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ABSTRACT

Background and Objective: Prostate cancer is one of the most prevalent forms of cancer in men worldwide.
Traditional screening strategies such as serum PSA levels, which are not necessarily cancer-specific, or
digital rectal exams, which are often inconclusive, are still the screening methods used for the disease.
Some studies have focused on identifying biomarkers of the disease but none have been reported for
diagnosis in routine clinical practice and few studies have provided tools to assist the pathologist in the
decision-making process when analyzing prostate tissue. Therefore, a classifier is proposed to predict the
occurrence of PCa that provides physicians with accurate predictions and understandable explanations.

Methods: A selection of 47 genes was made based on differential expression between PCa and normal
tissue, GO gene ontology as well as the literature to be used as input predictors for different machine
learning methods based on eXplainable Artificial Intelligence. These methods were trained using different
class-balancing strategies to build accurate classifiers using gene expression data from 550 samples from
'The Cancer Genome Atlas’. Our model was validated in four external cohorts with different ancestries,
totaling 463 samples. In addition, a set of SHapley Additive exPlanations was provided to help clinicians
understand the underlying reasons for each decision.

Results: An in-depth analysis showed that the Random Forest algorithm combined with majority class
downsampling was the best performing approach with robust statistical significance. Our method
achieved an average sensitivity and specificity of 0.90 and 0.8 with an AUC of 0.84 across all databases.
The relevance of DLX1, MYL9 and FGFR genes for PCa screening was demonstrated in addition to the im-
portant role of novel genes such as CAV2 and MYLK.

Conclusions: This model has shown good performance in 4 independent external cohorts of different an-
cestries and the explanations provided are consistent with each other and with the literature, opening a
horizon for its application in clinical practice. In the near future, these genes, in combination with our
model, could be applied to liquid biopsy to improve PCa screening.

© 2023 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

* Corresponding author.

1. Introduction

Prostate cancer (PCa) is one of the most common cancers
among men worldwide; in Europe it is the most frequent and the
third leading cause of cancer mortality [1]. However, early detec-
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tion through the use of widespread screening has enabled a sig-
nificant shift from metastatic to localized disease at the time of
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initial diagnosis, which is critical for the treatment of the disease
and for reducing disease-specific mortality [2]. Screening strategies
in PCa are usually focused on the use of serum PSA levels, the
combination of different anatomic and functional magnetic reso-
nance imaging (MRI) sequences guided by transrectal ultrasound
(TRUS), and digital rectal exam (DRE). However, the serum PSA
level is organ-specific but not necessarily cancer-specific and can
be elevated for a variety of reasons. Moreover, diagnostic accu-
racy with MRI is highly dependent on the training and exper-
tise of the radiologist, thus urging the use of objective items in
Imaging-Reporting and Data System guidelines (PI-RADS) [3-5]. It
should be noted that the invasive nature of DRE and TRUS-guided
biopsy increases diagnosis success but causes significant morbid-
ity (pain, fever, bleeding, infection, transient urinary difficulties, or
other complications requiring hospitalization).

Many research strategies are focusing on the analysis of ex-
tracellular vesicles (which are one source of interesting biomark-
ers) [6], free miRNAs [7], or, as is the case with other tumors,
gene-specific markers such as circulating mRNA molecules [8]. A
number of genetic susceptibility markers for PCa have also been
identified using different approaches such as family-based studies,
candidate gene association studies, genome-wide association stud-
ies and RNA-Seq technology. However, due to the heterogeneity of
PCa, only a few of these markers have been robustly associated
with PCa in contrast with other prevalent tumors, such as breast
cancer, in which there is a clear relationship between the alteration
of several genes and an increased risk of developing the tumor.

All genetic susceptibility markers for PCa (e.g., BRCA2, BRCAI,
MSH2 among others) are implicated in tumor development or are
biomarkers of increased risk for hereditary PCa, but there is no
gene reported for PCa diagnosis or screening [9]. Therefore, the
identification of new biomarkers in early stages of the disease that
allow a better distinction and classification of PCa remains a chal-
lenge for researchers. Single-cell analysis will improve detection
and prediction models that can assist clinicians in diagnosing or
detecting the disease earlier and more accurately, acting as PCa
clinical decision support systems (CDSS) to aid decision-making
at the primary care level. Previous reports indicate that genomic
single-cell analysis could be a good source of quantitative param-
eters for neoplastic growth and aggressiveness in PCa [10], but its
success will depend on the CDSS available to the pathologist when
it comes to tissue diagnosis.

Machine Learning (ML) techniques have proven effective in im-
proving the prediction and diagnosis of PCa, due to their capac-
ity to provide automatically descriptive or predictive models from
huge amounts of data that can be used to build the inference en-
gines of a CDSS, which can serve as a helping hand for medical
practitioners to diagnose or detect the disease earlier and more ac-
curately [11,12]. However, clinicians often do not rely on the latest
technical approaches and methodologies (e.g., Deep Learning and
Random Forest) despite their high accuracy, because they lack re-
liable interpretability and explainability of the obtained models, as
their predictions cannot be explained in a manner understandable
to humans (known as the black box problem [13]). Medical experts
do not trust decisions provided by black-box models without com-
prehensive and easy-to understand explanations because in many
cases “how they predict” is more important than “what they pre-
dict” [14]. As a result, the ML techniques employed in the clinical
domain normally consider simpler and interpretable models (e.g.,
linear models and rule-induction algorithms) at the expense of ac-
curacy. Many studies have tried to open the black box of complex
models and provide an explanation of their decisions, since these
models should be considered as CDSS and therefore should be pro-
vided with elements that allow them to be properly audited, in-
creasing the practitioner’s confidence. This is especially important
in scenarios such as this one, where the decisions of Al-based sys-
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tems may impact people’s lives, as defined in the “Ethics Guide-
lines for Trustworthy AI”! published by the European Union for the
use of Trustworthy AL A whole field of research, Explainable Ar-
tificial Intelligence (XAI), is concerned with studying it further to
better understand the system’s underlying mechanisms and to find
solutions. XAl recommends the use of transparent models that are
self-explanatory, and of post-hoc explainability techniques that aim
to reveal understandable information about how a complex model
produces its predictions for any given input [15]. Thus, the aim is
to improve the use of Artificial Intelligence in an ethical, transpar-
ent, fair and responsible manner [16].

Thanks to genomic widespread and the possibility of identi-
fying RNA in fresh or paraffin-embedded tissue, our aim is to
develop an accurate and comprehensive model that allows us
to predict the appearance of PCa from genes implicated in the
proliferation of this type of tumor. To this end, we have per-
formed several differential gene expression analyses comparing
PCa-affected tissue versus healthy prostate tissue of PCa patients
selected from the TCGA-PRAD (The Cancer Genome Atlas-Prostate
Adenocarcinoma) [17] dataset to finally identify 47 genes that may
act as biomarkers for PCa. This procedure constituted an expert-
knowledge guided feature selection technique that reduced the
search space to a subgroup of biomarkers associated with the out-
come to be predicted in several populations. The well-known tree
ensemble, Random Forest (RF) [18], one of the most accurate ML
models currently in use, has been used to generate an accurate
predictive ML model from the selected genes. Breiman stated that
RF is an outstanding predictor for performance, but fails in inter-
pretability because of the Herculean task of unraveling the com-
plex web formed by the majority vote of more than a hundred
trees, which is consistent with other authors suggesting that post-
hoc explanatory techniques are needed to understand its behav-
ior [19]. We have used SHapley Additive exPlanations [20] (SHAP)
to better understand the underlying mechanisms of the model and
analyze the influence of each gene on the prediction. They are use-
ful for explaining various supervised learning ML models by pro-
viding an importance value to each input feature for each predic-
tion made, improving the transparency and reliability of a model
by understanding the root causes underlying each prediction. The
obtained model provides medical practitioners with a trade-off be-
tween accuracy and explainability.

With the intention of evaluating the performance of our ap-
proach for using novel biomarkers in the prediction of PCa, we
have conducted the following studies. First, we compared our pro-
posal with other ML approaches in PCa patients selected from
the TCGA-PRAD dataset making use of a stratified repeated 5-fold
cross-validation to assess the performance of our model. Differ-
ent classification metrics and non-parametric statistical tests were
used to evaluate the performance of the algorithms analyzed. Sec-
ond, to validate and contrast the knowledge derived from the TCGA
dataset, the generated model has been applied to four independent
external cohorts (GSE22260, GTEX, GSE183019 and GSE114740). Fi-
nally, a functional enrichment analysis was performed to interpre-
tate the role of the selected genes within the context of PCa. A web
page associated with this paper (https://sci2s.ugr.es/PCaXAIRF) has
been developed with supplementary material for this study.

2. Material and methods
2.1. General overview of the analysis plan

The main goal of this paper is to construct an accurate and
comprehensible classifier capable of predicting the risk of devel-

1 https://ec.europa.eu/futurium/en/ai-alliance-consultation.1.html
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Fig. 1. Graphical abstract. Data sources: Datasets used in this work as discovery and validation populations. Each dataset includes information about the number of samples,
whether a matched design exists, ethnicity, available data formats and the analysis pipeline applied to the raw data before validation. Analysis plan: Gene selection strategy,
including the different gene sets generated and tested in this study. The experimental design section includes information about the class balancing strategies applied,
model validation and parameter tuning approach, models tested and metrics evaluated for these models (the best-performing strategy is highlighted). Validation: Includes
information about the best-performing model, results for validation datasets and an overview of the SHAP explanatory analysis.

oping PCa based on gene expression data derived from prostate
tissue (RNAseq data/Transrectal biopsy). To this end, we conducted
a three-step analytical approach consisting of; 1) Filtering and se-
lection of genetic features, according to their biological relevance
in PCa, 2) Construction and analysis of the performance of several
ML predictive methods using the genetic features selected in the
previous step in the discovery population, and 3) Selection of the
best prediction model and validation of that model on a number of
independent cohorts, with different ancestries (see Fig. S1 in the
supplementary material). All datasets employed in this work cor-
respond to publicly available data in open online repositories. ML
models employed in the clinical field do not usually consider com-
plex models because of the ethical implications of making deci-
sions that affect patients’ lives without a mechanism to understand
black-box models that are usually responsible for these sophisti-
cated techniques. Instead, they often rely on interpretable models
at the cost of accuracy [13]. Since these models do not always pro-
vide the necessary accuracy, an alternative could be to open the
black box and understand the mechanisms behind it.

In the following we will provide explanations and some insights
into the drivers of our model from two points of view, includ-
ing visualization and feature importance based on SHAP. The use
of biological-function enrichment analysis and expert knowledge
from molecular biologists was of great importance throughout the
analytical process, motivating important decisions at the feature-
selection stage and helping in the interpretation of the final results.
Fig. 1 shows a general overview of this study, including the most

relevant details about the data sources used as discovery and val-
idation populations at the top, the gene selection approach used
to filter the most biologically relevant genes in PCa and the ex-
perimental setup used (data splitting strategies, model validation
methodology, methods and evaluation metrics) at the lower-left
area, and an overview of the validation results and the post-hoc
explanation approach at the lower-right area.

2.2. Data sources overview

The discovery population employed here corresponded to a
public dataset from the well-known TCGA consortium. In particu-
lar, we focused on the TCGA-PRAD data that was available through
the GDC Legacy Archive at the National Cancer Institute (NIH).
TCGA-PRAD was chosen as our discovery population because of
the availability of raw expression data for download, the diversity
of tumour development stages of patients, the presence of paired
samples and the presence of patients with different ancestries. This
dataset contains data for 550 prostate biopsies, 498 tumoral sam-
ples (T) and 52 controls (NT) with International Society of Urolog-
ical Pathology (ISUP) grade levels ranging from 1 to 5, including
different cancer stages. Notably, each control presented a matched
tumor sample belonging to the same patient. Therefore, we will
refer to the TCGA-PRAD population as two subgroups of samples:
paired samples (52 healthy tissue vs 52 tumoral tissue), and non-
paired samples (498 tumoral samples vs 52 control samples). After
obtaining access to these data from NIH, RNAseq data were avail-
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Table 1

Data sources used in this study .
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Data ID Description Ancestry Sequencing Platform Data format
TCGA Discovery population. 498T vs 52NT (52 paired). ISUP  82.9% white, 11.6% black [llumina TrueSeq RNA FASTQ RNA-SEQ
grades: 1 (46 samples), 2 (146 samples), 3 (101 or African-American, 2.4% sequencing (controlled access)
samples), 4 (64 samples), 5 (141 samples). Asian and 3.1% not
reported
GSE22260 Validation dataset. 20T vs 10NT (10 paired) 20 Caucasian [llumina GAII platform FASTQ RNA-SEQ

prostate cancer tumors and 10 matched normal
tissues. Gleason grades: 6 (7 samples), 7 (11
samples), 8 (1 sample), 9 (1 sample).
GTEX Validation dataset. 245NT. The Genotype-Tissue
Expression (GTEx) project stores samples from 54
non-diseased tissue sites across nearly 1000
individuals.
Validation dataset. 84T vs 84NT (paired). mRNA
profiles of 84 pairs of localized primary prostate
cancer samples and the matched normal tissues were
generated by deep sequencing. ISUP grades: 1 (8
samples), 2 (54 samples), 3 (18 samples), 4 (1
samples), 5 (3 samples).
Validation dataset. 10T vs 10NT (paired). mRNA
profiles of 10 pairs of localized primary prostate
cancer samples and the matched normal tissues were
generated by deep sequencing.

GSE183019

GSE114740

84.6% white, 12.9%
African-American, 1.3%
Asian, 1.1% not reported

White

Chinese/Han

Read counts obtained via
RNA-SeQC. FASTQ files
were aligned to hg38.

[llumina TrueSeq RNA
sequencing

Read counts obtained via
RSEM. FASTQ files were
aligned to hg19.

[llumina NovaSeq 6000.

[llumina HiSeq 2000 FASTQ RNA-SEQ.

able in the form of FASTQ files for each TCGA sample. The ethnic-
ity of the participants was classified as: 82.9% white, 11.6% black
or African-American, 2.4% Asian and 3.1% not reported. To validate
our final model, we used independent external populations, corre-
sponding to public datasets, with different ancestries. These popu-
lations included GSE22260 [21], GTEX (RNA-seq data from healthy
prostate tissue), GSE183019 and GSE114740. The datasets beginning
with the GSE identifier corresponded to paired sample studies ac-
cessed via the Gene Expression Omnibus database [22], and belong
to PCa patients. The GTEx (Genotype-Tissue Expression) dataset
was obtained from the GTEx Portal, filtering only prostate tissue
belonging to individuals not affected by PCa. These datasets were
intended for the validation of the selected predictive models and
corresponded to different ethnic groups. More details on each pop-
ulation can be found in Table 1.

2.3. Transcriptomic analysis

The cohorts included in this work were sequenced using differ-
ent platforms, and data was available in a variety of formats. For
TCGA-PRAD, GSE22260 and GSE114740 RNA-Seq FASTQ files were
retrieved for each patient in order to run a standardized RNA-Seq
pipeline for the purpose of extracting raw counts expression data
for each sample. miARma-Seq [23] was used to carry out this pro-
cess. First, the raw data was analyzed with FASTQC? in order to as-
sess the quality of the reads. Then, the reads were mapped to the
GRCh38 human genome using the star [24] aligner. Finally, read
counts were calculated with featureCounts [25]. The counts matrix
was then filtered, keeping only protein-coding genes and Counts
Per Million (CPM) were calculated for each gene after normaliz-
ing all samples by using EdgeR’s [26] TMM implementation. Nor-
malized data was analyzed using hierarchical clustering and Prin-
cipal Component Analysis (PCA) but all samples were kept, since
no clear outliers were found. GTEX and GSE183019 datasets only
had publicly available expression count matrices. These matrices
were computed using different pipelines and, in the case of the
GSE183019 dataset, the reads were aligned to a different version
of the human genome: GRCh37. Finally, CPMs for each gene were
scaled and centered, calculating their z-score according to Eq. 1,
where z; is the z-score for gene j, x; is the original value for gene

2 https://www.bioinformatics.babraham.ac.uk/projects/fastqc

J» i is the mean of gene j across samples and o is its standard
deviation. Due to the nature of RNA-seq data, expression levels can
differ substantially between genes, so this procedure is crucial in
order to harmonize the relevance of each gene before running the
algorithms.

(X — 1))

Zj:T (1)

2.4. Gene selection

RNA-seq count matrices are populated with thousands of genes
per sample. Reducing the gene dimensionality is key, not only to
discard genes lacking biological interest for the purpose of this
study, but also to make sure that ML algorithms are computa-
tionally affordable avoiding the so-called “curse of dimensional-
ity” [27,28]. As a first step in our strategy for selecting the best
candidate genes to be used as predictors for the ML algorithms
that would be run at a later stage, we ran two differential expres-
sion analyses using EdgeR. For the first study, only paired samples
(52NT vs 52T) were considered, generalized linear models (GLM)
were fitted to account for tissue type (T/NT) and patient effect,
and finally quasi-likelihood F-tests were applied to find differen-
tially expressed genes (DEGs). For the second study, all samples
were considered (52NT vs 498T) and quantile-adjusted conditional
maximum likelihood (qCML) was used because only the tissue type
factor was accounted for. After fitting negative binomial models
and obtaining dispersion estimates, genewise exact tests were em-
ployed to find DEGs. In both cases, the raw count matrices were
normalized and those genes that were expressed at less than 1
CPM in more than 52 samples, which is the smallest group in both
studies, were filtered out (52, NT) [29].

The final results were filtered again, keeping only those genes
with a False Discovery Rate (FDR) lower than 0.05 and a [logFC|
of at least 1. The final results showed 1991 DEGs for the whole
set of samples and 1332 for the paired dataset. 1065 genes (PRAD-
DEGs) were shared in both sets, representing 47.17% of the DEGs
found. Since these 1065 genes were differentially expressed in both
populations and were also found to be significant, we decided to
keep them as an initial set of predictors for our work. Similarly,
we also calculated the intersection of both sets of DEGs, but this
time considering only the top 200 genes in each set according to
their logFC value, obtaining a new gene set of interest made up
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Table 2
Gene sets considered in this study .
Gene set Description Num. genes
PRAD-DEGs Intersection of DEGs satisfying FDR<0.05 and |logFC| of at least 1, for paired and 1065
unpaired populations in TCGA-PRAD.
55TOP-PRAD-DEGs The same procedure was used with the with PRAD-DEGs gene set, but only the 55
top 200 genes according to their |logFC| value were used for paired and
unpaired populations before computing their intersection.
PRAD-DEGs-PROST-int-CANCER Genes in the PRAD-DEGs gene set annotated with both “prostate” and “cancer”. 108
47-PCa-Genes Final gene set for our tool. Obtained by merging the gene sets 47

55TOP-PRAD-DEGs an PRAD-DEGs-PROST-int-CANCER, using STRING and
k-means clustering and choosing the most representative gene in each cluster.

TCGA-PRAD

TCGA-PRAD (paired) TCGA-PRAD (200)  TCGA-PRAD (200,paired)

926 1065 267 145 55 145

@1.01%) | 47.17%) | (11.82%) 42.03%) | (15.94%) | (42.03%)

Fig. 2. Intersection of differentially expressed genes in TCGA paired samples and
TCGA non-paired samples. On the left, all DEG satisfying FDR<0.05 and |logFC|>1
are considered, and their intersection is the PRAD-DEGs gene set consisting of 1065
genes. On the right, only the top 200 DEGs, according to their |logFC| are considered
for each population and their intersection amounts to 55 genes: 55TOP-PRAD-DEGs
gene set.

of 55 genes: 55TOP-PRAD-DEGs. Fig. 2 shows how these gene sets
were obtained.

Next, we carried out a functional enrichment analysis on our
PRAD-DEGs gene set using STRING [30] and looking for the annota-
tions “cancer” and “prostate” in Biological Process (GO), Molecular
Function (GO), Cellular Component (GO), KEGG, Tissue expression
(TISSUES) and Reference publications (PUBMED). As a result of the
enrichment analysis 114 genes were enriched with both the terms
“cancer” and “prostate”. We will refer to this gene set as PRAD-
DEGs-PROST-int-CANCER.

In an effort to further reduce the number of genes of interest
and extend our search space to other genes that may be relevant
to our study, we merged the 55TOP-PRAD-DEGs and PRAD-DEGs-
PROST-int-CANCER genesets, obtaining 157 genes. Subsequently, we
classified them using the STRING tool, grouping them in 45 clus-
ters using kmeans clustering. For each cluster, the gene with more
connections was selected, assuming the hypothesis that each gene
would provide the biological information of its cluster. When this
key gene did not exist in a cluster, two were selected. Finally, we
obtained 47 candidate genes for our tool: 47-PCa-Genes.

Table 2 shows the different gene sets considered as potential
predictors of interest for this study.

2.5. Pre-processing and experimental set-up

In order to build our classifier to differentiate healthy prostate
tissue from tumoral prostate tissue, we trained different models
using the caret [31] (Classification and Regression Training) pack-
age available for R3.

Since the TCGA-PRAD dataset is significantly imbalanced, 498
tumor samples vs 52 healthy samples, we applied different strate-
gies to prevent the algorithms from being biased towards clas-
sifying samples as tumoral just for being the majority class, in-
cluding undersampling, oversampling, weighted sample and hybrid
approaches. The upsampling technique creates synthetic samples

3 https://www.R-project.org

similar to the real ones belonging to the minority class; the under-
sampling approach reduces the number of samples in the majority
class by removing some of them in the population; weighted sam-
ple technique aims to assign a weight to every sample depending
on the class they belong to, so that weights are higher for the mi-
nority class, which would make the failures when predicting that
class more significant. The last strategy consists in combining the
upsampling and undersampling techniques to balance the popula-
tion size for each class using procedures such as SMOTE [32]. Note
that, prior to applying these techniques to our discovery popula-
tion, training and testing partitions were created for each fold, and
while the training partitions were affected by these procedures,
the test data remained unaffected and the samples retained their
original values and proportions.

We have used a stratified 5-fold cross-validation, repeated 5
times, to assess the performance, amounting to a total of 25 execu-
tions. This technique is appropriate in cases where the population
size is limited, reducing estimation errors, and providing a good
bias-variance tradeoff, apart from being a computationally efficient
process [33]. This technique may lead to worse but more realistic
results because the outcome of the algorithms is not influenced by
the seed chosen when splitting the dataset.

The following methods were selected for our study: k-nearest
neighbors [34] (KNN), rpart* (Classification and Regression Trees -
CART) and RF [35]. KNN and CART techniques generate models that
are understandable to experts, and are expected to provide suf-
ficient information about the relationship between input features
and predictions, while allowing clinicians to answer questions re-
lated to which genes are playing a key role in predictions. Breiman
stated that RF [18] is an excellent alternative when performance is
key, pointing out that it is an excellent predictor that fails in terms
of interpretability, which makes it necessary to use post-hoc tech-
niques to understand its behavior as described in the next subsec-
tion.

Different parameters were trained depending on the algorithm:
k for KNN: the number of the instances closest to the query to be
considered; CP (complexity parameter) for rpart: its role is prun-
ing any split in the tree that doesn’t improve the fit by at least
CP; and mtry for RF: the number of predictors randomly selected
as candidates at each tree split. Any other parameters for the pre-
vious algorithms have been set to their default values, as recom-
mended by their authors, in an effort to facilitate comparisons and
take advantage of using settings that perform well in the majority
of cases instead of searching for very specific values. To evaluate
the performance of the algorithms, several metrics that have been
extensively described in the literature were used, complementing
the information provided by each one: F1, G-mean, AUC, sensitiv-
ity and specificity [36].

Metrics that consider classes individually enable the analysis of
that specific class. Performance measures, such as “G measures”

4 https://CRAN.R-project.org/package=rpart
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that combine basic metrics, were designed to summarize different
trade-offs between the individual performance measure for each
class. G-mean is the geometric mean of sensibility and specificity,
and this metric measures how balanced sensitivity and specificity
are regardless of the majority/minority classes. This metric is in-
tended to balance the success rate between the majority and mi-
nority classes: in our case, a low performance in predicting con-
trols will imply a low value for the g-mean metric even if all
cases with PCa are correctly classified. This measure helps us
avoid overfitting the majority class while underfitting the minor-
ity group [37]. All the possible combinations using KNN, rpart and
RF with the class balancing approaches discussed earlier and the
dataset 47-PCa-Genes were tested and ranked according to their
g-mean.

2.6. Explainability

In this study we have used a number of ML algorithms, in-
cluding RF, which belongs to the so-called ensemble classifiers. It
is difficult to obtain understandable explanations for these classi-
fiers, given their complexity. To understand the mechanisms be-
hind RF models, which are more complex than the individual mod-
els from which they are derived, post-hoc explanatory techniques
are needed [19]. Global explanation methods, such as the tradi-
tional feature importance for RF, can be used to explain the overall
behavior of the model. However, global explanations lack the abil-
ity to explain individual predictions and do not allow the magni-
tude and direction of the effect of each feature on the final out-
come to be determined. Feature relevance explanation technique
SHAP, which we used for this work, can provide local explanations
that allow us to fairly explain the underlying reasons behind in-
dividual predictions in terms of the contribution of each predictor
to the final outcome. In addition, SHAP can also provide global ex-
planations by building a matrix of Shapley values with one row
per data instance and one column per feature, allowing predictors
to be ranked according to their average contribution. These global
and local explanations provide complementary information about
the behavior of a model, which is key for experts to understand its
mechanisms, especially in highly sensitive areas such as health.

SHAP is based on the idea of Shapley value, used in game the-
ory, which assumes that a prediction can be explained by the as-
sumption that every feature (in our case, a gene) is a “player” in
a game where the prediction is the “payoff’. The magnitude and
sign of the attribution of each feature to the final result provided
by the model are computed based on Shapley values, which allow
the payoff to be allocated equally among the features.

We employ SHAP to compute the importance of each feature in
each prediction, so that we have a more detailed idea of the mech-
anisms behind each of these predictions. Our model generates an
output between 0 and 1 so that values below 0.5 are predicted as
non-PCa-affected tissue and those equal to or above that threshold
are classified as PCa tissue. In this context, we calculate the Shap-
ley value for each feature in each prediction, which can be thought
of as the effect of a specific gene on the final output and can be
calculated as shown in Equation 2, where ¢; is the Shapley value
for feature i, S is a feature subset, F is the set of all features, fgq;
is the model trained with the feature i present, fs is the model
trained with the feature i withheld and x5 represents the values
of the input features in the set S. A Shapley value is basically the
marginal average contribution of a feature considering all possible
combinations, which requires retraining the model on all feature
subsets with and without including feature i.

It has been shown that these mechanisms can provide clinicians
with accurate and reliable explanations, which will make medical
experts more comfortable with RF decisions [38].
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Table 3
Average quality metrics across the 25 test sets, for each class balancing strat-
egy (Class Bal.) in the training sets for the TCGA-PRAD population.

Method  Class Bal. G-mean  Sens. Spec. AUC F1
RF Undersampling  0.91 0.90 0.92 0.95 0.69
RF Hybrid 0.90 0.85 0.95 096 0.74
RF Upsampling 0.84 0.71 0.99 096 0.76
RF Weight 0.80 0.65 0.99 096 0.73
RF - 0.79 0.63 0.99 096 0.71
KNN Undersampling  0.89 0.92 0.86 094 0.58
KNN Hybrid 0.89 0.91 0.88 093 0.61
KNN Upsampling 0.88 0.92 0.84 0.93 0.54
KNN Weight 0.70 0.50 0.99 093 0.60
KNN - 0.70 0.50 0.99 092 0.60
rpart Undersampling  0.87 0.85 0.88 0.87 0.57
rpart Hybrid 0.86 0.82 0.89 0.86 0.58
rpart Upsampling 0.85 0.83 0.88 0.85 0.55
rpart Weight 0.85 0.82 0.88 0.85 0.56
rpart - 0.73 0.56 0.97 0.77  0.59
A.‘{DQ‘DQZ 4085,095 OOWOg/CQQQBO
0.90 %U 92,0.84 3
P O rf_original
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Fig. 3. G-mean, sensitivity and specificity values (the last two in the box) for the
different models based on RF, KNN and rpart methods and different class-balancing
approaches.

Gene importance was then calculated as the mean of the abso-
lute value of these Shapley values for each feature in each sample
belonging to a given dataset, as shown in Eq. 3, where [; is the
importance for feature j, n is the number of samples in the pop-
ulation and ¢;') is the Shapley value for sample i and feature j.

di= ) W[fsw}(&um)—fs()‘s)] (2)
ScF\{i} ’
lj= %Zlfﬁf)l 3)
o1

3. Results and discussion
3.1. Results

Table 3 shows the average results obtained for each quality
metric considered in the 25 test sets, with each of the strate-
gies used to balance the sample classes in the training sets, for
each method in our discovery population TCGA-PRAD. Fig. 3 shows
a graphical overview of these results. Non-parametric tests were
used to compare these results in order to choose the best perform-
ing algorithm for G-mean, F1, AUC, Sensitivity and Specificity val-
ues. Despite the heterogeneity of the methods used in this study,
we applied Friedman’s test [39], rejecting the null hypothesis.
Friedman'’s ranking for each measure can be found in Table 4, with
RF ranking first in 3 of the 4 measures. The Shaffer test [40] was
then considered for pairwise comparisons between methods. For
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Table 4
Statistical test results for the measures G-mean, F1, AUC, Sensitivity and Speci-
ficity .

Ranking Ranking Ranking Ranking Ranking
Algorithm G-mean F1 AUC Sens. Spec.
RF 1.60 144 1.28 1.88 1.54
KNN 1.84 2.06 1.90 1.84 2.24
rpart 2.56 2.5 2.92 2.28 2.22
APV APV APV APV APV
Algorithm G-mean F1 AUC Sens. Spec.
RF - - - 0.888 -
KNN 0.396 0.028 0.05 - 0.039
rpart 0.002 0.001 0 0.359 0.039
Table 5
Final classifier metrics across databases .
Database G-mean Sens. Spec. AUC F1
TCGA-PRAD 0.91 0.90 0.92 0.91 0.70
GSE114740 0.85 0.90 0.80 0.85 0.86
GSE183019 0.80 0.93 0.70 0.81 0.83
GSE22260 0.77 0.80 0.75 0.78 0.70
GTEX (prost.) NA 0.99 NA NA 0.99

each observation, adjusted p-values (APVs) were calculated to as-
sure the lowest degree of significance prior to rejecting the equal-
ity hypothesis. The numerical output for the comparisons are also
shown in Table 4. Significant differences of at least 0.05 with the
other methods are observed for the measurements in which RF is
the best method, except for KNN and g-mean, in which there are
no significant differences. As for the sensitivity measure, we ob-
served that there are no significant differences between the meth-
ods when KNN is the method best classified by Friedman, show-
ing that all the methods present a similar behavior on the posi-
tive class (NT). According to the statistical results obtained, we can
state that RF is the method with the best statistical performance
in the 25 runs on the test sets.

We tested the classifier with validation populations to see to
what extent it was able to generalize its predictions when dif-
ferent ancestries, sequencing technologies and analysis pipelines
came into play. We trained our final classifier using RF, in con-
junction with the undersampling strategy to generate a model over
the complete discovery dataset. As described in Table 5, the results
also look promising, with g-mean, AUC and F1 values always above
0.7 and the following sensibility/specificity values in the different
populations: GSE22260 (0.8, 0.75), GSE114740 (0.9, 0.8), GSE183019
(0.93, 0.7) and GTEx (0.99, NA). There were no tumor samples
for GTEX, so the specificity value could not be calculated, and for
GSE183019 we had to rely on the array counts provided, and could
not apply our RNASeq pipeline to the raw sequencing data.

Once the results had been obtained, we focused on uncovering
the mechanisms underlying our algorithm by using SHAP. Fig. 4
shows a graphical representation of the importance of our top 20
predictors, according to their importance, in our classifier for the
TCGA-PRAD dataset. Genes are ordered according to their overall
importance. Each dot represents the attribution of a given gene
in the classifier's final prediction for a specific patient, and its
color is determined by that gene expression value for each patient
(red=high, blue=low). Red values represent higher expression val-
ues, while blue tones are associated with poorly expressed genes.
On the left, only samples with PCa are represented, while on the
right only healthy samples are shown. At the bottom, the classi-
fier's explanation for a single patient is displayed; the numerical
output of the classifier is explained with the individual contribu-
tion of each predictor, in some cases adding and in others subtract-
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ing until the final value is obtained. The most influential genes are
labeled.

Note that blue and red tones are often separated by the zero-
impact value, which means that, for most genes, their contribution
to the final outcome is strongly linked to their expression level.

3.2. Discussion

The heterogeneity present in the way that the different datasets
were obtained, including a variety of analysis pipelines, sequenc-
ing technologies and different reference genomes when aligning
reads, leads us to believe that the results, which will be discussed
later, could have been even better if we had been able to apply our
RNA-SEQ pipeline to each dataset. Moreover, it also shows that our
classifier tolerates some flexibility regarding how the input data is
processed. In addition to the input data format and the reference
genome build used, this system is also able to correctly classify
samples of very different ethnicities (see supplementary data, sec-
tion Datasets).

The strength of the present classifier is based on the final genes
included in the classifer, such as, DLX1 (Distal-Less Homeobox 1),
which is currently included in SelectMDX urine test as a diagnostic
risk biomarker for classification in negative and misclassified PCa
biopsies [41].

HPN (Hepsin) has also been shown to distinguish normal tis-
sue from PCa lesions through single-cell RNA sequencing [42];
the same is true for CNN1 (Calponin 1) with differences demon-
strated between tumor and normal tissues [43]. Moreover, ANXA2
(Annexin A2 or Annexin II) has been suggested as a prognostic
biomarker of PCa because of its association between high expres-
sion patterns and higher grade and stage PCa [44].

There are also results suggesting an oncogenic role of AMACR
(alpha-methylacyl-CoA racemase) in PCa and indicating its role as
a potential biomarker for its diagnosis [45]. It has also been shown
to be a marker of recurrence after radical prostatectomy [46], but
currently has no application in clinical screening. Moreover, MYL9
(Myosin light chain 9) is closely associated with poor prognosis in
several tumors such as PCa, lung, breast and melanoma. Its role as
a molecular marker and potential target for early diagnosis, prog-
nostic prediction and selective treatment of malignant tumors has
been proposed [47].

Similar to the genes that rank first in terms of SHAP impor-
tance, those ranked last are also biologically relevant in PCa. DCN
has been previously reported as a prognostic marker of PCa in tis-
sue [48]. MYO6 (Myosin VI) is suggested to play an essential role in
PCa progression and has promising therapeutic effects [49]. There
are not many reports citing TFF3 (trefoil factor 3), but it has been
suggested to play a role in the stratification of PCa in combina-
tion with HOXB13 (Homeobox B13). SVIL (Supervillin) has also been
mentioned as a possible methylation-specific marker of PCa, but
with low sensitivity (75.4%) [50]. With regard to TIMP3 and KRTZ,
they have previously been linked to a therapeutic implication in
PCa, but not to a screening target [51]. Another important gene is
FGFR2, which is a fibroblast growth factor receptor and a mem-
brane receptor that promotes cell proliferation and differentiation.
As we see in our results, the downregulation of FGFR2 is associ-
ated with poor prognosis in PCa [52] but not in other types of
cancers, thus, this gene seems a very specific marker and there-
fore relevant for the specificity of our classifier. EPHA2 is also very
interesting, as it is the most extensively studied EphA receptor in
PCa. Initial studies identified EPHA2 protein overexpression in PCa
cell lines related with metastatic potential. However, normal and
benign prostate tumor cells showed weak or no staining with the
EphA2 antibody[53]. As seen in Table 6, another relevant gene is
TDRD1, which is thought to function in the suppression of trans-
posable elements during spermatogenesis. It has been observed
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final result of the most influential genes is represented.

Table 6

Inferred patterns in classifier prediction .
Class  Pattern
T 4 DLX1, 4 HPN, | FGFR2, |, MYLS, | CNN1, 1 TDRD1
NT | DIX1, | HPN, * FGFR2, 1 AMACR, | TDRD1

Up and down arrows indicate high and low expression levels, re-
spectively. Genes in bold represent the most relevant genes in each
class, after DLX1.

that the TDRD1 protein is expressed in the majority of human
prostate tumors, but not in normal prostate tissue, so in this re-
gard it has been proposed as a novel PCa biomarker [54].

The most influential gene for T samples is DLX1, followed by
MYL9, HPN, FGFR2 and CNN1, while in the NT class the most rel-
evant gene is still DLX1 but this time followed by HPN, FGFR2,
AMACR and ANXA2. After the predictor DLX1, shared by both
classes, the most influential genes for the T and NT classes are
MYL9 and HPN, respectively. Table 6 summarizes these patterns in
relation to the expression level of the most relevant genes.

The expression patterns of the main genes included in
Table 6 help us to classify T and NT samples, mainly with de-
creased expression in T samples, with FGFR2, CNN1 and ANXA2
playing an important role. Gene silencing is also relevant in the

T samples in genes such as CA14 or EPHA2. Furthermore, in the
T samples, there is an increased expression in 14 genes, among
which the major contributors to the present algorithm are DLX1,
HPN, AMACR, HOXC6 and TDRD1. Therefore, these 5 genes repre-
sent a set of relevant markers because they share an increasing
expression pattern in all populations. Consequently, they may be
the most reasonable choice for application in the detection of lig-
uid biopsies, as is the case with DLX1 [41].

It is important to highlight the contribution of the present pro-
posal. Although some of the genes included in our classifier have
been previously reported individually as related to prognostic tu-
moral tissue classification in PCa; they have never been used to-
gether until now. In addition, the present work also includes genes
that are barely or not at all described in PCa, that are key for deci-
sion making in both our discovery and validation populations, such
as MYLK (Myosin Light Chain Kinase), CAV2 (Caveolin 2), TDRD1
(Tudor Domain Containing 1) as well as other genes that have
never been previously described in PCa such as RNF112 (Ring Fin-
ger Protein 112), APOF (Apolipoprotein F) and MYOCD (Myocardin).
These genes are related to the tumor microenvironment, but with
different roles. MYLK and MYOCD genes promote tumor forma-
tion and vascularization [55,56], RNF112 gene is related to cellular
differentiation, CAV2 modulates mitotic pathways and APOF is in-
volved in the regulation of cellular transport. However, the most
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interesting part is that several of them have been previously iden-
tified as biomarkers in other tumors, but never in PCa, which rein-
forces their utility as biomarkers. For example, APOF regulates cell
transport and has been described as a biomarker or target for hep-
atocellular carcinoma [57,58] or cervical cancer [59]. In the case of
RNF112, it has been described as a prognostic biomarker in oral
cancer [60].

In the near future, by combining our classifier and single-cell
strategies we will be able to identify a tumor when there is only
one malignant cell, by detecting the signature of these cells from
among the rest of the healthy cells, which will improve the accu-
racy of the imaging techniques currently used for diagnosis [61].

Finally, current genomic methodologies could provide expres-
sion analysis in tissue (fresh or paraffin-embedded) with a high
success rate and sequence coverage. Therefore, the application of
this algorithm in current medicine and clinical practice for PCa
classification is feasible at a low cost.

4. Conclusions

In this work, we have addressed the development of a clas-
sifier to predict the risk of PCa in prostate tissue based on a
set of biologically relevant genes that could provide explanatory
power to its predictions, using the well-known SHAP algorithm.
This classifier showed good results considering several quality met-
rics widely used in ML, not only in the discovery population but
also in external populations with a wide range of ancestries. The
fact that biomarkers for PCa screening are not currently used
in clinical practice highlights the interest of this work, in which
we have demonstrated the relevance of DLX1, MYL9 and FGFR
genes, in addition to novel genes for PCa screening such as CAV2
and MYLK. The lowest ranked predictors of our classifier comple-
ment the remaining most relevant genes to achieve the good ac-
curacy demonstrated by the algorithm, as they are involved in
metabolic pathways and biological processes of interest for this
disease.

To the best of our knowledge, this is the first time that a clas-
sifier combining gene expression and ML has been used for PCa
detection and screening. With the help of this tool, the misclassi-
fication rates of anatomopathological analysis could be decreased,
thus reducing the need for repeated biopsies. Thanks to the de-
velopment of this tool, fundamental genes in the development and
evolution of PCa have been identified for evaluation in the clinical
practice. Finally, the application of this algorithm to other sample
types, such as urine or blood, could allow for its use as part of the
liquid biopsy strategy in PCa in the future.
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