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“Geometric patterns have always had a particular appeal for

Muslim designers and craftsmen. They convey a certain aura of

spirituality, or at least otherworldliness, without relating to any

specific doctrine. In an Islamic context they are also quite free of

any symbolic meaning. Above all they provide craftsmen with the

opportunity to demonstrate his skill and subtlety of workmanship,

and often to dazzle and intrigue with its sheer complexity.”

Wichmann, B. and Wade, D. (1)

Geometric pattern photographed by the author,

at the Alhambra palace - July 2020.



ABSTRACT

Computational Intelligence can be defined as a collection of methods that solve

problems by means of intelligence, reasoning, and tolerance to imprecision. In this thesis,

Computational Intelligence techniques such as optimization metaheuristics, neural networks,

fuzzy logic, and bayesian inference are applied to solve inverse heat transfer problems. To

achieve this, five case studies with that aim are presented. The first study deals with the

problem of identification of contact failures in the bonding of different materials. This is

formulated as an Inverse Heat Conduction Problem and solved with an Artificial Neural

Network. The second one employs the Fuzzy Levenberg-Marquardt method with Tikhonov

Regularization in order to solve a combined conduction-radiation inverse problem. In the

third, the performance of the Topographical Global Optimization algorithm is compared

when initialized with two different point generators and finalized with two different local

search methods for the solutions of inverse heat transfer problems. The fourth study

presents a method to predict the optimal value of the Tikhonov’s regularization parameter

by solving simplified versions of the inverse problems considered, where tests are performed

on three function estimation inverse heat transfer problems. In the fifth study, the

formulation and solution of a bioheat transfer model of the brain containing a Deep Brain

Stimulation (DBS) lead is presented and, furthermore, this solution is used for solving an

inverse problem of determining the thermal and electrical conductivities of the brain tissue

using measurements supposedly obtained with a sensor inside the DBS lead. In conclusion,

this thesis shows the capabilities of various Computational Intelligence techniques in

solving inverse heat transfer problems. The results presented contribute to two main

categories: the field of inverse heat transfer, its applications in science and engineering; and

the development of efficient computational procedures based on Computational Intelligence

techniques.

Keywords: Inverse Heat Transfer Problem, Computational Intelligence, Optimization,

Neural Networks, Bayesian Inference, Fuzzy Logic.



RESUMO

Inteligência Computacional pode ser definida como uma coleção de métodos que

resolvem problemas por meio de inteligência, racioćınio e tolerância à imprecisão. Nesta

tese, técnicas de Inteligência Computacional, como metaheuŕısticas de otimização, re-

des neurais, lógica fuzzy e inferência bayesiana são utilizadas para resolver problemas

inversos de transferência de calor. Para isso, são apresentados cinco estudos de caso.

O primeiro estudo trata do problema de identificação de falhas de contato na união

de diferentes materiais. Isso é formulado como um Problema Inverso de Condução de

Calor e resolvido com uma Rede Neural Artificial. O segundo emprega o método Fuzzy

Levenberg-Marquardt com Regularização de Tikhonov para resolver um problema inverso

combinado de condução-radiação. No terceiro, o desempenho do método Otimização Global

Topográfica é comparado quando inicializado com dois geradores de pontos diferentes

e finalizado com dois métodos de busca local diferentes para as soluções de problemas

inversos de transferência de calor. O quarto estudo apresenta um método para prever o

valor ótimo do parâmetro de regularização de Tikhonov, resolvendo versões reduzidas dos

problemas inversos considerados, onde testes são realizados em três problemas inversos

de estimativa de função. No quinto estudo, é apresentada a formulação e solução de um

modelo de bio-transferência de calor do cérebro contendo um eletrodo de Estimulação

Profunda do Cérebro (DBS) e, além disso, essa solução é usada para resolver um problema

inverso de determinação das condutividades térmica e elétrica do tecido cerebral usando

medidas supostamente obtidas com um sensor dentro do DBS. Concluindo, esta tese

mostra as capacidades de diversas técnicas de Inteligência Computacional na resolução de

problemas inversos de transferência de calor. Os resultados apresentados contribuem para

duas principais áreas: o campo dos problemas inversos em transferência de calor, suas

aplicações em ciência e engenharia; e o desenvolvimento de procedimentos computacionais

eficientes baseados em técnicas de Inteligência Computacional.

Palavras-chave: Problema Inverso em Transferência de Calor, Inteligência Computacional,

Otimização, Redes Neurais, Inferência Bayesiana, Lógica Difusa.



RESUMEN

La Inteligencia Computacional se puede definir como una colección de métodos

que resuelven problemas mediante la inteligencia, el razonamiento y la tolerancia a la

imprecisión. En esta tesis, se aplican técnicas de Inteligencia Computacional, como

metaheuŕısticas de optimización, redes neuronales, lógica difusa e inferencia bayesiana,

para resolver problemas inversos de transferencia de calor. Para esto, se presentan cinco

estudios de caso con ese objetivo. El primer estudio se ocupa del problema de identificación

de fallas de contacto en la unión de diferentes materiales. Esto se formula como un problema

inverso de conducción de calor y se resuelve con una Red Neuronal Artificial. El segundo

emplea el método difuso de Levenberg-Marquardt con regularización de Tikhonov para

resolver un problema inverso combinado de conducción-radiación. En el tercero, se compara

el rendimiento del algoritmo de optimización global topográfico cuando se inicializa con

dos generadores de puntos diferentes y se finaliza con dos métodos de búsqueda local

diferentes para las soluciones de problemas inversos de transferencia de calor. El cuarto

estudio presenta un método para predecir el valor óptimo del parámetro de regularización

de Tikhonov resolviendo versiones simplificadas de los problemas inversos considerados,

donde se realizan pruebas en tres problemas inversos de estimación de funciones. En el

quinto estudio, se presenta la formulación y solución de un modelo de transferencia de calor

biológico del cerebro que contiene un electrodo de Estimulación Cerebral Profunda (DBS)

y, además, esta solución se utiliza para resolver un problema inverso de determinación

de las conductividades térmicas y eléctricas del tejido cerebral utilizando mediciones

supuestamente obtenidas con un sensor dentro del electrodo DBS. En conclusión, esta tesis

muestra las capacidades de varias técnicas de Inteligencia Computacional en la resolución

de problemas inversos de transferencia de calor. Los resultados presentados contribuyen a

dos categoŕıas principales: el campo de la transferencia de calor inversa, sus aplicaciones en

ciencia e ingenieŕıa; y el desarrollo de procedimientos computacionales eficientes basados

en técnicas de Inteligencia Computacional.

Palavras-chave: Problema Inverso en Transferencia de Calor, Inteligencia Computacional,

Optimización, Inferencia bayesiana, Lógica Difusa.
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INTRODUCTION

Motivation

Heat transfer is a fundamental mechanism of energy diffusion in several engineering

systems. This mechanism has already been studied for decades and has a strong theoretical

basis today. It represents a body of knowledge largely considered in the process of

manufacturing, design of equipment, cost effective operations in industries and even in

biotechnology, just to name a few.

The physical phenomena involved in heat transfer problems can be analyzed directly

or inversely. That is, when all causes and conditions are known, the temperature field in

the domain considered can be obtained by solving the mathematical model. This is the

so called direct analysis. On the other hand, when some conditions or properties of the

medium are unknown, such as thermophysical properties, boundary and initial conditions,

but experimental temperature data are available, it is possible to obtain estimates of these

unknown parameters and conditions through the formulation and solution of an inverse

problem (9, 10).

To obtain the solution of direct problems, many numerical and hybrid techniques

have emerged along the years, such as finite differences (11), finite elements (12), finite

volumes (13), hybrid integral transforms (14) and so on. On the other hand, obtaining

the solution of inverse heat transfer problems can present an increased computational

challenging due to some inherent complexities of this class of problems. One of the primary

challenges stems from the requirement of a high number of evaluations of the direct model,

rendering the problem computationally intensive. Additionally, inverse heat transfer

problems are often ill-posed, meaning that the solution may not be unique and stable.

To address this issue, regularization techniques are employed to introduce constraints

and stabilize the solution. Among many others, the techniques used to solve inverse

problems have also evolved throughout the last 60 decades, highlighting the advancements

in stochastic optimization methods, bayesian inference techniques, monte carlo simulations,

and others. In this context, a particular group of techniques known as Computational

Intelligence has been increasingly used in science and engineering.

The most common used definition of Computational Intelligence is described by
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Zadeh in 1994 (15), which states that the main objective of such group of techniques is

to explore the tolerance for imprecision and uncertainty of a given problem in order to

obtain low cost solutions within reasonable feasibility. Aligned with Zadeh, Verdegay et

al. (16) described this field as a family of problem-resolution techniques and methods

guided by the idea that real situations can be dealt as the same way as human beings deal

with them, i.e., “on the basis of intelligence, common sense, consideration of analogies,

approaches, etc”.

Another definition of Computational Intelligence is given by Li et al. in 1998 (17),

which states the following: “Every computing process that purposely includes imprecision

into the calculation on one or more levels and allows this imprecision either to change

(decrease) the granularity of the problem, or to “soften” the goal of optimalisation at some

stage, is defined as to belonging to the field of Computational Intelligence.”.

As it is possible to see, the definition of Computational Intelligence is not crisply

determined. Nevertheless, many commonalities can be found in the definitions given by

different authors over time, such as: The ability to treat, include, and deal with errors;

The criterium for what is the “best solution” may be intelligently loose; The feasibility,

tractability, and efficiency in the process of obtaining this solution as an objective of the

approach itself.

Objectives

Main objectives

With those concepts in mind, the main objective of this work is to use Computational

Intelligence concepts such as fuzzy logic, optimization metaheuristics, neural networks

and bayesian inference in order to find computational efficient solutions for heat transfer

problems, aiming at the solution of optimization and inverse problems, which often require

computationally intenstive iterative procedures.

To do this, a collection of case studies are presented. These studies involve the

development of new techniques as well as the use of methods never before tested in inverse

heat transfer problems. Each one of these studies are briefly described in the following

subsection, where each specific objective is presented, along with a short motivation and

highlights of the results obtained.
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Specific objectives

Artificial Neural Networks. In this case study, the estimation of defects

positioning occurring in the interface between two materials is performed by using an

Artificial Neural Network modeled as an Inverse Heat Conduction Problem. Identifying

contact failures in the bonding process of two materials is crucial in many engineering

applications, ranging from manufacturing, preventive inspection and even failure diagnosis.

This can be modeled as an Inverse Heat Conduction Problem in Multilayered media,

where thermography temperature measurements from an exposed surface of the media

are available. This study solves this inverse problem with an Artificial Neural Network

that receives these experimental data as input and outputs the thermalphysical properties

of the adhesive layer, where defects can occur. An Autoencoder is used to reduce the

dimension of the transient 1D thermography data, where its latent space represents the

experimental data in a lower dimension, then these reduced data is used as input to a

fully connected multilayer perceptron network. Results indicate that this is a promising

approach due to the good accuracy and low computational cost observed. In addition, by

including different noise levels within a defined range in the training process, the ANN

can generalize the experimental data input and estimate the positioning of defects with

similar quality.

Fuzzy Logic. The recently proposed Fuzzy Levenberg-Marquardt Damping Factor

Updating Strategy (FLM) is used along with Tikhonov Regularization (TR) in order to

solve a coupled conduction-radiation function estimation inverse problem. FLM consists of

updating the Levenberg-Marquardt (LM) damping factor with the assist of Fuzzy Logic. To

test the FLM algorithm combined with TR, a conduction-radiation problem is addressed,

and it serves as test bed to the numerical experiments, where the objective is to obtain

estimatives of parameters, such as the spatially variable scattering albedo, the thermal

conductivity and the optical thickness, simultaneously, which is often performed separately.

Two main test cases are presented in this investigation, one considering only the radiation

problem, used as benchmark, in order to investigate noise levels and hyperparameters.

The second main test case deals with the coupled conduction-radiation heat transfer

problem for different functional forms of the spatially variable scattering albedo. For all

presented numerical experiments, good estimates were achieved for the sought functions

and parameters. These results demonstrate that the methodology presented, through
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the combination of the Fuzzy LM damping factor updating strategy and the Tikhonov

regularization scheme, may provide valuable tools for inverse heat transfer problems.

Metaheuristics for Optimization I. In this investigation, the performance of

the Topographical Global Optimization (TGO) method is compared when initialized with

two different point generators and finalized with two different local search methods. Three

inverse heat transfer problems are the testbed for this comparison, where the number of

function evaluations necessary to reach a certain goal is the criterion used. In this context,

the main objective of this study is to address which combination is the most efficient.

To initialize TGO, points must be distributed in a search space, so we compared the

pseudo-random routine Mersenne Twister against the quasi-random Sobol Sequence. Then,

from these distributed points, TGO selects topographical minima to start a local search,

performed here with the Nelder-Mead and the Levenberg-Marquadt methods. Therefore,

four different combinations of TGO are tested, and the Wilcoxon Test is performed for a

more reliable and insightful comparison among them.

Metaheuristics for Optimization II. This case study presents a method to

predict the optimal value of the Tikhonov’s regularization parameter by solving simplified

versions of the inverse problems considered. This can be of great benefit since methods

such as the L-curve and the Fixed Point Iteration require the inverse problem to be solved

several times in order to determine the optimal value for the regularization parameter.

The main idea that supports the proposed approach is to solve the problem of interest

using a low set of dimensions to represent the function to be estimated and, then, this

solution is used to obtain an estimate for the regularization parameter of the complete

model, based on the Fixed Point Iteration method. Tests are performed on three inverse

heat transfer problems: estimation of the variable thermal conductivity of a biological

tissue, estimation of the inlet temperature in parallel plates channel, and the estimation

of the variable scattering albedo of a radiative transfer participating medium. The results

obtained demonstrate the feasibility of the technic in three problems with potential

practical applications in bioengineering, renewable energy and climate in alignment with

the Sustainable Development Goals (SDG) 3, 4, 7, 9, 13, and 17 of the United Nations

2030 Agenda established in 2015.

Bayesian Inference. The case study reported here intends to formulate and solve

a bioheat transfer model of the brain containing a Deep Brain Stimulation (DBS) lead and,
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furthermore, to use this solution for solving an inverse problem of determining the thermal

and electrical conductivities of the brain tissue using measurements supposedly obtained

with a sensor inside the DBS lead. Deep Brain Stimulation (DBS) is a well-established

neurosurgery that alleviates the symptoms of several movement disorders and other brain

related conditions. It works by placing a small lead containing electrodes inside the

patient’s brain and using them to electrically stimulate that area. Although this procedure

is very common, little is known about its physiological effects on the brain and, on top

of that, injuries caused from burning have been reported. The results revealed that it is

possible to estimate the both parameters especially when the measurements uncertainties

are relatively small.

Text organization

Initially, Chapter 1 presents a theoretical background related to themes of this thesis,

containing a brief description of direct problems, inverse problems, and Computational

Intelligence concepts.

The five case studies described in the previous subsection are presented as individual

Chapters in this thesis. Therefore, from Chapter 2 to 6, a work containing its own

introduction, methodology, results, and conclusions is presented.

Chapter 2 presents the estimation of defects positioning occurring in the interface

between two materials. In Chapter 3, the Fuzzy Levenberg-Marquardt is used to solve

a combined conduction-radiation problem. In Chapter 4, the Topographical Global

Optimization method is tested with three inverse heat transfer problems. Chapter 5

presents a technique to efficiently predict the optimal Tikhonov parameter with tests in

three also inverse heat transfer problems. Chapter 6 shows the formulation and solution

of a inverse bioheat transfer problem, where a Deep Brain Stimulation electrical heating is

studied.

Finally, conclusions and overall considerations are made in the last Chapter, where

some suggestions for future works are also presented. These final considerations are

pertinent to the thesis as a whole. The conclusions for the individual case studies are

presented in each respective Chapter.

Figures, tables and algorithms are numbered sequentially in the whole text, whereas

equations are numbered specifically within each Chapter, e.g., the third equation of



25

the fifth Chapter is Equation 5.3. Moreover, variables, symbols and acronyms are used

independently in each chapter. Even knowing that terms such as thermal conductivity k,

temperature T , and many others, appear to have the same meaning, it is important to

consider them individually in each of the chapters.
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1 THEORETICAL BACKGROUND

1.1 Direct and inverse heat transfer problems

There are three different modes of heat transfer: conduction, convection and

radiation. In conduction, the atomic and molecular activities of a medium is the source of

energy transfer. Higher temperatures are associated with higher molecular energies. This

energy is transferred from one molecule to its neighborhood via collisions and magnetic

forces and, in this scenario, a transfer of energy must occur from the more energetic

molecules to the less energetic ones. In convection, transfer takes place between a surface

and a fluid in motion, when both are at different temperatures. The last mode of heat

transfer is thermal radiation: energy emitted by matter at a temperature other than

absolute zero. This energy is carried by electromagnetic waves and, unlike conduction and

convection, it does not need a material medium to propagate (18).

When parameters of a medium of interest and its initial and boundary conditions

are known and, in addition, a mathematical model describing the system considering the

different forms of heat transfer or a combination of them is available, them it is possible

to determine the temperature field of this medium for a given time or position. This kind

of analysis is called a direct problem, where parameters and conditions are the input of

a model and the output is the physical quantity of interest, e.g., temperature, pressure,

radiation intensity, and so on. Figure 1 presents a schematic representation of a direct

problem. In this type of problem, the cause is known and its leads to the effect of the

problem by the solution of the mathematical model (9).

Figure 1 – Schematic representation of a direct problem.

Inverse problems involve estimating the cause from knowledge of the effect. If

some properties of a material – or parameters of a model in general – are unknown, but

experimental data of the response of this model are available, then the unknown parameters
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can be estimated through the formulation and solution of an inverse problem (9, 10, 19).

In Figure 2 a schematic representation of inverse problems is presented. In this kind of

problem, the input (known information) is the experimental data of the physical quantity

of interest, such as pressure, temperature, etc.

Figure 2 – Schematic representation of an inverse problem.

They can be formulated explicitly or implicitly. In inverse problems with explicit

formulation, the unknown parameters are estimated through a completely determined

expression. One example of such approach can be found in the work of Knupp and

Abreu (20), where they obtained a completely determined expression that yielded the

sought thermal flux. Nevertheless, it is not always possible to mathematically manipulate

the expressions in order to obtain the explicit solution, in fact, this can be considered

rare in problems dealing with partial differential equations. On the other hand, implicit

formulations are the most common approach and they can consider prior information

(priori) or not. For example, in the Bayesian approach, an attempt is made to use all the

information that is previously available for the unknown parameters and experimental

data, thus leading to a better evaluation of the estimated parameters uncertainty. However,

due to this need of prior information, which are not always available, a more traditional

approach can be used: the maximum likelihood approach, which results in the formulation

of an objective function to be minimized. This objective function is given by the sum of

the square of the residuals between the experimental data and the corresponding physical

quantity calculated by the direct model - the classical least squares functional.

1.2 Computational Intelligence concepts

In all these different types of inverse problems, one important factors is always

present: experimental data are imprecise, i.e., errors of measurements are always present

in the input. Therefore, the application of Computational Intelligence techniques is a
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viable way to deal with inverse problems due to its nature of dealing with errors. The

employment of efficient computational procedures to solve inverse problems must keep

two objectives in mind: to minimize the amplification of measurements errors and also

minimize the computational cost to obtain the sought solution - more often than not these

two objectives are not simultaneously achieved.

At this point, a more detailed description of the components that make up the range

of tools of Computational Intelligence must be presented. The field can be readily divided

in two main categories: Approximate Reasoning and Functional Approximation. These

are antagonistic concepts to the ones of Hard Computing of Logical Symbolic Reasoning

and Classical Optimization. Figure 3 presents a scheme of what fields are present in this

Computational Intelligence division (16). The components of Approximate Reasoning

reaches Probabilistic Models and Fuzzy Logic. The ones of Functional Approximations

and Optimization Methods covers Neural Networks and Metaheuristics, as portrayed in

Figure 3.

Figure 3 – Schematic representation of Computational Intelligence concepts

1.2.1 Neural Networks

Artificial Neural Networks (ANN) are computational processing structures inspired

by how brains work. The so called neurons are arranged in layers and, generally, there are

input, hidden, and output layers. In classical feed forward ANN’s, the information flows

from the input to the output, where linear and non-linear modifications are performed

(21).

Today, the success of such Machine Learning algorithm is outstanding. It has become

one of the most used algorithms used for classification, clustering, pattern recognition and

more, permeating the most diverse fields and disciplines and prediction in many disciplines
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(22). Accordingly to Dave and Dutta (23), 5 key criteria must be taken into account for

the proper use justification of a neural network:

• some kind of association has to be established within a set of patterns;

• the dataset is very large and diverse;

• number of variables is high;

• the relationships between variables need to be understood; or,

• the relationships are difficult to describe adequately with conventional approaches.

From these items, it is possible to conclude that the best use for neural networks

occurs in complex problems where there is some relationship between input and output

data. For this reason, the acquisition of training data with diversity and quantity must be

adequate for the non-linearity of the problem addressed.

1.2.2 Fuzzy Logic

Introduced in 1960’s by Zadeh (24), Fuzzy Logic and reasonig is a way of making

calculations considering degrees of truth. In other words, instead of using boolean

operations – yes or no, one or zero, etc – this kind of logic uses values between zero and

one in order to associate some classification (15).

One of the main characteristics of fuzzy techniques is the great ability to deal with

problems smoothly. That is, when a system requires decisions that are based on a certain

set of input parameters, these decisions can often become abrupt in its mathematical space

(25).

1.2.3 Metaheuristics for optimization

Metaheuristics methods to solve optimization problems have been around for roughly

fourty years. According to Osman and Laporte (26), metaheuristics can be defined as a

process “which guides a subordinate heuristic by combining intelligently different concepts

for exploring and exploiting the search space”. This definition holds two important aspects:

a script provided for methods to act together with a common goal and the intelligent

combination of features to reach this goal.
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This class of methods have increased in popularity and is now a well established

approach to solve efficiently many hard optimization problems (27). For example, three of

the most well known global optimization algorithms are the Differential Evolution (28),

the Particle Swarm Optimization (29), and the Simmulated Annealing (30) - which are

employed in the most diverse types of problems.

1.2.4 Probabilistic Models - Bayesian Inference

Probabilistic Models can be defined as any process that incorporate probability

as a calculation feature. For instance, in inverse problems, a Bayesian approach can be

classified as a type of probabilistic model.

In the Bayesian approach, all the avaible priori information for solving the inverse

problem must be used. This includes the modeling of the experimental error, the priori

likelihood distribution of the parameters of interest, among others (31).

In cases where the the parameters priori information can be modeled as a normal

distribution, an objective function to be minimized is defined. This approach is known

as Maximum a Posteriori. The posterior distribuition can be exactly obtained for linear

problems, but for non-linear ones, an approximation can be efficiently calculated with the

Gauss-Newton method (32).
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2 CONTACT FAILURE IDENTIFICATION IN MULTILAYERED

MEDIUM VIA SINGLE DOMAIN FORMULATION AND ARTIFICIAL

NEURAL NETWORKS

2.1 Introduction and background

Heat transfer in multilayered media is a phenomenon that can be fundamentally

important in different applications of science and engineering, such as manufacturing of

composite materials (33), oil and gas industry (34), thermal based health treatments (35),

aerospace engineering (36) and many others. More specifically, defect identification in

the process of bonding among different materials can be formulated as a multilayered

media and solved as an Inverse Heat Conduction Problem (IHCP), where estimating

the positioning of air gaps, oil bubbles, and cracks, usually is performed by estimating

thermophysical properties of the adhesive layer. Therefore, estimating heterogeneity in

this layer may be crucial to evaluate the bonding quality (37, 38, 39).

In classical approaches, IHCPs can be treated as optimization problems, where a

least squares functional must be minimized (9, 40), or as bayesian inference problems, such

as the Maximum a Posteriori and the Markov Chain Monte Carlo methods (41, 42). Since

these types of IHCPs formulations require intensive iterative procedures, many efforts

of the scientific community are focused on reducing the computational costs related to

techniques, algorithms and mathematical formulations (43, 44). Parallel to these efforts,

the use of computational intelligence emerged as a possible approach for solving IHCPs,

such as Genetic Algorithms (45, 46) and Artificial Neural Networks (ANN) (47, 48, 49, 50),

which are considered soft computing approaches, as opposed to classical ones.

The use of ANNs has been permeating the most eclectic types of applications, such

as engineering, financial analysis, image and speech recognition, medicine, among many

others. This success can be credited to several factors, one of them being the notable

improvements and developments of different ANN architectures, such as Autoencoders

(AE), Recurrent Neural Networks (RNN), Convolutional Neural Networks (CNN), Extreme

Learning Machines (ELM), and so on. The use of any of these architectures must take into

consideration its specific features along with characteristics of the problem being solved.

Recently, several of these architectures emerged as viable techniques for defect

characterization using IHCPs with infrared thermography. In 2019, Hu et al. (51) employed
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a long short term memory RNN for automatically classifying different types of common

defects occurring in honeycomb materials. Later, in 2020, Fang & Maldague (52) used a

Gated Recurrent Units (GRU) for depth prediction in composite material samples. Kaur et

al. (53) introduced a novel Constrained Autoencoder in order to reduce the dimensionality

of temporal thermographic images for defect depth estimation in steel plates in 2021. Also

in 2021, Marani et al. (54) used step-heating thermography combined with CNN in order

to describe defects in composite laminates. In 2021 again, Xu & Hu (55) performed defect

depth identification by using a method based also on GRUs.

Besides the cited innovation in networks architectures, the most widely used in the

field of heat transfer engineering is the simple feed-forward back propagation Multilayer

Perceptron (MLP). Indeed, this network has been proved to be a great general purpose

approximator in countless applications, but it lacks some advantages that a specific deep

neural network, such as CNNs, AEs, RNN and others may give.

In this context, AEs (or Replicator networks) are great tools designed for reducing

the dimension of any given data (21, 56). Such network have the input equal to the

output, but it main aspect is a bottleneck-like hidden layer (latent space) which is smaller

in dimension than the input-output. When properly trained, the original data can be

encoded into this smaller dimension latent space, then the information in this space can

be decoded back into the original information size. Furthermore, AEs can be specially

designed as a noise reduction network, also known as Denoising Autoencoders (DAE). This

can be performed by giving an noisy data as input, passing it through the latent space,

then outputting a noiseless version of that same data. If well trained, the information

stored in the latent space is an almost-noiseless representation of the original data.

In this work the IHCP of estimating the spatially varying thermal properties

of multilayered media is solved via an ANN, where the input data are temperature

measurements of a exposed surface and the output is a set of discrete points representing

the thermal properties of different materials. More specifically, we used an encode-decode

architecture, where the normalized experimental temperature and the thermal properties

are encoded separately with respectives AE, then the latent space of each one of them

are used as input and output, respectively, for the multi layer perceptron (MLP) neural

network. Although this approach imposes the training of three ANN (two AEs and one

MLP), which yields an extra computational cost when compared to a simple MLP, the use
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of the AE shows advantages such as the robustness to different architectures, as presented

in the obtained results.

In order to test this approach, the problem of contact failures identification was

chosen, where two materials are joined with an adhesive layer. Gaps of air can form in

this layer, meaning that the adhesion process is not perfect (37, 38, 39). Identifying the

thermal properties of this layer containing gaps is crucial to access the adhesion quality in

manufacturing and preventive maintenance.

In this work, the training data set is generated by solving the direct problem, i.e.,

the temperature profiles are simulated and obtained for different configurations of failures.

Furthermore, the temperature data containing simulated noise is used to train a DAE,

where its output is the noise free version of the same data. Due to its dimensionality and

noise reduction, this approach can greatly benefit the use of increasingly larger data, as

presented in the results. Also, some effort goes into fine tuning the parameters of the ANN

itself, such as transfer function, layer sizes, number of neurons, and so on. As mentioned,

this is where the encoded-decoded approach shows its promising characteristics, by yielding

robust results for different types of configurations.

2.2 Direct Problem Formulation and Solution

Consider the Lx × Ly multilayered rectangular medium presented in Figure 4

composed by three different layers. Such representation can model the bonding of two

materials, where Layer 1 and 3 are joined by an adhesive layer shown as Layer 2. In the

configuration of Figure 4, two defects are illustrated in the adhesive layer. Both left and

right boundaries are considered adiabatic, the constant heat flux q is prescribed at the

bottom boundary, and the top one is considered exposed, with ambient temperature of

T∞ and natural convection heat transfer coefficient h. Temperature measurements T exp

are acquired at the exposed boundary, i.e., y = Ly.

Using a single-domain formulation (39) and taking in consideration the mentioned

assumptions, the heat conduction problem can be written as

∂

∂x

(
k(x, y)

∂T (x, y, t)

∂x

)
+

∂

∂y

(
k(x, y)

∂T (x, y, t)

∂x

)
= ρ(x, y)cp(x, y)

∂T (x, y, t)

∂t
(2.1a)
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Figure 4 – Schematic representation of the multilayered medium.
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T (x, y, 0) = T∞ (1f)

where h is the convection heat transfer coefficient at the top boundary, and q is the

prescribed heat flux at the bottom boundary. The materials properties k(x, y), ρ(x, y),

and cp(x, y) are the thermal conductivity, specific mass, and specific heat, respectively.

These spatially dependent properties are modeled in such way to represent the different

materials of the multilayered medium. Furthermore, the initial temperature is considered

equal to the ambient temperature T∞.

If all the thermophysical properties and all the conditions and contact failures

geometries are known, the problem described by Eq. 2.1 can be solved yielding the

temperature profile T (x, y, t). In this work this solution is obtained by using the built-in

“NDSolve” routine of the Wolfram Mathematica 11.0 software. This routine is executed

with the Finite Element Method option and the mesh is generated with rectangular user

defined uniform cell size. This routine returns an interpolated temperature profile T (x, y, t)

for the whole Lx × Ly medium and for times ranging from t = 0 to t = tmax, which is a

prescribed maximum time instant.
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2.3 Inverse Problem Formulation

Consider that the materials of the multilayered medium presented in Figure 4 are

known, but the existence and position of possible defects in Layer 2 are unknown. In

this case, the inverse problem is formulated based on the assumption that Layer 2 is

composed entirely by adhesive or by adhesive with air gaps (defects). This leads to the

definition of an auxiliary function γ(x) which represents the thermal properties k(x, y)

and ρ(x, y)cp(x, y) of Layer 2, defined as

γ(x) =
ϕ(x)− ϕgap

ϕlayer − ϕgap

(2.2)

where ϕ(x) is the related thermophysical property, that is, the thermal conductivity k(x, y)

or the volumetric heat capacity ρ(x, y)cp(x, y), of Layer 2 materials. Assuming that there

is no variation in the y direction within the materials of Layer 2, γ(x) is considered only

as an x variable function. Also, the subscripts “gap” and “layer” represent the related

material thermal properties. The function γ is used algorithmically as a way to translate

the thermal properties to the spatial dependent boolean function “gap, no-gap”, “0” or

“1”, respectively. Furthermore, γ can be reversely translated to the thermal properties

k(x, y) and ρ(x, y)cp(x, y) of Layer 2, since the values ϕgap and ϕlayer are known.

In order to obtain estimates of the gaps positioning in Layer 2, an ANN is used to

represent the inverse model, i.e. the network receives temperature experimental data as

input and outputs a vector representing discrete points of the auxiliary function γ(x).

Experimental Data. In order to simulate real measurements of temperature, the

experimental data is computationally generated, where random numbers r drawn from

a normal distribution centered at zero with known standard deviation σexp are added to

solution of the direct problem, i.e.,

Ti,j = T (xi, Ly, tj) with i = 1, 2, ..., N, j = 1, 2, ...,M (2.3a)

T exp
i,j = Ti,j + r, r ∼ N(0, σ2

exp), with i = 1, 2, ..., N, j = 1, 2, ...,M (2.3b)

where xi represents the positioning of temperature acquisition along the x coordinate with

the total number of N points, and tj the time instants with total number of M levels.
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Therefore, the total number of experimental data considered is Nexp = N ×M .

2.4 Inverse Problem Solution with Artificial Neural Networks

As previously mentioned, the IHTP of this work has the objective of estimating

the positioning of gaps that can occur in Layer 2 of the medium (see Figure 4). This task

is performed by estimating discrete points of the auxiliary function γ(x): this is the ANN

output. The input consists of transient temperature measurements that are encoded into

a latent space of an AE, which is used with the purpose of reducing the dimension and

noise on the experimental data. This latent space serves as the input to a fully connected

MLP network that yields another latent space of the same size of the first one. This last

latent space is then decoded to a full representation of the auxiliary function γ. With

this approach, both latent spaces are used as input and output, respectively, to the fully

connected MLP neural network.

In the following subsections, the two AEs and MLP construction are explained and

detailed. Firstly, the temperature and γ AE are presented. Next, the complete network

architecture is showcased. Lastly, general aspects necessary to build the network and the

simulated data set are shown.

2.4.1 Autoencoders

2.4.1.1 Temperature Autoencoder (T-AE).

Consider the AE structure presented in Figure 5. The input A is fully connected

to one hidden layer, represented by HA, which is the latent space. Then HA is fully

connected to the output Â. These connections are all modified by weights, biases, and

activation functions.

As presented in Figure 5, the AE input A and output Â are normalized versions of

Texp and T, respectively (see Eq. 2.3). The components of A are the normalized version

of Texp, and the ones for Â are the normalized version of T, both ranging between −1

and 1. These linear normalizations are performed with limits of Tmin and Tmax, which

are the minimum and maximum exact temperature values of the entire training set (see

subsection entitled General Aspects of the Artificial Neural Network for details).

The T-AE implemented in this work has only one hidden layer, which is the
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Figure 5 – Schematic representation of the Temperature Denoising Autoencoder.

latent space itself, but in some cases, AE’s can have many hidden layers as the problem

requires. Using the architecture with the single hidden layer, tests with different simulated

experimental data led to good approximations, making the increased network with more

layers unnecessary.

Choosing the latent space HA dimension is crucial to a good performance of the

AE. If too small, some information will be lost, leading to a poor representation of the

temperature data. On the other hand, if its dimension is too large, training requires more

examples and the problem can become less efficient overall. Therefore a comparison of

different HA dimensions is performed in this work.

2.4.1.2 Adhesive Layer Properties Autoencoder (γ-AE).

The adhesive layer thermophysical properties is represented by the auxiliary function

γ(x), which ranges from 0 to 1. The profile of this function represents different material

properties and its behavior indicates where there are gaps in the layer.

As presented in Figure 6, this second AE is used to represent γ and has input G,

output Ĝ and latent space HG. The input G is composed by discrete points used to

represent γ across the x direction. Ĝ is the exact representation of G, therefore, they are

trained to be equal. The latent space HG dimension is chosen to be equivalent as HA,

i.e., equal to the T-AE latent space dimension.

It is important to note that this Adhesive Layer Properties AE has to encode

less information than the T-AE presented, since it has only to output 0 or 1, so tests
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Ĝ

Figure 6 – Schematic representation of the Adhesive Layer Properties Autoencoder using
the Auxiliary Function γ(x).

with dimensions smaller than the T-AE size yielded good results, which is expected.

Nevertheless, in this work the choice of maintaining both latent space sizes equal is kept.

2.4.2 Final Artificial Neural Network Model

In order to transform HA into HG, a fully connected MLP is used, i.e., this network

model has to translate latent spaces information from temperature measurements to the

adhesive layer properties in terms of γ(x). Therefore, HA and HG are the input and

output to the MLP, respectively, where hidden layers are connected and the information

passing is modified by weight, biases and activation functions.

The final ANN architecture is displayed in Figure 7, where it is possible to see the

normalized experimental temperature input A. This input is encoded into Ha, which is

then passed and transformed into HG to finally be decoded as Ĝ. With this approach the

actual γ(x) estimation process utilizes only machine information, which is an advantage

to obtain more robust models. Also, it is important to note that such network model

allows to an increased dimension of the temperature input data, which is desirable with a

transient problem. To illustrate this aspect of the ANN model, different time instants are

considered and compared in this work.

The training of the Fully Connected MLP in Figure 7 is performed by using the

same training set that trained all the other models. To perform this task, firstly, the two

AE’s must have been properly trained. Then, all the experimental temperature of the

training set is encoded into HA and all the respective discretized γ(x) profiles are encoded

into HG. With this, the pairs HA → HG are assembled and the model can be trained.
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ĜA Fully Connected MLP

T-AE Encoder γ-AE Decoder

Figure 7 – Schematic representation of the complete network model.

2.4.3 General Aspects of the Artificial Neural Network

To build the training data set for the three ANN, a list of input-output pairs is

necessary. One training pair for the T-AE is composed by the rule A → Â, which are

the normalized versions of the experimental data Texp and the exact temperature data

T, respectively. Similarly, the material property AE uses the pair G → G, which is the

discrete representation of the exact γ used to generate that particular T and Texp. After

completing the training of both AE’s, the set for the MLP can be build with input HA

and output HG by using the two AE’s to translate the original training set into the related

latent space.

To build this training data set, the direct problem is solved with a given random

thermophysical properties profile for Layer 2 containing gaps, which is represented as the

auxiliary function γ. Furthermore, it is important to follow some criteria that represents

the physics of the problem in order to avoid unnecessary computations (50). In this work,

the training data set is built by assuming that:

• There is a maximum number of gaps in Layer 2, i.e. Ngap = 1, 2, ...,Mgap;

• There is a minimum gap size, namely Lmin;

• The gaps only occur in the region of xmin ≤ x ≤ xmax, where xmin and xmax are

chosen to avoid gaps being too close to the boundaries.

• The T-AE and final MLP dataset are composed of multiple copies of the original

set, with each one containing different level of noise for Texp.

These rules are a way to generate meaningful information to the ANN model. For

example, if the gap is too narrow, it will not influence the temperature on the exposed
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surface of the medium, specially considering experimental noise. Furthermore, the last

rule is included in order to generalize the noise reduction aspect of the T-AE, by giving

different noise levels in the data set.

2.5 Results and discussion

2.5.1 Direct Problem Solution

Considering a steel plate for Layer 1, adhesive for Layer 2, composite protection for

Layer 3 and air as the inclusions in the possible defects (gaps), the respective thermophysical

properties used are displayed in Table 1.

Table 1 – Thermal Properties for the Multilayered Medium

Layer k [W/mK] ρcp [MJ/m3K]
1 13.400 3.860
2 0.700 1.750
3 1.171 2.650

Gaps 0.0263 1.170

Furthermore, to obtain the results of the direct problem, the prescribed heat flux,

the natural convection coefficient, and the ambient temperature are defined as q = 10000

W/m2, h = 15.0 W/m2K, and T∞ = 20.0 °C, respectively. The medium dimensions are

defined as Lx = 0.2 m and Ly = 0.071 m, and Layer 2 is vertically positioned in the range

0.05 ≤ y ≤ 0.051 m.

2.5.2 Training, Validation and Testing Sets Generation

All the training and validation data are generated with 1, 2 or 3 gaps in Layer

2, i.e. Mgap = 3. For each particular number of gaps, 2000 randomly positioned gaps

configurations are used to obtain the respective transient temperature profile, yielding a

total of 6000 direct problem evaluations. The training and validation data are then split

into a 90% to 10% relation, respectively. Therefore, from this total set, 5400 are used for

training and 600 for validation.

To build the simulated experimental data used for the training process of the T-AE

and the MLP, four levels of random noise are considered for σexp, they are 0.05 °C, 0.1
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Table 2 – Time Instants and number of temperature data used.

M Time Instants Data Size
M = 3 600 s, 800 s, 1000 s 963

M = 5
600 s, 800 s, 1000 s,

1200 s, 1400 s
1605

M = 7
600 s, 800 s, 1000 s,

1200 s, 1400 s, 1600, 1800 s
2247

°C, 0.15 °C and 0.20 °C (see Eq. 2.3b). This type of measurement is typically obtained

via infrared thermography techniques (57). Hence, four sets of 6000 input-output pairs

compose the final training data, yielding 24000 examples (21600 for training and 2400 for

validation). It is important to notice that the γ-AE training is performed with the original

6000 auxiliary function profiles.

The testing data is generated similarly to the training and validation set. It is

composed of 150 random positioned defects (50 for 1, 2, and 3 simultaneous failures). The

same noise levels are considered, therefore the original 150 data is copied yielding 600

examples for the T-AE and MLP testing - the γ AE keeps the original 150.

In order to illustrate how efficiently the AE can store information in its latent

space, the results of this work compares three problems with different time instants for

the measured experimental data. For M = 3 time instants, 600 s, 800 s, and 1000 s are

considered, for M = 5, 600 s, 800 s, 1000 s, 1200 s and 1400 s, and lastly, for M = 7, the

instants range from 600 s to 1800 s in steps of 200 s. For every instant, N = 321 points in

the x coordinate are considered. So, for problems with 3, 5 and 7 time levels, the ANN

must deal with a input of 963, 1605 and 2247 data, respectively. These time instants and

total amount of input data are displayed in Table 2.

It is important to notice that the model proposed in this work considers increasingly

time levels of physical experiment. In other words, for M = 3, M = 5 and M = 7, the

final time of temperature acquisition is 1000 s, 1400 s and 1800 s, respectively. Therefore

there is a trade off between amount of data and temporal information available. At the

lower spectrum, for M = 3, less temperature readings are used, making the model training

and configuration more efficient. On the other hand, for M = 7, the larger data set can

contain useful transient information of the problem, in exchange of training and model

configuration efficiency. Hence, M = 5 can be considered as the middle point of the two

mentioned.
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The exact maximum temperature values necessary to normalize the training data

set between −1 and 1 are different for the sets with 3, 5 and 7 time instants, they are:

35.5718 °C, 47.8281 °C and 60.5670 °C, respectively. The minimum temperature obtained

is equal for the three sets, with value of 21.1653 °C, which occurs for t = 600 s.

2.5.3 Temperature Autoencoder Results

The T-AE implementation is performed using the Keras library, from Python 3.9

programming language. The Logistic Sigmoid activation function is selected for the hidden

layer and the output layer is kept as linear. The Adam optimizer is selected as implemented

within the Keras library and the Logarithmic Hyperbolic Cosine (log-cosh) is chosen as

the loss function. Such function has the advantage of being totally differentiable, with a

L2 norm behavior for small values of its argument, and as L1 for larger values (58).

Early Stopping is selected as the stopping criterion. When the minimum loss

function value found during training for the validation set does not change for 200 epochs,

the iterative procedure is stopped. Then, the weights and biases obtained for the best

epoch are used. This approach avoids over fitting of the training data (59). Furthermore,

the maximum number of epochs is set to 6400, but none of the configurations tested

reached that value. Finally, the batch size selected is 256, which is a relatively large size,

but results have shown to be a good compromise between quality and speed of training.

In Table 3 the results obtained for the T-AE withM = 3 time instants are displayed

for different latent spaces dimensions, namely “AE dim” column. The table displays the

Validation and Testing Mean Squared Errors obtained (MSE), along with the number of

Training Epochs needed for that particular result. The result displayed as “Max. error”

represents the maximum relative temperature error. This error is obtained with the

following expression

Max. error = max

(∣∣∣∣∣ T̂i,j,k − Ti,j,kTi,j,k

∣∣∣∣∣
)
× 100 (2.4)

where T̂ and T are the denormalized T-AE output and exact temperatures, respectively,

both obtained for each testing data k, time level j and point in space i.

As it is possible to see in Table 3, the AE dimensions such as 20, 40 and 60 generated

the worst MSE results for the validation and testing set. Nevertheless, it is possible to
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Table 3 – Temperature Autoencoder (T-AE) MSE results for 3 time instants and different
Autoencoder (AE) dimensions

AE dim. Val. MSE (106) Test MSE (106) Max. error % Epochs
20 25.170385 24.700969 1.021519 1314
40 14.667914 14.616520 0.881631 1126
60 10.545812 10.572952 0.673743 1021
80 7.853343 7.673714 0.543680 1875
100 8.831671 8.996550 0.544467 1217
120 8.089550 8.317249 0.594848 1295
140 7.684247 7.809486 0.542980 1583
160 8.395999 8.263888 0.516542 1027

notice that, with the exception of the AE with 20 dimensions, every configuration yielded

a maximum error lower than 1%. Here is also possible to see that, in general, the epochs

necessary to reach the stopping criterion ranges from 1021 to 1875, which can be considered

a relatively low discrepancy. From the Test MSE criterion, the best configuration was the

80-dim AE. Here it is important to note that the MSE metric tends to increase larger

errors, due to its squared argument. This is a desirable feature for comparing different

ANN configurations, the best networks tend to have small and low discrepancy among

them, whereas the worst configurations will generate larger values with higher discrepancy

among themselves.

The T-AE results for M = 5 and M = 7 time instants are presented in Table 4

and Table 5, respectively. For both results it is possible to see that the validation and

testing MSE tends to decrease as the AE dimension increases. For M = 5, the maximum

error values are also lower than 1% with exception of the 20-dim AE, which is not true for

M = 7, since only the dimensions 120, 140 and 160 generated lower than 1% maximum

relative errors. This can be explained in the light of the amount of data considered for

7 time instants and their range, i.e., since all the data is normalized between -1 and 1,

the more information one fits inside this range, the more difficult becomes to the network

train with efficiency. Nevertheless, the lowest validation and testing MSE generated the

lowest maximum relative error for M = 7 (120-dim: 4.08, 3.97 and 0.63%).

2.5.4 MLP Results

To construct the complete ANN architecture, it is necessary to specify the elements

for the MLP and γ-AE. Firstly, the activation functions for γ-AE latent space and output



44

Table 4 – T-AE MSE results for 5 time instants and different AE dimensions

AE dim. Val. MSE (106) Test MSE (106) Max error % Epochs
20 31.454491 30.781830 2.285817 1182
40 9.214962 9.460896 0.984900 2242
60 5.495272 5.311201 0.602837 1664
80 5.777369 5.447388 0.769883 1185
100 5.811261 5.820386 0.725761 774
120 4.109372 4.142637 0.532461 1481
140 4.518737 4.532548 0.600322 1157
160 3.567894 3.335813 0.564507 1095

Table 5 – T-AE MSE results for 7 time instants and different AE dimensions

AE dim. Val. MSE (106) Test MSE (106) Max error % Epochs
20 32.861363 32.541317 2.374726 2217
40 9.426475 9.157836 1.144972 2459
60 10.696455 9.888308 1.453967 921
80 8.383932 8.169459 1.184161 892
100 6.024927 6.137550 1.347719 659
120 4.084239 3.969270 0.632970 938
140 4.491201 4.456416 0.728079 932
160 4.480562 4.385102 0.735544 732

layer are the ReLU and Logistic Sigmoid functions, respectively. Since γ-AE outputs the

auxiliary function, which ranges between 0 and 1, the Logistic Sigmoid is a reasonable

choice that acts similar to a filter, limiting the output values inside that range and,

furthermore, results with a linear output yielded undesired oscillations around the exact

value. Regarding the loss function for training, the Binary Cross Entropy was selected,

which have a good behavior for optimizing values that can be either 0 or 1. Secondly, the

MLP is composed of four hidden layers, with the Hyperbolic Tangent (tanh) activation

function for each and linear output layer. It is important to note that the MLP input and

output sizes are equal as the latent spaces of both AE’s, as previously mentioned. The

output layer activation is linear and the loss is calculated using the log-cosh functional.

Other activation functions such as ReLu, Leaky ReLU and Logistic Sigmoid were tested

for the hidden layers, but the best result (including faster training) were obtained with

the tanh function. The stopping criterion for training for both γ-AE and MLP is similar

as the T-AE, after 200 epochs with no improvements on the validation set loss function

ADAM optimizer iterative process stops.

Table 6, Table 7 and Table 8 present the MSE between the exact discretized γ
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profile and the respective ANN final output for different MLP sizes (number of neurons

per hidden layer). Therefore these “Test MSE” results compares the decoded γ-AE output

obtained from the MLP output, which MSE error is displayed as “Test HG”.

In Table 6 the results for M = 3 time instants are displayed, which were obtained

with the 80-dim T-AE (therefore the γ-AE is also used with 80 dimensions). Similarly,

Table 7 and Table 8 show the results for 5 and 7 time instants, with T-AE of 160-dim and

12-dim, respectively.

In Table 6, for M = 3, the MLP size that yielded the lowest γ MSE was the one

with 200 neurons per hidden layer. Nevertheless, the 80 MLP size, which is equal as the

used T-AE and γ-AE for this problem, generated the second best result. As it is possible

to see, the epochs used for training decreases as the MLP size increases, which is indication

that overfitting was avoided. Another important aspect to observe is that the best HG

MSE was not observed for the same MLP size as the best γ MSE, which indicates that

the γ-AE accepts small differences in the latent spaces elements in order to decode it into

the same output.

For M = 5 and M = 7 in Table 7 and Table 8, the best found MLP size was the

one with 40 neurons per hidden layer. Similarly to the results in Table 6, the training

epochs needed also decreases when the MLP size increases, and the best HG MSE was

not observed for the best γ MSE. It is worth noting the the respective best γ output MSE

for 3, 5 and 7 time instants were 0.01396935, 0.01423047 and 0.01425704, respectively,

indicating that the problem considering 3 instants generated the lowest error. Nevertheless,

the three results are relatively similar.
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Table 6 – MSE for M = 3, 80-dim AE, and different MLP sizes

MLP size Test MSE (102) Test HG MSE (102) Epochs
40 1.497972 0.108321 1947.0
80 1.421108 0.090003 1442.0
120 1.533937 0.108943 1107.0
160 1.492982 0.104258 828.0
200 1.396935 0.102659 723.0

Table 7 – MSE for M = 5, 160-dim AE, and different MLP sizes

MLP size Test MSE (102) Test HG MSE (102) Epochs
40 1.423047 0.069287 3382.0
80 1.569511 0.068726 993.0
120 1.490072 0.070474 720.0
160 1.462179 0.068498 612.0
200 1.513545 0.070189 549.0

Table 8 – MSE for M = 7, 120-dim AE, and different MLP sizes

MLP size Test MSE (102) Test HG MSE (102) Epochs
40 1.425704 0.119196 2818
80 1.486218 0.117148 904
120 1.647438 0.129891 667
160 1.595111 0.129822 628
200 1.539906 0.125107 558
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2.5.5 Detection of Contact Failures

The auxiliary function γ estimation using the best ANN obtained in Table 6, Table

7, and Table 8 are presented in this subsection. To illustrate how the model can generalize

the input data with different noise levels, the results are considered for σexp of 0.1 °C and

0.2 °C.

In order to illustrate the T-AE noise reduction capability, the comparison among

simulated experimental temperature data, the denormalized T-AE output, and the exact

temperature is displayed in Figure 8a, Figure 9a, Figure 10a, Figure 11a, Figure 12a,

and Figure 13a for different contact failures configurations. The simulated experimental

temperature is generated with noise level of σexp = 0.2 °C and M = 3 (three time

instants). The T-AE output is obtained with the 20-dim latent space configuration. In

such figures, the γ(x) presented indicates the exact auxiliary function profile used to obtain

the temperature displayed above each one. For the sake of visualization, the results with

T-AE’s of 5 and 7 time instants are not displayed.

Although the noise level of σexp = 0.2 °C was the largest used in training, the

approximation between the exact temperature profiles and the denormalized T-AE output

is excellent, as it is possible to see for every configuration with one (Figure 8a and Figure

9a), two (Figure 10a and Figure 11a), and three (Figure 12a and Figure 13a) contact

failures. This indicates that the AE has good dimensionality reduction qualities and it can,

indeed, be used as a feature extractor tool, which stores the most important information

necessary to reconstruct the temperature data without noise in the latent space.

Figure 8b and Figure 9b presents the results for 1 single contact failure, being

one small and one large, respectively. Both results shows a good approximation of the

estimated γ profile with the exact one. The small gap in Figure 8b has 10 mm, which

should be the hardest to detect due to lack of sensitivity, and shows very reasonable fit

for all time instants considered. Therefore, this configuration with only one gap can be

considered the easiest to estimate.

Now considering two defects in Layer 2, the results are presented in Figure 10b and

Figure 11b for two small gaps and for one small and one large gap, respectively. Results in

Figure 10b shows two small gaps of 10 mm length and separated by another 10 mm. This

configuration show very good results for M = 5 and M = 7 time instants, for both noise

level considered. Although the results for M = 3 are good, some undesired oscillation in
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the second gap is found. For one small and one large gaps, the results presented in Figure

11b shows very good agreement to the exact values, considering that they are more far

apart from each other. The large gap has 30 mm in length and the small 10 mm.

Finally, the results considering three gaps in Figure 12b and Figure 13b. The

former is composed of three small gaps, and the latter with two small and one large. These

configuration are the most difficult to estimate, due to the increase non-linearity of the

problem: it makes the AE’s work harder to extract more information from the temperature

data. All the gaps in Figure 12b have 10 mm of length and are separated by 20 mm

intervals. Here the agreements of results with exact values are not exactly centered, but,

nevertheless, the three gaps positioning is well identified. Specially considering the result

with M = 5 and 7, which generated less oscillations. For two small and one large gaps,

the results showed some difficult in estimation. The best agreement is obtained for M = 3

for both noise levels, as indicated by results in the subsection entitled MLP Results. In

this configuration, the model for M = 5 presented some oscillations. Results with M = 7

found the correct positioning of the two small gaps, but not the right size of them by

estimating larger defects than the exact ones.
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(b) Estimated γ(x) comparison for one small contact failure considering M = 3,
5, and 7 and noise levels of σexp = 0.1 °C and 0.2 °C.

Figure 8 – T-AE output (a) and γ(x) estimation (b) for one small contact failure
configuration.
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(b) Estimated γ(x) comparison for one large contact failure considering M = 3,
5, and 7 and noise levels of σexp = 0.1 °C and 0.2 °C.

Figure 9 – T-AE output (a) and γ(x) estimation (b) for one large contact failure
configuration.
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(b) Estimated γ(x) comparison for two small contact failures considering M =
3, 5, and 7 and noise levels of σexp = 0.1 °C and 0.2 °C.

Figure 10 – T-AE output (a) and γ(x) estimation (b) for two small contact failures
configuration.
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(b) Estimated γ(x) comparison for one small and one large contact failures
considering M = 3, 5, and 7 and noise levels of σexp = 0.1 °C and 0.2 °C.

Figure 11 – T-AE output (a) and γ(x) estimation (b) for one small and one large contact
failures configuration.
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(b) Estimated γ(x) comparison for three small contact failures considering
M = 3, 5, and 7 and noise levels of σexp = 0.1 °C and 0.2 °C.

Figure 12 – T-AE output (a) and γ(x) estimation (b) for three small contact failures
configuration.
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(b) Estimated γ(x) comparison for one large and two small contact failures
considering M = 3, 5, and 7 and noise levels of σexp = 0.1 °C and 0.2 °C.

Figure 13 – T-AE output (a) and γ(x) estimation (b) for one large and two small contact
failures configuration.
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The computational times necessary for this investigation can be divided into three

categories: training data generation, training of the models, and activation of the neural

network. The system used to perform all executions is equipped with a AMD Ryzen™ 5

4600H processor, GeForce® GTX 1650 graphics processor, 8GB of RAM, and Microsoft

Windows 10 operational system. Some aspects of computational times for each of the

mentioned categories are the following:

• The training data generation is the most intensive computational task of this work.

The time necessary to evaluate sequentially the 6000 different direct problem solutions,

as described in the subsection General Aspects of the Artificial Neural Network, was

15.6 hours. Although this task was performed sequentially, it has a fixed number of

iterations and can be easily parallelized in order to reduce this computational time.

• The computational times spent to train the neural networks are varied, given the

different architectures and networks types. For the sake of illustration, the training

of MLP’s with 160 and 200 neurons per layer of M = 7 time instants took 3 minutes

and 22 seconds, and 2 minutes and 57 seconds, respectively, with both using 628

and 558 epochs to reach the stopping criterion - see Table 8.

• The computational cost of performing the final estimation of γ(x) with the three

networks is the main motivation for using the approach proposed. For instance, the

estimation for M = 7 and σexp = 0.1 °C, as presented in Figure 9, takes an average

of 0.113 seconds.

2.6 Conclusions

The present work used an ANN in order to estimate the positioning of defects

that can occur in the bonding between two materials. To reduce the dimension of the

1D transient thermography experimental data, an AE was used. Different configurations

of AE were tested considering data from 3, 5 and 7 time instants, which corresponds to

963, 1605 and 2247 temperature readings, respectively. The main aspects of the proposed

approach for solving the defect positioning estimation problem may be summarized as the

following items:

• Speed of estimation. When compared to classical approaches such as Maximum

Likelihood or Bayesian Methods, the use of ANN’s for estimating parameters of
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the physical problem has a great advantage in computational efficiency. Usually,

such classical methods have cumbersome iterative processes that are not practical in

some real scenarios. On the other hand, the estimation with ANN’s can instantly be

obtained.

• Reduced dimensions of temperature data. Since the problem solved in this work is

transient, several time instants must be included as the ANN input. This work

deals with this problem by encoding such transient temperature profiles in order

to facilitate the work of estimating failures. Thus, the reduction in dimension was

necessary to extract important features of the noisy data and work with a manageable

ANN.

• Increased estimation resolution Since an AE is also used to reduce the dimension

of the output, a larger amount of points can be used to represent the varying

thermophysical properties of the adhesive layer.

• Fixed computational cost for training data generation. Each training data is generated

by solving the direct problem once. Therefore, the amount of examples needed to

train the model is generated only once. For every result presented in this work, the

same 6000 direct problem solutions were used.

Moreover, further investigations must continue in two main subdivisions: Validation

of the proposed ANN model with real experimental data, and construction of a ANN

model that considers the complete 2D transient thermography image as experimental

data.
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3 FUZZY LEVENBERG-MARQUARDT DAMPING FACTOR UPDATE

STRATEGY AND TIKHONOV REGULARIZATION APPLIED TO A

COUPLED CONDUCTION-RADIATION INVERSE HEAT TRANSFER

PROBLEM

3.1 Introduction

Theoretical and experimental studies of participating media that interact with

thermal radiation have a considerable range of investigations and applications in science

and engineering. For instance, areas such as fire safety (60), dispersed media materials

characterization (61, 62), oceanography (63), astronomy (64), are examples of works that

consider this type of phenomenon. These are examples of studies that consider radiative

transfer as the main form of energy transfer, which may be satisfactory, but sometimes,

depending on the problem, conduction and convection mechanisms must be considered.

Physical models that consider combined conduction and radiation heat transfer

have also a wide range of applications in science and engineering. For example, considering

a solar energy engineering application, Mohan et al. (65) have shown that a conduction-

radiation model was sufficient to describe the heat loss in Linear Fresnel Reactors. In

bioengineering, Sukumar and Kar (66) used a coupled conduction–radiation model to study

the freezing process in biological tissues. Kaemmerlen et al. (67) studied the properties

of wood wool with potential applications in thermal insulation and cooling of buildings.

Baillis and Sacadura (68) used the coupled conduction-radiation model to study the effect

of temperature on the calculated emittance in order to test if the isothermal assumption

was valid for an experimental set-up developed then.

In general, these technological applications involve research advances in three

main different fronts: computational modeling techniques for the solution of the physical-

mathematical problem; inverse problems formulation, solution methods, and analysis; and

experimental data acquisition, analysis and manipulation. More often than not, these

areas show a strong intercommunication, where an advance in one technique or technology

leads to the development of the other.

Considering the progress in the field of computational techniques and solution

methods applied to coupled conduction-radiation heat transfer inverse problems, the

literature shows a variety of contributions. To name a few, in 1983 Sacadura and Al Abed
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(69) used a Finite Element Monte Carlo method in order to solve a coupled conduction-

radiation for both steady and transient states. Later, in 1993, Silva Neto and Özışık (3)

solved an inverse problem of estimating the optical thickness, constant single scattering

albedo and thermal conductivity. In 1996, Ruperti et al. (70) proposed an algorithm based

on a space-marching method in order to solve an inverse conduction-radiation problem.

In 1999, Li (71) solved a conduction-radiation problem and obtained estimates for the

single scattering albedo, the optical thickness, the conduction-radiation parameter, and

the scattering phase function. In 2007, Verma and Balaji (72) estimated the conduction-

radiation parameter, the optical thickness and the boundary emissivity. They used Genetic

Algorithms in order to solve the inverse problem, which are treated as a minimization

problem. Two years later, Lobato et al. (73) used the Differential Evolution method

to solve an inverse conduction-radiation problem employing a multi-objective function

approach. Recently, in 2020, Jardim et al. (2) used the so called Topographical Global

Optimization method to estimate thermal conductivity, single scattering albedo and optical

thickness of a medium. The inverse conduction-radiation problem in question was studied

with a sensitivity analysis and seven different cases with different noise levels, sensor

positioning, and parameters values were presented.

Often, inverse radiative problems that estimate a space dependent scattering albedo

do not consider the optical thickness as unknown. This is somewhat artificial, because

as the scattering and absorption coefficients are unknown, the scattering albedo and the

optical thickness should also be considered unknown (74). Stephany et al. (75) estimated

the space dependant scattering albedo considering a radiative transfer problem, where they

used the Ant Colony optimization method with a pre-regularization scheme. This method

intended to assist the Ant Colony algorithm in order to only accept smooth solutions.

Even though they did not consider the estimation of the optical thickness, the results

obtained were robust and indicated the necessity to perform some regularization on the

optimization search.

The main objective of the present study is to extend the work of Stephany et al.

(75) by solving an inverse problem that deals with the simultaneous estimation of the

space-dependant scattering albedo, conduction-radiation parameter and optical thickness.

To perform this task, the classical least square minimization Levenberg-Marquardt (LM)

method (76, 77) is used with the recently proposed fuzzy damping factor updating strategy.
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This technique, proposed by Sajedi et al. (78), intends to assist the LM algorithm by

using a Fuzzy Logic method that updates the LM damping factor based on the evolution

of the objective function. With such method, these authors solved an inverse heat transfer

problem addressed at a one-dimensional transient conduction problem, where different

time dependent heat fluxes were estimated. Using this problem, they also investigated the

convergence rate, stability and robustness of the Fuzzy LM algorithm (FLM).

Moreover, due to the variable scattering albedo function estimation problem, a

strong ill-posedness in the solution is found, so a regularization technique must be employed.

To overcome this problem, the Tikhonov Regularization (TR) (79) is used within the LM

method in order to avoid oscillations on the sought function. As a secondary objective,

this work presents, for the first time, the combined use of the Fuzzy LM Damping Factor

Update Strategy and Tikhonov Regularization techniques.

Two main test cases are presented, the first addresses an inverse problem involving

only radiative transfer, as presented by Lobato et al. and Stephany et al. (74, 75). In this

case only the single scattering albedo is estimated and the objective is to set a benchmark for

the technique when used for different noise levels and TR parameters configurations. The

second case addresses the complete inverse problem, combining radiation and conduction,

for the estimation of the variable scattering albedo, the thermal conductivity and the

optical thickness. In this case, the results obtained show how promising is the combination

of the Fuzzy Method with the Tikhonov Regularization, demonstrating that with a few

iterations and a reasonable initial guess, the method may be able to achieve good estimates

for all sought unknowns.

3.2 Direct problem formulation and solution

Consider the one-dimensional medium represented in Figure 14. This medium is

subjected to heat transfer by conduction and radiation, simultaneously. Moreover, this

medium absorbs, emits and scatters isotropically the radiation, having a spatial coordinate

τ =
∫ x

0
βdx and optical thickness τ0 =

∫ L

0
βdx, where β is the extinction coefficient, and

L is the physical length of the medium, which has transparent boundaries and incident

radiation at τ = 0. At the boundaries τ = 0 and τ = τ0, temperatures are kept constant

as T1 and T2, respectively, as shown in Figure 14.

The mathematical formulation for the combined conduction-radiation heat transfer
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Figure 14 – Schematic representation of the medium subjected to the coupled conduction-
radiation heat transfer phenomenum (2, 3).

problem is given by the Poisson Equation (80)

d2Θ

dτ 2
− [1− ω(τ)]

N

[
Θ4 −G∗(τ)

]
= 0, in 0 < τ < τ0 (3.1a)

Θ = Θ1 at τ = 0 (3.1b)

Θ = Θ2 at τ = τ0 (3.1c)

where the dimensionless form of the spatially dependent temperature T (τ) is defined as

Θ(τ) =
T (τ)

T1
(3.2)

and, moreover, ω(τ) is the spatially dependent single scattering albedo, with dimensionless

parameters defined as

G∗(τ) =
1

2

∫ 1

−1

I(τ, µ)dµ (3.3a)

N =
kβ

4ψ2σ̄T 3
1

(3.3b)

where G∗ is the dimensionless incident radiation, N the conduction-radiation parameter,

k is the thermal conductivity, ψ is the refraction index and σ̄ is the Stefan-Boltzmann

constant.

Neglecting the diffuse reflectivities at both the inner part of the boundary surfaces,

and considering azymuthal symmetry, the interaction of the dimensionless radiation
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intensity, I(τ, µ), with the participating medium is formulated as the radiative transfer

problem (80)

µ
∂I(τ, µ)

∂τ
+ I(τ, µ) = R(Θ) +

ω(τ)

2

∫ 1

−1

I(τ, µ′)dµ′ in 0 < τ < τ0, −1 ≤ µ ≤ 1 (3.4a)

I(0, µ) = A1 with µ > 0 (3.4b)

I(τ0,−µ) = A2 with µ > 0 (3.4c)

where µ is the cosine of the polar angle θ, which is the angle between the τ coordinate with

the radiation beam, and A1 and A2 are the external incident radiation at both boundaries.

R(Θ) is the radiative emission term, which depends on the temperature of the medium

and is formulated as

R(Θ) = [1− ω(τ)] Θ4(τ) (3.5)

The simultaneous conduction and radiation heat transfer direct problem is described

by Eqs. 3.1 and 3.4. Its solution is obtained using Chandrasekhar’s (81) discrete ordinates

method where the angular domain is discretized and the integrals replaced by Gauss-

Legendre quadratures, as performed by Jardim et al. (2) and Knupp et al. (82).

The built-in “NDSolve” routine of the Wolfram Mathematica 11.0 software (83) is

used to solve the system of coupled differential equations generated by the discretization

of the polar angle in Eq. 3.4a. This routine is performed under automatic absolute and

relative error control, therefore the mesh used is automatically selected by the routine.

The conduction problem given by Eq. 3.1a is also solved with “NDSolve” routine, with the

same automatic error and mesh control, but for the sake of stability, a pseudo-transient

regime is employed.

A similar solution approach was presented by Knupp et al. (84), where a radiative

transfer problem was solved. Differently, in the present work, the heat conduction

phenomenum is also considered and the iterative process is constructed around these

coupled equations: the conduction problem uses information of the radiation intensity

through the term G∗ and the radiation problem requires information of the temperature

in the dimensionless quantity R. The iterative process is constructed by giving an initial
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solution to the radiation intensity so the quantity G∗ can be calculated. Next, it is possible

to obtain the temperature profile and calculate R. That ends the iteration because this

R generates a new radiation intensity profile and the process restarts. This method is

considered converged when the maximum absolute error between two radiation intensity

profiles in consecutive iterations is below some pre-defined tolerance.

3.3 Inverse problem formulation and solution

Consider that some thermal and radiative properties of the medium are unknown.

The inverse problem consists of obtaining estimates of these properties based on experi-

mental data of temperature and radiation acquired at different positions and polar angles.

In this work the thermal conductivity k, the space dependent single scattering albedo ω(τ)

and the optical thickness τ0 are considered unknowns, leading to the following vector of

unknowns:

P = {ω1, ω2, ..., ωK , N, τ0}T (3.6)

where the thermal conductivity k is included in the formulation of the conduction-radiation

dimensionless parameter N - see Eq. 3.3b. The single scattering albedo is formulated with

discrete points ω1, ω2, ..., ωK with a linear interpolation in order to generate the continuous

function ω(τ), where K is the total number of points used.

In this work the experimental data are simulated using the solution of the direct

problem itself. This solution yields two physical observable quantities, the radiation

intensity I and the dimensionless temperature Θ, and, in order to generate the simulated

experimental data, random noise drawn from a normal distribution are added to the exact

solution, as follows

Yi = Ii (Pexact) + ei, ei∼N
(
0, σ2

exp

)
, i = 1, 2, ..., DRad (3.7a)

Zj = Θj (Pexact) + rj, rj∼N
(
0, σ2

exp

)
, j = 1, 2, ..., DTemp (3.7b)

where DRad and DTemp are the total number of radiation intensity and temperature

experimental data, respectively. It is possible to notice that the variance has the same
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value for the radiation intensity and for the temperature. This choice was based on the fact

that both quantities are dimensionless, and their magnitude lies within a similar range.

Considering the maximum likelihood approach, the inverse problem may be for-

mulated as an optimization problem, where the following least square objective function

must be minimized (3):

Q (P) =

DRad∑
i=1

[Yi − Ii (P)]2 +

DTemp∑
j=1

[Zj −Θj (P)]2 = RT
I RI +RT

ΘRΘ (3.8)

where RI and RΘ are residue vectors, which contain the difference between experimental

and calculated data, for both the DRad radiation and DRad temperature measurements,

respectively.

The solution of the objective function proposed by Eq. 3.8 may lead to an ill-posed

problem, specially when one intends to estimate intrisic functions of the model in question,

which is the case of the present work with the spatially dependent single scattering albedo

ω(τ). This ill-posedness yields heavy oscilations in the obtained solutions, generating no

useful information on the sought function.

The Tikhonov Regularization (TR) technique is often used to overcome this problem

by adding a term to the objective function Q that penalizes oscillating solutions of P. The

modified Eq. 3.8 with the regularization term is written as

QTR (P) = RT
I RI +RT

ΘRΘ + α||LP||2 (3.9)

where ||.|| is the l2 Euclidean norm, α is the regularization parameters that controls the

amount of regularization necessary to solve the problem, and L is a derivative operator

matrix.

The matrix L can be of zero, first or second order, which is a choice made considering

aspects of the problem. The regularization parameter α is critical to obtain a useful solution

P: if α is too large, too much regularization is present leading to a constant solution, on

the other hand, if α is small, no regularization is performed, and the solution oscillates.

Different methods were proposed in order to obtain the optimal value of α, such as the

L-curve (85, 86), Fixed Point Iteration (87), Morozov Discrepancy Principle (88), and

others. Besides that, since the choice of α is not the focus of this work, its value is obtained
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through trials and tests, and then kept fixed for every result presented. It is necessary to

stress that the use of a proven method to choose α is always preferred in order to avoid

bias.

3.3.1 Classical Levenberg-Marquardt with Tikhonov Regularization

The classical Levenberg-Marquardt algorithm is a gradient based optimization

method intended to minimize least squares functionals. It was first proposed by Levenberg

(76) later being rediscovered by Marquardt (77), which contributed to increase the chances

of convergence of the method.

Considering the TR functional presented in Eq. 3.9, the iterative process to

minimize such objective function is built with steps in the direction of ∆P, that is

Pnew = Pold +∆P (3.10)

where the subscripts “new” and “old” mean the next and present iteration, respectively.

The direction ∆P is obtained with (89)

∆P = −
[
JT
I JI + JT

ΘJΘ + λI+ α
(
LTL

)]−1×[(
JT
I RI + JT

ΘRΘ

)
+ α

(
LTL

)
(P−P0)

]
(3.11)

where λ is the LM damping factor, I is an identity matrix with the same dimension of P,

α and L are the already defined TR parameter and derivative matrix, respectively, P0 is

the best known a priori information of the solution P, and JI and JΘ are the Jacobian

matrices for the radiation intensity and temperature, respectively, with respect to the

unknown parameters P, i.e.

JI(i,j) =
∂Ii
∂Pj

with i = 1, 2, ..., DRad and j = 1, 2, ..., NP (3.12a)

JΘ(i,j) =
∂Θi

∂Pj

with i = 1, 2, ..., DTemp and j = 1, 2, ..., NP (3.12b)

where NP is the total number of unknown parameters P. The derivatives of Eq. 3.12 are

obtained with a central finite difference approximation, where a three-point formulation is
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Algorithm 1: Levenberg-Marquardt Algorithm for minimization
choose: initial point Pold, initial µ and stopping criterion
Sold ← QTR(Pold)
While Stopping Criterion = False do:

Evaluate JI and JΘ, for Pold

Evaluate ∆P with Eq. 3.11
Pnew ← Pold +∆P
Snew ← QTR(Pnew)
If Snew < Sold Then λ← λ/10 Else λ← λ× 10
Sold ← Snew

Pold ← Pnew

end While
Pnew is the solution

used and a fixed increment is chosen for every derivative.

The LM damping factor parameter λ controls how much “refined” is the search

in the direction ∆P: if its value is relatively high, the search has smaller steps, which

is acceptable for poor values of P, but if its value tends to zero, the search will favor

convergence, which is ideal for better estimates of P. In classical algorithms, this parameter

is updated by a factor of 10 when the objective function improves and by a factor of

0.1 otherwise. This approach influences directly the computational cost and convergence

of the search. Algorithm 1 presented the classical LM search used in this work. The

stopping criterion chosen will be discussed later, where the importance of this choice will

be highlighted.

Implementation Tip 1 The order of the difference operation for calculating RI and

RΘ matters. With the presented formulation, the correct order is: the calculated I or Θ

quantity minus the experimental data. The contrary is possible, but the minus sign in Eq.

3.11 would change to positive.

Implementation Tip 2 The Jacobian matrices can be joined together with an

“Append” operation. It is only necessary to keep in mind that both RI and RΘ should

also be joined and the order must be the same as the joined Jacobians.

3.3.2 Fuzzy Levenberg-Marquardt

In this version of the LM algorithm, proposed by Sajedi et al. (78), the damping

factor is updated through a fuzzy scheme. This modification intends to improve convergence

and efficiency of the search in comparison to classical LM. More specifically, the input of
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the fuzzy system is a relative error evolution for the objective function, namely “Percent

Error”, and is calculated for every iteration as

PE = 100× Snew − Sold

Sold

(3.13)

where Snew and Sold are the new and current objective function values. Briefly, if PE < 0,

S is improving; if PE ≈ 0, S is converging; if PE > 0, S is getting worse.

Degrees of membership are then associated to the input PE, as presented in Figure

15, where NLR, NL, NM, NS, Z, PS, PM, PL, and PLR mean larger negative, large

negative, medium negative, small negative, zero, small positive, medium positive, large

positive, and larger positive, respectively.

The output of the fuzzy is the damping factor λ and its membership function is

presented in Figure 16. In such figure, the terms VS, S, SS, LM, M, UM, SL, L, and VL

mean very small, small, slightly small, lesser medium, medium, more medium, slightly

large, large, and very large, respectively.

Then, the fuzzy system is constructed with the following rules:

• If PE is NLR then λ is M.

• If PE is NL then λ is LM.

• If PE is NM then λ is SS.

• If PE is NS then λ is S.

• If PE is Z then λ is VS.

• If PE is PS then λ is UM.

• If PE is PM then λ is SL.

• If PE is PL then λ is L.

• If PE is PLR then λ is VL.

Finally, the defuzzification can be performed by different methods, and in this

work the centroid technique was chosen. In order to build the algorithm, the complete

calculation of the fuzzy system that yields the updated value of λ is represented by the

term F , being F(PE) the fuzzy function evaluated for the PE value.
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Algorithm 2 presents the pseudo-code for the FLM method. It is possible to observe

that both Algorithms 1 and 2 are very similar, where the main difference between them is

the λ updating approach. Despite this similarity, modifying the updating choice of λ may

have a great impact in improving the convergence of the method.
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Figure 15 – Memberships of the fuzzy system input PE.

10 6 10 4 10 2 100 102 104 106

Damping Factor 

0.0

0.2

0.4

0.6

0.8

1.0

M
em

be
rs

hi
p

VS
S
SS
LM
M
UM
SL
L
VL

Figure 16 – Memberships of the fuzzy system output λ.

3.4 Results and discussion

In order to compute the fuzzy system, the “skfuzzy” package from Python 3.9

language is used. In this package, the PE input domain is inserted as discrete points,

ranging linearly from -150% to 150% with steps of 0.01%. The same must be done for the

λ output domain, where 30001 points with a base 10 logarithmic spacing are used, ranging

from 10−6 to 106. This logarithmic spacing is necessary due to the large range of possible

values for the damping factor λ. For both the input and output, the final membership
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Algorithm 2: Fuzzy Levenberg-Marquardt for minimization
choose: initial point Pold, initial λ and stopping criterion
Sold ← QTR(Pold)
While Stopping Criterion = False do:

Evaluate JI and JΘ, for Pold

Evaluate ∆P with Eq. 3.11
Pnew ← Pold +∆P
Snew ← QTR(Pnew)
PE ← 100× (Snew − Sold)/Sold

λ← F(PE)
Sold ← Snew

Pold ← Pnew

end While
Pnew is the solution

functions are triangular for the interior values, and trapezoidal for the boundary values,

as already presented in Figure 15 and Figure 16. It must be noted that, in Figure 16, the

logarithmic scale of the λ axis yields a non-triangular shape of the membership functions,

which is just a matter of visualization.

Fuzzy System Visualization. To better visualize the Fuzzy System behavior,

Figure 17 shows the complete PE input space for its respective λ output. It is possible

to see that λ have a step behavior with range of 10−5 ≤ λ ≤ 100 for −150 ≤ PE < 0,

100 < λ ≤ 105 for 0 < PE ≤ 0 where the lowest value possible is obtained for PE = 0.0,

which is desirable, meaning that convergence was reached. More specifically, this minimum

value obtained for λ is F(PE = 0.0) = 2.819902(10−5)
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Figure 17 – Complete PE input vs. λ output of the fuzzy system.

Stopping Criterion. The chosen condition to perform the iterative process of

the “while” loop in Algorithms 1 and 2 is |PE| > 0.1%. That is, while the absolute value
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of the Percent Error is larger than 0.1%, the argument inside of the loop is performed.

Test Cases Summary. In this work, two main test cases are presented. In the

first one, only the variable scattering albedo ω(τ) is estimated, as performed by Stephany

et al. (75): this case considers only the radiative transfer problem, i.e., the conduction N is

relatively high and there is no temperature gradient. This first test case is used to compare

the performance of both the classical LM and FLM algorithms. In the second one, in

addition to ω(τ), the thermal conductivity N and optical thickness τ0 are simultaneously

estimated considering the complete conduction-radiation heat transfer problem. This test

case is subdivided in three subcases, where different variations of ω(τ) are tested.

Experimental Data. For Cases 1 and 2, experimental data are generated with a

noise level of σexp = 0.01 - see Eq. 3.7. For Test Case 1, the exact single scattering albedo

used is the polynomial expansion ω(τ) = 0.2 + 0.2τ + 0.6τ 2, and for Test Case 2, three

different ω(τ) are tested: constant, linear and parabolic. Other parameters to simulate

the experimental data are presented in Table 9. The radiative properties and conditions

presented in such table are the same from the ones used by Ref. (75), with exception of

the ones used for the heat conduction problem. The radiation intensity measurements are

acquired at τ = 0 for the polar angles corresponding to cosines from µ = −0.8 to µ = −0.1

with steps of ∆µ = 0.05, and at τ = τ0 from µ = 0.1 to µ = 0.8 with the same step size.

Temperature readings are obtained from 0.2τ to 0.8τ with steps of 0.1τ . Briefly, there are

radiation measurements at both boundaries, and temperature readings inside the medium.

Table 9 – Summary of the parameters to simulate the experimental data set

Parameter Description Comments
A1 = 1.0 Incident Radiation at τ = 0 Known
A2 = 0.0 Incident Radiation at τ = τ0 Known
N = 0.05 Conduction-Radiation Parameter Unknown for Case 2
τ0 = 1.0 Optical Thickness Unknown for Case 2
Θ1 = 1.0 Dimensionless Temperature at τ = 0 N.A. for Case 1
Θ2 = 0.2 Dimensionless Temperature at τ = τ0 N.A. for Case 1
σexp = 0.01 Noise standard deviation (Eq. 3.7)
K = 10 Number of points to represent ω(τ)
NT = 7 Number of temperatura data
NR = 30 Number of radiation intensity data
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3.4.1 Test Case 1

The main objective of this Test Case is to assess the performance of the LM and

FLM algorithms by comparing the number of iterations necessary to achieve the stopping

criterion, and by comparing the quality of the solutions obtained, which is analyzed by

means of the objective function value and the error norm between the exact and estimated

solution ωerror, that is

ωerror = ||ωexact − ωestimated|| (3.14)

where ωexact is the vector of exact values of ω(τ) obtained at the same points as the

discretized variable.

As a secondary objective of the present Case, several regularization parameters

are tested in order to obtain a good approximation for the optimal value for it. This is

performed by testing different values of α for different values of noise levels σexp.

As already described, this case considers only the radiative transfer problem, and the

unknown considered is the scattering albedo ω(τ), which is represented by K = 10 discrete

points. The initial solution for every execution of this case is ωi = 0.5 for i = 1, 2, ..., 10,

and the initial damping factor λ for both methods is set as 10. The a priori state vector

P0 considered is completely zero for its elements, being the most uninformative vector

possible. It is important to notice that P0 is a fixed vector and it is not correlated with

the initial solution of ω. To perform the Tikhonov Regularization, different values of α are

tested, ranging from α = 0.005 and α = 0.020. The Tikhonov Regularization derivative

operator L is chosen as a first order differential operator in Eqs. 3.9 and 3.11, i.e., when

multiplied by P, it yields another vector containing the numerical first derivatives of P.

Table 10 presents the results of Test Case 1 for different noise levels σexp and

regularization parameters α. In such table, Q(P) is the objective function value Eq. 3.8,

and the term “IT” is the number of iterations needed to reach the stopping criterion. It

is possible to see that, although the results are very similar for both the LM and FLM

methods, every experiment led to less iterations needed by the latter.

The reader may notice that the value of the objective function Q(P) presented is

not the lowest for the best values of ω. This occurs because the displayed objective function

value is Q(P), which represents a measure of the fitting between the experimental data
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and the model. The actual objective function being minimized is QTR(P), presented in Eq.

3.9 and, when the stopping criterion is reached, it may not yield the best fitting between

experimental data and the model, due to the regularization portion of the function.

For every σexp results presented, it is possible to see the total number of iterations

needed to obtain the different α values. These results indicate that the FLM is more

suitable to be used in methods to obtain the best Tikhonov parameter, due to its efficiency.

For instance, with σexp = 0.010, four values of α were tested leading to a total difference

of 4 iterations. This difference can grow considerably when more robust methods, such as

the L-curve, are used to obtain the best α, as they require the calculation of many inverse

problem solutions.

Table 10 – Results for Test Case 1

LM FLM
σexp α Q(P) ωerror IT Q(P) ωerror IT

0.000

0.005 0.0000206 0.106757 7 0.0000206 0.106956 6
0.010 0.0000468 0.128737 7 0.0000474 0.129334 5
0.015 0.0000772 0.144170 6 0.0000770 0.144147 5
0.020 0.0001085 0.155430 6 0.0001085 0.155422 5

Total 26 21

0.010

0.005 0.0031084 0.147349 6 0.0031083 0.147118 5
0.010 0.0031308 0.153546 6 0.0031308 0.153806 5
0.015 0.0031589 0.162649 6 0.0031586 0.162280 5
0.020 0.0031898 0.170580 6 0.0031903 0.170228 5

Total 24 20

0.020

0.005 0.0103297 0.334486 6 0.0103295 0.334416 5
0.010 0.0105815 0.314535 6 0.0105815 0.314480 5
0.015 0.0107190 0.311427 6 0.0107189 0.311279 5
0.020 0.0108118 0.309823 6 0.0108118 0.309728 5

Total 24 20

3.4.2 Test Case 2

In this Case, the coupled conduction-radiation problem is considered, where the

main objective is to simultaneously estimate the variable scattering albedo ω(τ), the

thermal conductivity represented by the parameter N and the optical thickness τ0. This

is performed using the FLM method and by five numerical experiments presented in Tabs.

Table 11, Table 12, and Table 13, for the three subcases tested, respectively. In these

tables, a noise level of σexp = 0.01 and regularization parameter α = 0.01 are used, which
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are values that generated reasonable results in Test Case 1 - see Table 10. Moreover, every

Execution (“Exec.” column) have a different experimental data set and FLM starting

point, which is randomly generated in the range 0.005 ≤ N ≤ 0.5 and 0.25 ≤ τ0 ≤ 2.5

(initial ω points are the same as Test Case 1, i.e., ωi = 0.5 for i = 1, 2, ..., 10)

3.4.2.1 Test Case 2A: Constant ω(τ)

The first subcase deals with a constant scattering albedo, with exact value of

ω(τ) = 0.3. Results presented in Table 11 show that Execution #3 got a completely

wrong conduction-radiation parameter N , generating also a relative larger error ωerror.

Nevertheless, in such execution the optical thickness τ0 got a good approximation to the

exact value τ0 = 1.0. Although the best objective function value Q(P) is obtained for

Exec. #5, the best two ωerror can be found for Execs. #1 and #4. This fact can be

explained by the random nature of the experimental data. The wrong result in Exec. #3

occurs by a convergence problem, where LM got stuck in a local minimum, which is not

the expected solution. This is a common problem to the LM method when initialized with

poor initial solutions. A possible way of overcoming this problem is to employ a stochastic

global search before employing the LM algorithm, such as the Differential Evolution,

Luus-Jaakola or any other global optimization method.

Figure 18 shows the fit between experimental data and the direct problem evaluation

for both the (a) Radiation Intensity and (b) Dimensionless Temperature, generated by the

parameters obtained from Exec. #5 (see Table 11). The error bars presented represent

a interval of ±2.576σexp. The reader may notice that, even though this only execution

generated a somewhat poor fit for ω(τ) in comparison to the one obtained in Exec. #4,

the fit to the experimental data is excellent.

In Figure 19 it is possible to see a comparison between retrieved scattering albedo

for Execs. #4 and #5, which generated the lowest ωerror and lowest Q(P), respectively.

Those two images show the importance of the regularization, i.e., the task of estimating a

constant line seems trivial, but even with a proper regularization, some oscillations can be

found around the exact value.
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Table 11 – Results for Test Case 2A

Exec. ωerror N τ0 Q(P)
#1 0.138217 0.0559376 0.994548 0.00319204
#2 0.226018 0.049114 0.999596 0.00389724
#3 1.12332 2.2441 1.0331 0.116122
#4 0.0955803 0.049605 1.00341 0.00284022
#5 0.222445 0.0465192 1.00807 0.00251934
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(a) Estimated Radiation Intensity from Exec. #5
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Figure 18 – Comparison among values of the Radiation Intensity, Temperature, and their
experimental data obtained for Exec. #5 (Case 2A).

Exact ω □ Estimated ω

□ □ □ □ □ □ □ □ □ □

□ □ □ □ □ □ □ □ □ □

□ □ □ □ □ □ □ □ □ □

□ □ □ □ □ □ □ □ □ □

□ □ □ □ □ □ □ □ □ □

□ □ □ □ □ □ □ □ □ □

□ □ □ □ □ □ □ □ □ □

□ □ □ □ □ □ □ □ □ □

□ □ □ □ □ □ □ □ □ □

□ □ □ □ □ □ □ □ □ □

□ □ □ □ □ □ □ □ □ □

□ □ □ □ □ □ □ □ □ □

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

τ

ω
(τ
)

(a) Estimated ω(τ) from #Exec. 5

Exact ω □ Estimated ω

□ □ □ □ □ □ □ □ □ □□ □ □ □ □ □ □ □ □ □□ □ □ □ □ □ □ □ □ □□ □ □ □ □ □ □ □ □ □□ □ □ □ □ □ □ □ □ □□ □ □ □ □ □ □ □ □ □□ □ □ □ □ □ □ □ □ □□ □ □ □ □ □ □ □ □ □□ □ □ □ □ □ □ □ □ □□ □ □ □ □ □ □ □ □ □□ □ □ □ □ □ □ □ □ □□ □ □ □ □ □ □ □ □ □

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

τ

ω
(τ
)

(b) Estimated ω(τ) from #Exec. 4

Figure 19 – Comparison of estimated ω for (a) Exec. #5 and (b) Exec #4.
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3.4.2.2 Test Case 2B: Linear ω(τ)

For this subcase, the linear ω(τ) = 0.9− 0.6τ is considered. Table 12 presents the

obtained results. For the five computational experiments presented, no wrong values for

N were obtained. The best solution was obtained for Exec. #5, but considering variations

in the experimental data set, one can say that every solution obtained generated good

approximations to the measurements.

The fit between experimental data and the calculated direct problem (radiation

intensity and dimensionless temperature) are presented in Figure 20 for Exec. #5, where

an excellent fit can be seen. Similar to Test Case 2A, the best Q(P) did not yielded the

best ωerror, which was observed in Exec. #1. In Figure 21 both the ω(τ) obtained from

Exec. #5 and #1 are presented. It is possible to see that both estimated ω functions

represent reasonably good approximations to the exact function, even though some slight

oscillation can still be found. This may be corrected by considering a finer adjustment for

the Tikhonov Regularization parameter α.

Table 12 – Results for Test Case 2b

Exec. ωerror N τ0 Q(P)
#1 0.140365 0.0508578 1.0002 0.00332959
#2 0.164826 0.0521814 1.00647 0.00398747
#3 0.339735 0.0555154 1.00043 0.00483613
#4 0.220589 0.0532661 0.999018 0.00338912
#5 0.225853 0.0465025 1.00216 0.00306238

3.4.2.3 Test Case 2C: Parabolic ω(τ)

Results presented in Table 13 show good approximations for every execution, with

exception of Exec. #4, which led to wrong value of N . Indeed, this conduction-radiation

parameter is difficult to estimate in certain ranges of values. Moreover, when the starting

value of N is a relative large value, the conduction problem is completely vanished, and

there is almost no sensitivity. On the other hand, τ0 is the most robust parameter to

estimate of such problem. See that even the wrong solution for N and a bad estimation of

ω in Exec. #4 led to a good approximation of τ0 = 1.01019.

Figure 22 presents the fit between experimental data and the direct problem solution

- parameters from Exec. #5 (see Table 13). The error bars presented represent a interval
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Figure 20 – Comparison among values of the Radiation Intensity, Temperature, and their
experimental data obtained for Exec. #5 (Case 2B).
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(b) Estimated ω(τ) from #Exec. 1

Figure 21 – Comparison of estimated ω for (a) Exec. #5 and (b) Exec #1.
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of ±2.576σexp. Again, an excellent fit between model and experimental data is found,

corroborating to the robustness of the FLM method.

The estimation of ω(τ) is presented in Figure 23. This is the result obtained from

Exec. #5 (Figure 23a), which generated the lowest value of Q(P), and the one from Exec.

#1 (Figure 23b), which generated the best ωerror. In such figures it is possible to see a

good approximation between exact and estimated values, specially from Exec. #1, but to

consider the best fit for the sought function is somewhat artificial, for that reason, the

best experimental data fit from Exec. #1 is considered as the best solution.

Table 13 – Results for Test Case 2c

Exec. ωerror N τ0 Q(P)
#1 0.147111 0.0510206 1.00546 0.00326721
#2 0.16676 0.0490335 0.994301 0.00430255
#3 0.167729 0.0490189 0.994326 0.00430304
#4 0.640011 2.02078 1.01019 0.126096
#5 0.256811 0.0461 1.01504 0.00189667
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Figure 22 – Comparison among values of the Radiation Intensity, Temperature, and their
experimental data obtained for Exec. #5 (Case 2C).
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Figure 23 – Comparison of estimated ω for (a) Exec. #5 and (b) Exec #1.

3.5 Conclusions

An inverse problem of simultaneous radiation and conduction heat transfer was

solved using the recently proposed Fuzzy Levenberg-Marquardt Damping Factor Update

technique. The physical problem considered is a one dimeinsional, steady state, participat-

ing medium, subjected to heat transfer by conduction and radiation, simultaneously. The

inverse problem dealt with the estimation of properties such as space-dependent scattering

albedo, conduction-radiation parameter, and optical thickness. Results shows that the

technique employed has good convergence capabilities, where a more efficient search was

seen in comparisson to classical LM. Moreover, considering that this FLM is still a gradient

based method that is indicated to perform local searches, the results obtained are fairly

good since no global search were performed beforehand. This work also highlights the

importance of the regularization technique used, which may be mandatory to obtain useful

estimations of the sought function. Finally, future investigations may take three possible

approaches: the use of an automatic method to determine the best TR parameter along

with the FLM algorithm; the use the present technique for problems considering function

estimation in two- and three-dimensional problems, which leads to increasing challenge in

terms of computational cost and regularization; and solution of different types of inverse

problems in order to compare the search performance of LM and FLM, drawing more

robust conclusions of advantages of one method over the other.
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4 PERFORMANCE ANALYSIS OF THE TOPOGRAPHICAL GLOBAL

OPTIMIZATION IN INVERSE HEAT TRANSFER PROBLEMS

4.1 Introduction and background

Often entire engineering systems are based on the fundamental principles of heat

transfer and diffusion. At other times, the analysis of such principles remains crucial for

understanding the proper behaving of such systems. Considering the significant influence

that this phenomenon has on the energy efficiency of various types of systems and processes,

the scientific community has, and continues to, employ efforts in the design of increasingly

efficient and robust computational methods to assist the analysis of this phenomenon.

The estimation of thermophysical material properties and conditions acting in a

system is crucial in Heat Transfer Engineering. This can be achieved by formulating and

solving an Inverse Heat Transfer Problems (IHTPs), which can be treated as optimization

problems when using the maximum likelihood approach (10, 90, 91). To solve IHTPs,

several optimization methods have been employed to achieve state-of-the-art results.

Among these methods, clustering optimization methods are noteworthy because they

tend to choose the best-suited points from a set of sampled points in a search space to

initialize a local search. This choice is made to prevent repeated discovery of the same

optimum, thereby avoiding unnecessary computational costs. Moreover, the core of these

methods usually relies on non-iterative procedures (92, 93), which can be of great benefit

for multi-core programming.

With that in mind, the main objective of this work is to evaluate the performance of

the clustering optimization method known as Topographical Global Optimization (TGO)

for the solution of IHTPs. TGO was developed by Törn (94), having its first formal

publications as the Master’s dissertation of Juselius (95), an academic report (96), and

later published by Törn and Viitanen (97, 98), which are considered as the main work

regarding TGO’s first appearance. In these two works, it is possible to find a description

of the TGO which summarizes the algorithm in 3 main steps. Step 1 is the distribution of

points in a search space, which can be at random or uniformly distributed, provided that

the entire space is covered homogeneously. In Step 2, the value of the objective function is

calculated for each one of the points of Step 1. The points that have all of its K nearest
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neighbors evaluating to higher objective function values are considered topographical

minima and, similarly, those that obtain all the neighbors evaluating to lower values are

considered as topographical maxima. Finally, in Step 3, a local search method is employed

using these topographical optima found in Step 2 as initial solutions.

As far as we know, TGO was first employed in an engineering problem with excellent

results in the work of Sacco, Henderson and Rios-Coelho (99), who used it to obtain the

optimal design of a nuclear core reactor, showing very competitive results when compared

to the literature. Later, Ferreira et al. (100) proposed a constrained iterative version of

TGO which was used to optimize eight complex engineering design problems, achieving

state of the art results. Jardim et al. (101) performed the first comparison of the influence

of initial points generators on the outcome of TGO by employing it in a parameter

estimation inverse problem. They showed that, indeed, the initial points generator can

influence the final results. But the question about how much the performance can be

enhanced with different local search methods when combined with these generators has

not been tackled yet.

Therefore, the specific objective of this work and its main contribution is to analyze

the configuration of the TGO algorithm that achieves the lowest cost in solving the given

inverse heat transfer problem. In this case, the number of function evaluations necessary to

reach the Morozov’s Discrepancy Principle is the metric used. The methods used in Step 1

are the point generators known as Mersenne Twister (MT) (102) and the Sobol Sequence

(SS) (103), being the discrepancy of the generated points the main difference between

them. While the distance of MT points have a high discrepancy, SS generates points with

a low discrepancy among them, that is, the points tend to be uniformly distributed with

the latter. For Step 3, the classical local search methods known as Nelder-Mead (104),

a gradient-free method, and the gradient based Levenberg-Marquardt (76, 77) are used.

Therefore, in total, four different combinations of TGO are tested and used to solve the

three different inverse heat transfer problems.

The first IHTP deals with simultaneous heat transfer by conduction and radiation,

the second one deals with heat conduction in a thermally thin plate and the third problem

involves internal convection in a flow between parallel plates. For each of these problems,

related inverse problems are defined. The first two address the estimation of thermophysical

parameters of the medium and material, and the third one consists of estimating the
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channel’s inlet temperature profile.

This paper does not aim to compare the performance of TGO with other optimiza-

tion methods, as this has already been extensively discussed in the literature (93, 99).

Instead, it focuses on developing several comparisons between different variations made

in the initial and final steps of the method. The purpose of these comparisons is to

understand the strengths and weaknesses of each version and to identify which one is

better suited for a given heat inverse transfer problem. The text is organized as follows:

Section 2 introduces the TGO algorithm along with the two point generators and the local

search methods, while Sections 3 and 4 present the formulation and solution of the heat

transfer direct and inverse problems, respectively. The results obtained are showcased and

commented in Section 5, and lastly, final remarks are presented in Section 6.

4.2 The Topographical Global Optimization (TGO)

TGO uses the topographic heuristic in order to select minima from a set of H

initial points distributed in the search space. These selected minima are then used as

starting points for a local optimization method. The algorithm can be briefly described in

three steps (93, 99):

1. Sample the search space with H distributed points in such way that the whole space

is evenly covered.

2. Construct the topography by analyzing the objective function value at each one of

the H points. When a point has K-neighbors evaluating to higher objective function

values, this particular point is considered to be a topographical minimum.

3. All the topographical minima from Step 2 are set as starting points for a local

optimization method. The global minimum is the lowest function evaluation from

all the local search executions.

The present Section provides further insight on how we implemented each one of

the Steps and the combinations used to obtain the performance comparisons. Subsection

4.2.1 presents the two point generators used, subsection 4.2.2 presents the main step of

TGO, which selects the topographical optima and, lastly, subsection 4.2.3 summarizes the

two local search methods.
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4.2.1 Step 1: Search space sampling

The first step of TGO consists of generating H points evenly distributed in the

search space in order to sample the objective function. These points can be generated

uniformly or at random. As mentioned by the original authors, it is important not to

leave areas unexplored when performing the sampling, therefore good point generators are

needed (105).

In this work we used the pseudo-random Mersenne Twister (MT) (102) and the

quasi-random Sobol Sequence (SS) (103). Despite being deterministic, the points from a

pseudo-random generator try to imitate a genuine random sequence. The numbers of a

quasi-random generator are organized in order to avoid each other as much as possible,

approaching an uniform distribution.

In Figure 24, it is possible to observe two illustrative examples of 400 points

generated in a two-dimensional space for the Mersenne Twister (a) and the Sobol Sequence

(b). It is clear that the Sobol Sequence tends to generate a more uniform distribution,

while the Mersenne Twister has a greater discrepancy. Both SS and MT are used in this

work as an option of the built-in ”RandomReal” function of the Mathematica system, but

their codes are freely available on the websites (106) for MT and (107) for SS.

Since SS and MT actually provide a sequence of numbers, each of these numbers

can be interpreted as a state of the sequence and, for each new state, a recursive relation

is used with previous states, so the sequence must be used in an uninterrupted way

(108). It is possible to initialize the sequence starting from any chosen state, as long

a seed is provided. In the Wolfram Mathematica system (83), we generated this seed

randomly with the ”RandomInteger” routine for each execution of TGO, which is started

independently. These seeds are random integers generated in the range between 1 and

106. The effect of changing seeds on the distribution of points in a two-dimensional space

can be observed on the website (109), where a demonstration of different starting point

generators implemented in Mathematica can be interactively tested.

4.2.2 Step 2: Construction of the topography

The basic idea of Step 2 is to select points that, by themselves, represent the region

of a minimum. This is achieved by the topographical heuristic: the objective function
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(a) Mersenne-Twister

(b) Sobol Sequence

Figure 24 – Example of 400 points with MT and SS.
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is evaluated for each one of the H points from Step 1 and the ones that have all of its

K nearest neighbors with higher objective function values are considered topographical

minima. One possible implementation of this step is explained as follows.

Consider that the set of points distributed in the search space is denoted by Pi

with i = 1, 2, ..., H, where, for example, P1 is the first point given by the random number

generator.

To perform the selection of the topographical optima, first a distance matrix, called

D, is constructed with size H×H. In this matrix, each element Dij is the distance between

points Pi and Pj, with i, j = 1, 2, ..., H.

Now each line of D must have its elements ranked in ascending order and these

rankings are stored in another matrix called R. Before that, since the distance from a

point to itself is zero, the elements of the main diagonal of D are given a high generic

value before the construction of R, otherwise these elements will always be associated

with the first ranking of 1.

In each line of R, the K-smallest elements have column indices that are the indices

of the points closest to the point referring to the index of that line. These K-lower indexes

make up the matrix called KNN, that is, an H ×K matrix that has in its line i the list

of indexes of K-nearest points of point Pi.

Now it is necessary to evaluate the objective function for each one of the H sampled

points. These evaluations are stored in a vector called F that has dimension H. Usually,

this is the stage of the method that has the highest computational cost, as it depends on

the evaluation of the objective function for each point.

The elements j of a KNN line i receive a “+” sign if the evaluation of Pj leads to

a higher objective function value than Pi. Similarly, this element is given a “-” sign when

this evaluation is lower.

Points associated with KNN lines indices that have only positive signs are consid-

ered the topographical minima and points that are associated with lines that have only

negative signs are considered topographic maxima. A pseudo-code for Step 2 is presented

in Algorithm 1.

From this description given about TGO, some comments can be highlighted. The

method will always return at least 1 point as the topographic optimum. That is, if the

number of nearest neighbors to be analyzed K is small, the tendency is that many points
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will be found. If K is large, few points will be found, with the minimum limit being

only one point, which in this case is the minimum among all H points. Neither extreme

situation is desirable, as finding many points will increase the computational cost of the

method by executing many local searches, and finding only few points can be considered

as a poor exploration of the search space.

Algorithm 1: TGO algorithm for minimization. See Ref. (2)

choose: number of initial points H and number of closest neighbors K

store in P: H points distributed in a closed search space

store in F: the objective function evaluation for each point of P

assemble the distance matrix D for the points of P

rank the elements of each line of D in ascending order and store in R

for each line i = 1, . . . , H do

for each rank k = 1, . . . , K do

for each element j = 1, . . . , H do

if R [i, j] = k then

KNN [i, j]← j;

end

end

end

end

for each line i = 1, . . . , H of KNN do

for each element of the line j = 1, 2, . . . , K do

if F [KNN [i, j]] < F [i] then

KNN [i, j]← KNN [i, j]× (−1);
end

end

end

for each line i = 1, . . . , H of KNN do

j = 1;

while KNN [i, j] > 0 do

j ← j + 1;

end

if j = K then
append j in index

end

end

P [index [i]] are the topographical minima, for all elements of index
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4.2.3 Step 3: Local search

The final step of TGO performs a local search using the points selected in Step 2.

Any optimization method with local search properties can be used and this is a positive

characteristic of TGO, since the performance of local optimizers can change depending on

the objective function. In this work we tested two fundamentally different methods for

Step 3: Nelder-Mead and Levenberg-Marquardt algorithms.

4.2.3.1 Nelder-Mead (NM)

NM is a minimization method that does not require the calculation of derivatives

of the objective function (110), and is considered a direct search method (111). Some

authors have highlighted its efficiency in hybridizations with stochastic methods, such

as the Particle Collision Algorithm (112), Differential Evolution (113), and the Ant

Colony Algorithm (114, 115), among others. Even to this day, some novel improvements

and adaptations of this classical algorithm are still being developed (116, 117) and its

fundamental characteristics are the base for improvements of other methods (118).

To illustrate how one can perform the NM search, consider a generic objective

function f(x), where x is a vector of real variables, we define the set of points x∗ =

{x1,x2, ...,xn,xn+1} as initial candidate solutions. In addition, for the implementation

of NM, four scalar parameters must be specified. They are the coefficient of reflection

(A), expansion (B), contraction (C) and shrinkage (D). To minimize f using NM, the

points in x∗ must be ordered so that f(x1) ≤ f(x2) ≤ ... ≤ f(xn) ≤ f(xn+1) and then

the centroid x0 of all points, except xn+1, is calculated. After that, several conditional

steps are performed until a stopping criterion ∆ is reached, as presented in Algorithm 2.

Here an implementation choice must be done. The user can choose these two

options:

• Set each point given by TGO’s Step 2 as an NM search by itself. This can

be performed by generating random points inside a relatively small interval around

each point returned by Step 2. This option may have an increased computational

cost, since more points are generated in order to complete the search. Note that

NM needs at least the number of dimensions plus one point to properly execute its

algorithm. For example, in a two-dimensional search space, NM needs three points
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to execute its routine, if TGO returns four points in Step 2, each one of these points

will receive two randomly generated points, giving a total of 12 points, 4 given by

TGO and 8 later added.

• Set all points from Step 2 as a single search for NM. With this option, the

computational cost tends to be smaller, but some problems can be found. If TGO

returns less points than the necessary for the NM routine, random points must

be generated in the whole search space in order to complete the minimum needed,

which can decrease its performance. Another problem is the exploration of the local

minima itself, which may be poor since the simplex vertices will converge quickly to

the best point from TGO.

In this work, we implemented the first option described: every point from TGO is

a search by itself. However, we tested the second option and the results found were better

in terms of computational cost. Nevertheless, the routine with the first option is more

aligned with the classical description of TGO, where every point given in Step 2 represents

the neighborhood of an optimum. Moreover, we opted to perform one iteration of the

NM algorithm for each TGO point in a sequential way. Therefore, one loop presented in

Algorithm 2 is executed for one point of TGO, then the next point is used. This loop is

executed in a cycle for every TGO point until stopping criterion is reached.

4.2.3.2 Levenberg-Marquardt (LM)

The Levenberg-Marquardt (LM) method is a deterministic optimization technique

that aims to minimize the least squares functional. It was originally introduced by

Levenberg (76) in 1944, but it was Marquardt (77) who rediscovered it in 1963 and made

a crucial contribution to increase the chances of convergence of the algorithm. As a result,

the method became widely known as the Levenberg-Marquardt algorithm.

LM applications and its variations to solve inverse problems in science and en-

gineering are still relevant today due to the robust convergence characteristics of the

method (119, 120). In addition, since its purpose is to minimize least squares objective

functions, LM has recently found great usefulness in Artificial Neural Networks training

(121, 122, 123, 124, 125), which is a fitting problem.

To illustrate the algorithm, consider a generic least-squares objective function F (x)
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Algorithm 2: Nelder-Mead Simplex Algorithm for minimization

choose: A, B, C, D and ∆

sort the points of x∗ so that f(x1) ≤ f(x2) ≤ · · · ≤ f(xn+1)

while f(x1) > ∆ do
1. centroid: compute the centroid x0 from all points except xn+1

2. reflection: compute the reflected point xr

xr = x0 + A (x0−xn+1);

if f(x1) ≤ f(xr) ≤ f(xn+1) then

xn+1 ← xr;

go to step 6;

else
3. expansion:

if f(xr) < f(x1) then
Compute the expanded point xe

xe = x0 +B (xr − x0);

if f(xe) < f(xr) then

xn+1 ← xe;

go to step 6
else

xn+1 ← xr

go to step 6
end

end

4. contraction: Compute the contracted point xc

xc = x0 + C (xn+1 − x0);

if f(xc) < f(xn+1) then
xn+1 ← xc

end

5. shrinkage:

for each point i = 2, 3, . . . , n, n+ 1 do
xi ← x1 +D(xi − x1)

end

end

6. sort the points of x∗ so that f(x1) ≤ f(x2) ≤ · · · ≤ f(xn+1)
end

P1 is the solution
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written as

F (x) =

NEXP∑
i=1

(Yi − ϕ(xi))2 = (Y − ϕ(x))T · (Y − ϕ(x)) = r(x)T · r(x) (4.1)

where x is the vector of real unknowns variables, Y is the vector containing the experimental

data, ϕ is the solution of the physical model related to Y, r(x) is the residual vector

containing the difference between the experimental data and the physical model at x and

NEXP is the total number of experimental data.

Starting from an iteration k, the procedure is built to obtain new estimates k + 1

using xk+1 = xk +∆xk where ∆xk is defined as

∆xk = −
[(
Jk
)T

Jk + λkI
]−1 (

Jk
)T

rk (4.2)

where I is the identity matrix with dimension of the number of variables, λ the damping

factor and J is the Jacobian matrix of the physical quantities with respect to the unknown

parameters, i.e.

Jij =
∂ϕi

∂xj
, i = 1, 2, ..., NEXP, b = 1, 2, ..., Nun (4.3)

where Nun is the number of unknowns.

Concerning the implementation of LM with the points selected by TGO, the

approach chosen is to advance one iteration k for each point from TGO’s Step 2. That is,

each TGO point takes a step with Eq. 4.2 in a sequential way. This approach may result

in an increased computational cost, but it also enhances the likelihood of overcoming local

minima.

Algorithm 3 presents the pseudo-code for the LM using a set of starting points

given by x∗ = {x1,x2, ....,xn}, where n represents the number of points selected in the

second step of TGO. In this implementation it is also necessary to define the vector of

objective function evaluations F = {F (x1), F (x2), ..., F (xn)}, where F represents the

generic least squares calculation, as described by Eq. 4.1.
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Algorithm 3: Levenberg-Marquardt Algorithm for minimization

choose: λ and assemble λ = {λ, λ, ..., λ} with the same dimension as F

choose: ∆ as stopping criterion

define: Fold ∼ {∞,∞, ...,∞} with the same dimension as F

for each external iteration k = 1, 2, ...,MaxIter do

for each point i = 1, 2, ..., n do
evaluate the residue vector r(x∗ [i])

F [i]← r(x∗ [i])T · r(x∗ [i])

if F [i] < ∆ then
break

end

if F [i] < Fold [i] then
λ [i]← λ [i] /10

else
λ [i]← λ [i]× 10

end

evaluate the step ∆x with Eq. 4.2 for point x∗ [i]

x∗ [i]← x∗ [i] + ∆x

end

end

Find: the smallest value of F and store its index as min

x∗ [min] is the solution

4.3 Formulation and solution of the Heat Transfer Problems

4.3.1 Direct Problem 1 (DP-1): Heat transfer by simultaneous conduction and radiation

in a semi-transparent medium

Consider a steady-state one-dimensional medium that is subjected to heat transfer

by both conduction and radiation. Consider also that this medium absorbs, emits and

scatters isotropically the radiation. The spatial coordinate and the optical thickness

are represented respectively by τ =
∫ x

0
βdx and τ0 =

∫ L

0
βdx, where β is the extinction

coefficient, and L is the physical length of the medium, which has transparent boundaries

and incident radiation in τ = 0, as shown in Figure 25. The temperatures at the boundaries

τ = 0 and τ = τ0 are kept constant as T1 and T2, respectively, also shown in Figure 25.

The mathematical formulation for the combined conduction-radiation heat transfer

problem with the temperature in its dimensionless form, Θ(τ), is given by the Poisson

Equation (80)
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Figure 25 – Schematic representation of the medium subjected to the coupled conduction-
radiation heat transfer phenomena (2, 3).

d2Θ

dτ 2
− (1− ω)

N

[
Θ4 −G∗(τ)

]
= 0, in 0 < τ < τ0 (4.4a)

Θ = Θ1 at τ = 0 (4.4b)

Θ = Θ2 at τ = τ0 (4.4c)

where ω is the single scattering albedo, and the dimensionless variables are defined as

G∗(τ) =
1

2

∫ 1

−1

I(τ, µ)dµ (4.5a)

N =
kβ

4ψ2σ̄T 3
1

(4.5b)

Θ(τ) =
T (τ)

T1
(4.5c)

where G∗ is the dimensionless incident radiation, N the conduction-radiation parameter,

k is the thermal conductivity, ψ is the refraction index and σ̄ is the Stefan-Boltzmann

constant. The dimensionless radiation intensity, I(τ, µ), is determined by the solution of

the radiative transfer problem (80)

µ
∂I(τ, µ)

∂τ
+ I(τ, µ) = R(Θ) +

ω

2

∫ 1

−1

I(τ, µ′)dµ′ in 0 < τ < τ0, −1 ≤ µ ≤ 1 (4.6a)

I(0, µ) = 1 with µ > 0 (4.6b)
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I(τ0,−µ) = 0 with µ > 0 (4.6c)

where µ is the cosine of θ - angle between the radiation beam and the positive τ axis (also

known as polar angle). Another dimensionless quantity is R(Θ), which is defined as

R(Θ) = (1− ω)Θ4(τ) (4.7)

The simultaneous conduction and radiation heat transfer direct problem - from

now on called DP-1 - is described by Eqs. 4.4 and 5.8. Its solution is obtained using

Chandrasekhar’s discrete ordinates method where the angular domain is discretized and

the integrals replaced by Gauss-Legendre quadratures.

The built-in routine ”NDSolve” of the Wolfram Mathematica 11.0 software (83)

is then used to solve the differential equation of coupled equations generated by the the

polar angle discretization - see Eq. 5.8a and Eq. 4.4a. This routine is performed under

automatic absolute and relative error control. The problem given by Eq. 4.4a is also

solved with ”NDSolve” routine, but for the sake of stability, a pseudo-transient regime is

necessary to increase the solution’s stability.

This solution method was used by Knupp et al. (84), but here a heat conduction

problem is present and coupled with the radiation problem. The conduction problem uses

information of the radiation intensity through the term G∗ and the radiation problem

requires information of the temperature in the dimensionless quantity R. Algorithmically,

the iterative process is constructed by giving an initial solution to the radiation intensity

so the quantity G∗ can be calculated. Following that it is possible to obtain obtain the

temperature profile and calculate R. That ends the iteration because this R generates

a new radiation intensity profile and the process restarts. This method is considered

converged when the maximum absolute error between two radiation intensity profiles in

consecutive iterations is below some pre-defined tolerance.

4.3.2 Direct Problem 2 (DP-2): Heat conduction in a thermally thin plate

Consider a system composed by two polymer plates with dimensions Lx × Ly × Lz

each. There is a thin heater between those two plates, positioned as illustrated in Figure

26. Furthermore, the external surfaces of both plates exchange heat with the external

environment via natural convection.
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Figure 26 – Schematic representation of the system plate-resistance-plate. (4)

We assume that there is no heat gradient along the y direction and that all thermal

and physical properties are constant. The lumped analysis technique can be employed

to model this system, thereby reducing its dependence on spatial dimensions to just one,

the x direction. Such technique uses the hypothesis that the average temperature inside

the plate, along the z axis, is very close to the temperature at both z = 0 and z = Lz,

i.e., the temperature variation along z is so small when compared to the variation in x,

that its effect can be neglected (4). The heat diffusion equation with the mathematical

manipulation of the lumped parameters technique is written as

k
∂2T (x, t)

∂x2
− heff(x)[T (x, t)− T∞]

Lz

+
q
′′

h(x)

Lz

= ρcp
∂T (x, t)

∂t
(4.8a)

k
∂T (x, t)

∂x

∣∣∣∣
x=0

= 0 (4.8b)

k
∂T (x, t)

∂x

∣∣∣∣
x=Lx

= 0 (4.8c)

T (x, 0) = T∞ (4.8d)

where T (x, t) is the average temperature along the z direction, T∞ is the ambient tem-

perature, which is considered constant during the experiment, heff(x) is the heat transfer

coefficient at z = Lz, which is a combination of heat transfer by natural convection and

linear radiation, q”h(x) is the heat flux into the plate at z = 0 due to the electrical heater,

ρ and cp are, respectively, the specific mass and the specific heat of the plate, and k its
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thermal conductivity. Note that with this formulation the temperature profile has only

one spatial coordinate dependence.

The problem described by Eq. 4.8 is numerically solved using a Finite Difference

formulation. With an implicit formulation, this approach yields a system of linear equations,

which is solved using the built-in routine ”LinearSolve” of the Wolfram Mathematica 11.0

(83) software. The result obtained, when all the variables, parameters and conditions are

known, is the temperature T (x, t) as an interpolated function of space and time.

4.3.3 Direct Problem 3 (DP-3): Heat transfer in a thermally developing fluid flow inside

parallalel plates

DP-3 consists of determining the steady state temperature field of a hydrodinam-

ically developed and thermally developing fluid flow inside two parallel plates channel

subjected to a constant heat flux q” (126, 127), as presented schematically in Figure

35. Neglecting viscous dissipation, free convection, and the axial conduction effects, the

mathematical formulation that describes the temperature field T (x, y) can be written as

(5)

k
∂2T (x, y)

∂y2
= u(y)ρcp

∂T (x, y)

∂x
, in 0 < x < b and 0 < y < h (4.9a)

k
∂T (x, t)

∂y

∣∣∣∣
y=h

= q”, with 0 < x < b (4.9b)

−k ∂T (x, t)
∂y

∣∣∣∣
y=0

= q”, with 0 < x < b (4.9c)

T (0, y) = f(y), in 0 ≤ y ≤ b (4.9d)

u(y) = 6um
y

h

(
1− y

h

)
(4.9e)

where the thermophysical parameters k, ρ and cp are: the thermal conductivity, specific

mass and specific heat, respectively. The term um is the average velocity of the fluid flow

in the channel, calculated from the parabolic profile for the velocity field u(y).

To solve the problem described by Eq. 4.9, the built-in routine “NDSolve” of the
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Figure 27 – Schematic representation of the parallel plates system showing the height
dependence of the fluid velocity with the transversal coordinate. Adapted from Ref. (5)

Mathematica system is used again. Here the chosen approach is to use the Finite Elements

Method and, to do so, the mesh generated to discretize the domain is rectangular and

all the elements have the same dimensions, i.e., the mesh is uniform. In this approach,

the velocity field u(y) and the inlet temperature f(y) are implemented as continuous

functions, so the discretization to solve the differential equation numerically is performed

automatically by the “NDSolve” routine (83).

4.4 Inverse Problems Formulation

The inverse problems proposed in this work are formulated using the maximum

likelihood approach, which yields a least-squares objective function to be minimized. This

function is given by the sum of squared residuals between the experimental data and the

corresponding quantity calculated by the direct model. The first two inverse problems deal

with the estimation of thermophysical parameters, and the third one with the estimation

of the inlet temperature profile. These formulations are further explained on subsections

4.4.1 to 4.4.3.

4.4.1 Inverse Problem 1 (IP-1):

Consider that the thermal conductivity k, the single scattering albedo ω and the

optical thickness τ0 are unknowns in DP-1, leading to the following vector of unknowns:

u1 = {N,ω, τ0}T (4.10)

where the thermal conductivity k is included in the formulation of the conduction-radiation
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dimensionless parameter N . See Eq. 4.5b.

Experimental data are necessary to obtain the estimates of u1. In this work these

data are simulated using the solution of the DP-1 itself. This solution yields two physical

quantities, the radiation intensity I and the dimensionless temperature Θ, and, in order to

generate the simulated experimental data, random noise drawn from a normal distribution

is added, as follows

Yi = I
(
τ0, µi,u1

exact
)
+ e, e∼N

(
0, σ2

1

)
, i = 1, 2, ..., DRad

1 (4.11a)

Zj = Θ
(
τj,u1

exact
)
+ r, r∼N

(
0, σ2

1

)
, j = 1, 2, ..., DTemp

1 (4.11b)

where DRad
1 and DTemp

1 are the total number of radiation intensity and temperature

experimental data, respectively. The reader can notice that the variance has the same

value for the radiation intensity and for the temperature. This choice was based on the

fact that both quantities are dimensionless, and their magnitude lies within the same

range. Another important thing to keep in mind is the fact that the radiation intensity is

acquired on the exit boundary τ = τ0, which is physically reasonable due to the nature of

the problem - see Figure 25.

The following objective function is then obtained, and should be minimized (3):

S1 (u1) =

DRad
1∑
i=1

[Yi − I (τ0, µi,u1)]
2 +

DTemp
1∑
j=1

[Zj −Θ(τj,u1)]
2 (4.12)

4.4.2 Inverse Problem 2 (IP-2):

Consider that the unknown parameters are thermal conductivity k and the specific

heat cp, thus forming the vector of unknowns u2, which is written as

u2 = {k, cp}T (4.13)

In this problem, the experimental temperature data are also simulated, but as

they can be obtained spatially for different time periods, the indices j and i are used to

represent such variables dependence, respectively. Then it is possible to write the set of

experimental temperature data W as
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Wi,j = T (xj, ti,u2
exact) + p, p ∼ N(0, σ2

2), i = 1, 2, ..., Dt
2, j = 1, 2, ..., Dx

2 (4.14)

The term Dt
2 represents the number of time instants for which all the Dx

2 temperature data

were obtained. In other words, there is a total number of D2 = Dt
2 ×Dx

2 experimental

data for this problem.

The IP-2 solution, can be obtained with the minimization of the following objective

function:

S2(u2) =

Dt
2∑

i=1

Dx
2∑

j=1

[Wi,j − T (xj, ti,u2)]
2 (4.15)

4.4.3 Inverse Problem 3 (IP-3):

The third inverse problem aims at estimating the inlet temperature profile f(y)

given that temperature measurements are available at some discrete positions along the

channel. In this case, the vector of unknowns contains temperature values representing

discrete points of f(y)

u3 = {T1, T2, ..., Tn}T , T1 = f(y1), T2 = f(y2), ..., Tn = f(yn) (4.16)

where n is the total number of points used in the discretization. The experimental

measurements are simulated with

Qi = T (xexp, yi, f
*) + v, v ∼ N(0, σ2

3), i = 1, 2, ..., D3 (4.17)

where D3 is the total number of experimental data, f * is the exact inlet temperature

profile. Then, the objective function to be minimized is formulated as

S3(u3) =

D3∑
i=1

[Qi − T (xexp, yi,u3)]
2 (4.18)
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4.5 Results and discussion

The results are presented in three main parts: in Section 4.5.1 the direct problem

solutions and the simulated experimental data are presented. In section 4.5.2 we present

the results using TGO with different combinations of methods in order to compare the

efficiency yielded by each one. Finally, in section 4.5.3 a statistical test is performed to

show which approach led to better results.

4.5.1 Direct problems solutions and experimental data

4.5.1.1 Direct Problem 1: Solution and experimental data

Some authors have already shown that there is a difficulty in estimating the

conduction-radiation parameter N when it has small values, that is, N < 0.05 due to the

lack of sensitivity (3, 128). In order to obtain a feasible result of the optimization method

with a reasonable computational cost, the exact value chosen for parameter N in this

work is precisely Nexact = 0.05. In addition, the single-scattering albedo and the optical

thickness exact values are ωexact = 0.3 and τ0exact = 1.0, respectively.

As previously mentioned, the radiation intensity experimental data are all obtained

at the exit boundary, i.e., τ = τ0. But the polar angles chosen to read these radiations

must be more carefully determined. According to the sensitivity analysis performed in

Ref. (2), the best angular range to position the sensors would be within the cosine range

of 0 < µ < 0.4. Thus, we selected seven radiation intensity acquisition sensors positioned

at polar angles cosines of µ = {0.10; 0.15, 0.20; 0.25; 0.30; 0.35; 0.40}. For the temperature

readings, the choice is to use two sensors located at τ = {0.4 τ0, 0.6 τ0}. The experimental

data is simulated using a noise level of σ1 = 0.01 in Eq. 4.11, which leads to a maximum

percentage error of 6.5% for the radiation intensity and 1.3% for the temperature for

this particular set of data. All these and other parameters used in the simulations are

summarized in Table 25. The calculated values for radiation intensity and dimensionless

temperature obtained with these parameter values are displayed in Figure 28, where the

continuous line is the exact solution, and the points are the experimental data generated

with Eq. 4.11.
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Table 14 – Exact values of the parameters for DP-1 and IP-1.

Parameter Value Dim. Description
N 0.05 - Conduction-radiation parameter
ω 0.30 - Single-scattering albedo
τ0 1.00 - Optical thickness
Θ1 1.00 - Temperature boundary condition
Θ2 0.20 - Temperature boundary condition
DRad

1 7 - Number of radiation experimental data

DTemp
1 2 - Number of temperature experimental data
σ1 0.01 - Std. dev. of the experimental data error
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Figure 28 – Exact solution and experimental data for DP-1, obtained with N = 0.05,
ω = 0.3, τ0 = 1.0 and σ1 = 0.01.
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4.5.1.2 Direct Problem 2: Solution and experimental data

The plates used in this problem have dimensions Lx = 0.08 m, Lx = 0.04 m and

Lx = 0.0016 m, as displayed in Table 15. The spatial discretization of the x coordinate

was performed with 21 uniformly distributed points, which yielded a discrete interval of

0.004 m. The transient march was defined with a step in time of 5 s.

The material chosen for the plates is the Nylon6,12: it has thermal conductivity

k = 0.22 W/m.K, specific heat cp = 1680 J/kg.K, and specific mass ρ = 1060 kg/m3

(129). Therefore, uexact
2 = {0.220, 1680}T is the vector of exact values which generates the

experimental data.

According to empirical correlations for natural convection and linearized radiation,

the coefficient of heat transfer by convection heff has a magnitude of 17 W/m2K for the

heated portion and 4 W/m2K for the non-heated portion of the plate (57). The generated

heat due to the thin electrical resistance - which acts only on the top half of the plate -

can be calculated via Joule’s law of heating leading to a magnitude of q”h = 440.0W/m2K.

The whole experiment is carried out with a constant ambient temperature T∞ = 24ºC.

The experimental data are acquired in three instants of time: t = 390 s, t = 780 s

and t = 1560 s. In addition, for each of these time instants, 201 temperature data will

also be acquired along the x direction, resulting in D2 = 603 experimental data in total.

These are temperatures readings supposedly acquired on the exposed face of the plate at

different time points, such as those obtained via infrared thermography presented in Ref.

(4). Figure 29 shows the simulated experimental data for the three time levels along with

the exact solution. The discrepancy between the points is due to the addition of random

noise, which is calculated using σ2 = 0.5 ºC in Eq. 4.14.

4.5.1.3 Direct Problem 3: Solution and experimental data

To obtain the experimental data from DP-3, the fluid considered is air, and its

conditions are the same ones found in Ref. (130), which are presented in Table 16. The

experimental data is acquired with readings evenly distributed on the y direction with

incremental spacing of ∆y = h/19 at the horizontal position of x = b/5. This acquisition

of temperature can be achieved in real experiments by the use of infrared thermography.

As mentioned in subsection 4.3.3, the fluid domain is discretized with a uniform
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Table 15 – Exact values of the parameters of DP-2 and IP-2.

Parameter Value Dim. Description
k 0.22 [W/m.K] Thermal conductivity
cp 1680 [J/kg.K] Specific heat
ρ 1060 [kg/m3] Specific mass
Lx 0.0800 [m] Plate dimension
Ly 0.0400 [m] Plate dimension
Lz 0.0016 [m] Plate dimension
T∞ 24.0 [°C] Ambient temperature
Dt

2 3 - Number of time instants
Dx

2 201 - Number temperature data in x
σ2 0.50 [°C] Std. dev. of experimental data error
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Figure 29 – Exact solution and experimental data for the temperature in DP-2, obtained
with k = 0.22 W/mK, cp = 1680 J/kgK and σ2 = 0.5 °C.



101

Table 16 – Exact values of the parameters of DP-3 and IP-3.

Parameter Value Dimension Observation
k 0.0265 [W/m.K] Thermal conductivity
cp 1007.0 [J/kgK] Specific heat
ρ 1.1614 [kg/m3] Specific mass
h 0.128 [m] Spacing between plates
b 0.635 [m] Plate length
um 0.025 [m/s] Fluid velocity
q” 500 [W/m2] Heat flux at the plates
D3 20 - Number of experimental data
σ3 0.50 [°C] Std. dev. of experimental data error
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(a) Inlet temperature at x = 0
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Figure 30 – Exact solution and experimental data for the temperature in DP-3, obtained
with the inlet temperature profile (a) and σ3 = 0.5 ºC.

rectangular mesh in order to obtain the solution with FEM. The mesh has a total of 4470

rectangular elements (30 vertically and 149 horizontally).

Figure 30 presents the (a) inlet temperature profile f(y) and (b) the experimental

data with the exact solution of the problem. The inlet temperature profile is a step

function, which can represent a stratified flow. The reader can notice that, as expected,

the temperature readings are greater when taken closer to the walls due to the presence of

the heat flux q”.

4.5.2 Computational Experiments

Stopping CriterionTo compare the the various TGO combinations performance, we

chosen to count the number of objective function evaluations (NFE) necessary to reach

the Morozov’s Discrepancy Principle (90). To use this principle as stopping criterion, a

tolerance ∆ must be defined. This tolerance is calculated for each inverse problem as
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follows:

∆IP-1 = DRad
1 σ2

1 +DTemp
1 σ2

1 = 9.0× 10−4 (4.19a)

∆IP-2 = D2σ
2
2 = 150.75 [°C]2 (4.19b)

∆IP-3 = D3σ
2
3 = 5.0 [°C]2 (4.19c)

where σ2
1, σ

2
2, σ

2
3 are the variance of the experimental data errors, as already defined in

Section 4.4, and D1, D2 and D3 are the total number of experimental data for each inverse

problem. Then, the local search methods in Step 3 are interrupted when the objective

function is less or equal than these calculated tolerances. With this approach, it is expected

that the obtained solution will be reasonably stable, meaning that the curve fitting will

fall within the experimental error (10).

Search Intervals. The search intervals are shown in Table 17, where umin

represents the lower limits and umax the upper limits for each particular unknown. These

intervals define the enclosed space in which the TGO has its points generated. The

local search methods also have limitations when they reach these boundaries. If any

points of the NM search surpasses one of these boundaries, the simplex from this point

is removed completely from the search. The approach with the LM is similar, when

any step from LM leads to a point outside the search limit, this particular point is then

removed entirely from subsequent searches. This is a reasonable expectation since the

LM algorithm demonstrates exceptional convergence characteristics when provided with

a good initial estimate. Therefore, even if one of the points provided by Step 2 of TGO

exceeds the search limit and is excluded, the LM algorithm will still be able to explore

other topographical minima and continue the search. In Table 17, also, the exact values

for the unknowns are displayed, with exception of IP-3, whose exact solution is shown in

Figure 30a.

Nelder-Mead Configuration. To perform the NM search, each point from TGO

Step 2 is a single search by itself, therefore one point must be added to the TGO point

for every search dimension. This is achieved by generating random points drawn from a

normal distribution centered at the given TGO point, and with standard deviation of 1%

of the total search space length in that particular dimension. These points are generated

the “RandomReal” Mathematica routine. The parameters for NM are the ones considered
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Table 17 – Search intervals and exact values for IP-1, IP-2 and IP-3

Problem Parameter umin uexact umax

IP-1
N
ω
τ0

0.005
0.00
0.25

0.05
0.3
1.0

0.5
1.0
2.0

IP-2
k [W/m.K]
cp [J/kgK]

0.10
1000 J/kg.K

0.22
1680

10.0
5000

IP-3 Tn [°C] -73.15 See Figure 30a 326.85

standard in the literature: a = 1.0, b = 2.0, c = −0.5 and d = 0.5. See Algorithm 2.

Levenberg-Marquardt Configuration. To perform the LM search, it is necessary

to choose the damping factor λ: if its value is relatively high, the search tends to be more

refined, with smaller steps, which is acceptable when the initial position is a poor initial

estimate, but if its value tends to zero, the search will favor convergence - ideal for better

initial points - the choice of this parameter directly affects the computational cost of the

method. In this work the damping factor is zero for all the inverse problems described,

IP-1, IP-2 and IP-3, that is, λIP-1 = λIP-2 = λIP-3 = 0. This is a strong choice because

when there is no damping factor, the points selected by TGO are trusted to be good initial

estimates of the solution.

4.5.2.1 Results for IP-1

Table 18 displays the average NFE required to meet the stopping criterion, based

on 10 independent TGO executions - every execution uses a new set of initial points for

TGO in Step 1, which is completely determined by the random points generator. In such

Table, the terms H and K are the number of initial points and the number of nearest

neighbors analyzed, respectively. NNN represents the average number of nearest neighbors

found by TGO Step 2. This number indicates how many topographical minima were found

by the algorithm.

Among the 16 configurations displayed in Table 18, the SS-LM combination ac-

counted for 10 of the lowest NFE’s obtained. The reader may notice that NM presents

worse results compared to the LM algorithm for every scenario. This is due to the nature

of the search, in NM, extra points are added to each one of the points from TGO’s Step 2,

which considerably increases the computational cost. In contrast, in LM, in addition to

the fact that the gradient search is considerably faster, no extra points are added to the
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Table 18 – Average results for 10 independent executions of IP-1 with comparisons of Sobol
Sequence (SS), Mersenne Twister (MT), Levenberg-Marquardt (LM) and Nelder-Mead
(NM).

H K
SS-LM SS-NM MT-LM MT-NM

NNN NFE NNN NFE NNN NFE NNN NFE

100
10 7.6 167.5 7.7 315.4 8.1 165.4 7.5 189.2
15 4.3 140.2 4.4 211.2 4.4 140.9 4.3 150.6

160
10 12.8 261.1 12.3 367.4 12.1 244.3 12.8 380.9
15 6.3 215.6 6.2 250.2 7.9 228.6 6.7 319.2

200
20 6.2 250.7 5.7 298.5 6.2 246.5 6.1 291.4
25 3.5 233.9 3.8 250.9 4.3 233.9 4.4 280.1

320
25 7.1 376.3 5.8 383.7 7.8 372.8 8.1 415.5
30 4.4 351.1 4.4 385.2 5.1 359.5 4.7 375.0

400
30 5.1 431.8 6.3 494.9 6.6 448.6 7.0 505.1
40 3.3 425.5 3.4 422.6 3.9 431.8 4.3 459.6

640
30 9.7 697.4 9.1 718.3 10.7 701.9 11.2 774.4
40 5.3 673.2 5.7 673.3 6.4 685.8 6.9 721.5
50 4.3 672.5 3.5 676.0 4.5 671.1 4.0 683.4

800
40 7.2 837.4 6.5 853.2 8.1 856.3 7.3 865.3
50 4.6 829.7 4.6 840.0 5.7 831.8 6.3 870.9
60 3.7 823.4 3.4 817.6 3.8 822.7 4.3 842.5

Avg 461.7 497.4 465.1 507.8

original set of points.

It is also possible to observe that the performance of LM improves considerably

when NNN decreases. This is expected, but not always desired. Indeed, with higher values

of K, less selected points for initializing the local search method there are, thus leading to

less computational cost, however decreasing the number of selected points in Step 2 can

be considered a sub-utilization of the TGO algorithm - if the local search algorithm is lost,

it will not have other points available to perform the search.

In Figure 31, the obtained temperature and radiation intensity profiles are displayed

with the simulated experimental data. In such figure, the error bars correspond to plus

and minus the standard deviation used to generate the simulated experimental data. The

four results presented are obtained from the H = 100 and K = 10 configurations. Here

the image is zoomed in to better showcase the difference among the configurations and

how they fit the experimental data. The temperature simulated data in Figure 31b are not

aligned because the position of the sensor is built in the τ0 unknown, so its placement is also

found by the optimization method. As expected, by applying the Morozov’s Discrepancy

Principle as stopping criterion, the temperature and radiation intensity profile lies within
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Figure 31 – Comparison of solutions obtained with H = 100 and K = 10 configuration
for IP-1 and the respective simulated experimental data.

the experimental error standard deviation with reasonable confidence.

4.5.2.2 Results for IP-2

Table 19 shows the NFE obtained for IP-2. These results are the average of 50

independent executions of the TGO. This greater number of executions is necessary

due to the increased amount of experimental data used for IP-2, which leads to greater

discrepancies in the solution, even when the Morozov’s Principle is achieved.

Again, the SS-LM combination produced the lowest NFE averages, as displayed in

Table 19. TGO with SS point generator produced the best results for IP-2, for both LM

and NM. Notice in the last lines of results, with H = 1600 starting points, the effort made

in the local search phase is very small for both the LM and NM search. This is due to the

fact that, in addition to TGO Step 2 returning fewer points with a high K, the search

space with H = 1600 points is better sampled, thus finding great initial solutions for local
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Table 19 – Average results for 50 independent executions of IP-2 with comparisons of Sobol
Sequence (SS), Mersenne Twister (MT), Levenberg-Marquardt (LM) and Nelder-Mead
(NM).

H K
SS-LM SS-NM MT-LM MT-NM

NNN NFE NNN NFE NNN NFE NNN NFE
100 5 2.18 117.3 2.78 159.8 2.14 130.6 5.12 216.6

10 1.52 110.5 1.40 135.0 1.42 112.3 1.64 143.0
200 5 3.52 220.4 3.82 270.2 2.74 247.4 8.56 377.3

10 1.36 208.5 1.30 227.3 1.92 213.0 1.94 242.3

400
5 5.64 429.6 5.4 487.1 16.48 478.5 15.66 672.9
10 1.58 408.3 1.64 431.3 2.50 413.8 2.56 446.2
15 1.22 406.7 1.18 426.2 1.62 410.0 1.60 434.2

800

5 8.46 840.7 7.56 878.4 27.78 929.9 29.52 1190.8
10 1.84 809.3 1.80 828.4 3.64 818.7 3.24 845.0
15 1.50 807.8 1.22 819.5 1.78 809.6 1.70 830.2
20 1.2 805.9 1.10 812.6 1.44 807.5 1.34 823.1

1600

10 2.6 1610.1 2.36 1628.6 4.64 1621.0 4.70 1642.1
15 1.54 1607.5 1.44 1619.5 2.24 1610.7 2.44 1628.8
20 1.36 1606.1 1.48 1615.2 1.42 1606.8 1.54 1617.5
25 1.22 1604.6 1.22 1617.4 1.24 1606.2 1.28 1617.3

Avg 772.8 797.1 787.7 848.4

search methods.

Figure 32 shows the temperature profile obtained for the configuration H = 100

and K = 10. In order to better visualize the differences of the methods, this profile is

presented only for t = 390 s and at the heated portion of the plate, i.e., 0 ≤ x ≤ 0.04 m.

The error bar represents the simulated experimental data standard deviation and, as it is

possible to see, even though some of the experimental data lies outside of the curve, the

four solutions obtained are reasonably consistent with each other.
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Figure 32 – Comparison of solutions obtained with H = 100 and K = 10 configuration
for IP-2 and the respective simulated experimental data.
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Table 20 – Average results for 30 independent executions of IP-3 with comparisons of Sobol
Sequence (SS), Mersenne Twister (MT), Levenberg-Marquardt (LM) and Nelder-Mead
(NM).

H K
SS-LM SS-NM MT-LM MT-NM

NNN NFE NNN NFE NNN NFE NNN NFE

100
5 15.86 307.2 16.70 536.4 16.50 315.5 16.86 574.4
10 8.26 208.4 8.53 404.9 7.86 203.2 8.16 453.2

200
15 9.83 328.8 10.7 532.6 9.76 327.9 10.56 517.7
20 6.76 288.9 7.13 481.3 7.00 292.0 7.30 504.7

400
25 12.33 561.3 12.23 697.4 11.63 552.2 12.16 707.9
30 8.73 514.5 8.56 664.8 9.23 521.0 8.93 663.3

800
40 12.90 968.7 12.73 1066.8 14.16 985.1 13.13 1081.4
45 11.26 947.4 11.03 1057.1 11.73 953.5 10.83 1059.6
50 9.13 919.7 9.73 1089.5 9.70 927.1 9.46 1060.5

1600
60 16.46 1815.0 16.50 1907.9 17.23 1825.0 17.16 1931.1
70 12.63 1765.2 12.90 1856.7 13.16 1772.1 12.56 1850.6
80 9.96 1730.5 9.96 1839.1 10.86 1742.2 9.73 1878.8

Avg 862.96 1011.21 868.06 1023.60

4.5.2.3 Results for IP-3

The inlet temperature function f(y) - see Eq. 4.9 - is discretized with six points

in its domain, which are the unknowns of the inverse problem. Then, they are linearly

interpolated yielding a continuous function to be used in the direct problem. The choice of

six points can be considered a small amount for a function estimation problem, however,

since this problem is not formulated with any regularization, tests have shown that

increasing the number of variables generated unwanted oscillations in the sought solution.

Table 20 presents the results as averages of 30 independent executions for IP-3.

First of all, the reader can notice that the combinations with LM generated better results

for every configurations (similarly to IP-2 and IP-3). Moreover, it is possible to see that

this problem was more computationally expensive than IP-1 and IP-2, as the values for

NFE are considerably higher for all the combinations, which is reasonable for a problem

with more dimensions and a tendency to have a oscillatory solution.

Figure 33 shows the comparison among the four solutions obtained with theH = 100

and K = 5 configuration. In order to better visualize the difference, only the middle

portion of the channel’s height is presented since the peripheral temperature magnitude

is large if compared to the simulated experimental data noise level. The fitted curve

presented shows how each one of the configuration adjusted to the experimental data and,
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as expected due to the Morozov’s Discrepancy Principle stopping criterion, they are very

similar in behavior.
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Figure 33 – Comparison of solutions obtained with H = 100 and K = 5 configuration for
IP-3 and the respective simulated experimental data.

4.5.3 Wilcoxon signed ranks test

The comparison of the computational results presented in subsection 4.5.2 is

performed with the Wilcoxon Signed Ranks Test - WSRT (131). This test allows to

identify if there is a difference between two groups of results, observations or samples, i.e.,

it is a paired test that aims to detect significant differences between two samples (132).

This test is performed by taking the difference between two observations and

ranking their absolute values in ascending order, i.e., the smallest gets the rank 1, the

second smallest gets the rank 2 and so on. Draws receive averages ranks, e.g., if the second

and third ranks have the same absolute difference value, they both receive the rank of

2.5. Consider that T(+) is the sum of all ranks obtained from positive differences, and T(−)

the sum of ranks from negative differences. The statistical parameter Ts is defined as the

smallest among T(+) or T(−) (133). If Ts is smaller than or equal to than the critical value

Tw from the Wilcoxon distribution, then the null hypothesis H0 is rejected, meaning that

there is statistical difference between the two observations, but if Ts is greater than Tw,

the null hypothesis is accepted and there is no difference between the observations.

A brief table of critical values for a two tailed test is displayed in Table 21, where

α is the level of significance and η represents the degrees of freedom (8). The level of

significance represents how much the null hypothesis describes the pair of observations -



109

Table 21 – Critical values Tw for the Wilcoxon Signed-Rank Test. Adapted from (8)

η α = 15% α = 5% α = 2% α = 1%
12 19 13 9 7
13 24 17 12 9
14 28 21 15 12
15 33 25 19 15
16 39 29 23 19
17 45 34 27 23
18 51 40 32 27

in other words, the null hypothesis indicates that the difference between observations has

its center at zero.

Comparisons for IP-1. Table 22 shows the comparisons sums T(+) and T(−)

obtained for the IP-1 - see Table 18. The combinations are presented as the differences

calculated, for example, the line (SS-NM) – (SS-LM) represents the values from SS-NM

minus the values from SS-LM in Table 18. So negative values in this example means larger

NFE for SS-LM. It is possible to see in Table 22 that, for IP-1, the SS-LM combination

prevailed against all others, which was observed in Table 18. The comparison (SS-LM) -

(MT-LM) presented in line 5 of Table 22 shows that there was no significant difference

between the two combinations, in practice this means that the value of α would have

to be greater than the maximum value of 15 % shown in Table 21. But between the

combinations SS-NM and MT-NM, in line 3, presented a difference with α ≤ 5%, which

corroborates for the use of SS as the initial point generator.

Comparisons for IP-2. Table 23 presents the test parameters for IP-2. The

reader can notice that there was no difference between SS-LM and MT-NM and this fact

was not observed on IP-1. It appears that LM was much more competitive on IP-2 than

on IP-1, leading to the conclusion that the surface of the IP-2 objective function favors

the gradient-based method. Again, SS-NM generated the lowest NFE, with α ≤ 1% in all

comparisons. An important observation for the IP-2 results is that the combination SS-LM

has a better performance than the MT-LM with α ≤ 1%, which was also not observed in

IP-1. This comparison in IP-1 led to the acceptance of the null hypothesis, but here it

contributes to the idea that SS has better characteristics to be used in Step 1 of TGO.

Comparisons for IP-3. Table 24 presents the test parameters for IP-3. It is

clear that all the LM combinations were more efficient than the ones with NM as the local

search method. In line 3 and line 5 of Table 24 the reader can see the difference of the
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Table 22 – Wilcoxon Signed Rank Test for IP-1

Combination T(+) T(−) Ts H0

(SS-NM) – (SS-LM) 0 136 0 α ≤ 1%
(SS-NM) – (MT-LM) 0 136 0 α ≤ 1%
(SS-NM) – (MT-NM) 25 111 25 α ≤ 5%
(SS-LM) – (MT-NM) 127 8 8 α ≤ 1%
(SS-LM) – (MT-LM) 41 94 41 —
(MT-NM) – (MT-LM) 3 133 3 α ≤ 1%

Table 23 – Wilcoxon Signed Rank Test for IP-2

Combination T(+) T(−) Ts H0

(SS-NM) – (SS-LM) 17 136 17 α ≤ 1%
(SS-NM) – (MT-LM) 13 140 13 α ≤ 1%
(SS-NM) – (MT-NM) 22 131 22 α ≤ 1%
(SS-LM) – (MT-NM) 106 47 47 —
(SS-LM) – (MT-LM) 19 134 19 α ≤ 1%
(MT-NM) – (MT-LM) 15 138 15 α ≤ 1%

random points generators SS and MT. These results go in favor of the use of SS in Step 1

of TGO, more specifically, these affirmations are drawn with 95% of confidence when used

with LM and 85% with NM. In fact, the three inverse problems proposed in this work got

the best results in general when SS was used.

4.6 Conclusions

The method known as Topographical Global Optimization was used to solve three

heat transfer inverse problems. The solution of these problems served as a framework in

order to compare combinations of TGO when implemented with different point generators

and local search methods, namely Mersenne Twister (MT), Sobol Sequence (SS), Nelder-

Mead (NM) and Levenberg - Marquardt (LM).

Results were compared using the Wilcoxon Signed Ranks Test, which supported

Table 24 – Wilcoxon Signed Rank Test for IP-3

Combination T(+) T(−) Ts H0

(SS-NM) – (SS-LM) 78 0 0 α ≤ 1%
(SS-NM) – (MT-LM) 78 0 0 α ≤ 1%
(SS-NM) – (MT-NM) 19 59 19 α ≤ 15%
(SS-LM) – (MT-NM) 0 78 0 α ≤ 1%
(SS-LM) – (MT-LM) 13 65 13 α ≤ 5%
(MT-NM) – (MT-LM) 78 0 0 α ≤ 1%
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the hypothesis that the Sobol Sequence is the best point generator to be used with TGO

when dealing with these types of inverse problems. For the problems of this work, LM

was more efficient than the NM algorithm. This is due to the implementation options

chosen. The NM method initialized independently for every TGO point resulted in an

increased computational cost. Therefore, the choice of the local search method turnout

to be very important, as different styles of methods will behave differently on certain

objective functions.

Moreover, the results highlighted that the Sobol Sequence can stand out when

larger number of initial points are used. This is in agreement with the literature and

corroborates with the fact that there is, in fact, differences on the outcome of the TGO

when used with distinct point generators. Therefore the choice of SS in this initial step is

recommended.

TGO is a simple algorithm and only requires the configurations of the number

of initial points and the number of closest neighbors to be analyzed, parameters which

can be tuned very intuitively (the local search methods also have its own parameters,

but information about them are usually readily available on the literature). It is also an

advantage of TGO that it can be implemented in parallel. Once the vector of starting

points is determined through the generator, whether MT, SS or any other, the process of

calculating the objective function at these points can take place in different processing

cores, which is an approach that can be further investigated.
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5 COMPUTATIONAL INTELLIGENCE AND TIKHONOV

REGULARIZATION WITH REDUCED DIMENSION MODEL:

APPLICATIONS IN HEALTH, RENEWABLE ENERGY AND CLIMATE

HEAT TRANSFER INVERSE PROBLEMS

5.1 Introduction

Inverse problems can be formulated as minimization problems, where an objective

function is defined as the sum of the squared differences between information calculated

with a model and experimental data, which corresponds to the maximum likelihood

approach (9). The class of inverse problems that deals with function estimation is often

ill-posed due to the presence of noise on the data used as input (9, 10, 134, 135). Such

experimental noise is amplified and generates undesired oscillations on the obtained

solution, making it very difficult to retrieve any useful information and, to overcome this

problem, the classical technique known as Tikhonov Regularization (79) can be used. This

technique works by adding a term to the objective function which penalizes oscillatory

solutions. This term comes multiplied by a positive non-zero scalar, namely the Tikhonov

regularization parameter λ. The fine tuning of λ is crucial to the outcome of the method:

if λ is too large, only over regularized solutions will prevail, on the other hand, if it is too

small, not enough regularization will happen, and the solution will still be too oscillatory.

Therefore, the solution of the inverse problem may incorporate itself the search of

an adequate value for the regularization parameter. To do so, several methods have been

proposed along the years, such as the L-curve method (85, 86), Morozov’s Discrepancy

Principle (88), Fixed Point Iteration method (87), among others. For a more detailed

review of these methods, the reader can see the work of Hansen (136).

In this chapter we focus on the Fixed Point Iteration method (FP), as proposed by

Bazán (87). This method does not require previous information on the experimental error

variance and works by finding the parameter λ that balances the values of the objective

function terms, i.e., the residue and the regularization term (137). The FP finds the best

λ by reaching the convergence of a series where each new term is calculated by solving

the inverse problem with the previous λ. When convergence is reached, the newly found

λ is considered the optimal one. In practice, the iterative process stops when a small

prescribed tolerance is reached.



113

Although FP is very efficient, it obviously can be affected by the number of

dimensions of the problem, i.e., the number of points used to represent the sought function.

In this chapter we present a technique to find an estimate for the best value of λ in a

problem with a large number of variables by solving an alternative problem with reduced

order, i.e., smaller number of dimensions. This low order solution is extrapolated in order

to find an estimate for the complete problem regularization parameter λ and, then, this

estimate is used as an initial value to restart the series. Furthermore, when divergence

is detected on the series, no value of λ can be retrieved. Bazán (87), the author of the

method, suggested different approaches to overcome this problem, but in this chapter we

present a step-by-step algorithm based on the recent work of Aucejo and De Smet (138),

which introduced an idea to overcome this problem based on the objective function terms

values.

The methodology developed in this work is demonstrated in three inverse heat

transfer problems with potential practical applications in bioengineering, renewable energy

and climate, as follows:

• Identification of spatially variable thermal conductivity of biological tissues

The bioheat transfer model proposed by Pennes (139) is used in a steady-state

condition to predict the thermal conductivity of tissues. Thermal techniques and their

analysis are common in the treatment of cancer (140, 141), laser ablation procedures

(142) and even brain related diseases therapy (143), to name a few. Furthermore,

using this model with spatially variable thermal conductivity of biological tissue has

attracted the attention of the scientific community (6, 144, 145, 146).

• Estimation of spatially variable inlet temperature profiles in parallel plates

channel The model used takes into account the velocity field of a fluid inside a

parallel plates channel. The heat transfer process by convection considered has

many applications in the design of optimal heat exchangers, energy transformation,

micro system mechanisms development, among many others. Spatially variable inlet

temperature profiles may be of special interest in micromixers.

• Spatially dependent single scattering albedo The process of radiative transfer

is investigated in steady state for one dimensional participating media. Such problem,

related model and analysis is of great importance in many areas of interest (75, 147,
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148, 149, 150), including those related to climate research, such as atmospheric and

oceanic models (63), oceanography (151) and atmosphere studies (152).

Such problems and corresponding applications are in alignment with the Sustainable

Development Goals (SDG) 3, 4, 7, 9, 13 and 17 of the United Nations 2030 Agenda

established in 2015.

5.2 Fixed Point Iteration method with reduced model

Consider an inverse problem formulated with the maximum likelihood approach.

This formulation leads to a minimization problem where the squared norm of the difference

between the vectors of observed data and values obtained from a model must be minimized.

This objective function can be written as

Q(u) = ||Texp − F(u)||2 (5.1)

where u is the vector of unknown parameters, Texp is the vector of experimental data,

F(u) is the vector of values obtained with the mathematical model, and the operator ||.||

is the l2 Euclidean norm.

When a function intrinsic to the model F is unknown and must be estimated, one

possible approach is to represent this function as linearly interpolated discrete points,

where such points compose the vector u in Eq. 5.1. This formulation of the inverse

problem is often ill-posed and the solutions obtained for u may contain heavy oscillations

(40, 75, 153).

The Tikhonov Regularization (TR) is one of the many techniques proposed to

overcome this problem (9, 135, 154). It consists on adding a term to the objective function

Q that penalizes oscillating solutions of u. The modified Eq. 5.1 with the regularization

term is written as

Q(u) = ||Texp − F(u)||2 + λ2 ||Lu||2 (5.2)

where λ is the regularization parameter, and L is the derivative operator matrix. Particu-

larly, we call the term ||Texp − F(u)|| as the residue norm and ||Lu|| as the regularization

norm.

The derivative operator L can be of zero, first or second order: this choice depends

on desired aspects of the sought solution (87, 137). The regularization parameter λ controls
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the balance between how much regularized the solution must be (154), in other words, if

λ is large, the solution will tend to be constant (over regularized) and, on the other hand,

if λ tends to zero, no regularization is performed.

The following subsections explain the Fixed Point Iteration method (FP) used to

calculate the optimal value of λ, and how it is possible to perform the associated iterative

procedure using a simpler version of the inverse problem, i.e., using a lower dimension

vector of unknowns u.

5.2.1 The Fixed Point Iteration method (FP)

The main idea of FP is to select the value of λ that minimizes the product between

the residue norm and the regularization norm as a function of λ (137). This minimization

corresponds, in other words, to the value of λ that balances the two terms growth. The

iterative process is built with the expression

λi+1 =
√
ϕ
||Texp −T(u)||
||Lu||

∣∣∣∣
λi

, i = 0, 1, 2, ... (5.3)

where ϕ > 0 is a parameter that plays a role on the convergence of the series, and the

residue and regularization norms are obtained from the solution of the inverse problem

with the previous value for the regularization parameter, i.e. λi. Therefore, it is necessary

to perform the optimization cycle in order to obtain the next term of the sequence.

A few aspects of this technique must be pointed out. First of all, to start the series,

the author of the method suggests in Ref. (87) that the initial regularization parameter

should be close to zero, i.e., λ0 → 0+. Furthermore, it is possible that the series fails to

converge. Initially, it is suggested to use ϕ = 1 as an initial choice and, if divergence is

detected, ϕ must be updated to overcome this problem. Bazán (87) proposed different

ways for this parameter tuning, but in this chapter we use the approach recently proposed

by Aucejo and De Smet (138), which takes into account the balance of the terms of the

objective function, and does not require any information of the physical problem. We

implemented this approach with some modifications on the stopping criterion, but the

core of the actualization of ϕ holds, as shown in Algorithm 4 next:
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Algorithm 4: Fixed Point Iteration method with adapted stopping criterion

1: Set ϕ = 1.

2: Set i = 0, λ0 → 0+, and R0 → 0+.

3: Compute λi+1 with Eq. 5.3.

4: Compute the ratio Ri+1 = λ2i
||Lu||2

||Texp−T(u)||2

∣∣∣
λi

.

5: Compute ∆ = Ri+1/Ri.

6: If ∆ < 1, the series is considered divergent, then make
√
ϕ =
√
Ri, and

restart the process from Step 2, otherwise, go to Step 7.

7: If ∆− 1 ≤ ϵ, the series is considered convergent, λi+1 is the optimal

regularization parameter, and the iterative process is stopped.

Otherwise, make i = i+ 1, and go to Step 3.

where ϵ is a relatively small prescribed tolerance. Here it is important to make a few

remarks. The first term R1 will most likely be very small because λ0 → 0+. Furthermore,

the sequence Ri increases until divergence is detected on Step 6. This indicates that the

regularization parameter is increasing and making the regularization norm decrease to a

point that it is not balanced with the residue norm.

Algorithmically, we introduce a stopping criterion on the convergence of the ratio

R on Step 7, which corresponds to the convergence of λ, whereas Aucejo and De Smet

(138) suggested a stopping criterion on the convergence of ϕ, which is a robust option,

despite being more computationally expensive.

5.2.2 The Reduced Dimension Model approach

The objective of this approach is to find an estimate for the initial value of λ to

start the algorithm presented in Sec. 5.2.1, by solving the inverse problem with a coarser

discretization of the sought function, i.e., a lower dimension vector u, identified as ulow.

Once the corresponding optimal regularization parameter λlow and the regularized solution

ulow are determined, the initial regularization parameter λhigh for a problem with higher

dimension can be estimated by equalizing the regularization norms with their respective

regularization parameters, yielding

λ2low ||Lu||
2
low = λ2high ||Lu||

2
high (5.4)
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where ”low” and ”high” are the indexes indicating the lower and the higher dimension

inverse problem, respectively. Then:

λhigh = λlow
||Lu||low
||Lu||high

(5.5)

where λlow and ||Lu||low are known from the solution of the lower dimension problem. The

matrix Lhigh is simply the finite difference operator with the corresponding dimension. Yet

to be determined is the term uhigh. Here some assumptions must be introduced, since we

do not have any solution u obtained with the the high dimension model. The suggestion

is to perform a linear interpolation of ulow in order to generate uhigh.

Now it is possible to evaluate the whole expression given by Eq. 5.5 to obtain an

initial value for λhigh, since all the terms on the right-hand side are determined. In terms

of computational cost, this can be of great advantage if the estimated value of λhigh is

reasonably good, meaning that the higher dimension problem will be solved fewer times.

Another important aspect of this approach is the choice of the dimension size for

ulow. A small dimension size will lead to an easier problem to optimize, but relevant

information of the real solution can be lost, which can lead to a poor estimate for λhigh. On

the other hand, if this dimension is increased, the problem will become more cumbersome

to solve, since more variables are included, leading to higher computational time and,

therefore, more severe regularization issues.

5.3 Direct Problems

In this Section, the three Direct Problems of interest in this work are presented.

As already mentioned, the first one is concerned with the bioheat transfer in steady state

regime on a biological tissue with spatially variable thermal conductivity in order to model

different layers. The second problem deals with the inlet temperature profile of a fluid

inside a parallel plate channel aiming at applications in microchannels. The third problem

addresses the radiative transfer problem in participating media, in which the spatially

variable single scattering albedo must be reconstructed.
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5.3.1 Direct Problem 1: Spatially varying thermal conductivity of a biological tissue

The bioheat transfer model given by Pennes’ equation (139) is a well established

approach in determing the temperature field of biological tissues (6). In this chapter, we

consider the steady-state model with one spatial dimension. Also, the thermal conductivity

k(x) is modeled as a spatially dependent parameter, i.e., it varies across the different types

of tissues. As presented in Figure 34, there is heat exchange with the ambient at x = 0,

and no external heating. The Pennes’ model, in such conditions, can be written as

d

dx

[
k(x)

dT (x)

dx

]
+ ωbρbcb [Tb − T (x)] + qm = 0 (5.6a)

−k(x) dT (x)
dx

∣∣∣∣
x=0

= h [T∞ − T (x)|x=0] (5.6b)

dT (x)

dx

∣∣∣∣
x=L

= 0 (5.6c)

where ωb is the blood perfusion parameter, ρb and cb are the specific mass and specific heat

of the blood, respectively, Tb is the blood temperature, qm is the internal heat generation

due to metabolic activity, L is domain lenght, T∞ is the ambient temperature, and h is

the heat transfer coefficient of the convection phenomenon at x = 0.

The problem given by Eq. 5.6 is solved using the built-in ”NDSolve” routine of

the Wolfram Mathematica software with the Implicit Runge Kutta method option (83),

and fixed step size. The spatially varying thermal conductivity is considered constant for

each tissue, and, therefore, this can be implemented as a step function, i.e. constant by

parts. In this chapter we use an exponential approximation to write this step function as

a continuous function, in order to avoid stiffness of the numerical solution.

5.3.2 Direct Problem 2: Inlet temperature profile in a parallel plates channel

Consider the problem of determining the steady state temperature field of a

hydrodynamically developed and thermally developing fluid inside a two parallel plates

channel subjected to a constant heat flux q at both boundary plate surfaces, as schematically

presented in Figure 35. Neglecting viscous dissipation, free convection and the axial

conduction effects, the mathematical formulation that describes the temperature field
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Figure 34 – Schematic representation of the heterogenous biological tissue. Adapted from
Ref. (6)

T (x, y) can be written as (5, 126, 155).

k
∂2T (x, y)

∂y2
= v(y)ρcp

∂T (x, y)

∂x
(5.7a)

k
∂T (x, y)

∂y

∣∣∣∣
y=H

= q (5.7b)

−k ∂T (x, y)
∂y

∣∣∣∣
y=0

= q (5.7c)

v(y) = 6vm
y

H

(
1− y

H

)
(5.7d)

T (0, y) = f(y) (5.7e)

where the thermophysical parameters k, ρ and cp are the thermal conductivity, and specific

mass and specific heat, respectively. The parameter vm is the average velocity of the fluid

inside the channel.

The problem described by Eq. 5.7 is also solved using the built-in ”NDSolve”

routine of the Mathematica software (83). Here, the Finite Element Method option is used,

and the mesh generated to discretize the domain is rectangular with all the elements having

the same dimensions, i.e., the mesh is uniform. In this approach, the velocity field v(y)

and the inlet temperature f(y) are implemented as continuous functions, and, therefore,

the discretization needed to solve the differential equation is performed automatically by
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T(0,y)= f(y)

x

y

x=0 x=a∂T
∂y = q-k

∂T
∂y = qk

v(y) H

Figure 35 – Schematic representation of the two parallel plates channel showing the
transversal coordinate spatially dependent fluid velocity.

the routine.

5.3.3 Direct Problem 3: Radiative transfer with variable space dependent scattering

albedo

Consider a steady-state regime for an one-dimensional medium that absorbs, emits

and scatters radiation isotropically. The spatial coordinate (optical variable) and the

optical thickness are represented by τ = βx and τ0 = βL, respectively, where β is the

extinction coefficient, and x and L are the physical spatial coordinate and total length of

the medium, respectively. External incident radiation with isotropic constant intensities

A1 at τ = 0 and A2 at τ = τ0 are considered as shown in Figure 36.

θ

0μ �0μ �

0μ �

1μ = − 1μ �

τ
0τ τ�0τ �

Y Y

1A 2A

μ=cos θ

Figure 36 – Schematic representation of a radiative transfer participating medium. Here
Y represents the exit radiation intensity at both boundaries of the medium. Adapted from
Ref. (7).

The mathematical formulation of the steady-state radiative transfer problem, for a

given wavelength, considering the case of azimuthal symmetry, isotropic scattering, and
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neglecting the radiation emission by the medium, is given by the linear version of the

Boltzmann equation (80),

µ
∂I(τ, µ)

∂τ
+ I(τ, µ) =

ω(τ)

2

∫ 1

−1

I(τ, µ′)dµ′ in 0 < τ < τ0, −1 ≤ µ ≤ 1 (5.8a)

I(0, µ) = A1 for µ > 0 (5.8b)

I(τ0, µ) = A2 for µ < 0 (5.8c)

where µ is the cosine of the polar angle θ, i.e., the angle of the radiation beam with the

positive τ axis, and ω(τ) is the spatially varying single scattering albedo.

The solution of the radiative transfer problem given by Eq. 5.8 is obtained using

Chandrasekhar’s discrete ordinates method (81), in which the angular domain is discretized

and the integrals replaced by Gauss-Legendre quadratures, as performed in (2, 9, 57, 75, 82,

84, 150). The built-in routine ”NDSolve” (83) of the Wolfram Mathematica software (83)

is then used to solve the system of differential equations generated by this discretization,

with the method set as automatic, and a precision goal of 10−4 in order to control the

computational cost in obtaining the radiative transfer problem solution.

5.4 Inverse Problems

The Inverse Problem 1 (IP-1) consists of estimating the thermal conductivity k(x)

in Eq. 5.6. The Inverse Problem 2 (IP-2) is formulated similarly to IP-1, but here we

are interested in estimating the inlet temperature profile f(y) in Eq. 5.7e. Lastly, in the

Inverse Problem 3 (IP-3) the varying scattering albedo ω(τ) in Eq. 5.8a is considered

unknown, and must be determined.

For the three cases, the corresponding vector of unknowns, here called u1, u2 and

u3, contains values of the sought function at discrete points of the computational domain,

which can be represented as

u1 = {k1, k2, ..., kn}T , k1 = k(x1), k2 = k(x2), ..., kn = k(xn) (5.9a)

u2 = {T1, T2, ..., Tn}T , T1 = f(y1), T2 = f(y2), ..., Tn = f(yn) (5.9b)

u3 = {ω1, ω2, ..., ωn}T , ω1 = ω(τ1), ω2 = ω(τ2), ..., ωn = ω(τn) (5.9c)
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where n is the total number of points used in the discretization of the sought function

within the physical medium domain.

In order to simulate the experimental measurements required for the solution of

each one of the inverse problems considered, noise is added to the solution of the respective

direct problem using the exact values for the unknown functions that will be determined:

T 1,exp
i = T (xexpi , k*) + v1, v1 ∼ N(0, σ2

1), i = 1, 2, ..., N1 (5.10a)

T 2,exp
i = T (xexp, yexpi , f *) + v2, v2 ∼ N(0, σ2

2), i = 1, 2, ..., N2 (5.10b)

Iexpi = I(τ0, µ
exp
i , ω*) + v3, v3 ∼ N(0, σ2

3), i = 1, 2, ..., N3 (5.10c)

where for IP-1, IP-2 and IP-3, the subscript 1, 2 and 3 holds, respectively, for the:

total number of experimental data N , and the random numbers v drawn from a normal

distribution centered at zero with standard deviation σ. T 1,exp, T 2,exp and Iexp represent

the simulated (synthetic) experimental data to be used for the corresponding inverse

problems, i.e. IP-1, IP-2 and IP-3, respectively. The terms k*, f * and ω* represent

the exact thermal conductivity, inlet temperature and single scattering albedo functions,

respectively. Then, the objective functions are formulated similarly as presented in Eq.

5.2, where, for each inverse problem, the respective direct problem model is used.

5.5 Results and Discussion

To obtain the solutions of the inverse problems, the optimization is performed

initially with a combination of both the Differential Evolution (DE) (28) and the Nelder-

Mead (NM) (104) methods. For every solution obtained, DE starts with a random

population of five times the dimension of u, i.e. 5× n. The crossover probability CR and

the scaling factor W , i.e. control parameters for DE, are set as CR = 0.25 and W = 0.85.

The DE method stops when a number of internal loops, which is specific for each problem,

are completed, and, then, all the points from DE are used to start the NM simplex method.

The NM reflection, expansion, contraction and shrink coefficients are set as 1.0, 2.0, 0.5

and 0.5, respectively. The iterative procedure of NM is stopped when

100× max(F)−min(F)

F̄
≤ γ (5.11)
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where F is the vector of objective function values for each NM point, F̄ is the calculated

mean of such values, and γ a relative small tolerance defined by the user. This dimensionless

stopping criterion represents the percentage of how the values of F are spread relative

to its average values, making it more reasonable to use across the three different inverse

problems.

5.5.1 Results for the Inverse Problem 1 (IP-1)

The values of the parameters for the bioheat model are obtained from the literature

(6, 156). Such values are displayed in Table 25. Experimental data are simulated in

the range 0 ≤ x ≤ L with steps of ∆x = L/200, which in a real application can be

obtained experimentally with the Photoacoustic Thermography (127, 157) or near-field

microwave radiometry techniques (158), for instance. The exact calculated temperatures

are corrupted with a noise level of σ1 = 0.05 ºC in Eq. 5.10a. In order to damp these

errors, and make the retrieval of the sought function more robust, we applied the Total

Variation filter (TV) on the simulated experimental data (154). This filtering method

requires the definition of its own regularization parameter, which was obtained in such

way to satisfy the following criterion

SD
(
TV (T1,exp)−T1,exp

)
= σ1 (5.12)

where SD and TV are the standard deviation and Total Variation functions, respectively,

leading to a TV regularization parameter of 1.25.

The epidermis layer was neglected due to its small thickness, thus not influencing

the quality of the results exposed in this subsection (6). Therefore, the exact thermal

conductivity function considered in this work has three constant step values: k1 = 0.45

W/m K in 0 ≤ x < 0.002 m for the dermis, k2 = 0.19 W/m K in 0.002 ≤ x < 0.012 m for

the subcutaneous tissue and k3 = 0.50 W/m K in 0.012 ≤ x ≤ L for the inner tissue. All

the searches are performed considering the stopping criterion tolerance γ = 0.001, see Eq.

5.11, the search region bounds of 0.1 ≤ u1 ≤ 0.8 W/m K and 20 internal loops in DE.

Using an initial parameter of
√
ϕ = 1.0, see Eq. 5.3, and Algorithm 1, divergence

was detected at the 4th iteration, as can be seen in the behavior of the Ri sequence in

Figure 37 (solid dots), which changes its growth path at the 4th iteration. The process
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Table 25 – Exact values of the parameters for the Direct Problem 1 (DP-1).

Parameter Value Dimension Description
L 0.042 [m] Sample thickness
cb 3770.0 [J/kg K] Blood specific heat
ρb 1060.0 [kg/m3] Blood specific mass
Tb 37.0 [ºC] Blood temperature
ωb 0.00125 [m3/s m3] Blood perfusion coefficient
qm 420.0 [W/m3] Metabolic heat generation
T∞ 20.0 [°C] Ambient temperature

then restarted with
√
ϕ = 0.7595 - notice in Figure 37 the converging behavior of this

Ri sequence (solid triangles). The series with
√
ϕ = 0.7595 is considered converged with

|∆− 1| = 0.0092, which is ≤ 0.01 (see Step 7 in Algorithm 1).
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Figure 37 – Evolution of the sequence Ri for the low dimension model with n = 7
showing the divergent sequence for

√
ϕ = 1.0, and the convergent sequence of the found√

ϕ = 0.7595.

Using this value of
√
ϕ for n = 7, the regularization parameter obtained was

λlow = 1.6577, and the solution obtained for IP-1 is displayed in Figure 38a. It is possible

to observe that the estimation is in general poor, but mainly in 0.012 ≤ x ≤ L. This may

be due to two facts: the coarse mesh of points used to discretize the sought function, and

a lack of sensitivity, specially in the region of the domain farther from the surface.

Nevertheless, this low order solution generated an initial regularization parameter

for the high dimension model with n = 21 of λhigh = 3.3650 calculated according to Eq. 5.5.

Keeping
√
ϕ = 0.7595, the process restarts with the new λ and convergence is obtained on

the 5th iteration, with λ = 1.3410. Finally, the recovered thermal conductivity obtained
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with λ = 1.3410 is presented in Figure 38b, where it is possible to see the improvement in

the quality of the estimation all over the physical domain.
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(b) Solution with n = 21 obtained with

λhigh = 1.3410

Figure 38 – Solutions for IP-1 with the low dimension model (a) that generated the
estimative for the regularization parameter of the high dimension model (b)

In Figure 39 the temperature profile obtained with the solution of the inverse

problem with n = 21 points is displayed with the simulated experimental data. The

error bars of 0.05 °C correspond to the added noise standard deviation used to generate

the simulated data. In such figure, it is possible to notice the good agreement of the

temperature profile obtained with the simulated experimental data, specially in the regions

of the dermis and the subcutaneous tissue, i.e. 0.00 ≤ x ≤ 0.012 m.

5.5.2 Results for the Inverse Problem 2 (IP-2)

The fluid considered for Problem 2 is air (k = 0, 0265 W/m K, ρ = 1.1614 kg/m3,

cp = 1007.0 J/kg.K), and the experimental data are acquired with 101 evenly distributed

points in the y direction at the horizontal position of x = a/5, with a = 0.635 m,

representing an acquisition of temperature measurements that can be achieved in real

experiments by the use of infrared thermography (159). The imposed heat flux and average

fluid velocity are q = 500 W/m2 and vm = 0.025 m/s. In this chapter, the exact inlet

temperature profile f(y) is a step function, which represents a stratified flow of magnitude

26.85 ºC in 0 < y ≤ H/2 and 46.85 ºC in H/2 < y ≤ h, with H = 0.128 m. The
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estimates

Figure 39 – Simulated experimental data and temperature profile obtained with the
solution of IP-1 with n = 21.

experimental noise is then added to the exact solution by using a noise level of σ2 = 0.5

ºC in Eq. 5.10b. Since the direct solution is less computationally intensive, DE is set to

perform 100 internal loops, and NM stopping criterion as γ = 0.005 in Eq. 5.11. The

search space bounds considered for every point ranges from -73.15 °C to 326.85 °C.

Using
√
ϕ = 1, every test performed for IP-2 converged. For this problem, we

present in Table 26 the obtained values for the low dimension model and comparisons

with their respective estimates for λhigh. Also in Table 26, the values of λ21 = 0.4923 and

λ31 = 0.5957 were obtained without the auxiliary reduced model.

As it is possible to observe in Table 26, the estimations for λhigh gets closer to the

value found by solving the high dimension problem itself. This is expected since the error

of the approximation reduces when the dimensions of lower and higher order are closer.

Another point to be noticed is that the regularization parameter found for n = 7 generated

the highest value of λhigh. One possible way to explain this is due to the choice of the

points in the physical domain, where the error increases depending on how the points are

allocated.

Figure 40 shows the solutions obtained for n = 21 starting from λ0 = 0.0001

(obtained without the auxiliary low dimension problem). It is noticeable how the first

solutions are highly oscillatory and, later on, it stabilizes. In fact, these figures demonstrate

the behavior of the FP method in converging to the optimal regularization parameter.

The obtained temperature profile with the high dimension model of n = 21 points
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Table 26 – Results obtained for several values for the low dimension model λ, and their
respective λhigh estimates for IP-2.

n λlow λ21 = 0.4923 λ31 = 0.5957
6 0.2280 0.4570 0.5597
7 0.3232 0.6263 0.7225
8 0.2807 0.5135 0.5998
9 0.3030 0.5119 0.6048
10 0.3249 0.4996 0.6017
11 0.3402 0.4809 0.5893
12 0.3509 0.4957 0.5991
13 0.3753 0.5052 0.6050

is displayed with the simulated experimental data in Figure 41. This profile is zoomed at

the region of 0.03 ≤ y ≤ 0.09 m in order to better visualize the behavior in the middle

portion of the channel - the peripheral temperature magnitude is much larger than the

ones in such range. The obtained temperature profile displayed shows good agreement

with the experimental data.

5.5.3 Results for the Inverse Problem 3 (IP-3)

In the radiative transfer problem, the single scattering albedo considered assumes a

parabolic profile along the spatial coordinate, with the exact function given by ω∗(τ) =

−0.6τ 2 + 1.0. The optical thickness is set as τ0 = 1.0, and the incident external radiation

as A1 = 1.0 and A2 = 0.0, at τ = 0 and τ = τ0, respectively, i.e., there is no incident

radiation at τ = τ0. The experimental data are considered to be evenly acquired in the

range 0.1 ≤ µ ≤ 0.8, with steps of ∆µ = 0.05, and noise level of σ3 = 0.01 is used in Eq.

5.10c. For IP-3, we tested only one low dimension model, with n = 7 dimensions. Every

solution is obtained with 20 DE internal loops, and the search is performed in the range

0 ≤ u3 ≤ 1.0, which are indeed the physical bounds for the single scattering albedo.

Using an initial parameter of ϕ = 1.0, divergence was detected on the 7th term of

the series, as explained in Section 5.2.1. Therefore, using the steps proposed in Section

5.2.1, the new value of
√
ϕ = 0.8988 was obtained. With this new ϕ, the series is considered

converged with less than 1% of error on the 5th term. The solution obtained for this

low dimension model is displayed in Figure 42a. Then, from this low dimension solution,

the estimated initial value of the regularization parameter for the high dimension model

with n = 21 was λhigh = 0.2677. The problem is solved again with this initial λhigh, and
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Figure 40 – Evolution of the solution obtained for different values of λ as the FP series
converges.

the results obtained are displayed in Figure 42b. For the sake of illustration, the next

term of the series calculated by the FP method yielded a regularization parameter of

λhigh = 0.2686, which represents an increase of 0.0009. Therefore, the series can also be

considered converged.

It is possible to see in Figure 42b that the estimate of λhigh yielded a good agreement

of the estimated values for the single scattering albedo to the exact values. It is important

to notice that, due to the lack of sensitivity from τ = 0.8 to τ = 1.0, some information is

lost. Although the results displayed in Figure 42 are equally good in approximating the

exact value of the scattering albedo, the increased resolution of n = 21 points makes the

technique attractive for reducing the computational cost of finding the optimal λ.

Figure 44 presents the radiation intensity profile obtained with the solution of the

high dimension model IP-3, i.e. n = 21 points. The simulated experimental data is also

presented with error bars corresponding to the standard deviation of 0.01. Similarly to

IP-1 and IP-2, the solution obtained also shows good approximation with the experimental

data.
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Figure 41 – Simulated experimental data and temperature profile obtained with the
solution of IP-2 with n = 21.

5.6 Conclusions

In this chapter a technique aimed at obtaining an estimate for the Tikhonov

Regularization parameter is presented. This is achieved by finding the optimal parameter

of a problem with reduced number of dimensions, and then equalizing the norm of the

regularized solutions. The computational experiments were carried out on the scope

of inverse heat transfer problems, which are common subjects in the areas of health,

renewable energy and climate research. The results have shown that this technique is

robust when the low dimension model has sufficient points to represent the sought function,

specially when it has several abrupt changes. Investigation must continue on testing this

technique on other inverse problems, and also on the development of a more robust and

automatic algorithm, especially regarding 2D function estimation problems. Furthermore,

the convergence criterion for the Fixed Point Iteration method is discussed in the light of

these problems. The presented results reinforce the robustness of the FP method when

the proposed series converges to the optimal regularization parameter. However, when the

series does not converge, fixing the hyperparameter ϕ of the method is crucial.



130

◆ ◆
◆

◆

◆

◆

◆

◆ ◆
◆

◆

◆

◆

◆

◆ ◆
◆

◆

◆

◆

◆

◆ ◆
◆

◆

◆

◆

◆

◆ ◆
◆

◆

◆

◆

◆

◆ ◆
◆

◆

◆

◆

◆

◆ ◆
◆

◆

◆

◆

◆

0.0 0.2 0.4 0.6 0.8 1.0
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

τ

ω
(τ
)

Estimated
Exact

(a) Solution with n = 7

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆ ◆ ◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆ ◆ ◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆ ◆ ◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆ ◆ ◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆ ◆ ◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆ ◆ ◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆ ◆ ◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆ ◆ ◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆ ◆ ◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆ ◆ ◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆ ◆ ◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆ ◆ ◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆ ◆ ◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆ ◆ ◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆ ◆ ◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆ ◆ ◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆ ◆ ◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆ ◆ ◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆ ◆ ◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆ ◆ ◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆ ◆ ◆

0.0 0.2 0.4 0.6 0.8 1.0
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 Estimated
Exact

ω
(τ
)

τ
(b) Solution with n = 21

Figure 42 – Solutions for IP-3: (a) low dimension model with n = 7, and (b) the high
dimension model with n = 21, obtained with the estimated value for λhigh

.

0.8988

Figure 43 – Evolution of the sequence Ri for the low dimension model with n = 7 showing
the divergent sequence of

√
ϕ = 1.0 (solid dots), and the convergent sequence of the found

value
√
ϕ = 0.8988 (solid triangles)
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Figure 44 – Simulated experimental data and radiation intensity profile obtained with
the solution of IP-3 with n = 21.
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6 BRAIN THERMAL AND ELECTRICAL PROPERTIES ESTIMATION

USING EXPERIMENTAL DATA FROM DEEP BRAIN STIMULATION

LEAD

6.1 Introduction

The surgery known as Deep Brain Stimulation (DBS) is a neurosurgical procedure

where an electrical stimulator is implanted in a specific brain region in order to reduce

the symptoms of several tremor diseases. Starting at the end of the decade of 1980, DBS

has become highly accepted as treatment for Parkinson’s disease (160), dystonia (161),

epilepsy (162) and others (163). To this day, new investigations are still discovering and

increasing the collection of diseases that is possible to treat with DBS.

Figure 45 shows a simplified representation of the DBS system and its implementa-

tion inside the patient’s head. An electrical signal with specific frequency is generated

by the circuit on the neurostimulator, which is a pacemaker-like device installed subcuta-

neously near the clavicle of the patient. This signal is delivered to the lead via an extension

cord, a subcutaneous wire. The thin, insulated and coiled wires inside the lead carry this

signal to the electrodes on its ending. Then, these electrodes delivers the stimulation to

the targeted area of the brain (163, 164).

Figure 45 – Representation of the DBS system with detail on the lead inside the brain.

Source: The authors, 2020.

Despite its use being largely spread worldwide and having a well-tolerated surgical

procedure (165), little is known about DBS’s physiological effects on the brain and, on

top of that, some of the most common injuries are related to possible internal burns
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from thermal coupling with other equipment, such as magnetic resonance imaging (166).

Although less common, there are injuries reported in the literature which are related to

internal burn during normal operation (167).

In this context, the present work intends to formulate and solve a bioheat model of

the brain with a DBS lead. The Penne’s model (139) is coupled with the Laplace equation

of electrical field yielding two partial differential equations. This theoretical approach

to solve the electrical heating due to DBS’s activity was originally introduced in (143).

Furthermore, the present work aims to use this solution as a direct problem of an inverse

analysis to obtain estimates of thermal and electrical conductivities of the brain. This

information can be of great value to avoid injuries due to temperature increase. Results

show that positioning a sensor inside the DBS lead can generate useful experimental data

for physicians to characterize the patient brain, given that the sensor is accurate enough.

6.2 Formulation and solution of the dbs heating problem

To understand the heating process caused by the electrical stimulation of the

brain, two Medtronic® DBS leads are studied: Model 3387 and Model 3389. These are

cylindrical leads with 1.27 mm of diameter and, in each one, there are four electrodes

with 1.5 mm of length. The main difference between them is the electrodes spacing, with

distances of 1.5 mm on the Model 3387 and 0.5 mm on Model 3389, as schematically

presented in Figure 46

Figure 46 – Schematic representation of Medtronic’s Model 3389 and Model 3387 showing
the geometrical configuration of the electrodes.

Source: Adapted from (168)
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Considering the axisymmetric plane defined by the length of the lead and the radius

of a cylindrical coordinates system, as illustrated in Figure 47. This plane has boundaries

ranging from r = R1 to r = R2, where R1 is the radius of the lead and R2 a sufficient long

distance, and from z = 0 to z = H, where H is a sufficient long height. Also in Figure 47,

the term zexp represents the height where the sensor is located.

Figure 47 – Schematic representation of the computational axisymmetric domain.

Source: The authors, 2020.

To describe how temperature increases on the brain with the electrical stimulator,

phenomena such as blood perfusion and metabolic heat generation must be considered.

So the model proposed by (139) and (169) is used herein. The Joule heating due to the

DBS electrical activity is caused by the current flowing from one electrode to another. It

can be added to the bioheat model by terms of the electrical potential V (r, z), which is

calculated by the Laplace equation. So the bioheat equation, in axisymmetrical cylindrical

coordinates, is given by

1

r

∂

∂r

(
k r

∂T

∂r

)
+

∂

∂z

(
k
∂T

∂z

)
− ρb ωb cb(T − Tb) +Qm + σ|∆V |2 = ρ cp

∂T

∂t
(6.1)

∂T

∂r

∣∣∣∣
r=R1

= 0 (6.2)

T (r, z, t) = Ta at r = R2, z = 0, z = H (6.3)

where, for the brain tissue, k is the thermal conductivity, ρ is the specific mass, cp is

the specific heat, σ is the electrical conductivity and Qm the metabolic heat generation.

The temperature Ta is the initial brain temperature when there is no electrical heating.
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The parameters related to the blood perfursion are ωb, ρb, cb and Tb, which are the blood

perfusion parameter, the specific mass, the specific heat and the temperature, respectively,

for the blood in the brain. As previously mentioned, V (r, z) is the electrical potential,

which can be directly calculated by the Laplace equation in cylindrical coordinates, given

by

1

r

∂

∂r

(
σ r

∂V

∂r

)
+ σ

∂2V

∂z2
= 0 (6.4)

∂v

∂n
= 0 at r = R2, z = 0, z = h (6.5)

V (R1, z) = f(z) (6.6)

The problem given by Eq. 6.1 to Eq. 6.6 is solved with the built-in routine NDSolve

of the Wolfram Mathematica 10.0 system (170), which is used here with an automatic

absolute and relative error control. The chosen method of solution is the Finite Elements

Method (FEM) as a sub-routine of NDSolve.

6.3 Inverse problem formulation and solution

Acquiring experimental temperature data inside the brain can be challenging and

complicated in terms of technology and two main difficulties can be encountered when

dealing with the DBS heating process: the small size of the lead and the also small

variation of temperature due to normal DBS operation. This work proposes the use of a

sensor inside the lead positioned at halfway distance between electrodes 2 and 3, therefore,

the objective of this work is to evaluate if is possible estimate the parameters accurately

assuming that the sensor is in the position shown in Figure 47.

Since experimental data are not available, they are simulated by adding random

noise to the solution of the direct problem given by Eq. 6.1 to Eq. 6.6. These errors are

drawn from a normal distribution centered in zero and are calculated with the expression

T exp
i = T (R1, z

exp, texpi ) + ei, with ei ∼ N(0, ϵ2), i = 1, 2, ..., Nd (6.7)

where Nd is the total number of experimental data, zexp is the height corresponding to the

position of the temperature sensor, texp is the vector containing time instants when such

data is acquired and ϵ is the standard deviation of the experimental data. The reader
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should note that the exact temperature is calculated at r = R1 and z = zexp = H/2 , i.e.,

as already mentioned, at the lead-brain interface and in the middle of the four electrodes.

The thermal and electrical conductivity, k and σ respectively, are here considered

unknowns and, not only that, their prior information can be modeled as a normal dis-

tribution in order to obtain the inverse problem formulation as a Maximum a Posteriori

(MAP) objective function. This approach allows us to obtain single point estimates for the

unknowns and approximations for the confidence intervals (32). So, the MAP objective

function can be written as

Q(Z) =
[
Texp −Tcalc(Z)

]T
W−1

[
Texp −Tcalc(Z)

]
+ (µpr − Z)T V−1 (µpr − Z) (6.8)

where Z is the vector of unknwon estimatives, Texp the vector containing the experimental

data, Tcalc is the calculated temperatures with Z, W is the covariance matrix, V is

the priori covariance matrix and µpr is the mean of the prior information. To minimize

this objective function, the Gauss-Newton iterative procedure is applied and it can be

formulated as (153)

Zn+1 = Zn +
[(
JT
)n

W−1J+V−1
]−1 ×

[(
JT
)n

W−1
[
Texp −Tcalc(Z)

]
+V−1 (µpr − Z)

]
(6.9)

where J is the Jacobian matrix, which have its elements defined by

Jij =
∂T calc

i

∂Zj

, i = 1, 2, ..., Nd and j = 1, 2, ..., Nu (6.10)

with Nu being the number of unknowns and Nd was already defined as the total number

of experimental data.

To obtain approximations of the standard deviation of the posterior distribution

for each parameter, one can use the following expression

σzi =

√[(
JTW−1J+V−1

)−1
]
i,i

(6.11)

The expression given by Eq. 6.11 is an approximation when dealing with non-linear

inverse problems. Even with the prior information and the experimental noise modeled as
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Table 27 – Exact values of the parameters of the direct problem.

Parameter Value Dimension Observation
Tb 36.7 [ºC] Blood temperature
σ 0.35 [S/m] Electrical conductivity
k 0.527 [W/m.K] Thermal conductivity
H 50.0 [mm] Height of the domain
R1 0.635 [mm] First radius of the domain
R2 20.0 [mm] Second radius of the domain
Qm 9132.0 [W/m3] Internal metabollic heat generation
cp 3650 [J/kgK] Specific heat of the brain tissue
ρ 1040 [kg/m3] Specific mass of the brain
ωb 0.008 [ml/s.cm3] Blood perfusion
ρb 1057 [kg/m3] Specific mass of the blood
cb 3600 [J/kg.K] Specific heat of the blood

a normal distribution, it is not possible to guarantee that the posterior distribution is, in

fact, also modeled by a normal distribution (171).

6.4 Results and discussion

6.4.1 Direct problem solution and results

In order to obtain the solution of the direct problem given by Eq. 6.1 to Eq. 6.6,

several parameters related to the physiology of the brain must be known. The exact values

of these parameters can be readily found in the literature and, in this work, the ones from

(143) are used. Table 27 summarizes all the values used for the solution of the direct

problem and, later on, this solution is used to generate the experimental data.

The boundary condition proposed in Eq. 6.6 must be set as a step function where

the DBS electrical potential is applied only at the position of active electrodes. In this

work, the Vrms of the DBS high setting operation mode is used due to its higher capacity

of generating heat. This setting generates an electrical signal of 10 V, 185 pps and 210 ms

yielding a Vrms of 1.561 V (143).

The solution obtained with these parameters is displayed in Figure 48, where

Figure 48a represents the temperature distribution and Figure 48b the electrical potential

distribution. These results are obtained in t = 1000 s, which, from our results, can be

reasonably considered as steady state. The pair of active electrodes selected are 1 and 4 –

see Figure 46 – and the DBS lead type is the Model 3389.
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(a) Temperature profile (b) Electrical potential

Figure 48 – Solution of both the temperature and the electrical problem for Model 3389
with activity on electrodes 1 and 4.

In Figure 48a, it is possible to see the magnitude of the temperature increase,

which is approximately 0.65 ºC, for that configuration. This result shows that, in order

to identify this temperature variation, the sensor placed inside the DBS lead and in the

middle of the electrodes must have a precision of 0.05 ºC, which is considerably small for

today’s technology but somewhat achievable with a thermistor.

The Finite Elements mesh is composed by 2786 triangular elements, generated with

the option “MaxCellMeasure” included in the NDSolve routine. The same mesh is used

for both the electrical and the temperature problem. This approach can benefit from the

use of different mesh for each problem, as it is possible to see that the electrical problem

got some unwanted oscillations in its solution.

6.4.2 Inverse problem solution and results

To acquire experimental data, the vector containing the instants of time texp range

from 1 s to 61 s with fixed intervals of ∆t = 1 s, which generates Nd = 61 experimental

data. Using ϵ = 0.05 ºC and ϵ = 0.025 ºC in Eq. 6.7, the experimental noise can be
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added in order to simulate real data. This level of error is relatively low when dealing with

temperature information, but considering the maximum amplitude variation of temperature

obtained in the problem, this is a fundamental condition to obtain a solution within a

reasonable confidence region. Figure 49 shows the exact solution with their respective

experimental data obtained for both noise levels. Observe how the experimental data

spread along on the plot range of 0.4 ºC. In this context, noise level of ϵ = 0.05 ºC

generates more realistic measurements of temperature.

Figure 49 – Experimental data along with exact solution for Model 3389 with activity
on electrodes 1 and 4 for two noise levels: ϵ = 0.05 ºC and ϵ = 0.025 ºC in Eq. 6.7,
respectively.

(a) ϵ = 0.05 ºC (b) ϵ = 0.025 ºC

Source: The authors, 2020.

To solve the inverse problem using the MAP approach, a prior information of the

unknown parameters must be set. In this work it is used arbitrary information for both

the thermal and electrical conductivities. Their mean values are both set as 0.5 W/m.K

and 0.5 S/m, respectively, and their standard deviation as 0.25 W/m.K and 0.25 S/m,

which represents a considerable large interval centered in an expected value.

For the iterative method described in Eq. 6.9, the approach used is to fix the

number of iterations in five steps. The main goal is to have a solution influenced mainly

by the MAP formulation and to have a somewhat predictable computational time. The

derivative in Eq. 6.10 is obtained with a centered finite difference formula using an interval

of 1% for each parameter exact value.

The results displayed on Table 28 and Table 29 are the ones obtained for DBS

lead Model 3389 with the pairs of electrodes 1-2 and 1-4 actives, respectively. Table 30

and Table 31 presents the results for the Model 3387, with the same pairs of electrodes

mentioned. These two pairs of electrodes are the only ones tested: 1-2 and 1-4. Since the
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sensor is positioned in the middle of the four electrodes, it is expected that pairs 2-3 will

render the best results due to increased temperature reading, therefore we omitted the

results for this pair.

Six independent experiments were performed for each configuration of lead type,

pairs of electrode actives and noise level, meaning that the experimental data are different

for each one. Since the optimization method used is deterministic and the starting point

is the same for every scenario, there is no need to perform multiple executions with the

same experimental data.

The terms k∗ and σ∗ on Table 28 to Table 31 represent the mean value obtained for

the thermal and electrical conductivity, respectively. The standard deviation is presented

below of each parameter estimation inside parentheses. As explained in Section 6.3, this

posterior normal distribution is a linear approximation, so this standard deviation displayed

correspond to this approximation deviation.

Firstly, the reader must notice how much more accurate are the estimatives for the

electrical conductivity σ in comparison to the thermal conductivity k. This indicates a

higher sensitivity of the electrical problem, meaning that changes in σ are more noticeable

on the temperature profile resultant than changes in k. In every configuration, the

averages for the standard deviations of the electrical conductivity is smaller than its

thermal conductivity counterpart.

Although the thermal conductivity generated small intervals with the most sensible

set up (Model 3389, electrodes 1 and 2 and noise levels of ϵ = 0.25 ºC), the mean value

of of k = 0.4022 W/m.K estimated in Experiment 2 W/m K is considerably far from its

exact value of k = 0.5270 W/m.K. In spite of that poor result, the averages for the mean

values of the six experiments presented in Table 28 are acceptable when compared to the

exact value, indicating that these average standard deviations are somewhat expectable.

The results for lead type Model 3387, in Table 30 and (Table 31), are supposed

to have less precise intervals since the temperature variation is smaller than the ones

from Model 3389 and, indeed, they do for the parameter k. When comparing the average

standard deviations this becomes clear: thermal conductivity estimatives enlarges its

standard deviation more than electrical conductivity when going from Model 3389 to

Model 3387. The reader can grasp this observation by comparing results from Table 28

with Table 30) and Table 29 with Table 31.
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Table 28 – Results obtained using DBS lead Model 3389 with electrode pair 1-2 active
and experimental noise levels of ϵ = 0.025 ºC and ϵ = 0.050 ºC

Model 3389 - Electrodes 1 and 2
ϵ 0.025 ºC 0.050 ºC

ui
k∗

(Std. Dev.)
σ∗

(Std. Dev.)
k∗

(Std. Dev.)
σ∗

(Std. Dev.)

Exp. #1
0.4477
(0.0722)

0.3135
(0.0378)

0.5970
(0.1449)

0.3925
(0.0729)

Exp. #2
0.4022
(0.0675)

0.2873
(0.0356)

0.6164
(0.1523)

0.3950
(0.0745)

Exp. #3
0.5440
(0.0998)

0.3547
(0.0495)

0.4915
(0.1347)

0.3276
(0.0676)

Exp. #4
0.5281
(0.0572)

0.3513
(0.0274)

0.4480
(0.1037)

0.3135
(0.0501)

Exp. #5
0.5862
(0.0681)

0.3746
(0.0314)

0.4516
(0.0214)

0.3132
(0.0081)

Exp. #6
0.5957
(0.0724)

0.3820
(0.0333)

0.5918
(0.1275)

0.3725
(0.0577)

Avg.
0.5222
(0.0728)

0.3439
(0.0358)

0.5327
(0.1140)

0.3523
(0.0551)

Dim. [W/m.K] [S/m] [W/m.K] [S/m]

Table 29 – Results obtained using DBS lead Model 3389 with electrode pair 1-4 active
and experimental noise levels of ϵ = 0.025 ºC and ϵ = 0.050 ºC.

Model 3389 - Electrodes 1 and 4
ϵ 0.025 ºC 0.050 ºC

ui
k∗

(Std. Dev.)
σ∗

(Std. Dev.)
k∗

(Std. Dev.)
σ∗

(Std. Dev.)

Exp. #1
0.4951
(0.0715)

0.3402
(0.0205)

0.5585
(0.1310)

0.3727
(0.0388)

Exp. #2
0.5858
(0.0509)

0.3799
(0.0253)

0.5469
(0.1270)

0.3634
(0.0387

Exp. #3
0.5806
(0.0824)

0.3631
(0.0235)

0.4385
(0.1192)

0.3183
(0.0338)

Exp. #4
0.5212
(0.0688)

0.3581
(0.0174)

0.4457
(0.1133)

0.3247
(0.0269)

Exp. #5
0.4815
(0.0533)

0.3467
(0.0292)

0.5730
(0.1223)

0.3547
(0.0322)

Exp. #6
0.4710
(0.0644)

0.3342
(0.0154)

0.4598
(0.0661)

0.3123
(0.0191)

Avg.
0.5225
(0.0652)

0.3537
(0.0218)

0.5037
(0.1131)

0.3410
(0.0324)

Dim. [W/m.K] [S/m] [W/m.K] [S/m]
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Table 30 – Results obtained using DBS lead Model 3387 with electrode pair 1-2 active
and experimental noise levels of ϵ = 0.025 ºC and ϵ = 0.050 ºC.

Model 3387 - Electrodes 1 and 2
ϵ 0.025 ºC 0.050 ºC

ui
k∗

(Std. Dev.)
σ∗

(Std. Dev.)
k∗

(Std. Dev.)
σ∗

(Std. Dev.)

Exp. #1
0.6568
(0.1189)

0.4001
(0.0489)

0.6377
(0.1774)

0.3980
(0.0742)

Exp. #2
0.5726
(0.1075)

0.3747
(0.0466)

0.3670
(0.1396)

0.2765
(0.0654)

Exp. #3
0.5854
(0.1108)

0.3726
(0.0468)

0.5848
(0.1778)

0.3547
(0.0713)

Exp. #4
0.4545
(0.0475)

0.3181
(0.0239)

0.6834
(0.1579

0.3996
(0.0755)

Exp. #5
0.4477
(0.0994)

0.3163
(0.0454)

0.5294
(0.0394)

0.3574
(0.0183)

Exp. #6
0.5644
(0.1169)

0.3685
(0.0502)

0.5142
(0.0541)

0.3491
(0.0264)

Avg.
0.5249
(0.1001)

0.3583
(0.1169)

0.5527
(0.1243)

0.3558
(0.0551)

Dim. [W/m.K] [S/m] [W/m.K] [S/m]

Table 31 – Results obtained using DBS lead Model 3387 with electrode pair 1-4 active
and experimental noise levels of ϵ = 0.025 ºC and ϵ = 0.050 ºC.

Model 3387 - Electrodes 1 and 4
ϵ 0.025 ºC 0.050 ºC

ui
k∗

(Std. Dev.)
σ∗

(Std. Dev.)
k∗

(Std. Dev.)
σ∗

(Std. Dev.)

Exp. #1
0.4347
(0.1601)

0.3369
(0.0158)

0.6140
(0.2152)

0.3448
(0.0361)

Exp. #2
0.4338
(0.1501)

0.3710
(0.0128)

0.4686
(0.1576)

0.3729
(0.0291)

Exp. #3
0.5184
(0.1528)

0.3622
(0.0189)

0.4276
(0.1279)

0.4041
(0.0386)

Exp. #4
0.4556
(0.1434)

0.3714
(0.0176)

0.6050
(0.2161)

0.3599
(0.0376)

Exp. #5
0.4140
(0.1303)

0.3587
(0.0146)

0.2931
(0.1935)

0.3191
(0.0321)

Exp. #6
0.7910
(0.1874)

0.3686
(0.0279)

0.6119
(0.2175)

0.3550
(0.0378)

Avg.
0.5079
(0.1540)

0.3614
(0.0179)

0.5033
(0.1879)

0.3593
(0.0352)

Dim. [W/m.K] [S/m] [W/m.K] [S/m]
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6.5 Conclusions

The DBS electrical activity inside the brain causes a temperature increase by Joule

effect. In this work, this heating process was modeled as an axis-symmetrical problem in

order to obtain the temperature distribution around the brain with active electrodes. This

model is then used to formulate a practical inverse problem where, with one temperature

sensor inside the DBS’s lead, experimental temperature data are acquired and used to

estimate the thermal and electrical conductivities of the brain tissue. This inverse problem

was formulated and solved using the Maximum a Posteriori method, which resulted in

approximation for the posteriori distribution. This approach showed that it is possible to

estimate those parameters simultaneously with only one sensor inside the lead, but the

accuracy of this sensor must be considerably high and its positioning inside the lead must

be as close to active electrodes as possible.
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FINAL CONSIDERATIONS

This thesis presented a collection of five case studies where Computational Intelli-

gence methods are used to solve inverse heat transfer problems. The contributions of such

studies can be briefly classified into two main categories: (i) testing and development of

efficient computational procedures, and (ii) development and enhancement of heat transfer

scientific and engineering applications. In the first group are the investigations presented

in Chapters 3, 4 and 5, and in the second group the works of Chapters 2 and 6. Namely,

this classification can be detailed as follows:

Contributions to efficient computational procedures. The common factor

in this group is the fact that the focus of the studies is on improving the Computational

Intelligence techniques presented, such as local and global optimization methods, regular-

ization schemes, and others. To do this, the formulation and solution of different inverse

problems were the testbed of such methods. Chapter by chapter, the contributions of this

group are:

• Chapter 3: The damping factor of the Levenberg-Marquardt method is updated

using a recently proposed Fuzzy Logic approach. To test this technique, a coupled

conduction-radiation inverse problem was proposed. This study showcased the first

time that Tikhonov Regularization was used with this Fuzzy Logic updating scheme.

The results were competive against the classical Levenberg-Marquardt, but more

investigations to access its performance must be performed.

• Chapter 4: The Topographical Global Optimization method is tested with two

different initialization and two different local search methods, resulting in four

combinations. Three inverse heat transfer problems were tested and they pointed

out advantages and disadvanteges of each one via the Wilcoxon Signed Ranks test.

• Chapter 5: A technique to estimate the optimal Tikhonov Regularization parameter is

developed, where a version with low dimension of the original problem is solved. The

results obtained show the feasibility of the technique in reducing the computational

cost of obtaining the optimal regularization parameter with an automatic method,

such as the Fixed Point Iteration used. Further investigations should test this
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approach with 2D and 3D inverse problems.

Contributions to heat transfer scientific and engineering applications. In

this group, the main focus was to enhance or develop heat transfer inverse problems with

the application in mind. In other words, the objective was not the method itself, but the

final purpose of the inverse problem. With that said, two chapters were presented dealing

with different problems, they are:

• Chapter 2: An Artificial Neural Network with Autoencoders was modeled as an

inverse heat transfer problem in order to access the bonding quality between two

materials. With this approach, a fast estimation procedure were developed, where

temperature experimental data of the exposed medium surface serves as input to the

neural network, which outputs the thermalphysical properties of the bonding layer.

• Chapter 6: The temperature increase of a Deep Brain Stimulation lead was study

and a inverse problem was formulated and solved considering a temperature sensor

inside the lead. With this approach, physicians may have access to information

about the lead functioning and even brain tissue parameters estimation. Further

investigations may deal with more complex DBS directional leads.

Finally, it is worth mentioning here that the application of Computational Intel-

ligence techniques in inverse problems are a enormous field of Applied Computational

Mathematics and Engineering. In fact, this thesis intended to showcase an organized -

and relatively small - collection of the four main Computational Intelligence Concepts:

Neural Networks, Metaheuristics, Probabilistic Models and Fuzzy Logic. In addition to

all the advances and results obtained for each one of the works presented, this thesis

is also an unpretentious way of celebrating over 60 years of research and application of

Computational Intelligence in science and engineering.
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CONSIDERAÇÕES FINAIS

Esta tese apresentou uma coleção de cinco estudos de caso onde métodos de

Inteligência Computacional são usados para resolver problemas inversos de transferência

de calor. As contribuições de tais estudos podem ser resumidamente classificadas em duas

categorias principais: (i) teste e desenvolvimento de rotinas computacionais eficientes, e (ii)

desenvolvimento e aprimoramento de aplicações cient́ıficas e de engenharia de transferência

de calor. No primeiro grupo estão as investigações apresentadas nos Caṕıtulos 3, 4 e 5, já

no segundo grupo, os trabalhos dos caṕıtulos 2 e 6. Especificamente, esta classificação

pode ser detalhada da seguinte forma:

Contribuições para procedimentos computacionais eficientes. O fator

comum neste grupo é o fato de que o foco dos estudos está no aprimoramento das

técnicas de Inteligência Computacional apresentadas, como métodos de otimização local

e global, esquemas de regularização, entre outros. Para isso, a formulação e solução de

diferentes problemas inversos serviram de teste para tais métodos. Caṕıtulo por caṕıtulo,

as contribuições deste grupo são as seguintes:

• Caṕıtulo 3: O fator de amortecimento do método Levenberg-Marquardt é atualizado

através de uma abordagem com Lógica Fuzzy recentemente proposta. Para testar

esta técnica, um problema inverso de transferência de calor por condução e radiação

simultaneamente foi proposto. Este estudo mostrou a primeira vez que a Regular-

ização de Tikhonov foi utilizada com este esquema de atualização com Lógica Fuzzy.

Os resultados foram competitivos com o clássico Levenberg-Marquardt, porém mais

investigações para avaliar seu desempenho devem ser realizadas.

• Caṕıtulo 4: A técnica conhecia como Otimização Global Topográfica é testada com

dois métodos de inicialização diferentes e dois métodos de busca local diferentes,

resultando em quatro combinações distintas. Três problemas inversos de transferência

de calor foram testados e apontaram as vantagens e desvantagens de cada um por

meio do teste estat́ıstico de Wilcoxon.

• Caṕıtulo 5: Uma técnica para estimar o parâmetro ótimo da Regularização de

Tikhonov é desenvolvida, onde uma versão com uma dimensão menor do problema
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original é resolvida. Os resultados obtidos mostram a viabilidade da técnica em

reduzir o custo computacional de obtenção do parâmetro com um método automático,

como a Iteração de Ponto Fixo. Investigações futuras devem testar essa abordagem

com problemas inversos de duas ou três dimensões.

Contribuições para aplicações cient́ıficas e de engenharia em transferência

de calor. Neste grupo, o foco principal foi aprimorar ou desenvolver problemas inversos de

transferência de calor com a aplicação em mente. Em outras palavras, o objetivo não era

o método em si, mas o propósito final do problema inverso. Dito isso, foram apresentados

dois caṕıtulos que trataram de problemas diferentes, são eles:

• Caṕıtulo 2: Uma Rede Neural Artificial com Autoencoders foi modelada como um

problema inverso de transferência de calor para caracterizar a qualidade de junção

entre dois materiais. Com esta abordagem, um procedimento de estimativa computa-

cionalmente rápido foi desenvolvido, onde os dados experimentais de temperatura

da superf́ıcie do meio exposto servem como entrada para a rede neural, que por sua

vez retorna as propriedades termof́ısicas da camada de ligação.

• Caṕıtulo 6: Estudou-se o aumento de temperatura no cérebro causado por um

eletrodo de Estimulação Cerebral Profunda e um problema inverso considerando

um sensor de temperatura no interior do eletrodo foi formulado e resolvido. Com

essa abordagem, os médicos podem ter acesso à informações sobre o funcionamento

do eletrodo e até mesmo a estimativa de parâmetros do tecido cerebral. Outras

investigações podem lidar com esquemas de eletrodos de DBS mais complexos, como

os direcionais, por exemplo.

Por fim, vale ressaltar aqui que a aplicação de técnicas de Inteligência Computacional

em problemas inversos é um enorme campo da Engenharia e Matemática Computacional

Aplicada. De fato, esta tese pretende apresentar uma coleção organizada - e relativamente

pequena - dos quatro principais Conceitos de Inteligência Computacional: Redes Neurais,

Metaheuŕısticas, Modelos Probabiĺısticos e Lógica Fuzzy. Além de todos os avanços e

resultados obtidos em cada um dos trabalhos apresentados, esta tese é também uma

forma despretensiosa de celebrar mais de 60 anos de pesquisa e aplicação da Inteligência

Computacional em ciência e engenharia.
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CONSIDERACIONES FINALES

Esta tesis presentó una colección de cinco estudios de casos en los que se utilizan

métodos de Inteligencia Computacional para resolver problemas inversos de transferencia de

calor. Las contribuciones de tales estudios se pueden resumir en dos categoŕıas principales:

(i) prueba y desarrollo de rutinas computacionales eficientes, y (ii) desarrollo y mejora de

aplicaciones cient́ıficas y de ingenieŕıa de transferencia de calor. En el primer grupo se

encuentran las investigaciones presentadas en los Caṕıtulos 3, 4 y 5, mientras que en el

segundo grupo, los trabajos de los Caṕıtulos 2 y 6. En concreto, esta clasificación se puede

detallar de la siguiente manera:

Contribuciones a rutinas computacionales eficientes. El factor común en

este grupo es que el foco de los estudios está en la mejora de las técnicas de Inteligencia

Computacional presentadas, tales como métodos de optimización local y global, esquemas

de regularización, entre otros. Para ello, la formulación y solución de diferentes problemas

inversos sirvió como prueba para tales métodos. Caṕıtulo por caṕıtulo, las contribuciones

de este grupo son las siguientes:

• Caṕıtulo 3: El factor de amortiguamiento del método Levenberg-Marquardt se

actualiza utilizando lógica difusa recientemente propuesto. Para probar esta técnica,

se propuso un problema inverso de transferencia simultánea de calor por conducción

y radiación. Este estudio mostró la primera vez que se utilizó la Regularización

de Tikhonov con este esquema de actualización de Fuzzy Logic. Los resultados

fueron competitivos con el clásico Levenberg-Marquardt, pero se deben realizar más

investigaciones para evaluar su desempeño.

• Caṕıtulo 4: La técnica conocida como Optimización Topográfica Global se prueba con

dos métodos de inicialización diferentes y dos métodos de búsqueda local diferentes, lo

que da como resultado cuatro combinaciones diferentes. Se probaron tres problemas

inversos de transferencia de calor y se señalaron las ventajas y desventajas de cada

uno mediante la prueba estad́ıstica de Wilcoxon.

• Caṕıtulo 5: Se desarrolla una técnica para estimar el parámetro óptimo de la

Regularización de Tikhonov, donde se resuelve una versión con más baja dimensión
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del problema original. Los resultados obtenidos muestran la viabilidad de la técnica

en la reducción del costo computacional de la obtención del parámetro con un método

automático, como es la Iteración de Punto Fijo. Las investigaciones futuras debeŕıan

probar este enfoque con problemas inversos de dos o tres dimensiones.

Contribuciones a aplicaciones cient́ıficas y de ingenieŕıa en transferencia

de calor. En este grupo, el enfoque principal fue mejorar o desarrollar problemas de

transferencia de calor inversa con la aplicación en mente. En otras palabras, el objetivo no

era el método en śı mismo, sino el propósito último del problema inverso. Dicho esto, se

presentaron dos caṕıtulos que trataron diferentes problemas, ellos son:

• Caṕıtulo 2: Se modeló una red neuronal artificial con codificadores automáticos como

un problema de transferencia de calor inversa para caracterizar la calidad de la unión

entre dos materiales. Con este enfoque, se desarrolló un procedimiento de estimación

computacionalmente rápido, donde los datos experimentales de temperatura de la

superficie del medio expuesto sirven como entrada a la red neuronal, que a su vez

devuelve las propiedades termof́ısicas de la capa de unión.

• Caṕıtulo 6: Se estudió el aumento de temperatura en el cerebro causado por un

electrodo de Estimulación Cerebral Profunda y se formuló y resolvió un problema

inverso considerando un sensor de temperatura dentro del electrodo. Con este

enfoque, los médicos pueden acceder a información sobre el funcionamiento de los

electrodos e incluso a la estimación de los parámetros del tejido cerebral. Otras

investigaciones pueden tratar con esquemas de electrodos DBS más complejos, como

los direccionales, por ejemplo.

Finalmente, vale la pena mencionar aqúı que la aplicación de técnicas de Inteligencia

Computacional en problemas inversos es un campo enorme de Ingenieŕıa y Matemática

Computacional Aplicada. De hecho, esta tesis pretende presentar una colección organi-

zada -y relativamente pequeña- de los cuatro Conceptos principales de la Inteligencia

Computacional: Redes Neuronales, Metaheuŕısticas, Modelos Probabiĺısticos y Lógica

Difusa. Además de todos los avances y resultados obtenidos en cada uno de los trabajos

presentados, esta tesis es también una manera sin pretensiones de celebrar más de 60 años

de investigación y aplicación de la Inteligencia Computacional en la ciencia y la ingenieŕıa.
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130. Liu F, Özışık MN. Estimation of inlet temperature profile in laminar duct flow.

Inverse Problems in Engineering. 1996;3(1-3):131-43.



162

131. Wilcoxon F. Individual Comparisons by Ranking Methods. Biometrics Bulletin.

1945;1(6):80-3.
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