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A B S T R A C T

Long multi-span bridges represent a broad section of the civil roadway infrastructure. Despite
being so common, their condition-based maintenance through vibration-based Structural Health
Monitoring (SHM) has been scarcely investigated in the literature. The dynamic identification of
such structures through Operational Modal Analysis (OMA) is especially challenging due to of
their quasi-periodic nature and the common existence of weak inter-span coupling. Even when
designed following an isostatic scheme, there always exists a certain degree of coupling between
spans due to the continuity of the deck, the pavement and imperfect expansion joints. Hence,
the modal poles of the spans typically appear as dense clusters with closely spaced frequencies
and mode shapes with similar wavelengths, which significantly hinders the identification of
physical poles through stabilization diagrams. In this light, this paper proposes a model-based
machine learning approach to conduct and interpret the OMA results of partially continuous
multi-span bridges. The proposed method is a hierarchical clustering approach that leverages
on the analytical solution of the vertical free vibration response of multi-span girders with
weak inter-span rotational coupling, allowing the estimation of the modal features of any
bridge configuration ranging from simply supported to perfectly continuous conditions. Detailed
parametric analyses and discussions are presented to appraise the correlation between the inter-
span rotational coupling and the clustering of the modal poles of multi-span bridges, as well as
the influence of damage conditions of varying severity and extension. On this basis, a model-
based cut-off distance threshold for hierarchical clustering of stable poles is proposed to assist
the automation of the global OMA of multi-span bridges. The developed formulation is tested
in a real-world in-operation seven-spans reinforced concrete girder bridge, the Trigno V Bridge
in Italy.

. Introduction

Over the past decade, increasing efforts have been made worldwide to find efficient ways to reduce the number of structurally
eficient bridges and improve their safety. These efforts are motivated by the serious economic and life losses resulting from the
ailure of these critical elements of the transportation network. A prominent example is the collapse of the Tuojiang Bridge (Hunan,
hina) in 2007 during its construction, which caused 66 fatalities and 23 injured [1]. Another recent case is the tragic collapse of
he Morandi Bridge (Genoa, Italy) in 2018 [2], which caused 43 casualties, the evacuation of 600 people, and estimated costs in
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damages around €400–600 million [3]. In the U.S., the American Society of Civil Engineers (ASCE) points out that 42% of the 617
housands American road bridges are at least 50 years old and 7.5% of them present structural deficiencies [4]. This is consistent with
ther recent statistics reporting a total of 1062 bridge failures in the US between 1980 and 2012 [5]. In China, recent studies point
ut that 69.6% of the bridge failures are due to anthropic factors, inadequate maintenance and supervision representing primary
auses [6]. The response by governments to such a pressing challenge is being reflected in increasing investments in infrastructure
esilience and the enactment of advanced SHM regulations in recent years. In China, the Ministry of Transportation issued in 2014 the
echnical Code for SHM of buildings and bridges (GB50982) and in 2016 the design code for SHM systems for large highway bridges
JT/T1037) [7]. In May 5th 2022, the Federal Highway Administration (FHWA) of U.S. Department of Transportation announced an
dditional $1.14 billion in funding for bridge rehabilitation and replacement as well as in updating the National Bridge Inspection
tandards (NBIS) [8]. In the European context, despite the absence of a pertinent legislation beyond recommendations, the European
ommission has invested considerable R&D efforts into the field of SHM [9]. Among the EU countries, the guidelines for Risk
lassification and Management of Bridges issued by the Italian Ministry of Infrastructure and Transport in 2020 and then updated
n July 1st 2022 [10] represent the most recent technical code highlighting the pivotal role of SHM for the management of ageing
nfrastructure.

Legislation on bridge inspection and maintenance has been driven by a considerable volume of research in the last decades on
he development of algorithms and solutions to monitor and control the integrity of civil engineering structures. Such developments
all within the framework of SHM which, in opposition to traditional periodically scheduled maintenance models, advocates the
mplementation of non-destructive continuous monitoring solutions to enable preventive maintenance [11]. Among the wide variety
f existing monitoring technologies, vibration-based SHM based on OMA has become particularly popular owing to its global
ssessment capabilities, minimum intrusiveness, and relatively easy automation [12,13]. These techniques allow extracting the
odal features of a structural system (i.e. resonant frequencies, damping ratios and mode shapes) by exploiting acceleration

esponse time series under normal operating conditions [14]. Given their dependency upon the stiffness and the energy dissipation
echanisms of structures, modal features can be used to identify the appearance of damage [15,16]. Since OMA techniques do
ot require to interrupt the traffic flow and sensors can be typically secured in areas of the structure non-accessible by users, a
onsiderable number of successful applications to both railway [17,18] and highway [19,20] bridges have been reported in the
iterature. Considerable efforts have been also devoted to the development of efficient techniques capable of achieving high damage
lassification levels (detection, localization and quantification) through continuous vibration-based SHM. The most recent advances
nclude, among others, continuous supervised damage identification through surrogate modelling [21] and Artificial Intelligence
AI) [22], AI-based OMA techniques [23], transfer learning and population-based SHM [24].

As a cornerstone to enable the implementation of OMA into continuous SHM schemes, considerable research efforts have been
xerted in recent years to develop Automated OMA (AOMA) techniques. In particular, special attention has been devoted to the
utomation of time domain-based Stochastic Subspace Identification (SSI) methods [25,26]. These techniques typically address the
utomated interpretation of stabilization diagrams assessing the consistency of the identified poles of the system for increasing
odel orders [27]. Once clearly spurious/mathematical poles are removed according to hard (HC) and soft (SC) criteria, a certain

lustering technique needs to be adopted to group the poles tagged as stable into subsets of similar modal features [28]. To this aim,
number of clustering approaches have been proposed in the literature, including hierarchical clustering [29], fuzzy clustering [30],
aussian Mixture Models (GMM) [31], density-based clustering [30], and k-means [32]. Agglomerative (bottom up) hierarchical
lustering techniques are widespread unsupervised machine learning algorithms given their insensitivity to initialization conditions,
asy implementation, and simple interpretation of the hierarchical relation between clusters. The algorithm starts by considering all
he poles form independent clusters. Afterwards, a hierarchical representation is created by sequentially merging pairs of clusters that
re closest to each other until concentrating all the poles in one single cluster [33]. Linkages among poles are defined according
o a certain distance metric accounting for their similarities in terms of resonant frequency and/or damping ratio as well as the
rthogonality between their mode shape vectors. This process is finally represented in a dendogram rendering the tree-like structure
f the hierarchical similarity among the poles of the system. On this basis, physical poles can be identified by those clusters compliant
ith a certain cut-off distance on the dendrogram, that is the limit linkage distance above which clusters will not be merged.
herefore, this user-defined distance threshold critically determines the quality of the outcome of the OMA. The problem of finding
n optimal threshold to automate the clustering phase has been addressed by several authors in the literature. For instance, Reynders
t al. [34] defined the optimal cut-off threshold through statistical moments extracted from an initial 2-means clustering step adopted
o differentiate between possibly physical modes and certainly spurious modes. Similarly, Zini et al. [35] recently proposed the
efinition of the cut-off threshold as the 80th percentile of the minimum linkage distances determined over the sets of stable poles
t every model order in the stabilization diagram.

In the context of OMA of bridge structures, long multi-span bridges represent particularly challenging systems. Such bridges,
hich constitute a sizeable portion of the bridge stock worldwide, typically present quasi-periodic configurations characterized by
echanical/geometrical repetitiveness and weak connections between consecutive spans. The prefix quasi is related to the frequent
resence of slight differences between the connections and the properties of the spans. A certain degree of continuity is also common
n the case of isostatic configurations as a result of weak deck/asphalt connections, imperfect expansion joints and/or stringers.
n the field of railway bridges, the coupling may be due to the effect of rails and ballast continuity and considerable research
as been reported on the analysis of weak coupling effects upon the dynamic response under moving loads (see e.g. [36,37]).
onetheless, the number of works dealing with the OMA of multi-span bridges with weak coupling effects is considerably scarce.

n this regard, the main difficulties stem from the fact that the modal properties of the spans typically appear as dense clusters of
2

oles with closely spaced frequencies and mode shapes with similar wavelengths [38]. Only slight differences arise as a result of
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Fig. 1. Multi-span bridge divided into 𝑛𝑠 simply supported spans with partial rotational coupling.

inor differences among spans and imperfect independence, which considerably hinders the identification of physical poles using
tandard stabilization diagrams. In this context, two different approaches are commonly adopted in practice: (i) to assume the spans
re dynamically independent and conduct span-wise OMA (refer e.g. to [39]); (ii) to consider that there is a certain (unknown)
egree of continuity and to perform a global identification (as e.g. [40]). Nonetheless, such approaches risk missing global vibration
odes and confusing local and global modes, respectively. Among the few works in the literature coping with this issue, it is worth
oting the contribution by Zhang et al. [41] who proposed an innovative approach based on a finite element model (FEM) updating
pproach exploiting free wave characteristics under forced excitation instead of modal signatures. While initially validated only in
simple lab structure, Zhang and co-authors [42] later verified the feasibility of free wave identification for the calibration of a

EM of the K032 viaduct (Bruges, Belgium) consisting of two 800 m long parallel curved bridges of 23 spans.
In light of the aforementioned gap in the literature, we propose in this paper a novel model-based clustering strategy for AOMA

f multi-span bridges with weak inter-span rotational coupling. The proposed approach is based upon the closed-form solution of a
ulti-span Euler–Bernoulli beam model with rotational springs between adjacent spans. In this light, the optimal cut-off distance to

e used for the hierarchical clustering of stable poles identified by OMA is set up according to frequency bands of the natural modes
f vibration predicted by the developed theoretical model. Detailed parametric analyses are presented to evaluate the influence
f the coupling degree between spans upon the clustering of poles in stabilization diagrams. Additionally, parametric analyses are
lso presented to investigate the influence of damage upon the modal features with respect to the reference (undamaged) condition
n order to get some insights on which modes to track and inspect for damage detection purposes, considering the existence of
s many closely spaced modes for each modal order as the number of spans. Finally, the effectiveness of the proposed approach
s investigated in a real 7-span bridge, the Trigno V Bridge located in the region of Abruzos (Italy). The remainder of this paper
s organized as follows. Section 2 presents the theoretical formulation of the developed multi-span Euler–Bernoulli beam model.
umerical results and discussion are presented in Section 3 and, finally, Section 4 ends the paper with some concluding remarks.

. Theoretical framework: Multi-span Euler–Bernoulli beam model with rotational springs between adjacent spans

Let us assume a multi-span bridge as the composition of 𝑛𝑠 Euler–Bernoulli simply supported beams of length 𝐿𝑖, 𝑖 = 1,… , 𝑛𝑠,
connected by linear rotational springs with stiffness constants 𝑘𝑗 , 𝑗 = 1,… , 𝑛𝑠 − 1, governing the degree of rotational continuity
between adjacent spans. The mass per unit length, 𝑚𝑖, and the flexural stiffness, (𝐸𝐼)𝑖, are assumed to be constant within every
span. Finally, a local spatial coordinate 𝑥𝑖 is defined along the ith beam element, i.e. 𝑥𝑖 ∈

[

0, 𝐿𝑖
]

(see Fig. 1).
Under the hypothesis of undamped motion, the differential equation of vertical displacements 𝑤𝑖(𝑥𝑖, 𝑡) of the 𝑖th beam under free

vibrations reads:

𝑚𝑖
𝜕2𝑤𝑖(𝑥𝑖, 𝑡)

𝜕𝑡2
+ 𝜕2

𝜕𝑥2𝑖

[

(𝐸𝐼)𝑖
𝜕2𝑤𝑖(𝑥𝑖, 𝑡)

𝜕𝑥2𝑖

]

= 0. (1)

Modal decomposition can be used to solve Eq. (1) by imposing 𝑤𝑖(𝑥𝑖, 𝑡) = 𝜙𝑖(𝑥𝑖)𝑞𝑖(𝑡), with 𝜙𝑖(𝑥𝑖) and 𝑞𝑖(𝑡) denoting the mode
hape and the corresponding generalized modal coordinate, respectively. Considering harmonic motions, the modal decomposition
f Eq. (1) leads to the spatial differential equation:

d4𝜙𝑖(𝑥𝑖)
d𝑥4

− 𝛼4
𝑚𝑖

(𝐸𝐼)𝑖
𝜙𝑖(𝑥𝑖) = 0, (2)

ith

𝛼 = 4

√

𝜔2 𝑚𝑖
(𝐸𝐼)𝑖

. (3)

The general solution of Eq. (2) reads [43]:

𝜙𝑖(𝑥𝑖) = 𝐶𝑖 cos
(

𝛼𝑥𝑖
)

+𝐷𝑖 sin
(

𝛼𝑥𝑖
)

+ 𝐸𝑖 cosh
(

𝛼𝑥𝑖
)

+ 𝐹𝑖 sinh
(

𝛼𝑥𝑖
)

. (4)

The spanwise integration constants 𝐶𝑖, 𝐷𝑖, 𝐸𝑖, 𝐹𝑖 in Eq. (4) are computed by imposing the boundary conditions reported in
Table 1. These boundary conditions correspond to vanishing deflections at the supports, vanishing bending moments at the first and
last supports, and continuity conditions of bending moments at each intermediate support. Note in Table 1 that the terms 𝛽𝑖 =

𝑘𝑖
𝐸𝐼𝑖

quantify the rotational coupling between the spans. The derivation process is exposed in Appendix in which the boundary conditions
3
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Table 1
Boundary conditions.
First support Intermediate supports Last support

𝜙1(0) = 𝜙1(𝐿1) = 0, 𝜙𝑖(0) = 𝜙𝑖(𝐿𝑖) = 0, 𝜙𝑛𝑠 (0) = 𝜙𝑛𝑠 (𝐿𝑛𝑠 ) = 0,
𝜙′′
1 (0) = 0, 𝜙′′

𝑖 (𝐿𝑖) = 𝜙′′
𝑖+1(0), 𝜙′′

𝑛𝑠
(𝐿𝑛𝑠 ) = 0,

𝜙′′
1 (𝐿1) = 𝜙′′

2 (0), 𝜙′′
𝑖 (𝐿𝑖) = 𝛽𝑖(𝜙′

𝑖+1(0) − 𝜙
′
𝑖(𝐿𝑖)), 𝜙′′

𝑛𝑠
(0) = 𝜙′′

𝑛𝑠−1

(

𝐿𝑛𝑠−1
)

,

in Table 1 are imposed and the integration constants 𝐷𝑖, 𝐸𝑖 and 𝐹𝑖 are combined as a function of 𝐶𝑖. The modal coefficients 𝐶𝑖 can
be obtained by solving a system of 𝑛𝑠 − 1 equations in the form:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜑1 + 𝜑2 + 2 𝛼
𝛽1

−𝜓2 0 ⋯ 0
−𝜓2 𝜑2 + 𝜑3 + 2 𝛼

𝛽2
−𝜓3 ⋯ 0

0 −𝜓3 𝜑3 + 𝜑4 + 2 𝛼
𝛽3

⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝜑𝑛𝑠−1 + 𝜑𝑛𝑠 + 2 𝛼

𝛽𝑛𝑠−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐶2
𝐶3
𝐶4
⋮
𝐶𝑛𝑠

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= 𝜞 𝑛𝑠−1 𝐂 = 𝟎, (5)

The term 𝜞 𝑛𝑠−1 ∈ R(𝑛𝑠−1)×(𝑛𝑠−1) in Eq. (5) denotes the characteristic matrix and 𝐂 ∈ R𝑛𝑠−1 is a vector containing the coefficients
𝑖. Imposing for the sake of simplicity, that all the spans have the same mechanical properties, mass properties and equal length,

he 𝑖 sub-index can be dropped from the characteristic matrix as:

𝜞 𝑛𝑠−1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2
(

𝜑 + 𝛬
𝛽𝐿

)

−𝜓 0 ⋯ 0

−𝜓 2
(

𝜑 + 𝛬
𝛽𝐿

)

−𝜓 ⋯ 0

0 −𝜓 2
(

𝜑 + 𝛬
𝛽𝐿

)

⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 ⋯ 2
(

𝜑 + 𝛬
𝛽𝐿

)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (6)

where a non-dimensional coefficient 𝛬 = 𝛼𝐿 has been introduced. The existence of non-trivial solutions requires:

det
(

𝜞 𝑛𝑠−1

)

= 0, (7)

which represents the characteristic equation for the solution of the eigenvalues 𝛬. Considering the tridiagonal structure of 𝜞 𝑛𝑠−1
in Eq. (6), it is possible to find a closed-form expression for its determinant through the recurrence relation given by the Laplace
expansion as [44]:

det
(

𝜞 𝑛𝑠−1

)

= 2
(

𝜑 + 𝛬
𝛽𝐿

)

𝜞 𝑛𝑠−2 − 𝜓
2det(𝜞 𝑛𝑠−3), (8)

here 𝜞 𝑛𝑠−2 and 𝜞 𝑛𝑠−3 are the minors of 𝜞 of order 𝑛𝑠 −2 and 𝑛𝑠 −3. From the recursive expression in Eq. (8), it can be extracted:

det
(

𝜞 𝑛𝑠−1

)

=
𝑎𝑛𝑠1 − 𝑎𝑛𝑠2
𝑎1 − 𝑎2

, (9)

where:

𝑎1 = 𝜑 + 𝛽−1
[

𝛬
𝐿

+

√

(𝛬
𝐿

)2
+ 𝛽2

(

𝜑2 − 𝜓2
)

+
2𝛬𝛽𝜑
𝐿

]

,

𝑎2 = 𝜑 + 𝛽−1
[

𝛬
𝐿

−

√

(𝛬
𝐿

)2
+ 𝛽2

(

𝜑2 − 𝜓2
)

+
2𝛬𝛽𝜑
𝐿

]

.

(10)

Note that Eq. (7) constitutes a transcendental equation and, therefore, it has to be solved numerically. Once solved, vector 𝐂
or the 𝑛-th mode can be obtained by solving the linear system of equations for the corresponding 𝛬𝑛 solution. The 𝑛-th natural
requency, 𝑓𝑛, can be evaluated by back substitution into Eq. (3):

𝑓𝑛 =
𝛬2
𝑛

2𝜋𝐿2

√

𝐸𝐼
𝑚
. (11)

To complete the definition of the mode shapes, the remaining coefficients 𝐸𝑖, 𝐷𝑖, and 𝐹𝑖 can be computed from Eqs. ((A.1),(A.7))
n Appendix. For the first span, the boundary conditions in Table 1 lead to 𝐶1 = 𝐸1 = 0, while 𝐷1 and 𝐹1 can be easily extracted
y imposing 𝜙′′

1 (𝐿1) = 𝜙′′
2 (0). Similarly, the coefficients for the last span can be extracted by imposing the boundary conditions in

able 1. Then, the 𝑛th mode shape along an arbitrary 𝑖th span reads:

𝜙𝑛,𝑖(𝑥𝑖) =
𝐶𝑛,𝑖 (cos

(

𝛼𝑛𝑥𝑖
)

− cosh
(

𝛼𝑛𝑥𝑖
))

+
𝐷𝑛,𝑖 sin

(

𝛼𝑛𝑥𝑖
)

+
𝐹𝑛,𝑖 sinh

(

𝛼𝑛𝑥𝑖
)

, (12)
4

𝑋𝑛 𝑋𝑛 𝑋𝑛
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Fig. 2. Determinant of the characteristic matrix 𝜞 𝑛𝑠−1 for a bridge with 𝑛𝑠 = 5 spans versus the non-dimensional frequency parameter 𝛬 (a), and detailed view
of the first block of solutions corresponding to the first order bending modes (b).

with 𝑋𝑛 being a scale factor that can be obtained by imposing mass-normalization of the global mode shape as:
𝑛𝑠
∑

𝑖=1
∫

𝐿𝑖

0
𝑚𝜙𝑖(𝑥𝑖)2d𝑥𝑖 =

𝑚
𝑋2
𝑛

𝑛𝑠
∑

𝑖=1
∫

𝐿𝑖

0

[

𝐶𝑛,𝑖
(

cos
(

𝛼𝑛𝑥𝑖
)

− cosh
(

𝛼𝑛𝑥𝑖
))

+𝐷𝑛,𝑖 sin
(

𝛼𝑛𝑥𝑖
)

+ 𝐹𝑛,𝑖 sinh
(

𝛼𝑛𝑥𝑖
)]2 d𝑥𝑖 = 1. (13)

The solution of 𝑋𝑛 can be extracted from Eq. (13) as:

𝑋𝑛 =

√

√

√

√

𝑗
∑

𝑖=1
𝑚
(

𝑌 𝑛1 + 𝑌 𝑛2 + 𝑌 𝑛3 + 𝑌 𝑛4
)

, (14)

where the expressions for coefficients 𝑌 𝑛𝑖 read:

𝑌 𝑛,𝑖1 = 2
[

−𝐶𝑖
(

𝐷𝑖 + 𝐹𝑖
)

+ 𝑙𝑖𝛼𝑛
(

2𝐶2
𝑖 +𝐷

2
𝑖 − 𝐹

2
𝑖
)]

, (15a)

𝑌 𝑛,𝑖2 = −2𝐶𝑖𝐷𝑖 cos
(

2𝑙𝑖𝛼
)

+
(

𝐶2
𝑖 −𝐷

2
𝑖
)

sin
(

2𝑙𝑖𝛼
)

, (15b)

𝑌 𝑛,𝑖3 = −2𝐶𝑖𝐹𝑖 cosh
(

2𝑙𝑖𝛼
)

+
(

𝐶2
𝑖 + 𝐹

2
𝑖
)

sinh
(

2𝑙𝑖𝛼
)

, (15c)

𝑌 𝑛,𝑖4 = 4 cosh
(

𝑙𝑖𝛼
) [

𝐶𝑖
(

𝐷𝑖 + 𝐹𝑖
)

cos
(

𝑙𝑖𝛼
)

+
(

𝐷𝑖𝐹𝑖 − 𝐶2
𝑖
)

sin
(

𝑙𝑖𝛼
)]

, (15d)

𝑌 𝑛,𝑖5 = 4 sinh
(

𝑙𝑖𝛼
) [

−
(

𝐶2
𝑖 +𝐷𝑖𝐹𝑖

)

cos
(

𝑙𝑖𝛼
)

+ 𝐶𝑖
(

𝐹𝑖 −𝐷𝑖
)

sin
(

𝑙𝑖𝛼
)]

. (15e)

. Validation studies and discussion

This section presents a detailed study of the structure and potential of the analytical solution presented above to conduct AOMA
f multi-span bridges with weak rotational coupling conditions. Specifically, Section 3.1 analyzes the structure of the characteristic
quation in Eq. (7), as well as the dependency of the modal properties with the number of spans 𝑛𝑠 and the rotational coupling
actor 𝛽. Afterwards, Section 3.2 investigates the effects of damage with varying severity and extension upon the modal properties.
inally, Section 3.3 illustrates the usefulness of the developed analytical solution to assist the AOMA of a real in-operation multi-span
ridge.

.1. Parametric analysis of the analytical model

Let us first inspect the relationship between the parameter 𝛽𝐿, henceforth referred to as the connection degree, and the
haracteristic equation in (7). The connection degree 𝛽𝐿 is a non-dimensional factor representing the ratio between the stiffness
f the rotational springs 𝑘 and the flexural stiffness of the beams 𝐸𝐼∕𝐿. In this light, Fig. 2(a) depicts the determinant of the
haracteristic matrix 𝜞 𝑛𝑠−1 for a 5-span bridge (𝑛𝑠 = 5) with increasing continuity degrees, spanning from 𝛽𝐿 = 5 until 𝛽𝐿 → ∞
perfect rotational continuity). It is first noted in Fig. 2(a) that the determinant of the characteristic matrix presents equally spaced
ertical asymptotes at 𝛬 = 𝑛𝜋, 𝑛 ∈ N. These asymptotes correspond to the limit 𝛽𝐿 → 0, for which Eq. (7) becomes indeterminate.
his limit case corresponds to the pure isostatic configuration without any rotational coupling between spans, whose solutions turn

nto 𝜔𝑛 = 𝑛2𝜋2
√

𝐸𝐼∕𝑚𝐿4 [45], i.e. 𝛬 = 𝑛𝜋. Considering the asymptotes, the characteristic equation (7) presents blocks of 𝑛𝑠 = 5
roots. It can be seen in the detailed view of the first block in Fig. 2(b) that the roots increase with increasing connection degree 𝛽𝐿.
5
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Fig. 3. First two blocks of roots of the characteristic matrix of multi-span beams with an increasing number of spans 𝑛𝑠 considering two different rotational
oupling degrees, namely 𝛽𝐿 = 1 (a) and 𝛽𝐿 = 5 (b).

The blocks of solutions corresponding to the 1st and 2nd order bending modes versus the non-dimensional frequency parameters
are further investigated in Fig. 3 for an increasing number of spans 𝑛𝑠. In order to appraise the effect of the inter-span rotational

oupling, two different 𝛽𝐿 values of 1 and 5 are considered in Fig. 3(a) and (b), respectively. It is clear in these figures that the
oots fall between the vertical lines at 𝜋 and 2𝜋 and exponential-like envelopes. The vertical lines at integer multiples of 𝜋 represent
he isostatic solutions which always exist also in partially-continuous or continuous configurations, being therefore invariant with
espect to 𝛽𝐿. The envelopes, instead, depend upon 𝛽𝐿. As the number of spans increases, the rate of increase of the envelopes
ends to stabilize leading to a denser clustering of the solutions. Furthermore, note that the gap between the solutions expands as
he rotational coupling increases. Therefore, the separation between the resonant frequencies of the modes of a multi-span bridge
elonging to a certain bending mode order ranges between the limit configurations of 𝛽𝐿 → 0 (purely isostatic with no rotational
oupling between the spans leading to 𝑛𝑠 spanwise modes with the same natural frequency 𝛬 = 𝑛𝜋) and 𝛽𝐿 → ∞ (perfectly
ontinuous configuration). A conclusion of practical interest from this analysis regards the dependency between the frequency range
overed by the solutions belonging to a certain model order (or alternatively, the envelope curve) and the degree of inter-span
otational coupling. In this light, it may be possible to collect abacuses of envelope curves to infer the rotational coupling degree
rom experimentally determined modal poles.

The envelope curves for the first bending modal order considering different coupling degrees 𝛽𝐿 and number of spans 𝑛𝑠 are
resented in Fig. 4(a) and (b), respectively. Note in Fig. 4(a) that all the envelopes start at the solution for the isostatic configuration
𝛬 = 𝜋) and exhibit increasing growth rates as the rotational coupling increases. Specifically, the largest growth rates are observed
or coupling factors above 𝛽𝐿 = 1 until achieving convergence to the solution of the continuous multi-span model, not finding
ignificant growths for coupling degrees above 𝛽𝐿 = 100. On the other hand, when keeping constant the number of spans 𝑛𝑠 and
arying the coupling degree 𝛽𝐿, Fig. 4(b) highlights that the variation of the width of the envelope curves sensibly depends on
he number of spans 𝑛𝑠. It is also noticeable in this figure that the rotational coupling 𝛽𝐿 required to achieve convergence to the

continuous multi-span framework depends upon the number of spans 𝑛𝑠. For instance, convergence for curves corresponding to
the cases of 2 and 3 spans is approximately achieved for 𝛽𝐿 coefficients larger than 60 and 100, respectively. This behaviour is
xplained by the fact that, as the number of spans 𝑛𝑠 increases, the coupling stiffness required to guarantee the rigid rotation of the
ection over the supports must be larger.

The mode shapes (normalized to a unit maximum amplitude) obtained for 4-span beams with rotational coupling degrees of
𝐿 = 0 (a), 𝛽𝐿 = 5 (b) and 𝛽𝐿 → ∞ (c) are shown in Fig. 5. In the case of isostatic configuration (𝛽𝐿 = 0) in Fig. 5(a),
ach span is independent and two sets of four repeated eigenvalues are found. In addition, the local eigenfunctions evaluated
t each span present identical wavelengths. As the rotational coupling differs from zero, the eigenfunctions tend to converge to
he continuous configuration (𝛽𝐿 → ∞) in Fig. 5 (c). Indeed, the eigenfunctions identified for the case of intermediate coupling
𝛽𝐿 = 5) are indistinguishable from those of the continuous configuration as evidenced by the modal assurance criterion (MAC)
atrix furnished in Fig. 6(a). In this figure, the modal displacements are evaluated at 𝐿∕4, 𝐿∕2 and 3𝐿∕4, as commonly adopted

n practice. The MAC is a metric assessing the orthogonality between two eigenvectors [46], with values of 0 and 1 indicating
erfect independence (orthogonal) and perfect correlation (linearly dependent), respectively. The quasi-diagonal structure of the
AC matrix in Fig. 6(a) confirms that the eigenvectors for 𝛽𝐿 = 5 and 𝛽𝐿 → ∞ are almost identical. The small residuals in the

ff-diagonal terms are due to slight discrepancies that appear in the areas adjacent to the supports and limitations in the sampling
f the eigenvectors. Also in cases where 𝛽𝐿 is less than 1, the modes still tend to be very similar to those of the continuous case,
nd the slightest differences are localized areas nearby the supports. Note in Fig. 5(b) and (c) that modes 1–4 and 5–8 respectively
xhibit identical wavelengths, differing only in terms of relative maximum amplitude among the spans. Along with the circumstance
6

hat mode shapes are only evaluated at a limited number of locations in practice, with the subsequent lower accuracy compared
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Fig. 4. Abacuses of the envelopes of the first order bending mode solutions: (a) 𝛬 versus 𝑛𝑠, (b) 𝛬 versus 𝛽𝐿.

to resonant frequencies [47], small inaccuracies in the identification of the mode shapes (e.g. imperfect sensor synchronization
or alignment) may lead to erroneous modal classifications when using the MAC metric. In the cases of partially continuous and
continuous configurations, it is worth stressing the fact that the first eigenvalues are very close (the first one is nearly identical)
to those of the perfectly isostatic scheme (𝛬 = 𝑛𝜋). Furthermore, it is important to remark that the local eigenfunctions observed
in the isostatic configuration exhibit identical wavelengths to those found for the partially coupled and continuous configurations.
This analysis is deepened in Fig. 6(b), which reports the MAC values between the local modes 1 and 2 extracted for the fourth and
the third spans of the beam with isostatic configuration with the corresponding local modes extracted from the 𝛽𝐿 = 5 and 𝛽𝐿→ ∞
onfigurations. It is noted in this figure that the first local mode from the isostatic case is locally almost parallel and perpendicular
o modes 1–4 and 5–8 of the partially coupled and continuous configurations, respectively, and vice versa for the second mode
small inaccuracies in MAC calculations are due to spatial sampling of the eigenfunctions to get the eigenvectors). These results
re of high practical interest since they highlight the risk of confusing local and global modes when performing span-wise OMA of
ulti-span bridges.

.1.1. Discussion and development of model-assisted distance metric for AOMA
Consequences of the previous parametric analyses from a OMA perspective can be listed as follows:

• The resonant frequencies of 𝑛𝑠-span bridges with weak inter-span rotational coupling appear in blocks of 𝑛𝑠 poles bounded
between the natural frequencies of the isostatic configuration (𝛬 = 𝑛𝜋, 𝑛 ∈ N), which always exist, and envelope curves
depending upon 𝛽𝐿.

• The spacing in frequency among the 𝑛𝑠 poles is a function of the inter-span rotational coupling degree 𝛽𝐿. In general, the
spacing between the solutions decreases as the number of spans 𝑛𝑠 increases and the coupling degree 𝛽𝐿 diminishes.

• The frequency bandwidth of the clusters of poles belonging to a certain bending mode order in a stabilization diagram can be
used to infer the inter-span rotational coupling 𝛽𝐿 of multi-span bridges.

In the context of OMA, the physical meaningfulness of identified poles of the system is typically assessed through a stabilization
iagram. Stabilization diagrams depict the identified poles (typically in terms of frequency) for all the considered model orders. On
his basis, the physical (true) poles of the monitored structure are found as alignments of poles consistently identified throughout
he considered range of model orders. The dissimilarity between the poles is commonly assessed through a certain distance metric
ormulated in terms of resonant frequencies and mode shapes such as [48]:

𝑑𝑚𝑖𝑗 = 𝜂1
|𝑓𝑚𝑖 − 𝑓𝑚−1𝑗 |

max(𝑓𝑚𝑖 , 𝑓
𝑚−1
𝑗 )

+ 𝜂2
[

1 −𝑀𝐴𝐶
(

𝝓𝑚−1𝑖 ,𝝓𝑚𝑗
)]

, (16)

where 𝑓𝑚−1𝑗 and 𝑓𝑚𝑖 stand for the 𝑖-th and the 𝑗-th resonant frequencies of two poles identified at two adjacent model orders 𝑚−1 and
𝑚, respectively, 𝝓𝑚−1𝑗 and 𝝓𝑚𝑖 are the corresponding eigenvectors, and 𝜂1 and 𝜂2 denote weighing factors. The clustering algorithm
tarts by considering all the stable poles from the stabilization diagram as single clusters. Then, the algorithm computes the distance
etween all the stable poles according to Eq. (16), and groups the two closest clusters into a single cluster. The algorithm proceeds
teratively until all the poles are grouped into one single cluster. Finally, the dendogram summarizing the tree-like hierarchical
tructure of the clusters is cut at a certain cut-off distance threshold 𝑑, so enabling the automation of the interpretation of the

stabilization diagram for AOMA.
7
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Fig. 5. First eight bending modes of 4-spans bridge with inter-span rotation coupling coefficients of 𝛽𝐿 = 0 (a), 𝛽𝐿 = 5 (b), and 𝛽𝐿→ ∞ (c).

Fig. 6. (a) MAC matrix between the first eight eigenvectors determined for the 4-spans partially continuous (𝛽𝐿 = 5) and continuous configurations (𝛽𝐿 = ∞).
(b) MAC matrix between the first two local modes determined for the isostatic configuration and the (locally evaluated) first eight modes determined for 𝛽𝐿 = 5
and 𝛽𝐿 = ∞. The eigenvectors are sampled at three points per span, namely 𝐿∕4, 𝐿∕2 and 3𝐿∕4.
8
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Fig. 7. Envelopes of the frequencies (blue) and of the non-dimensional coefficients 𝛬 for the case of 𝛽𝐿 = 5 (a) and link deck schematization (b). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

When conducting AOMA of multi-span bridges, it is possible to exploit the previously introduced analytical model to tune the
cut-off distance 𝑑 to be used in a hierarchical clustering algorithm. From the previous analyses, and with the purpose of avoiding
otential misclassifications due to imperfect identification of mode shapes, the cut-off distance is formulated solely in terms of
esonant frequencies (𝜂1 = 1, 𝜂2 = 0). Specifically, to prevent the possibility of clustering two different closely-spaced modes
elonging to the same model order and even the possibility of a mode being split into several neighbouring clusters, the cut-off
istance threshold is set to the average frequency gap among the roots of the characteristic matrix from Eq. (3) belonging to the
arrowest envelope. It is important to remark that the width of the envelopes increases as the order of the bending modes increases,
hereby the clustering of poles intensifies as one aims to identify low order vibration modes as illustrated in Fig. 7(a). Note that this
s not in contrast with the behaviour previously reported in Fig. 3, as that figure was referring to the non-dimensional frequency
arameter 𝛬. Resonant frequencies 𝜔 are proportional to the square of 𝛬 and, therefore, the width of the frequency envelopes is

proportional to the difference of the squares of the maximum and minimum 𝛬 solutions of the same modal order. Therefore, since
the narrowest envelopes are those corresponding to the roots belonging to first order bending modes, the cut-off distance 𝑑 can be
defined as a function of the theoretical frequencies extracted from Eq. (7) as:

𝑑 = 1
𝑛𝑠 − 1

𝑛𝑠−1
∑

𝑖=1

𝑓 𝑡1,𝑖+1 − 𝑓
𝑡
1,𝑖

𝑓 𝑡1,𝑖+1
, (17)

where 𝑓 𝑡1,𝑖 and 𝑓 𝑡1,𝑖+1 are the 𝑖-th and the (𝑖+1)-th adjacent theoretical frequencies estimated for the block of solutions corresponding
to the first order bending modes. Note that, while the mechanical and geometrical properties of multi-span bridges can in practice
be estimated relatively well from the available information, the inter-span rotational coupling 𝑘 will be commonly unknown. Let
us assume the common configuration of multi-span bridges consisting of simply supported girders connected by a continuous deck
as sketched in Fig. 7(b). In this case, to accurately describe the rotational stiffness of the link deck, it is important to consider two
main phenomena [49]: (i) continuous decks typically debond from the main girders to accommodate the rotations at the supports;
(ii) the cross-section of the deck in the areas close to the joints are typically cracked. Hence, the link deck can be conceived as
a beam with length corresponding to the total debonded length 𝐿𝑑 , and Young’s modulus and cracked inertia with respect to the
centre of gravity of the cross-section of the bridge given by 𝐸𝑑 and 𝐼𝑑,𝑐𝑟, respectively. Based on experiments, Au et al. [49] found
that the total debonded length 𝐿𝑑 can be evaluated as the 5% of the sum of the lengths of the adjoining girders. Therefore, 𝐿𝑑 is
equal to 0.1𝐿 in the case in which all the spans have the same length. Additional considerations made in the validation of 𝐿𝑑 were
that the link deck introduced a negligible continuity to the structure because of its relatively low stiffness and tensile cracks were
observed at the top of the link slab induced by negative bending moments. Therefore, these considerations support the case of a
weak connection performed by the springs of the theoretical model and the employment of the cracked cross-section characteristics
of the deck. On this basis, as a first approximation for girder multi-span roadway bridges with continuous decks, the rotational
coupling can be estimated as:

𝑘 =
2𝐸𝑑𝐼𝑑,𝑐𝑟
𝐿𝑑

, (18)

and the inter-span rotational coupling degree 𝛽𝐿 can be defined as:

𝛽𝐿 = 2
(𝐸𝑑𝐼𝑑,𝑐𝑟)∕(𝐸𝐼)

𝐿𝑑∕𝐿
. (19)

One last quality check related to the outcome of the hierarchical clustering phase regards the minimum number of poles forming
cluster to be considered as a physical mode. Ideally, for every model order, it is desirable to choose the 𝑛 most populated (highest
9
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Fig. 8. Parametric analysis of the envelopes of the first and second order roots of multi-spans beams for damage conditions affecting large sections of the spans.
(a) Damage of extension 𝜁 = 0.5 and intensity 𝜂 = 0.5 affecting the second span 𝑆 = [2] at different positions 𝜒 (the case of degradation of the whole span 𝜁 = 1
is also included for comparison purposes). (b) Damage affecting all the spans 𝑆 =

[

1,… , 𝑛𝑠
]

at positions 𝜒 = {𝐿∕4, 𝐿∕2} with extension 𝜁 = 0.05 and intensity
𝜂 = 0.5 for different coupling degrees 𝛽𝐿 = {0.1, 1, 10}. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

cluster sizes) clusters. The cluster size of the modes may depend on how the bridge is stressed by the traffic during the acquisitions
and the participating mass in each mode, then clusters belonging to different modal order may present different sizes. Therefore, a
reasonable way to choose the 𝑛𝑠 modes belonging to the same modal order may be to select those presenting similar cluster sizes.

3.2. Parametric study on damage assessment: location and severity

The relatively large number of closely spaced modes per modal order hinders the damage identification of both localized and
extensive defects, as well as the tracking of the most damage-sensitive modes. In fact, the possibility of characterizing damage
increases if one is able to determine which of the 𝑛𝑠 modes of each modal order is the most damage sensitive, so as to focus on it
and narrow the field of analysis.

In this light, this section presents thorough parametric analyses to analyse the effects of damage conditions with varying severity
and extension on the modal properties of multi-span bridges. To do so, the previous analytical model is formulated in a FEM using
2-nodes, 2 degrees of freedom (DOFs) per node, linear Euler–Bernoulli elements connected by rotational springs linking the rotational
DOFs of nodes converging into the internal supports. For the purpose of achieving maximum accuracy, each span is discretized into
100 elements. Based upon the discretized model, damage is defined by affecting the flexural stiffness of certain elements. Specifically,
damage is characterized by four different parameters:

• Intensity : 𝜂 = 𝐸𝐼𝑑∕𝐸𝐼 ∈ [0, 1] with 𝐸𝐼𝑑 standing for the flexural stiffness of the damaged area.
• Extension: 𝜁 = 𝛥𝐿∕𝐿 ∈ [0, 1] where 𝛥𝐿 denotes the length of the damaged section.
• Position: 𝜒 = 𝑥∕𝐿 ∈

[

𝜁
2 , 1 −

𝜁
2

]

, 𝑥 being the central abscissa in which the damage is located with respect to the initial section
of the span.

• Damage location: Vector 𝑆 =
[

𝑠(1),… , 𝑠(𝑛)
]

with 1 ≤ 𝑠(𝑖) ≤ 𝑛𝑠 ∈ N determining the 𝑖th damaged span.

In the following analyses, the effects of damage are characterized in terms of how the envelopes of the roots of the characteristic
equation diverge from the reference undamaged condition (labelled henceforth with ‘‘Und’’.). The attention focuses on two damage
identification levels with practical interest in SHM of bridges: the ability to detect damage extended over large sections of the spans
(𝜁 ≥ 0.5) and localized defects (e.g.𝜁 = 0.05) in Figs. 8 and 9, respectively. The envelopes are evaluated for a maximum number of
spans 𝑛𝑠 = 7 for better visualization of the results.

Fig. 8 reports the results of the parametric analysis of damage affecting large sections of multi-span beams. On one hand, Fig. 8(a)
investigates the effects of damage with an extension 𝜁 = 0.5 affecting the second span at different positions 𝜒 . The red solid envelopes
denote the case in which the entire span is damaged (𝜁 = 1). It is clear in this figure that damage induces a shifting of the divergence
points between the branches of the envelopes towards lower values of frequency. Note the largest damage-induced effects are found
when the damage is centred at the mid-span (𝜒 = 0.5), while very similar reductions are found for defects at positions 𝜒 = 0.25
and 𝜒 = 0.75. In these cases, only significant differences are observed for the 2-span cases, in which only the damage at 𝜒 = 0.25
interferes with the rotational spring at the internal support. It is also interesting to remark that the damage-induced variations are
10
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Fig. 9. Envelopes of the first and second order roots of multi-spans beams with rotational degree 𝛽𝐿 = 1 for two damage configurations considering different
damage positions 𝜒 : (a) 𝜁 = 0.05, 𝜂 = 0.5, 𝑆 = [1]; (b) 𝜁 = 0.05, 𝜂 = 0.5, 𝑆 = [2, 4]. (For interpretation of the references to colour in this figure legend, the reader
s referred to the web version of this article.)

ore significant for the left branches of the envelopes. This is particularly evident for beams with a number of spans above 4, in
hich the right branches are almost coincident with the reference solution whilst the left branches experience an almost constant

hift. In other words, this means that damage produces the largest effects on the mode whose natural frequency coincides with the
sostatic simply supported case. When the damage is spread all throughout the beam in Fig. 8(b), a left translation of the envelopes
akes place. The shift depends upon the position 𝜒 of the damage (independently of the coupling degree 𝛽𝐿), achieving largest
eductions in the first and second order bending modes when the defects are located at the mid-spans and at the quarter-spans,
espectively. It is necessary to point out that since the variation is recursive in all the spans (the same decrease in stiffness is present
n each span in the same position), that case can even be representative of the condition in which a recursive model deficiency
ccurs. In fact, if the model is not accurate and geometrical (periodical variation of the section) or physical (unmodelled masses,
eriodical variation of the stiffness) features are not well accounted for, the periodicity of the inaccuracies presented in all the spans
an generate a translation of the left boundaries and a decrement of the right branches of the envelopes.

The second scenario investigating the effects of localized damage is reported in Fig. 9. In particular, Fig. 9(a) and (b) analyse
he influence of damage when only located in the first span (𝑆 = [1]) and in the second and fourth spans 𝑆 = [2, 4], respectively.
n these cases, the rotational coupling degree is set to 𝛽𝐿 = 1, and the intensity and extension of the defects is fixed to 𝜂 = 0.5
nd 𝜁 = 0.05. Lines and scatter points of different colours represent the roots obtained considering defects at different positions
, while the black dashed lines and scatter points refer to the reference solution (‘‘Und’’.). In these cases, note that the presence
f damage mostly affects the left branches. Indeed, as the number of spans increases, the right branches quickly converge to that
f the undamaged configuration. With regard to the location of damage, maximum damage-induced decreases in the left branches
f the first and second order bending modes are found when the defects are located at the mid-span (𝜒 = 0.5) and at the quarter
pan (𝜒 = {0.25, 0.75}), respectively. When damage is located in one single span, as analysed in Fig. 9(a), it is observed that the
nduced shifts in the left branches of the envelopes decrease as the number of spans increases, achieving an almost constant value
or beams with more than 4 spans. Contrarily, when spans 2 and 4 are affected by damage (𝑆 = [2, 4]), as reported in Fig. 9(b), the
amage-induced shifts present a more irregular pattern, achieving maximum reductions in the left branches of the envelopes when
he beams have two and four spans. It is necessary to point out that the simulations introduced in Figs. 8 and 9 are representative
f high severity damages (𝜂 = 0.5). In fact, the purpose of the simulation was to highlight the effects of localized damages in
requencies. Obviously, in the case of a damage of lower severity, the frequencies will be less sensitive. In fact, frequencies tend to
e more sensitive to extended damages rather than local defects, as also demonstrated in the recent work by Reynders et al. [50].

The previous analyses are complemented with the set of abacuses in Fig. 10 reporting the damage-induced frequency decays
n the first and second order bending modes of a bridge composed by 4 spans with a connection degree 𝛽𝐿 = 1. The frequency
ecays in these figures are presented in non-dimensional form as 𝛬𝑑𝑖 ∕𝛬𝑖, 𝑖 = 1,… , 8, superscript ‘‘d’’ denoting the damage condition.
pecifically, Fig. 10 furnishes the frequency decays induced by one single defect with extension 𝜁 = 0.05 in the first span 𝑆 = 1 at
ositions 𝜒 = 0.5 (Fig. 10(a)) and 𝜒 = 0.25 (Fig. 10(b)) as the severity 𝜂 varies. As it can be noted, the decay of the first frequency
elonging to each modal order (Mode 1 and Mode 5 for the 1st and 2nd modal orders, respectively) is much greater than the
thers. It can also be seen that the span in which the damage is located presents larger modal displacements than the others, and
he difference in amplitude increases with the extent 𝜁 and intensity 𝜂 of the damage. Therefore, it can be concluded that among
he 𝑛𝑠 modes of each modal order, the most sensitive to damage is the first one. This fact favours the characterization of damage
n periodic structures, as it allows attention to be focused on considerably fewer modes than the total number of physical modes
11

f the structure. Considering this, Fig. 11 furnishes the frequency decays of the first solution of the first (Fig. 11(a)) and second
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Fig. 10. Abacuses of damage-induced decays in the first (Modes 1-4) and second (Modes 5-8) modal order resonant frequencies of a 4-spans bridge (𝛽𝐿 = 1)
versus the intensity of one single defect 𝜂 with a fixed extension 𝜁 = 0.05 in the first span 𝑆 = 1 at positions 𝜒 = 0.5 (a) and 𝜒 = 0.25 (b). Frequency decays are
presented in non-dimensional form as 𝛬𝑑𝑖 ∕𝛬𝑖, 𝑖 = 1,… , 8, with superscript ‘‘d’’ denoting the damage condition.

(Fig. 11(b)) modal order resonant frequencies of a 4 spans bridge with connection degree 𝛽𝐿 = 1 induced by one single defect
with extension 𝜁 = 0.05 and located at different positions 𝜒 across all the spans of the bridge. In this figure, each line represents a
different damage severity level 𝜂.

In light of these results and the previous analyses, it can be stated that the left branch of the envelopes of the roots of the
characteristic equation can be used as an effective damage-sensitive feature. The reported analyses have shown that this branch can
be approximated by the isostatic configuration (𝛽𝐿 = 0). Therefore, the presented investigation advocates the implementation of the
global OMA of multi-span bridges for damage detection purposes, by tracking at least the mode presenting the lowest frequency in
each modal order. Such an approach may also trivially provide information on the damage localization at a span level. Instead, a
more accurate damage localization would require the inverse calibration of a continuous model, for which the presented analytical
model may serve as a flexible and low resource-intensive solution.

3.3. Real case application: the Trigno V Bridge

The Trigno V Bridge is a seven-spans highway concrete-girder bridge located in the Italian region of Abruzos, between the
municipalities of Isernia and San Salvo. The viaduct is 11.5 m wide, and all the spans present equal length of 33.7 m (see Fig. 12(a)).
The bridge cross-section is composed by three I-shaped pre-stressed girders separated by 3.8 m between axes and connected to a
0.25 m thick reinforced concrete deck with transverse tie diaphragms spaced every 11.2 m. The main geometrical and mechanical
properties of the viaduct to be used in the subsequent modelling are reported in Table 2. On October 13th 2021, an ambient vibration
test (AVT) was conducted to characterize the dynamic behaviour of the viaduct. The monitoring system comprised 50 MEMS
12
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Fig. 11. Abacuses of damage-induced decays in the first solution of the first (a) and second (b) modal order resonant frequencies of a 4-spans bridge (𝛽𝐿 = 1)
ersus the position of one single defect 𝜒 with a fixed extension 𝜁 = 0.05 and increasing damage intensities 𝜂. Frequency decays are presented in non-dimensional
orm as 𝛬𝑑𝑖 ∕𝛬𝑖, 𝑖 = 1, 5, with superscript ‘‘d’’ denoting the damage condition.

Table 2
Geometrical and mechanical parameters used for the modelling of the Trigno V Bridge.
Geometrical parameters Mechanical parameters

𝐿 33.7 m Span length 𝜌 2500 kg/m3 Mass density of concrete
𝐴 5.0838 m2 Cross-section area 𝐸 = 𝐸𝑑 35 GPa Concrete elastic modulus
𝐼 2.6408 m4 Cross-section inertia 𝐼𝑑,𝑐𝑟 0.0619 m4 Cracked link deck inertia
𝑡𝑑 0.25 m Deck thickness

accelerometers (±2 g, 24-bit ADC, noise density 22.5 μg/
√

Hz) distributed along the entire structure, resulting in 81 measurement
channels. Each span was equipped with 4 uniaxial accelerometers in the 𝑧-direction, one biaxial accelerometer in the y- and 𝑧-
directions, and one triaxial accelerometer. Additionally, the piles were instrumented with a biaxial accelerometer in the x- and
𝑦-directions at the top of each of the six piles, and a triaxial accelerometer at the base of the first and last piles. However, for the
purpose of this research, only the vertical channels deployed on the deck are investigated, whose layout is depicted in Fig. 12(b).
This arrangement comprises 6 channels per span located at the quarter and mid-span positions on the two sides of the deck, which
amounts to a total of 42 channels. Four 30 min long acquisitions were conducted at a sampling rate of 200 Hz and used in this study
to illustrate the potential of the formulation previously introduced in Section 3.1.1 to automate the definition of the identification
parameters in SSI algorithms (i.e. cut-off threshold in the Hierarchical Clustering, maximum and minimum model orders, time lag,
tolerances). It is important to remark that the scope of this work is limited to the automated identification of modal characteristics
through AVT for their subsequent use as reference baseline in continuous OMA and modal tracking applications. Although the
implementation of the proposed methodology to dynamically tune the SSI parameters in continuous monitoring applications may
be straightforward, new methodological challenges will surely arise in that case, such as the appearance of environmental effects
upon the inter-span coupling conditions. Therefore, this aspect is left for future work.

The acceleration records were processed through a simple filtering sequence involving the elimination of linear trends and
decimation to a sampling frequency 𝑓𝑠 of 100 Hz. The filtered acceleration time series were used to conduct OMA through the
automated Covariance-driven SSI method (Cov-SSI) implemented in the P3P software [39]. The Cov-SSI method is controlled by two
user-defined hyperparameters, including the model order and the maximum investigated time-lag 𝜏 among the measurements. The
latter determines the dimensions of the Toeplitz matrix of covariances (𝐓1∣𝑗𝑏

∈ R𝑙𝑗𝑏×𝑙𝑗𝑏 , 𝑙 being the number of measuring channels)
through the relationship 𝜏 = (2𝑗𝑏−1) 1

𝑓𝑠
[39]. Too small values of 𝑗𝑏 may cause the algorithm to fail at finding low-frequency modes,

while too large values increase the number of spurious modes and raise the computational burden of the identification. In common
practice, the time-lag parameter 𝑗𝑏 is usually set up according to a certain rule-of-thumb such as the one proposed by Reynders
et al. [51] as:

𝑗𝑏 > 10
𝑓𝑠
2𝑓𝑜

, (20)

where 𝑓𝑜 stands for the minimum expectable resonant frequency of interest. Given the geometric/mechanical properties in Table 2,
13

the theoretical fundamental frequency for the isostatic configuration (𝛬 = 𝜋) can be extracted from Eq. (11) as 𝑓𝑜 = 3.72 Hz. In
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Fig. 12. Geometry of the Trigno V Bridge (a) and position of the accelerometers in vertical direction (b).

this light, the time lag in the Cov-SSI method was fixed to 3.59 s (𝑗𝑏 = 180) in all the analyses. Instead, the model order was
varied depending on the number of spans considered in the analysis. To do so, the maximum model order was tailored through
the visual inspection of the Shannon entropy of the singular values of the Toeplitz matrix as proposed in [52]. Specifically, the
maximum model order was selected for each identification as the model order in which a sudden decrease of the singular entropy
variation is observed. On this basis, the maximum order was set to 120 when analysing a number of spans less than or equal to
4, and increased to 200 when considering 5 to 7 spans. A minimum model order of 2 was defined in all the analyses, and the
complete range of orders was explored with steps of 2. By means of stabilization diagrams, the elimination of spurious poles was
performed by prescribing a set of Hard Criteria (HC), including modal phase collinearity (𝑀𝑃𝐶) and mode phase deviation (𝑀𝑃𝐷).
𝑀𝑃𝐶 evaluates the linear relationship between the real and imaginary part of the modal components, while 𝑀𝑃𝐷 estimates the
statistical variation of the phase angles of each modal component [34]. Both parameters are dimensionless and range from 0 to 1.
In classically damped structures, the corresponding mode shapes are real-valued (aligned modal components in the complex plane)
with 𝑀𝑃𝐶 and 𝑀𝑃𝐷 metrics approaching the ideal values of 1 and 0, respectively. Non-classically damped systems or insufficiently
excited modes of vibration tend to exhibit highly complex modes with 𝑀𝑃𝐶/𝑀𝑃𝐷 metrics far from these ideal limits. In practice,
lightly damped civil engineering structures tend to exhibit real normal modes, thereby 𝑀𝑃𝐶 and 𝑀𝑃𝐷 indicators are often used
to filter out complex mode shapes that are commonly associated with noise or spurious modes. Therefore, the HC considered in
the identification included the elimination of system poles with negative or unrealistically high damping rates (𝜉 ≤ 10%), mode
phase deviation values (𝑀𝑃𝐷 ≤ 50%), and mode phase collinearity factors (𝑀𝑃𝐶 ≥ 50%). Afterwards, stable poles across the
considered model orders were identified by imposing a set of Soft Criteria between every pair of poles 𝑖 and 𝑗 identified at model
orders 𝑚 and 𝑚− 1, including maximum relative differences in terms of resonant frequencies (𝑓𝑚𝑖 − 𝑓𝑚−1𝑗 )∕𝑓𝑚𝑖 < 1%, damping ratios
(𝜉𝑚𝑖 − 𝜉𝑚−1𝑗 )∕𝜉𝑚𝑖 < 5%, and MAC values 𝑀𝐴𝐶(𝝓𝑚𝑖 ,𝝓

𝑚−1
𝑗 ) ≥ 0.99. Finally, the identified ensemble of stable poles was used to extract

the physical modes through hierarchical clustering.
Firstly, the identification of the viaduct was conducted by processing subgroups of channels belonging to one span at a time

assuming perfectly isostatic conditions. In these analyses, according to Eq. (16) the cut-off distance threshold 𝑑 in the hierarchical
clustering was set to 0.07 after some manual tuning. As a sample of the conducted identifications, Fig. 13 shows the stabilization
diagram derived from the analysis of the first span. The identification results in this figure reveal the existence of seven alignments
of stable poles in the frequency range up to 40 Hz. Note that the two first clusters (Cl-1 and Cl-2, with average frequencies of 3.89
and 4.17 Hz) are aligned with two marked peaks in the singular values (SVs) of the spectral matrix of accelerations (inserted in the
background of Fig. 13 for clarity purposes). Indeed, these clusters are densely populated with stable poles identified at most of the
considered model orders. Conversely, the remaining clusters in the frequency broadband between 10 and 35 Hz are more sparsely
populated, with a considerable number of misclassifications at several model orders. These results agree with the inspection of the
SVs, which, despite exhibiting considerably energy concentrations at frequencies neighbouring the identified clusters (particularly Cl-
3 to Cl-5), do not present clear resonant peaks. This is conceivably ascribed to the interaction with the traffic, which was considerable
intense during the acquisitions and may be masking the structural vibrations in this frequency range or, alternatively, maybe more
intensively exciting the first-order modes. Another reasonable explanation is related to the fact that the wavelength of higher-order
modes is shorter, implying that the modes are more localized and therefore more difficult to identify from measurements on a
14
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Fig. 13. Clustering results obtained for the first span of the Trigno V Bridge. Yellow and black crosses stand for unclustered stable and unstable poles. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 14. Experimentally identified natural mode-shapes of the Trigno V bridge when conducting span-wise OMA.

single span. Similar modal localization issues are typical for structures that are not perfectly periodic, but for which there are small
differences between the spans. Following a similar procedure and after the interpretation of the natural mode shapes, four to five
vibration modes have been successfully identified in all the spans as reported in Table 3. Note that the properties of the modes
reported in this table have been extracted from the centroids of the identified clusters of poles. These comprise two closely spaced
modes, namely a first-order flexural mode (3.83–3.89 Hz) and a first-order torsional mode (4.00–4.17 Hz), a second-order torsional
mode (9.85–12.13 Hz), a second-order flexural mode (12.05–13.16 Hz) and, finally, a third-order torsional mode (32.76–33.50 Hz).
The corresponding mode shapes are depicted in Fig. 14. Note that all the spans exhibit very close resonant frequencies (especially the
first two modes with maximum relative differences of 2.60 and 4.08%, respectively) and mode shapes with very similar wavelengths.
Only larger frequencies are found for the end spans 1 and 7, which may be ascribed to the presence of local effects due to the
connection between the bridge, abutments and the remaining road.

Secondly, the dynamic identification is conducted by incorporating one span at a time until covering the whole viaduct,
starting with the first span. The experimental identification results were compared against the predictions of the analytical model
previously introduced in Section 2. To do so, the inter-span rotational stiffness was estimated from Eq. (18) and considering the
geometrical/mechanical properties from Table 2, obtaining a value of 𝑘 = 1.287E+9 Nm (𝛽𝐿 = 0.469). Specifically, the moment
of inertia of the cracked section 𝐼 was evaluated considering the position of the neutral axis in the cracked stage. The resulting
15
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Fig. 15. Modal identification of the Trigno V bridge (11:00 p.m., October 13th 2021) as the number of spans increases (a), and detailed view of the hierarchical
clustering dendogram with the optimal cut-off distance 𝑑 (b). (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

Table 3
Results of the span-wise modal identification of the Trigno V Bridge (11:00 p.m., October 13th 2021).

Span 1st bending mode 1st torsional mode 2nd torsional mode 2nd bending mode 3rd torsional mode

𝑓𝑖 [Hz] 𝜉𝑖 [%] 𝑓𝑖 [Hz] 𝜉𝑖 [%] 𝑓𝑖 [Hz] 𝜉𝑖 [%] 𝑓𝑖 [Hz] 𝜉𝑖 [%] 𝑓𝑖 [Hz] 𝜉𝑖 [%]

1 3.89 5.78 4.17 6.46 11.30 4.40 13.16 2.94 32.76 3.27
2 3.79 5.58 4.06 5.25 9.85 6.14 12.32 1.86 – –
3 3.84 5.80 4.06 6.14 – – 12.67 3.32 33.50 2.24
4 3.85 5.56 4.02 9.11 9.95 5.02 12.05 1.72 – –
5 3.86 5.50 4.11 6.24 9.77 3.70 12.65 1.73 – –
6 3.83 5.47 4.00 7.67 9.78 6.40 12.73 3.80 – –
7 3.89 5.70 4.11 7.72 12.13 2.44 13.13 2.89 – -

theoretical envelopes of the first and second order flexural poles of the viaduct are depicted in Fig. 15(a) with red solid lines. For the
experimental identification, the cut-off distance threshold 𝑑 for the hierarchical clustering of stable poles was defined as 0.07 when
identifying up to 3 spans. Instead, when considering more than 3 spans, the cut-off distance threshold was estimated from Eq. (17)
by analysing the roots of the characteristic matrix of the analytical model. The centroids of the experimentally identified modal
clusters are plotted in Fig. 15 with black scatter points. It is important to remark that the comparison between the experimental
and theoretical results is not completely rigorous, since the OMA is conducted over subsets of channels belonging to consecutive
spans while the analytical model simulates the connection of an increasing number of spans. Nonetheless, the close correlation in
Fig. 15 between the experimental poles and the theoretical envelope of the first order bending modes supports the accuracy of
the proposed formulation. Conversely, the correlation is not so clear for the second order bending modes. Indeed, an appreciable
gap can be noted between the theoretical envelope and the experimental poles, with considerably lower frequency values in the
latter. These differences are conceivably due to limitations in the adopted Euler–Bernoulli formulation and to the mode shapes
localization at higher frequencies, as discussed previously. In particular, the formulation disregards any bending–torsion interaction
effects, the vertical stiffness of the piers, as well as local characteristics of the bridge including the transverse diaphragms. To achieve
closer fittings between experimental and theoretical modes, a detailed 3D FEM of the viaduct is most probably required. Indeed, as
reported hereafter, the experimentally identified poles in the frequency broadband between 12 Hz and 15 Hz exhibit clear evidence
of bending-torsion coupling effects as well as vertical motions at the piers.

Finally, the effectiveness of the developed analytical model to assist the global AOMA of the Trigno V Bridge is investigated. To do
so, all the acceleration channels are included simultaneously in the Cov-SSI, and the optimal model-based cut-off distance previously
proposed in Section 3.1.1 is used in the hierarchical clustering phase. Considering the inter-span rotational stiffness 𝑘 = 1.287E+9 Nm
estimated above, the cut-off threshold 𝑑 can be computed through Eq. (16) among the roots of the characteristic matrix (𝑛𝑠 = 7)
corresponding to first order bending modes. By substituting the values in Table 5 in Eq. (17), the cut-off distance threshold is
estimated as 𝑑 = 2.348E-2 and then used to cut the dendogram resulting from the hierarchical clustering algorithm as reported in
Fig. 15(b). The resulting stabilization diagram with the physical clusters identified through the global AOMA of the Trigno V Bridge
is shown in Fig. 16. A total of 22 clusters were identified, most of them forming dense groups of poles in the frequency ranges 3.788–
3.895 Hz (first order bending), 4.100–4.220 Hz (first order torsion), 9.421–11.206 Hz (second order torsion), and 12.096–13.117 Hz
(second order torsion). The corresponding resonant frequencies 𝑓𝑖, damping ratios 𝜉𝑖, and cluster sizes 𝐶𝑙𝑠𝑖 are reported in Table 4,
and the mode shapes are furnished in Fig. 17. Note that the MAC matrix shown in this figure is almost perfectly diagonal with most
16
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Fig. 16. Global OMA of the Trigno V Bridge (11:00 p.m., October 13th 2021).

Table 4
Results of the global modal identification of the Trigno V Bridge (11:00 p.m., October 13th 2021). The term 𝐶𝑙𝑠𝑖 denotes the number of poles (size) populating
the clusters, respectively.

Mode 𝑓𝑖 [Hz] 𝜉𝑖 [%] 𝐶𝑙𝑠𝑖 Mode 𝑓𝑖 [Hz] 𝜉𝑖 [%] 𝐶𝑙𝑠𝑖 Mode no. 𝑓𝑖 [Hz] 𝜉𝑖 [%] 𝐶𝑙𝑠𝑖 Mode 𝑓𝑖 [Hz] 𝜉𝑖 [%] 𝐶𝑙𝑠𝑖
1 3.788 7.69 8 7 4.220 6.02 35 13 12.096 2.73 11 19 13.117 3.27 18
2 3.791 5.67 57 8 9.421 5.39 47 14 12.402 2.84 8 20 14.861 3.08 73
3 3.818 5.70 61 9 9.796 3.80 73 15 12.569 3.08 13 21 15.487 3.34 44
4 3.860 5.91 16 10 10.157 3.61 75 16 12.868 2.79 20 22 33.350 2.43 26
5 3.895 6.20 45 11 10.683 3.70 78 17 13.005 1.84 7
6 4.100 5.46 35 12 11.206 3.41 63 18 13.024 3.72 7

Table 5
Non-dimensional frequency 𝛬 of det(𝛤7−1) = 0 and frequencies 𝑓 of the first order bending modes of the Trigno V bridge.
Mode no. 1 2 3 4 5 6 7

𝛬𝑖 𝜋 3.1543 3.1894 3.2392 3.2934 3.3413 3.3741
𝑓 𝑡1,𝑖 3.7299 3.7601 3.8443 3.9653 4.0991 4.2192 4.3023

off-diagonal terms close to zero, which is an indication of the quality of the identification. Only some correlation is observed between
Modes 16 and 17 with a MAC value of 0.6. Nonetheless, given their considerable difference in terms of frequency, we assume that
these modes are certainly different physical modes and this MAC value arises due to a limitation of the spatial discretization of
the mode shapes. After the interpretation of the mode shapes in this figure, one can conclude that: Modes 1 to 5 correspond to
first order bending modes; Modes 6 to 12 are first order torsional modes; Modes 13 to 19 are second order bending modes; Mode
20 is a mixed bending-torsional mode; Modes 21 and 22 represent second order torsional modes. Some of these modes exhibit a
significant localization of the modal components in some spans instead of others. As mentioned in the previous paragraph, this
behaviour may be partly attributed to the non-perfect periodicity of the structure, resulting from slight variations in the structural
characteristics of the spans, such as differences in their length and stiffness. Another plausible explanation is related to the existence
of limited inter-span rotational coupling, which is consistent with the low value of the parameter 𝛽𝐿 obtained through the proposed
formulation. It is also important to highlight the appearance of certain bending-torsion interactions and vertical motions in the
cross-sections of the piers in Modes 13 to 19. Such effects, disregarded by the developed analytical model, conceivably contribute
to explain the poor fitting of the second-order bending modes as previously reported in Fig. 15.

Based on the results of the operational modal identification of the Trigno V Bridge, it is concluded that among the identified
modes, those of greatest relevance in the stage of damage assessment are those presenting the lowest frequency within the clusters
belonging to each modal order. To this purpose, attention should be focused on modes 1, 6, 8 and 13 in Fig. 17. Comparing Tables 3
and 4, it can be also noted that carrying out a spanwise OMA may result in missing the lowest frequencies within the same cluster
of modes, therefore missing identification of the most damage sensitive modes. This discordance may be due to localization effects
due to deviations from the periodicity, as previously discussed, and suggests to take extra care when adopting SHM strategies based
on spanwise OMA results. In such cases, a single global OMA analysis is always recommended to check the accuracy and tune the
spanwise identification.
17
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Fig. 17. Global mode-shapes of the Trigno V bridge in ascending order (11:00 p.m., October 13th 2021) and corresponding MAC matrix.

4. Conclusions

This paper has presented an analytical model to assist the AOMA of quasi-periodic multi-span partially continuous bridges. The
formulation is based on the closed-form resolution of the free vibration problem of partially-continuous multi-span Euler–Bernoulli
beams. The inter-span coupling, defined through rotational springs, allows correlating different degrees of rotational continuity
with the bending resonant frequencies of multi-span bridges. On this basis, the developed formulation has been used to define
the optimal distance threshold to be used in the hierarchical clustering of stable poles determined through SSI and stabilization
diagrams. In the proposed methodology, the optimal distance has been therefore employed to cut the dendogram generated through
the unsupervised machine learning hierarchical clustering algorithm and infer the modal features of the structure. The optimal cut-
off distance is estimated through a two-steps procedure: (i) estimation of the inter-span rotational coupling through the mechanical
characteristics of the connection between spans; (ii) computation of the average distance between every two consecutive frequencies
of the first order bending mode to define the cut-off distance threshold. The effectiveness of the proposed methodology has been
appraised through detailed parametric analyses and through a real-world in-operation case study, the Trigno V Bridge. Overall, the
presented research extends the OMA-related knowledge on quasi-periodic multi-span bridges. One aspect of potential improvement
for the developed mechanics model is the incorporation of torsional degrees of freedom to account for possible bending/torsional
interaction effects. While such an extension is left for future work, the presented approach already meets the main goal of this
study: the development of an easily implementable mechanics-based approach for optimally selecting the threshold parameter to be
used in the Hierarchical Clustering phase of automated SSI. The significance of the proposed results stems from the vast presence of
this kind of bridges all over the world, for which the proposed formulation may represent a versatile and computationally-efficient
approach for tailoring AOMA applications. The key findings of this work can be listed as follows:

• The presented results and discussion have pinpointed that the capability of OMA to identify all the global modes of multi-span
bridges is closely related to the structural features of the structure under investigation. These include the number of spans,
regularity in the mechanical/geometrical properties across the spans, and the inter-span coupling conditions. In particular, the
gap between the resonant frequencies of a certain mode order depends upon the connection degree between the spans and
the number of spans.

• The reported parametric analyses have demonstrated that the damage-induced effects upon the resonant frequencies of multi-
span bridges vary considerably according to the damage position, intensity and extension. Interestingly, it has been shown that
local defects lead to frequency decays that, in some cases, can even be concentrated in one bending mode order, while the
effects of spread damage distribute across several mode orders. Furthermore, parametric analyses show that the mode whose
damage-induced decay is most pronounced is the first one belonging to each modal order. This fact allows attention to be
focused on fewer modes in the calibration phase through iterative model updating and represents a clear advantage in the
field of damage assessment of periodic structures.

• Global OMA is needed to conduct precise damage localization, while span-wise OMA may suffice to detect the appearance
of damage but may be inconsistent in the determination of which span is damaged. In fact, one may confuse global and
18
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local modes since one span may be affected by a damage located in a different span. Nevertheless, the span-wise analysis
is not considered unsuitable for damage identification, but the implementation of such an analysis methodology requires a
subsequent research step. Indeed, the possibility to track damages starting from the results of a span-wise OMA is extremely
advantageous since physical mode-shapes and frequencies can be more easily inferred when spans are separately analysed.
However, a global analysis is always recommended to check the accuracy and tune the spanwise identification, particularly
to avoid that the most damage sensitive modes are missed in the identification.
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ppendix. Derivation process of the theoretical formulation

Combining the boundary condition 𝜙𝑖(0) = 0 in Table 1 for the 𝑖-th intermediate span and Eq. (4) results:

𝐸𝑖 = −𝐶𝑖. (A.1)

Hence, Eq. (4) and its first and second order derivatives can be expressed as follows:

𝜙𝑖(𝑥𝑖) = 𝐶𝑖
[
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2 sin

(

𝛼𝑥𝑖
)

+ 𝐹𝑖𝛼2 sinh
(

𝛼𝑥𝑖
)

. (A.4)

The boundary conditions 𝜙𝑖(𝐿𝑖) = 0 and 𝜙′′
𝑖 (𝐿𝑖) = 𝜙′′

𝑖+1(0) in Table 1 respectively lead to:

𝐶𝑖
[

cos
(

𝛼𝐿𝑖
)

− cosh
(

𝛼𝐿𝑖
)]

+𝐷𝑖 sin
(

𝛼𝐿𝑖
)

+ 𝐹𝑖 sinh
(

𝛼𝐿𝑖
)

= 0, (A.5)

−𝐶𝑖
[

cos
(

𝛼𝐿𝑖
)

+ cosh
(

𝛼𝐿𝑖
)]

−𝐷𝑖 sin
(

𝛼𝐿𝑖
)

+ 𝐹𝑖 sinh
(

𝛼𝐿𝑖
)

= −2𝐶𝑖+1. (A.6)

The integration constants 𝐷𝑖 and 𝐹𝑖 can be derived by adding and subtracting Eqs. (A.5) as:

𝐷𝑖 =
𝐶𝑖+1 − 𝐶𝑖 cos

(

𝛼𝐿𝑖
)

sin
(

𝛼𝐿𝑖
) , 𝐹𝑖 =

−𝐶𝑖+1 + 𝐶𝑖 cosh
(

𝛼𝐿𝑖
)

sinh
(

𝛼𝐿𝑖
) . (A.7)

The boundary condition 𝜙′′
𝑖 (𝐿𝑖) = 𝛽𝑖

[

𝜙′
𝑖+1(0) − 𝜙

′′
𝑖 (𝐿𝑖)

]

in Table 1 reads:

𝐷𝑖+1 + 𝐹𝑖+1 − 𝐶𝑖𝜓𝑖 + 𝐶𝑖+1𝜑𝑖 = −2𝛼
𝛽
𝐶𝑖+1, (A.8)

where the coefficients 𝜓𝑖 and 𝜑𝑖 are:

𝜑𝑖 = coth
(

𝛼𝐿𝑖
)

− cot
(

𝛼𝐿𝑖
)

, 𝜓𝑖 = csch
(

𝛼𝐿𝑖
)

− csc
(

𝛼𝐿𝑖
)

. (A.9)

he following equation results from the replacement of the integration coefficients 𝐷𝑖 and 𝐹𝑖 in Eq. (A.8):

𝐶𝑖
(

−𝜓𝑖
)

+ 𝐶𝑖+1

(

𝜑𝑖 + 𝜑𝑖+1 + 2 𝛼
𝛽𝑖

)

− 𝐶𝑖+2𝜓𝑖+1 = 0. (A.10)

The condensed matrix form of Eq. (A.10) for 𝑖 = 1,… , 𝑛 − 1 is given in Eq. (5).
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