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A B S T R A C T

Artificial intelligence (AI) is currently being utilized in a wide range of sophisticated applications, but the
outcomes of many AI models are challenging to comprehend and trust due to their black-box nature. Usually, it
is essential to understand the reasoning behind an AI model’s decision-making. Thus, the need for eXplainable
AI (XAI) methods for improving trust in AI models has arisen. XAI has become a popular research subject
within the AI field in recent years. Existing survey papers have tackled the concepts of XAI, its general terms,
and post-hoc explainability methods but there have not been any reviews that have looked at the assessment
methods, available tools, XAI datasets, and other related aspects. Therefore, in this comprehensive study, we
provide readers with an overview of the current research and trends in this rapidly emerging area with a case
study example. The study starts by explaining the background of XAI, common definitions, and summarizing
recently proposed techniques in XAI for supervised machine learning. The review divides XAI techniques into
four axes using a hierarchical categorization system: (i) data explainability, (ii) model explainability, (iii) post-
hoc explainability, and (iv) assessment of explanations. We also introduce available evaluation metrics as well
as open-source packages and datasets with future research directions. Then, the significance of explainability
in terms of legal demands, user viewpoints, and application orientation is outlined, termed as XAI concerns.
This paper advocates for tailoring explanation content to specific user types. An examination of XAI techniques
and evaluation was conducted by looking at 410 critical articles, published between January 2016 and October
2022, in reputed journals and using a wide range of research databases as a source of information. The article
is aimed at XAI researchers who are interested in making their AI models more trustworthy, as well as towards
researchers from other disciplines who are looking for effective XAI methods to complete tasks with confidence
while communicating meaning from data.
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1. Introduction

Artificial Intelligence (AI) has become ingrained in our society as
it assists various sectors in dealing with difficult issues and reforming
outdated methods. AI models run in people’s smartphones to do various
tasks [1], in cars to avoid accidents [2], in banks to manage investment
and loan decisions [3,4], in hospitals to aid doctors diagnosing and
detecting disease [5], in law enforcement to help officials recover
evidence and make law enforcement easier [6], in the military of many
countries [7], in insurance organizations to determine risk [8], etc.
Moreover, many organizations are actively trying to integrate AI into
their workflows due to its remarkable performance, which competes
with human performance in a wide variety of tasks [9].

AI enables data-driven decision-making systems. In other words,
a tremendous quantity of data is required to produce an accurate
AI model. Primitive Machine learning (ML) models, such as linear
regression, logistic regression, and Decision tree (DT), are less accurate
due to the assumption of smooth linear/sub-linear data [10]. However,
real-world data is highly non-linear and complex, this makes process-
ing it to gain knowledge and insights a real challenge. Under these
circumstances, Deep neural networks (DNNs) are exploited to extract
information from highly complex datasets [11]. After using DNNs,
scientists have realized that a deeper network is better for decision-
making than a shallow network [12]. Moreover, to extract patterns
from this kind of complex data, a sophisticated DNN must be trained
on a large dataset. A collection of convolutional filters/kernels is used
to cover all the differences that come from the non-linearity of the
real-world data, this leads to high-performance AI models. However,
by increasing the number of filters an AI model uses, strain is put on
subsequent layers of the DNN. Thus, even a basic network may have
several layers, with many filters, and neuronal units. DNNs for complex
tasks often have millions or even billions of parameters. The underlying
representations and data flow across the network’s layers are difficult
to examine, while the number of learnable variables increases as the
networks’ designs become increasingly complex [13].

Furthermore, the structural design of a DNN model is influenced by
a number of factors, including the activation function, input type and
size, number of layers, pooling operation, connectivity pattern, clas-
sifier mechanisms, and the results of compound learning techniques.
The learning technique is further influenced by a number of additional
functions, such as normalization/regularization, weight updating mech-
anisms, cost/loss functions, and the type of end classifier used. As a
result, unlike other ML techniques such as DT, Fuzzy rule-based systems
(FRBSs), or Bayesian networks (BNs), a decision from a DNN is difficult
to comprehend and trust. Due to these hurdles, there is a problem,
we are left with the aforementioned black-box conundrum [14].

he simpler ML models, such as DT, are easier to comprehend and
elf-interpret. In this case, interpret means to provide an explanation
or the system’s decisions or to portray them in a logical/reasonable
anner [15]. Unlike in black-box systems, in the context of AI, a person
ay comprehend simpler ML models by glancing at the summary or
arameters of the model without the need for an external model to
rovide an explanation. We refer as a white-box or a glass-box model. In
he research community, there is also a concept known as the gray-box

model which applies for example to FRBSs [16] or BNs [17], which
are models that users can interpret at some degree if they are carefully
designed. As it can be seen in Fig. 1, the labels white-box, gray-box,
and black-box refer to various levels of the internal component [18].
The following paragraph will go through more in-depth descriptions
and solutions for the black-box problem.

1.1. The black-box issue and solution

The AI community is more concerned about the black-box issue
following the establishment of rules for trustworthy AIs that are safe
2

to use. eXplainable Artificial Intelligence (XAI) techniques are aimed
at producing ML models with a good interpretability-accuracy tradeoff
via: (i) building white/gray-box ML models which are interpretable by
design (at least at some degree) while achieving high accuracy or (ii)
endowing black-box models with a minimum level of interpretability
when white/gray-box models are not able to achieve an admissible
level of accuracy. XAI techniques play a crucial role when dealing
with DNN models and how to make their results comprehensible to
humans [19].

Furthermore, there are two terminologies by which we can try
to elucidate a DNN model: (i) interpretability and (ii) explainability.
Interpretability enables developers to delve into the model’s decision-
making process, boosting their confidence in understanding where the
model gets its results. Instead of a simple prediction, the interpretation
echnique provides an interface that gives additional information or ex-
lanations that are essential for interpreting an AI system’s underlying
unctioning [20]. It aids in opening a door into the black-box model for
sers with the required knowledge and skills, e.g., developers. On the
ther hand, explainability provides insight into the DNN’s decision to
he end-user in order to build trust that the AI is making correct and
on-biased decisions based on facts. Fig. 1 depicts the distinction be-
ween white-box, gray-box, and black-box decision-making processes,
s well as shows how XAI is applied to achieve a trustworthy model
ith a good interpretability-accuracy tradeoff.

The ML approaches, which include different mathematical methods
or extracting and exploiting important information from huge col-
ections of data, from a technical point of view are now dominated
y AI models. The goal of XAI research is to make AI systems more
omprehensible and transparent to humans without sacrificing perfor-
ance [20,21]. The ability to understand patterns hidden in complex
ata is both a strength and a weakness of automated decision-making
ystems: an AI model may discover complex structures in the data
utomatically, but the learned patterns are hidden knowledge without
xplicit rules or logical processes involved in finding them. Although
I algorithms are capable of extracting correlations across a wide
ange of complicated data, there is no assurance that these correlations
re relevant or relate to real causal connections. Furthermore, the
ntricacy of the models used, particularly the cutting-edge DNNs, often
inders human operators from inspecting and controlling them in a
traightforward manner. In this way, AI is both a source of innovation
nd one significant problem in terms of security, safety, privacy, and
ransparency. In the next paragraph, we will go through the entire list
f goals behind XAI.

.2. The goal of XAI

The primary goal of XAI is to obtain human-interpretable models,
specially for applications in sensitive sectors such as military, banking,
nd healthcare applications, since domain specialists need help solving
roblems more effectively, but they also want to be provided with
eaningful output to understand and trust those solutions. It is not

nly beneficial for domain specialists to examine appropriate outputs,
ut it is also beneficial for developers if the outputs turn out to be
ncorrect as it prompts them to investigate the system. AI methods
nable (i) the assessment of current knowledge, (ii) the advancement of
nowledge, and (iii) the evolution of new assumptions/theories [22].
n addition, the goals behind XAI methods that researchers would like
o accomplish with explainability are enhanced justification, control,
mprovement, and discovery [21]. The following list summarizes the
enefits by opening a window into these black-box systems [18]:

• To empower individuals to combat any negative consequences of
automated decision-making.

• To assist individuals in making more informed choices.
• To expose and protect security vulnerabilities.
• To integrate algorithms with human values is an important goal.
• To enhance industry standards for the development of AI-powe-

red products, thus improving consumer and business confidence.
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Fig. 1. A comparison of white-box, gray-box, and black-box models. On the one hand, white-box models are interpretable by design thus making their outputs easier to understand
but less accurate. In addition, gray-box models yield a good interpretability-accuracy tradeoff. On the other hand, black-box models are more accurate but less interpretable. More
complex XAI techniques are required for creating trustworthy models.
• To enforce the Right of Explanation policy.

For a model to be embraced by end-users and industries, it must
be trustworthy [23]. Building a reliable model, however, is difficult. A
few of the factors that contribute to the model’s trustworthiness include
fairness [24], robustness [25], interpretability [26], and explainabil-
ity/interpretation [27]. Explainability is one of the most crucial aspects.
Existing studies have focused solely on providing better explanations
and insights for future research. Researchers have proposed different
strategies to explain AI models qualitatively using comprehensible
text [28], mathematics [29], or visualizations [15]. In the following
subsection, we will discuss our motivation for conducting this study.

1.3. Motivation

Most existing research on XAI focuses on providing a comprehensive
overview of approaches for either explaining black-box models or
designing white-box models, as well as looking at general reasons why
explainability is important. Some research concentrates on specific is-
sues such as notions of explainability and interpretability, their benefits
and drawbacks, and the necessity for explainability in critical fields like
healthcare, banking, the military, etc.

It becomes essential to explain AI models’ decisions once govern-
ment regulations have been enforced. The field of XAI has evolved to
comprehend AI systems better and is helping us move towards systems
that can provide human-friendly explanations. However, no previous
research has examined whether the availability of an ever-expanding
range of methodologies and tools is sufficient for the XAI research field
to crystallize and give practical support in the risky scenarios described
by regulatory stakeholders. For example, does score-CAM [30] or Grad-
CAM [31] guarantee that a DNN may be utilized for medical diagnosis?
The answer is NO since supervisory agencies have not prescribed risk-
aware scenarios that may assist the research community in determining
3

what is needed to implement XAI-supported AI-based models in real-
world contexts. Therefore, society requires techniques in which XAI
tools are an essential but insufficient step in determining whether or
not an AI-based system can be trusted and employed for the task at
hand.

We discuss more comprehensive XAI definitions and generally ac-
cepted terminologies in this study. In addition, we break down the XAI
worries into three distinct perspectives: (i) user, (ii) application, and
(iii) government. We focus on approaches for analyzing the four axes
that make up the purposes behind an explanation in order to help us
evaluate the results from intelligent systems more effectively. These
four axes are: (i) data explainability, (ii) model explainability, (iii) post-
hoc explainability, and (iv) assessment of explanations. Questions such
as ‘‘What constitutes an acceptable explanation?’’ and ‘‘how to establish
user trust in AI-powered systems?’’ are still unresolved. We also exam-
ined responsible principles in terms of fairness, security, accountability,
ethics, and privacy in order to improve user trust in XAI.

The novel contributions of this paper can be summarized as follows:

• Explainability may be used at any point throughout the AI devel-
opment process. We propose a four-axes methodology to diagnose
the training process and to refine the model for robustness and
trustworthiness. These four axes are: (i) data explainability, (ii)
model explainability, (iii) post-hoc explainability, and (iv) assess-
ment of explanations. We believe that explanations should be
created by considering each axis in terms of a typical AI pipeline.

• Since our methodology has four axes, we formulated research
questions for each axis and will address them in the following
section. In addition, we introduce a taxonomy for each axis and
discuss various techniques, including a case study example of a
basic supervised binary classification task in which a model is
created to distinguish whether employees earn an annual income
over 50K.
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• Furthermore, we present a comparison between different post-
hoc methods including a discussion of their advantages, disad-
vantages, and underlying principles. A mathematical model and
a simplified visualization of its working process are used to
demonstrate each post-hoc technique.

• We propose another methodology to provide a roadmap on how
to determine a given model and its explainability criteria. A list
of XAI tools and open-source datasets for developers and end-
users is also presented. We provide a summary of each tool in
terms of the data types that are allowed, its explainability and the
explanations that are offered, model type, and evaluation matrix.

• The XAI concept is defined using background research followed
by a commonly accepted definition of a good explanation, ex-
plainability, and associated terms being given. We look at the
explainability concept from three main points of view: (i) regu-
latory entities, (ii) various stakeholders and decision-makers, and
(iii) combat applications. As a result, we suggest that explanations
should be created with the kind of user and evaluation criterion
in mind.

• XAI researchers are currently developing new techniques and
tools for the exploration, debugging, and validation of AI models.
Based on the literature, we highlight and discuss XAI’s open
challenges and future directions in terms of (i) XAI system design,
(ii) generalization of XAI, (iii) user interactions with XAI, (iv) XAI
ground truth evaluation, and (v) advanced XAI tools.

rganization: The outline of the article is as follows: Section 2 looks
t previous XAI literature and related surveys. Section 3 begins with
he XAI concepts, a set of novel definitions, and the balance between
ccuracy and interpretability. In Section 4, a potential XAI model is
iscussed, along with the questions that may be addressed along each
f the explainability axes. The general classification of XAI methods is
numerated in Section 5. In Sections 6, 7, and 8, a major part of the
roposed taxonomies is discussed in terms of data explainability, model
xplainability, and post-hoc explainability, respectively. In Section 9,
he techniques and metrics for assessing explanations of XAI algorithms
re presented. The question of selecting an XAI model according to
esearch direction is addressed in Section 10. Step-by-step guidance for
uture researchers starting in the emerging field of XAI is offered in
ection 11. This is an important guide to a research area that has the
otential to influence society, particularly those industries that have
radually adopted AI as one of their core technologies. The significance
f XAI from the different stakeholders, government restrictions and
olicies, and application perspectives are discussed further in Sec-
ion 12. Section 13 concludes our survey. Fig. 2 depicts the organization
f our survey to help readers navigate through its content more easily.

. Background studies

Research interest in the field of XAI is resurgent. In 2019, Mueller
t al. [32] published a systematic analysis of XAI’s methods and expla-
ation systems, these were classified into three generations: (i) First-
eneration systems attempted to describe the system’s internal working
rocess explicitly by integrating expert knowledge into the rules via
ransforming these rules into natural language expressions such as those
sed in expert systems from the early 1970s, (ii) Second-generation
ystems are human–computer systems that provide cognitive assistance
y focusing on human knowledge and reasoning abilities from the
arly 2000s, and (iii) Third-generation systems seek to clarify the
nner workings of the systems in the same way as the first genera-
ion. However, the third-generation systems became mostly black-box
ystems from about 2012. Due to improved computer technology,
everal novel concepts for producing explainable choices have become
ore feasible. These ideas have arisen from the need for mainly re-

ponsible, fair, and trustworthy processes and decisions. The three
enerations of intelligent systems will be discussed in detail in the
ollowing paragraphs.
4

First-Generation Systems. Researchers have been interested in under-
standing the underlying workings of AI since the early stages of AI
systems. Chandrasekaran et al. [33], and Swartout et al. [34,35] were
among the first to describe the decision-making process of knowledge-
based and expert systems. Expert systems but also Fuzzy Sets and Sys-
tem (FSS) [36–38] in the 1970s, Artificial Neural Networks (ANN) [39]
and BNs [40] in the 1980s, as well as recommendation systems [41,42]
in the 2000s have all sparked interest in intelligent system explanations.
Despite their mathematical correctness, these earlier works are inaccu-
rate. However, they inspired subsequent research into understanding
intelligent systems.
Second-Generation Systems. This generation saw a more powerful
AI system being built. However, the models that were built became
complex in nature. The decision-making process of the AI systems was
one that humans, including domain experts, did not fully comprehend
when it came to powerful ML classification models trained on large
datasets with high-performance infrastructures [43]. Another risk as-
sociated with these techniques is that they may unintentionally make
incorrect decisions as a result of biased artifacts or false correlations in
the data. This is a particularly essential issue when it comes to using
these systems in high-risk applications like self-driving vehicles and
medicine, where a single incorrect decision may result in a person’s
death [44].
Third-Generation Systems. The current advances in AI, its applica-
tion to diverse fields, concerns about unethical usage [45], lack of
transparency [46], and unintended biases [47] in the models are the
main reasons for the increased interest in XAI research. This has an
effect not just on the amount of information that can guide ethical
decisions but also on the accountability, safety, and industrial liabilities
of these XAI systems. Furthermore, new regulations enacted by various
countries mean an even greater need for XAI research to establish trust
in AI models [48]. The AI models used in sensitive areas of scientific
research, such as in health, biology, and socioeconomic sciences, need
to be able to provide an explanation of their results to allow scientific
discovery and advances in research.

Existing XAI work can be categorized in various ways, including
XAI applications, multidisciplinary method fusion, and explainability
by internal functionality modification, among others. The following
subsection goes through the reviewed literature.

2.1. Previous studies

XAI has the potential to be extremely beneficial to the AI re-
search community. This subsection explores several prospective areas
of research where explainable models are currently being used.
Applications of XAI. Meske et al. [49] described the theoretical impact
of explainability on AI trust and how XAI may be utilized in a medical
setting. Their work used CNN and Multi-layer Perceptron (MLP) models
to identify a sickness (malaria) from the input image data (thin blood
smear slide images). In addition, the necessity for explainability, and
prior research in XAI for information systems highlighted some of the
risks of black-box AI [50]. Islam et al. [51] illustrated common XAI
techniques using credit default prediction as the subject of a case study,
the results were evaluated in terms of gaining a competitive advantage
from both local and global perspectives, offering significant insight
on how to assess explainability, and recommending routes toward
responsible or human-centered AI.
Social Science and Argumentation in XAI. Miller [52] supported XAI
while including articles from the social sciences. The author discusses
how XAI incorporates ideas from philosophy, cognitive science, and
social psychology in order to produce good explanations of its results.
Similarly, when it comes to psychological theories of explanation, T.
Mueller [32] first stresses what a good explanation is. Furthermore,
argumentation and XAI have a lot in common in terms of explainability.
Vassiliades et al. [53] examined the major techniques and research on
the linked subjects of argumentation and XAI. The authors explored
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Fig. 2. Detailed overview of the different sections and topics covered in the survey for easing its readability.
more interpretable prediction models that integrate ML and argumenta-
tion theory. Humans have also been involved in assessing XAI systems.
Hussain et al. [54] used an engineering approach to illustrate the
concepts behind XAI by giving mathematical outlines of the methods
used.
Methods for Improving Explanations: Scientists have attempted to
decipher the inner workings of black-box systems and create transpar-
ent counterparts. Liu et al. [55] described an interactive visualization
method that aids in the diagnosis, comprehension, and refinement of
an AI system and associated data mining issues. Zhang et al. [56]
focused on the interpretability of CNNs’ middle-layer representations.
Ras et al. [57] investigated the explainability of certain systems in
terms of dataset bias, which can result in biased models. Montavon
et al. [58] provided a brief review of the interpretability problem and
its potential applications. The authors also thoroughly discussed the
Layer-wise Relevance Propagation (LRP) method.
XAI in Other Learning Methods: Explainability has been used in
many studies on supervised ML, unsupervised ML, and Reinforcement
Learning (RL) [59]. Puiutta et al. [60] published the first review on
Explainable Reinforcement Learning (XRL). The authors provided an
overview of the problem and definitions of key terms, they also gave
their classification and assessment of certain XRL methods. Burkart
and Huber [61] provided an overview of some Explainable Super-
vised ML (XSML) principles and techniques, as well as discussed other
important concepts in the field. The authors focused on supervised
learning and offered a taxonomy of interpretable model learning, sur-
rogate models, explanation types, and data explainability. Gerlings
et al. [62] identified four thematic arguments (motivating the need for
XAI, completeness vs. interpretability dilemma, human explanations,
and technologies producing XAI) by conducting a thorough study of
the XAI literature on the subject. These arguments are essential to how
XAI handles the black-box issue.

Many surveys on XAI have been published previously, these have
5

looked at the necessity of XAI as well as at some related notions,
methods, software tools, and challenges. For instance, Arrieta et al. [63]
showed that the model’s explainability is one of the most important
elements to guarantee a system is able to provide good explanations in-
side its methodological framework. Many other reviews have looked at
subjects such as post-hoc explanations [18,26,64]. The next subsection
will briefly summarize the existing surveys.

2.2. Related surveys

Despite the fact that the number of studies on XAI is quickly growing
(see Table 1), there is still a lack of thorough surveys and a systematic
classification of these studies, except [82]. There are numerous review
articles on XAI, but the majority of these reviews concentrate on
general XAI techniques, their significance, and evaluation approaches.
For example, Doshi et al. [15] chart the path toward the definition
and rigorous evaluation of interpretability. Their main contribution is
a taxonomy for assessing interpretability. Consequently, the authors
focused on just one element of explainability, i.e., interpretability and
its related evaluation techniques. Abdul et al. [79] built a citation
network from a vast corpus of explainable research based on 289
core articles and 12412 citing publications. However, their review
was mainly concerned with Human–Computer Interface (HCI) research
that emphasizes explainability. Adadi et al. [21] attempted to offer
information on the idea, motives, and consequences that underpin XAI
study in order to understand the important topics in XAI.

Furthermore, Guidotti et al. [18] investigated a variety of ap-
proaches to explaining large-scale black-box models, including looking
at data mining and ML techniques involved. The authors presented a
comprehensive taxonomy of explainability methods for systems that
suffer from the black-box problem. Their work comprehensively as-
sessed ML models in terms of XAI; however, it only focused on the
interpretability processes, leaving out other elements of explainabil-
ity like evaluation. Consequently, despite a comprehensive technical

overview of the approaches under consideration it was difficult to gain
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Details on existing surveys related to XAI and this review especially. The surveys in this table were considered for their significance to the main theme, published year, publisher
reputation, and citation support from the relevant research community.
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Ours 2022 410 2016–2022 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Model’s trustworthiness

[65] 2022 70 2006–2021 ■ ■ ■ ■ Natural Language Explanations

[66] 2022 53 2015–2020 ■ ■ ■ Knowledge based XAI

[67] 2022 165 2016–2019 ■ ■ ■ ■ Counterfactual based XAI

[68] 2022 71 2016–2021 ■ ■ ■ Introduction to XAI

[69] 2022 190 2017–2022 ■ ■ ■ ■ ■ ■ Counterfactual explanations

[70] 2022 182 2018–2022 ■ ■ ■ ■ ■ ■ XAI for time series

[71] 2022 168 2018–2021 ■ ■ ■ ■ ■ ■ XAI in healthcare

[72] 2021 113 1991–2020 ■ ■ ■ ■ ■ ■ ■ Contrastive and Counterfactual XAI

[14] 2021 206 2015–2020 ■ ■ ■ ■ ■ Evaluation approaches of XAI

[50] 2021 45 2017–2020 ■ ■ Black-box issue

[73] 2021 150 2016–2020 ■ ■ ■ ■ ML interpretability methods

[51] 2021 55 2017–2020 ■ ■ ■ ■ XAI methods classification

[53] 2021 120 2014–2020 ■ ■ ■ ■ Argumentation enabling XAI

[61] 2021 210 2015–2020 ■ ■ ■ ■ ■ ■ XAI methods classification

[62] 2021 121 2016–2020 ■ ■ ■ Necessity of explainability

[54] 2021 40 2017–2020 ■ ■ ■ User and their concerns

[74] 2021 111 2016–2021 ■ ■ User and their concerns

[26] 2021 123 2016–2020 ■ ■ ■ ■ ■ ■ XAI methods classification

[60] 2020 60 2016–2020 ■ ■ ■ ■ XAI in reinforcement learning

[75] 2020 196 2017–2019 ■ ■ ■ ■ ■ ■ XAI methods classification

[63] 2020 400 2012–2019 ■ ■ ■ ■ ■ ■ ■ Responsible AI

[76] 2020 205 2015–2020 ■ ■ ■ ■ Explainable recommendation

[49] 2020 50 2017–2019 ■ ■ ■ ■ ■ Impact of XAI on trust

[52] 2019 150 2014–2018 ■ ■ ■ Social Sciences related to XAI

[77] 2019 140 2014–2019 ■ ■ ■ ■ ■ ■ ■ ML interpretability

[78] 2019 57 2015–2019 ■ ■ ■ Counterfactual in XAI

[32] 2019 350 2000–2018 ■ ■ ■ ■ ■ ■ Good explanation

[58] 2018 46 2016–2018 ■ ■ ■ ■ Introduction to XAI

[79] 2018 289 2010–2017 ■ ■ ■ Accountable System

[18] 2018 130 2012–2017 ■ ■ ■ ■ Black-box issues

[21] 2018 381 2014–2018 ■ ■ ■ ■ ■ ■ Key aspects of XAI

[57] 2018 57 2016–2018 ■ User and their concerns

[64] 2018 50 2015–2017 ■ ■ Introduction to XAI

[28] 2018 30 2013–2017 ■ ■ ■ Interpretability and its desiderata

[80] 2018 35 2014–2017 ■ ■ ■ Necessity of explainability

[56] 2018 30 2015–2017 ■ ■ ■ Visual model interpretability

[81] 2018 24 2014–2018 ■ ■ ■ XAI with human intelligence

[15] 2017 48 2014–2017 ■ ■ ■ Definition of interpretability

[55] 2017 53 2012–2016 ■ ■ ■ ■ Visual model interpretability
m
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general understanding of the XAI immediately. Samek et al. [80]
escribed two methods for interpreting a model’s output. In their
pproach, the sensitivity of the output is first calculated in relation
o changes in the input. The second step is to break down the output
ecision into its input variables. Dosilovic et al. [64] highlighted recent
evelopments in XAI to provide a fair comparison between inter-
retability and explainability in supervised ML. Lipton [28] defined
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e

odel properties and techniques, as well as the notion of interpretabil-
ty for supervised ML in terms of identity transparency to humans and
f post-hoc explanations.

In recent years, Carvalho et al. [77] examined the interpretability
f ML with a focus on the established techniques and metrics. Vilone
t al. [75] divided popular XAI methods into four categories: review
rticles, theories and concepts, methodologies, and evaluation. Arri-
ta et al. [63] discussed the achievements of XAI in terms of effort
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and contributions. Two taxonomic approaches to explainability are
discussed in their review: (i) ML model transparency, and (ii) post-hoc
explainability. Linardatos et al. [73] carried out research that focused
on ML interpretability techniques, particularly, literature analysis and
the taxonomy of interpretability methods, as well as looked at links to
programming implementations. In addition, Li et al. [26] described and
defined two key XAI concepts: interpretations and interpretability. The
authors used a novel taxonomy to describe the architecture of several
interpretation algorithms and they also highlighted some interpretation
research initiatives. In addition to simply attempting to comprehend
any interpretation results, they went beyond to examine certain per-
formance metrics for evaluating the interpretation algorithms. Langer
et al. [74] looked at the main stakeholder groups that seek AI ex-
plainability, as well as their needs. Confalonieri et al. [83] provided
a historical perspective of XAI, where they analyzed how the notion
of explainability evolved from expert systems to machine learning and
recommender systems, until neuro-symbolic AI.

To sum up, Table 1 provides a summary of existing review articles,
and we can draw two main conclusions. First, the majority of the
surveys addressed the research trend, the core concepts of (and terms
related to) XAI, their concerns, and post-hoc explainability. Despite
the fact that many researchers have concentrated on XAI concerns
and terminologies associated with it, there are still evolving govern-
ment regulations to impose explainability, as well as unacceptable
and inconsistent definitions by the XAI community. Second, numerous
researchers have identified three significant and ongoing challenges
with XAI: (i) lack of XAI tools, (ii) different axes or dimensions of
explainability, and (iii) highlight the need to take care seriously of XAI
evaluation (both automatic metrics and human evaluation) in future
directions.

3. Concepts of explainability and important nomenclature

AI is a powerful technology with a wide range of applications. AI
has attained great accuracy not just as a result of improved hardware
performance, but also as a result of employing more sophisticated
algorithms, such as those employed in cutting-edge DL methods. Due to
the complex nature of the algorithms used, these modern AI systems are
unable to explain their decisions in a straightforward manner, limiting
their practical applicability [84]. As a result, AI must tackle this black-
box issue, even if the developers have to sacrifice performance. The
necessity to explain AI and encourage its adoption by many stakehold-
ers has inspired the creation of XAI as a new field of research. This
section is organized as follows: (i) the concept behind XAI is defined
via background research, (ii) associated XAI terminology is explained,
and (iii) the trade-off between accuracy and interpretability is explored.

3.1. XAI concepts

Van Lent et al. [85] created the XAI concept in 2004 to characterize
their system’s capacity to explain the actions of AI-controlled units
in simulation gaming applications. Academics and practitioners have
recently rekindled their interest in the subject of XAI [86,87]. Several
research groups have investigated the notion of explainability in AI
decision-making. Each research community, however, approaches the
issue from a different angle and gives explanations with various mean-
ings. The word explainability, in terms of AI concepts, means functional
nowledge of the model, the purpose of which is to attempt to describe
he model’s black-box behavior [28]. It is often used interchangeably
ith the term interpretability in the literature. Explainability expresses
hat is occurring in the model by providing a human-readable ex-
lanation of the model’s decision. However, it is difficult to come up
ith a precise description of what qualifies as an explanation. The

ollowing are some of the most widely recognized definitions of an
xplanation [53]:
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• An attribution of causal responsibility is referred to as an expla-
nation [88].

• An explanation is an act of describing something and providing
the response to the question of why this description of something
is correct [89].

• A process for finding or creating common meaning is known as
an explanation [90].

A more recent widely embraced definition of explainable IA is the
one given in [63], where the focus is on the receiver of the explanation:
given an audience, an explainable Artificial Intelligence is one that
produces details or reasons to make its functioning clear or easy to
understand. In relation with the specific audience, Miller [52] also
considered presently available explanations to be excessively static.
An ideal explanation is one in which the explainer and the explainee
interact with each other. The author suggested that explanations are
social and should be interactively communicated to users. In the same
vein, Grice’s created cooperative principles [91] and four maxims that
must be followed by explanations:

1 Quality: Ascertain that the explanation is of good quality
with the following properties:

• Do not provide some random explanation that may not be
true, and

• Do not provide an explanation that does not have enough
supporting evidence.

2 Quantity: Deliver the appropriate amount of information in
an explanation that has the following properties:

• Explanation must be informative i.e., provide as much
information as needed, and

• At the same time, not provide more information than is
required.

3 Relation: An explanation must contain only information
relevant to the discussion. This maxim may be used to improve
the quantity of the explanation.
4 Manner: Rather than what is given, manner refers to how
information is delivered. Grice [91] has divided this into a
number of maxims:

• Avoid ambiguous language in the explanation.
• Avoid ambiguity in the explanation.
• Avoid prolixity with a concise explanation.
• Avoid information that is not in order.

5 Context-oriented: Explanations for developers are differ-
ent from those for regulators that are different from those for
end-users [92].

Furthermore, XAI is not a unitary entity; it encompasses several
interconnected principles. According to the research reviewed, there
are various contributing concepts for explaining AI systems. While there
may appear to be some overlap between these concepts, we believe they
reflect the many motives for explainability. In the next paragraph, we
will go through several concepts that outline the standard definition.

3.2. The XAI nomenclature

The black-box issue in AI refers to a system’s difficulty in offering
a reasonable explanation for how the system arrived at a decision.
The words black-box, gray-box, and white-box are used in computing
science and engineering to refer to varying levels of closure of a
system’s internal component.

The principle of explainability is closely connected to that of in-
terpretability. Interpretable methods are explainable if humans can
comprehend their operations. Even though explainable is a keyword in
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the XAI nomenclature, the term interpretable is more commonly used
in the ML community than explainable. The related terms are defined
as follows:

Definition 3.2.1 (Explainability). The process of elucidating or reveal-
ing the decision-making mechanisms of models. The user may see
how inputs and outputs are mathematically interlinked. It relates to
the ability to understand why AI models make their decisions. The
capacity to make automatic interpretations and describe the inner
workings of an AI system in human terms is referred to as explainabil-
ity. An explainable technique summarizes the reasons for an AI model’s
decision. Furthermore, a model’s ‘‘Post-hoc Explainability’’ refers to
methods/algorithms that are used to explain AI model’s decisions [21,
26,27].

Definition 3.2.2 (Interpretability). Understanding the underlying work-
ings of the AI model is another issue with black-box models. The
intrinsic properties of a DL model are disclosed through interpretability.
This has to do with being able to comprehend how AI models make
their decisions. AI systems that explain the internals of an AI model in
a manner that humans can comprehend are known as model intrinsic
techniques [21,26,27].

There are many supplementary criteria that may be added to an XAI
method such as transparency, fairness, reliability, or robustness. These
are aimed at enhancing trust in the model. These concepts are further
explained in the following.

Definition 3.2.3 (Transparency). This is developed using an intrinsic
method that generates a human-readable explanation for the model’s
decision. Transparency is essential for assessing the quality of a model’s
decision and for fending off adversaries [26,64,93–95].

Definition 3.2.4 (Fairness). Due to fundamental biases in some datasets
and algorithms, some groups of individuals can be treated unfairly and
discriminated against by AI systems. Fairness refers to a model’s ability
to make unbiased decisions without favoring any of the populations
represented in the input data distribution [27]. Biases may affect AI
systems in a variety of ways. Biases such as the location of birth,
socioeconomic background, and skills should not be a factor in AI
models [24,95]. During the development of an AI system and after
its deployment, special methods may be developed for collecting and
implementing user input [96,97].

Definition 3.2.5 (Robustness). The sensitivity of the system’s output
to a change in the input is measured by robustness [98]. It assesses
the model’s capacity to function correctly in case of uncertainty. The
behavior of the system should not be dramatically affected by small
changes in input [99]. This attribute is obtained by subjecting the
model to adversarial inputs and ensuring that the system’s error rate
is near to that during training [25,100].

A perturbation in the input example will cause a change in the
outcome. Causality [101–103] measures the change in the predicted
output. A selection of important insights and common associated XAI
terminologies are completeness [14,104], informativeness [28,50], jus-
tifiability [105–107], monotonicity [108], reversibility [109,110], sim-
plicity [52,111], reliability [112–114], and transferability [21,28,115].

XAI is focused on demystifying black-box models; it is also com-
patible with responsible AI since it may assist in creating transparent
models.

Definition 3.2.6 (Satisfaction). The ability of an explainability tech-
nique to improve the usability and utility of the ML-based system [116].

Definition 3.2.7 (Stability). The ability of a procedure to provide
comparable explanations for inputs that are similar [117–119].
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Fig. 3. Relations among XAI concepts. The knowledge graph shows the interconnected
potential uses of explainability concepts. The explainability concepts usually seek to
accomplish one or more goals with the explanations that produce. The selection of the
approach, the depth of the justifications, and the aims will be influenced by individual
objectives. Inspired from [131].

Definition 3.2.8 (Responsibility). Building trust and transparency makes
a model trustworthy; but, in order for it to be responsible, societal
values, morals, and ethical considerations must be also taken into
account. Thus, Transparency, Responsibility, Accountability [21,95,
120], Fairness, and Ethics [95,120,121] are the pillars that support
Responsible AI [105,120,122–124].

Furthermore, we list out some XAI approaches, looking at issues
ranging from trustworthiness to privacy awareness [115,125], and
recognize the relevance of purpose and intended audience in data
security [126–128] and safety [111,129,130].

Based on the previous nomenclature, we created a unified and orga-
nized perspective of the key concepts in the XAI area. Fig. 3 depicts how
such concepts are strongly interrelated. The explainability approaches
always seek to accomplish one or more goals with the explanations
they produce. Indeed, explainability is closely related to interpretabil-
ity (which becomes a prerequisite for explainability) and robustness
(which is increased by explainability). Similarly, robustness is related to
(but it is not the same) stability; and both concepts have an important
impact on satisfaction and reliability. In addition, confidence requires
form interactivity while verifying reliability. Moreover, interactivity
enriches interpretability while interpretability fosters interactivity. The
selection of the XAI approach, the depth of the explanations, and their
aims will all be influenced by all these concepts which have a direct
impact on trustworthiness. Accordingly, we believe that studying the
XAI concepts enables researchers to become familiar with the subject
and its background rapidly. Additionally, knowing the primary search
phrases in the area and the other terms that broadly allude to the
same topics is a necessary prerequisite for conducting an insightful and
compelling investigation.

3.3. Tradeoff between accuracy and interpretability

Researchers typically seek interpretable and high-performing mod-
els. Making the best model, however, usually increases model complex-
ity, which tends to reduce interpretability. Understanding the tradeoff
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Fig. 4. Illustration of the balance between accuracy and interpretability. The need for high model accuracy and interpretability is emphasized. Models with high accuracy need
additional explainability, while models with low accuracy are simpler to comprehend but useless in many cases. The gray-box models represent the transition between black-box
and white-box models. The number represents the year in which it first appeared in the field of AI research.
between accuracy and interpretability becomes critical for successful
analytics as more corporations turn to AI models to spur development.
The connection between accuracy and interpretability will be covered
in this subsection.

Some experiments combine interpretable models to provide ad-
ditional levels of insight; nevertheless, some interpretability may be
sacrificed in order to get the most accurate model possible [52,64].
The DT, for example, is quite interpretable; but, when it is repeated
many times and combined with another model, such as Random Forest
(RF), the interpretability suffers. As a result, we can say complicated
models have become less interpretable in order to attain higher ac-
curacy. Explainability enters the picture since an explanation entails
comprehending the complicated system.

Fig. 4 depicts the apparent balance between the ML model’s perfor-
mance and its ability to make explainable predictions in terms of the
associated interpretability. For instance, a CNN is harder to understand
than RF, and DT is easier to understand than RF. The crossover between
interpretable and explainable models is represented by the gray region.
This is because LR models with a few characteristics are simple to
understand, but as the number of parameters increases, the model
gets increasingly complex. A separable border between simple and
complex models is difficult to define precisely. It is worth noting that
according to some authors [132] ‘‘there is no scientific evidence for
a general tradeoff between accuracy and interpretability’’: even if for
many ML techniques the improvement of interpretability is at the
cost of imposing constraints that in practice set an upper limit to the
maximum accuracy to be achieved, a careful design can yield a good
interpretability-accuracy tradeoff. Indeed, interpretability usually helps
to understand how to improve a given model, so sometimes improving
interpretability can also improve accuracy.

Moreover, DNNs are already capable of completing a wide range
of tasks that before only a person could do, including classification,
object detection, and recognition, as well as predictive maintenance
tasks [107,133]. However, humans may fool a DNN to categorize
an input image incorrectly, despite the DNN having generally great
performance with proper input and training. A tomato picture, for
example, is altered by a human using random noise in order to deceive
the DNN. When a model’s formal goals (test-set prediction) and its real
labels differ, explainability is required. The explanation is needed in
order to acquire information, create a trustworthy connection between
humans and AI systems, improve and learn from the system, as well as
to comply with regulation. In addition, when comparing various models
or architectures, model interpretability may be useful [58,134]. The
importance of models providing explanations for their decisions has
been discussed in many ways in the literature [86,135]. Accordingly,
this article summarizes why explainability is important in terms of
government regulations, user perspective, and application orientation.
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Explainability is not only a great academic interest but it will play a
pivotal role in future AI systems that are expected to be used by millions
of citizens, all around the world, in their everyday life.

4. Proposed XAI taxonomy

How interpretable must the explanation be to satisfy the various
user requirements? A plethora of factors may influence how an AI
model works and produces its decisions, therefore a wide variety of ex-
planations are needed. This is partly due to the absence of a universally
accepted definition for XAI [18]. Also, it should be noted explainability
focus on making explanations more user-friendly and trustworthy while
avoiding making recommendations too strong without a basis existing
in the data used throughout the AI development process in general. It is
possible to conflict with the initial aim of gaining comprehension [136].
Explainability aims to understand the model and diagnose training
processes that fail to converge and refine the model for robustness
and better performance. We think explanations should be created by
considering four axes in the typical AI pipeline: (i) data explainability,
(ii) model explainability, (iii) post-hoc explainability, and (iv) assess-
ment of explainability. Considering only one of the above may leave the
potential audience with an inadequate understanding. As we can see in
Fig. 5, data scientists and developers are less concerned with post-hoc
explanations but may gain more from knowing the internal workings of
the model to improve the model’s performance and comprehend how
the data is applied to prevent overfitting. On the other hand, domain
experts and end consumers are more interested in how and why a model
generated a particular result and the key characteristics that led to that
conclusion. As a result, this paper suggests that explanations must be
created with the kind of user in mind.

As shown in Fig. 5, this study uses a novel taxonomy that incorpo-
rates all four axes of explanation. There are two significant advantages
to approaching explainability in this manner. (i) Since the goal of the
explanation is more transparent and can be specified more precisely
in a given axis, it makes the design and construction of explainable
systems cheaper and easier. (ii) This approach will improve satisfaction
among developers, researchers, domain specialists, and end consumers
since they will get a more focused, easier-to-understand explanation
compared to a broad general one for everyone. In addition, since
metrics are unique to each axis, it will be simpler to assess which
explanation is superior.

To what purpose does the explanation serve? Researchers have
attempted to categorize the various explanations used to decipher
the rationale in learning algorithms [137]. Explainability techniques
should respond to many questions to create a comprehensive expla-
nation. The most basic questions like why and how the model under
investigation generates predictions and inferences have been addressed
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Fig. 5. Proposed four-axes XAI methodology. At every level of the AI process, we present our explainability approach. Data explainability summarizes and analyzes data to offer
insight into that data. A subsequent understanding of the data, feature engineering, and standardization can be achieved. Model explainability sheds light on the internal structure
and running algorithm (notice that the picture depicts an example of DL but explainability applies also to other models). Post-hoc explainability elucidates significant features using
several kinds of explanation. Several assessment approaches and their desiderata can be used to evaluate the explanations. The dotted lines define the four axes in the framework,
whereas the solid lines differentiate between the entities of each axis.
Table 2
A list of research questions that address several levels/axes of explanation.

By data explainability By model explainability By post-hoc explainability

D1: What sort of information do we have
in the database?
D2: What can be inferred from this data?
D3: What are the most important portions
of the data?
D4: How is the information distributed?
D5: Is it possible to increase the model’s
performance by lowering the number of
dimensions?
D6: Can a better explanation be offered by
using data summarizing techniques?

M1: What makes a parameter, objective, or
action important to the system?
M2: When did the system examine a para-
meter, objective, or action, and when did
the model reject it?
M3: What are the consequences of making
a different decision or adjusting a parameter?
M4: How does the system carry out a
certain action?
M5: How do these model parameters, objec-
tives, or actions relate to one another?
M6: What factors does the system take into
account (or disregard) when making a decision?
M7: In order to achieve a goal/inference, which
techniques does the system utilize or avoid?

P1: What is the reason behind the
model’s prediction?
P2: What was the reason for occurrence X?
What would happen if Y was the cause of
occurrence X?
P3: What variables have the most influence
on the user’s decision?
P4: What if the information is altered?
P5: To keep current results, what criteria
must be met?
P6: Is there anything that can be done to
have a different outcome?
P7: Why is it essential to make a certain
conclusion or decision?
by researchers [42,138,139]. However, the research community has
also recognized additional issues that could emerge and need other
kinds of responses and, as a result, require different forms of expla-
nation [140]. We formulated research questions based on a thorough
examination of the literature on XAI research, which includes various
research papers and previous surveys to ensure that the selected ques-
tions are aligned with the current state of XAI research. Our primary
objective was to encompass a wide range of topics and factors that
are pertinent to XAI, such as trustworthiness, ethics, interpretability,
explainability, and human factors. By doing so, we ensured that the
survey captures a comprehensive understanding of the subject matter,
including various perspectives and dimensions that are crucial in XAI
research. Table 2 summarizes the research questions for the first three
axes of explainability. The fourth axis is distinct from the others yet
depends on them, as such, we will examine this thoroughly in Section 9.

5. Explainability methods

Explainability techniques come in a variety of shapes and sizes.
The taxonomies covered in this section are summarized in Fig. 5
(top portion). They can be divided into broad categories: scoop-based,
model-based, complexity-based, and methodology-based. While there
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are many techniques for determining explainability, they can be dis-
cussed in detail in the following paragraphs. Since most papers ad-
dress explainability in ML algorithms, the word interpretability is often
employed.
Scoop-based Explainers: Feature importance analysis is a common
method for determining how model outputs relate to inputs either
showing the entire model’s behavior or a single prediction. Depending
on the feature’s importance, the kind of analysis performed can be
categorized as either a local or global method. Local explainers only
explain a specific decision or instance [21]. This implies that their
decisions are limited to a single case with a single explanation. LIME is
a seminal example of a local explanation [29]. On the other hand, global
explainers are those that provide a rationale for the whole dataset [21].
These explanations remain true to overall observations. However, cer-
tain global explainers may offer localized explanations as well. For
example, SHAP can provide local as well as global explanations [141].
Complexity-based Explainers: Interpretability is directly proportional
to the complexity of the ML model. In general, the more complicated
a model is, the more difficult it is to understand and explain. In-
terpretable ML algorithms can be classified as intrinsic or post-hoc
interpretable depending on when interpretability is achieved. Intrin-
sic interpretability is accomplished by creating models that are self-
explanatory and have interpretability built right in. To put it another
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way, intrinsic interpretable models have a simple structure [21]. In
many cases, the simplicity and interpretability of the models, however,
come at the expense of accuracy [142]. An alternative is to build a
high-complexity, high-accuracy model and then utilize a different set
of methods to give the necessary explanations without understanding
how the original model works. Post-hoc explanations are provided
by this class of techniques [143]. Post-hoc interpretability involves
the development of a second model, usually as a surrogate of the
original model (e.g., TREPAN [144]), in order to provide users with
explanations.
Model-based Explainers: Model-agnostic or model-specific method is
another way to categorize existing interpretability strategies [21]. A
model-specific [145] method, as the name implies, is only applicable to
particular kinds of models. By definition, intrinsic methods are model-
specific. In contrast, model-agnostic [146] methods are independent
of the kind of ML model used. Since model-agnostic interpretability
techniques are model-free, there has been a recent increase in interest
in them. Model-agnostic methods offer post-hoc interpretability; they
are often used to interpret ANNs as either local or global explainers.
Methodology-based Explainers: XAI core algorithms may be classi-
fied in two ways depending on the implemented methodology:
Backpropagation-based or perturbation-based methods. On the one
hand, Backpropagation-based [27] methods may be used to backprop-
agate a significant signal from the output to the input. This begins
with the output of the network and adds weight to each intermediate
value calculated during the forward pass. To update the weights of
each parameter and align the output to the ground truth, a gradient
function distinguishes the network output with respect to each inter-
mediate parameter. Thus, Gradient-based is another name for these
techniques [27]. Saliency maps and class activation maps are other
examples of this kind of method. On the other hand, Perturbation-
based [147] algorithms use occlusion, partly replacing features via
filling operations or generative algorithms, masking, conditional sam-
pling, and other techniques to change the feature set of a given
input instance and investigate the impact of these changes on the
network output. Backpropagating gradients are not needed in this
case since a single forward pass is enough to comprehend how the
perturbed component in the input instance contributes to the network
output [27].

6. Data explainability

Data explainability involves a group of techniques aimed at better
comprehending the datasets used in the training and design of AI
models. The fact that an AI model’s behavior is heavily influenced by
the training dataset makes this level of explainability very important.
Therefore, many interactive data analysis tools have been developed to
assist in understanding the input data. If data are not of high enough
quality, it is impossible to create a model that will perform well. Data
must be carefully examined after being collected.

The main publications related to data explainability are listed in
Table 3. This table goes through each of the aspects of data explainabil-
ity that make up the following subsections. As we will discuss below,
data explainability may provide insights that can help AI systems
(learned from data) become more explainable, efficient, and robust.
The main aspects to consider are: Exploratory Data Analysis (EDA),
explainable feature engineering, dataset description standardization,
dataset summarizing methodologies, and knowledge graphs.

6.1. Exploratory Data Analysis

The goal of EDA is to compile a list of the most significant character-
istics of a dataset, such as its dimensionality, mean, standard deviation,
range, and missing samples. A powerful toolkit for extracting these
characteristics rapidly from the dataset is Google Facets [155]. Consider
a basic supervised binary classification task in which a model is created
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Table 3
Publications in the literature regarding questions {D1,… ,D6} about model expla-
inability, as described in Table 2.

Reference Year D1 D2 D3 D4 D5 D6

[148] 2021 ■ ■ ■ ■ ■
[149] 2020 ■ ■ ■ ■ ■
[150] 2020 ■ ■ ■ ■ ■ ■
[151] 2019 ■ ■ ■
[152] 2019 ■ ■ ■ ■
[153] 2018 ■ ■ ■ ■
[154] 2018 ■ ■ ■ ■
[155] 2017 ■ ■ ■
[156] 2017 ■ ■ ■
[157] 2016 ■ ■ ■ ■ ■
[158] 2016 ■ ■ ■ ■
[159] 2011 ■ ■ ■ ■
[160] 2011 ■ ■ ■ ■
[161] 2008 ■ ■ ■ ■
[162] 2008 ■ ■ ■ ■
[163] 2002 ■ ■ ■ ■

Fig. 6. GoogleFacets: The UCI Census Income data was used to classify the income
of an adult as over 50K a year or not. (a) Display all 16282 training data points that
show the relationship between one feature (Age) and another feature (Occupation), then
faceting is performed in a different dimension according to a discrete feature (Work
class). (b) The table displays six integer-type statistical values from the UCI Census
datasets. Non-uniformity is used to group the feature. For the sake of illustration, one
feature, the capital loss is presented. Red numbers signify regions with the potential
issue, in the capital loss numeric feature with a high proportion of values, are set to
zero. The right-hand histograms compare the distributions of the training and test data.
(c) The table displays one categorical (string) type feature out of the nine features in
the UCI Census dataset. Distribution distance is used to group the features. The label
values in the train and test sets are different, as shown in the right-hand histogram.
A model trained and tested on such data would provide an incorrect assessment as a
result of the label imbalance problem.

to distinguish whether an employee has an annual income over 50K
or not. The UCI Census Income data [164] will be utilized throughout
this manuscript as a case study. The dataset was obtained from the
employment board and has a huge number of features. Further, assume
that the classifier selected is less accurate. An EDA tool looks for biases
in the dataset that may indicate an issue with class imbalance, such
as having significantly fewer instances of adults with an income > 50K
than those with an income < 50K, as depicted in Fig. 6. After identifying
a problem in the training dataset, a variety of remedies may be applied
to fix it.
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Fig. 7. PCP: The UCI Census training data is presented in a single graph to reveal a
2D pattern. The z-score on the 𝑦-axis is plotted against each feature value. The graph
can aid in deciphering feature correlations and identifying helpful predictors for class
separation. It can be seen in the distinct cluster, the features of age and education have
a significant role in determining a given class. In the class prediction, the capital gain,
on the other hand, does not create separation boundaries. Thus, this feature may be
left out of the classification task. The green line represents the target value > 50K, and
the blue line denotes income value < 50K.

Fig. 8. t-SNE: Produces a graph with well-defined clusters and a small number of
integer data points. To get a better separation between the clusters of the UCI Census
Income dataset, several distance measures are used: (a) Mahalanobis, (b) Cosine, (c)
Chebyshev, and (d) Euclidean. All these distance measures, except for Mahalanobis,
provide reasonable separation between clusters in this scenario.

When it comes to evaluating datasets, however, relying only on
statistical characteristics is seldom sufficient. For instance, Matejka
et al. [156] have shown that datasets with similar statistical measure-
ments may look different when plotted. As a result, data visualization
techniques are a significant EDA tool. Data visualization provides a
variety of charting options [165]. The best kind of chart to use draws
on the dataset, application, and statistical characteristics that a data
scientist wants to convey.

Real-world datasets are often complex and multidimensional, with
a large number of variables. Visualizing such high-dimensional data
may be challenging since humans only perceive three dimensions. To
enable people to understand data with more than three dimensions,
one approach is to use special charts, such as Parallel Coordinate Plots
(PCP) [148]. These are utilized to figure out which features to keep
and which ones to leave out as demonstrated in Fig. 7. The high-
dimensional dataset may also be projected onto a lower-dimensional
form while keeping as much of the underlying structure as possible.
Two well-known methods in this area are Principal Component Analysis
(PCA) and t-Distributed Stochastic Neighbor Embedding [161] (t-SNE).
Fig. 8 illustrates the t-SNE case from the UCI Census Income dataset. If
the underlying structure of a dataset is known to be mostly linear, then
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PCA is the best choice; otherwise, t-SNE is preferred. The Embedding
Projector toolbox [157] facilitates the use of both techniques. Unfortu-
nately, t-SNE is too slow when applied to large datasets. Dimensionality
reduction approaches, such as Uniform Manifold Approximation and
Projection (UMAP) [150], may be used in similar situations. It is
claimed that UMAP is more accurate and scalable than t-SNE.

6.2. Explainable feature engineering

In addition to improving AI model performance, data explainabil-
ity may aid in the development of explainable models and in the
comprehension of post-hoc model explanations. Feature attribution,
which involves evaluating the relative significance of input features in
a particular model’s decision, is a common kind of post-hoc explana-
tion [151]. The related features should be explainable too, in the sense
that developers should be able to intuitively assign a meaning to them
and identify the most pertinent feature explanations for a specific end
user. To put it another way, the accuracy of a model’s predictions is
limited by the characteristics that are employed to explain them [154].

The two most common approaches to explainable feature engi-
neering are domain-specific and model-based methods [151]. Domain-
specific methods rely on domain expert knowledge as well as in-
sights gained via EDA to extract and identify significant features.
Shi et al. [162], for example, utilized a binary classifier on satellite
images to distinguish cloudy pixels from ice/snow pixels that looked
quite similar. Model-based feature engineering, in contrast, makes use
of a number of mathematical models to determine the underlying
structure of a dataset. Clustering and dictionary learning are two
examples of model-based methods [151]. Disentangled representation
learning [153], which attempts to learn a representation of a dataset
in which the generative latent variables are separated, is another
important and related field of study. Latent variables may be thought
of as explainable features of the dataset.

6.3. Dataset description standardization

Datasets are often released without adequate documentation. As
such, standardization may solve issues such as systematic bias in AI
models and data exploitation by enabling efficient communication
between dataset creators and users. As a consequence of this, a number
of suggestions for standard dataset descriptions have been made, in-
cluding Datasheets for Datasets [166], Dataset Nutrition Labels [167],
and Data Declarations for Natural Language Processing (NLP) [168].
These methods effectively offer various schemas for particular data
connected to a dataset in order to track the datasets evolution, content,
data collection method, legal/ethical problems, etc. For example, the
nutrition label dataset approach [167] proposes a dataset document
that includes information on many modules such as metadata, statistics,
pair plots, the probabilistic model, provenance, and ground truth corre-
lations. All these details are intended to be consistent with the nutrition
information label on packaged foods. Similar to how customers can se-
lect their preferred food in a store regarding the nutrition information,
AI experts may use the ‘‘nutrition labels’’ associated with a dataset as
a reference to effectively identify the best dataset for their modeling
objectives.

6.4. Dataset summarizing methodologies

Case-based reasoning [169] is a kind of explainable modeling tech-
nique that generates predictions for a given input and compares them
to training samples/cases using a distance metric. Similar training sam-
ples, together with model predictions, can be provided to the end user
as an explanation of the process. However, one significant drawback of
this method is the need to retain the full training dataset, which may
be prohibitively expensive or impractical for very large datasets, which
have become more widely available. One solution to this problem is to
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save a portion of the training dataset that is nonetheless representative
of the essence of that dataset. The goal of dataset summarization is to
address this issue.

Document summarization [160], scene summarizing [170], and
prototype selection [159] are some of the proposed techniques. To
summarize a dataset, it is common to look for a small number of typical
samples (known as prototypes) that provide a quick overview of the
wider dataset. However, prototypes are insufficient for comprehending
vast and complicated datasets; it is also important to include criticism
with the prototypes. A criticism is an item of data that is relatively rare
and is not properly represented by the prototype examples [149].

Kim et al. [158] presented an unsupervised learning technique for
extracting both prototypes and criticisms from a dataset, they also
performed additional testing by showing humans summarized datasets.
Humans who were shown both prototype and critique images as their
decision-making guide performed better than those who were just
shown prototype images, according to the research. Data squashing is
an another technique for data summarization [163]. The aim of data
squashing is to create a smaller version of a dataset that produces
similar results. Unlike data summarization, weights are often assigned
to samples in the smaller version of the dataset. Similar criteria for the
initially stated data squashing are used in Bayesian learning, Bayesian
coresets [152] have been highlighted as a data squashing method in a
recent study.

6.5. Knowledge graphs

Knowledge graphs provide a conceptualization of a given domain
of application (e.g., finance, health, etc.) by modeling entities and
their relationships by means of a directed, edge-labeled graph, often
organizing them in an ontological schema. A knowledge graph enables
us to determine which cues belong to ideas with similar semantic
properties, factors that individuals may change, supporting data from
the dataset, and other systems [171]. Several researchers envision using
semantic technologies in the explainability field [66]. For example,
Doctor XAI [172] creates an agnostic XAI approach for ontology-linked
data classification. A Knowledge Graph is used by Gaur et al. [173]
to feed DL models in order to increase their explainability. In addition
to the methods listed above, we believe semantic technologies should
(i) give background information, (ii) describe their properties, and (iii)
give explanations in a context and language that are suitable.

In addition, ontologies offer a strong foundation for justifying pre-
dictions made by AI algorithms semantically. The Data Mining On-
tology for Grid Programming (DAMON) [174] is a reference model
for data mining approaches and existing tools. Another example, KD-
DONTO [175] emphasizes the development of data mining techniques.
In addition, Panov et al. [176] created a heavy-weight ontology that
offers ways to express data mining items and inductive queries. Con-
falonieri et al. [177] proposed an extension of Trepan [178] that
integrates ontologies in the generation of explanations. In a user study,
it was shown how explanations extracted using an ontology were
perceived as more understandable than those extracted without the use
of an ontology by human users.

6.6. Physics-informed neural network

A class of neural networks known as physics-informed neural net-
work incorporates physical rules and constraints into the architecture
of the network. The integration of deep learning with physical mod-
eling, process understanding, and domain knowledge enhances the
interpretability and generalization of the models. Several methods have
proposed incorporating physical equations and constraints into neural
networks for modeling complex and non-linear processes. Earth system
science (atmospheric and oceanic modeling, land surface processes,
and cryospheric science) [179] and a two-step process to improve the
spatio-temporal resolution of turbulent flows [180] are a few of these
13
Table 4
Publications in the literature regarding questions {M1,… ,M7} about model expla-
nability, as described in Table 2.
Reference Year M1 M2 M3 M4 M5 M6 M7

[183] 2020 ■ ■ ■ ■
[184] 2019 ■ ■ ■ ■
[185] 2019 ■ ■ ■ ■
[186] 2019 ■ ■ ■ ■ ■
[187] 2019 ■ ■ ■ ■ ■
[188] 2019 ■ ■ ■
[189] 2019 ■ ■ ■ ■
[190] 2019 ■ ■ ■ ■ ■
[191] 2018 ■ ■ ■ ■
[118] 2018 ■ ■ ■ ■ ■ ■
[192] 2018 ■ ■ ■ ■ ■ ■
[193] 2018 ■ ■ ■ ■ ■
[194] 2018 ■ ■ ■ ■ ■
[195] 2018 ■ ■ ■ ■ ■ ■
[196] 2017 ■ ■ ■
[197] 2017 ■ ■ ■ ■
[198] 2016 ■ ■ ■ ■
[199] 2016 ■ ■ ■ ■
[200] 2016 ■ ■ ■ ■ ■
[201] 2015 ■ ■ ■ ■ ■

examples. Researchers also proposed new methods to improve this
family of models. For instance, Seo et al. [181] proposed a method to
control the behavior of neural networks using rule-based representa-
tions. Interested readers are encouraged to read the following survey
paper [182].

7. Model explainability

Even if data are clean and carefully prepared for training thanks
to data explainability techniques like those discussed in the previous
section, if the model lacks a clear understanding, then developers may
still find it challenging to incorporate their own knowledge into the
learning process with the aim of getting better results. Accordingly, in
addition to data explainability, model explainability is of paramount
importance. In many cases, just analyzing the outputs or taking a single
input is insufficient to comprehend why a training procedure failed
to provide the desired results. In such a case, the training procedure
needs to be investigated. Model explainability aims to create models
that are naturally more understandable. Limiting the selection of AI
models to a particular family of models that are deemed intrinsically
explainable is often considered identical to running explainable model-
ing. The debate, however, extends beyond the traditional explainable
model families to cover more modern and innovative methods such as
hybrid, joint prediction and explanation, and many other approaches.
Whichever way we look at it, the most challenging part is still coming
up with an explanatory mechanism that is firmly ingrained in the
model.

Table 4 includes some of the most relevant papers regarding the
model explainability issues to be discussed in the following subsections.
The following subsections go through each of the aspects of model ex-
plainability, it includes information such as important parameters, the
relationship between object and action, the internal working process,
and infer the technique used to make decisions.

7.1. Family of inherently interpretable models

The conventional method for building explainable models is to
select the modeling technique from a set of techniques that are deemed
interpretable (white-box models). Lipton [28] suggested three modeling
phases to ensure interpretability: (i) Algorithmic transparency, (ii)
Simulatability, and (iii) Decomposability. LR [202], DT [203], Decision

sets [204], Rule sets [205], Case-based reasoning [169], Interpretable
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Fuzzy Systems [206], and Generalized Additive Models (GAMs) [207]
are all examples of this family.

However, merely choosing a model from an interpretable family
does not ensure explainability in practice. For example, it may not be
possible to simulate an LR model using high-dimensional input data
and therefore the model would be unexplainable [28]. To overcome
this problem, one might use some kind of regularization, such as
the L1 norm, to restrict the number of relevant input features while
raining the model. Furthermore, the coefficients calculated for the LR
odel may be unstable in the situation of feature multi-collinearity

i.e., input features that are correlated). To solve this problem, fur-
her regularization, such as the L2 norm, may be used [208]. While
here are particular techniques that mitigate these issues, interpretable
odel families are in general very basic, and therefore fall short

f reflecting the complexity of some real-world situations. This re-
ults in the so-called interpretability-performance tradeoff, which states
hat the more performant a model is, the less interpretable it is, and
ice versa [209]. However, by creating models that are both inter-
retable and performant, a number of academics have shown that the
laimed interpretability versus performance tradeoff does not always
old true [132,210]. When creating such a model, the primary issue
s to make it simple enough for its target audience to understand
hile still being complex enough to properly match the underlying

acts [151].

.2. Hybrid explainable models

To develop a high-performance and explainable model, it may be
easible to combine an inherently interpretable modeling technique
like those cited in the previous section) with a sophisticated black-
ox method [211]. Hybrid explainable models are based on this idea.
he Deep k-Nearest Neighbors (DkNN) [195] method uses kNN inference
n the hidden representation of the training dataset that is learned via
ayers of a DNN, as shown in Fig. 9. The conformal prediction approach
s then used to integrate the kNN predictions for all layers. DkNNs
ave been demonstrated to be efficient and robust, with example-
ased explanations provided for its predictions in terms of the closest
raining samples utilized in each layer. On the other hand, DkNNs
ecessitate the storage of a hidden representation of the whole training
ataset, this may be prohibitively expensive for big datasets. It can
lso provide neighborhood-based explanations, which make it easier
o interpret the model’s predictions. The synergy between robustness
nd explainability lies in the fact that DkNN can identify and handle
on-conformal predictions that could potentially lead to the model’s
ailure or poor performance, while also providing insights into how the
odel is making its predictions. It is worth noting that DkNN does not
irectly provide counterfactual explanations. However, it can be used in
onjunction with counterfactual methods to improve model robustness
nd interpretability.

In terms of generating predictions within a conformal prediction
ramework, the Deep Weighted Averaging Classifier (DWAC) [187] tech-
ique is similar to DkNN models in that it relies on the labels of
raining examples that are comparable to the given input instance.
owever, the similarity is calculated only on the basis of the final

ayer’s low-dimensional representation.
Self-Explaining Neural Networks (SENN) [118] are another example.

he main concept behind SENN is to generalize a linear classifier by
tilizing NNs to learn its features, their associated coefficients, and
ow the networks are aggregated into a prediction. Concept encoders,
nput-dependent parameterizer, and aggregators are used to describe
hree NNs. The resultant hybrid classifier is said to have a linear
odel’s explainable structure but a black-box expressive capacity and

lexibility. The Contextual Explanation Networks (CEN) [183] are related
o SENNs in certain ways. The CEN presupposes a learning issue in
hich the input in a particular context has to be predicted. The aim is
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o utilize a complicated model to encode the context in a probabilistic
way into the parameter space of an inherently interpretable model. The
data is then entered into the CEN model to produce a prediction.

BagNets [188] are another example of hybrid explainable model. A
BagNet is a bag-of-features model in which the features are learned
using a DNN. This kind of model treats each input image as a bag
of features when it comes to image classification. This bag-of-features
representation is created by slicing an image into many segments
and passing each segment through a DNN to get local class evidence
as shown in Fig. 10. All local evidence is then aggregated for each
class and put through the SoftMax function to determine the overall
probability.

Memory networks [212] also combine the learning capabilities of
connectionist networks with a type of read- and write-able memory, as
well as inference powers.

Neural-symbolic (NeSy) models [213] look at the application of con-
nectionist mechanisms to symbolic computation principles and the log-
ical characterization and analysis of sub-symbolic computation. These
models can be used to explore, comprehend, visualize, and influence
on the network complexity. We describe some of these models next.

To begin with, Conceptors [214] are a type of neuro-computational
mechanism that can be coupled with Boolean logic to add a semantic
interpretation component. Logic based concept induction (a formal
logical reasoning over description logics) can also be used to explain
data differentials over background knowledge; in the case in [215],
from Wikipedia knowledge base. Also using logic as the symbolic
component to attain explainable-by-design models are Logic Explained
Networks [216], which allow to describe black-box model decisions
as first order logic axioms in a logic-based simple, compositional and
approachable readable manner.

Examples that facilitate the integration of expert knowledge into the
black-box model for explainability within the NeSy paradigm consist of
using ontologies or knowledge graphs as symbolic elements to encode
common sense knowledge. For instance, to filter and refine opaque
models (e.g., scene graph generators that describe images to facilitate
machine scene understanding [217]), or to expose the functioning of a
compositional model that can be first audited by verifying what object
‘‘parts’’ the model detected properly to draw a particular ‘‘whole’’
object classification decision [218].

These architectures can even go further and, after identifying the
misalignment in the expected explanation, correct it. One example
of the latter approaches using XAI (via SHAP-backprop or alterna-
tives) is the X-NeSyL (eXplainable Neural Symbolic Learning) method-
ology [219], which allows aligning machine explanations and domain
expert explanations via knowledge graphs.

Apart from knowledge graphs, linguistic summaries aid to better
align explanations with the most universal mean of symbolic under-
standing, i.e., using natural language [220]. PLENARY translates SHAP
generated explanations of model outcomes into linguistic summaries so
that experts can more easily validate complex XAI technique outputs.
Finally, it is also shown that having prior knowledge about the environ-
ment in the form of a hierarchical knowledge graph, a significant speed
up of contribution-based explainability analyses can be achieved. More
concretely, Myerson values can be an efficient alternative to Shapley
analysis in multiagent systems or RL [221].

Other symbolic elements showing to be a promising way to provide
graphical clarity to interpret models include learning state spaces [222],
or using Finite State Automata [223] to extract implicit knowledge
learned by agents and discern Aha! or Eureka moments during learning.
At last, causal graphs [224] can be a post-hoc manner to perform
mediation analysis of causal effects of certain features by identifying
confounding and mediating factors. These can act as the root of

non-causal models motivating discriminatory policies.
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Fig. 9. DkNN: (a) The DNN, (b) the output representations at each layer, and (c) the nearest neighbors at each layer. The mini ImageNet training points are shown by the bird
and monkey icons. High-dimensional representation spaces are shown in 2D for clarity. When the nearest neighbor labels are homogeneous, such as in the case of the bird images,
confidence is high. The nearest neighbors contribute to the interpretability of each layer’s outcome. The term robustness refers to the ability to identify nonconformal predictions
using nearest neighbor labels discovered for out-of-distribution inputs, such as an adversarial bird, across different hidden layers.
Fig. 10. BagNets: The input is first split into 𝑞× 𝑞 patches. Each patch is passed to the DNN to extract the evidence score. In the next stage, we take the sum of the class evidence
scores overall patches to reach the final image classification decision.
Fig. 11. TED: The instance value  , true label , and explanation  are all part of the training data. The label and explanation are encoded before sending them to the DNN.
The encoded component and the input for prediction are fed to the DNN. Finally, the decoder will break down the label and explanation into their constituent parts.
7.3. Joint prediction and explanation

An explainable model may be trained to give both a prediction
and an explanation. To put it another way, a complicated model may
be explicitly trained to explain its predictions. This subsection will go
through the methods that jointly explain a model’s decision as well as
their benefits and drawbacks.

To begin with, the Teaching Explanations for Decisions (TED) frame-
work [189] is used to supplement the training dataset by including a
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collection of features, and output, as well as the user’s reasoning for
that decision, which is called an explanation, in each sample. When the
model is trained, the provided output and its explanation are combined
into a single label, as shown in Fig. 11. The model’s output is decoded
at the time of the test, to give an output and a related explanation
together at the end of the process. The TED framework offers a number
of benefits, including the ability to provide explanations that meet the
end user’s requirements and the ability to be broadly used.
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Fig. 12. This Look Like That: CL extracts the valuable features to employ for making predictions with the given bird dataset. The  prototypes are learned by the network as
representations of prototypical activation patterns in a region of the input image. As a result, each prototype may be seen as a hidden representation of a prototypical element of
the given bird image.
Park et al. [191] proposed a model explainability method for gen-
erating multimodal explanations. Their approach is comparable to
the TED framework in that it needs a training dataset containing
both textual and visual explanations. To test their method, the re-
searchers utilized two new datasets relating to activity recognition and
visual question-answering tasks, both of which were supplemented with
multi-modal explanations. The authors suggested that incorporating
multi-modal explanations improves prediction accuracy. Two major
flaws exist in the techniques described above: (i) the authors presume
that explanations are available in the training dataset, which is not
always the case, and, (ii) the explanations produced by these techniques
may not always represent how the model actually makes its predictions,
but rather they might show what people want to perceive as the
explanation.

Some approaches in this category do not need explanations for every
prediction in the training dataset, this helps to overcome the limita-
tions of the aforementioned methodologies. Hendricks et al. [199], for
instance, suggested utilizing DNNs to provide visual explanations for
the problem of object detection and recognition. In order to produce
class-specific visual explanations of the input image predictions at the
time of the test, their approach simply requires a textual explanation of
images and their class labels at the time of training. Another example
of a joint prediction and explanation approach is the Rationalizing
Neural Predictions (RNP) model [200], which consist of two parts (both
trained simultaneously): a generator and an encoder. In order to make a
prediction, the generator uses the distribution of input text segments as
potential explanations. The textual explanations are discovered through
training, not explicitly given to the network. This is only accomplished
by imposing two requirements: (i) the input text fragments must be
brief and cohesive, and (ii) the model must be able to act as a re-
placement for the original content for the specified prediction task.
As the encoder makes predictions based on the generator’s rationale,
it avoids two of the flaws stated previously. However, only providing
rationale is insufficient to enable the end user to completely understand
the prediction with confidence [192].

7.4. Explainability through architectural adjustments

By adjusting model architectures, it is also possible to improve
model explainability. For example, Zhang et al. [193] created an ex-
plainable CNN that can push representations of upper-layer filters to
be an object component rather than just a combination of patterns.
This is accomplished by incorporating a particular loss function into the
feature maps of an ordinary CNN. This loss function gives preference
to certain parts of an object inside a class category while remaining
quiet on images from other classes. The key point to highlight is that
16
this method does not need any object component annotation data.
Explainable CNNs store more relevant information in their high-layer
filters than traditionally trained CNNs do.

Chen et al. [185] proposed This Looks Like That, an Explainable Deep
Network (EDN) architecture for image recognition. The motivation
behind this architecture is based on how people explain classification
reasoning in terms of different parts of an image being compared
to a collection of learned image component prototypes. The authors
suggested adding a Prototypes Layer (PL) between the Convolutional
Layers (CL) and the Fully Connected (FC) layer to the standard CNN
architecture as can be seen in Fig. 12. For each class, the PL includes
a certain number of image component prototypes. Each prototype is
intended to contain the most important information for recognizing
images within that class. Using a specific loss function, the PL and
the CL layer parameters are learned simultaneously. A sparse convex
optimization method is then used to learn the weights of the FC
layer. The suggested EDN outperformed black-box DNNs in two image
classification problems.

Furthermore, attention mechanisms [201] is said to provide some
degree of explainability and they have altered the way how DL algo-
rithms are used. There are many different kinds of attention mech-
anisms, interested readers are kindly referred to [225]. Concisely,
attention-based models are widely employed in applications of NLP
[186], computer vision [197] or time series modeling [198]. Their goal
is to identify the parts of an input that are most relevant for performing
well the specific task under consideration. Relevance is often defined by
a collection of weights/scores given to the input components, referred
to as the Attention Map. Explainable DNNs usually include some kind
of attention mechanism. However, formal research on attention as an
explainability mechanism claims that attention is not the same as expla-
nation [190]. For example, attention maps are very weakly associated
with gradient-based metrics of feature significance, according to a large
collection of studies on different NLP tasks. Furthermore, extremely
diverse sets of attention maps may provide the same predictions.

7.5. Explainability through regularization

Regularization techniques are often used to enhance the prediction
performance of AI models, and may also be used to increase model
explainability. For example, Tree Regularization is presented by Wu
et al. [192] to improve DNN explainability. The main concept is to
encourage people to learn a model with a decision boundary that can
be well approximated using a tiny DT, allowing humans to simulate the
predictions. This is accomplished by introducing a new regularization
term into the loss function that was used to train the model. Models
built using this technique are more explainable without compromising
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Fig. 13. Saliency learning: A phrase is fed to two CNNs with kernel sizes of 3 × 3 and 5 × 5. The initial max-pooling operation produces an intermediate result. After that, the
result is decomposed by performing the dimensional and sequential max-pooling operations. For the final prediction, the decoded output is concatenated and sent via a feed-forward
layer.
Fig. 14. A proposed taxonomy for Post-hoc Explainability. Definition of acronyms: LIME — Locally Interpretable Model-Agnostic Explainer, LORE — Local Rule-based Explanation,
CluReFI — Cluster Representatives with LIME, SP LIME — Submodular Pick LIME, RISE — Randomized Input Sampling to Provide Explanations, CAM — Class Activation Map,
MMD — Maximum Mean Discrepancy, CAV — Concept Activation Vector. The numerical value and sub-index indicate the sequence and sub-sections in which these techniques
are presented in the manuscript.
predictive performance, according to their experimental findings for a
variety of real-world applications.

In addition, a significant corpus of research is focused on utilizing
regularization to explicitly limit the explanations of model predictions;
ensuring this way that they are correct for suitable reasons. For in-
stance, Ross et al. [196] proposed a method for constraining local
model predictions during training to reflect domain knowledge. The
authors considered input gradients as local first-order linear approxi-
mations that can be used to map model behavior, i.e., they are used as
a first-order explanation for particular model input. The domain knowl-
edge is stored as a binary mask matrix, with each feature indicating
whether it should be utilized to forecast each input. The model loss
function is then supplemented with a new term that penalizes input
gradients that do not match the mask matrix. Models trained using
this method generalize considerably better when training and testing
on datasets with large differences. In another similar example, Ghaeini
et al. [184] developed a technique called Saliency learning. In their
method, expert annotations concentrate on important portions of the
input rather than irrelevant parts, as well as having annotations at the
word embedding level rather than at the input dimension level. The
model extracts the event first by feeding the embeddings to two CNNs,
17
as shown in Fig. 13. After using max-pooling, an intermediate output
is generated. Later, dimension-wise and sequence-wise max-pooling is
used to get the final result. Experiments utilizing simulated explana-
tions in a variety of tasks indicate that Saliency Learning produces more
accurate and reliable results.

7.6. Other methodologies

There are a few more notable model explainability methods worth
mentioning. Angelino et al. developed the Certifiable Optimum RulE ListS
(CORELS) method [194], which offers a solution for finding optimal
rule lists for reducing the empirical risk of a given set of training data.
Furthermore, the CORELS method has been shown to be quick and
needs only simple software [226]. The fact that it can only deal with
categorical data is its main disadvantage.

8. Post-hoc explainability

After discussing data and model explainability issues, it is now time
to go in-depth with post-hoc explainability issues. The various methods
to deal with post-hoc explainability are grouped around six important
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Table 5
Nomenclature in this manuscript.

Symbol Description

𝐷 Dataset with 𝑛 instances
 Training set, a training instance 𝑥
 Testing set, a testing instance 𝑦
 Hypothesis space, a hypothesis ℎ ∈ 
 black-box model family
̂ White box model family
 (.) A ML model, either black-box or white box 𝐹 ∈ ,
 Input image of size 𝑚 × 𝑚 having pixel 𝑖
(.) Output from 𝑏
 Number of Classes, a specific class represent by 𝑐
 Loss function
 Relevance score or contribution
𝐿 Number of layers in a network
 Taylor series function
 Binary mask
𝜏 Precision threshold
𝑒 Number of neurons
𝑤 Weight matrix
 Activation map
P Class probability
 Gaussian noise
𝜎 Standard deviation

features, as shown in Fig. 14: (i) attribution methods, (ii) visualization
methods, (iii) example-based explanation methods, (iv) game theory
methods, (v) knowledge extraction methods, and (vi) neural methods.
Let us start by formulating the problem.

Problem Formulation: In supervised ML, a model ℎ(𝑥) = 𝑦 maps
a feature vector 𝑥 ∈  to a target 𝑦 ∈  . A training set 𝐷 =
{(𝑥1, 𝑦1), (𝑥2, 𝑦2),… , (𝑥𝑛, 𝑦𝑛)} is utilized during fitting/training of the
model. According to whether target 𝑦 is a discrete value or a continuous
value, supervised ML models can be categorized either as classification
or regression problems. A black-box model can be formulated as 𝑏 ∶
 →  , 𝑏(𝑥) = 𝑦 with 𝑏 ∈ , where  ⊂  gives the model’s
hypothesis space. For instance,  = {NN with one hidden layer, two
hidden layers}. White or gray boxes can be formulated in a similar way.
Let us suppose 𝑤̂ ∶  →  , 𝑤̂(𝑥) = 𝑦 with 𝑤̂ ∈ ̂ , where ̂ ⊂  stands
for the model’s hypothesis space, is a white-box model. For instance,
̂ = {decision trees of depth 2, 3, 4}.

The error measure  ∶  ∗  → R is used to evaluate the trained
model’s prediction in terms of its performance. A common example is
the hinge loss from binary classification 

(

ℎ(𝑥), 𝑦
)

= 𝑚𝑎𝑥{0, 1−ℎ(𝑥) ∗ 𝑦}
with 𝑦 ∈ {−1, 1}. When the actual label 𝑦 and the prediction ℎ(𝑥) are
identical, the loss is zero. The squared deviation (ℎ(𝑥), 𝑦) = (ℎ(𝑥)−𝑦)2 is
a popular error metric used in regression tasks. Supervised ML is aimed
at minimizing a given error metric:

ℎ∗ = arg min
ℎ∈

1
|𝑛|

𝑛
∑

𝑥∈

(

ℎ(𝑥𝑖), 𝑦𝑖
)

, (1)

here ℎ∗ is the optimized model with the smallest loss. Table 5 contains
he nomenclature, symbols, and variables used in this study.

Table 6 includes some of the most relevant papers regarding the
ost-hoc explainability issues to be discussed in the following subsec-
ions.

.1. Attribution methods

In the context of image processing, the majority of attribution
ethods depend on pixel associations to show which pixel of a training

nput image is relevant in terms of the model activating in a certain
anner. Therefore, each pixel of the input image is given an attribution

alue known as its relevance or contribution [243]. Mathematically, a
NN, , takes an input image  = [𝑖1, 𝑖2,… , 𝑖𝑚] ∈ R𝑁 , the output
ay be considered as () = [1(),2(),… , ()], where the total

number of output neurons is denoted by . An attribution method’s
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Table 6
Publications in the literature regarding questions {P1,… ,P7} about post-hoc expla-
inability, as described in Table 2.

Reference Year P1 P2 P3 P4 P5 P6 P7

[30] 2020 ■ ■ ■ ■
[227] 2020 ■ ■ ■ ■ ■
[228] 2020 ■ ■ ■ ■
[229] 2018 ■ ■ ■ ■
[230] 2018 ■ ■ ■ ■
[231] 2018 ■ ■ ■ ■ ■
[232] 2017 ■ ■ ■ ■ ■
[141] 2017 ■ ■ ■ ■
[233] 2017 ■ ■ ■ ■ ■
[234] 2017 ■ ■ ■ ■
[31] 2017 ■ ■ ■ ■
[29] 2016 ■ ■ ■ ■ ■
[235] 2016 ■ ■ ■ ■ ■
[236] 2015 ■ ■ ■ ■
[237] 2015 ■ ■ ■ ■ ■
[238] 2014 ■ ■ ■ ■
[239] 2014 ■ ■ ■ ■ ■
[240] 2013 ■ ■ ■ ■ ■ ■
[241] 2009 ■ ■ ■ ■ ■ ■ ■
[242] 1988 ■ ■ ■

purpose is to estimate the Relevance Score (RS) of each input pixel
𝑖𝑚 to the output 𝑐 when a particular target neuron 𝑐 is specified.
When all of the RSs have the same dimension as the input image,
the two sets are merged to form an Attribution Map [244]. In the
recent last couple of years, a number of novel attribution techniques
have been developed. As you can see in Table 7 we distinguish four
families of attribution methods: Deep Taylor Decomposition (DTD);
Perturbation Methods; Backpropagation Methods; and DeepLift. They
will be carefully described in the rest of this section.
1A. Deep Taylor Decomposition (DTD) was inspired by the SA
method, decomposes the function value  (.) by summing the RSs to
elucidate the model’s behavior [236,240]. Fig. 15 shows the pixel-wise
Taylor decomposition process. In the classification step; the input image
 is used as a feature vector feed to the network. The network classifies
the input into a specific class. In the next step; the classification output
(.) is decomposed into the RSs. The RSs are the terms in a first-order
Taylor series expansion of the function  at an initial point 𝑥 such that
(𝑥) = 0. The initial point removes the information from the input for

which  (𝑥) > 0. The following is a possible way to write this Taylor
eries expansion:

(𝑥) =
𝑑
∑

𝑖=1
 𝑖(𝑥) + (𝑥𝑥 ), (2)

here higher-order derivative terms are denoted by (.). The higher-
rder derivative terms are non-zero. In this way, a fraction of the
xplanation is generated. By neglecting (.), the first-order terms are
sed to compute the  as the partial explanation of  :

 𝑖(𝑥) =
𝜕
𝜕𝑥𝑖

|

|

|𝑥=𝑥
⋅ (𝑥𝑖 − 𝑥𝑖). (3)

1B. Perturbation Methods are the second family of attribution meth-
ods under consideration in this survey. They calculate the attribution
of a training instance feature directly by deleting, masking, or changing
the input instance, then a forward pass on the modified input is
executed before comparing the obtained results to the original output.
While these approaches provide for direct measurement of a feature’s
marginal influence, the methods become very sluggish as the number
of attributes to test increases [253].
Surrogation. A distinct model is created to explain the black-box
decision either locally or globally [254], and the model created is
intrinsically interpretable. Separating a black-box model from its ex-
planation, according to Ribeiro et al. [255], provides better accuracy,
flexibility, and usability. Surrogate models may be classified as local or
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Table 7
A comprehensive overview of attribution-based XAI methods, highlighting advantages and disadvantages.

Method Ref. Advantages Disadvantages Concept

DTD [240] Training free method, may apply directly to any NNs. (i) Inconsistent in providing a unique solution, and slow
computations [245]; (ii) Partial explanation as higher order
derivatives terms are set to zeros.

SA methods

LIME [29] (i) Suitable to a very large number of explanatory
variables, sparse explainer; (ii) Same local interpretable
model could be replaced [149]; (iii) Selective and possibly
contrastive explanations; (iv) Provides local fidelity; (v)
Makes no assumptions about the model.

(i) Incapable of explaining models with non-linear decision
boundaries; (ii) Incapable of explaining surrounding
observations [149]; (iii) Unsolved problem with tabular
data.

Model agnostic
local surrogate

LORE [246] (i) Provide a counterfactual suggestion with the
explanation; (ii) Utilize a genetic algorithm that takes
advantage of the black-box to generate examples; (iii)
Parameter-free method.

(i) Based on assumption; (ii) Cannot provide a global
explanation; (iii) Works for tabular data.

Local
explanation

CluReFi [247] Provides local explanation to a cluster. Representative of each cluster presents the explanation of
important features.

Local
explanation

SP-LIME [29] To check the entire model by extracting some data points.
Aggregate the local models to form a global interpretation.

Less beneficial for high-level comprehension. Model agnostic
global surrogate

NormLIME [227] Provides finer-grained interpretation in a multi-class setting
and add proper normalization to reduce the computation.

Aggregate many explanations for the class-specific
explanation.

Local
explanation

Anchors [231] (i) Less computation than SHAP; (ii) Better generalizability
than LIME [227].

(i) Requires discretization, highly configurable, and
impactful setup; (ii) Coverage drastically decreases with an
increase in the number of feature predicates.

Perturbation-
based model
agnostic RL

DeconvNet [238] (i) Highlights fine-grained details; (ii) Dense feature
representation with multi-layer.

Artifacts in the visualization [31]; (ii) Training is difficult
due to the large output space.

Pixel-space
gradient
visualization

RISE [229] (i) Any architecture can be generalized; (ii) Proposes
causal metrics.

(i) Inconsistent due to random mask; (ii) Slow
computation.

Pixel saliency

CAM [235] (i) Identifies discriminative areas in an image classification
task; (ii) Fast and accurate.

(i) Modify the network architecture that lends to complex
model [31]; (ii) Applicable to a specific type of CNN.

Regularization

Grad-CAM [31] (i) Applies to a broad range of CNN model-families; (ii)
Robust to adversarial perturbations in an image
classification task; (iii) Help to achieve the model
generalization by removing biases.

(i) Lacks the ability to highlight fine-grained details; (ii)
Individual interpretations are difficult to aggregate for
global knowledge.

Regularization

Guided
Backpropagation

[248] (i) Highlights the fine-grained details and less noisy
explanation [31]; (ii) Provides more interpretable results
than DeepLift.

(i) Captures pixels detected by neurons, not the ones that
suppress neurons [31]; (ii) Less class-sensitive than the
vanilla gradient.

Pixel-space
Gradient
Visualization

Guided
Grad-CAM

[31] (i) Removes negative gradients and understand the model’s
decision; (ii) Provides class descriptive and high-resolution
maps.

(i) Distinguishes an object of the same class; (ii) Does not
consider the entire class region.

Guided
Backpropagation
+ Grad-CAM

ScoreCAM [30] (i) Solves the dependency’s problem on the gradients; (ii)
Achieves better visualization and fair interpretation.

(i) Localization results are poor and lead to
non-interpretability; (ii) Smoothing generates inconsistent
explanations.

CAM

Vanilla
Gradient

[239] (i) Simple to implement based on backpropagation; (ii)
Pixel-wise features are important.

(i) Makes undesirable changes with data pre-processing
[249]; (ii) Vulnerable to adversarial attacks [250]; (iii)
Decision-making process is unknown.

Backpropagation
interpretation

SmGrad [233] (i) Denoising impact on the sensitivity map is achieved by
training with noisy data; (ii) Generates images with
multiple levels of noise.

(i) More effective with Large areas of the class object. (ii)
Degeneralizes to different networks.

Regularization
[251]

Integrated
Gradients (IG)

[252] (i) Very suitable for neural networks; (ii) Optimizes the
heatmap for faithful explanations.

(i) Does not meet the Shapley values’ axiom; (ii) Frail
mechanism to identify specific features and inconsistent to
produce the explanation.

Shapley value

DeepLift [234] (i) Gradient-free [227]; (ii) Achieves the goal of
completeness.

(i) Depends on a reference point or baseline; (ii) Produces
inconsistent results due to redefining gradient.

Feature
importance
Fig. 15. Deep Taylor Decomposition: The input image has been identified as a bird in the first step, while the model’s reception of the features is shown as a heat map based on
the relevance scores estimated from each hidden layer in the second step. The pixels surrounding the bird’s location had a substantial impact on the outcome, as shown by the
red regions that proved useful in the decision. In contrast, the blue regions were found not to be helpful in the decision.
global. By solving the following model equation, surrogate models are
fit to the data:

∗ = argmin
𝑤∈

1
||

∑

𝑥∈


(

 (𝑥),(𝑥)
)

. (4)

The function  acts as the fidelity score, indicating how well the
surrogate ∗ approximates the black-box model . The Global scenario
occurs, when the surrogate ∗ uses the whole training dataset, while
19
we define  = {𝑥1, 𝑥2,… , 𝑥𝑛} as a subset of the entire training dataset
𝐷. Often a subset  can represent the data distribution of the model
 sufficiently well. The Local scenario occurs, when the surrogate ∗

approximates  around a single test input 𝑥 defined as  = {𝑥′|𝑥′ ∈
(𝑥)}, where  is a neighborhood of 𝑥.
Locally Interpretable Model-Agnostic Explainer (LIME) is a proxy
model and their derivatives are the best examples of both local and
global surrogate methods [29]. This approach focuses on developing
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local surrogate models to explain individual predictions of black-box
ML techniques. LIME investigates what happens to predictions when
different types of data are fed into the ML model. LIME creates a
new dataset using altered samples and the black-box model’s predic-
tions. LIME then uses the perturbed dataset to build an interpretable
model that is weighted by the sampled instances’ closeness to the in-
stance of interest [29]. Any interpretable model, such as Least Absolute
Shrinkage and Selection Operator (LASSO), LR, or DT, may be used.
The learned model should be a good local approximation of the ML
model’s predictions but does not necessarily need to give a good global
approximation. Local fidelity is another term for this level of precision.

The ideal way to acquire data variation depends on the type of
data, which might be images, text, or tabular information. For images
and text, turning single words or super-pixels on/off often is the best
solution. LIME generates fresh samples from tabular data by perturbing
each feature independently and drawing sample points from a normal
distribution with the feature’s mean and standard deviation [149]. The
LIME model can be defined as:

𝛩(𝜙) = arg min
∈

(𝑓, , 𝜋𝜙) + 𝜔( ). (5)

The obtained explanation 𝛩(𝜙) interprets the target sample 𝑥, with
linear weights when  is a linear model. A model  ∈  , where

is a class of interpretable models; 𝜔( ) is the complexity measure;
∶ R𝑑 → R is the model being explained; and 𝜋𝜙(𝑥) is a proximity

measure between the perturbed sample 𝑥 and 𝜙. The function  is a
measure of the unfaithfulness of  in approximating 𝑓 in the locality
defined by 𝜋𝜙. LIME is a model-agnostic method, which means that the
obtained proxy model is suitable for use with any model [29].
Local Rule-based Explanation (LORE) [246] is an agnostic method
capable of providing interpretable and trustworthy explanations. It
constructs a simple, interpretable predictor by first using an ad-hoc
‘‘genetic algorithm’’ to generate a balanced set of neighbor instances
of the given instance 𝑥, from which a decision tree classifier can be
extracted. The resulting decision tree is then used to infer a local
explanation 𝑒 as follows:

𝑒 = ⟨𝑟 = 𝑝 → 𝑦,𝛷⟩, (6)

where the first part, 𝑟 = 𝑝 → 𝑦 is a rule for making a decision 𝑦 with a
binary predictor 𝑝. The second part, 𝛷, is a set of counterfactual rules,
which are the minimum changes to the feature 𝑥 values that would
cause the predictor to reverse its decision.
Cluster Representatives with LIME (CluReFI) [247] was created by
extending LIME. First, LIME describes the representation of a cluster
once the data has been clustered. After allocating an unknown data
instance to the closest cluster, the explanation visualizes cluster assign-
ments using a range of per-feature validity. Then, CluReFI visualizes
each cluster’s feature validity ranges for the most essential features
contributing to the specified class. Unlike LIME, CluReFI shows the
user the most significant aspects that contribute to the class for their
representation.
Submodular Pick (SP)-LIME. Examining the model’s predictions one
by one can assist in deciding whether the model can be trusted as a
whole. However, under typical conditions, it is impossible to examine
all predictions. SP-LIME is a strategy for identifying must-see events.
The number of events to examine is selected to be as large as possible
so that the model can be understood. Cases with different features
are also included [29]. By looking at the explanations for the subset
chosen by SP-LIME, users will be able to choose whether or not to trust
the model’s general behavior. The pick set problem may be stated as
a problem of choosing a set that leads to maximum coverage while
remaining within a certain budget B.

𝑃 𝑖𝑐𝑘𝑆𝑒𝑡( ,) = arg max
,||≤B

C(, ,) (7)

where C is the coverage; the overall relevance of features that appear
20

at least once in the examples from set  is given local importance  t
for instances . As solving the given equation is NP-hard, a greedy
approach is used.
NormLIME. LIME approximates a large NN on a small subset of the
data manifold locally. Extraction of common explanations from many
local approximations yields global explanations. However, the optimum
way to integrate local approximations remains unclear. Based on local
model explanations, NormLIME determines a feature’s importance.

Formally, for a certain model 𝑓 ∶  →  , it is possible to train an
interpretable model  that is local to the region surrounding a certain
input 𝑥0 ∈  . A Gaussian probability distribution 𝜋𝑥0 is used to sample
he data around 𝑥0. Drawing 𝑥′ from 𝜋𝑥0 and applying 𝑓 (.) repeatedly
roduces a new dataset  ′ = {𝑥′, 𝑓 (𝑥′)}. Thus, given the local dataset
′, we develop a sparse LR  (𝑥′, 𝑥0) = 𝑤𝑇

𝑥0
𝑥′ by maximizing the

ollowing loss function using 𝜔(.) as the degree of complexity.

rgmin
𝑤𝑥0

(𝑓, , 𝜋𝑥0 ) + 𝜔(𝑤𝑥0 ), (8)

here the loss weight (𝑓, , 𝜋𝑥0 ) = E𝑥′≈𝜋𝑥0
𝑓 (𝑥′ − (𝑥′, 𝑥0))2. An upper

imit  is set for the number of non-zero components in 𝑤𝑥0 , such that
(𝑤𝑥0 ) = (‖𝑤𝑥0‖0 > ). Although the optimization is difficult, it may
e approached by choosing  features using LASSO regression and then
arrying out regression exclusively on the top  features.
nchors is another variant from LIME that looks for a decision rule

hat will explain individual predictions of any black-box classification
odel. To create local explanations for predictions made by black-box
L models, Anchors uses perturbations [231]. The resulting explana-

ions are given as easy-to-understand IF-THEN rules termed anchors,
his is in contrast to the surrogate models employed by LIME [29]. As
IME only uses a linear decision boundary that best approximates the
odel in a given perturbation space, its findings do not reflect how

aithful the models are. Anchors, given an identical perturbation space,
enerates explanations in such a way that the coverage is customized to
he model’s behavior and clearly expresses the decision boundaries. As
result, Anchors is trustworthy by design and clearly identifies which

cenarios it applies to.
As previously stated, the algorithm’s conclusions or explanations are

iven in the form of anchors, which are decision rules. This approach
vercomes the shortcomings of LIME. Refer to Table 7 for the down-
ides of each explainer. Anchors reduce the number of model calls by
ombining RL techniques with a graph search method [231]. We label
n instance as 𝑥, the collection of predicates is , i.e., the resultant
nchor or rule when (𝑥) = 1 implies all of ′𝑠 feature predicates
elate to the feature values of 𝑥. The following is a formal definition
f an anchor :

𝑥(|)[1 (𝑥)= (𝑧)] ≥ 𝜏;(𝑥) = 1. (9)

A rule or anchor  must be discovered for an instance 𝑥, and
redicts a similar class to 𝑥 for a fraction of at least 𝜏 (a precision
hreshold), i.e., only rules with at least 𝜏 local faithfulness are deemed
alid, this based on, 𝑥(|) utilizing the given ML model (supplied
y the indicator function 1 (𝑥)= (𝑧)). Wherein 𝑥(.|) represents the
istribution of 𝑥’s neighbors, which correspond to , and while the
ategorization model to be explained is denoted by  .
econvolutional Network. Zeiler et al. [238] suggested exploring

he intermediate layers of a Convolutional Network (ConvNet) to ex-
lain the model’s decision. The authors visualized the activity of the
ntermediary layers to match the input pixel space by the use of a
econvolutional Network (DeconvNet) [256]. A DeconvNet is similar

o a ConvNet, it uses the same layer components such as pooling,
egularization, and filtering in reverse order. A DeconvNet layer was
onnected to a ConvNet layer, as seen in Fig. 16. The DeconvNet
rocess, seen at the bottom of the figure, will use the layer underneath
o rebuild an approximate replica of the ConvNet features.

To examine a given ConvNet activation map, all other maps in the
etwork are set to zero. Only the non-zero activation map is passed to

he DeconvNet layer. The DeconvNet layer performs three operations
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Fig. 16. DeconvNet: Every layer in the ConvNet has a DeconvNet linked to it, allowing
a continuous route back to the original input. The ConvNet receives an image and
computes features across all layers. All the other activations in a layer are set to zero
and feed the extracted feature maps into the attached DeconvNet layer to investigate
ConvNet activations. DeconvNet can rebuild an approximate replica of the feature
identified by ConvNet. During ConvNet’s pooling operations, switches keep track of
where the local maxima are located.

on the input map: (i) Unpooling — Despite the max pooling operation
being non-invertible, an approximate inverse is recorded in a Switches
variable. (ii) Rectification — The reconstructed features pass through
the Rectifying Linear Unit (ReLU) non-linearity to ensure that the
reconstructed maps are positive. (iii) Filtering — The DeconvNet takes
the transpose of the learned filters. With the exception of the reverse of
the ReLU layer, DeconvNet calculates its results in the same manner as
Vanilla Gradient [257]. Vanilla Gradient may be thought of as a more
generalized version of DeconvNet. When it comes to backpropagating
the gradient via ReLU, DeconvNet takes a different approach:

𝐿
= 𝐿+11(𝐿+1 > 0), (10)

where the reconstructions of the layers 𝐿 and 𝐿+1 are 𝐿
and 𝐿+1 respectively. During backpropagation, the Decon-
vNet layer remembers which activation maps in the 𝐿 layer have been
set equal to zero in the forward pass and ensures they are unchanged
in the 𝐿 − 1 layer.
Randomized Input Sampling to Provide Explanations (RISE). Pet-
siuk et al. [229] estimated the value of important pixels in an image
by lowering the brightness of pixels to zero in random combinations. By
multiplying an input image  elementwise with a randomly generated
binary mask , the authors were able to mimic this effect. Next, a
confidence score is computed using the masked images by passing them
to a DNN. A heatmap is produced by a linear combination of the masks,
the confidence score is derived from the target class for the masked
input. The authors further explain that this technique may be used to
provide visual explanations for object detector predictions [258].
1C. Backpropagation Methods are another family of attribution meth-
ods. In one forward and one backward pass to the DNN, backpropa-
gation methods calculate the attribution values for all the input fea-
tures. Several of these passes may be required in certain cases, al-
though this number does not rely on the number of input features
and is often significantly less computationally expensive than per-
turbation approaches. Backpropagation approaches are often quicker
than perturbation-based approaches, while their results are seldom
directly tied to output variation [243]. The following summarizes the
backpropagation approaches that are discussed in this article.
Gradient-only methods are only concerned with the gradient when
determining if a change to a given pixel would affect the final pre-
diction. Grad-CAM [31] and Vanilla Gradient [239] are two examples
of such methods. The common idea behind gradient-only methods is
that if a pixel in the input image is altered, the predicted probability of
the class will either increase (positive gradient) or decrease (negative
gradient). The greater the impact of an alteration to a pixel, the
21
higher the absolute value of that gradient. The Class Activation Map
(CAM) method and its variants will be discussed first, followed by
Vanilla-based gradient approaches.
Class Activation Map (CAM). Lin et al. [259] utilized Global Average
Pooling (GAP) as a structural regularizer in a CNN to reduce the number
of parameters used while retaining exceptional performance. With little
modification to the GAP method, Zhou et al. [235] discovered that the
network could efficiently detect discriminative image areas in a single
forward pass. The weighted activation map produced for each feature
map is referred to as a CAM. Fig. 17 depicts the process of creating
a CAM. The GAP layer is positioned immediately before the last layer
(SoftMax). The GAP takes the previously generated feature maps and
calculates the spatial average. The SoftMax layer returns the class
probability according to the weighted sum of the spatial average map
values. The weight matrix is then passed back to the last convolutional
layer, where it is used to calculate the weighted sum of the feature
mappings and produce a CAM.

Let 𝑒 (𝑥, 𝑦) be the activation map of the 𝑒th neuron from the last
convolutional layer at a given location (x,y). The GAP spatial average
may be calculated as follows:

 =
∑

𝑥,𝑦
𝑒(𝑥, 𝑦). (11)

Consider 𝑤
𝑒 to be the weight matrix that corresponds to the class 

at the 𝑒th neuron. Thus, for class , the SoftMax takes an input of
∑

𝑒 𝑤

𝑒 ⋅  . The SoftMax layer will return the class probability as:

P =
𝑒𝑥𝑝

(
∑

𝑒 𝑤

𝑒 ⋅ 

)

∑



(

𝑒𝑥𝑝
(
∑

𝑒 𝑤
𝑒 ⋅ 

)

) . (12)

The weight matrix 𝑤
𝑒 is passed back to the feature maps generated by

the last convolutional layer. In this way, the obtained map is referred
to as the CAM and defined by:

 (𝑥, 𝑦) =
∑

𝑒
𝑤

𝑒 ⋅𝑒(𝑥, 𝑦). (13)

Gradient-weighted CAM (Grad-CAM) [31] provides visual explana-
tions for any model in the CNN family without needing to go through
architectural modifications or retraining, unlike regular CAM approa-
ches. The CNN layers are well-known for capturing both spatial infor-
mation and high-level semantics. With this foundation in place, the
final CNN layer may have the optimal composition for extracting im-
portant data. Grad-CAM assigns significance ratings to each neuron for
the given target class using the gradient information backpropagated
to the final convolutional layer. An overview of Grad-CAM is shown in
Fig. 18. This model considers: (i) an input image, and (ii) a target class.
To get a raw score for a particular category, the input image is passed
via a CNN module and uses task-specific calculations. All the gradients
are set equal to zero except for the target class. The non-zero signal
is backpropagated to an interesting features map, these are referred to
as Rectified Convolutional Feature Maps (RCFM) which are combined to
produce the Grad-CAM map of the target class.

Let the Grad-CAM localization map be 
𝐺𝑟𝑎𝑑−𝐶𝐴𝑀 ∈ R𝑏𝑥𝑡 with

𝑏 representing width and 𝑡 representing height for the class . The
class score is defined by  before going through the SoftMax function.
Firstly, the gradient of  is computed with respect to the RCFM 𝑚𝑘;
𝛾𝑘 = 𝜕

𝜕𝑚𝑘
. The computed gradient 𝛾𝑘 is passed to the GAP layer to obtain

the significant weights matrix for the neurons of the last convolutional
layer as follows:

𝑤
𝑘 = 1


∑

𝑝

∑

𝑞
𝛾𝑘(𝑝, 𝑞) =

1


∑

𝑝

∑

𝑞

𝜕
𝜕𝑚𝑘(𝑝, 𝑞)

. (14)

The weight matrix 𝑤
𝑘 is a partial linearization of the DNN that repre-

sents the significance of the 𝑘th feature map for the class . The weight
matrix multiply with the RCFM 𝑚𝑘 and passed to the ReLU layer to
obtain the Grad-CAM map as:


𝐺𝑟𝑎𝑑−𝐶𝐴𝑀 = 𝑅𝑒𝐿𝑈

(

∑

𝑤
𝑘𝑚𝑘

)

. (15)

𝑘
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Fig. 17. The spatial average of each unit’s feature map, from the last possible CL, is generated by the GAP. The final result is generated using a weighted sum of the spatial data.
The discriminative areas, distinct to each class, are highlighted in the CAM.
Fig. 18. The input image and class of interest are fed into the DNN, which then performs task-specific calculations to provide a raw score for the class. Guided backpropagation
is the output of the task-specific network. The Guided backpropagation result is passed to the RCFM in order to calculate the rough Grad-CAM localization, which reflects where
the model must look in order to make specific decisions. Elementwise multiplication of the heatmap of the Grad-CAM with Guided backpropagation produces Guided Grad-CAM,
which is concept-specific and has high resolution.
Guided Backpropagation [248] and deconvolution methods compute
the gradient of the target output with respect to the input as shown in
Fig. 18. However, the backpropagation of ReLU functions is overridden
so that only non-negative gradients are backpropagated. In guided
backpropagation, the ReLU function is applied to the input gradi-
ents, and during deconvolution, the ReLU function is applied to the
output gradients and directly backpropagated. DeconvNet and guided
backpropagation approaches generate imputed versions of the gradient
rather than the true gradient [248].
Guided Grad-CAM is a class-discriminative method and locates target
class areas, however, it lacks the capacity to emphasize fine-grained
features that pixel-space gradient visualization techniques (e.g., De-
convNet [238]) or Guided Backpropagation [248] can provide. When
backpropagating via ReLU layers, Guided Backpropagation illustrates
gradients in relation to the input image, where the negative gradients
are suppressed. This seems to be aimed at capturing pixels that are
sensed by neurons rather than capturing those that inhibit neurons.
Fig. 18 shows how to combine (by means of element-wise multiplica-
tion) both Guided Backpropagation and Grad-CAM visualizations, thus
producing Guided Grad-CAM.
Score-CAM [30] also incorporates gradient information, but a concept
known as Increase of Confidence is used to provide priority for each
activation map. Let  =  (𝑋) be a model that accepts  as an input
image and produces logits  ′. 𝑖 denotes the 𝑖th channel of the
22

𝐿
convolutional layer 𝐿. The contribution of 𝑖
𝐿

to  ′ with 𝑏 as the
baseline image for class category 𝑐 is:

𝐶𝑜𝑛𝑡(𝑖
𝐿

) =  𝑐 ( ⋅H𝑖
𝑙) −  𝑐 (𝑏), (16)

where H𝑖
𝐿

= 𝑠
(

𝑈𝑝
(

𝑖
𝐿

))

. The operator 𝑈𝑝 (.) upsamples 𝑖
𝐿

to the required input size and 𝑠 normalizes each element to [0, 1].
Score-CAM can be represented as:

𝑐
𝑆𝑐𝑜𝑟𝑒𝐶𝐴𝑀 = 𝑅𝑒𝐿𝑈

(

∑

𝑖
𝛽𝑐𝑖 

𝑖
𝐿

)

, (17)

where 𝛽𝑐𝑖 = 𝐶𝑜𝑛𝑡
(

𝑖
𝐿

)

.
Vanilla Gradient. Simonyan et al. [239] named this approach as Image-
Specific Class Saliency, or simply Saliency Maps. In this approach, the loss
function’s gradient is calculated with regard to the input pixels. Many
XAI algorithms generate saliency maps, i.e., heatmaps that emphasize
significant input with the largest impact on the prediction; with hotness
denoting areas that have a significant effect on the model’s ultimate
decision [239]. Accordingly, saliency maps are a means of evaluating
a CNN’s prediction, but they have been criticized for concentrating
on the input and failing to describe how the model actually makes
its decision. The first technique offered by Zeiler et al. [238] used
DeconvNet. A DeconvNet reconstructs the input from the activation of
an intermediate layer of the network to distinguish the features (pixels)

in the input that the particular intermediate layer of the network was



Information Fusion 99 (2023) 101805S. Ali et al.
looking for. The second, and simplest, method of obtaining a saliency
map was proposed by Simonyan et al. [239]. This method computes
the gradients of logits with respect to the network’s input using the
backpropagation technique. It highlights pixels of the input image
via backpropagation based on the quantity of the gradient received,
indicating the pixel contribution to the final relevance score. A guided
backpropagation algorithm was presented as a third method of ob-
taining saliency maps by combining both techniques [248]. Instead of
masking the importance signal based on negative input signal values
in the forward pass or using negative reconstruction signal values
(deconvolution), the authors mask the signal according to whether
each of these situations occurs. This method excels at obtaining high-
resolution, precise saliency maps. As the idea of the gradient is present
in all NNs, this technique may be used with any ANN. As a result, this
approach might be called a model-agnostic interpretation approach.

The formal definition of a saliency map is that an image  has a class
 with  (.) being the class relevance score, then the pixels of image
, based on the score function for a linear model, can be represented
as:

 () = 𝑏 + 𝑤, (18)

where 𝑤 denotes the network’s weight vector and 𝑏 denotes its bias.
The significance of the pixels is determined by the magnitude of 𝑤. In
the case of a DNN, however, the scoring function is quite nonlinear. As
a result, the above equation may be expressed as:

 () ≈ 𝑏 + 𝑤, (19)

where 𝑤 can be derived for an image 0:

𝑤 =
𝜕
𝜕

|

|

|0
. (20)

As non-linear units like ReLU return unsigned values, there is uncer-
tainty about how the gradient will be calculated in the backward pass.
The ReLU function is defined as 𝐿+1(𝑙) = max(0,𝐿) from layer 𝐿
to layer 𝐿−1. The following is how the uncertainty is resolved:
𝜕
𝜕𝐿

= 𝜕
𝜕𝐿+1

⋅ (𝐿 > 0). (21)

Rearranging the components of 𝑤 yields the saliency or sensitivity
or pixel attribution map  ∈ R𝑚𝑥𝑛. The number of components in
𝑤 equals the number of pixels for the grey-scale image . Thus, the
saliency map is defined as:

𝑖𝑗 =
|

|

|

𝑤𝑖𝑑𝑥(𝑖,𝑗)
|

|

|

, (22)

where 𝑖𝑑𝑥(𝑖, 𝑗) represents the component of 𝑤 that corresponds to the
𝑖th row and 𝑗th column. The saliency map for an RGB image  is
derived as:

𝑖𝑗 = max
𝑐ℎ

|

|

|

𝑤𝑖𝑑𝑥(𝑖,𝑗,𝑐ℎ)
|

|

|

, (23)

where 𝑐ℎ denotes the color channel of image . To create a single
saliency map, the equation takes the maximum value from all the color
channels.
SmoothGrad (SmGrad). In practice, sensitivity maps tend to be very
noisy as the maps are based on the gradients of the class score [239,
260]. This noise is due to the sharp fluctuations of the partial deriva-
tives. Moreover, sensitivity maps do not show correlations between
the highlighted pixels and the input label over the entire region, as
shown in Fig. 19. It is possible to smooth the gradient using a Gaussian
kernel, instead of visualizing the gradient values directly. The gradients
are smoothed by adding several forms of Gaussian noise to the input
image before averaging the sensitivity maps. As a result, SmGrad has
the following definition [233]:

̂𝑠𝑚() =
1
𝑛

𝑛
∑

1
𝑛

(

 + (0, 𝜎2)
)

, (24)

where the number of instances is 𝑛, the input image is , and  is the
Gaussian noise with 𝜎 as the standard deviation.
23
Fig. 19. A noisy sensitivity map based on the gradient from an image classification
network. Partial derivatives with greater absolute values are represented by brighter
pixels.

Gradient-based sensitivity maps may be sharpened using two types
of smoothing, according to previous studies reported in [233]. First,
it seems that averaging maps that were created from numerous small
perturbations of an input image have a substantial smoothing impact.
Second, if the training data has been skewed with random noise, then
the impact may be amplified even further.
Integrated Gradient. According to Sundarajan et al. [252] most grad-
ient-based techniques miss key propositions that are desirable at-
tributes. Intuitively, we understand the Integrated Gradient (IG) ap-
proach as combining Gradient Implementation Invariance (GII) with
the sensitivity of LRP or DeepLift techniques. Let  be a DNN,  be
an input image, and ′ be the baseline image, which could represent
a black image for image classification networks, or could be a vector
of zeros for word embedding in text prediction models. The gradients
along the inputs, which are on a straight line between the baseline
image ′ and the input image  are grouped together using an IG
technique to suppress noise. As a result, the IGs along the 𝑘th dimension
are defined as:

𝐼𝐺𝑘() = (𝑘 − ′
𝑘) ∗ ∫

1

𝛽=0

𝜕
(

′ + 𝛽( − ′)
)

𝜕𝑘
𝑑𝛽. (25)

Notice that, a Riemann sum or Gauss Legendre quadrature rule can be
used to approximate this integral.
1D. DeepLIFT [234] is the last family of attribution methods that
assign significance ratings to input variables, in a similar way to pixel-
wise decomposition. The fundamental premise in DeepLIFT is that it
frames the topic of significance in terms of deviations from a reference
condition ̂, which is selected by the user. At the layer 𝐿, the
contributions can be specified as follows:

𝐿
𝑖 () = 𝑖() − 𝑖(̂), (26)

where 𝑖 is the interested neuron in the NN. For all others, 𝐿
𝑖 ()

is set to zero. The reference is often set to zero, just as it is in LRP.
Running a forward pass determines all of the values in ̂𝑖𝑗 for each
hidden layer 𝐿. The RS may be defined as follows:

𝐿
𝑖 () =

∑

𝑖

𝑖𝑗 − ̂𝑖𝑗
∑

𝑗 𝑖𝑗 −
∑

𝑗 ̂𝑖𝑗
𝐿+1

𝑖 , (27)

when a reference ̂𝑖𝑗 is fed to the NN, the weighted activation is denoted
as ̂𝑖𝑗 = 𝑤𝐿+1,𝐿

𝑖𝑗 ̂𝐿
𝑖 for a neuron 𝑖 with respect to neuron 𝑗. This rule

was included as part of the method’s original development.

8.2. Visualization methods

Understanding an AI model, by visualizing its representations to
investigate the underlying patterns is a natural concept. Visualization
methods are most often used with supervised learning models. Various
visualization approaches will be covered in the following paragraphs
and their strengths and weaknesses are summarized in Table 8.
2A. Partial Dependence Plot (PDP) [237]. When an individual feature
is changed throughout its range, the PDP displays the black-box’s
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Table 8
An overview of visualization-based XAI methods, highlighting advantages and disadvantages.

Method Ref. Advantages Disadvantages Concept

PDP [237] (i) Provides a clear interpretation; (ii) Intuitive, easy to
implement, and shows global effects.

(i) Issue with the assumption of independence; (ii)
Heterogeneous effects are hidden.

Global technique
Feature visualization

ICE [241] (i) Potential to reveal heterogeneous relationships; (ii)
Fitted values vary over a wide range of relevant factors;
(iii) Reveals the potential locations and magnitude of
variation.

(i) Shows a single feature at a time; (ii) Not easy to plot
the average results; (iii) Independence assumption for a
single feature.

Global technique
Feature visualization

ALE [228] (i) Able to compute the plots more quickly; (ii) The
interpretation is extremely apparent; (iii) Unbiased plots.

(i) Interpretation is more challenging with closely
correlated features; (ii) Unsteady plots.

Global technique
Fig. 20. (a) The average projected risk, or probability of a certain event, is shown
by the black curve. (b) The line plot (top) and partial dependency bar (middle) are
shown. The color represents the outcome’s predicted risk. At the bottom of the figure
is a color map.
Source: Taken from [139].

average prediction. Partial dependency is a concept that attempts to
demonstrate how a single feature influences the global model’s predic-
tion. In PDPs, the connection between an individual feature and the
target is represented. As seen in Fig. 20(a), for the original data, the
red line depicts the average projected risk. The mean of the observed
values is represented by a vertical line, and the distribution of observed
values is represented by a histogram underneath the figure. A range
of one standard deviation around the mean values is shown by dotted
lines. Krause et al. [139] visualized how features influence a prediction
using a PDP extension. A partial dependency bar has been added to the
PDP, this displays a colored depiction of the prediction value across the
range of input values that a feature may take, as shown in Fig. 20(b).
For regression, the partial dependency function is:

̂𝑓𝑥 (𝑥 ) = E𝑥

[

𝑓 (𝑥 , 𝑥)
]

= ∫ 𝑓 (𝑥 , 𝑥)𝑑P(𝑥), (28)

where the set of 𝑥 features and other features 𝑥 are utilized in model
𝑓 , such that 𝑥 , 𝑥 ⊂  , the whole feature set. The feature set 
contains one or two features for which the PDP is plotted to analyze
their impact on the prediction.

A method for the average calculation of the training data, commonly
known as the Monte Carlo technique, is used to estimate the partial
function ̂𝑓𝑥 :

̂𝑓𝑥 (𝑥 ) =
1
𝑛

𝑛
∑

𝑖=1
𝑓 (𝑥 , 𝑥

(𝑖)
 ), (29)

where the total number of samples in the dataset is 𝑛, and 𝑥(𝑖) represents
the actual feature values which are not included.
2B. Individual Conditional Expectations (ICE). PDPs are extended to
include ICE plots [241]. These plots show the connection between the
target and a single feature, rather than the whole model. The difference
between a feature’s individual behavior and its average behavior may
be seen when ICE plots and PDPs are displayed together in the same
graph, as shown in Fig. 21. The centered and derivative ICE plots are
two further extensions of the standard ICE plots that may be used to
24
Fig. 21. The figure shows income prediction (target variable on Y-axis) based on the
employee’s age, capital loss, hours per week, and capital gain. The red line shows
the average behavior of all features (PDP), and the gray lines show the behavior
of individual features (ICE). The selected features and response variables are also
presented in a scatter plot (circle markers).

identify heterogeneity and to investigate the existence of interacting
effects [237]. In practice, ICE is defined as follows: for each example,
be 𝑥 ∈

{

(𝑥(𝑖) , 𝑥(𝑖) )
}𝑁

𝑖=1
, the ICE plot 𝑓 (𝑖)

 is drawn against 𝑥(𝑖) , while 𝑥(𝑖)
remains the same.
2C. Accumulated Local Effects (ALE) is a novel technique for vi-
sualization methods that does not rely on erroneous extrapolation
with associated predictors [228]. The changes in the predictions are
averaged and accumulated over the grid in graphs. It is defined as
follows:

𝑓𝑥𝑝 = ∫ E𝑥||𝑥𝑝

[

𝑓 (𝑥𝑝, 𝑥)|𝑥𝑝 = 𝑥
]

𝑑𝑥𝑝 − 𝑐𝑜𝑛𝑠𝑡,

= ∫

(

∫ 𝑓 (𝑥 , 𝑥)𝑑P(𝑥||𝑥 = 𝑥𝑝)
)

𝑑𝑥𝑝 − 𝑐𝑜𝑛𝑠𝑡.

The formula shows three differences from PDP [149]. First, averaging
prediction changes rather than the predictions themselves. Second,
determining how a feature affects a prediction by adding up the local
partial derivatives across the range of features in set  . Third, subtract-
ing a constant from the result such that the ALE plot is centered, i.e., the
average effect across the data is 0.

8.3. Example-based explanation methods

Example-based explanations are also commonly known as case-
based explanations. We have found in the literature the following meth-
ods for generating this kind of explanation: prototypes and criticisms,
counterfactuals, and adversarial examples. In the upcoming paragraphs,
these techniques are discussed, and their respective advantages and
drawbacks are outlined in Table 9.
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Table 9
A comprehensive overview of example-based XAI methods, highlighting their advantages and disadvantages.

Method Advantages Disadvantages Concept

Prototype and
Criticisms [158]

Provides intuitive and interpretable
explanations to end-users.

May fail to identify important features
due to sampling of prototypes.

Local technique

Can help improve model accuracy and
applied to various types of models

Prone to high variance and bias.

Counterfactuals
[261]

Provides specific and actionable
explanations for individual instances.

Computationally expensive and may not
scale well with high-dimensional data.

Generation-based
method

Helps identify the causal effect of input
features.

Generates explanations that may not be
intuitive to end-users.

Adversarial
Example [149]

Can provide insights into the robustness
of a model against malicious attacks.

May not provide meaningful insights
into model behavior.

Attack-based
method

Helps identify model vulnerabilities and
improve adversarial training.

Generated adversarial examples may
not be representative of real-world
data.
Fig. 22. Prototypes and Criticisms for two variables, age and hours per week, from
the UCI Income dataset presented with their data distribution.

3A. Prototype and Criticisms. Prototypes are single instances with the
capability to represent the entire dataset. A criticism is a data instance
that is not included in the collection of prototypes because it is distinct
enough for representing complimentary insights [262]. For example,
in Fig. 22, the small black circles represent data points, prototypes (in
red) are manually selected to encompass the data distribution’s centers,
while criticisms are green diamonds associated with clusters different
from those of prototypes.

There is a number of ways for finding prototypes in data. K-
medoids [263], a clustering method similar to k-means, is one of the
oldest and most popular among them. However, most of these methods
provide only prototypes without criticisms. Accordingly, one of the
methods recently introduced by Kim et al. [158], called Maximum
Mean Discrepancy (MMD-critic), has gained popularity. This method
integrates prototypes and criticisms into a single framework. MMD-
critic compares the data distribution with the distribution of selected
prototypes. Firstly, the user defines the number of prototypes and
criticisms to be identified. Then, prototypes and criticisms are dis-
covered using a greedy search technique. Criticisms are selected where
the distribution of prototypes and the distribution of data varies. For
example, MMD-critic is applied to the ImageNet mini dataset to learn
different bird breeds as prototypes along with criticisms (see Fig. 23).

The following are the fundamental elements in the MMD-critic
method: (i) a kernel function to analyze the data densities that determine
the prototypes; (ii) a witness function to measure how the two distribu-
tions are different at specific data points in order to identify criticisms;
and (iii) a greedy search strategy for prototype and criticism selection.
The equation below is used to calculate the squared MMD measure:

2 = 1
2

𝑝
∑

𝐤(𝑧𝑖, 𝑧𝑗 ) −
2
𝑝𝑛

𝑝,𝑛
∑

𝐤(𝑧𝑖, 𝑥𝑗 )
25

𝑝 𝑖,𝑗=1 𝑖,𝑗=1
Fig. 23. The MMD-critic approach learned two bird breeds from the ImageNet mini
dataset.

+ 1
𝑛2

𝑛
∑

𝑖,𝑗=1
𝐤(𝑥𝑖, 𝑥𝑗 ).

The kernel function is defined as 𝐤, 𝑝 is the number of prototypes 𝑧, and
𝑛 is the number of data points 𝑥. The 2 measure is combined with
the witness function to find criticisms. The 𝑤𝑖𝑡𝑛𝑒𝑠𝑠 estimator is defined
as follows:

𝑤𝑖𝑡𝑛𝑒𝑠𝑠(𝑥) = 1
𝑛

𝑛
∑

𝑖=1
𝐤(𝑥, 𝑥𝑖) −

1
𝑝

𝑝
∑

𝑗=1
𝐤(𝑥, 𝑧𝑗 ). (30)

There are three ways in which the MMD-critic may improve inter-
pretability: (i) assist in a better understanding of data distributions;
(ii) construct understandable models; and (iii) make black-box models
understandable [257].

In this context, an interpretable model is defined as:

𝑓 (𝑥) = argmax
𝑖∈

𝐤(𝑥, 𝑥𝑖),

where the prototype 𝑖 is selected from the set  that tends to the highest
value of the kernel function. The explanation of the model prediction
is the prototype itself.
3B. Counterfactuals are ‘‘contrary-to-fact’’ examples [264]. Unlike
prototypes, counterfactuals do not need to match with actual training
set instances; instead, they may be synthetically generated. Wachter
et al. [261] introduced the idea of counterfactual explanations for a
model’s decision. The authors defined a loss function that takes an
instance of interest 𝑥, a counterfactual 𝑥′, and the desired outcome 𝑦′.
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The loss function is optimized to get the best counterfactual explanation
as follows:

(𝑥, 𝑥′, 𝑦′, 𝜆) = 𝜆.
(

𝑓 (𝑥′) − 𝑦′
)2

+ 𝑑(𝑥, 𝑥′) (31)

here the factor 𝜆 balances between the first and second terms. When
is high, then the priority are counterfactuals 𝑥′ with predictions

lose to the desired outcome 𝑦′. On the contrary, when 𝜆 is small, the
ounterfactuals 𝑥′ are very close to 𝑥. The first term in  represents
he quadratic distance between the model prediction for 𝑥′ and 𝑦′. The
econd term represents the Manhattan distance 𝑑 between 𝑥 and 𝑥′,
hich is defined as:

(𝑥, 𝑥′) =
𝑛
∑

𝑗=1

|𝑥𝑗 − 𝑥′𝑗 |

𝑀𝐴𝐷𝑗
(32)

here 𝑀𝐴𝐷 is the Median Absolute Deviation of feature 𝑗 over the
hole dataset, which is defined as:

𝐴𝐷𝑗 = 𝑚𝑒𝑑𝑖𝑎𝑛
𝑖∈{1,2,…,𝑛}

|

|

|

𝑥𝑖,𝑗 − 𝑚𝑒𝑑𝑖𝑎𝑛
𝑙∈{1,2,…,𝑛}

(𝑥𝑙,𝑗 )
|

|

|

. (33)

Counterfactual explanations provide the minimal circumstances that
would have led to an alternate conclusion. Dandl et al. [265] published
the Multi-Objective Counterfactuals (MOC) approach that enables more
detailed post-hoc explainability. To do this, the authors simultaneously
minimize four objective losses (O1,O2,O3,O4):

(𝑥, 𝑥′, 𝑦′,X𝑜𝑏𝑠) =
(

O1(𝑓 (𝑥′), 𝑦′),O2(𝑥, 𝑥′),

O3(𝑥, 𝑥′),O4(𝑥′,X𝑜𝑏𝑠)
) (34)

To know in detail, the meaning of each loss function and how they are
calculated, the interested readers are kindly referred to [265].

Synthetically generated counterfactuals may not be realistic and
therefore yield misleading explanations and jeopardize trustworthiness.
To cope with this problem, Suffian et al. [266] proposed the generation
of counterfactual explanations with user feedback. Accordingly, the
user can set preferences and constraints (e.g., protected features, varia-
tion ranges, etc.) with the aim of enhancing the automated explanations
which are better aligned with user expectations. Finally, in addition
to numerical counterfactuals, it is also possible to generate linguistic
counterfactuals as proposed by Stepin et al. [267]. Thanks to the ability
of fuzzy sets and systems to compute with words and information
granules, the generated counterfactuals can be verbalized in natural
language.
3C. Adversarial Examples can be used to fool DNNs [149], but they
can be also used for generating analogical and contrastive explanations.
On the one hand, analogical explanations are supported by analogical
reasoning, i.e., by searching for two explanatory evidences coming from
familiar and unfamiliar domains [268]. On the other hand, contrastive
explanations are supported by contrastive reasoning, i.e., by searching
for two competing or opposite explanatory evidence [72].

8.4. Game theory methods

In 1953, Lloyd Shapley wanted to know how much each player
in a coalition game contributes [242]. Afterward, researchers in the
field of ML used this approach to investigate what is the link between
interpretability and ML predictions. In this context, the ‘‘game’’ is a
single instance of a dataset’s prediction in a task. The ‘‘gain’’ is the
difference between the actual prediction for the given prediction and
the average of predictions for all instances in the dataset. The ‘‘players’’
are the instance’s feature values who work together to obtain the gain,
i.e., the Shapely value of a feature tells us how much it contributes to
a particular prediction outcome.
4A. Shapley Values. The question is how each attribute influences
a certain data point’s prediction. Here is an example of how a linear
model can do prediction for a given dataset:

̂ (𝑥) = 𝑤 +𝑤 𝑥 +𝑤 𝑥 +⋯ +𝑤 𝑥 , (35)
26
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Table 10
Game theory-based XAI methods, together with their advantages and disadvantages.

Method
(Ref.)

Advantages Disadvantages Concept

Shapley
Values
[242]

(i) Fairly Distributed;
(ii) Solid theoretical
foundation; (iii)
Contrastive
Explanations.

(i) High computing time and
misinterpretation; (ii) Cannot
be used for sparse
explanations; (iii) Suffers from
the inclusion of unrealistic
data instances [149].

Coalitional
Game Theory

SHAP
[141]

(i) Computes many
Shapley values; (ii) All
Shapley values
advantages connect to
LIME; (iii) Fast
implementation for
tree-based models.

TreeSHAP produces unintuitive
feature attributions; (ii) Does
not provide causality. A
problem of misinterpretation;
(iii) KernelSHAP is slow and
ignores feature dependence
(TreeSHAP solves (it) [149]

Optimal
Shapley values
Game Theory

where 𝑥𝑖 is the 𝑖th instance/feature value from which the contributions
are calculated. The weight for feature 𝑖 is 𝑤𝑖 for a total number of
features 𝑛. The 𝑖th feature contribution, 𝛷𝑖 can be computed as:

𝛷(̂ ) = 𝑤𝑖𝑥𝑖 − E(𝑤𝑖𝑖) = 𝑤𝑖𝑥𝑖 −𝑤𝑖E(𝑥𝑖), (36)

here E(𝑤𝑖𝑖) is the estimated mean effect for feature 𝑖. The contribu-
ion is equal to the difference between the feature and the mean effect.

hen all feature contributions for one instance are combined together,
t results in:
𝑛

𝑖=1
𝛷(̂ ) =

𝑛
∑

𝑖=1

(

𝑤𝑖𝑥𝑖 − E(𝑤𝑖𝑥𝑖)
)

=
(

𝑤0 +
𝑛
∑

𝑖=1
𝑤𝑖𝑥𝑖

)

−
(

𝑤0 +
𝑛
∑

𝑖=1
E(𝑤𝑖𝑥𝑖)

)

= ̂ (𝑥) − E
(

̂ (𝑥)
)

.

(37)

he weighted, total contribution of all potential feature values is the
hapley value. A value function val of players in subset  is used to
efine the Shapley value as:

𝑖(𝑣𝑎𝑙) =
∑

⊆{𝑥1 ,𝑥2 ,…,𝑥𝑛}{𝑥𝑖}

||!(𝑝 − || − 1)!
𝑛!

(

𝑣𝑎𝑙( ∪ {𝑥𝑖}) − 𝑣𝑎𝑙()
)

.
(38)

B. Shapley Additive Explanation (SHAP) suggested by [141], is a
nified way to understand the output of any ML model. SHAP is a
echnique for explaining individual predictions using the coalitional
ame’s best Shapley values [141]. A player can be represented by a
ingle feature value, such as in tabular data. A player can also be
ade up of a collection of feature values. For instance, pixels can be

rouped into superpixels, and the information to make the prediction
hat describes the image is spread among them. The Shapley value
xplanation is an Additive Feature Attribution approach, a linear model,
hich is a step forward that SHAP brings to the table. According to
HAP, the explanation is given as follows:

(̂) = 𝛷0 +

∑

𝑖=1
𝛷𝑖̂𝑖, (39)

here 𝑔 stands for the explanatory model, the feature attribution for
th feature is 𝛷𝑖 ∈ R, the maximum size of the coalition is , the

coalition vector (the simplified features) is denoted by  ∈ {0, 1}.
Where 1 in the coalition vector indicates that the relevant feature value
is ‘‘present’’, whereas 0 indicates that the feature is ‘‘missing’’. SHAP
has properties such as local accuracy, missingness, and consistency
in addition to the Shapley value properties of efficiency, symmetry,
dummy (Shapley value equal to 0), and additivity [149]. Table 10
compares Shapley values and SHAP techniques.

Moreover, KernelSHAP, an alternative kernel-based estimate strat-
egy based on Shapley values inspired by local surrogate models, and
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Table 11
A family of Rule Extraction Systems (RULES). SETAV — SET of Attributes and Values, PRSET — Partial Rules SET, SRI — Scalable Rule Induction Algorithm, IS — Immune System
inspired, TL — Transfer Learning, IT — Incremental Transfer, REX — Rule Extractor.

RULES Reference Upgrade features

RULES-1 [269] Extracting IF-THEN rule by considering all examples.
RULES-2 [270] RULES-1 have been upgraded to provide individual example analysis.
RULES-3 [271] New version of RULES-2 with more general features.
RULES-3+ [272] RULES-3 has been extended to include two new features: (1) SETAV and (2) PRSET.
RULES-4 [271] The first incremental learning system that updates and refines previously learned information in preparation for new examples.
RULES-5 [273] The first version of RULES to deal with continuous attributes without discretizing them.
RULES-5+ [274] A novel rule space representation method that improves performance.
RULES-6 [275] It is an expansion of RULES-3 plus that makes a scalable version of the RULES family.
RULES-7 [276] The RULES-6 extension that focuses on one seed at a time.
RULES-8 [277] A new version that takes into account online continuous attributes.
RULES-F [278] RULES-5 are extended to accommodate both continuous characteristics and continuous classes.
RULES-F+ [274] RULES-F included a new rule space representation technique.
RULES-SRI [279] Extension version of RULES-6 to enhance the scalability.
RULES-IS [280] An immune system-inspired incremental algorithm.
RULES-3EXT [281] An enhanced version of RULES-3.
RULES-TL [282] Another scalable method that has been suggested to improve speed and performance while also including more intelligent features.
RULES-IT [283] An incremental version based on the RULES-TL for dealing with big and incomplete problems incrementally.
REX-1 [284] RULES-3, RULES-3+, and RULES-4 were improved to speed up the process and create simpler models with fewer rules.
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TreeSHAP, an efficient estimation strategy for tree-based models, were
proposed by the SHAP authors. SHAP values can be determined for any
tree-based model, in contrast to other approaches that rely on surrogate
models such as linear regression or logistic regression. Many global
interpretation techniques based on aggregations of Shapley values are
also included in the family of SHAP-based techniques.

The following is a synopsis of SHAP in terms of whether the ap-
proach is based on local or global interpretations.

• Local Interpretability: SHAP values are assigned to each observa-
tion, as a result, their transparency is substantially improved. This
allows us to see why a case is predicted in terms of the predictors’
contributions. Due to the local interpretability, the impacts of the
components may be localized and compared.

• Global Interpretability: The combined SHAP values can show how
much each predictor contributes to the target variable, either
favorably or negatively. This is similar to the variable importance
plot, except it can also display if each variable has a positive or
negative connection with the target.

8.5. Knowledge extraction methods

It is challenging to describe how black-box ML models behave in-
ternally. For example, ANN algorithms may change the filter/kernel in
the hidden layer, which can lead to intriguing internal representations
of the whole network. The task of extracting explanations from an ANN
implies retrieving the knowledge learned by an individual layer during
training and encoding it in a human-understandable format. Several
publications in the literature (see Tables 11 and 12) offer methods for
extracting information from black-box models. These methods depend
primarily on two techniques: Rule Extraction and Model Distillation.
5A. Rule Extraction According to Mark Craven [178], the rule extrac-
tion process produces an understandable but rough approximation of
a network’s predicted behavior from the training data and the trained
ANN.

There are different types of rule extraction techniques, depending
on the type of rule under consideration:

• IF-THEN Rule: It is the most generic form of a simple and com-
prehensible conditional statement:

IF 𝑥 ∈  THEN  = 𝑦(𝑖) (40)

The output will be tagged to a certain class if the condition is true,
i.e., 𝑥 is a member of  . The expressive power of a rule extraction
algorithm is directly related to the if... then...else... rule structure.
27
For example,  is medium if  is low and  is high, where
low, medium, and high are fuzzy sets with associated membership
functions. The interested reader is referred to [285] for further
details on how to deal properly with fuzzy rules.

• M-of-N rules: A Boolean expression is used to look for rules with
this strategy. When  of  sets are fulfilled, the expression is
completed. This strategy is both effective and universal [286].
M-of-N rules are written as IF  of {} THEN .

Thus, two main categories have been chosen to represent the ex-
racted rules: (i) Propositional/Boolean logic and (ii) Non-conventional
ogic. Notice that, rule extraction facilitates gaining insight into ML
odels. Rule extraction techniques include, among others, fuzzy mod-

ling [287], genetic programming [288], boolean rule extraction [289],
nd the decomposition approach [290]. In addition, Andrew et al. [39]
nd Gopi [291] suggested multidimensional modalities for extracting
ules.

Regarding the relation between the extracted rule and the trained
N architecture, there are three distinct types of methods: (a) Decom-

positional methods operate on the neuron level rather than over the
whole NN design; (b) Pedagogical methods operate disregarding the
NN architectural design; and (c) Eclectic methods are a combination of
decompositional and pedagogical methods.
Decompositional Methods operate by breaking down a network into
its constituent neurons. The results from each neuron are then com-
bined to represent the whole network. After decomposing an ANN,
it may be scrutinized and translated into rules that are viewed as
composing a transparent model [39,297]. A fundamental requirement
for rule extraction methods that use this approach is that the extracted
output from each neuron must be in the form of a consequential rule,
i.e., a binary result (yes/1 or no/0). Thus, each hidden neuron can be
thought of as a step function or a Boolean rule, this reduces the rule
extraction problem to determining the instances in which the rule is
true.
Pedagogical Methods consider rule extraction as a learning problem
in which the learning task pay attention to the network parameters
and input features [297]. Therefore, pedagogical methods are aimed at
extracting rules that directly relate inputs to outputs. These methods
are often employed in combination with a symbolic learning algo-
rithm. The fundamental concept is to utilize the trained ANN to create
instances for the learning algorithm. These methods include, among
others, Valid Interval Analysis (VIA), reverse engineering, and sampling
methods [305].
Eclectic methods include aspects of both decompositional and peda-
gogical rule extraction methods. On the one hand, a decompositional

method is usually more transparent than a pedagogical one, but they
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Table 12
Rule-based methods for knowledge extraction from black-box models.

Techniques Type of ANN Method Rule extraction approach Drawback

DIFACON-miner [292] MLP Decompositional IF-THEN It is not an application to DNN.
CRED [293] MLP Decompositional Decision Tree Discretization is not used in this method and may not apply directly to DNN.
FERNN [294] MLP Decompositional M-of-N split, IF-THEN The relevance of DNN is not addressed.
KT [295] MLP Decompositional IF-THEN DNNs are ignored in the analysis.
Tsukimoto’s algorithm [296] MLP & RNN Decompositional IF-THEN This method has polynomial computational complexity.
TREPAN [297] MLP Pedagogical M-of-N split, Decision Tree The hidden layer in NN is the only one.
HYPINV [298] MLP Pedagogical Hyperplane Rule DNN is not being considered.
BIO-RE [299] MLP Pedagogical Binary Rule A shallow MLP is used to test the algorithm.
KDRuleEX [300] MLP Pedagogical Decision Tree DNN is not being considered, and the design of ANN is not disclosed.
RxTEN [301] MLP Pedagogical IF-THEN a traditional feedforward neural network is employed.
ANN-DT [203] MLP Pedagogical Binary and Decision Tree –
RX [302] MLP Eclectic IF-THEN A shallow MLP is used to test the algorithm.
KAA [303] MLP Eclectic IF-THEN –
DeepRED [304] DNN Decompositional IF-THEN –

KAA: Kahramanli and Allahverdi’s Algorithm.
do operate in layers. As a consequence, decompositional methods may
be time-consuming and laborious. On the other hand, the pedagogical
methods outperform the decompositional ones in terms of computing
burden and execution time [306]. In terms of ANN architecture, ped-
agogical methods also offer the benefit of flexibility. Techniques that
use knowledge of the trained ANN’s internal architecture and weight
vectors to supplement a symbolic learning method are classified as
eclectic methods [307].
5B. Model Distillation is another approach that comes under the
knowledge extraction category. Distillation implies transferring infor-
mation (dark knowledge) from a teacher network (e.g., a DNN) to a
student network (e.g., a shallow NN) via model compression [308,
309]. Model compression was first suggested to decrease a model’s
runtime computing cost, but it has subsequently been used to improve
explainability. Tan et al. [310] explored how to translate complicated
models into interpretable ones via model distillation. Che et al. [311]
proposed Interpretable Mimic Learning as a method for learning pheno-
ype features that are interpretable for generating robust predictions
hile imitating the performance of black-box DL models. DarkSight,
visualization technique for understanding the predictions of black-

ox models on datasets inspired by the concept of dark knowledge,
as proposed in [312]. This approach integrates concepts from DNN
isualization, knowledge distillation, and dimension reduction. For
urther information interested scholars may look at [310,313].

.6. Neural methods

This section concentrates on neural network interpretation tech-
iques. These techniques explain specific predictions, simplify neural
etworks, or visualize the features and concepts that a neural network
as learned. Table 13 summarizes the strengths and weaknesses of the
ost relevant techniques under consideration.
A. Influence Methods. By altering the input or internal elements
nd analyzing which ones (and how much) change model performance,
hese methods assess the significance of a feature [73]. Then, ML
odels can be debugged, while their behavior and prediction explana-

ions can be improved by finding influential training examples. There
re three different techniques in the literature for determining the
ignificance of an input variable: (i) feature importance, (ii) Layer-wise
elevance Propagation (LRP), and (iii) Sensitivity Analysis (SA).
eature Importance. A data instance with a significant impact on
he trained model is an important feature. When a model is retrained
ith that specific instance removed from the training data, the model
arameters or predictions vary to a large extent, indicating how im-
ortant that instance is. In this way it is possible to assign a degree
f significant value to each feature, this is especially useful when the
elected instance has a significant impact on model performance. The
ignificance value of an instance for the goal 𝑦 determines whether it
as an influence on the trained model. A useful example of the LR
28

odel may be seen in Fig. 24.
Table 13
Neural-based XAI methods, their advantages and disadvantages.

Method
(Ref.)

Advantages Disadvantages Concept

SA
[232]

(i) Provides unique
solution, training free
process, and fast
computation [245]; (ii)
Identifies weak and
prominent features.

(i) Inconsistent procedure; (ii)
Generates noisy explanation
maps.

Input
alteration

LRP
[236]

(i) Scalable and
explainable to
complicated DNNs; (ii)
Calculates the weights
for each neuron to
improve
interpretability.

(i) Usable with ReLU
activation; (ii) Compatible with
backpropagation networks.

Propagation
rules

TCAV
[230]

(i) Provides
human-interpretable
explanation of any
neural network; (ii)
Works on high-level
features vector.

(i) Reduced effectiveness with
strong correlations in the data;
(ii) Inappropriate with a
random selection of input
concepts [27].

Concept
method

Feature importance is calculated using the change in the model’s
error seen in the feature permutation process. As the model depends
on features for its prediction, a feature is considered important if
rearranging its values raises the model’s error. A feature is irrelevant
if rearranging its values has no effect on the model’s error since the
feature was disregarded for prediction in the input instance. For exam-
ple, Lei et al. [314] proposed Leave-One-Covariate-Out (LOCO) inference
that uses local feature importance. Fisher et al. [315] suggested Model
Class Reliance (MCR) as a model-agnostic variant of feature significance
based on this approach. The MCR algorithm has the following steps for
finding feature importance:

1. Input - A model 𝑓 , feature matrix  with target vector 𝑦, and
error function (𝑦, 𝑓 ).

2. Measure the error of the original model using Mean Squared
Error (MSE); 𝑒∗ = 

(

𝑦, 𝑓 ()
)

3. For each feature 𝑖 = 1,… , 𝑝:

• Permute the feature 𝑖, and get the feature matrix 𝑝𝑟𝑒.
• Calculate the permuted error; 𝑒 = 

(

𝑦, 𝑓 (𝑝𝑟𝑒)
)

.

• Estimate the permuted feature importance 𝑖 = 𝑒
𝑒
∗
.

Using Feature Importance on Training or Testing Data? When error
estimates are based on the same training data on which the model
was initially trained, the model error or performance measurements
appear to be much better than they are in reality. Given that feature
importance permutations rely on having accurate model errors, unseen
data must be considered here [257]. Finding the importance of fea-
tures using training data leads us to assume that certain features are
significant for predictions, however, the model may be overfitting, so
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Fig. 24. A linear model was trained on two cases, one with unimportant features and
one without unimportant features. In the instance, without unimportant features, the
slope produced by the model changes significantly in contrast to the instance with
unimportant features.

in practice, these features could be unimportant. Therefore, when it
is necessary to know how much a model relies on each feature for
making predictions, we use the feature importance approach in the
training data. On the other hand, if it is required to know how much
the feature contributes to the performance of the model on unseen
data, we use the feature importance approach in the testing data.
According to our review, there is no study in the literature on the topic
of feature importance based on training vs. test data. To get a deeper
understanding of this area, further research is required.
Layer-wise Relevance Propagation (LRP) [236] has proven to be
widely applicable while performing very well in benchmark experi-
ments [316,317]. The LRP algorithm was suggested as another method
for computing relevance. Starting from a network’s output layer and
backpropagating up to the input layer, LRP redistributes the prediction
functions in their opposite order. Relevance conservation is a key fea-
ture of this redistribution procedure. It presupposes that the classifier,
in its basic form, may be broken into multiple layers of computation.
A typical forward pass is performed on a network, as illustrated in
Fig. 25, and the activations at every layer are recorded. Following that,
using a specific set of rules, a score calculated at the output layer is
backpropagated. To formulate the LRP problem, consider 𝑘 to be the
𝑘th neuron’s relevance, while 𝑗 and 𝑘 are the indices of two neurons in
successive layers. The share of the relevance score, 𝑘 redistributed
to neuron 𝑗, may be defined as 𝑗←𝑘. The following conservation
property must hold:
∑

𝑗
𝑗←𝑘 = 𝑘. (41)

Similarly, the contribution to a neuron’s relevance coming from the
higher layer may be aggregated to produce the relevance in the lower
layer:

𝑗 =
∑

𝑘
𝑗←𝑘. (42)

By combining these two equations, the relevance conservation prop-
erty between two layers may be obtained. Therefore, the sequence of
equalities for the whole network can be written as:
𝑑
∑

𝑖=1
 𝑖 = ⋯ =

∑

𝑗
𝑗 =

∑

𝑘
𝑘 = ⋯ =  (𝑥), (43)

where 𝑥 is the input data, and  (.) is the function that encodes the
concept at the output neuron.
Sensitivity Analysis (SA) is another approach for identifying the most
relevant input features [318,319]. The most important input features
are those with the greatest impact on the output. This approach
has already been used in applications such as mutagenicity predic-
tions [260], medical diagnosis [320], or ecological modeling [321].
29
Fig. 25. LRP: The rationale behind LRP is to decompose a model’s prediction function
into a sum of layer-by-layer relevance values. LRP can be thought of as the Deep Taylor
Decomposition of a prediction when used with ReLU networks. 𝑤𝑛

1→2 denotes a weight
propagating from layer 1 to layer 2 for the 𝑛th neuron. A similar notation may be
applied to  to generate an explanation.

SA is increasingly utilized to explain results of image classification in
specific terms [322,323]. In the context of ML and DL, the effect of
input and/or weight perturbations on the model output is referred to
as its sensitivity [232]. In this approach, data is deliberately perturbed,
and the resulting output from the model is used to check its behavior
and the stability of the model outputs. As showing model stability as
data changes over time improves confidence in ML results, visualizing
the outcomes of SA is considered a model-agnostic explanation method.
SA is defined formally in terms of a relevance score as follows, based
on the local gradient 𝑥 of model  :

 𝑖(𝑥) =
( 𝜕
𝜕𝑥𝑖

)2
. (44)

The above relevance scores are decomposed into the gradient square
norm as follows:
𝑑
∑

𝑖=1
𝑖(𝑥) = ‖∇ (𝑥)‖2. (45)

It is worth noting that SA does not offer an explanation itself, but rather
shows explanation variations. As a result, the goal of SA is rarely to
explain any connections that have been discovered. However, SA is
often used to check for model trustworthiness and stability, as a tool
for identifying or removing irrelevant input features.
6B. Concept Methods. Concerns about bias in ML are valid, and the
stakes are even higher when it comes to AI. The concept-based methods
are introduced in order to make AI more trustworthy and transparent.
Concept Activation Vectors (CAVs) were proposed by Kim et al. [230].
This method provides human-friendly explanations of the internal
states of NNs globally. Consider the model  (.) as a space 𝑚 in the
form of a vector with a basis vector 𝑣𝑚. The vector space ℎ represents
the space of human understanding with a basis vector 𝑣ℎ. Thus, in order
to explain model decisions in a human-friendly way, an explanation
function, 𝑔 ∶ 𝑚 → ℎ, may produce the human-understandable
concepts , as explanations.

A vector with 𝑛 activations can be determined for a particular
dataset in order to express a concept of human interest. Activations
in the layer 𝑛, generated by a concept set instance against random
examples, may be used to find such a vector. CAVs, as shown in
Fig. 26 (gray arrow), are orthogonal to a hyperplane that separates
instances without a concept from instances with a concept in the layer
activations [230]. A positive concept  denotes a vector heading to
a set of concepts of human interest, whereas a negative concept 
denotes that there is no concept of human interest (random inputs).
This approach uses a binary classification task in which a classifier 𝑣𝑛
distinguishes between the layer activation of two sets: 𝑛(𝑥) ∶ 𝑥 ∈ 
and 𝑛(𝑥) ∶ 𝑥 ∈  .

In addition, the use of CAVs for testing AI models is known as Test-
ing CAVs (or just TCAVs for short). TCAV utilizes directional derivatives
to assess the sensitivity of a model,  , in a similar way to gradient-
based methods. The sensitivity of a model is determined by shifting
the input in a direction toward the concept  for a particular layer 𝑛.
Consider for an input 𝑥,  (𝑥) is the gradients logit of layer 𝑛 for class 𝑐,
𝑐
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Fig. 26. The DNN is supplied with a user-defined collection of striped samples and random instances. For the examined class (bird), labeled training data was also provided to
the network. The sensitivity of the network to the concept behind the examined class may be quantified using Concept Activation Vectors (CAVs). CAVs are created by teaching
a linear classifier to discriminate between the activation generated by a concept’s instances and the activations caused by examples at the 𝑚th layer. The vector orthogonal to the
classification border is known as the CAV; 𝑣𝑛 . The directional derivative ,𝑐,𝑛 is used by the Testing CAV to evaluate the conceptual sensitivity of the studied class (bird).
then the conceptual sensitivity ,𝑐,𝑛 of the class 𝑐 to  can be computed
as the directional derivative for a concept vector 𝑣𝑛 :

,𝑐,𝑛 = lim
∈→0

𝑛,𝑐
(

𝑛(𝑥)+ ∈ 𝑣𝑛
)

−𝑛,𝑐
(

𝑛(𝑥)
)

∈
= ∇𝑛,𝑐

(

𝑛(𝑥)
)

⋅ 𝑣𝑛 .
(46)

Moreover, the sensitivity of all classes of inputs can be computed
with TCAV techniques. For the entire dataset 𝑐 with class 𝑐, TCAV
may be defined as:

TCAV,𝑐,𝑛 =
|

|

|

{𝑥 ∈ 𝑐 ∶ ,𝑐,𝑛 > 0}||
|

|𝑐 |
. (47)

The CAV method has been built upon and enhanced further in nu-
merous research articles where techniques such as Automatic Concept-
based Explanations (ACE) [324], Causal Concept Effect (CaCE) [325],
Ground truth CaCE (GT-CaCE) [325], Variational Auto Encoders based
CaCE (VAE-CaCE) [325], and ConceptSHAP [326] have been put for-
ward.

9. Assessment of explanations

After revisiting different methods for dealing with data, models, and
post-hoc explainability in the proposed XAI taxonomy, it is now time to
go deeper with the fourth axis in our proposal. Accordingly, this section
pays attention to the evaluation of explainability.

Furthermore, achieving progress in XAI research that measures the
level of explainability for AI systems has gained importance after
proposals for EU laws regulating AI, and after current standardization
activities, that would transform AI systems breakthroughs into the de
facto regulatory norm [327]. All regulatory actions agree on the need
to assess carefully the goodness of automated explanations.
Desiderata of Explainability: When it comes to delivering an explana-
tion, it is advantageous for a model to have certain desirable properties.
They are defined in terms of explanation methods, individual expla-
nation properties, and human-friendly explanation capabilities. Thus,
Table 14 comprises a list of traits that every explanation should have,
based on our review of the literature. These characteristics may be used
to evaluate and compare various explanation approaches.

In this regard, Robnik et al. [328] specified certain characteris-
tics that are desirable for high-quality explanations. Given that the
recipients of these explanations are humans, analyzing what makes
an explanation human-friendly is important. In addition, Miller [52]
undertook a comprehensive study of explanatory articles in the hu-
manities. The degree to which a model is explainable, along with its
privacy and non-discrimination promises, has a great impact on how
much human users will trust it. In addition, the degree of trust in a
model increases when it is built in accordance with users’ monotonicity
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constraints [332]. Usability is another aspect that raises a model’s level
of confidence [333]. Individuals are more inclined to trust a model
which provides them with information that helps them understand how
it completed its task. In this scenario, an interactive and questionable
explanation is preferable to a printed and static one.

The majority of the existing approaches are built with ill-defined or
very general explainability aims and often lack well-defined context-
specific use cases. As a consequence, methodologies are created without
a thorough grasp of the unique needs of a certain domain and use case,
this results in poor adoption and sub-optimal outcomes. Nonetheless,
it is normal to see one or more assessment settings proposed in pio-
neering publications about XAI approaches, most of which are centered
on explanatory desiderata [231,334]. User evaluation is sometimes
only emulated [29] or even removed entirely from the assessment
process [234]. The value of explanations is significantly influenced
by how valuable these explanations prove to be for end-users in the
decision-making process [87,335]. Therefore, in this study, we consider
human-in-the-loop approaches for evaluating automated explanations.
Accordingly, end-users must be involved in the review process, prefer-
ably in a setting with real tasks and data. Furthermore, measurements
should represent a user’s performance, e.g., the accuracy or speed with
which judgments are made.

It is worth noting that the focus of this section is on XAI assessment
with end-users as the target audience. This is because the human user
is generally the final decision-maker. We pay special attention to end-
users who are in roles of responsibility, such as judges, doctors, or
other domain experts. Key assessment algorithms are categorized based
on their appearance in the literature for XAI systems, as illustrated in
Fig. 27. In addition, Table 15 contains an overview of XAI assessment
methodologies.

9.1. Cognitive psychological measures

In the domain of XAI, explanations aid users in developing a mental
image of how the AI operates. Researchers in the field of HCI keep
into account the mental state of humans to see how well they com-
prehend intelligent technologies in a variety of settings. For instance,
how users comprehend a smart grid system was investigated in [336]
and adjusted to uncertainty in ML in terms of time for predictions
arrival [337]. Cognitive psychology theories may be used to describe a
formal representation of how humans interpret a system. The efficiency
of explanations in conveying a model’s decision-making process may be
verified by looking at the mental state of the human user. Furthermore,
psychology research has also looked at the types [338], structure [89],
and roles of explanations [339] in discovering the fundamental basis
for good explanations in order to improve user comprehension of AI
systems.
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Table 14
Desirable qualities of explanation methods, individual explanations, and human-friendly explanations.

Type Qualities Description

Explanation
Methods

Translucency Expresses how deeply an explanation approach probes the model [328].

Portability Expresses how successfully an approach covers a wide variety of models
[329].

Explanatory Power The number of events that can be explained using the explainability
technique [328].

Algorithmic Complexity The computational complexity of explanation algorithms [329].

Generalizability To increase the utility because of the diversity of model architectures [288].

Individual
Explanations

Fidelity How closely the explanations match the prediction model’s behavior [288].

Consistency To extent various models learned on the same problem give similar
explanations [29].

Accuracy To generalize an explanation of a specific decision to previously unknown
situations [52].

Stability The frequency with which identical explanations are offered for the same
instances [288].

Comprehensibility The readability and length of explanations [288].

Certainty To a model decision’s degree of certainty [330].

Interpretability The ease with which people can comprehend the model and/or the
outcomes [52].

Representativeness How well the explanation depicts the most important aspects of the
explanation.

Human-friendly
Explanations

Explanation using contrastiveness The ability to represent distinct properties between the instance being
explained and a reference point [261].

Specificity Capability of providing particular reasons indicating which explanations are
the key reasons for a prediction [52].

Sociological The social context and intended audience of the model should be considered
while choosing the most applicable explanation [52].

Abnormality Identification of the odd circumstances that might have a substantial
influence on the outcome [29].

Factuality Plausibility and relevant to other examples’ predictions [29].

Fairness The predictions do not include any implicit or explicit bias against targeted
users [52].

Privacy Assurance of the security of sensitive data [288].

Reliability Ensuring that minor input modifications do not have a significant influence
on the model prediction [261].

Causality The identification of cause-and-effect relations between inputs and outputs
in a given model [328,331].
A user’s understanding of AI systems may be investigated by ques-
ioning the related decision-making process. Accordingly, some re-
earchers have looked at how users understand AI agents [340,341]
nd algorithms [342] in order to determine what kind of explanation
s preferred. During the design process for adding explainability to AI
ystems, users’ attention and expectations should also be taken into
ccount [343].

.2. Understandability and satisfaction

When assessing explainability, it is important to consider the users’
nderstanding of and satisfaction with the explanations given. De-
pite the fact that there are implicit ways for measuring user sat-
sfaction [344], a large portion of the research relies on qualitative
ssessments of user satisfaction such as surveys and interviews. For
nstance, Gedikli et al. [345] and Lim et al. [346] assessed distinct
xplanation formats based on user satisfaction ratings.

Researchers have utilized a variety of subjective and objective met-
ics for quantifying understandability and adequacy of sufficiency [52].
or instance, Curran et al. [347] ranked and coded user transcripts
o determine how well users understood the explanations given in a
omputer vision challenge. Participants showed varying degrees of trust
31
in the correctness of the explanations, this was based on the clarity
and understandability of the explanations, despite the fact that they all
came from the same model. According to Lage et al. [348], increasing
the complexity of an explanation decreases satisfaction. The length and
intricacy of explanations have an impact on both understandability and
satisfaction, in addition to accuracy and response time. Confalonieri
et al. [177] measured the perceived understandability of explanations
by users through task performance, namely accuracy and time of re-
sponse, and subjective measures such as confidence in their answers
and explicit understandability provided in a Likert scale.

9.3. Trust and transparency

When the decision-making process in a model is thoroughly under-
stood, the model becomes transparent. Transparency promotes trust
in the model. Trust is an emotive and cognitive component which
determines how a system is perceived, either positively or negatively.
Various types of trust, such as the initial trust of a user as well as the
building of trust through time have been described in the following
ways: (i) Swift trust [382], (ii) Default trust [383], and (iii) Suspicious

trust [384].
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Fig. 27. Relationship among assessment methods for XAI and their desiderata.
Table 15
Summary of assessment methods for XAI.

Methods References

Cognitive Psychological Theories Failure and Output [29,231,337,349,350]

Model understanding [204,230,336,338,340–342,351–353]

Understandability and Satisfaction Understandability [345,346,348,354]

Satisfaction [338,345,346,348,354–360]

Trust and Transparency Trust [361–364]

Transparency [361,365–368]

Assessment by Human-AI Interface Model Performance [29,343,359,369–371]

User Performance [204,343,346,356,372–374]

Computational Assessment Explainer Fidelity [29,231,249,253,375–378]

Model Trustworthiness [141,238,379–381]
Prior information and beliefs have a role in forming the initial
tate of trust; however, trust and confidence may evolve over time
s the system is explored and experienced. Common variables used
o assess and study trust include user knowledge, familiarity, tech-
ical competence, confidence, emotions, beliefs, faith, and personal
ttachments [385,386]. These variables may be quantified by explicitly
uestioning users about their experiences with a system during and
fter usage. For instance, Yin et al. [368] and Nourani et al. [361] found
hat over time, both the declared accuracy of a model and the accuracy
erceived by the user influenced user trust.

In addition, multiple scales can be used to evaluate user percep-
ions of system predictability, dependability, and safety. Cahour and
orzy [364] proposed a thorough trust assessment setup that evaluates
hree ways a system presents itself to users by measuring user trust in
erms of three different trust scales. Another study compared user trust
o explanations for AI decisions in terms of transparency [366]. The
uthors used perceived understandability to assess user trust and found
hat clear explanations may help mitigate the negative consequences
f trust loss. Bussone et al. [363] used a Likert scale and think-
loud to assess user trust in a clinical decision-support system and
iscovered that factual explanations resulted in increased user trust. In
ddition, Stepin et al. [387] used Likert scales to evaluate how humans
ppreciate trustworthiness of automated counterfactual explanations.

.4. Assessment of human–AI interface

One of the main goals in the XAI research field is to assist end-users
32

n becoming more effective in the use of AI decision-support systems.
As a result, the human-AI interface can be judged by the performance
of the human in the given task. For instance, to assess the influence
of various forms of explanation, Lim et al. [346] examined the perfor-
mance of human users in terms of task completion time and success
rate while using AI systems with those various forms of explanation.
Another benefit of assessing the human-AI interface is to assist in the
verification of the model’s output [373,374] and in the debugging of
interactive AI models designed for specific requirements [369,372]. To
achieve these aims, Myers et al. [388] created a framework in which
users may ask why and why not questions while expecting an intelligent
interface to respond reasonably to those questions.

Domain specialists may scrutinize models and change their hyper-
parameters to facilitate the AI system’s analysis. This process is guided
by visualizing the internal structure of the model, its details, and
the uncertainty in the model outputs. This corpus of work highlights
how important it is to include user feedback in order to enhance
model outcomes. TopicPanaroma [370] is an example of a text anal-
ysis visual analytical tool that was evaluated by two domain experts.
FairSight [389] is another visual analytic solution that, through visual-
izing, evaluating, diagnosing, and reducing biases, aids fair data-driven
decision-making.

In addition to domain experts, AI specialists and developers can
employ visual analytics to discover defects in the architecture of their
models. For example, LSTMVis [360] and RNNVis [390] are both tools
that may be used to interpret neural models for NLP applications, with
the aim of better understanding some training issues and, at the end, en-
hancing classification and prediction performance. DGMTracker [391]

is another example of a tool that provides visual representations of
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training dynamics. All these tools assist users in visualizing the internal
mechanisms of a given model.

9.5. Computational assessment

Due to the preference of users for simpler explanations, only rely-
ing on human assessments of explanations may result in convincing
explanations instead of transparent systems. As a result of this is-
sue, Herman [136] argued that computational approaches, rather than
human–subject investigations, should be used to assess the fidelity
of explanations. The accuracy of an approach in creating genuine
explanations, such as the correctness of a saliency map, is referred to
as the fidelity of an explainer. As a consequence, a set of computa-
tional methods for assessing the validity of produced explanations, the
uniformity of explanation outcomes, and the fidelity of explainability
methodologies, in relation to the original black-box model have been
developed.

For example, Zeiler and Fergus [238] investigated the fidelity of
a CNN visualization tool in terms of the validity of explanations in
detecting model flaws; using this tool resulted in enhanced prediction
outcomes. Other techniques of assessment include comparing the fi-
delity of an explanation to models that are intrinsically interpretable by
design: explanations generated by the LIME explainer were compared
to explanations from sparse LR and DT models [29]. Another approach
for evaluating automated explanations relies on user-simulated assess-
ments: by defining untrustworthy explanations, the user’s trust and
models are simulated for LIME [29] and Anchors [231] explainers.

In addition, Ross et al. [196] conducted empirical assessments
and used the LIME approach as baseline to evaluate the consistency
and computing cost of the proposed explanation. Schmidt and Biess-
mann [381] took an alternative route by evaluating the quality of
explanations using human intuition: they proposed an explanation
quality score.

Finally, through the generated explanations, explainability approa-
ches can also offer quantitative measurements of model trustworthi-
ness, in terms of domain-specific objectives: fair features (fairness),
robust features (safety), and reliability. For instance, Zhang et al. [56]
showed how explanations may be utilized to detect representation
learning problems due to the biases induced in the training data.

10. Methodological recommendations and software tools for XAI
research

This section covers XAI tools for model creation and exploration.
The intended roadmap for how to determine model and explainability
criteria is illustrated in Fig. 28. The model structure is at the core
of the taxonomy that is presented. In this paper, we consider three
methods to providing XAI: (i) Interpretable-by-design methods, (ii)
model-specific post-hoc methods, and (iii) model-agnostic post-hoc
methods. Interpretable-by-design methods include approaches such as
LR, DT, decision rules, or kNN models, among others. Careful model
design facilitates explicitly explaining the behavior of a particular
component in a given model. Unfortunately, in some cases, the model
structure is so complicated that it cannot be explained only in terms of
individual model parameters and hyperparameters. Then, it is time to
resort to alternative methods which are able to extracting information
that is tailored to certain models. These are called model-specific
methods and they assume complete access to the model structure
in order to approximate the more complicated processes involved in
reaching a decision. In contrast, model-agnostic methods are the most
generic methods that allow us to analyze a model without having
to know anything a prior about its underlying structure. Typically,
his kind of analysis is based on the mixture of a series of model
ssessments using appropriately prepared perturbed input data. Open-
33

ource toolkits that aim to answer questions such as ‘‘what are the
overall requirements to use each of the methods?’’ or ‘‘how to choose
an explanation ?’’, will be explored below.

The number of tools available for analyzing predictive models is fast
increasing, yet there is no agreed-upon definition of what constitutes
an XAI tool. As a result, identifying and presenting all available XAI
packages becomes a hard exercise. Table 16 provides a thorough com-
parison of the various pieces of available software. The comparison is
based on the techniques that each package supports, the input data that
each package accepts, and the type of explanation that each method
provides including local, global, glass-box, or black-box approaches. In
addition, the type of explainability provided by a package, based on the
suggested taxonomy described in this article, along with the evaluation
metrics that are utilized to assess the goodness of the automated
explanations are also taken into account.

Arya et al. [394] evaluated new XAI tools in comparison to the
most well-known packages available today. One of the most complete
libraries in terms of number of methods implemented is OmniXAI,
including feature analysis, feature selection methods, feature maps,
prediction and bias metrics. This open source XAI library provides from
2 to 10 different methods for each input data type (tabular, image, text
and time series) [407], while Shapash [410] facilitates interactive apps
from SHAP and LIME in online interactive dashboards. The list of tools
has been extended to include other related tools and commonly used
R packages that also support XAI techniques. The Institute for Ethical
AI and ML, for example, has provided an Ethical ML tool [411] based
on the eight principles of Responsible ML. This tool covers three steps:
(1) data analysis, (2) production monitoring, and (3) model assessment.
Similarly, Wexler et al. [412] presented the What-If Tool, an interactive
model-agnostic visualization tool to aid AI model comprehension. This
tool was developed with the intent of identifying a wide range of user
needs. The tool comes with the following features: (i) it can elucidate
potential performance improvements for multiple models with minimal
code, (ii) use visual representations to aid model comprehension, (iii)
test hypotheses without knowing the internal workings of a model, and
(iv) perform exploratory analysis of a model’s performance. Another
example of an XAI package is XPLIQUE [413], a TensorFlow-based
tool for explaining NNs. The package contains attribution techniques,
feature visualization methods, and concept-based approaches, among
others.

Each of these packages provides comparable methods that can be
utilized in similar ways when it comes to their core functionalities.
DALEX offers a common wrapper for AI models that may be used with
other XAI packages afterward. DALEX is built on the assumption that
each explanation should be offered from the viewpoint of Rashomon.
This implies that a single graph may include any number of explain-
ers. AIX360 and modelStudio provide a wide range of non-standard
applications. Furthermore, modelStudio facilitates the generation of an
interactive Javascript-based model exploration tool with a single com-
mand. Arenar [414], fairmodels [415], triplot [416], xai2shiny [417],
auditor [418], and flashlight [419] are some other popular R packages.
The interested readers are kindly referred to [420] for further details
on other related R packages.

It is worth noting that all packages presented so far were designed
to serve as XAI support for model developers and end-users. However,
different tools are more or less suitable to use in the various stages of
a model’s development process. For example, the main target group of
flashlight users is different than the target of modelStudio or modelDown
tools. flashlight is a tool that serves mostly to developers, allowing them
to fit models based on their experience, what is an important part of the
model life cycle. In contrast, modelStudio is dedicated to end-users who
usually get a model and want to explore its behavior rather than fitting
a new model for the same task. In the case of modelDown, it represents
a new trend in the XAI toolkit research. This tool acts as a gateway
to model exploration for those who lack expert knowledge about AI
modeling but want to become familiar with the behavior of the model

they use.
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Fig. 28. Step-by-step approach to the application of XAI using preferred selection criteria. It is recommended that an AI model is selected based on its performance and/or
explainability. After a model is selected, it is advantageous to seek specific types of explanation and to use XAI to enhance the outcomes that can be achieved.
Additionally, other tools are available. For instance, Quantus [421]
offers a list of more than 25 reference metrics to focus on the evalu-
ation of explanations. Several businesses, developers, and researchers
joined forces to develop more transparent and sociable AI systems.
The What-If tool [412] is an endeavor to build a standard founda-
tion for explainability of algorithms. An approach based on this tool
for Fairness, Accountability, and Transparency (FAT-Forensics [422])
proposes inspecting all facets of the ML process. In addition, Tensor-
Flow Extended [423] - a separate tool developed by the TensorFlow
community, makes it easier to analyze the TensorFlow models.

Furthermore, PyCEbox [424] deals with explainability of algo-
rithms. Another example of tool for algorithmic transparency is Yel-
lowbrick [425]. Some tools with the focus on fairness analysis are
BlackBoxAuditing [426], fairness-comparison [427], FairTest [428],
FairML [429], and Fairlearn [430].

Finally, tools for assisting in the analysis of accountability (regard-
ing also security and privacy) are the most difficult to find. Some
examples are TensorFlow Privacy [431], DeepGame [432] (a deep
neural network verification tool) or PyGrid [433]. In addition, there
are some tools that pay special attention to the robustness of the model
against adversarial attacks. For example, IBM’s adversarial robustness
tool [434], FoolBox [435] or CleverHans [436].
34
11. Current research directions

There is a scarcity of reliable and comprehensive systematic com-
parisons across available XAI methodologies [437]. Accordingly, con-
cepts that reflect the range of opportunities, scope, and resources must
be carefully organized to bridge the gap between the study and practice
stages. Moreover, the development and regulation of trustworthy AI
systems are ongoing work.

As the desire for XAI and the demand for trustworthy AI are so
tightly linked, the importance of explainability in developing trust-
worthy AI is thoroughly examined in this work. Other related surveys
are supplemented by this study, which provides a methodology with
explicit suggestions for choosing XAI technologies. In addition, by
reviewing metrics for quantitative assessment of XAI and proposing
useful definitions, this paper provides additional contributions to the
existing literature. This section discusses how XAI can pave the way
towards building trustworthy AI. We also point out and discuss some
open challenges and future directions.

Researchers in the XAI domain are currently developing tools for the
exploration, debugging, and validation of AI models. These tools enable
users to test models with a wide range of structures, allowing users to
pick the best model for their task based on specific metrics. Namely,
the requirements that XAI tools must fulfill to provide in-depth model
analysis arise from a variety of scenarios:
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Table 16
Comprehensive overview of XAI software packages and their evaluation metrics.

Packages Supported Methods Data type Explainability Explanation Model type Evaluation
MetricsTabular Text Image Data Model Post-hoc Global Local Glass box Black-box

InterpretML
[392]

Explainable Boosting ■ ■ ■ ■ ■ ■

–

Decision Tree ■ ■ ■ ■ ■ ■
Decision Rule List ■ ■ ■ ■ ■ ■
Linear/Logistic Regression ■ ■ ■ ■ ■ ■
SHAP Kernel Explainer ■ ■ ■ ■ ■ ■
LIME ■ ■ ■ ■ ■ ■
Morris Sensitivity Analysis ■ ■ ■ ■ ■ ■
Partial Dependence Plot (PDP) ■ ■ ■ ■ ■ ■

Alibi
[393]

Accumulated Local Effects (ALE) ■ ■ ■

Trust Score
Linearity Measure

Anchors ■ ■ ■ ■ ■ ■
Counterfactual Instances ■ ■ ■ ■ ■
Contrastive Explanation Method ■ ■ ■ ■ ■
Counterfactuals Guided by Prototypes ■ ■ ■ ■ ■
Integrated Gradients ■ ■ ■ ■ ■ ■
Kernel SHAP ■ ■ ■ ■ ■
Tree SHAP ■ ■ ■ ■ ■

AIX360
[394]

Boolean Decision Rules via Column Generation ■ ■ ■ ■ ■ ■

Faithfulness
Monotonicity

Generalized Linear Rule Models ■ ■ ■ ■ ■ ■
ProtoDash ■ ■ ■ ■ ■ ■ ■ ■
ProfWeight ■ ■ ■ ■ ■ ■ ■ ■
Teaching Explanation for Decisions ■ ■ ■ ■ ■ ■ ■ ■
Contrastive Explanations Method ■ ■ ■ ■ ■ ■ ■
CEM with Monotonic Attribute Functions ■ ■ ■ ■ ■ ■ ■
Disentangled Inferred Prior Variational Autoencoder ■ ■ ■ ■ ■

Skater
[395]

Partial Dependence Plots (PDP) ■ ■ ■ ■ ■

Interpretability
Transparency

LIME ■ ■ ■ ■
Feature Importance ■ ■ ■ ■
Epsilon-LRP ■ ■ ■ ■ ■
Integrated Gradient ■ ■ ■ ■ ■ ■
Scalable Bayesian Rule Lists ■ ■ ■ ■ ■
Tree Surrogates ■ ■ ■ ■ ■

tf-explain
[396]

Saliency Maps ■ ■ ■ ■ ■

–

Activations Visualization ■ ■ ■ ■ ■
Vanilla Gradients ■ ■ ■ ■ ■
Gradients*Inputs ■ ■ ■ ■ ■
Occlusion Sensitivity ■ ■ ■ ■ ■
Grad CAM ■ ■ ■ ■ ■
SmoothGrad ■ ■ ■ ■ ■
Integrated Gradients ■ ■ ■ ■ ■

Interpretable
ML (IML) [397]

Partial Dependence Plots (PDP) ■ ■ ■ ■ ■ ■ ■

–

Individual Conditional Expectation (ICE) ■ ■ ■ ■ ■
Feature Importance ■ ■ ■ ■ ■ ■ ■
Global Surrogate Tree ■ ■ ■ ■ ■
Local Surrogate Models ■ ■ ■ ■ ■ ■
Shapley Value ■ ■ ■ ■ ■ ■ ■ ■
Interaction Effects ■ ■ ■ ■ ■ ■

DALEX
[398]

Partial Dependence Plots (PDP) ■ ■ ■ ■ ■

–
Accumulated Local Effects Plot ■ ■ ■ ■ ■
Merging Path Plot ■ ■ ■ ■ ■ ■
Shapley Values ■ ■ ■ ■ ■ ■
LIME ■ ■ ■ ■ ■ ■

H2O
[399]

Shapley Feature Importance ■ ■ ■ ■ ■ ■

–

Feature Importance ■ ■ ■ ■ ■ ■
Partial Dependency Plots (PDP) ■ ■ ■ ■ ■
Individual Conditional Expectation (ICE) ■ ■ ■ ■ ■
Decision Tree ■ ■ ■ ■ ■ ■
Local Linear Explanations ■ ■ ■ ■ ■
Global Interpretable Model ■ ■ ■ ■ ■

ELI5
[400]

LIME ■ ■ ■ ■ ■ ■

–Permutation Importance ■ ■ ■ ■ ■ ■
Grad-CAM ■ ■ ■ ■ ■ ■
TextExplainer ■ ■ ■ ■ ■ ■

iNNvestigate
[401]

Gradient ×Input ■ ■ ■ ■

Perturbation
Analysis
(PixelFlipping)
[317]

SmoothGrad ■ ■ ■ ■
Integrated Gradients ■ ■ ■ ■
DeconvNet ■ ■ ■ ■
Guided BackProp ■ ■ ■ ■
PatternNet [402] ■ ■ ■ ■
LRP ■ ■ ■ ■
Shapley Value Sampling ■ ■ ■ ■

modelStudio
[403]

Break Down Plot ■ ■ ■ ■ ■ ■ ■

–

SHAP Values ■ ■ ■ ■ ■ ■ ■
Ceteris Paribus [404] ■ ■ ■ ■ ■ ■ ■
Feature Importance Plot ■ ■ ■ ■ ■ ■ ■
Partial Dependency Plot (PDP) ■ ■ ■ ■ ■ ■ ■
Accumulated Dependency Plot ■ ■ ■ ■ ■ ■ ■

(continued on next page)
35



Information Fusion 99 (2023) 101805S. Ali et al.

t
E
p
T
i
s
t
m
n
s
u
a
i
a
w
O
a
a
e
c
a
j
r

Table 16 (continued).
Packages Supported Methods Data type Explainability Explanation Model type Evaluation

MetricsTabular Text Image Data Model Post-hoc Global Local Glass box Black-box

Captum
[405]

Grad-CAM ■ ■ ■ ■ ■ ■

Scalability
Infidelity [406]
Sensitivity [406]

GuidedBackProp ■ ■ ■ ■ ■ ■
Integrated Gradient ■ ■ ■ ■ ■ ■
DeconvNet ■ ■ ■ ■ ■ ■
DeepLift ■ ■ ■ ■ ■ ■
SHAP ■ ■ ■ ■ ■ ■
Occlusion ■ ■ ■ ■ ■ ■

OmniXAI
[407]

Grad-CAM, Grad-CAM++ ■ ■ ■ ■ ■ ■

–

Score-CAM ■ ■ ■ ■ ■ ■
LayerCAM [408] ■ ■ ■ ■ ■ ■
Partial Dependency Plot (PDP) ■ ■ ■ ■ ■ ■ ■
GuidedBackProp ■ ■ ■ ■ ■
Integrated Gradient ■ ■ ■ ■ ■ ■ ■
Accumulated Local Effects (ALE) ■ ■ ■ ■
Sensitivity Analysis ■ ■ ■ ■ ■
Counterfactual Explanations ■ ■ ■ ■ ■ ■ ■
Contrastive Explanations ■ ■ ■ ■ ■
SHAP ■ ■ ■ ■ ■ ■ ■ ■
LIME ■ ■ ■ ■ ■ ■ ■ ■
SmoothGrad ■ ■ ■ ■ ■ ■
Layer-CAM ■ ■ ■ ■ ■ ■
Learning to explain (L2E) [409] ■ ■ ■ ■ ■ ■ ■ ■

Shapash
[410]

SHAP ■ ■ ■ ■ ■ ■ ■ ■ ■ Stability, Consistency
CompacityLIME ■ ■ ■ ■ ■ ■ ■ ■
• A model may make mistakes when dealing with some instances.
In order to enhance the model, it is crucial to figure out what is
causing such bad judgments. In certain situations, XAI tools may
aid in the debugging of an AI model by identifying the causes of
its inefficiency.

• Inquisitive individuals do not like to rely on model predictions
without knowing extra justifications or the logic behind certain
predictions that will gain the user’s trust and confidence.

• It is conceivable that some hidden correlations in the data may
be retrieved and understood by examining the AI model with XAI
tools, what may help users to learn more about the problem under
study.

• Increasingly not only decisions, but also arguments, explana-
tions, and reasons for decisions, are expected to be produced
automatically.

• If developers want to propose the adoption of a certain model for
a given task, experts must first be able to grasp how it works. As
a result, black-box models cannot be relied upon for important
decisions requiring accountability, i.e., a more in-depth grasp of
the decision-making model is demanded.

In addition, the following scenarios support and promote the in-
ended design and assessment framework at multiple levels.
valuation Metrics and XAI System Design. When measuring the
erformance of XAI systems, it is critical to apply the right metrics.
he use of the same evaluation metrics for diverse design objectives

s a typical problem when selecting measurement methods for XAI
ystems. A basic solution to this problem is to use numerous scales
o record distinct features in each assessment to discriminate between
easurements. The idea of user trust, for example, is made up of
umerous variables that may be examined using distinct scales in
urveys and interviews [364]. To target certain explanation qualities,
ser satisfaction assessments might be established for variables such
s explainability, usefulness, and sufficiency of information [438]. In
terative design processes, balancing diverse design approaches and
ssessment types is an effective strategy to connect design objectives
ith suitable evaluation metrics.
verlap in Explanation Design Objectives. Four primary dimensions
long which to place XAI systems are provided by our XAI classification
xes: (1) data explainability, (2) model explainability, (3) post-hoc
xplainability, and (4) assessment of explanations. Across certain dis-
iplines, there are overlaps in the axes. While the fundamental aims
re similar (to produce better explanations), different explanation ob-
ectives should be explored in consideration of the various users, what
esults in a diverse collection of design parameters and implementation
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approaches. Designing XAI systems for AI novices, for example, necessi-
tates the development of human-centered XAI interfaces to convey the
model explanations, but developing new interpretability approaches
for AI specialists implies other requirements. Accordingly, XAI user
groups may be considered as an additional dimension along which to
arrange XAI goals in cross-disciplinary problems while emphasizing the
integration of a variety of research aims in order to address the overlap
between XAI goals across different research disciplines [439].
User Interactions in XAI. Another factor to consider when devel-
oping XAI systems is how to handle human interactions. Interactive
visual tools enable AI and data specialists to enhance the performance
of models. Moreover, interactive systems might also be beneficial to
novices. A few papers have concentrated on the interactive design
of AI systems [440–443]. These studies demonstrated how interactive
methods enable users to assess the effect of their actions and alter
their subsequent queries for enhancing results. Expert users may utilize
visual tools to comprehend the models they are using by interacting
with the algorithms used. Allowing data scientists and model specialists
to examine model representations interactively [444], assess model
training processes [391], and discover learning biases [445], are just
a few examples of the advantages of these XAI systems.
System and Ground Truth Evaluation. Taking user learning into
consideration is a key part of assessing XAI systems. When conducting
cognitive psychological experiments for assessing user understanding,
satisfaction, and trust of XAI systems, their learnability becomes even
more important [446]. With regular usage of the system, a user learns
and becomes more comfortable with it. In terms of XAI assessments,
this emphasizes the value of recurrent temporal data collection [447].
Moreover, the choice of the ground truth is a crucial aspect in interpret-
ing XAI assessment outcomes but also in comparing results across many
investigations. Controlled studies are often used to investigate the im-
pact of model explanations on a control group compared to a baseline
(no explanation required) group in human–subject investigations [361,
442].
Expansion and Generalization. Amershi et al. [448] provided 18
human-AI interaction design criteria. They systematically evaluated the
recommendations from 20 AI-infused products via numerous rounds
of assessments with 49 design practitioners. Their design guidelines
give additional information inside the user interface design layer to
assist in the creation of suitable end-user interactions with XAI sys-
tems. The framework suggested in this paper is expandable and con-
sistent with current AI-infused interface design guidelines. Adaptive
explainable models that provide context-aware explanations are also

available [449].



Information Fusion 99 (2023) 101805S. Ali et al.
Explainability in Dynamic Learning Scenarios. Large sample sizes
can improve model generalization by preventing overfitting in individ-
ual cases, but they also increase the cost of model training. Moreover,
when we add more data, the model often has to be fine-tuned or
trained from the start using the extended dataset. Otherwise, learn-
ing numerous tasks in a row or from dynamic data might result in
catastrophic forgetting [450]. One way to tame these problems is
using continual learning [451] strategies, suitable in sequential data
streams scenarios, or state representation learning [452,453], as a
way to intermediately learn the states of the problem space as an
intermediate task to solve control problems involving deep learning.
Explainable AI can contribute to a better refinement of the knowledge
captured by a model from evolving data that is retained over time.
For instance, a relevance-based neural freezing method was developed
in [454] to reduce catastrophic forgetting. Unfortunately, it has been
shown that the explanations produced by cutting-edge methodologies
are inconsistent, unstable, and offer very little information regarding
their accuracy and dependability [455]. These approaches also demand
much hyper-parameter adjustment and are computationally inefficient.
Consequently, efficiently producing explanations suited to deal with the
varying nature of data and/or learning tasks and improving the adapta-
tion of the model to eventual changes by exploiting such explanations
fall within a research niche that will surely attract the interest of the
community in the future. Above all, standard protocols for continuous
pipeline adaptation that produce explanations on-the-fly, cope with
errors and correct them in continual learning settings are much in need
nowadays.
Other usages of explanations. Explanations can supply the extra
information required to boost a model’s performance, convergence,
robustness, efficiency, reasoning, and equality [456]. For instance,
understanding relevant and irrelevant feature representations can cut
training time and improve accuracy. Similarly, determining the most
crucial neurons and filters in a neural architecture is essential to
increase model effectiveness. The more stable, conservative learning
process of augmented models allows for improved generalization [457].
Furthermore, in an active learning environment, explanatory inter-
active learning enables human users to correct a model’s decision-
making [458,459]. Deterioration in the model performance can be
measured by the amount of Out of distribution (OoD) samples, since
it is a signal that can be used to explain model failures. For instance, a
clustering based on archetypical explanation saliency maps can detect
OoD samples in settings with low intra-class variability [460]. It is also
possible to use XAI for improving object counting and instance classifi-
cation models, based on landmarks that assist heatmaps’ sensitivity and
uncertainty analyses, for more accurate and certain predictions [461].

Another approach that goes beyond exposing what models really
learn consists of masking artifacts that may confuse models and their
explainability (known as Clever Hans effects). This is a way towards
the necessary but immature research line of model certification [462].
Issues beyond those carried out by explaining a model include the
challenges involved in XAI-based model improvement, which can accu-
mulate sequential errors in the explanation producing pipeline [456].

XAI can also be used to drive network improvement and compres-
sion, making DNNs low-bit and sparse. For instance, LRP XAI method
can be used to preserve the highest information weights based on
entropy, make most weights zero and in this way compress networks
beyond 100 times their size, which can be useful for learning on the
edge [463]. Within the same spirit of efficiency, explainability can
also be used for pruning neural network layers as a criterion [464],
or concept unlearning [465,466].

Another usage of XAI, when using causal explanations, is facilitating
accountability, providing algorithmic recourse to make explanation
more actionable [467], or facilitating the explainability of the model.
In [468], Bargal et al. demonstrate that increasing the explainability of
a deep classifier can be used to improve its generalization, both to un-
37

seen domain samples and out of domain ones, fine grained predictions,
and to be more efficient when using the network capacity, as well as
robust to network compression. These and other desirable – but hard
to quantify properties – of ML models that can be improved with XAI
techniques are further unified in a theoretical framework in [456].

Finally, while XAI can be a tool to help conveying explanations in
natural language, there is often a lack on datasets and benchmarks
that include explanations’ ground truth to fully validate models. One
example of such datasets is CLEVR-X Visual Reasoning Dataset [469]
for evaluating natural language explanations.

Explanation and model robustness. Given a domain, robustness
is understood as the ability of a system to maintain its performance
quality under varying conditions (ISO/IEC 24029-2:20XX), and it needs
to be monitored in all life cycle phases of the AI system (ISO/IEC DIS
22989:2021). There are several ways to evaluate the robustness of mod-
els and their respective explanations. Generic approaches to guarantee
model robustness borrow inspiration from well developed disciplines
within the field of Software Engineering, including Verification, and
Validation (V&V) of the model. While the verification process confirms
through the provision of objective evidence that the specified require-
ments (ISO/IEC 25000:2014 4.43, ISO/IEC 25030:2019(en), 3.22) have
been met, the validation process confirms via objective evidence and
testing that the verified software on real data does what it should
and works as expected. In this area a broad family of formal meth-
ods are being extended to neural network models to prove whether
they satisfy robustness properties (ISO/IEC 25000:2014, 4.41, ISO/IEC
25030:2019(en), 3.21).

Programmatic XAI metrics and methods that account for the vari-
ability of data/task are in much need. Some ways to perform ver-
ification are via program synthesis [470] (to learn policies in RL),
or running reality checks [471] or checking for XAI technique pit-
falls [472].

One approach that, apart from robustness, serves as well as solution
to the above-mentioned uncertainty issues is to model uncertainty in
black-box explanations. This requires ways to keep track of how certain
the model is for different samples, or during its life cycle as it keeps
learning in time, post-deployment, with new data. One example in this
direction [473] consists of estimating epistemic and aleatoric uncer-
tainty maps associated to segmentation maps produced by a Bayesian
MultiResUNet.

Despite robustness being a desired and required property (Art. 15
of EU AI Act [474], Precision and Robustness and Cybersecurity of
high-risk AI systems (HRAIs) and upcoming AI Act Sandbox), there is
a lack of procedural ways to approach and certify model robustness.
In addition, one of the most common limitations of formal methods
for V&V approaches is the lack of scalability to highly dimensional
inputs typical of deep learning. While local robustness properties can be
documented defining a valid range for the input features, this may not
be meaningful when individual features such as pixels have no semantic
meaning. However, a list of recommendations towards institutional,
legal and technical bodies towards auditing and verification of AI
systems are being developed with paramount relevance to implement
trustworthy AI [475].
XAI and late breaking models. Explaining generative models is an
unexplored arena in XAI. Modern generative models (GPT-3 for text
generation from a prompt, ChatGPT [476], DALL-e 2 [477] or stable
diffusion methods for image generation from text) may, in occasions,
require explaining their generated samples. This requirement depends
stringently on the purpose for which such samples are created (e.g., as
specified in the AI system requirements, or as anticipated by the
compulsory requirements of e.g., HRAIs in the EU AI Act [474]).

The debate around the explainability of generative models departs
from two main questions: (1) Do generative models require explain-
ability? and (2) Is it even possible to get a satisfactory explanation of
an output from the most modern large generative models? The first

question can be answered around two cases:
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• No specific need for explanations: in generative art, unless copyright
creation out of the generated samples could be legally claimed,
no issue requiring explanations may arise. However, who is to be
compensated in posterior usages when, for instance, plagiarism is
detected among generative art samples? Who is to blame when
a generated resource exposes private content worth censoring,
or belonging to some private data that can result into trouble if
attempting against people’s privacy, dignity or intimacy?

• Explanations required, as it occurs in HRAIS such as in data aug-
mentation models for medical diagnosis where patients lives are
at stake. If the model fails in its prediction for a given query, and
post-hoc explanations reveal that the cause for the miss-prediction
was indeed an augmented sample generated by these models, we
need to have explanations indicating why the model generated
it, unlearn [465,466] this augmented sample from the trained
model, and avoid that the generative model produces it again. The
challenge resides in the creation of explanations from probability
distribution learning models such as stable diffusion [478].

Another issue with modern generative models is that fact that
anguage models can leak private information []. Thus, a remaining
hallenge is: how can XAI deal with explaining privacy enhancing tech-
ologies (PETs) or models having such complex and abstract blending
apabilities (such as those exhibiting properties of style transfer [479]
r image translation [480] models) that a human can hardly explain?

first challenge would be defining what constitutes an explanation
in such models, so that XAI techniques for devising provenance and
traceability of samples in generative modeling can be devised to gain
trust in large generative models.

Towards an Ethical Code. The study of ethics in practical ap-
plications of AI is a complex and multi-faceted issue that requires
interdisciplinary collaboration between experts in AI, ethics, law, and
other related fields. One of the main challenges is the diversity of
ethical issues that arise in the context of AI. These issues range from
bias and fairness in decision-making to privacy and security concerns,
and they can be approached technically in a variety of ways. For
example, addressing bias in AI models may require data pre-processing
techniques, algorithmic modifications, or human oversight [24]. Simi-
larly, ensuring the robustness and reliability of AI systems may involve
techniques such as adversarial training, uncertainty quantification, and
fault-tolerant design [481]. In addition, ethical considerations may vary
depending on the application domain and the stakeholders involved.
For instance, medical AI systems raise unique ethical issues related
to patients’ safety, informed consent, and privacy, which may require
different technical and legal frameworks compared to other domains
such as finance or transportation [482]. Protocolizing the study of
ethics in practical applications of AI requires a nuanced and context-
specific approach that takes into account the complexity and diversity
of ethical issues in different domains and applications. Recent works
have proposed frameworks and guidelines for ethical AI design and de-
ployment, such as the IEEE Global Initiative for Ethical Considerations
in AI and Autonomous Systems [483] and the EU Ethics Guidelines for
Trustworthy AI [484].
Advanced Tools in XAI. The state-of-the-art tools for explainability
classification, qualification, and evaluation can be advanced by im-
plementing new methods. For example, argumentation and XAI are
intertwined, since argumentation has been utilized to provide explain-
ability to AI in recent years. Vassiliades et al. [53] have demonstrated
that argumentation can be used to explain how an AI system comes
to a decision, how it achieves that decision in the face of ambiguity,
and how it can solve problems when presented with contradicting
data. The more sub-symbolic technique-based intelligent systems have
saturated our daily lives, however, these systems are not compre-
hended well. As a result, symbolic techniques are gaining traction in
a broader endeavor to make AI more understandable, explainable, and
trustworthy. Calegari et al. [485] presented an overview of the most
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common symbolic/sub-symbolic integration approaches, with a special
emphasis on those aimed toward XAI systems. The recent advancements
in technology for the Internet of Things may aid in the transmission of
explanations from Machine to Machine.

In addition, planning is a key aspect of AI that is employed in
situations where learning is not possible. Incorporating explainability
into the planning process entails converting the generated plan stages
into a human-readable format. Furthermore, this process encourages
economic interpretations that can handle concerns including cost es-
timates and variance, algorithm propriety, trade secret disclosure, as
well as anticipating XAI market development. One potential approach
to XAI in planning that can bring a fresh breeze to the current spectrum
of XAI methods is the use of neural-symbolic learning for sequential
decision making [486]. This can be done in two sequential steps, from
symbolic to neural representations, or viceversa, and an interface in
between, or (b) end-to-end, being able to handle both symbolic and
subsymbolic formalisms at the same time. An example of model (of
type (a) with an interface in between modules) is in [487]. It combines
the deep neural nets with symbolic components of planning and a sym-
bolic descriptions. Common symbolic approaches for classical planning
include the use of first order logic -FOL- or Planning Domain Definition
Language -PDDL. And an example of (b) that jointly processes symbolic,
neural representation and inference, is DeepProbLog, based on neural
probabilistic and deep learning [488].

It is worth noting that even if there are many XAI strategies,
metrics and tools, as we will see in the next section, several questions
still remain without an answer: which methodology delivers the best
explanations? how should the quality of explanations be assessed?

12. Concerns and open issues about XAI

The more pervasive AI is in our daily life, the more concerns turn
up. For example: (i) due to the size of AI systems’ input and state
spaces, exhaustive testing is impractical, (ii) most AI systems currently
in use have complex internal structures that are difficult for humans
to interpret, and (iii) most AI systems are highly dependent on the
training data. We have identified three main categories of concerns
(to be discussed in the rest of this section): user concerns, application
concerns, and government concerns.

12.1. Concerns from the user perspective

In this work, we have distinguished among data explainability,
model explainability, and post-hoc explainability, as depicted by the
internal border in Fig. 29. Within the outer boundary of the Figure,
the various stakeholders and regulatory entities interested in AI system
explanations are depicted. The text highlighted at the bottom of each
group represents their motivations and desire for a property to be
provided with explainability. While all organizations strive to get a
correct answer, the degree of detail and intricacy involved in this may
differ significantly.

Brandao et al. [489] claimed that most research on how to interpret
and explain AI systems is mainly motivated by the requirements of
developers rather than users. Comprehensive research has confirmed
and emphasized the need to validate AI systems with actual users
to ensure transparency [95], accountability [490], and fairness [24].
Moreover, AI is becoming a keystone in the development of automated
decision-making systems based on personal information, which may
have substantial implications for people’s basic rights. Notice that,
people have the right to request an explanation and get a guarantee
that AI systems will not negatively affect their lives under the GDPR
policy [491].

In addition, the level of explanation given to specialists and ordinary
users does not have to be the same. Accordingly, sociological studies
have focused on how individuals react to explanations. For example,
Miller [52] reviewed psychological research to determine what people
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Fig. 29. The aim of XAI is expressed to various stakeholders such as end-users, domain experts, developers, and government bodies. We also highlight how the explainability of
various axes can benefit multiple stakeholders. Each stakeholder has a community of participants — outlined in Who, and objectives — outlined in Why. Additionally, each group
promotes explainability in terms of a specific characteristic. Each targeted platform’s characteristic is asserted in the gray box at the bottom.
perceive as a good explanation. He concluded that an explanation must
be concise, socially acceptable, and contrastive.

Finally, Doshi-Velez and Kim [15] suggested three layers of testing
to evaluate explainability: first, experiments with people carrying out
real-world activities; second, basic experimental tasks with people; and
lastly, proxy tasks and metrics that have been validated by previous
research using the evaluation techniques mentioned above.

12.2. Concerns from the application perspective

Whatever application where an AI system is in charge of drawing
autonomous decisions which may endanger human life, then trust
emerges as the most important quality that the related intelligent
system must possess. For instance, at the annual Neural Information
Processing Systems conference in December 2018, two pictures were
shown on a screen [492]: (i) a patient with a human surgeon and a
caption showing the 15% risk of the patient dying during surgery; and
(ii) a robotic arm with a 2% failure rate. Then, the audience was given
the option to vote which surgeon was preferred. Everyone voted for
the human surgeon except one. Thus, a 2% risk of dying should be
preferable to a 15% chance of dying, but why did the audience not
choose the more accurate model? Apart from accuracy issues, trust in
AI systems is required in this kind of situations where human lives
are involved. However, this result may change if AI systems were able
to provide good explanations, which would increase trust by allowing
individuals to understand how and why the system makes specific
decisions. Medical domain experts can find a comprehensive overview
of the state of XAI in healthcare, including applications, challenges, and
future directions in the recent surveys [493,494].

In detection and classification applications, a DL model can auto-
matically explore, learn, and extract data representations. The capacity
of models to describe their inner workings and decision-making pro-
cesses is inevitably limited when trying to maximize data utilization
and increase prediction accuracy. However, it is difficult to trust sys-
tems whose decisions are not easy to comprehend, such as those from
CNNs and ensemble models. This is especially true in applications like
healthcare or autonomous vehicles, where fairness and moral issues
naturally arise.
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Finally, the need for reliable, fair, resilient, and high-performing
models for real-world applications has been one of the triggers in the
XAI field. The general trend depicted in Fig. 30 (see Appendix A)
indicates that research publications on XAI have grown greatly during
the previous decade. The large increases seen in recent years have
been mirrored by an increase in studies on ethical issues within the
same time span. Consequently, it is apparent that users require ethical
concerns in addition to an explanation of decisions, i.e., XAI highlights
the importance of safety, causation, security, transferability, privacy,
informativeness, fairness, and ethical decision-making when it comes
to AI systems making important decisions [495].

12.3. Concerns from the Government Perspective

In the USA, the Defense Advanced Research Projects Agency
(DARPA), began its XAI initiative in 2017 with the goal of creating
new methods for explaining intelligent systems [496]. The program
comprised 19 projects and ran until 2021 [497]. DARPA’s XAI initiative
emphasizes the need for explainability in order to better understand,
trust, and control the next generation of AI systems. This has an
effect on accountability [498], safety [499], and industrial responsi-
bility [500]. This is essential in high-risk applications like self-driving
vehicles and medicine, where a single incorrect outcome may result
in a person’s death. As a result, across various business sectors and
scientific fields, good explanations are at the core of responsible and
open AI research. This necessitates an increase in investment by prac-
titioners and industries to ensure the decision of AI systems is properly
explained [32,501].

Indeed, although AI systems are usually supervised by humans in
reasonably controlled settings, AI is anticipated to be implemented
on a much wider scale in the coming years, necessitating a response
from regulatory authorities. To achieve this aim, the European Com-
mission has committed to establishing guidelines for the trustworthy
and safe use of AI in our digital society [502]. The provisions of
the Cybersecurity Act aim to encourage an ecosystem surrounding AI
technology to quickly develop and favor innovation while protecting
basic rights [503]. This act was presented in 2017 and established
an EU-wide certification structure for digital products, services, and
processes.
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Furthermore, one of the numerous responses to the new rules and
the GDPR legislation has been a demand for XAI to give explanations
not just to users, but to society at large [63]. Particularly, knowing
the risks and responsibilities associated with AI systems is essential
in healthcare, clinical, and judicial professions since human lives are
involved. When responsibility is delegated to a single expert, risk avoid-
ance occurs. Moreover, instances of minorities in employment proce-
dures, recidivism in the COMPAS system, and overall fairness have
all contributed to XAI literature’s growth [63,501,504,505]. Another
element driving the need for XAI, according to Adadi and Berrada [21],
is the development of algorithms that are not only fair and socially
responsible, but also accountable and able to explain their output.
The GDPR refers to the ‘‘Right to an Explanation’’, which has sparked
a lot of interest in both academia and industry, pointing the people
concerned to XAI as a potential compliance option [437,506,507].
There is widespread agreement that putting such a concept into practice
is essential and that it is now a major open scientific issue. As a result,
when it comes to understanding AI a primary emphasis is put on the
audience for whom explainability is desired. In general, scholars concur
on the need to develop user-friendly explanations.

Are the XAI techniques available today sufficient to resolve all the
explainability concerns, even if several tools are used? The answer is
NO. As described in the European AI Act (which is currently pending
of final publication at the time of writing), AI systems for tackling real-
world problems should be auditable and subject to regulatory pressure
in terms of the criticality of the situation (such as safety) [508].
Furthermore, explainability alone does not suffice for realizing trust-
worthiness in AI-based systems: explanations need to be accompanied
by robustness guarantees, causality studies, data governance, security,
accountability or human in- or on-the-loop interfaces (depending on the
level of risk of the AI system as per the AI Act), among other factors of
relevance [439,509].

Furthermore, there is a controversy when it comes to choosing
between the best-performing model and the best XAI method. In reality,
we are far from regulated top-performance models. Transparent models
cannot handle sophisticated real-world applications. Many applications
need the modeling complexity provided by black-box systems, but if
authorities and agencies fail to recognize that not everything can be
explained by existing technologies, regulation may become a threat to
clamp down on unsafe systems. To define the requirements that should
be satisfied by XAI tools, the idea of risk/criticality of the application
should be identified beforehand and governed accordingly. Although
specific audit procedures are already well established, others still call
for more analysis and the creation of brand-new audit technologies and
tools.

It is worth noting that end-user, application-oriented, and govern-
ment-led efforts to audit AI systems are essential but insufficient to
alleviate all concerns raised by the results and advancements made
in explainability. Establishing the methodological criteria for guiding
future endeavors to make AI systems acceptable in critical situations
necessitates regulatory supervision surrounding crucial scenarios and
applications. Additionally, in order to drive future research away from
simply producing additional tools but toward more fruitful cases where
XAI tools are used successfully, we require methodological measures,
and assurances of transparency, among various other aspects, to con-
firm the credibility of explanations provided by XAI in specific critical
situations.

Fortunately, to foster trustworthy AI, several regulatory efforts are
in progress. For example, the European AI Act [474] aims to ensure
quality and trust to enhance industrial and research capabilities while
upholding the fundamental rights of citizens [508]. This European
regulation establishes 85 articles for which technical guides are being
developed for HRAIs to ensure compliance with. Subsequently, in 2022,
Spain established the first AI supervisory council in Europe. While ad-
mitting the threats that AI may pose to individuals’ rights and freedoms,
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the Spanish government is also seeking to encourage and optimize the
use of AI technology [510]. In order to monitor and erode any danger
connected with AI technology, the government has taken the initial
steps to establish a supervisory authority in 2023.

In order to modernize our laws for the 21st-century economy,
American and European authorities have paved the way for a new
era of technological collaboration. They agreed to work together to
develop AI technologies that will strengthen privacy protections, ex-
plore cooperation on AI, and conduct an economic study looking at
the effects of AI on the future of the workforce. AI systems must be
innovative, trustworthy, and respectful of universal human rights while
sharing democratic values [511]. Other countries have also shown
interest and proposed several rules for AI. For instance, China’s cy-
berspace authority recently announced algorithmic recommendations
for internet information services to standardize Internet information
services [512]. The Brazilian Congress enacted a law establishing a
legal framework for AI in 2021 to lay forth broad guidelines for
the advancement of AI and its regulation [513]. Moreover, other 58
countries proposed more than 700 rules in a legal framework for AI. For
further details, interested readers should refer to [514]. Besides this,
we still require global policies and regulatory frameworks to guarantee
that cutting-edge technologies are advantageous to humanity. In order
to achieve this, the 193 member nations of UNESCO released a global
agreement on the ethics of AI in 2021 [515]. Despite several sub-
national, national, regional, and global endeavors, the practical use of
AI systems will hamper the lack of trust in terms of the sufficiency of
the explanations produced for such systems.

13. Conclusion

The demand for Trustworthy AI will expand as the technology is
used more often in practical applications, particularly when making
automated decisions that might have adverse effects on human lives. In
this work, we have analyzed the current state of XAI literature, standard
definitions, XAI methods, and necessary concerns about the objectives
of trustworthy AI. The study has looked at the four axes of explainabil-
ity: data explainability, model explainability, post-hoc explainability,
and assessment of explanations. The taxonomy is arranged to provide
a high-level discussion on each method with good examples and in-
sight into the related mathematical modeling. The proposed framework
for end-to-end XAI system deployment integrates design objectives,
including XAI concerns, with assessment methodologies. This approach
encourages more conversation regarding the relationship between the
design and assessment of XAI systems. Proper assessment metrics and
properties for different user groups have been also addressed in the
study.

In addition, we have considered the target audience for whom the
explanation is required. To comprehend an AI system satisfactorily,
each user needs a different level of explanation. The needed attributes
for different groups of users have been identified and associated with
the proposed explanation axes. According to the classification of ex-
plainability, research questions are addressed according to the various
aims to achieve related to each axis. The proposed classification demon-
strates the importance of multidisciplinary collaboration in designing
and evaluating XAI systems. All interface and interaction design areas
have been covered. This brings attention to complementary social
science resources that might help expanding the scope of social and
cognitive components of explanations. Standard terms related to XAI
have also been specified to make intelligent systems trustworthy and
ethically appropriate.

Moreover, we have presented two main contributions in this com-
prehensive survey. We have first elicited methodological suggestions
using advanced XAI technologies. Second, we highlight the key issues
and future directions for XAI research.

As AI technology advances, several technical (but also legal and
ethical) issues are explored by academia, while the industry is also es-

tablishing new strategies. As a result, the creation of relevant standards,
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auditing plans, procedures, and tools is progressing quickly. While
Trustworthiness is a matter of more aspects beyond explainability, ex-
plainability is a required ingredient. However, it alone is not sufficient.
Application contexts where AI-based system are used can easily impose
other restrictions that can affect the trustworthiness and actionability
of AI system outputs, compromising fairness, data governance, privacy,
accountability, sustainability, and robustness. This is why only in the
confluence and provision of guarantees in these desiderata, we can
provide AI pipelines we can trust.

To pose the general conclusion of the paper: we as a community
have advanced notably in the explainability of AI models to date.
However, we are progressing over only one of the requirements for
trustworthiness. More work is done towards showing experiences and
use cases accounting for more than the delivery of explanations for
the knowledge and decisions elicited by AI models. Below there is
a summary of what we have discovered about XAI and what is still
required to attain truly trustworthy AI:

• Many methods are already available. Therefore, we do not simply
need more methods. Instead, we need to pay more attention
to critical situations so that regulatory bodies and supervisory
authorities can enforce the necessity for explanations to be pro-
vided. Not just the AI model itself needs to be explainable; its
decision-making procedures must also be explainable.

• Although we can elicit explanations of various kinds, the quantity
of proposals without regard to whether they satisfy the intended
audience’s needs has reached a saturation point.

• There have been many promises about creating transparent mod-
els, yet practical applications need complex modeling: How much
performance can be sacrificed for transparency?

• Policies for AI Governance and supervisory regulations that are
currently in design comply with seven identified requirements for
developing Trustworthy AI: (i) robustness and safety, (ii) human
agency and oversight, (iii) transparency, (iv) privacy and data
governance, (v) diversity, non-discrimination, and fairness; (vi)
accountability, and (vii) social and environmental well-being. In
order to not advance only over only one of the requirements for
trustworthiness, we advocate for simultaneously approaching the
problem of reaching trustworthy AI from all these perspectives.

Furthermore, the importance of bridging the gap between legal
lauses in trustworthy AI regulations and technical advances, tools,
nd practices in related fields is needed. This connection is crucial for
eveloping risk-aware scenarios and increasing the number of cases in
hich trustworthiness is required over time. To achieve this goal, it is
ecessary to continuously learn from the initially approached methods
nd apply these lessons to future development. As such, there is a need
or collaboration between legal and technical experts to establish a
omprehensive framework for trustworthy AI. This enables the deploy-
ent of AI systems that are not only technically advanced, but also
eet legal and ethical requirements. Addressing this gap facilitates the
evelopment of trustworthy AI and ensures that it is used for the benefit
f the society.

This survey has shown that it is feasible to boost a model’s epistemic
onfidence by taking advantage of the insights offered by several com-
lementary explainable approaches. The goal of XAI is to learn more
bout AI systems, understand them, and establish trust in them. The
AI field, however, has more promise than merely promoting trustwor-

hiness. Explainability may inspire the development of novel training
ethods and evaluation metrics that guarantee the trustworthiness and

onsistency of even the most complicated and abstract models. Due to
echniques that primarily concentrate on technological aspects of AI
ystems, we are still far from having end-to-end XAI systems. The user
r developer interactions required for an AI system to be trusted and
mployed are not taken into account by most XAI approaches. This
s why interactive systems that offer explanations and feedback can
e crucial for objectively and empirically demonstrating to users and
ecision-makers that AI systems can be trusted.
41
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Appendix A. Literature search strategy

This section describes the methodology followed to structure and
filter the reviewed XAI papers included in the survey. It is hard to
search and arrange the XAI literature due to its interdisciplinary nature.
Therefore, some restrictions were imposed to exclude certain studies, as
follows:

• Any XAI studies in fields other than AI and Computer Science,
Mathematics, Philosophy, and Psychology.

• Studies with methods that were created only for the purpose of
increasing model transparency but were not explicitly focused on
explanation.

• Papers focused on concepts other than the explanation of Super-
vised ML models.

• Studies not written in the English language.
• Papers that are published before January 2016.

The keywords explainable artificial intelligence, responsible artificial
intelligence, explainable machine learning, trustworthy artificial intelligence,
ethical artificial intelligence, understandable artificial intelligence and in-
terpretable machine learning were used to search for publications that
discussed explainability using Google Scholar. The research articles
discussing explainability and interpretability were selected from peer-
reviewed journals, conferences, and workshops that were published
between January 2016 and June 2022, and as shown in Fig. 30,
the trend in terms of the number of papers published in the field
of XAI shows exponential growth over the study period. In addition,
PubMed, ScienceDirect, Web of Science, SpringerLink, Nature, Scopus,
and IEEE Xplore were used to perform a thorough literature search.
The search list also included under-review papers from arXiv. These
digital libraries were selected because they provide access to the most
significant and current peer-reviewed full-text publications in the area
of XAI.

In supervised ML, unsupervised ML, and reinforcement ML models,
explainability techniques have been used. Although explainability is
used with all three learning methods, the core of XAI research is focused
on supervised learning. Therefore, this article discussed explainability
in the context of supervised learning. For the purpose of completeness,
the snowballing process was applied [516]. The Related Work Section
of each article was briefly skimmed, and additional relevant papers
were sought out. More papers from other sources, such as the Euro-
pean Conference on Computer Vision (ECCV), ACM Transactions on
Intelligent Systems and Technology (ACM-TIST), Computational Visual
Media (CVM), the Workshop on Human-In-the-Loop Data Analytics
(HILDA), and IEEE Transactions on Big Data, were discovered using
this procedure.
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Fig. 30. The evolution of the total number of publications on XAI over time. The dotted lines show the trend over the previous three years using a moving average. These statistics
were retrieved from the Scopus database in June 2022.
Fig. 31. Search strategy for categorizing the selected XAI research papers on supervised learning.
About 3790 peer-reviewed articles were identified as a result of
this search strategy. The titles and abstracts of all these articles were
scrutinized. After that, we excluded any articles that did not satisfy
the criteria for inclusion by applying the restriction criteria mentioned
above. Finally, a complete text analysis of the remaining articles was
conducted in order to identify the most relevant papers. Furthermore,
the reference lists of the shortlisted papers were manually searched to
find out other relevant publications.

The following six major categories were identified after a compre-
hensive examination of all of the reviewed papers:

• Surveys of explainability techniques - This category contains system-
atic reviews in the area of XAI from the time period specified.
Table 1 provides a comprehensive overview of the reviews that
are currently accessible, along with open challenges.

• Concepts related to explainability - This category comprises re-
search aimed at defining concepts linked to the idea of explain-
ability, as well as determining the key features and requirements
of a successful explanation.

• Data explainability - This category contains papers that suggest
new and innovative approaches for improving explainability by
interpreting training data.

• Model explainability - This category contains papers that suggest
new and innovative approaches for improving explainability by
understanding the inner working of AI models.

• Post-hoc explainability - This category contains papers that suggest
new and innovative approaches for improving explainability by
providing a human-understandable explanation of the AI model’s
decision.

• Assessment of explainability - This category contains articles that
describe the findings of scientific research aimed at assessing the
effectiveness of various explainability techniques.

We applied the limitation criteria step by step to obtain our set
of distinct and specific papers for this study after gathering a list of
research articles based on related keywords. Fig. 31 depicts the whole
procedure, with the number of papers in brackets for each stage. It
was feasible to create a map of the XAI literature using the proposed
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Table 17
Table of Abbreviations.

ACE Automatic Concept-based Explanations
AD Alzheimer’s Disease
AI Artificial Intelligent
ALE Accumulated Local Effect
ANN(s) Artificial Neural Network(s)
BN(s) Bayesian Network(s)
CaCE Causal Concept Effect
CAM Class Activation Map
CAV(s) Concept Activation Vector(s)
CEM Contrastive Explanations Method
CEN Contextual Explanation Networks
CL Convolutional Layers
CluReFI Cluster Representatives with LIME
CNN(s) Convolution Neural Network(s)
ConvNet Convolutional Network
CORELS Certifiable Optimum RulE ListS
CP Ceteris Paribus
DARPA Defense Advanced Research Projects Agency
DeconvNet Deconvolutional Network
DkNN Deep k-Nearest Neighbors
DL Deep Learning
DNN(s) Deep Neural Network(s)
DT Decision Tree
DWAC Deep Weighted Averaging Classifier
EDA Exploratory Data Analysis
EDN Explainable Deep Network
FC Fully Connected
FRBS(s) Fuzzy Rule-based System(s)
FSS Fuzzy Sets and System
GAM(s) Generalized Additive Model(s)
G𝐴2M GAMs with interaction
GAP Global Average Pooling
GDPR General Data Protection Regulation
Grad-CAM Gradient-weighted Class Activation Mapping

(continued on next page)
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Table 17 (continued).

HCI Human-Computer Interaction
HLEG High-Level Expert Group
HRAIs High Risk AI Systems
ICE Individual Conditional Expectation
IG(s) Integrated Gradient(s)
IME Interaction-based Method for Explanations
IML Interpretable ML
kNN k-Nearest Neighbors
LIME Local Interpretable Model-agnostic Explanations
LOCO Leave-One-Covariate-Out
LRP Layer-wise Relevance Propagation
LSTM Long Short-Term Memory
MCR Model Class Reliance
ML Machine Learning
MLP(s) Multi-Layer Perceptron(s)
MMD-critic Maximum Mean Discrepancy
MOC Multi-Objective Counterfactuals
MSE Mean Square Error
NC Normal Cognitive
NeSy Neural Symbolic
NN(s) Neural Network(s)
NLP Natural Language Processing
PCA Principal Component Analysis
PDP Partial Dependence Plot
PL Prototypes Layer
RCFM Rectified Convolutional Feature Maps
ReLU Rectifying Linear Unit
RISE Randomized Input Sampling for Explanation
RL Reinforcement Learning
RML Responsible ML
RNN(s) Recurrent Neural Network(s)
RS Relevance Score
SA Sensitivity Analysis
SD Standard Deviation
SENN(s) Self-Explaining Neural Network(s)
SHAP Shapley Additive Explanation
SL Saliency Learning
SmGrad Smooth Gradient
SML Supervised Machine Learning
SP-LIME Submodular Pick LIME
t-SNE t-Distributed Stochastic Neighbor Embedding
TCAV(s) Testing with CAV(s)
TED Teaching Explanations for Decision
UMAP Uniform Manifold Approximation and Projection
VAE-CaCE Variational Auto Encoders based CaCE
VIA Valid Interval Analysis
VQA Visual Question Answering
WIT What-If Tool
XAI Explainable AI
XRL Explainable Reinforcement Learning
XSML Explainable Supervised ML

categorization method. The following concerns, in particular, are taken
into account: (i) outliers — papers that concentrate on the unsupervised
and RL models, (ii) typos — duplicate and unrelated papers, (iii)
disparities — papers unsuitable for this study, and (iv) inconsistencies
between various evaluations by checking and eliminating any obscure
or misclassified papers. Note that since a paper may cover several
dimensions, it may appear in numerous branches of this categorization.

Appendix B. Acronyms

The abbreviations used along the manuscript are summarized in
Table 17.
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