}p has locally bounded second

fundamental form in R3 \ {0}.

Applying Lemma 4.1 (see also Remark 4.2) to rl"Fn with a = 79, we conclude that, for n large, the image

of rlnFn contains an immersed annulus Qn(%, 1) in the annular region

A(31)={re® | <msa),
and Qn(%, 1) is an m'-valued graph with respect to its projection to a plane vy passing through the origin. The
multiplicity m’ of this graph does not depend on n after passing to a subsequence; in fact, m’ = 1 or 3. Similarly,
the plane vll is independent of n. Observe that by definition of rp, either Qn(%, 1) makes an angle of % -7
with $%(1) at some point of Qn (1, 1) n $2(1), or the Gauss map image of Qn(%, 1) contains two points at spherical
distance 77 apart.

After passing to a subsequence, Qn(%, 1) converges smoothly as n — oo to an immersed minimal annulus A
in A(%, 1) which is a multi-graph of multiplicity m’ with respect to v{, and either A makes an angle of  — 74
with $%(1) or the Gauss map image of A contains two points at spherical distance 71 apart. In particular, A cannot
be contained in a plane passing through the origin.

Repeating the same reasoning in A (27X, 2-%+1) for every k € N and using a diagonal argument, we conclude
that (a subsequence of) the —F,, converge smoothly in A(O 1) =B@1)\ {6} to an immersed minimal punctured
disk D* that has 0 in its closure such that A ¢ D*. As { Fn}n has locally bounded second fundamental form in
R3\ {O} (a subsequence of) the —Fn converge smoothly to a minimal immersion D in R3 \ {0} such that D* ¢ D,
and D is complete away from 0, in the sense that divergent arcs in D either have infinite length or diverge to 0.
Clearly, D has 0 in its closure. Since —Fn is stable away from the origin, D is stable. In this setting and when D
is two-sided, D extends smoothly to a plane passing through 0 (by [19, Lemma 3.3], see also [8]). This contradicts
the fact that A cannot be contained in a plane passing through the origin. In the case that D is one-sided, we can
view D as a branched stable minimal immersion with branch locus at the origin (with finite branching order);
in this setting, Lemma 3.4 (i) gives a contradiction. These contradictions finish the proof of Proposition 5.3. [
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Definition 5.4. Consider the 6, € (0, §3] given by Proposition 5.3. Then we define

84 81 = é

6= 7, E

We will show that this is a valid choice for the §; and § appearing in Theorem 1.2 in the case I = 1.

We finish this section by showing how to deduce Theorem 1.2 (i)—(iii) in this case of I = 1 (this is part of step 1
in our strategy of proof of Theorem 1.2 explained in Section 5.3). We first explain how to choose the value of
A € [Ag, o) that appears in the main statement of the theorem. In Section 5.3, we saw that it suffices to prove
Theorem 1.2 (i)-(iii) for immersions in A for some large ¢ > Cs(81/2). Choose t > C5(81/2) sufficiently large so
that the following assertions hold:
(K1) TItholds R
R,C 61
?(E + 1) < 10"
Recall that R was defined just before (H0)-(H5) only depending on 7, and C was given in Proposition B.4 (ii)
as a function of I, B, which in this case, where I = 1 and B = 0, gives C=4v3+ 17177; see also (H5).
(K2) Forevery (F: M + X) € A1, Lemma 5.1 applied to F for € = ¢ implies that there exists a point

p1 € U(OM, &g, 00)

such that
|Aml(p1) = max{|Ayl(p) | p € M},

and if ¢ is sufficiently large, then the description in (J0)-(J5) holds for F with p1(n) and A, replaced by p1
and |Ay|(p1), respectively.
Define A; = t. Next we will prove Theorem 1.2(i)-(iii) for immersions in A;. Given (F: M + X) € A,
define r¢(1) to be 81, and A; to be the component of F~*(Bx(F(p1), rr(1)) that contains p;. Let Sp(%) denote the
extrinsic geodesic sphere in X centered at F(p1) with radius %. Let g be a point in 0A;. Then

upr, ) < XEOMAPISH(E) du(pr. )+ duu(d1 1 F_1(3F<2%))’ 1)

R/C » R
< ?(E +1)+dy(bnF (sF(ﬂ)) q) Oy (5, aslAul(p1) = 0).
By properties (J2)—(J4) and by Proposition 5.3, we can apply Lemma 4.1 to each of the annular portions of A

with the choices Ry = £ and R, = r¢(1); observe that

R 5(6‘+1)<ﬁ re(1)

- < =
2w=t\27) 510 2

Using Lemma 4.1(C2) (see also Remark 4.2 (D2)) in the second term of the right-hand side, we get

du(p1, @) < %(g 1)+ \/1 + %Z(rpu) - %)

51 T2
< E + \jl + ?rf‘(].) (bY (Kl))

= (% + \jl + %Z)rp(l).

Since 7 < /10, we have dy(p1, q) < %rp(l). This proves Theorem 1.2 (i) (a).

Assertion (i) (b) follows from the definition of A;. Observe that assertion (i) (c) is vacuous because k = 1.
Assertion (i) (d) holds because F € Ajp; and A1 = t. Assertion (i) (e) follows from (J0) (see also (K2)), which finishes
the proof of Theorem 1.2 (i). Assertion (ii) follows from Lemma 4.1.
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Next we show (iii). Given ¢ € M = M — Int(A;), let y ¢ M be an arc joining p; with q. Let y; ¢ y be the small-
est subarc of y that joins p; with some point q; € dA;. By the definition of A1, F(q;) is at extrinsic distance r¢(1)
from F(p1), and thus

Length(y) > Length(y1) > re(1) = 64

for every arc y joining p; with q. Therefore, dy;(p1, q) > 81. As q is any point in M, we conclude that
M ¢ M - By(p1, 61).

Hence, Theorem 1.2 (iii) will be proved if we check that |Ay;| < A; in M — By (p1, 61). Applying Lemma 5.1 (iii) to
€ = &1, which is possible since §; < gy and

~ /6 ~
suplAul = t > Cs( 5 ) = Co(80),
we conclude that |Ay| < Cs(81) in M — By(p1, 81). Since C; is non-increasing, we have
_ _ 8
Cu(81) < Co(F ) <t=4r,

and so Theorem 1.2 (iii) holds.
Thus, Theorem 1.2 (i)—(iii) hold in this case I = 1.

5.5 Proofs of Theorem 1.2 (i)-(iii) for I = Iy + 1

Assume that Theorem 1.2 (i)—(iii) hold for I = Iy. We will prove that the same assertions hold for I = Iy + 1.

By the arguments in the first paragraph of Section 5.3, we can assume that for each n > Cs(go) there exists
an Hy-immersion Fp: My + X, in A(y + 1, Ho, €0, Ao, Ko) such that sup|Ay,| > n. By Lemma 5.1, for each
n > Cs(&o) there exists a finite set

{p1(n), ..., Pmny(M)} C U(OMp, &9, 00), m(n) <Ip+1,

such that the following assertions hold:
(L) |Awm,| achieves its maximum in M, at p1(n) and, for i = 2,..., m(n), |Ay, | achieves its maximum in

My \ [Bu, (p1(n), €0) U - - - U By, (pi—1(n), £o)]

at pi(n).
(L2) TForeachi=1,..., m(n), wehave
|[Anm, |(pi(n)) > Cs(€o),

and so the pairwise disjoint intrinsic balls By, (pi(n), £9/2) are unstable.
(L3 |Apm,| < Cs(&) in
Mn \ [Bp, (p1(n), €0) U -+ - U By, (Pm(ny (M), €0)]

5.5.1 Local pictures around points where |Ay| > t, for t sufficiently large

Given n > Cs(go), consider the function hy, : FMn (p1(n), &9) — [0, co0) given by (5.9). Asin the case I = 1, the max-
imum of hy, occurs at p1(n). Let A, = |[Ap, [(p1(n)). Then properties (G1)-(G6) hold with the only change in (G5)
(resp. in (G6)) that f; (resp. f) has index at most Iy + 1. In the sequel, will use the same notation as in (G1)-(G6).

Unlike what we had in the case I = 1, we do not dispose of a classification result for the possible limit
minimal immersion f in this current setting. Still, we can estimate some aspects of its geometry. Observe that f
has finite total curvature, since it has finite index (see [9] for the orientable case, and see the last paragraph
of the proof of [24, Theorem 17] for the non-orientable case). Therefore, f is proper, and the domain £ of f has
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finite genus and finitely many ends, each of which is mapped by f to a multi-graph over the exterior of a disk
in a plane of R® passing through the origin, with finite multiplicity. We will denote by e > 1 the number of ends
of f,and by dy, ..., d. > 1 the multiplicities of these ends. Hence, Zj‘?zl d; is the total spinning of the ends. Also,
g(%) and I(f) will stand for the genus of £ and the index of f, respectively.

Claim 5.5 (Lower bound for the total spinning plus the number of the ends of f). It holds
e
Y(dj+1) >4 (5.10)
j=1
Proof. If all ends of f are embedded, then e > 2 (as f is not flat) and d; = 1 for each j = 1,.. ., e. Thus,
e
Y(dj+1)=2e>4.
j=1

If f has at least one non-embedded end, then the monotonicity formula for minimal surfaces implies that
the area growth of f at infinity is at least that of three planes (again because f is not flat). Therefore, in this case,
Yj-1 dj = 3 and the claim follows. O

Claim 5.6 (Upper bound for the genus of Z). If X is orientable, then 2g(X) < 3I(f) — 3. If £ is non-orientable, then
g(Z) < 3I(f) - 4, where g(Z) is the genus of the orientable cover £ of I.

Proof. This follows directly from equations (3.4) and (5.10), after observing that the total branching order B(X)
of f is zero. O

Claim 5.7 (Upper bound for the total spinning of f).

e 3I(f) + 3 if X is orientable,
2) dj< . .
=t 3I(f) + 2 if £ is non-orientable.
Proof. This follows directly from (3.4) since e > 1 and g(X) > 0 if X is orientable (resp. g(£) > 0 if £ is non-
orientable). O

Recall that we have fixed 7 € (0, 7/10]. Suppose a; = a;1(7) € (0, 7] is the constant given by Lemma 4.1 for
Ly = 3n(Ip + 2) + 1. Observe that the total length Lf(r) of the intersection of f(Z) with a sphere $%(r) of
sufficiently large radius r is less than Lyr; this follows since for r large, by Claim 5.7,

@ ~ Zﬂz dj < m[3I(f) + 3] < 7[3(Ip + 1) + 3]. (5.11)

r b=
We can also pick a smallest R > 0 (only depending on 7) so that the following properties hold (compare with
properties (H0)-(HS5) above):

(HO) The index of f{X) N B(R/3) is I(f).

(HY) f(Z)\B(R/3) consists of e multi-graphs over their projections to planes II; ¢ R* passing though 0,
j=1,...,e.

(H2’) The image through the Gauss map of f of each component C; of f(£) \ B(R/3) is contained in the spher-
ical neighborhood of radius a;/2 centered at a point v; € $3(1) perpendicular to II; (thus, C; satisfies
Lemma 4.1 (B2) with Ry = R/3 and a = a/2).

(H3) f(X)makes an angle greater than 7 — - with every sphere §%(r) of radius r > R/3 centered at the origin
(so, Cj satisfies Lemma 4.1 (B1) with Ry = R/3 and a = a;/2).

(H4’) The total length of the intersection of f(X) with any sphere $?(r) centered at the origin and radius r > R/3
is less than (Lo — %)r (hence C; satisfies Lemma 4.1 (B3) with Ry = R/3).

Applying the last sentence in Proposition B.4 (ii) with I = Iy + 1 and B = 0, we deduce the following property:

(H5) The intrinsic distance in the pullback metric by f from 0 € X to any point in the boundary of f~1(B(R/2))
is at most a(Ip)R, where

a(lp) = M = VB3I + 1)VIp+2 + g(GIo +11). (5.12)
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Givenr € [£,4R],1et A,(r) be the domain inside M, given by Definition 5.2, related to the f, R above. Prop-
erties (HO")—(H5’) imply that, for A, large, the immersion A, F, satisfies the following properties (compare with
properties (10)—(I5) above):

(I0) The index of (A,Fn)la,r/2) equals I(f).

(I1)  (ApFn)(An(4R) \ Ap(R/2)) can be considered to be a union of e multi-graphs over their projections to
the ITj,j = 1,..., e. We denote these multi-graphs by Ga(1), ..., Ga(e).

(I2) Forj=1,...,e, the image of G,(j) through the “Gauss map” of A, F, (defined through ambient parallel
translation, see Remark 4.2) is contained in the spherical neighborhood of radius a; centered at v; (here
we have identified R3 with the tangent space to A, X at Fp(p1(n))).

(I3) En(j) makes an angle greater than g — ay with every geodesic sphere S(r) in A X, centered at Fn(p1(n))
of radius r € [R/2,4R].

(I4) It holds

Length[Ga() 0 S(3 )] < Lo

(I5) The intrinsic distance in the pullback metric by A,F, on M,, from p1(n) to any point of the boundary of
An(R/2),1is at most [a(Ip) + 1]R.
Back in the original scale, we have that

Ap(r) C F;l(ﬁxn(l-‘n(pl(n)), AL)) forallr e [g 4R],

and the following properties hold for n sufficiently large:

(JO’) The index of Fyla,(r/2) equals I(f).

(JT)  Fn(An(4R) \ Ap(R/2)) is a union of e multi-graphs over their projections to the I;, j = 1, ..., e. We denote
these multi-graphs by G, (1), ..., Gu(e).

(J2) Forj=1,...,e, theimage of G,(j) through the “Gauss map” of F, is contained in the spherical neighbor-
hood of radius a; centered at v;.

(J3) Gnr(j) makes an angle greater than % — a; with every geodesic sphere S(r) in X, centered at F,(p1(n)) of

radius

e R 4R]
20 A 1

(J4) Itholds

Length[ Ga(j) 0 s(z%)] < Loz%.

(J5) The intrinsic distance in the pullback metric by F, on M,, from p1(n) to any point of the boundary of
An(R/2) is at most £ [a(lp) +1].
Therefore, given
[ B
220" A ¥
then
Gn(j) N [Bx, (Fn(p1(n)), 2r) \ By, (Fa(p1(n)), 1)]

satisfies the hypotheses (B1)-(B3) of Lemma 4.1 with the choices Ly = 371(Ip + 2) + 1, inner extrinsic radius r,
outer extrinsic radius 2r, and a = a;.

5.5.2 How to proceed if the (first) local pictures fail to have a uniform size

Definition 5.8. Define r, as the supremum of the extrinsic radii 7 > 4R/A,, such that,forallj =1, ..., e¢,annular

enlargements Gn (j) of the G, (j) satisfy conditions (B1)-(B3) of Lemma 4.1 for the choices Ly = 37(Ip + 2) + 1,

inner extrinsic radius R; = %, outer extrinsic radius Ry = rp, and a = ay; see Figure 3.
n
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multi-graphical structure in G,(1), ..., Gy(e) )
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|

Figure 3: Schematic representation of the extrinsic geometry of the immersion (F,: M, + X,) € A = A(Iy + 1, Ho, €, Ao, Ko) around

a point p;(n) where the maximum of |Ay, | in M, is achieved. Here, A, = |Ay, |(p1(n)) tends to infinity and A,F, converges as n — oo to
the complete minimal immersion f: ¥ +» RR3 with finite total curvature. Horizontal distances in the figure represent extrinsic distances
in X, measured from F,(p1(n)). For n large enough and in the range of extrinsic radii between % and r, > 4R/A,, F, consists of e
multi-graphical pieces G,(1), ..., Gp(e), where e is the number of ends of f.

Remark 5.9. (i) Unlike what happened in the case I = 1 (Section 5.4), we can no longer ensure that the outer
extrinsic radius ry, is bounded from below by some positive constant independent of n (i.e., Proposition 5.3
does not necessarily hold in our setting). The reason for this difference is that in our current situation, the
estimate I(f) < Ip + 1 is not necessarily an equality (as it was when I = 1), and thus, with the notation in the
proof of Proposition 5.3, we cannot ensure that if r, — 0 as n — oo, then %Fn has index zero away from
the origin for n large.

(i) Ifr, > 0asn — ocoand rl"F,, has index zero away from the origin for n large in the sense that property (¢)
above holds, then the arguments in the proof of Proposition 5.3 lead to a contradiction. Hence we conclude
that one of the two following excluding possibilities holds:

(@ {rn}nisbounded away from zero, with this lower bound being independent of the sequence {F}, C A.
In this case, Proposition 5.3 holds, since now &3 € (0, §;] is given by Definition 4.5 for the choices
Ly =3n(Ip +2) + 1 and m being 1 plus the integer part of %[3(10 + 1) + 3]; see equation (5.11) which
estimates the total spinning of f by above, and see also Proposition 5.16 below. In this case, we can
apply Proposition 5.17 below to conclude the proofs of Theorem 1.2 (i)—(iii).

(b) There exists some sequence {Fp}, c A (with associated base points p1(n)) such that r, — 0 and rlnF n
fails to have index zero away from the origin for n large, in the sense that property (<) above fails.

Assume that we are in case (ii) (B) above. Roughly speaking, we will show that the immersions %F n con-
verge as n — oo to a possibly finitely branched, complete minimal immersion f;: X, +» R3 away from finitely
many points where curvature blows up. Furthermore, ¥, is finitely connected and its Morse index is at most
(Io + 1) —= I(f1) < Ip. This compactness result is delicate and we will divide its proof into the following two steps:
(M1) Describe the behavior of the immersions rl—nFn near the origin as n — co. We will do this in Lemmas 5.10
and 5.11.
(M2) Analyze the global convergence of the %Fn (after passing to a subsequence) to a complete, finitely
branched minimal immersion f;: £, +» R® with finite total curvature. We will do this in Proposition 5.13.
The proof of the next lemma follows easily from the behavior of the blow-down limit of any of the e ends of the
complete minimal immersion f = f;: £ s> R® defined just after (L1)-(L3).

Lemma 5.10. Relabel as e; = e the number of ends of fi. Suppose r, — 0 as n — oo. Then, after choosing a
subsequence, each of the finite number of extended and scaled multi-graphs

1
(7,5
I'n
considered to be a mapping on an open annulus, converges as n — oo to a conformal minimal immersion of a
punctured disk

Gn(j)’

fojiD*={zeC|0<|z] <1} +» R®,

where j € {1, ..., e1} refers to the j-th end of fi, with f,;(ID*) c B(1) \ {f)}. Furthermore, for each such j, the
following assertions hold:
() f2, extends analytically to a possibly branched minimal disk f, ;: ID = D* U {0} +> R3 with f2,(0) = 0.
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(ii) The branching order offzyj at 0 is one less than the multiplicity of the associated sequence of multi-graphs

1
(EF") Gull)’
Such multiplicity (which is independent of n large) coincides with the spinning of the associated j-th end of
fi: 2 RS,

LetD = {Dy, ..., D¢, } be the set of parameter domains of the associated branched minimal disks {fz,p e ,}_”2) e }
given by Lemma 5.10 (i), and consider the map Fo,: (D s B(1) defined by

F00|D,-=f2,i: i=1,...,€'1.

Observe that [ D (disjoint union) can be considered to be a smooth surface. Let $(0) c | D be the finite set of
centers of the disks D;, i =1, ..., e1. Consider the quotient space D of J D where each of the elements in $(0)
identifies to one point that we denote by 0 € D, and every other point of | ] D only identifies with itself. Let

n:U‘D—>@

be the related quotient map, that is, 77|s(g) is the constant map equal to 0, and the restriction of 7 to (UD)\ 8(0)
is injective. After endowing D with the quotient topology, D is a path-connected topological space and

$(0) := 71(8(0)) = {0}. (5.13)

Furthermore, D \ $(0) is a smooth immersed surface. In what follows, we will at times consider the induced
well-defined continuous map Fy, : D a» B(1), which we denote in the same way.
The next statement can be viewed as a direct consequence of Lemma 5.10.

Lemma 5.11. In the above situation, the following properties hold:
(i) Fq restricted to F&}(]B(l) \ IB(%)) consists of e; multi-graphs.
(i) The sequence of immersions %Fn restricted to the component Ay , ¢ My of

1 -1 = 1
(7.F) (Bx(0.3))
that contains p1(n), converges as n — oo to Fo,, Where we consider Fo,: D e B(1) to be defined on the

quotient space D.
(iii) The convergence in (ii) is smooth away from $(0), or from $(0) when we consider Fo, to be defined on D.

Lemma 5.11 describes the convergence of (a subsequence of) the %Fn in a neighborhood of $(0), to a family
Foo: D + B(1) of minimal disks branched at the origin, and finishes step (M1) above.

Step (M2) needs two ingredients, which are Lemma 5.12 and Proposition 5.13 below. The first one relies on
the validity of Theorem 1.2 for I = Iy (by the induction hypothesis), while in Proposition 5.13 we will construct
the complete, finitely branched minimal immersion f,: £ s> R® of finite total Gaussian curvature, which is the
limit of a subsequence of the ,}—"Fn as a consequence of Lemma 5.12.

We remark that the surfaces M, and the associated points p;(n) in the next theorem are not the same
surfaces and points that we have been using previously in this section with this notation; so the reader should
keep in mind this abuse of notation when reading the next result.

Lemma 5.12. Consider a sequence
(Fa: My +> Xn) € Ao, Ho, €0, Ao, Ko)

such that the following properties hold:
(N1 {maxy,|Ag, [} is not bounded from above. In particular; after passing to a subsequence, we can assume
that there exists p1(n) € My, such that

n}}/;'ixlAfnl = |A;ﬂ|(p1(n)) > max{n, A1} foreveryn e NN,

where A1 € [Ag, 00) is given in the statement of Theorem 1.2 for I = I (which can be applied by the induction
hypothesis); observe that the existence of p1(n) is guaranteed by Lemma 5.1.
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(N2) In harmonic coordinates centered at f-‘n(pl(n)), and hence F, (p1(n)) = 0 for all n € N, the metrics on Xn
converge uniformly in the C%-norm to the flat metric on R, and the (constant) mean curvatures of the F,
converge to zero as n — oo.

Let A1(n) be the component of F;l(ﬁy(n (Fa(p1(n), 75, (1))) described in Theorem 1.2 (i) and let

M (n, %) = M(n) 0 F By, (Fa(pr(m)), %rfn(l))).

Then, after replacing by a subsequence, the following assertions hold:
(0] {rg, ()}nen converges to a positive numberr € [§1, g], where 61,6 € (0, %"] are given by Theorem 1.2.
(ii) Let b be the number of boundary components of A1(n), which is independent of n. Then the b multi-graphs

~ - - 1
Fa(1(m) 0 [Bs, (Fa(pr(n)). 7, (D) \ By, (Fa(pr(m), 577,D)]

described in Theorem 1.2 (ii) converge as n — oo to b minimal multi-graphs in B0, r) \ B, r/2), each of
which satisfies the same estimate (1.1) as the multi-graphs in the sequence that converge to it.
(iii) Thereexist] € N, J < Iy, €1 € (0, 1), and a finite set

2
Q(n) = {q1(n) = p1(n), g2(n), ..., q;(N)} € BMn(pl(n), gr) for eachn € N,

such that the following assertions hold:

(a) |A;n|(qi(n)) > max{n, A} foralli=1,...,] and for each n € N; compare to Theorem 1.2 (i) (d).

(b) Giveni,je1,...,Jwithi # j, theintrinsic distance in M between q;(n) and g;(n) is at least 1, compare
to Theorem 1.2 (i) (c).

(c) Givens e N, {lAg, I}n is uniformly bounded in

B, (pl(n), %T) \ L]JBMn(qz'(n), %)
i=1

compare to Theorem 1.2 (iii).

(d) There exist (not necessarily distinct) points x, = 0,xy,..., Xy € 1B((3, %r) (this is the ball in R® with its flat
metric) such that, when viewed in harmonic coordinates in X, centered at p1(n), the points f-‘n(qi(n))
convergeasn — oo to x;, foreachi=1,...,]J.

(iv) For s € N large and fixed, and for each i € {1, ..., ]}, there exist 6;(s), 8i(1, s), ri(n, s) with

8i(s) 21

0 < 6i(1,s) <ri(n,s) < < 8i(s) < 35

such that the following hold. Let Ay(n, s) be the component of F;(Bg (Fn(qi(n)), ri(n, 5))) that contains
qi(n). Then there exists so € IN such that for each integer s > sy, there exists N(s) € N so that for n > N(s)
the following assertions hold:

(@) The positive numbers ri(n, s) converge as n — oo to some ri(s) € [8i(1, ), §i(s)/2].

(b) Ai(n,s) is compact with smooth non-empty boundary and

Fn(0Ai(n, s)) c 8By (Fn(qi(n)), ri(n, 5));

compare to Theorem 1.2 (i) (b).

(c) The number €; € N of boundary components of A;(n, s) is independent of n, s, and the restriction of
Fp to an annular neighborhood of each boundary component of A;(n, s) is a multi-graph of positive
integer multiplicity my; independent of n,s (here h € {1,...,¢;}), whose related graphing function
U = uy,s satisfies inequality (1.1) for n, s sufficiently large, where x expresses harmonic coordinates in
By (T-"n(qi(n)), £1); compare to Theorem 1.2 (ii). The union of these annular neighborhoods of dA;(n, s)
can be taken to be

ri(n,s) ))

Ai(n, )\ Fy' (B, (Fa(qi(n), =
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(d) The E,, restricted to
) J
A(n,g)\EJAKmS)
converge smoothly as n — oo to a minimal immersion
Foos: M + B(0, gr)
of a compact surface M; with boundary, and
FeosM5) 0 [B(0, 57) \ B(0, 57)]

consists of the intersection of the limiting multi-graphs appearing in (ii) with B(0, %r) \ B, %r).
(e) The boundary 0M, decomposes into | + 1 collections of curves (recall that b is the number of boundary
components of A1(n))

{ar, ..., ap},  {Bri(s), ..., Bei()}i=1,..)»

where Foo s(ap) C 613((3, %r)foreachh =1,...,b,and Foo s(B1i(S)) c 0B(x;, 1i(s)) forsomei=1,...,]
and foreveryl=1,...,¢;.
(v) There exists an infinite strictly increasing sequence

S ={81,Sz,...,8j,...} cIN
such that for each j € N and n sufficiently large depending on j,
Ai(n, sj41) c Int(A;(n, sj)) and Index(4;(n, s;)) = Index(A;(n, s1)).

In particular, for each j € N and n sufficiently large depending on j, Ai(n, s1) \ Ai(n, s;) is stable.
(vi) Foreachs; € & defined in (v),
Ms,, ¢ Ms; and  Feos;, M= Feo,s;-

Then M, = Us]_EG Ms, is a compact Riemann surface with boundary, punctured in e := Z{Zl e; points
{P1,i,..., Pz, i}i=1,.. ], and the immersion Foo : Mo, R3 given by Fo,| M, = Foo s extends to afinitely branched
minimal immersion 5

F00:MOOU{Pl,i:---)P?i,i}i:1 ,,,,, ] %]B(ﬁ,g]")

such that foo({PLi, .., Pg.i})=1{xi}, i=1,...,], and the branch points of T, are contained in the set
{PLi,...,P’éi’ili=1,...,]}. _

(vi) Forie{l,...,]}fixed and € > 0 sufficiently small and fixed, the branching contribution B; € N U {0} to Fo,
from{P1;,..., Pz} is Bi = S; — €;, where

[
Si=Y mu (5.14)
h=1
is the total spinning of the boundary curves of Fy, restricted to the component A(i, n, €) of
F'(Bg, (Fa(qi(n)), €))
containing q;(n) (for n sufficiently large, S; is independent of n). Furthermore,
Si < 3I(A(i, n, €)), (5.15)
where I(A(i, n, €)) is the index of A(i, n, €). So, the total branching of T is at most
J

Y(Si-e)<3lh-].

i=1
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Proof. Since [61, %] is compact, after replacing by a subsequence, the sequence {rg ()} C [61, %] given by
Theorem 1.2 converges to a positive number r € [§1, g]. The convergence stated in (ii) of the multi-graphs

~ - - 5 1
Fa(1(m) 0 [By, (Fn(p1(0), 77, () \ By, (Fa(pr(m), 577, )]

to minimal multi-graphs in E(ﬁ, )\ lB(ﬁ, %r) is standard by curvature estimates for CMC graphs. This gives (i)
and (ii) of the lemma.

We next prove that (iii) holds. To find the finite set Q(n), we will proceed as follows. Suppose for the moment
that, after replacing by a subsequence, for each s € IN, |Ag | is uniformly bounded in

B, (10, 57)\ Bug, (p1(), o).

In this case, the set Q(n) := {q1(n) = p1(n)} is easily seen to satisfy (iii) of the lemma with the choice &; = %r.
Otherwise, after replacing by a subsequence, there exists an s; € IN and a point

qa(n) € BMn(pl(n), %r) \ BM,I(Pl(n), 3islr)

such that |Af 1(q2(n)) > max{n, A}. If, after replacing by a subsequence, {A;n }n 1s uniformly bounded in
B 2 ’ B i 2
w(pr(m. 57\ g (i), 57)

for each s € IN, then the set Q(n) := {q1(n), q2(n)} satisfies (iii) of the lemma with &1 = %dM" (q1(n), q2(n)), since
after replacing by another subsequence, T-‘n(qz(n)) converges as n — oo to some X; € B(ﬁ, %r) (note that xy
might be 0). Continuing inductively, we arrive at two sets of points

- 2 2
Q) = (@:(M) = 1), @), ... G}, 1x1 =035} < B(D, 5r),

satisfying (iii) of the lemma with respect to

1 i . . . .
&1 = 5 min{dy, (i), qi(n) |65 =1,....], 14}

Here, J < Iy because the index of By, (p1(n), %r) is at most Iy. This finishes the proof of (iii) of the lemma.
Regarding (iv), we make the following two observations:
(01) Foreachs € N, there is a uniform upper bound A,(s) > Ag on the norm of the second fundamental forms
of the immersions Fj, restricted to

J
1[§Mn(‘h(n): ;—;) \Bug, (i(n), %)]

This follows from the already proven (iii) (c) of this lemma.
(02) TForeachn e N, let T-",,, s be the restriction of Fy, to Uz]:1 EMn (qi(n), §—§). Then observation (01) implies that
foreachn € IN, lf"n,s lies in the space A(Iy, Hy, £€1/(125), A2(S), Ko).

We next apply Theorem 1.2 to
1

Fus € A(To, Ho, -, 42(9), Ko ),
which is possible by the induction hypothesis, from where one has a corresponding constant A;(s) > A; that
replaces the previous constant A; and where the choice of 7 is the same as previously considered. Assume that n
is chosen sufficiently large, so that, given i = 1,. .., ], the point gq;(n) satisfies that the maximum of the norm
of the second fundamental form of ?n,s in EMn(qi(n), %) is achieved at g;(n), with value greater than 1044(s)
(by Theorem 1.2 (i) (d)). Another consequence of Theorem 1.2 applied to Fp s is that, for n large and for each

i=1,...,J,wehave associated positive numbers

8i(s), 6i(1,s), rp, (i,5)
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with §;(1, s), 6i(s), rpm(i, s) playing the respective roles of the related numbers &1, &, rr(i) in Theorem 1.2,
where 5:(5) )

() _ g5) < 21

5 < §i(s) < 35 for all n. (5.16)
We also have a A-type domain A;(q;(n), rfn’s(i)) defined by Theorem 1.2 (i), that is, A;(qi(n), rfnys(i)) is the com-
ponent of

0<6i(1,s) < rp,,(1,8) <

B\ (B, (Fus(qi(m), 7z, (D))

containing g;(n), so that the conclusions of Theorem 1.2 hold for these 8i(s), 8i(1, s), 1z, (i, s), Ai(qi(n), rz, (D).
In particular,

. &
Bi(qi(n). 7, () < Bar, (), - ),
Fus[08i(qi(n), g, ()] € 0Bg, (Fns(qi(n)), 7, (D). (5.17)
We next check that the domains and numbers
Ai(n, s) = Di(qi(n), rp, (1), ri(n,s):=rp, (D)

satisfy (iv) (a)-(e) stated in the lemma. Assertion (iv) (a) follows directly from (5.16), and assertion (iv) (b) fol-
lows from (5.17). Regarding (iv) (c), since A;(n, s) is compact, its boundary has a finite number é;(n, s) € N of
components. By Theorem 1.2 (ii), each boundary component of A;(n, s) admits an annular neighborhood which
is a multi-graph of positive integer multiplicity mp ;(n, s) € N (the index h parameterizes the set of boundary
components of A;(n, s)). The fact that both the number of such boundary components and the multiplicities
mp,i(n, s) can be considered to be independent of n, s (after passing to a subsequence in n) follows from the fact
that the mp,;(n, s) are bounded independently of n, which in turn can be deduced from the following inequality
(see Theorem 1.2 (II) (a)):
mp,i(n, s) < 3Index(4i(n,s)) <31, foralln.

Now, the rest of properties stated in (iv) (c) of the lemma are direct consequences of Theorem 1.2 applied to Fy, s.
The convergence statement in (iv) (d) follows from standard curvature estimates for CMC immersions. The
last sentence in (iv) (d) follows from the uniqueness of the limit as n — oo of the F, restricted to

J
ma(n )\ Uatain.r, @)

and from the already proven (ii) of this lemma. Assertion (iv) (e) holds by construction, which finishes the proof
of (iv) of the lemma.
Regarding (v), choose s = 1ands; € N, s, > 1, such that 5 < 8i(1,1). Assuming Shyeee, s]’. defined, choose
s; .1 € Nsuch that . ’
s](+1 > s]'. and s_’l < Si(s]’.,l).
j+1
This inequality implies that A;(n, s]’. +1) € Int(A;(n, s)), and so

Index(4;(n, s]’.+1)) < Index(A;i(n, s))).
Since Index(A;(n, s;)) is finite, there exists j, € IN such that
Index(A;(n, s]’.)) = Index(4A;(n, s}o)) for allj > jo.

Now label s; = s]’. o for each j € IN, and (v) of the lemma is proved.

By (iv) (d), for each j € IN the restrictions of F,to

J
Al(n, %) \(JAi(n, s))
o1
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converge smoothly as n — oo to a minimal immersion
> 2
Foos: My, > B(0, 37)

of a compact surface Ms; with boundary. Since A;(n, sj;1) ¢ Int(A;(n, s;)) we have Ms,,, ¢ My, for each j, and by
the uniqueness of the limit we have Foo,s5,1 M= Fooss; for each j.
By a standard diagonal argument in n and s;, the map

Foot Moo = | ] My, = B(G, %r)
5j€S
given by F| M= Foo,s; for each j € N, is a minimal immersion with finite area, defined on a surface M, of
finite genus: the bound on the genus of M, is the same bound as on the genus of the surface A;(n), which, by
Theorem 1.2 (II), is at most 61(A1(n)) — 8 < 61y — 8ifthe index satisfies I(A1(n)) > 2;if I(A1(n)) = 1, then the genus
of A1(n) is zero. Observe that M, has at least ] annular ends, and the number e of these ends of M, is finite (at
most 31y — 1 by Theorem 1.2 (I)). Furthermore, the image by F,, of these ends of M, is {X1, ..., Xy} C lB(f), %r).
By regularity results in [10], M, is a compact Riemann surface with b boundary components, punctured in
e:= Z]izl e; points, and we can denote the set of ends of M, by

{P1,is .+ Pgiti=t,..J»

in such a way that the immersion F, extends to a finitely branched minimal immersion
- S 2
Foo: MU{P1,..., Pgidict,..; + B(0, §r) (5.18)

such that foo({Pl,i, ..., Pg.i}) =1{xi},i=1,...,],and, by construction, the set of branch points of F, is contained
in the set
{P1’l’,...,P§bi li=1, ,]}

This proves (vi) of the lemma.
Finally, we prove (vii). Observe that the branching order B(Pjp ;) € N U {0} of Fo, at Pp i equals

B(Pp,i) = mp,i - 1, (5.19)
where my; € IN is the multiplicity defined in (iv) (c) above. By adding this in the set {P1, ..., Pg,;}, we deduce
that the branching contribution B; € IN U {0} to F, from this set is B; = S; — &;, where

[
Si=) mp,
h=1
and thus (5.14) is proved. Finally, estimate (5.15) for the total spinning of A(i, n, €) (for a sufficiently small € > 0)
follows from Theorem 1.2 (II). This finishes the proof of the lemma. O

We now come back to (M2) above. Using the notation in Lemma 5.11, suppose, after choosing a subsequence,
that the rlnF,. restricted to Az , converge to a family

Foo: D o B(1) (5.20)

of minimal disks branched at the origin as described in Lemmas 5.10 and 5.11. Thus, the desired (global) limit
f2: Xy - R3 of the rlnFn is already constructed in a neighborhood of 3(0) in D (see equation (5.13)), where
a non-trivial part of the index of %F n is collapsing (namely, this collapsing index is I(f1) > 0); since the remain-
ing index of rl—nF n isatmost (Ip + 1) — I(f1) < Iy, we are allowed to apply Lemma 5.12 to rl—nF . We next make this
paragraph and the previously alluded to global convergence in (M2) rigorous.

Proposition 5.13. In the situation above, let Fu: My - X, be %Fn: M, + %Xn. Then, after replacing by a sub-
sequence, there exist Ry > 10, &5 € (0, §1] and a collection of points

Q2(n) = {q1(n) = p1(n), q2(n), ..., q;(n)} < By, (p1(n), Ro), J < Iy,
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such that the following assertions hold:

(i) ForanyR > Ry, {|AE [}n is uniformly bounded in By, (p1(n), R) \ By, (p1(n), Ro).
() du,(qi(n), qj(n)) > &, foreachn e Nandi #je{1,2,...,]}

(iii) Foreachie{1,2,...,J}andm e Nwith 1 < g,

A, (qi(m) > n = max{|Ag, |(x) : x € By, (qi(n), %)},

and there exists A;(m) > 1 such that |Ag | < Aa(m) in

7 1
B n),R B i(n), —).
(1, R\ o (i), )

(iv) There exist (not necessarily distinct) points x1 = 6, X2,...,X] € IB(@, Ry) (here 1B((3, R) denotes the ball cen-
tered at the origin with radius R > 0 in R® with its flat metric) such that, when viewed in harmonic coordi-
nates in X,, centered at f—“n(pl(n)), the points Fn(qi(n)) converge asn — oo to x;, foreachi=1,2,...,]J.

(v)  For almost all R > Ry and for m sufficiently large, the F,, restricted to

_ Y 1
By, (p1(n), R\ | B, (i), )
i=1

converge smoothly as n — oo to a minimal immersion Foomg: Mmr + E(ﬁ, R) of a compact surface with
boundary My, g. Furthermore,

Mmpr € Mmii,rr and  Foo mst, R [Mpz= Foo,m,R

whenever R' > R > R,.
(vi) Define
%= | Mug,  f5:Z5 o R, f7li,= Foompg-

melN
R>Ry

Then % is a (possibly disconnected) open Riemann surface and f, is a minimal immersion. Furthermore,
the conformal completion %, of L5 has the structure of a compact Riemann surface, T\ Ly =8(f)uéyis
a finite set, and f, : 5 « R extends through $(f>) to a finitely branched, complete minimal immersion

foiZ2 =25 US(fy) » R®

with finite total curvature, where the following properties hold:
(@) 8(f2) is the disjoint union of the finite set

S(0) = {P1,1, -+, Pey1} € f; (P = O))
that appears in Lemma 5.11, together with the closely related finite sets
8(1) = {Pri,- ., Py} < fy (X)), =2,...,].

Furthermore, the set of branch points of f, is contained in 8(f,) and its branch locus (image) is contained
in {Xl = 6, X2y ooy X]} « IB(R(]).
(b) The set of ends of f» is €y = {E1, ..., Ee,}.
(c) The map Fo, given in (5.20) coincides with f in a neighborhood of $(x; = 0) in Z,.
(vii) The total branching order B(f;) of f, can be estimated from above as follows:

B(fy) < 3[Io + 1 - Index(fy)] - J < 3Ip — 1. (5.21)

(viii) The following properties hold for some R > 3Ry:
(@) The index of f; L(B(R/3)) is I(f;) (compare to property (HO’) above).
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() f2(Z2) \ B(R/3) consists of e; multi-graphs over their projections to planes II; c R3 passing though 0,
j=1,..., ey (compare to property (H1)). Furthermore, each of these end representatives contains no
non-trivial geodesic arcs with boundary points in the boundary of £, \ f, LB(R/3)).

(c) The image through the Gauss map of f, of each component C; of fo(X) \ B(R/3) is contained in the
spherical neighborhood of radius ai/2 centered at a point v;j € $%(1) perpendicular to Il;, where
ay = a1(7) € (0, 7] is the constant given by Lemma 4.1 for Lo = 3nt(Ip + 2) + 1 (therefore C; satisfies
Lemma 4.1 (B2) with R1 = R/3 and a = a1/2, compare to (H2')).

(d) f2(E2) makes an angle greater than 5 — 5+ with every sphere $%(r) of radius r > R/3 centered at the
origin (so C; satisfies Lemma 4.1 (B1) with Ry = R/3 and a = a1/2, compare to (H3)).

(e) The total length of the intersection of f(X,) with any sphere S*(r) centered at the origin and radius
r > R/3 is less than (Lo — %)r (hence C; satisfies Lemma 4.1 (B3) with Ry = R/3, compare to (H4)).

(f) Foralln e NN, the component Az n(R/3) of

F (By, (Faoa(), 5 )

that contains p1(n) has index at least I(f1) + I(f2) + (J — 1), and if ] = 1, then I(f,) > 0. In particular,
I(B2,n(R/3)) > I(f1).

Proof. Recall the notation and statement of Lemma 5.11. By assumption, the F, restricted to Ay, converge to
F, given by equation (5.20). Since the restriction of F, to F&}(IB(l) \ lB(%)) consists of e; multi-graphs (here e;
is the number of ends of f1), we have that l?n(Az,n) is graphical in the region

= = 1
By, (F(p1(n), 1) \ By, (F(p1(0), 5 ),

and thus the surfaces 1
M = Mo\ [0 0 B (B, (Fpa (), 5 )|

have uniform curvature estimates in a fixed sized eg-neighborhood of its boundary (for some 86 € (0, &]). Let
Fl: M!, s> X, be the restriction of F,, to M},. For all n € N, we can consider F/, to be an element in a fixed related
space A’ except that the index of the immersions in

A" = A(Io, H, €5, Ao, Ko)

is at most Iy. By induction, we can suppose that Theorem 1.2 holds for the subspace A'.
The construction of the finite set

{q2(n), ..., qy(n)} € By, (p1(n), Ro), ] < Io,

appearing in the statement of the proposition, follows exactly the same arguments used to prove the existence of
the related set Q(n) given in Lemma 5.12 (iii). Similarly, (ii)—(iv) of the proposition can be deduced from the same
reasoning as (iii) (b)—(d) of Lemma 5.12 respectively; in particular, we use the number 6; € (0, &y/2] defined in
Lemma 5.12 (i) in order to find &; € (0, §1] satisfying (ii) of the proposition. We leave the details to the reader.

The existence of the number Ry > 10 and (i) of the proposition follow from the fact that the number J of
sequences

{a1(n) = p1(M}n, ..., {gy(W}n

around which the second fundamental form of F,, fails to be bounded, is finite (at most Iy + 1 by Lemma 5.1).

Assertions (v) and (vi) of the proposition also follow with small modifications from the proof of (iv) (d)
and (vi) of Lemma 5.12, where one also uses the fact that a complete minimal surface in R? with compact bound-
ary and finite index has finite total curvature (see [9] for this result when the surface is orientable, and see the
last paragraph of the proof of [24, Theorem 17] for the non-orientable case). The proof of (vii) of the propo-
sition follows from the same arguments that proved Lemma 5.12 (vii); observe that the index of f; is at most
(Ip + 1) — Index(f1).

The proofs of (viii) (a) and of the first statement of (viii)(b) are clear after taking R > 0 sufficiently
large, since f, has finite total curvature. The second statement of (viii) (b) follows from the fact that, for
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R > 0 sufficiently large, the collection of ends f; L3 \ B(R/3)) of f; is foliated by the simple closed curves in
iy L(@B(R")) | R' > R/3)}, each of which has positive geodesic curvature. The proofs of assertions (viii) (c)-(e)
also follow from previous considerations (compare to (H2")—-(H4)).

To finish the proof of the proposition, we check that (viii) (f) holds. First, suppose that J = 1. In this case, the
sequence { %Fn}n converges smoothly (up to a subsequence) to f> in a neighborhood of 0B(1). This implies, by
construction of ry, (see Definition 5.8), that f is not flat in any neighborhood of 1B(1). In particular, f is not flat
and the image of its branch locus is the origin. Then, by Lemma 3.4 (i), f> has positive index.

Regardless of the value of J, and by the already proven (viii) (a) of this proposition, the index of f;; LB(R/3))
is I(f>). Since the index of a compact minimal surface with boundary remains the same after removing a suffi-
ciently small neighborhood of a finite subset of its interior, we deduce that, for m sufficiently large, the index
of

7 R\ [B(6, - )u (L]JIB(xi, )] 622
i=2

is also equal to I(f,). Let Ay n(R/3) be the component of F;l(BXn (6, R/3)) that contains p1(n). By the convergence
in (v) of the proposition, for m € IN sufficiently large, the index of

B} o(R/3) = Dyn(R/3) \ [BMn<p1(n), %) u (L]JBM,[(CII(H), %))]
i=2

is equal to the index of the surface in (5.22). Observe that for n sufficiently large and m large and fixed, that
index of By, (p1(n), %) is equal to the index I(f}) of f1, and each of the balls in the pairwise disjoint collection

[Bay(pr0, ), B, (020, ), B (@0, )}

is unstable. Then, if we denote by I(S) the Morse index of a surface S, we get (after replacing by a subsequence)

102, (RJ3) 2 103 ,(R/3) + 1By, (pr (0, ) + iI(BMn(qi(nx )
i=2

(5.23)
/ 1
= I(F) + I(f1) + ;I(BMn(qi(n), -)):
If ] = 1, then the last sum is empty and (5.23) gives
R
1(82n(3)) = 16 + 1) > (),
as desired. Finally, if J > 2, then we estimate each I(Byy, (qi(n), %)) > 1, and so (5.23) gives
R
1(82(3)) = 1) + 1) + U - D).
This completes the proof. O

Lemma 5.14. With the notation of Proposition 5.13, consider the partition of 8(f2) ¢ Z, by the subsets

S8(fo, 1) =8(xy), i=1,...,],

introduced in (vi) (a) of that proposition. Define the quotient space %, of £, where each of the elements in S(fz, i)
identifies to one point, which we denote by 8(f», i) € L3, =1,..., ], and every other point of £, only identifies with
itself. Let

%, — 59

be the related quotient map, that is, 71| s (s, ) is the constant map equal to 3(f2, i), and therestriction of mto X3 \ S(f2)
is injective. After endowing I, with the quotient topology, the following assertions hold.
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() I, is a path-connected topological space and
8(f2) = 7(S(f2)

consists of | elements in Z,.
() 5\ g(fz) is a smooth Riemannian surface that induces a metric space structure dZ on &,
(iii) The restriction of’ f2 toX, \S(fz) considered to be a subset of £, extends to a continuous mapping fo: £, — R3.
(iv) Let p = 8(f, 1) (s0 fo(p) = 0). Given a point q € f2 (B(R)) different from p, where R > 0 was defined in Propo-
sition 5.13 (viii), there is an injective continuous path a, 4: [0,1] — %, of least length joining p to q satisfying
the following assertions:
@) fro Qp,q is a piecewise smooth curve in R® with image in the ball B(R).
() apq([0,1])\ g(fz) consists of j1(q) < J smooth geodesic arcs in 2\ g(fz), each of which has length less
than CR, where C = C(Ip, B) > 0 is defined in Proposition B.4 (ii) and B is the total branching order of f,
(recall that B < 31y — 1 by (5.21)).
(¢) Inparticular, as j1(q) < J < Iy, then (compare to (H5’) above)

ds, (p, q) < IoCR. (5.24)

Proof. The path-connectedness of ¥, follows immediately from the fact that, for all R > Ry (this Ry is defined in
Proposition 5.13), By, (p1(n)), R) is path-connected with 8(f2) ¢ By, (p1(n)), Ro) and because the projection of
acontinuous path in £, to £, is a continuous path. This proves that (i) holds. The proofs of (ii) and (iii) follow from
the definition of the quotient space £, and the fact that the composition of continuous mappings is continuous.

The existence of the embedded minimizing geodesic ap 4 joining p to q is standard, where a, 4 \ S(f2) con-
sists of a finite number j1(q) < J of open geodesic arcs that have least-length joining their endpoints; the reason
that there are at most J such arcs in a, 4 follows from the fact that if there is more than one such geodesic arc
in ap ¢, then each such arc contains a point of 8(f2) \ {p}. Clearly, f; o ap,q is a piecewise smooth curve in R* and
its image is contained in B(R) by the second statement in (viii) (b) of Proposition 5.13, which completes the proof
of (iv) (a).

Since ap 4 is injective, length-minimizing and only fails to be smooth at points in S(f,), we have that
ap,q([0,1])\ S(fz) consists of j1(g) < J smooth geodesic arcs in 2\ S(fz). Assertion (iv) (b) follows directly from
Proposition B.4 (ii) (note that I(f) < Iy by Proposition 5.13 (viii) (f) since I(f1) > 0)). As j1(q) < J and J < Iy by
Proposition 5.13, then (iv) (c) is proved. O

5.5.3 Finding an so-th local picture with a uniform size

Recall that in Definition 5.8 we introduced ry, in terms of A1 ,, := Ap, and a certain R > 0 given in terms of the limit
immersion f; so that hypotheses (B1)-(B3) of Lemma 4.1 hold for annular portions of the F, with the choices
Ly = 3n(Iy + 2) + 1. We now proceed in a similar manner replacing f; by f, and F, by F, = rl—"F n. Assertions
(viii) (b)—(e) of Proposition 5.13 for f, are similar to properties (H1’)-(H4’) for f;. Recall that these properties (H1")—
(H4) produce related properties (I1’)-(14’) for A, F, and n € IN large. In particular, we found e; multi-graphical
annuli G(1), ..., Gn(e1) in (A,Fp)(An(4R) \ An(R/2)); see property (I1"). We now set Ay, = % for each n € IN,
which tends to co as n — oo by Remark 5.9 (ii) (B). Reasoning analogously, as we did with the first limit fj,
Assertions (viii) (b)-(e) of Proposition 5.13 produce corresponding properties (I1)-(I4’) for A3 ,Fn and n € N
large. In particular, we find e; multi-graphical annuli G, (1), ..., Ga.n(€2) in (A2nFn)(An(4R) \ An(R/2)) (this
R > 0is now introduced in Proposition 5.13 (viii)).

Definition 5.15. Define r , as the supremum of the extrinsic radii r > 4R/A; , such that annular enlargements
Ez,n (j) of the 52 n (j) satisfying conditions (B1)-(B3) of Lemma 4.1 for the choices Ly = 37(Ip + 2) + 1, inner extrin-
sic radius Ry = Z)L , outer extrinsic radius Ry = ry n, and angle a = a;.

As we did in Remark 5.9, we next discuss whether or not ry , tends to zero as n — oco. If {ry n}, is bounded
away from zero with this bound independent of the sequence {F,}, c A, then Proposition 5.16 below holds
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with sy = 2. Otherwise, we repeat the process in steps (M1) and (M2) above for the sequence —Fn and find
a complete, finitely branched minimal i 1mmers1on f3: 23 +» R® with finite total curvature Wthh is a limit of
(a subsequence of) the A3 , F;,, where A3 , = — for each n € IN. This process of finding scales {As n}» and limits fs
(s =1,2,...) must stop after a finite number so of times (so < Iy + 1), because each time we apply the process
we find A-type components in (a subsequence of) {F,}, with strictly larger index by (viii) (f) of Proposition 5.13,
but the index of each Fj is at most Ip + 1. This implies that rg, , is bounded away from zero, with the lower
bound being independent of the sequence {Fp}, ¢ A. In this setting, the discussion in Remark 5.9 (ii) (I) implies
that Proposition 5.3 holds for the scale of f;, : £, +» R3. More precisely, we have the following proposition.

Proposition 5.16. There exists 84 € (0, 63] (which was given as &3 € (0, &3] in Definition 4.5 for the choices
m=3(p+1)+3and Ly = 3n(Ip + 2) + 1) such that the hypotheses of Lemma 4.1 hold for annular enlargements
Eso,n(j) of the multi-graphs Esg,n(j) (here j=1,..., e with es, being the number of ends of fs,) between the
geodesic spheres in X centered at Fn(p1(n)) of extrinsic inner radius Rs,/(2As,(n)) and extrinsic outer radius 4,
and with the choice a = 14 for hypotheses (B1) and (B2) (this 1 € (0, a1] was also introduced in Definition 4.5).

With Proposition 5.16 at hand, we define

_ 64 6
6-_7) 61_51

where &4 € (0, §3] is given by Proposition 5.16. We are now ready to achieve the main goal of Section 5.5.

(5.25)

Proposition 5.17. Assertions (i)—(iii) of Theorem 1.2 hold in the case I = Iy + 1 for immersions in A;, for some
t > Cs(61/2) sufficiently large.

Proof. The idea is to adapt appropriately the arguments at the end of Section 5.4.2 (after Definition 5.4). Pick
a smallest Ry, > 0 so that (H0’)-(H4’) hold with f replaced by f;, and with the same value Lo = 3(lp + 2) + 1
(also see (viii) (b)—(e) of Proposition 5.13 for the particular case sy = 2). In particular, (H5’) can be also adapted
to fs, after applying the estimate (B.7) in Proposition B.4 with I = Iy + 1 and B = B(fs,) (this is the total branching
order of f,, which satisfies B(fs,) < 3Ip — 1 by (5.21)). Equivalently, we can adapt (iv) (c) of Lemma 5.14 to f, and
conclude the following estimate:
(H5”) GivenR > Ry, the intrinsic distance in the pullback metric by f;, from 0ex s, to any pointin the boundary
of fs‘o1 (B(R)) is at most a(Iy)R, where a(Iy) > 0 can be bounded from above depending only on I. In fact,

a(lp) < IpC(Iy, B(fs,)),

where C is defined in Proposition B.4 (ii).
Define Ag, n(Rs,) € My as the component of

(Aso,nFn)_1 (ASO,HEX(FH s AI::’OH ))
that contains p;(n). Reasoning as when we deduced (I5’) from (H5) and (J5’) from (H5’), we have the following
adaptation of (J5’) to this setting:
(J5”) The intrinsic distance in the pullback metric by F, on My, from p1(n) to the boundary of Ag, ,(Rs,/2), is
at most (R/As,n)[a(lp) + 1] (here a(lp) is introduced in (H5’) above).
Take t large enough such that:
(K1) It holds

R fatiy) + 112 31

(K2) The descriptionin (J1)-(J5’) holds for F, where e = e, isthe number of ends of fs, and Lo = 37(Ip + 2) + 1.

Define Aq := tand rg(1) := ;.

Given (F: M + X) € A;, take a point p1 € U(OM, €y, co) where the maximum of |Ay| in M is achieved.
Define A; to be the component of F*1(§X(F(p1), rr(1)) that contains p1; see Figure 4.

Next we prove Theorem 1.2 (i) (a) in the case I=1p+1 for A;. Let g be any point in dA;. Then, arguing
similarly to the case I = 1, we have, using S[-‘( >t ") to denote the extrinsic geodesic sphere in X centered at F(p1)
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Figure 4: Schematic (non-proportional) representation of the extrinsic geometry of an immersion (F: M - X) € A; around a point p,
where the maximum of |Ay| in M is achieved. Here, A5, > 0is a large number (A, < max|Ay]) that is the scale of the local picture fs,
of F around p; that appears in Proposition 5.16. Horizontal distances in the figure represent extrinsic distances in X measured

from F(p4); for example, A has its boundary at extrinsic distance r¢(1) from F(p4). In the range of extrinsic radii between u and &4
(where 8, is fixed and given by Proposition 5.16), F consists of es, multi-graphical annuli 650(1), .. Gso(eso) where e, is the number
of ends of f, . A similar representation holds around relative maxima pj,1 of [Ay|in M\ (A; U --- U ;).

with radius Zst“ , that

_ R
dy(p1, Q) < o X dy(p1, %) + du (81 F(SE(52)), q)

Lat) + 1Ry + du(8 0 F(5(52)),q) by 057

IN

2t
1 72 R,
< [allo) + 11Rs, + \]1 + ?(T‘F(l) o ) (by Lemma 4.1)

6 )
< ot \/1 + —rp(l) (by (K1)

(110 \j1 + g)rm)

b
< L—Lrp(l) (because T< E)'

This proves that Theorem 1.2 (i) (a) holds in the case I = Iy + 1 for Aj. To find the remaining A, ..., Ax
and the related rp(2),.. ., rp(k) that appear in the main statement of Theorem 1.2, we will apply the induction
hypothesis to the restriction of F to M \ A1, as an element in a collection

= A(X, Ip, Ho, £y, Ay), (5.26)

specified as in Definition 1.1, for some choices of 86, A{) that we will explain later.
First, observe that the restriction of F to M \ A is an H-immersion with smooth boundary and index at most

(Io+1) = Y I(f;) < (Ip + 1) — 50 < Iy,
j=1

that is, condition (A2) in Definition 1.1 for A’ holds for the upper index bound Io.
Next we will explain how to choose the remaining parameters &g, A, that determine A’ in order to apply
the induction hypothesis to F|yna, as an element in A'.
By Proposition 5.16, the following property holds:
(P1) Let A; be the component of F~1(Bx(F(p1), 84)) that contains p1. Then the intersection of F(A;) with
the region of X between the extrinsic spheres aBX(F(pl), —¢) and 0Bx(F(p1), 84) consists of es, multi-
graphical annuli Gso(l), e, Gso(eso).
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In particular, the intrinsic distance between the two boundary curves of each 530 (h),he{l1,...,es}, is greater
than or equal to the following positive number independent of F:

&1 = 54 - . (5.27)

Observe that, taking 64 smaller if necessary (this does not affect the validity of Proposition 5.16), we can assume
84 € (0, &). Now, define &) = &;.

Property (P1) implies that the following property holds:
(P2) The second fundamental form of F is uniformly bounded (independently of (F: M + X) € A;) in

AN F—l(E(F(pl), 8)\ Bx(F(Pl)’ R—f" ))

by a constant A; > 0 independent of F. Define A, = max{Ao, A1}.
With the above choices, it follows that the restriction of F to M \ A4 lies in the collection A’ introduced
in (5.26). By the induction hypothesis (with the same choice of 7, recall that we are proving Theorem 1.2 (i)—(iii)
by induction on I), we can find A} € [A}, 00), 87, 8" € (0, &)] (independent of F) with §] < §'/2, and a possibly
empty finite collection of points

:PF|M\A1 = {p;’ cees P;(} cU(o(M\ Ay), 8(,); 00) k<, (5.28)
and related numbers
rr(1) > 4rp(2) > - > 4Kk (k), (5.29)
with
! ! k (S’ 6’
(e, rp(R) € [ 87, 5]

and satisfying Theorem 1.2 (1)—(iii).
Finally, define

_ ! I 54 ! R 54 i
Ay =max{t,A}}, 6= mln{i, 1) } 81 = mm{I, 61} (5.30)
Pr=1{p1, P2 = D1, Pike1 = Py} € U(OM, g5, 00), (5.31)
1)
re(l) = 14’ re(2) = re(1), ..., rp(k + 1) = rR(k), (5.32)

where &, is the number defined in Proposition 5.16, and ¢t was defined just after (J5”); observe that we do not
lose generality by assuming that rg(1) > 4r}(1). Also notice that the points p1, ..., px+1 belong to U(OM, &, co)
(compare to (5.31) and to the statement of Theorem 1.2): the reason for this is that |Ar(p;)| > Al > Aq for each
j=1,...,k+1

Now, it is clear that Theorem 1.2 (i)—(iii) hold for I = Iy + 1 with the exception of the first statement of (i) (c)
fori=1andj € {2,..., k + 1}, which we prove next. To conclude that

BM(pl; gi’P(l)) n BM(Pj, %hﬁ(f)) =0,

first note that . . .
ng(l) = %54 < 554,

and hence it suffices to show that By (pj, %rp(j)) does not intersect
— )
-1 4
F [ Bx(F(pr), 6\ Bx(F(pn). ) |-

Arguing by contradiction, suppose that there exists a point q € By (p;, %rp(j)) such that

= é
F(q) € Bx(F(pr), 6) \ Bx(F(pv), 7 ).
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Then
&y < du(pj, 801)  (by (5.28) and (5.31))

< du(pj, @) + dm(q, 941)

7 . 7 .
< grp(]) +dy(q, 041) (because qe BM(pj, grp(])))

2

< grp(j) + 1++/364 (by (C2) of Lemma 4.1)
7 1+ 72/38,

< Erp(l) + —1 (by (5.29))

1,7 72

where in the fourth line we have used that F(dA1) ¢ dBx(F(p1), 64/4) and F(q) ¢ Bx(F(p1), 64/2). Hence it
suffices to show that the inequality

Ryy 2, 1,7 72
4—E = 81_80<Z(2_0+ 1+§)64

leads to a contradiction. Manipulating the last inequality, it is clearly equivalent to

4120 3 2t T 10a(l)+1 8 alp)+1
Therefore,
7 7 .
BM(pl) ng(l)) n BM(Pj, ng(])) =0
fori=1andj € {2,..., k + 1}. This completes the proof of Proposition 5.17. O

Recall that the domains A; = A1(n) ¢ M, are defined in the proof of Proposition 5.17 and each such domain is
geometrically the component of p; = p;(n) in the preimage by F = Fj, of an extrinsic ball in X = X, centered at
Fr(p1(n)) ofasmallradius rr(1) = &7 independent of n. For future referencing in the definition of “the hierarchy
structure of A1” appearing in the next section, we make the following definition.

Definition 5.18. Suppose that the number of ascending levels sy € IN in the construction of A1(n) satisfies s > 1.
In this case, for each i € {2, ..., s}, we define the following related sets:
(1) Q2(n) c M, (defined in Proposition 5.13), which satisfy the following properties:
(@) Q2(n) contains p1(n) and its finite cardinality is independent of n and at most 1.
(b) The norms of the second fundamental forms of the immersions rinF,, My - rl"Xn have local maxima
at points in Qy(n) that are blowing up as n — oo.
(c) The pointsin Qy(n) stay at a uniform distance at most Ry » (this is the constant R, appearing in the main
statement of Proposition 5.13) from the points p; (n) in the metric of M, induced by %Fn : My - %Xn,
and these points stay at a uniform distance greater than some €3 2 > 0 (called &5 > 0 in Proposition 5.13)
from each other.
For i e {3,...,50}, Qi(n) c M, are the similarly defined finite sets in M, with related positive numbers
Ryi, €2,i, with respect to rescalings of the immersions F,: My +> Xp,. Furthermore, for i # i’ € {2, ..., s},
Qi(n) n Qi (n) = {p1(n)}, and so each of the sets Q;(n) contains the point p1(n).
(i) The set 8y c Xy is defined in Proposition 5.13 (vi) (a) (it was called S(f>) there). For i € {3,..., so}, the sets
8; ¢ X; are defined in a similar manner.

5.6 Counting index, genus and total spinning for local hierarchies

In Section 5.5, we have explained a process of going “up” in finding scales and limits with center p;(n), so that
after so < I + 1 steps, we finish the “ascending” process and define the final A-piece containing p1(n) (called Aq
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in the proof of Proposition 5.17). Throughout this ascending process, we have found other points occurring
inside A1 where the second fundamental form can blow up; we will refer to these blow-up points as g-points
in A; (these g-points lie in the sets Q;(n) ¢ M, described in Definition 5.18 (i) and produce corresponding sets
8;icXij,i=2...,8p, described in Definition 5.18 (ii)). It is crucial to remark that the compact piece A; = A1(n)
occurs in a sequence of immersions F,: M, + X,, while its topological and geometric structure also depends
on the complete, possibly branched minimal surfaces which are limits obtained after blowing up A;(n) around
its g-points.

In order to understand the structure of the piece A; (i.e., to prove the estimates in Theorem 1.2 (I)—-(IV)),
we must analyze how the related A-pieces around these g-points affect the geometry of A;. This analysis will be
done by going “down levels” in A;: we will first analyze the g-points in Qg,(n), i.e., those g-points occurring at
the level of the limit fg, (this is the top level of the piece A; in the language introduced in Section 5.6.1 below), and
subsequently go to lower levels which occur at every g-point not being a minimal element in the sense of Defini-
tion 5.21 below. The notion of hierarchy of A1 (Definition 5.23) will encompass all g-points at different levels and
the related A-type pieces around them. The way that this hierarchy affects some quantities appearing in Theo-
rem 1.2 (ID—(1V) (like index, genus, number of boundary components, total spinning along the boundary etc.)
is encoded in Theorem 5.27 below, which is an inequality that generalizes the Chodosh-Maximo estimate (3.5)
to the new framework of hierarchies. Although it is premature at this point for the reader to fully understand
what is meant by a hierarchy, we suggest that the reader frequently checks his/her developing understanding of
this concept by referring to the schematic Figure 5 below, which represents a particular example of a hierarchy;
also see Example 5.19 and Example 5.24 (iii) for further explanations of this example.

In the remainder of this section, |X| will denote the number of elements of a finite set X, and if X is a topolog-
ical space with finitely many connected components, then #.(X) will denote the number of these components.

5.6.1 The hierarchy associated to a A-type piece

Let {Fy}n be a sequence in the space A = A(ly, Hy, €9, Ao, Ko) with second fundamental form not uniformly

bounded. Let A = A(n) be the connected, compact surface that arises around an initial blow-up point p(n) € M,

for nlarge (thisis a A-piece, in the language of the first two paragraphs of Section 5.6). Recall that the construction

given in Section 5.5 performs finitely many blow-ups centered at the p(n), giving rise to so stages (fi, Si, {Ain}n),
i=1,...,S8p, described in (S1) and (S2) below.

(S1)  fi: £; = R3isa (possibly finitely disconnected) complete minimal surface in R3 with finite total curvature
that passes through the origin, possibly with a finite number of branch points and possibly with non-
orientable components. Moreover, X4 is connected and f;: X1 + R3 is unbranched and non-flat, but for
i=2,...,80,f; could have flat components with or without branch points, in the sense that the image set
of the related branched immersion lies in a flat plane (which could fail to pass through the origin).

(S2) §; c £;is a finite subset (81 = 0) and {A; n}n ¢ R* is a sequence diverging to co such that the following
assertions hold (see Section 5.5.3):

(@ {AinFn}n convergesto f;inZ; \ §; asn — oo.

(b) {AinFn}n fails to have bounded second fundamental form around each point of Q;(n) (this is the set
introduced in Definition 5.18, which gives rise to §;).

(© Ain/Aizin > o0asn - ooforeachi=1,...,50—-1.

Because of properties (S2) (a) and (b), we will refer to S; as the singular set of convergence of A; ,Fp to fi.

Example 5.19. We will illustrate the above description with an example based on Figure 5. The blue circle
around A4, , represents a compact A-piece of A1 ,F, based at the blow-up points q1,1(n) € M, which resem-
bles arbitrarily well (for n large) the intersection of the first stage limit f;: £; +> R® introduced in (S1) with
a ball of large radius centered at the origin; the ascending blue straight line segment connecting the blue circle
around Ag, , with the red circle around Ag, represents a component W, of the second stage limit f5: £; +> R®
which contains at least one point in 8, obtained as a blow-down limit (by scale A5 ,/A1,, — 0) of the A-piece Ag, |
in Az n Fy. Infact, each end of f; is a multi-graph outside of a ball of some finite multiplicity m; € N, such an end
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Figure 5: Schematic representation of a hierarchy 3((A) with four levels (top level in red, other levels in blue, green and purple.

produces a branch point for f; of multiplicity m; — 1, and the number of leaves of f> passing through the image
of such a branch point is at least equal to the number of ends of f1. The red circle around A4, represents a com-
pact A-piece of A3 , F which resembles arbitrarily well (for n large) the intersection of f2(X;) with a ball of large
radius centered at the origin; the ascending red straight line segment connecting the red circle around A4, to the
black circle around A represents a component W of the third stage limit f3: X3 +> R® which contains a point
in 83 obtained as a blow-down limit (by scale A3 , /A2, — 0) of the A-piece Ag, inside A3 , Fp. Similarly to before,
each end of f, is a multi-graph outside of a ball of some finite multiplicity m, € N, this end produces a branch
point for f3 of multiplicity m, — 1, and the number of leaves of f3 passing through such a branch point is at least
equal to the number of ends of f,. The black circle around A represents the final compact A-piece of A3 , Fp, i.e.,
Proposition 5.16 holds with so = 3 for this ascending” linear subgraph starting at Ag, , and finishing at A. If we
start ascending from Ay, , instead of from A4, ,, we will find again sy = 3 (although the stage limits are different
than before, since the rescaling is centered at a different blow-up sequence in My), but if we start ascending
from Ag, (resp. from Ay, ,,), we will find so = 2 (resp. so = 4). Both W] and the T-shaped polygon W, connecting
the blue circles around Ay, ,, Ag,, with the red circle around A4, represent that X, has two components, each
one with its own number of ends, and that each of these ends possibly produce branch points in 83 as explained
above. We will continue with explaining aspects of this Figure 5 in Example 5.20.

We now come hack to the general description with the notation in (S1)-(S2) and in Definition 5.18. The hier-
archy H(A) of A decomposes into finitely many levels, which are defined recursively as follows, starting from
what we will call the top level of H(A). There exists a possibly disconnected complete, branched minimal immer-
sion fr: E1 +» R3 (the subindex T stands for top, in the notation in (S1)-(S2) we have fr = fs,), such that the
convergence of portions of suitable expansions At(n)Fp = As, nFn 0f Fp to fr is smooth away from a finite sin-
gular set of convergence St ¢ X (St could be empty), and the second fundamental forms of Ap(n)F, fail to be
bounded around (extrinsically) each point q € St; suppose that such a point g corresponds to a sequence {q(n)},
with q(n) € Qr(n) c M, for n € N sufficiently large. This means that {Ar(n)F,(q(n))}, converges to fr(q) (in
harmonic coordinates of radius Ry 1 centered at F,(p1(n)), where Ry 1 is defined in Definition 5.18 (i) (c)) and

. 1 .
Jim sup{IAz;r, 100 1 X € Bio, (Fu(@(), — )} = lim |4z, (@(m) = oo,

for each m € IN sufficiently large. Moreover, the following assertions hold:
(T1) fris unbranched away from Sr.
(T2) The number of ends e(Xt) of Zt (resp. the total spinning at infinity S(f) of fr) equals the number of
boundary components of A (resp. total spinning S(A) of A along dA):
e(Zr) = #:(04) := e(d), S(fr) = S(A). (5.33)

Let Wr be the set of components of Zr.
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We next make a similar quotient space of the abstract surface Xt of this branched immersion fr as the one
in Lemma 5.14, thereby defining a quotient space It of Zr, a related quotient map : £t — Zr, and a singular
set

81 = m(S1)

defined as in Lemma 5.14. Observe that |St| = [Qr(n)| (which is independent of n). Given q € S, let
S1(q) = 77'(q) < 81.

Thus, every point in St(q) identifies to the point q in I, and every other point of L1 only identifies with itself.
After endowing Z1 with the quotient topology, It becomes a path-connected metric space, and fr: X1 — R®
induces a well-defined continuous map, denoted also by fr: 1 — R® with a slight abuse of notation. Observe
that £ \ St has the induced structure of a (smooth) Riemannian surface, and that £7 is a topological surface in
a small neighborhood of a given point q € St if and only if St(q) consists of a single point. Also, the restriction
of fr to 21\ 87 is a minimal immersion with finite total curvature in R3, which is complete away from its limit
point set St in X7.

Example 5.20. As announced in Example 5.19, we continue to explain some aspects in Figure 5. The red com-
ponent Wy of X3 connects to the red circles around Ag,, Ag,, meaning that W contains at least two distinct
points in 83 which lead to two distinct points g1, g2 € S3. The blue component W, of £, connects to the red cir-
cle around A4, and to the blue circles around Ag, ,, A4, ,, meaning that W; contains at least two distinct points
in 8, which produce distinct points q1,1, q1,2 € S,, in contrast to the blue component W{ of X, whose points
in 8, only give rise to one point in S,, namely g1 1.

We now return to the general situation. Given q € St, for all n sufficiently large we can find a related compact,
connected piece Ag = Ag(n) c Mj satisfying Proposition 5.13 (viii) (f) for Fp = Ar(n)Ey.

The index of A, is strictly less than the index of A. This is clear in the case that S\ {q} # 0. In the case that
St = {q}, we have that f; cannot be flat, since this corresponds to the case J = 11in Proposition 5.13 (viii) (f). Thus,
we can apply Lemma 3.4 to conclude that fr is not stable, which gives

Index(A) > Index(Zt) + Index(Aq) > Index(Ag).

For different points g, q' € St, the corresponding compact domains Agny, Ag'(ny € My, are disjoint.
Let
VT = VT(H) = {Aq = Aq(n) C Mn | qe€ ST}

Given q € Sr, let 'Wr(q) be the (finite) set of components of It such that each W € Wr(q) contains at least one
point of 81(q) = 7~1(q). We can choose a finite collection Dy of sufficiently small (possibly branched) stable
minimal disks in £t centered at the points in St(q) such that
(U4) For each component W of Zr, it holds I(W) = I(W'\ quST Dy).
(U5) The set
Vi:= ) Dgcir (5.34)
quT
is contained in the limit as n — oo of At(n)Vr(n).
Let
L% =Zr \ V5. (5.35)

Property (U4) implies that the index I(£t) = I (Z%). Note that the number of components is #.(Xt) = #C(Zg), since
removing an interior disk from a connected surface does not disconnect it.

Definition 5.21. If St = ¢ in the situation above, then Et consists of a single non-flat, connected, unbranched
minimal surface with finite total curvature. In this case, we say that the hierarchy H = H(A) of A is trivial (with
no levels) and that A is a minimal element.

If St + 0, then we define the top level of A = A(n) (for n large) as the triple (81, V1, Wr). In this case, we can
apply for each q € St the above description to the corresponding compact domain Ag4 (exchange A by Ag), which
produces the triple (ST(q), V1), Wr(g)) associated to A with top level T(q). As before, we have two cases.
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o If gT(q) = ¢ for a point q € Sr, then the hierarchy of A, is trivial and A, is called a minimal element. For
instance, in Figure 5, the minimal elements are Ag,, Ag, ;, Aq,,, Ags,,, Which have associated numbers of
stages So(q2) = 2, So(q1,1) = So(q1,2) = 3, So(q3,1,1) = 4; observe that the number of stages is not defined for
the Ag-pieces which are not minimal elements.

« If gT(q) # 0, we say that the corresponding top level (ST(q), V1(q), W1(q)) of Aq is a level of the hierarchy F((A)
different from its top level, and proceed recursively. Let us denote by L € IN U {0} the number of these levels
of H(A) (different from its top level); see Figure 5 for the schematic representation of a hierarchy H(A) with
four levels.

Remark 5.22. (i) Observe that the notion of level only makes sense provided that St # 0.

(ii) This recursive process of assigning levels to A (not being a minimal element) is finite, since each A; hasnon-
zero index, which can be realized by a compact unstable domain in M, for nlarge, and the related compact
unstable domains for different g-points in the same level of A can be taken pairwise disjoint (recall that the
index of F,, was assumed to be less than or equal to some bound I, independent of n).

(iii) This recursive process of assigning levels to A (not being a minimal element) is finite. In fact, it follows from
the arguments used to prove Proposition 5.13 (viii) (f) that the index increases each time we add a level, and
soL+1<I(A).

Definition 5.23. We define the singular set S as the union of all singular sets ST(q) for singular points of previ-
ously defined levels (including St). Similarly, we let § be the union of all 81(q) for singular points of previously
defined levels. Let V ¢ M, be the union of {A} together with all compact pieces A, for singular points of levels
of 3{(A), and let W be the union of all components of related limit surfaces (g for singular points of previously
defined levels (including 7). We define the hierarchy H(A) of A = A(n) (for n large) as the triple (8, v, W); and
the number L € IN U {0} associated to A (see Definition 5.21) is called the number of levels of H(A). If H(A) is non-
trivial, a compact domain A4 € V (here q € 8) is called a minimal element of H(A) if the hierarchy associated
to Ag is trivial (recall that if J((A) is trivial, we called A itself a minimal element).

Example 5.24. (1) S =gifand only if St =0, if and only if the hierarchy of A is trivial. In this case,
W=Wr={Zr}, Vr=0, V={A}, L=0,

and A is a minimal element.

(ii) The simplest case of a non-trivial hierarchy F(A) is that having just one single singular point in its top
level (i.e., $ =87 = {g}) and where A; has one boundary curve. In this example, V1 = {Ag}, V = {A, Ag},
Wy consists of a single, non-flat (non-flatness of this single component of Wr follows from the proof of
Proposition 5.13 (viii) (), connected, complete minimal surface X1 with finite total curvature and a unique
branch point at g with branching order at least two, W = {£1, E1}, where X is a non-flat, connected, com-
plete minimal immersion (no branch points) with finite total curvature, the number of levelsis L = 1,and A4
is a minimal element.

(iii) See Figure 5 for an example of a hierarchy with four levels. In this example,

St=1{q1, 92 3}, Stqy = {011, @12}, Stigy) = 1q31}  Stgsn) = 1q3.11)

The minimal elements of this hierarchy are Ag,, Aq, ,, Aq, ,, Ag,,, - The surface Lt has two (possibly) branched
components Wy, Wy, and the set of branch points of W; is contained in {q1, g2}, while the set of branch
points of W5 is contained in {¢, q3}. Observe that in this example A4, has at least two boundary components
(for n large), one component which corresponds to the boundary of a possibly branched minimal disk in
the limit branched minimal surface W; and another component which corresponds to the boundary of
a possibly branched minimal disk in the limit W5.

We can equip V with the following partial order: given A’, A" € V, we set A’ < A" if A’ ¢ A”. Thus, A4 < A for
every q € S, and A4 € Vis a minimal element of J((A) precisely when A, is minimal with respect to the partial
order <.
The set V decomposes into
v =ymyyrm (5.36)



DE GRUYTER W. H. Meeks, Il and J. Pérez, Hierarchy structures in finite index CMC surfaces = 41

where
V™ ={A" € V| A is a minimal element} and V" =V\V™",

Note that each non-minimal element A, € V'™ with q € S creates a level of H(A) below it with respect to <
(namely, its top level (ST(q), Vg, Wr(g)))- Assuming that J((A) is non-trivial, all levels of J(A) except for the top
one are created this way; hence,

L = VY| if 7((A) is non-trivial.

Also, observe that [§| + 1 = [V + |[V7| regardless of whether or not A is a minimal element. In particular,
1S| > L.

Definition 5.25. We define the excess index associated to the subset of minimal elements of A by

@)= ) I@A')-1) e Nu{oh. (5.37)
Alevym
This abstract model of the hierarchy 3{(A) produces a “decomposition” of the compact domain A = A(n) c M,
for n € Nlarge into compact pieces (in the sense that each piece is a compact surface with boundary inside A, the
union of the pieces is A and the pieces only intersect along their boundaries): these pieces correspond to the A4
with q € St (observe that Ag = Ag(n) is contained in My), together with a (finitely connected) compact surface
W(n) c A(n) which is the closure of A\ (UqggT Ag). Observe that, after suitable rescaling by some Ar(n) € R*
diverging to co, the At(n) W(n) converge as n — co to the components of the surface £ defined in (5.35).
The cardinality | V| is less than or equal to the index of A, since the collection {A4 | ¢ € V}is pairwise disjoint
and each A, has positive index (see Remark 5.22).

Definition 5.26. We define

[s=Jn"@
qes

W@ =1) is the set of components W € W such that [W n §| =1,
wf is the set of flat components in W,

IWwi=w@=1nw is the set of trivial components in W, (5.38)
Wt = W\ Wt is the set of non-trivial components in W,
wnef is the set of non-trivial flat components in W,
WL =yt \ yntf is the set of non-trivial, non-flat components in W,

| W(0 >1)=W\W(0 =1) isthe set of components W € W such that [W n §| > 1.

We will also need the following decomposition of W'
W = Wt (9 = 1) u W (8 > 1), (5.39)
where
W (9 =1) = WY A WD =1)  (resp. W'Y > 1) = W'Y a W(a > 1)).

In turn, the following decomposition of W"“" (8 > 1) will be useful:
W (@ > 1) = WIEREOT (9 > 1) u WHE0( > 1), (5.40)

where the super-index “or” (orientable), “no” (non-orientable) refers to the orientability character of each
component.

In this paragraph, we indicate how the notion of hierarchy arises in the proof of the Structure Theorem 1.2.
,-we used the notion of “ascension with s, stages” associated to a sequence of points p1(n) € My, with sufficiently
large norm of its second fundamental form, which created a compact piece A = A1, defined just after (K2’). This
is the first step in constructing the hierarchy H(A), and in the previous sections we have proven the following
partial result related to Theorem 1.2: For any

(F: M + X) € A = A(I, Hy, €0, Ao, Ko),
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there exists a (possibly empty) finite collection of points
Pr={p1,....,px} c U(OM, &9, 00), k<1,

numbers rg(1),...,reg(k) € [61, g] with 7r(1) > 4rp(2) > --- > 45 1rp(k) and related domains {Aq, ..., Ay} sat-
isfying assertions (i)—(iii), (I) and (V) of Theorem 1.2, with respect to some constant A; = A1(A) € [Ap, 00). It
remains to prove that A; = A1(A) € [Ag, 0co) can also be chosen sufficiently large so that (I)—(IV) of Theorem 1.2
also hold for each A = A;, i =1,..., k. Otherwise, for some i =1, ..., k, at least one of (II)-(IV) of the theorem
fails to hold for A = A;; without loss of generality, assume that A = A;. In this case, we may consider F|p: A +» X
to be an element in A" = A(I, Ho, §1/3, A1, Ko) (regarding the bound A; of the second fundamental form of F|s
in the %-neighborhood of its boundary, see the two paragraphs just after Definition 5.4). The failure of the
Structure Theorem to hold for A, no matter how large one chooses A1, leads to a sequence

S
(Fn: A(p1(m) = Xa) € A(I, Ho, 57, A1, Ko),

where the norm of the second fundamental form of F, has a maximum value greater than n at pi(n) € A.
By our previous arguments, after replacing by a subsequence, (F,: A(p1(n)) + X,) leads to the creation of a
hierarchy H(A) for A = A(n). It is this hierarchy that we are referring to in the statement of Theorem 5.27 below.

The notion of the hierarchy H(A) has a good behavior with respect to proving properties by induction on
the number L of levels, which will be the method of proof of Theorem 5.27 below. Observe that the truncation of
a hierarchy H(A) with L > 1 levels by simply deleting its top level is again a hierarchy, with the only difference
that the role of A is played by the disjoint union of the compact pieces A4 with q € St. To simplify the notation
in the next statement, we will denote again by A this disjoint union, and so we will no longer assume that A is
connected; by hierarchy of such a disconnected A, we mean the union of the hierarchies of the components of A.

Theorem 5.27. Let A be as described previously and let it be finitely connected. Then the index I(A) of A can be
estimated from below by
6I(A) > —y(A) + 2S(A) + e(A) + C(FH), (5.41)

where y(A) is the Euler characteristic of A, e(A) = #.(9A) is the number of boundary components, S(A) is the total
spinning of A along its boundary, and the “correction term” C(}) is the following non-negative integer, which
depends on the complexity of the hierarchy H of A:

C(H) = 3I* (H) + |S| = L + [WH/| + 2)Wt (9 = 1)| + 3/WE0T (9 > 1), (5.42)

where $ is the singular set of the hierarchy H and L > 0 is the number of its levels. Furthermore, if A is connected
and has a trivial hierarchy, then I* (H) = I(A) — 1, C(H) = 3I(A) - 3, and so (5.41) reduces to the Chodosh—Maximo
estimate (3.5).

Remark 5.28. If A is orientable, the relation y(A) = 2#.(A) — 2g(A) — e(A) allows us to write (5.41) as
6I(A) = 2g(A) + 2S(A) + 2e(A) — 2#.(A) + C(H). (5.43)

Proof of Theorem 5.27. First, observe that the functions I(A), y(A), S(A), e(A) are additive on components of A.
The same holds for C(3H), with the understanding that adding components of A also adds the number of levels as
well as the other terms appearing in (5.42). Therefore, (5.41) holds if it holds for connected A. The proof of (5.41)
will be carried out by induction on the number L > 0 of levels of F(A).

Suppose first that A is connected and its hierarchy X is trivial. In this case, L = 0 and

18] = (W] = (W (9 = 1)| = [WER0T(9 > 1)| = 0.

Hence, C(H) = 3I* (K) = 3I(A) - 3, which reduces (5.41) to (3.5). This argument also proves the last statement in
the theorem.

By the principle of mathematical induction, assume that L > 0 is the number of levels of A and that (5.41)
holds for (possibly disconnected) A’ if its hierarchy 3’ has less than L levels. Without loss of generality, we will
assume that A is connected. Since L > 0, we have that F(A) is non-trivial, St # @ and Vg # 0.
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By (5.36), the set V can be written as the disjoint union
Vr =V uVvih, (5.44)

where VI' = Vr n V™ and Vi™ = Vr n V',

In the first paragraph after Definition 5.25, we explained that, for n large, A = A(n) can be decomposed
into the compact pieces A; with g € St and finitely many compact connected domains W(n) whose indices are
independent of n and satisfy

I(W(n)) = I(W),
for some component W € W n E1. This equality, together with (5.44), leads us to the inequality

I(A) > I(VI®) + I(VE™) + I(Sy). (5.45)

To estimate the first term in the right-hand side of (5.45), we will apply (3.5) to each of the components A4 € V'
(observe that the total branching number B in (3.5) vanishes in our setting), so we get
6I(VI) = 3I(VF) + 3I(VF)
> —x(VI) + 2S(VF) + e(V) = 3#c(VE) + 3I(VF)  (by (3.5)) (5.46)
= —x(VI) + 2S(Vi) + e(V]') + 31" (V) (by (5.37)).

Since the number of levels of the hierarchy for each compact piece A, with g € Vi™ is less than L, we can
estimate the second term in the right-hand side of (5.45) by the induction hypothesis. Hence,

6I(VF™) = —x(Vi™) + 2S(Vi™) + e(VE™) + C(VF™), (5.47)
where C(V}™) is the sum of the correction terms C(H') with H' varying in the hierarchies of all compact
pieces Ag with q € Vi™.

To estimate the third term in the right-hand side of (5.45), we will apply (3.5) to each of the components
of £1, so we get

3I(X1) = —x(Z1) + 28(fr) + e(Z1) — 2B(Z1) — 3#c(Z1) + #c(Z];), (5.48)
where #C(Z’;) is the number of flat components of Lt (see Remark 3.3 (i)).
Thus,
6I(A) > 6I(VF') + 6I(VE™) + 3I(Et) + 3I(Z7) (by (5.45))
> —x(VI) + 2S(VF) + e(V) + 3I* (V)

- x(VE™) + 28(V™) + e(VE™) + C(VF™)

— x(Z1) + 28(fr) + e(Z1) — 2B(ZT) — 3#c(Z1) + #C(ZJ;) +3I(Zr) (by (5.46)-(5.48)).
Since

B(X1) = $(V1) - e(Vr) = [S(VT) — e(V)] + [S(Vp™) — e(V"™)],
the right-hand side of the last expression can be written as
- x(V) +3e(V) + 31 (V) — x(VE™) + 3e(VE™) + C(V™)
— X(Z1) + 25(fr) + €(Zt) - 3#(L1) + #e(Z]) + 31(Z1),

By using
X(B) = x(Vr') + x(Vi™) + x(Z1) — e(Vy') — e(Vy™), e(Vr) = e(Vy') + e(Vy™)

and (5.33), we can rewrite the last displayed expression as

- Xx(8) +25(8) + e(d) (5.49)
+2e(Vr) - 3#c(Zy) + 3I(Ex) + #(T)) (5.50)
+ 31 (V) + C(VI™). (.51)

We next analyze the terms in (5.50).



44 —— W.H. Meeks, Il and J. Pérez, Hierarchy structures in finite index CMC surfaces DE GRUYTER

First, note that e(Vr) = #:(9Z]), where 1 is the surface defined in (5.35). With this in mind, we denote by
W5 the set of components of £$ and obtain the equation

2#5(62%) - S#C(Z@ +3I(Zt) = z (2#:(0WE) — 3 + 3[(W©)). (5.52)
WeeWs

We will analyze the sum in the right-hand side of (5.52) attending to the following partition of W5 (compare

to (5.38) and (5.39)):

Q1) WS is the subset of trivial components in W¢.

(Q2) w%"‘(a = 1) is the subset of components in W, that have one boundary curve and are non-trivial. Equiv-
alently, it is the subset of components in W7 that have one boundary curve and are not flat.

Q3) W%m’f is the subset of components in W that have more than one boundary curve and are flat.

(Q4) W%m’"f (0 > 1) is the subset of components in W5 having more than one boundary curve and which are
not flat.

For the case (Q1), we have the equation

Y (@ @WO) -3+ 3IWO)) +#c(F) = Y (2-3+0)+ W+ WE"|
weewr! Wweews!
= WL+ WL+ (wp™ |
= (W),

(5.53)

Regarding the case (Q2), for elements W¢ ¢ W™ (9 = 1) we will estimate (W) > 1 (observe that this
inequality holds even if W€ is non-orientable, by Lemma 3.4 (ii)). Therefore,

Y (2#(OWC) - 3+ 3[(W)) = Y (2-3+31(W9) 2 2/Wp™(@ =1)]. (5.54)
Wweewg™ (9=1) Weewg™ (9=1)

The cases (Q3) and (Q4) deal with the subset W£(d > 1) of components in W{ having more than one bound-
ary curve. For those, we will show the following estimate.

Lemma 5.29. In the situation above,

z (2#,(0W€) = 3) > 87| - 1. (5.55)
WeeWs(9>1)

Let Y¢ denote the set of components W€ € W5(d > 1) which have boundary curves on at least two different
components of V5. (defined in (5.34)).
() IfI81l = 1 and equality in (5.55) holds, then W5(d > 1) = 0 (equivalently, WS = W' u W™ (a = 1)).
(ii) If|St| > 1 and equality occurs in (5.55), then Y¢ = W3(0 > 1), W€ has exactly two boundary components for
each W€ € Y¢, and |Y¢| = |§T| — 1 (see Figure 6).

Proof. Observe that the left-hand side of (5.55) is the sum of a possibly empty set of positive integers, where
we declare this sum to be zero if this set of positive integers is empty (equivalently, if W5(d > 1) = 0). Recall
that St # 0. If |St| = 1, then the right-hand side of (5.55) is zero, and hence the inequality (5.55) holds in this
case. If moreover equality holds in (5.55), then W%(a > 1) = ¢, and so (i) of the lemma holds. Hence it remains
to prove (5.55) and assertion (ii) of the lemma assuming that |St| > 1.

Let Y be the set of components W of Xt such that 77(W) contains at least two points in Sr. Observe that
Y c W N W( > 1) and that

WeY ifandonlyif WnZfeYyc.

Therefore,
Y Q#(0W)-3)2 ) (2#:(3[W nES]) - 3). (5.56)
WeeWs(9>1) Wwey
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Figure 6: Schematic representation of the top level of a hierarchy J((A) where equality occurs in (5.55). Here, 8y = {g; | i = 1,..., 5},
Vr={bg |i=1,...,5,LY =W > 1) = (W], W5, W5, Wg}, and A,,, A, both have one boundary curve, while the A, (7 = 2, 3, 4) have
two boundary components each.

Since Zt is path-connected and we are assuming that |St| > 1, for every pair of points q, ¢’ € St there exists
an embedded path y: [0,1] — X with y(0) = g,y = ¢'. In particular, y contains an embedded open subarc with
beginning point q and ending point g € St \ {g} such that, for some component W(q) of Y, we can view this
open subarc as being contained in the interior of 7(W(q)) \ Sr.In particulay, ¢ € m(W(q)). Since this holds for
every q € ST, we deduce that

Sr ¢ 7'[( U W).
WeYy
Although W(q) might be non-unique, we will use the axiom of choice to assign a map
qeSr— W(q) €Y suchthatq e m(W(q)).
Forq ST, let
St(W(q)) = m(W(q)) N Sr.

Thus, |St(W(q))| > 2 for each q € Sr.
Notice that, for each q’ € gT(W(q)), W(q)n Z% contains at least one boundary curve in 0D (recall that Dy
was defined right before (5.34)). Hence,

#.(0[W(q) N Z5]) = St(W(Q))!. (5.57)

We will construct [ € N points q1, g2, . . ., i € St such that
i
Gix1 €31\ [UST(W(qj))] and  [St(W(q1)) U --- U St(W(q)I = [Stl.
j=1

Choose an arbitrary q; € St with a related W(q1) € Y. Since |St(W(q1))| > 2,

2#(0[W(q1) N Z8]) - 3 > 2|81(W(q1))| - 3 (by (5.57))
= (181 (W(q1))l - 1) + (IST(W(q1))| - 2)  (by (5.57)) (5.58)
> [8p(W(qq))| - 1.

If
ISt (W(q1))| = I87],

then [ = 1 in our construction of points, and (5.55) follows from (5.56) and (5.58).
Suppose
IST(W(q)| < |81l.

Since It is path-connected, there exists a shortest embedded arc a; in S from m(W(qy)) to the finite set
St \ St(W(qy)) with one of its end points being some q; € St \ St(W(q1)) and its other end point in St(W(q1)).
In particular,

IST(W(q1)) N St(W(g2))] = 1.
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Note that

2

Y #c0[W(qi) N I5]) - 3) >
i=1

QI8T(W(g:))l - 3) (by (557)

MN

1

2
IST(W(gi)l + Y (181(W(g:)| - 3)
1 i=1

MN

. ~ ~ ~ 2 6
= 181(W(q1)) U St(W(q2))| + [St(W(g1)) N St(W(g2)l + Y (ISt(W(q:))| - 3)

i=1
= (I81(W(q1)) U 81 (W(g2))| - 1)

2
+ (ISt(W(q1)) N St (W(g2)l - 1) + Y (ISt (W(g)] - 2).
i=1

If
IST(W(q1)) U S1(W(q2))| = 181,

then [ = 2 in our construction of points, and (5.55) follows from (5.56) and (5.59).
If

IST(W(q1)) U S1(W(g2))] < 181,

then there exists a shortest embedded arc a; in &t from m(W(q1)) U m(W(qz)) to the finite set

81\ [81(W(q1)) U S1(W(q2))]

with one of its end points being some

qs € 81\ [81(W(q1)) U 81(W(gq2))]

and its other end point in ST(W(ql)) u ST(W(qz)). In particular,

|[81(W(q1)) U Sr(W(g2))] N St(W(gs))| = 1.

Note that
3 3
Y (2#c(8[W(qi) N Z§]) - 3) = Y 2ISr(W(qi)| - 3)  (by (557)
i=1 i=1
3 _ 3 R
= Y I8r(W(gqi))l + Y (18r(W(qi))| - 3)
i=1 i=1
3
= (JUsrwan| - 1) + (8r(Wig2)) u Sr(Wia) n Sr(Wigs)) - 1
i=1
3
+ (151 (W(q1)) N St (W(g2)l - 1)) + Y (1S1(W(gi)| - 2).
i=1
If

]CJ&(W(q»)] - 11,
i=1

then [ = 3 in our construction of points, and (5.55) follows from (5.56) and (5.60).
If

|L3JST(W(qi))| < I3al,
i=1

59)

(5.60)

then we repeat the above process finitely many times (because St is finite), finding points gy, . . ., q; € St such

that
j-1
|( UST(W(qi))) n ST(W(q,))l >1 foreachj=2,...,1
i=1
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and 1
U Srwan| = .
i=1

Then

l
Y (2#c(2[W(gqi) N X§]) - 3)
i=1

l
> ) (281 (W(g))| -3)  (by (5.57)
l=ll i (5.61)
= Y ISt (W(g)l + Y (181(W(g:)| - 3)
i=1 i=1
L l j1 R [
- (|Usrwta| - 1) + ¥(|(Usrwian ) n Srwigp| - 1) + Yar(wigni - 2
=1 j=2 't i=1 i=1

As |, St(W(g:)| = |81, inequality (5.55) follows from (5.56) and (5.61).
If equality in (5.55) occurs, then equality in (5.56) implies that Y¢ = W5 (0 > 1), or equivalently,

Y=Wr(d>1) =W >1)nEr:=Wr\ [WL,uWia =1)].
Since the right-hand side of (5.56) must be equal to the left-hand side of (5.61), we deduce that
Y={Wgli=1....1

and that equality holds in (5.57) for each i = 1,.. ., L. Since the third sum in the right-hand side of (5.61) vanishes,
we conclude that |§T(W(qi))| =2foreachi=1,..., L Finally, |Y¢| = |S7| — 1 because 2#.(d[W n Z%]) -3=1for
each W € Y. This completes the proof of Lemma 5.29. O

We continue proving Theorem 5.27. We can estimate (5.50) as follows:

2e(Vr) — 3#c(X1) + 31(S) + #e(2h)

= Y (2#(OWE) - 3+ 3H(WO)) + #c(Zh) (by (5.52))
weews (5.62)
> W 2 W@ = DI+ 18rl -1+ Y 3I(W)  (by (5.53)-(5.55)).
WeWr(d>1)

In order to bound from below the last sum in (5.62), note that if W € Wr(8 > 1), then either W is flat (and
then I(W) = 0), or W is orientable and non-flat (in which case we estimate I(W) > 1), or W is non-orientable
with [Wn 8| =1 and #.(0[W n £¢]) > 1 (in which case we estimate I(W) > 2 by Lemma 3.4 (ii)), or else W is
non-orientable with |[W n 87| > 1 (in which case we estimate I(W) > 0). Therefore, setting

Wi = {W € Wr | W is non-orientable, |W n 87| = 1, #.(8[W n Z{]) > 1},
W3 > 1) = WO (9 > 1) n W,
we deduce that

3I(W) > 6] W3] + /W5 (8 > 1)]. (5.63)
WeWr(9>1)

Using that |[W3| > 0, from (5.62) and (5.63) we get the following estimate from below for (5.50):
2e(V1) - 3#c(S1) + 3I(Z1) + #c(Zh) = (181] - 1) + WS [+ 2WE™ (3 = 1) + 3WY (@ > 1) (5.64)

By the additivity in components of the correction term C(H) defined in (5.42), we can write C(H) as the sum
of C(V{™) plus the terms in (5.42) that are added in the top level, that is,

C(F0) = COVE™) + [30* (V) + (181] - 1) + |w§””’f | +2/We™ @ = 1) + 3|W¥f’"f"”(a > 1)]]. (5.65)
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Thus, (5.64) and (5.65) give
2e(V1) — 3#:.(Z1) + 3I(Z7) + #C(Z];) > C(H) - C(VF™) = 3I* (V). (5.66)

By (5.66), the sum of (5.50) and (5.51) is at least C(JH). Adding this last inequality with (5.49), we obtain (5.41), as
desired. This completes the proof of Theorem 5.27. O

Definition 5.30. Observe that, given q € S, the compact piece A4 has itself a hierarchy (Sq, Vg, Wq), whose
related sets are subsets of the corresponding ones for the hierarchy of A, i.e., gq cs, Vq ¢ Vand Wy ¢ W. Clearly,
the hierarchy of A, has strictly less levels than the hierarchy of A. We define O(3) € IN U {0} to be the number of
levels in H which consist of one A4-piece (equivalently, the number of levels in J{ whose singular set is unitary)
if H is non-trivial. If H is trivial, we let O(H) =

For instance, the hierarchy given in Example 5.24 (ii) has O(H) = 1, and the one in Example 5.24 (iii) (given by
Figure 5) has O(H) =

Corollary 5.31. Let A, H be as in Theorem 5.27, with H non-trivial. If A is non-orientable, then inequality (5.41)
holds after replacing C(H) by the following correction term:

CM(H) := C(H) + 6|W*| = 3I* (H) + S| - L + 20(H) > L, (5.67)

where W* is the set of components W € W which are non-orientable with |W n 8| =1 and #.(8(W \ V°)) > 1;
here V¢ = J,es Dq and D was defined just before (5.34).

Proof. Inpassing from (5.63) to (5.64) in the derivation of the correction term C(J) of (5.41), we neglected to keep
the term 6| Wz | of (5.63). If we include this term (which can only be non-zero provided that A is non-orientable),
then previous calculations in the derivation of C(3) imply that inequality (5.41) holds after replacing C(H) by
C(H) + 6|W*|.

Next we prove both inequalities in (5.67). Both inequalities are additive in the levels of the hierarchy, so it
suffices to prove that each level 3’ of H satisfies

CMo(H") = 30" (H) + 1S(HD = 1+ 20(H) > 1, (5.68)

where C(H"), I*(H"), IS(H")|, O(H') denote the related numbers referred just to the level H’, for instance
S(H') # 0 is the singular set of the level H', C"°(H') is given by

(') = 30 (H) + 1S = 1+ WL |+ 20w (8 = 1)] + 3WIEY (0 > )] + 6|W* (H')],  (5.69)

and O(H') takes the value 1 if |S(H")| = 1, and 0 if [S(H")| > 2.

We will prove that (5.68) holds by considering two mutually exclusive cases.

(@) Suppose that Ig(ﬂf’ )| = 2. In this case, the second inequality in (5.68) clearly holds. Since O(H') = 0, the first
inequality also holds.

) Suppose now that |$(H")| = 1. Thus, O(F') = 1 and at least one of the terms |W* (H')], le "f(a =1)] or
|W;Ct," (8 > 1)| is positive, which proves that the first inequality in (5.68) holds. The second inequality also
holds since

3 (H') +18(H) = 1+ 20(H) = 20(H') = 2

Hence, (5.68) holds and the corollary is proved. O

In order to state and prove the orientable version of Corollary 5.31, we will need the following lemma (compare
to Lemma 5.29).

Lemma 5.32. Let A and H be as in Theorem 5.27, with 3 non-trivial. If A is orientable, then

Y @#0WE) -3+ 3IW) + (W | > 2081 - 1). (5.70)
WeeWs(9>1)

Let Y€ be defined as in Lemma 5.29.
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@) If 181l = 1 and equality in (5.70) holds, then WS(d > 1) = 0 (equivalently, WS = W' u W™ (9 = 1)).
(ii) If|St| > 1 and equality occurs in (5.70), then Y€ = W5(0 > 1), W€ has exactly two boundary components for
each W¢ € Y¢, |Y¢| = |S¢| - 1, and every component in Y€ is flat.

Proof. If|St| = 1, then (5.70) clearly holds as well as (i), by the same reason as in the proof of Lemma 5.29. Assume
that 81| > 1. Since Y¢ c WE(d > 1),

Y @#@WO) -3+ 3IW) + W > Y @#0W) -3+ 3IW) + W Y, 6

WeeWs(a>1) Weeye

with equality if and only if
W™ ye = W@ > 1).

Suppose that W* € Y“ has [ > 2 boundary curves. If W€ is non-flat, then it makes a contribution of at least 21
to the right-hand side of (5.71) (note that I(W¢) > 1 because W*¢ is orientable and non-flat). On the other hand,
if W€ is flat, then it makes a contribution of at least 2 — 2 to the right-hand side of (5.71). Thus, the right-hand
side of (5.71) takes on its smallest possible value precisely when every component of Y€ is flat. In this case, we
get the next lower estimate for the right-hand side of (5.71) with equality if and only if every component of Y¢
is flat:

Y (2#(dWE) -3+ 3I(W)) + |w§’""f NYI2 ) (2#(0W)-3)+[Y°l. (5.72)
Weeyc Weeye
Finally, a calculation similar to the one used to prove Lemma 5.29 demonstrates that the minimum value of the
right-hand side of (5.72) occurs precisely when Y¢ satisfies the second statement in Lemma 5.29; in particular,
1Yl = |S7| - 1 in this case. Applying (5.55), we have

Y (2#(OWE) =3) +1Y°] > IS - 1+1Y°], (5.73)
Wweeyc

with equality if and only if [Y¢| = |St| — 1 by Lemma 5.29 (ii), in which case the right-hand side of (5.73) equals
2(1S7| - 1). This completes the proof of (5.70). Assertion (ii) of Lemma 5.32 concerning Y¢ follows as well from
the above discussion. Now the proof of Lemma 5.32 is finished. O

Corollary 5.33. Let A and 3 be as in Theorem 5.27. If A is orientable, then inequality (5.41) holds after replac-
ing C(H) by the following correction term:

COT(H) = 3I* () + 2(IS| = L) + 2|W™M (8 = 1)| + 3 W07 (9 > 1)). (5.74)
Furthermore, the new correction term satisfies
CO"(H) = 3I* (H) + 2(|S| - L) + 20(H) = 2L. (5.75)

Proof. The argumentis very similar to the one for proving Corollary 5.31, so we will only focus on the differences
and use the same notation. We first check that

6I(A) > —x(A) + 28(A) + e(B) + C°T(H), (5.76)

where C°"(H) is given by equation (5.74). The proof of this fact proceeds exactly as in the proof of (5.41) for the
correction term C(H), except in the estimate in (5.64) one uses Lemma 5.32 to obtain

2e(V1) - 3#c(S1) + 3I(S1) + #(2h) = 2(87] - 1) + 2/WE"Y (8 = 1)] + WL (8 > 1)).

This completes the proof that, for A orientable, (5.76) holds.
We next prove (5.75) holds. If I is trivial, then 18| =L = O(H) = 0and

cor(30) = 31* (30 °2” 31(8) - 3.
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Consequently, equality holds in the first inequality of (5.75), while the second inequality reduces to 3I(A) — 3 > 0,
which holds since I(A) > 1. Suppose in the sequel that H is non-trivial. By additivity, we can reduce the proof to
proving that each level ' of X satisfies

CO(H') = 31" (H') + 2(IS(H")| - 1) + 20(H) = 2, (5.77)

where
nt,nf nt,nf

CoT(I") = 30 (3") + 2(I8(F) - 1) + 21W5" (8 = DI + 3IW5 Y (8 > 1))
First, suppose that |§(J—(’ )| = 2. In this case, the second inequality in (5.77) clearly holds. Since O(’) = 0in
this case, then the first inequality in (5.77) also holds.
Suppose now that [S(H)| = 1, and so O(H') = 1. The second inequality in (5.77) holds because I* (') > 0
and 2(|S(H")| — 1) + 20(H') = 2. The first inequality also holds because in this case

2WIEY (8 = 1)) + 2AWEEY (8 > 1)) = 2 = 20(3).

Hence, (5.77) holds and the corollary is proved. O

Proposition 5.34. Let A and H be as in Theorem 5.27, with A connected.

(D) IfI(A) =1, then 3 is trivial, A is orientable, g(A) = 0, and (e(A), S(A)) € {(2, 2), (1, 3)}. In particular, equality
in (5.41) holds.

(i) IfJ is trivial and A is orientable, then 2g(A) < 3I(A) — 3, 2e(A) < 3I(A) + 1 and 25(A) < 3I(A) + 3.

(iii) If H is trivial and A is non-orientable, then I(A) > 2, S(A) > 3, g(A) < 3I(A) — 4, 2e(A) < 3I(A) - 2, and
2S8(A) < 3I(A) + 2.

(iv) If 3 is non-trivial with L > 0 levels, then S(A) > 2 and I(A) > 1 + L.

(V) If H is non-trivial with L > 0 levels and A is orientable, then g(A) < 3I(A) - L — 3, e(A) < 3I(A) - L -1 and
S(A) < 3I(A) - L.

(vi) If H is non-trivial with L > 0 levels and A is non-orientable, then g(A) < 6I(A) — L -7, 2e < 6I - L -3 and
2S8(A) < 6I(A) - L - 1.

Proof. Suppose I(A) = 1. Then the non-flat limit minimal immersion f;: £; « R® found in Section 5.5.1 has
index 1, and Proposition 5.3 implies that the hierarchy H of A is trivial. Furthermore, [6, Theorem 1.8] ensures
that fi must be two-sided, and since the index of fj is one, f1(X1) is either a catenoid or an Enneper minimal
surface [14]. In particular, g(A) = 0 and (e(A), S(A)) € {(2, 2), (1, 3)}. This proves (i).

To prove (ii) and (iii), suppose that 7 is trivial. By Theorem 5.27, inequality (5.41) can be written as

3I(A) > —x(A) + 2S(A) + e(A) - 3.

After replacing y(A) by 2 — 2g(A) — e(A) provided that A is orientable (resp. by 1 — g(A) — e(A) if A is non-
orientable), we get

3I(A) > 2g(A) + 2e(A) + 28(A) — 5 if A is orientable,

3I(A) = g(A) + 2e(A) + 25(A) —4  if A is non-orientable.

We next discuss on the orientability character of A. If A is orientable, the estimates from above for each of
g(A), e(A), S(A) in (i) of the proposition follow from a straightforward computation using two of the inequal-
ities g(A) > 0, e(A) = 1, S(A) > 2, and e(A) + S(A) > 4. If A is non-orientable (in particulay, I(A) > 2 by (i) of this
proposition) and we additionally suppose that S(A) = 2, then the area growth at infinity of f; is that of two
planes, which prevents f; from having self-intersections by the monotonicity formula for area; therefore, f; is
properly embedded in R3, which contradicts that A is non-orientable. Therefore, S(A) > 3 provided that A
is non-orientable. Now similar arguments to those in the orientable case show that the upper estimates for
g(A), e(A), S(A) in (iii) of the proposition hold.
Next suppose that H(A) is non-trivial with L > 0 levels. This implies that we can find L + 1 blow-up limits

fiiZiw R, i=1,...,L+1,
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of suitable rescalings {A; ,Fn}n of the original sequence {Fy}, as in (S2) above (centered at possibly different
points where the second fundamental form of F, blows-up). Since the index increases each time, we add a level
(by Proposition 5.13 (viii) (f)), and thus we deduce that I(A) > L + 1. Since the total spinning of f; is at least two,
the monotonicity formula implies that S(A) > 2. This completes the proof of (iv).

We finish by proving (v) and (vi), so continue assuming that H(A) is non-trivial with L > 0 levels, and sup-
pose that A is connected. In the case that A is orientable, we apply Corollary 5.33 with the estimate for the
correction term C°"(J) given in (5.75), obtaining

3I1(A) = —%){(A) +S(A) + %e(A) +L=g0)+SA)+e(A)-1+1L, (5.78)

where for the equality we have used that y(A) = 2 — 2g(A) — e(A).
In the case that A is non-orientable, we apply Corollary 5.31 with the estimate for the correction term C"° ()
given in (5.67), obtaining

6I(A) > —x(A) + 2S(A) + e(A) + L = g(A) + 2S(A) + 2e(A) -1 + L, (5.79)

where for the equality we have used that y(A) =1 — g(A) — e(A).

With inequalities (5.78) and (5.79) at hand, each of the estimates from above for g(A), e(A), S(A) in (v) and (vi)
of the proposition follows from a straightforward computation using two of the inequalities g(A) > 0, e(A) > 1,
S(A) = 2 (which holds by (iv)), and e(A) + S(A) > 4. This completes the proof of the proposition. O

5.7 Proofs of Theorem 1.2 (I)-(1V)

Next we will focus on the second step in our strategy of proving Theorem 1.2, see Section 5.3.

Assertion (I) of Theorem 1.2 follows from the fact that A4, . . ., Ax are pairwise disjoint (by the already proven
Theorem 1.2 (i) (¢)).

We next prove (II). The inequality 2 < m = S(A) for the total spinning of the boundary of A = A; follows
since each local picture of any element F € A has at least either two embedded ends, or one immersed end of
Enneper type, with spinning number at least 3; also see Proposition 5.34 (iv). Assertion (II) (a) was proven in
Proposition 5.34 (i).

Now assume that A is orientable and I(A) > 2. Then Proposition 5.34 (i) and (v) give that

S(A) < max{%(SI(A) +3),3I(A) — L} < max{%(SI(A) +3),31(A) — 1} = 3I(A) -1,
e(A) < max{%(?,I(A) +1),310) - L - 1} < max{%(S[(A) +1),31(8) - z} = 31(A) - 2,

g(b) < max{%(SI(A) -3),318) - L-3} < max{%(?,I(A) - 3),31(8) - 4} = 31(8) - 4,

where L > 1isthe number oflevels of the hierarchy of A provided this hierarchy is non-trivial. This proves (II) (b)
of Theorem 1.2. Assertion (II) (c) can be proven in the same way, using (iii) and (vi) of Proposition 5.34 (the fact
that I(A) > 2 follows from (iii) and (iv) of Proposition 5.34); we leave the details to the reader.
The inequality
x(4p) = -6I(A;) + 2m(D) + e(i)

in Theorem 1.2 (II) (d) follows directly from (5.41): observe that the multiplicity of the multi-graph associated to
each boundary component (resp. the number of boundary components) of A = A; is m(i) (resp. e(i)) with the
notation of Theorem 1.2.

The inequality

. T
[k(Ap) = 2rm(D)] < 0]

in Theorem 1.2 (II) (e) follows from the multi-graphical structure proven in Theorem 1.2 (ii) and from Lemma 4.4.
As for the second inequality in Theorem 1.2 (II) (e),

k

k k k
k() + 27S] = |- Y k(8 + 27 ), m(d| < Y Ix(d) - 27m(D] < Y i < 5k
i=1 i=1 i=1 i=1
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Equation (1.2) follows directly from the last inequality, since

k
k(M) = =) Kk(Ay).

i=1
To finish the proof of Theorem 1.2 (II), it remains to demonstrate (II) (f), which we do next. Choose a minimal
element A, in the hierarchy H(A) = S, v, W) of H, with q € S.Then Ag = Ag(n) is a connected compact surface
with boundary inside Mp, and for n large enough, a certain rescaling of A4(n) resembles arbitrarily well the
intersection with a large ball of a connected, complete, non-flat minimal immersion f: £ +» R® with finite total
curvature (see property (S1) above). As the total curvature of this limit immersion f is a negative multiple of 47
when ¥ is orientable, and it is at least —27 if ¥ is non-orientable with the value —2 implying that f is stable (see

[17, item 1 in the discussion in Section 3]), and the total curvature is invariant under rescaling, we deduce that

- I K >3m

Bg(m)

for n large enough. When we ascend one level in H(A) of H passing from A, to some Ay € V with ¢’ € S and
Ag < Ay, then a similar description holds for Ay (n) with n large, with the difference that the related complete
minimal surface f’: £’ « R® with finite total curvature associated to Ag(n) may be flat, finitely disconnected
and finitely branched, and the convergence of suitably rescaled portions of Ay (n) to a compact portion of f'(2)
is away from finitely many points of f(2'), of which at least one corresponds to f'(q). Since

- j K=- j K- j K
Aq:(n) Aqr(n)\Aq(n) Aq(n)

and the first integral is either close to zero or larger than 37 for n large, we deduce that

- j K> 3m
Aq/(n)

for n sufficiently large. Iterating this process finitely many times, we get that — fA K > 3m, as desired. Adding
up this last inequality in A4, ..., Ay and using the Gauss—Bonnet formula, we deduce that inequality (1.3) holds.
Now the proof of Theorem 1.2 (II) is complete.

We next prove Theorem 1.2 (III). Suppose that the genus g(M) of M is finite and that k > 1.

Elementary surface topology of orientable surfaces implies that if X is a possibly disconnected orientable
surface (possibly with boundary) and A is a compact, possibly disconnected, smooth subsurface in the interior
of X, then the genus g(Z) of I, the genus g(A) of A and the genus g(Z) of £ = I \ A satisfy the following inequality:

§(X) < g(X) + g(A) + #c(0A) — #c(1), (5.80)

with equality if and only if each component of A does not disconnect the component of X that contains it.
Applying (5.80) to M with A = Ule A; gives

. k k
g(M) < g(W) + g( Ai) N #c< U am) —k. (5.80)
i=1 i=1
Hence,
k
g(M) - g(M) < Y [g(Ay) + e(dy) - 1]. (5.82)

i=1
If a domain A; has trivial hierarchy, then (5.41) reduces to (3.5), and thus

3I(A;) = —x(Aq) + 25(A;) + e(A;) — 3 = 2g(A;) + 2e(A;) + 25(A¢) - 5,

where for the equality we have used that y(A;) = 2 — 2g(A;) — e(A;) as A; must be orientable. Therefore, in this
case 5 5
8§(hy) +e(h) -1< EI(Ai) = S(Ay) + 7 (5.83)
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If A; has non-trivial hierarchy with L; > 1 levels, then (5.76) and (5.75) imply
6I(A;) = —x(A;) + 28(A;) + e(A;y) + 2L; = 2g(A;) + 2e(A;) + 28(A;) + 2L; — 2.

Thus, in this case
g(Ay) +e(Ay) -1 <3I(A;) — S(A;) — L < 3I(A;) — S(A;) - 1. (5.84)

Now (5.83) and (5.84) give the common upper bound estimate
3 3
g(8) +e(dy) -1 < max{EI(Ai) +2.3181) - 1} - @) (5.85)
The function max{%I(Ai) + % 3I(A;) — 1} has the value 3 if I(A;) = 1, and the value 3I(A;) — 1if I(A;) > 2. Hence,
3 3
max{zI(Ai) +5,310) - 1} <318
in all cases. Therefore, since it also holds that S(A;) > 2 for all i, inequality (5.85) gives
g(Ay) +e(A;) -1 <3I(A;) - S(A;) <3I(A;)) -2 foralli=1,...,k. (5.86)

From (5.82) and (5.86), we deduce that

k
gM) - g(M) < Z(BI(Ai) -2)<3[-2k<3I-2, (5.87)
i=1
which gives the desired inequality in Theorem 1.2 (III).
To finish the proof of Theorem 1.2, it remains to demonstrate (IV), which we do next. Suppose k > 1. Asser-
tion (IV) will be proven in three steps.
(RD) Area(d;) < 2mm(i)rg(i) provided that the constant A; € [Ag, co) given in the main statement of Theo-
rem 1.2 is sufficiently large.
We will assume i = 1 in order to use the notation introduced in Section 5.5; the cases i € {2, ..., k} are similar.
Recall from property (P1) above (and with the notation there) that the intersection of F(A;) between the

extrinsic spheres
R
0Bx(F(p1), 5) and  9Bx(F(p1), 8)
consists of es, multi-graphical annuli 530 @,..., 550 (es,). Alsorecall (first paragraph after property (K2")) that A4
was defined as the component of F‘1(§X(F(p1), rr(1)) that contains p1, where rg(1) = §; = 8§4/4 and &, is given
by Proposition 5.16.

Forj=1,...,es, define
—~ , R
Gy () =2 rr(D)
to be the portion of F(A1) N 530 (j) between 0Bx(F(p1), Rs,/t) and 0Bx(F(p1), rr(1)). Thus,

HE (7 22, re) = Fan \Bx(Fp), 2 ).

Therefore,

Area(d;)  Area[Ay n F'(Bx(F(p1), Rs,/1)] ez" Area(Gs,(j, Rs, /t, Tr(1))

am)re(1)? am(1)rp(1)2 am(1)rp(1)2 (5.88)

j=1

Observe that for ¢ sufficiently large (equivalently, for A; sufficiently large, see equation (5.30)), the extrinsic
radius Rg,/t becomes arbitrarily small (because R, is independent of ¢), and so the first term of the right-hand
side of (5.88) also becomes arbitrarily small for A; sufficiently large. Regarding the second term of the right-hand
side of (5.88), observe that

Z Area(Gs,(j, Rs,/t,Tr(1)) _ Area[fs, (Zs,) N B(0, tre(1)]

~ 5.89
ia mm(1)rp(1)? m(1) Area(D(0, trp(1))) 89
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where f5,: Zs, + R3 is the complete, finitely branched minimal immersion with finite total curvature defined
in the paragraph just before Proposition 5.16 (with the notation there, A5, n = 1/rs,» plays the role of ¢ in our
current notation), and the symbol =~ means arbitrarily close for ¢ large (to check this, rescale the ambient metric
of X around F(p1) by the factor t and use either property (S2) (a) or else the adaptation of Proposition 5.13 after
replacing f> by fs,). Now, the monotonicity formula for minimal surfaces in R? implies that the quotient in (5.89)
isless than or equal to 1 (and arbitrarily close to 1 provided that ¢ is large enough). Therefore, (5.88) ensures that

if t is sufficiently large, we have
Area(Ar)

am(D)re(1)2 ~
which proves property (R1).
(R2) 782 < Area(A;) provided that A is sufficiently large.
Using the notation of the already proven Theorem 1.2 (ii), it clearly suffices to prove that

e(i)
Area( U Gi,h) > 164
h=1

provided that A; is sufficiently large. Recall from Theorem 1.2 (ii) that G; 5 is an annular multi-graph (of multi-
plicity m; ) over its projection Q; p to Pip = @r(p,)(IDr) and the boundary of G; , consists of two curves, each
one lying on one of the extrinsic spheres d Bx(F(p;), rr(i)/2) and 0Bx(F(p;), rr(i)). Observe that the quotient

Area(Ufl(:l)l Gin)
Area(J5) Qi)
is invariant under rescaling of the ambient metric centered at F(p;). Arguing similarly to (5.89) and with the

notation there, we have that for ¢ sufficiently large,

Area(Us) Gin) _ Arealfs,(Zs)) 0 (B, tre(i) \ BO, trr(i)/2)] _

Area(UZ(:i)1 Qin) - e()mt?[rp(i)? - re(i)? /4] med).

Therefore,
e(i) e(i)

Area ( L:Jl Gi,h) ~ m(i) Area < hL:J1 Qi,h)

rr(i)z]

~ m(i)n[rp(i)z -

= m >
.\ 37

> m(l)zé‘%

> 183,

where in the last equality we have used that m(i) > 2.
(R3) Area(M) = 14r Y X, m()re(i)*.
We continue using the notation of (R1). Recall that for ¢ sufficiently large, F(M) contains es, annular multi-graphs
GS[) (1): R} GSg(eSg) in
— Rs,
Bx(F(p1), 84) \ Bx(F(p1), 52 ),

es, is the number of ends of f;,, and
[Gs,(1) U+ U Gy, (es,)] N Bx(F(p1), T£(1))
is contained in A;. Observe that the disjoint union

[Gs,(1) U--- U Gsy(es,)] \ Bx(F(p1), r(1))
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is contained in M. A similar situation holds around each of the relative maxima P2, ..., Pk € Pr of [Ay| (in
the sense of Theorem 1.2 (i) (d)), which produces corresponding annular multi-graphs inside M which will be
denoted by

[Gso (1, 1) U+ U G, (1, es,,)] \ Bx(F(p1), 7¢(1)) ~ ‘around’ py,

[Gs,(k, 1) U -+~ U Gs, (K, es5,,)] \ Bx(F(pk), rr(k)) ‘around’ py,

all pairwise disjoint. Therefore,

k
Area(M) > )’ Area[(Gs,(i,1) U-+- U Gs, (i, es,,)) \ Bx(F(py), (D). (5.90)
i=1

Giveniefl,...,kland h e {1,..., ey}, we call Qg’h the projection of Eso(i, h) \ Bx(F(pi), re(1)) to the corre-
sponding ‘disk’ P;  defined as in Theorem 1.2 (ii). Arguing as in (R2), we have

e

Area[(UU, s Gs,(i, 1) \ Bx(F(py), Tr(i))] _ Arealfs,, (Zg,) 0 (B(0, t84) \ B(O, t rp(i))]

Area(Uy"; Q1)) €51 T (85 — T (1)?]

= m(i),

where fs,,: Ls,; + R3 is the corresponding complete, finitely branched minimal surface of finite total curvature
obtained as a local picture around F(p;), and e, is the number of its ends.

Therefore, o o
Area[( LOJ Gs, (i, h)) \ Bx(F(pi), T”F(i))] ~ m(i) Area( Loj Q:h)
h=1 h=1

~ m(i)n[85 - rr(i)?]
= 15m(i)mre(i)®.

From this and (5.90), we conclude directly inequality (R3), which completes the proof of Theorem 1.2 (IV).

6 Sequential compactness results in A for X fixed

FixI € N U {0}. Animportant consequence of the statement and proof of the Structure Theorem 1.2 is that certain
sequences of immersionsin A = A(I, Hy, €, Ao, Ko) have natural limits that are finitely branched H-surfaces for
some H € [0, Hy]. A special case of this behavior applies to the following situation. Suppose that {F,,: M, + X},
is a sequence in A with common ambient space X, the M, are connected with empty boundary, and the norm of
the second fundamental forms of F, are sufficiently large so that the points p;(n) € M, defined in Theorem 1.2
exist and the sequence of points Fp(p1(n)) = x, converges to x € X. If in addition the norms of the second fun-
damental forms of the F, are uniformly bounded, then a subsequence of the F,, converges smoothly on compact
balls in M, centered at p1(n) to a complete immersed surface Fo,: X > X € A of constant mean curvature with
a special point p1(co) € E with Fo,(p1(00)) = x. The next theorem proves that a similar result holds when the
norms of the second fundamental forms of the F,, at p1(n) diverge to co as n — co. However, while the complete
limit mapping F,: £ + X in this case is smooth and defined on a limit Riemann surface X, the convergence is
not smooth at a non-empty finite set By c X of points and F,, may have a finite set of branch points that form
a subset of By, where the total branching order is at most 31 and the index of F, is at most I — 1.

Theorem 6.1. Given I ¢ N U {0} and 7 € (0, /10], let A = A(I, Hy, €9, Ao, Ko) be as given in Definition 1.1. Let
Fpn: My - X be a sequence of Hy-immersions in A with M, connected with empty boundary, and with the supre-
mum of the norms of their second fundamental forms |Ar, | greater than the constant A1 = A1(A) given in Theo-
rem 1.2, and let Prp = {p1(n), ..., prm)(N)} be the associated non-empty set of (distinct) points given in the state-
ment of the same theorem, with k(n) < I. Without loss of generality and after passing to a subsequence, we can
assume that both k(n) = k and Index(Fy,) = I' < I do not depend on n, and that limy,_,., H, = Hy, € [0, Hy).
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Suppose that the points F,(p1(n)) converge as n — oo to a point x; € X and the norms of the second funda-
mental forms of Fy, at the points p;(n) are unbounded. Let k' € {1, ..., k} be the cardinality of the set of points
in Pr, which do not diverge intrinsically from p1(n), Le., after replacing by a further subsequence and possibly
re-indexing,

_ dj € [Eé'l,oo) if2<j<k,
lim dy, (p1(n), pj(n)) = 5

00 ifk'+1<j<k,
where 81 > 0 is defined in Theorem 1.2 and d, < ... < dy. For each i € {1,...,k'}, let Aj(n) c My be the com-
pact subdomain described in Theorem 1.2 (i) that contains the point p;(n). Then, after replacing by a further
subsequence, the following assertions hold:
(i) Foreachice{l,...,k'}, the points Fn(pi(n)) converge as n — oo to a point x; € X, where x; is previously

defined in the hypotheses of this theorem, and the numbers rr, (p;) converge to some r; € [61, /2], where

8 > 261 is defined in Theorem 1.2.

(i) Foreachice{1,...,k'}, the Hy-multi-graphical immersions

Fnlam)\Fy By (pi(m), ey (10/2))

converge, as n — oo, to a finite collection of e; immersed compact H,-annular multi-graphs in

— ri

Bx(xi, 1) \BX(Xi, EI)

where e; € N is the number of boundary components of A;(n), and the multiplicity of each of these multi-
graphs is at most 3 Index(A;(n)) < 3I'. Let

— ri

F&: A Bx(xi, 1) \ Bx(xi, 5 )

denote these explicit limit immersions, where A is a finite number of compact annular Riemannian surfaces.

(iii) There exists a partition {1, ..., k'} = B U U such that {|Ar,|(pi(n))}n is bounded (resp. unbounded) if i € B

(resp. i € W). Thus, we may assume that, after replacing by a further subsequence, |Ar,|(pi(n)) > n for each

iell

(iv) For each i € B, the restrictions Fp|a,n) converge as n — co to an Hu,-immersion

Fi i Li + Bx(xi,1i)

for some compact Riemannian surface X; with boundary diffeomorphic to A;(n) for n sufficiently large. In
this case, Féo has its image boundary in 0Bx(x;, r;) and its image in Bx(x;,ri) \ Bx(xi, i/2) consists of the ¢;
multi-graphs described in (ii).

(v) Foreachi € U, there exists a finitely connected, finitely branched H ,-immersion

FL 1 %i % Bx(x;,11),

where as in the previous case, L; is compact with smooth non-empty boundary and such that we can iden-
tify FL, restricted to (FL)~'[Bx(xi, i) \ Bx(xi, ri/2)] with the multi-graphs in (ii). Furthermore, there is a
finite set By, (1—"(';0)‘1 [Bx(xi, r1/2)] satisfying the following properties:

(a) The set of branch points of F. is contained in By,.

(b) There exist a positive integer J(i) < Index(A;(n)) < I’ and a finite set of points

Qi(n) = {q1(i,n), ..., gy (i, n)} c Int(A;(n))

with q1(i, n) = p;(n) and such that, for eachj € {1, ..., J(i)}, we have |Af,|(q;(i,n)) > nfor alln € N.
(c) Forany € > 0 sufficiently small, the restrictions of Fn to Ai(n) \ Ugeq,n) Bm,(q, €) converge smoothly as
n — oo to F. restricted to £; \ U,,ErBzi Bs. (b, €), and the following assertions hold:
«  For n sufficiently large, the number of boundary curves of Uyeq,(ny Bm, (4, €) coincides with the car-
dinality of By,.
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«  The restriction of F._ to Ubegzi Bs, (D, €) is a finite collection of branched H,-disks, each of which
can viewed as a multi-graph in X with associated finite multiplicity S, (b) € IN and branch point
image at F._(b). Hence, the branching order of F.  at a given point b € By, is equal to S (b) - 1.
(d) (Quotient space after collapsing of some points in By,.) For eachj € {1, ..., J(i)}, there exists a non-empty
subset By, (j) ¢ By, which arises from the limits of points in 0By, (qj(i, n), €) asn — oo and € — 0. After
identifying all points in By, (j) to a single point, and identifying every point of

J@

U@\ B2, ()

j=1
with itself, we define a quotient space £; and a related quotient map Mij: L — %;. Then the map F.,
induces a continuous map Féo : £; — Bx(x;, 1), so that the immersions Fy, la;(n) converge to

F(i)oi ii — EX(Xi, ri).

(vi) There exists a Riemann surface £ and a conformal branched Ho,-immersion Fo,: X + X satisfying the fol-
lowing properties:
(@) There s a conformal embedding

k/
f: UZi -
i=1

of the disjoint union Ufil i such that, for any i € {1,. .., k'}, we have Ff)o = Foo o (fls,), where the map-
pings F., are defined in (iv) and (v) above. Under conformal identification via f, henceforth consider
Uf;l % to be contained in ¥.

(b) The set of branch points of F, is contained in

kl
U By, C U i,
beBy, i=1
and so it is described in (v) above.
(c) F can be viewed to be the limit of the immersions Fy, in the following sense. F, restricted to L \ Ufil Y
is the limit in balls of M, centered at the points p1(n) of the immersions

k
Fy: My \ [ J2i(n) = X,
i=1
and F, restricted to Uﬁl L; is the limit of Fy, restricted to Ule Ai(n), as described in (iv) and (v) above.
(d) The norm of the second fundamental form of F, restricted to L\ UL ¥L; is bounded by A1, where A1 is
described in the first paragraph of the statement of this theorem.

Proof. Assume that Theorem 1.2 holds for I with associated constants §1, §, A1. The fact that k(n) and Index(F,)
are independent of n after passing to a subsequence, follows trivially since they are bounded positive integers.
Similar arguments give the convergence of H, to He, € [0, Hp] and also (i). The convergence of H,-multi-graphs
in (ii) is also standard, as they have uniform curvature estimates coming from the stability. Assertion (iii) is
also standard by an induction argument in k’ and a diagonal argument. Items (iv), (v) and (vi) follow from an
adaptation of the proof of Proposition 5.13. O

Corollary 6.2. Given I € N U {0} and 7 € (0, 1/10], let A = A(I, Hy, €9, Ao, Ko) be as given in Definition 1.1. Let
Fn: My - X be a sequence of Hy-immersions in A where all of the M, are connected and X is compact. Then,
given base points qn € M, a subsequence of the F,, converges to a branched H-immersion Fo,: £ + X of index at
most I, where the convergence as n — oo takes place in the intrinsic balls By, (q(n), i), i € N, and this convergence
is described in Theorem 6.1.

Remark 6.3. Consider a sequence Fy,: M, + X of complete H,-immersions in the space A as described in the
statement of Theorem 6.1, with limit branched H,-immersion F,: £ + X described in (vi) of the theorem.
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(i) If Fo has a branch point at some q € X of branching order [ € N, then (vi) (b) implies

K
qe U By, C U T
be’B,;[. i=1

The proof of the theorem gives that there are blow-up points g(n) € M, that yield, under blowing-up, a limit
complete, possibly finitely branched minimal surface M in R® with finite total curvature and such that one
of the ends E of M has multiplicity [ + 1; such an end is not embedded, and there are portions of the F,
converging to E which fail to be injective. Hence, the existence of branch points for the limit branched
immersion F, implies that, for n large, the sequence F, restricted to Ui-‘:’l Ai(n)is notinjective. In particular,
if Fp, is injective for all n € N, then any limit F,: X + X given by the theorem has no branch points.

(ii) Assume that F, has at least one branch point. By Theorem 6.1 (v), every branch point b of F, lies in some
set By, for some i € U, and the branch order of F, at b is equal to S (b) — 1. Adding this along the set Br_
of branch points of F,, we get that the total branching order of F, is at most

Y [Seo(b)-1] <3I-1.
bEBFOQ

A Curvature estimates for stable H-surfaces

Rosenberg, Toubiana and Souam [25, Main Theorem] proved that there exists a universal constant Cj > 0 such
that, for any Ky > 0 and any complete Riemannian 3-manifold (Y, g) of absolute sectional curvature at most K,
every stable two-sided H-immersion F: M + Y in satisfies
Cs
- -
min{dy(p, OM), _Zx/KT]}

lAml(p) < (A1)
Observe that the above curvature estimate fails to hold when the H-immersion is minimal and one-sided;
a counterexample can be constructed whenever a complete flat 3-manifold Y admits a complete, non-totally
geodesic, stable one-sided minimal surface without boundary; see Remark A.2 for examples. The next theorem
is an adaptation of (A.1) that includes curvature estimates for the case of one-sided minimal surfaces in Y; see
also [24, Corollaries 9 and 10].

Theorem A.1 (Curvature estimate for stable H-surfaces). There exists C > 27 such that, given Ky > 0 and a com-
plete Riemannian 3-manifold (Y, g) of bounded sectional curvature |K| < Ky, for any connected, immersed, one-
sided, stable minimal surface M + Y and for any p € M,
CII
N
min{Ian(p): dM (p: aM)

|Aml(p) < g (A2)

> 2\/ITO
Let Cs := max{Cy, Cl'}, where C/ is defined by (A.1). Given &y > 0 and K, > 0, if X is a complete Riemannian

3-manifold with injectivity radius at least €y and bounded sectional curvature |K| < Ko, and F: M + X is a stable

H-immersion, then
Cs

min{eg, dy(p, M), 9

Aml(p) < iy
2VKo
Proof. Clearly, the validity of (A.2) implies that (A.3) holds. Also observe that by Remark A.2, any C; > 0 that
satisfies (A.2) must be at least 277. In particular, Cs > 2. In fact, Cs > c; > 277; see Remark A.2.

We next prove the existence of a universal constant C} satisfying (A.2) by contradiction. Since (A.2) is
invariant under rescaling, by scaling the ambient Riemannian metric by @ we may assume that there exists
a sequence {M, + Y}, of one-sided, stable minimal surfaces with boundary, immersed in complete Riemann-
ian 3-manifolds (Y, g,) with absolute sectional curvature |Ky,| < 7%, and points p, € M, such that for all
neN,

. . 1
A, |(pn) - min{Injy, (pr), di, (P, M), 7} = . (A4)
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Consider the open geodesic disk D, ¢ M, of center p, and radius dy, (pn, 9Mp). Let p;, € D, be a maximum
of the continuous function

e 1
fai D =R, fa(0) = |Au, |(x) - min{Injy, (), dp, (x, 8Dy), E}‘

After passing to a subsequence, we can assume that one of the following three cases occurs for all n € IN:
(D min{Injy, (p;), dp, (P}, 0Dn), 3} = Ijy, (p7)-

(I min{Injy (p};), dp, (P> dDn), 3} = dp, (D}, ODy).

(IID min{Injy, (p;), dp, (P}, Dp), 1} = 1.

Suppose that case (II) holds. Since Injy, (py) > % [25, Lemma 2.2] implies that

e . . 1 . 1y . 1
the injectivity radius function of By, (p;, E) restricted to By, ( Pns §) is at least 3 (A.5)

Applying [25, Theorem 2.1] to the choices M = By, (p;, 1), A = %, @ = By, (p};, 75), Q(8) = By, (p};, 3), i = 5, we
conclude that every point x € By, (p;,, %) admits harmonic coordinates centered at x and defined on the geo-
desic ball By, (x, &) for some &y > 0 independent of x and n, and the metric g, is Cl%controlled in the sense of
Definition 2.2 in terms of a constant Q > 1 which is also independent of n € IN.

Let A = |Ap, |(pyy), which tends to co as n — oo because

1 . . a9
7 1Am,|(n) = faPr) 2 fa(pn) = 1. (A.6)

Define B}, = (By, (P, 15), A2&n). The sequence of 3-manifolds {B}}, converges C-® to R® with its standard
metric, and the harmonic coordinates in B}, centered at p;; converge as n — oo to the usual harmonic coordi-
nates centered at the origin.

Consider the sequence of immersed, one-sided, stable minimal surfaces

n = (B, (P 75 )- A28n) + Bh

Observe that the intrinsic distances in A, from p;; to the boundary of A, diverge to co. We claim that the A, have
uniformly bounded second fundamental form: Take x € By, (p;:, 11—0). Since x € D, because we are in case (III),
we have

. . 1 An
[Asg, |06) - min{Injy, (0, dp, (x, 8Dn), 5} = fa0) < fulph) = 5

or equivalently,
1

A, [(X) - min{lnjyn (x), dp, (x, dDy), %} <7 (A7)
Observe that Injy (x) > 1 by (A.5). Also, dp, (x, dDy) > % because X € By, (D}, 15), Bu, (P> 3) € D and by the
triangle inequality. Hence, the minimum in the left-hand side of (A.7) is at least %, from which we deduce that
|Aa,l(x) <4, and our claim is proved.

Therefore, after passing to a subsequence, the A, converge to a complete minimal surface S immersed in R3
with bounded second fundamental form; see the arguments at the beginning of Section 5.4 for details.

We claim that S is stable. If S is two-sided, this is standard; see, e.g., [25, p. 636]. We next give a different
argument that is valid regardless of whether S is one- or two-sided. Stability of S in the one-sided case amounts
to show that

1597 < [1vor (A38)

5 3
for every compactly supported smooth function ¢ € C§°(S) defined on the two-sided cover S of S that is anti-
invariant; see Definition 2.1. Given such a function @, we can view ¢ for n sufficiently large as a compactly
supported smooth function ¢, defined on the two-sided cover A, of A, that is anti-invariant, and thus, by the
stability of A, we have

[ 145, + Ricy; (Vo a2 < [1vgu? (9)

&, &,
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where Ric B denotes the Ricci curvature of B}, and N, is a unit normal vector to A in B).The cla convergence
of the metrics Apg,, to the flat metric on R® allows us to take limits in (A.9) as n — oo to obtain (A.8), and thus S
is stable.

The desired contradiction (which proves (A.2) in the case that (III) holds) comes from the fact that there are
no complete stable non-flat minimal surfaces in R3; see Ros [24, Theorem 8].

Next we will explain how to reduce case (I) to case (III). If case (I) holds, then we have Injyn (pp) < % Let
tin = 1/Injy, (p},). Define Y} = (Y, ujgn) and My = (Mp, u5gn)- Note that Injy: (p;;) = 1, the absolute sectional
curvature of Y isless than or equal to 772 /u? < 7%, which implies that we may use the upper estimate Ko = 7% (in
other words, (M {[ Y,’l) is a possible counterexample to (A.2) under the normalization introduced in the second

paragraph of this proof), and so 5 \71? = % Observe that (M}, ;) lies in case (IIT) because
0

dML(p;kp aM;[) = .Un dMn(p:lr aMﬂ) > 17

and so 1 1
min{Injy, (p}), dyg (P, OM}), z} - 2.
If we check that 1
(A sy |(p3) - min{Injy; (97), dag, (P, OMy), 5} — oo, w0

then we will find a contradiction as we did in case (III). To see this, observe that two times the left-hand side
of (A.10) can be written as

[Ap1(pp) = 1A [(Pr) - Injyr (Pr) = 1AM, [(Pr) - Injy, (Pr) = fa(pn) 2 1 — oo,

which finishes the proof in case (I). Similar reasoning reduces case (II) to case (III), which completes the proof
of Theorem A.1. O

Remark A.2 (Lower bound estimates for € and C!'). We claim that 7 and 27 are lower bounds for C} and C,
respectively. To see this, consider the Scherk doubly periodic minimal surface M(8) in R3, 0 < (0, 7], and
its non-orientable, embedded quotient surface M(#) with total curvature —2x in the flat quotient manifold
Y(0) = Té x R where Ty = R%/ Span{wi(6), w2(0)}, where

b1 1 b1 1
w1(9) = E(cos(e/zyo’ O)’ w2(6) = E(O’ sin(G/Z)’O)'

Here, the oriented cover M(8) of M(6) is conformally (C U {co}) \ {e*10/2} with Weierstrass data
idz

g(Z)ZZ, wzm.

Straightforward calculations show that, at z = 0 in (C U {oo}) \ {eﬂ'%} viewed as a point of M(6), the absolute
Gaussian curvature is given by |K|(0) = 16 and this point is the unique maximum of |K| on M(0). On the other
hand, the injectivity radius of Y(6) (at every point) equals ;77 Which has a maximum value of 2%& ato = 7.
Therefore, for any 0 € (0, %] we have

b
|Azi o] - INjyg) < [AT70 /0 [(0) - Inj = |4V2|— =27
M) ]y () M(n/2) Jy(r/2) Wi
Hence the constant Cy in the above theorem must be at least 27.
The standard fundamental region Q for H(%) in R3 is a vertical graph bounded by four vertical lines and

|401(0) - do(0, 9Q) = 4V2—— =271,

m
2V2
so the constant C} in (A.1) also must be at least 27z. In fact, Cl, can be seen to be strictly greater than 27 by
consideration of the intersection of M(6) with a ball of radius slightly larger than #2 Therefore, the constant Cs
given in the theorem above must also be greater than 2.
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Next consider the translational quotient of H of a helicoid in R3 such that H is an embedded, one-sided,
stable minimal surface in Y = R3/(1Z) with finite total curvature —27. Let p € H be any point on the axis of H.
Then -

1Azl - Injy < 1Au(p)I- Injy (p) = V215 = —=.
The slab-type region W of H bounded by two straight lines inside H at distance i apart is stable, and the function
p e W |Aw|(p)dw(p, W) has a maximum value at the mid point of the segment obtained by intersecting the
axis of H with W. Hence,
T
7

The above curvature estimates for ﬁ(%), Q, H and W lead us to ask the following question.

[Awl(p) - dw(p, OW) < [Awl(0) - di (0, 0W) = | V21 =

Question A.3. If M is a complete, one-sided, stable minimal surface in a complete flat 3-manifold Y, does the
following inequality hold?
[Am(p)| - Injy(p) <2 forallp € M.

More generally, does setting Cl/ = 277 work in Theorem A.1?
These questions are also motivated by the result by Ros [24] that the only complete non-flat stable minimal

surface in a quotient of R? by a rank one (resp. two) group of translations is a quotient of the Helicoid (resp.
quotients of the Scherk doubly periodic minimal surfaces) with total curvature —2s.

B Some results from another paper by the authors

In this section, we state, for the readers convenience, some results from [17] that we frequently apply in the
proofs of the present paper.

Proposition B.1 (Intrinsic monotonicity of area formula [17, Proposition 2.4]). Let Bx(xo, Ry) denote a closed geo-
desic ball in an m-dimensional manifold (X, g), where 0 < Ry < Injy(xo), and suppose that Kse. < a on Bx(Xo, R1)
for some a € R. Given Hy > 0, define

1 Hy .
%arccot(%) ifa>0,
Ro(a, Hy) = {1/Hy ifa=0 (if Hy = 0 we take R (0, 0) = c0) (B.1)

1 Hy . ., Ho
—— arccoth( — a < 0(if —= =1 we take Ry(a, Hy) = R
— arcco ( __a) ifa< (lf — 21w o(a, Ho) 00)

and let
r1 = ri(Ry, a, Hy) = min{Rq, Ro(a, Ho)}.

Suppose that M is a complete, immersed, connected n-dimensional submanifold of X and xo € M is a point
such that, when OM # @, then dy(xo, 9M) > Ry and the length of the mean curvature vector H of M restricted to
Byx (X, R1) is bounded from above by Hy. Then the following properties hold:

(1) If M is compact without boundary, then there exists y € M such that the extrinsic distance from xq to y is
greater than or equal to ri.

(ii) The n-dimensional volume A(r) of By(xo, 1) is a strictly increasing function of r € (0, r1].

(iii) For allr € (0, r1] when ry + oo or otherwise, for all r € (0, co),

wpre MHor ifa<o,
A(r) 2 L (B.2)
wprte T ot 2fardn) g 5 0,

where wy, is the volume of the unit ball in R" and, given a > 0, the function f,: [0, 1/+/a) — R is defined by

1 m
fa(t) = t_z[l ~tVacot(vat)], te [0, %)
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Corollary B.2 ([17, Corollary 2.6]). Let R1 >0, a € R and Hy > 0, and suppose that X is a complete Riemannian
m-dimensional manifold with injectivity radius at least Ry > 0 and Kgec < a. If M + X is a complete, non-compact
immersed n-dimensional submanifold with empty boundary and the mean curvature vector H of M satisfies
|FI | < Ho, then M has infinite volume.

Proposition B.3 ([17, Proposition 2.7]). Given Ry >0, a € R and Hy > 0, there exists ry = ry(R1, a, Hy) € (0, 1]
(here rq is given by Proposition B.1) such that, if X is a complete Riemannian 3-manifold with injectivity radius at
least Ry > 0 and Kgec < a, and if M + X is a complete, connected immersed surface with boundary, whose mean
curvature vector H satisfies |H | < Hy, then for all p € Int(M) we have

Area[By(p,1)] = 3r*  whenever 0 < r < min{ry, dy/(p, dM)}. (B.3)

Furthermore, given g, > 0 define
2

. ry
Cy = mm{eo, —}.
&o

Ifp € M satisfies dy(p, OM) > &, then
Area[By (p, du(p, 0M))] = Ca du(p, 0M) (B.4)

and
Area[Buy(p, €0)] = Ca&o, (B.5)

We finish this summary of auxiliary results taken from [17] with the following scale-invariant weak chord-arc
type estimate for branched minimal surfaces of finite index in R3.

Proposition B.4 ([17, Proposition 4.1]). Given I, B € N U {0}, let f: (X, po) + (IR3,6) be a complete, connected,
pointed branched minimal surface with index at most I and total branching order at most B. Given R > 0, let Qp
denote the component of f~'(B(R)) that contains po. Then the following scale-invariant estimates hold and depend
onlyonl, B:
(i) Foranyp € Qp,

do,(p, 0Qr) < LR, (B.6)

where

-~ 1
L= \j§(31+23+3).

(i) Iff is injective with image being a plane, then the distance between any two points of Qg is less than or equal
to 2R. Otherwise, given points p, q in Qp,
do,, (D, q) < CR, (B.7)

where .
C=C{,B) = 8L% + 2nL% - 20L - 2

In particular, Qg < Bx(p, CR) for every p € Q.
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