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a b s t r a c t 

Background and Objective: Prostate cancer is one of the most prevalent forms of cancer in men worldwide. 

Traditional screening strategies such as serum PSA levels, which are not necessarily cancer-specific, or 

digital rectal exams, which are often inconclusive, are still the screening methods used for the disease. 

Some studies have focused on identifying biomarkers of the disease but none have been reported for 

diagnosis in routine clinical practice and few studies have provided tools to assist the pathologist in the 

decision-making process when analyzing prostate tissue. Therefore, a classifier is proposed to predict the 

occurrence of PCa that provides physicians with accurate predictions and understandable explanations. 

Methods: A selection of 47 genes was made based on differential expression between PCa and normal 

tissue, GO gene ontology as well as the literature to be used as input predictors for different machine 

learning methods based on eXplainable Artificial Intelligence. These methods were trained using different 

class-balancing strategies to build accurate classifiers using gene expression data from 550 samples from 

’The Cancer Genome Atlas’. Our model was validated in four external cohorts with different ancestries, 

totaling 463 samples. In addition, a set of SHapley Additive exPlanations was provided to help clinicians 

understand the underlying reasons for each decision. 

Results: An in-depth analysis showed that the Random Forest algorithm combined with majority class 

downsampling was the best performing approach with robust statistical significance. Our method 

achieved an average sensitivity and specificity of 0.90 and 0.8 with an AUC of 0.84 across all databases. 

The relevance of DLX1, MYL9 and FGFR genes for PCa screening was demonstrated in addition to the im- 

portant role of novel genes such as CAV2 and MYLK . 

Conclusions: This model has shown good performance in 4 independent external cohorts of different an- 

cestries and the explanations provided are consistent with each other and with the literature, opening a 

horizon for its application in clinical practice. In the near future, these genes, in combination with our 

model, could be applied to liquid biopsy to improve PCa screening. 

© 2023 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Prostate cancer (PCa) is one of the most common cancers 

mong men worldwide; in Europe it is the most frequent and the 

hird leading cause of cancer mortality [1] . However, early detec- 

ion through the use of widespread screening has enabled a sig- 

ificant shift from metastatic to localized disease at the time of 
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1 https://ec.europa.eu/futurium/en/ai- alliance- consultation.1.html 
nitial diagnosis, which is critical for the treatment of the disease 

nd for reducing disease-specific mortality [2] . Screening strategies 

n PCa are usually focused on the use of serum PSA levels, the 

ombination of different anatomic and functional magnetic reso- 

ance imaging (MRI) sequences guided by transrectal ultrasound 

TRUS), and digital rectal exam (DRE). However, the serum PSA 

evel is organ-specific but not necessarily cancer-specific and can 

e elevated for a variety of reasons. Moreover, diagnostic accu- 

acy with MRI is highly dependent on the training and exper- 

ise of the radiologist, thus urging the use of objective items in 

maging-Reporting and Data System guidelines (PI-RADS) [3–5] . It 

hould be noted that the invasive nature of DRE and TRUS-guided 

iopsy increases diagnosis success but causes significant morbid- 

ty (pain, fever, bleeding, infection, transient urinary difficulties, or 

ther complications requiring hospitalization). 

Many research strategies are focusing on the analysis of ex- 

racellular vesicles (which are one source of interesting biomark- 

rs) [6] , free miRNAs [7] , or, as is the case with other tumors,

ene-specific markers such as circulating mRNA molecules [8] . A 

umber of genetic susceptibility markers for PCa have also been 

dentified using different approaches such as family-based studies, 

andidate gene association studies, genome-wide association stud- 

es and RNA-Seq technology. However, due to the heterogeneity of 

Ca, only a few of these markers have been robustly associated 

ith PCa in contrast with other prevalent tumors, such as breast 

ancer, in which there is a clear relationship between the alteration 

f several genes and an increased risk of developing the tumor. 

All genetic susceptibility markers for PCa (e.g., BRCA2, BRCA1, 

SH2 among others) are implicated in tumor development or are 

iomarkers of increased risk for hereditary PCa, but there is no 

ene reported for PCa diagnosis or screening [9] . Therefore, the 

dentification of new biomarkers in early stages of the disease that 

llow a better distinction and classification of PCa remains a chal- 

enge for researchers. Single-cell analysis will improve detection 

nd prediction models that can assist clinicians in diagnosing or 

etecting the disease earlier and more accurately, acting as PCa 

linical decision support systems (CDSS) to aid decision-making 

t the primary care level. Previous reports indicate that genomic 

ingle-cell analysis could be a good source of quantitative param- 

ters for neoplastic growth and aggressiveness in PCa [10] , but its 

uccess will depend on the CDSS available to the pathologist when 

t comes to tissue diagnosis. 

Machine Learning (ML) techniques have proven effective in im- 

roving the prediction and diagnosis of PCa, due to their capac- 

ty to provide automatically descriptive or predictive models from 

uge amounts of data that can be used to build the inference en- 

ines of a CDSS, which can serve as a helping hand for medical 

ractitioners to diagnose or detect the disease earlier and more ac- 

urately [11,12] . However, clinicians often do not rely on the latest 

echnical approaches and methodologies (e.g., Deep Learning and 

andom Forest) despite their high accuracy, because they lack re- 

iable interpretability and explainability of the obtained models, as 

heir predictions cannot be explained in a manner understandable 

o humans (known as the black box problem [13] ). Medical experts 

o not trust decisions provided by black-box models without com- 

rehensive and easy-to understand explanations because in many 

ases “how they predict” is more important than “what they pre- 

ict” [14] . As a result, the ML techniques employed in the clinical 

omain normally consider simpler and interpretable models (e.g., 

inear models and rule-induction algorithms) at the expense of ac- 

uracy. Many studies have tried to open the black box of complex 

odels and provide an explanation of their decisions, since these 

odels should be considered as CDSS and therefore should be pro- 

ided with elements that allow them to be properly audited, in- 

reasing the practitioner’s confidence. This is especially important 

n scenarios such as this one, where the decisions of AI-based sys- 
2 
ems may impact people’s lives, as defined in the “Ethics Guide- 

ines for Trustworthy AI”1 published by the European Union for the 

se of Trustworthy AI. A whole field of research, Explainable Ar- 

ificial Intelligence (XAI), is concerned with studying it further to 

etter understand the system’s underlying mechanisms and to find 

olutions. XAI recommends the use of transparent models that are 

elf-explanatory, and of post-hoc explainability techniques that aim 

o reveal understandable information about how a complex model 

roduces its predictions for any given input [15] . Thus, the aim is 

o improve the use of Artificial Intelligence in an ethical, transpar- 

nt, fair and responsible manner [16] . 

Thanks to genomic widespread and the possibility of identi- 

ying RNA in fresh or paraffin-embedded tissue, our aim is to 

evelop an accurate and comprehensive model that allows us 

o predict the appearance of PCa from genes implicated in the 

roliferation of this type of tumor. To this end, we have per- 

ormed several differential gene expression analyses comparing 

Ca-affected tissue versus healthy prostate tissue of PCa patients 

elected from the TCGA-PRAD (The Cancer Genome Atlas-Prostate 

denocarcinoma) [17] dataset to finally identify 47 genes that may 

ct as biomarkers for PCa. This procedure constituted an expert- 

nowledge guided feature selection technique that reduced the 

earch space to a subgroup of biomarkers associated with the out- 

ome to be predicted in several populations. The well-known tree 

nsemble, Random Forest (RF) [18] , one of the most accurate ML 

odels currently in use, has been used to generate an accurate 

redictive ML model from the selected genes. Breiman stated that 

F is an outstanding predictor for performance, but fails in inter- 

retability because of the Herculean task of unraveling the com- 

lex web formed by the majority vote of more than a hundred 

rees, which is consistent with other authors suggesting that post- 

oc explanatory techniques are needed to understand its behav- 

or [19] . We have used SHapley Additive exPlanations [20] (SHAP) 

o better understand the underlying mechanisms of the model and 

nalyze the influence of each gene on the prediction. They are use- 

ul for explaining various supervised learning ML models by pro- 

iding an importance value to each input feature for each predic- 

ion made, improving the transparency and reliability of a model 

y understanding the root causes underlying each prediction. The 

btained model provides medical practitioners with a trade-off be- 

ween accuracy and explainability. 

With the intention of evaluating the performance of our ap- 

roach for using novel biomarkers in the prediction of PCa, we 

ave conducted the following studies. First, we compared our pro- 

osal with other ML approaches in PCa patients selected from 

he TCGA-PRAD dataset making use of a stratified repeated 5-fold 

ross-validation to assess the performance of our model. Differ- 

nt classification metrics and non-parametric statistical tests were 

sed to evaluate the performance of the algorithms analyzed. Sec- 

nd, to validate and contrast the knowledge derived from the TCGA 

ataset, the generated model has been applied to four independent 

xternal cohorts (GSE22260, GTEX, GSE183019 and GSE114740). Fi- 

ally, a functional enrichment analysis was performed to interpre- 

ate the role of the selected genes within the context of PCa. A web 

age associated with this paper ( https://sci2s.ugr.es/PCaXAIRF ) has 

een developed with supplementary material for this study. 

. Material and methods 

.1. General overview of the analysis plan 

The main goal of this paper is to construct an accurate and 

omprehensible classifier capable of predicting the risk of devel- 

https://sci2s.ugr.es/PCaXAIRF
https://ec.europa.eu/futurium/en/ai-alliance-consultation.1.html
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Fig. 1. Graphical abstract. Data sources: Datasets used in this work as discovery and validation populations. Each dataset includes information about the number of samples, 

whether a matched design exists, ethnicity, available data formats and the analysis pipeline applied to the raw data before validation. Analysis plan: Gene selection strategy, 

including the different gene sets generated and tested in this study. The experimental design section includes information about the class balancing strategies applied, 

model validation and parameter tuning approach, models tested and metrics evaluated for these models (the best-performing strategy is highlighted). Validation: Includes 

information about the best-performing model, results for validation datasets and an overview of the SHAP explanatory analysis. 
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ping PCa based on gene expression data derived from prostate 

issue (RNAseq data/Transrectal biopsy). To this end, we conducted 

 three-step analytical approach consisting of; 1) Filtering and se- 

ection of genetic features, according to their biological relevance 

n PCa, 2) Construction and analysis of the performance of several 

L predictive methods using the genetic features selected in the 

revious step in the discovery population, and 3) Selection of the 

est prediction model and validation of that model on a number of 

ndependent cohorts, with different ancestries (see Fig. S1 in the 

upplementary material). All datasets employed in this work cor- 

espond to publicly available data in open online repositories. ML 

odels employed in the clinical field do not usually consider com- 

lex models because of the ethical implications of making deci- 

ions that affect patients’ lives without a mechanism to understand 

lack-box models that are usually responsible for these sophisti- 

ated techniques. Instead, they often rely on interpretable models 

t the cost of accuracy [13] . Since these models do not always pro-

ide the necessary accuracy, an alternative could be to open the 

lack box and understand the mechanisms behind it. 

In the following we will provide explanations and some insights 

nto the drivers of our model from two points of view, includ- 

ng visualization and feature importance based on SHAP. The use 

f biological-function enrichment analysis and expert knowledge 

rom molecular biologists was of great importance throughout the 

nalytical process, motivating important decisions at the feature- 

election stage and helping in the interpretation of the final results. 

ig. 1 shows a general overview of this study, including the most 
o

3 
elevant details about the data sources used as discovery and val- 

dation populations at the top, the gene selection approach used 

o filter the most biologically relevant genes in PCa and the ex- 

erimental setup used (data splitting strategies, model validation 

ethodology, methods and evaluation metrics) at the lower-left 

rea, and an overview of the validation results and the post-hoc 

xplanation approach at the lower-right area. 

.2. Data sources overview 

The discovery population employed here corresponded to a 

ublic dataset from the well-known TCGA consortium. In particu- 

ar, we focused on the TCGA-PRAD data that was available through 

he GDC Legacy Archive at the National Cancer Institute (NIH). 

CGA-PRAD was chosen as our discovery population because of 

he availability of raw expression data for download, the diversity 

f tumour development stages of patients, the presence of paired 

amples and the presence of patients with different ancestries. This 

ataset contains data for 550 prostate biopsies, 498 tumoral sam- 

les (T) and 52 controls (NT) with International Society of Urolog- 

cal Pathology (ISUP) grade levels ranging from 1 to 5, including 

ifferent cancer stages. Notably, each control presented a matched 

umor sample belonging to the same patient. Therefore, we will 

efer to the TCGA-PRAD population as two subgroups of samples: 

aired samples (52 healthy tissue vs 52 tumoral tissue), and non- 

aired samples (498 tumoral samples vs 52 control samples). After 

btaining access to these data from NIH, RNAseq data were avail- 
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Table 1 

Data sources used in this study . 

Data ID Description Ancestry Sequencing Platform Data format 

TCGA Discovery population. 498T vs 52NT (52 paired). ISUP 

grades: 1 (46 samples), 2 (146 samples), 3 (101 

samples), 4 (64 samples), 5 (141 samples). 

82.9% white, 11.6% black 

or African-American, 2.4% 

Asian and 3.1% not 

reported 

Illumina TrueSeq RNA 

sequencing 

FASTQ RNA-SEQ 

(controlled access) 

GSE22260 Validation dataset. 20T vs 10NT (10 paired) 20 

prostate cancer tumors and 10 matched normal 

tissues. Gleason grades: 6 (7 samples), 7 (11 

samples), 8 (1 sample), 9 (1 sample). 

Caucasian Illumina GAII platform FASTQ RNA-SEQ 

GTEX Validation dataset. 245NT. The Genotype-Tissue 

Expression (GTEx) project stores samples from 54 

non-diseased tissue sites across nearly 1000 

individuals. 

84.6% white, 12.9% 

African-American, 1.3% 

Asian, 1.1% not reported 

Illumina TrueSeq RNA 

sequencing 

Read counts obtained via 

RNA-SeQC. FASTQ files 

were aligned to hg38. 

GSE183019 Validation dataset. 84T vs 84NT (paired). mRNA 

profiles of 84 pairs of localized primary prostate 

cancer samples and the matched normal tissues were 

generated by deep sequencing. ISUP grades: 1 (8 

samples), 2 (54 samples), 3 (18 samples), 4 (1 

samples), 5 (3 samples). 

White Illumina NovaSeq 6000. Read counts obtained via 

RSEM. FASTQ files were 

aligned to hg19. 

GSE114740 Validation dataset. 10T vs 10NT (paired). mRNA 

profiles of 10 pairs of localized primary prostate 

cancer samples and the matched normal tissues were 

generated by deep sequencing. 

Chinese/Han Illumina HiSeq 2000 FASTQ RNA-SEQ. 
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ble in the form of FASTQ files for each TCGA sample. The ethnic- 

ty of the participants was classified as: 82.9% white, 11.6% black 

r African-American, 2.4% Asian and 3.1% not reported. To validate 

ur final model, we used independent external populations, corre- 

ponding to public datasets, with different ancestries. These popu- 

ations included GSE22260 [21] , GTEX (RNA-seq data from healthy 

rostate tissue), GSE183019 and GSE114740. The datasets beginning 

ith the GSE identifier corresponded to paired sample studies ac- 

essed via the Gene Expression Omnibus database [22] , and belong 

o PCa patients. The GTEx (Genotype-Tissue Expression) dataset 

as obtained from the GTEx Portal, filtering only prostate tissue 

elonging to individuals not affected by PCa. These datasets were 

ntended for the validation of the selected predictive models and 

orresponded to different ethnic groups. More details on each pop- 

lation can be found in Table 1 . 

.3. Transcriptomic analysis 

The cohorts included in this work were sequenced using differ- 

nt platforms, and data was available in a variety of formats. For 

CGA-PRAD, GSE22260 and GSE114740 RNA-Seq FASTQ files were 

etrieved for each patient in order to run a standardized RNA-Seq 

ipeline for the purpose of extracting raw counts expression data 

or each sample. miARma-Seq [23] was used to carry out this pro- 

ess. First, the raw data was analyzed with FASTQC 

2 in order to as- 

ess the quality of the reads. Then, the reads were mapped to the 

RCh38 human genome using the star [24] aligner. Finally, read 

ounts were calculated with featureCounts [25] . The counts matrix 

as then filtered, keeping only protein-coding genes and Counts 

er Million (CPM) were calculated for each gene after normaliz- 

ng all samples by using EdgeR’s [26] TMM implementation. Nor- 

alized data was analyzed using hierarchical clustering and Prin- 

ipal Component Analysis (PCA) but all samples were kept, since 

o clear outliers were found. GTEX and GSE183019 datasets only 

ad publicly available expression count matrices. These matrices 

ere computed using different pipelines and, in the case of the 

SE183019 dataset, the reads were aligned to a different version 

f the human genome: GRCh37. Finally, CPMs for each gene were 

caled and centered, calculating their z-score according to Eq. 1 , 

here z j is the z-score for gene j, x j is the original value for gene
2 https://www.bioinformatics.babraham.ac.uk/projects/fastqc 

w

t

t

4 
, μ j is the mean of gene j across samples and σ j is its standard 

eviation. Due to the nature of RNA-seq data, expression levels can 

iffer substantially between genes, so this procedure is crucial in 

rder to harmonize the relevance of each gene before running the 

lgorithms. 

 j = 

(x j − μ j ) 

σ j 

(1) 

.4. Gene selection 

RNA-seq count matrices are populated with thousands of genes 

er sample. Reducing the gene dimensionality is key, not only to 

iscard genes lacking biological interest for the purpose of this 

tudy, but also to make sure that ML algorithms are computa- 

ionally affordable avoiding the so-called “curse of dimensional- 

ty” [27,28] . As a first step in our strategy for selecting the best 

andidate genes to be used as predictors for the ML algorithms 

hat would be run at a later stage, we ran two differential expres- 

ion analyses using EdgeR. For the first study, only paired samples 

52NT vs 52T) were considered, generalized linear models (GLM) 

ere fitted to account for tissue type (T/NT) and patient effect, 

nd finally quasi-likelihood F-tests were applied to find differen- 

ially expressed genes (DEGs). For the second study, all samples 

ere considered (52NT vs 498T) and quantile-adjusted conditional 

aximum likelihood (qCML) was used because only the tissue type 

actor was accounted for. After fitting negative binomial models 

nd obtaining dispersion estimates, genewise exact tests were em- 

loyed to find DEGs. In both cases, the raw count matrices were 

ormalized and those genes that were expressed at less than 1 

PM in more than 52 samples, which is the smallest group in both 

tudies, were filtered out (52, NT) [29] . 

The final results were filtered again, keeping only those genes 

ith a False Discovery Rate (FDR) lower than 0.05 and a | logFC |
f at least 1. The final results showed 1991 DEGs for the whole 

et of samples and 1332 for the paired dataset. 1065 genes (PRAD- 

EGs) were shared in both sets, representing 47.17% of the DEGs 

ound. Since these 1065 genes were differentially expressed in both 

opulations and were also found to be significant, we decided to 

eep them as an initial set of predictors for our work. Similarly, 

e also calculated the intersection of both sets of DEGs, but this 

ime considering only the top 200 genes in each set according to 

heir logFC value, obtaining a new gene set of interest made up 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc
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Table 2 

Gene sets considered in this study . 

Gene set Description Num. genes 

PRAD-DEGs Intersection of DEGs satisfying FDR < 0.05 and | logFC | of at least 1, for paired and 

unpaired populations in TCGA-PRAD. 

1065 

55TOP-PRAD-DEGs The same procedure was used with the with PRAD-DEGs gene set, but only the 

top 200 genes according to their | logFC | value were used for paired and 

unpaired populations before computing their intersection. 

55 

PRAD-DEGs-PROST-int-CANCER Genes in the PRAD-DEGs gene set annotated with both “prostate” and “cancer”. 108 

47-PCa-Genes Final gene set for our tool. Obtained by merging the gene sets 

55TOP-PRAD-DEGs an PRAD-DEGs-PROST-int-CANCER, using STRING and 

k-means clustering and choosing the most representative gene in each cluster. 

47 

Fig. 2. Intersection of differentially expressed genes in TCGA paired samples and 

TCGA non-paired samples. On the left, all DEG satisfying FDR < 0.05 and | logFC | > 1 

are considered, and their intersection is the PRAD-DEGs gene set consisting of 1065 

genes. On the right, only the top 200 DEGs, according to their | logFC | are considered 

for each population and their intersection amounts to 55 genes: 55TOP-PRAD-DEGs 

gene set. 

o

w

P

t

F

(

e

“

D

a

t

P

c

t

c

w

k

o

p

2

t

u

a

t

g

s

c

a

s

s

c

p

o

n

c

u

t

t

t

w

t

o

t

t

s

b

p

r

t

n

C

a

fi

a

l

s

k

o

n

t

k

c

i

C

a

v

m

t

o

t

e

t

i

t

f 55 genes: 55TOP-PRAD-DEGs. Fig. 2 shows how these gene sets 

ere obtained. 

Next, we carried out a functional enrichment analysis on our 

RAD-DEGs gene set using STRING [30] and looking for the annota- 

ions “cancer” and “prostate” in Biological Process (GO), Molecular 

unction (GO), Cellular Component (GO), KEGG, Tissue expression 

TISSUES) and Reference publications (PUBMED). As a result of the 

nrichment analysis 114 genes were enriched with both the terms 

cancer” and “prostate”. We will refer to this gene set as PRAD- 

EGs-PROST-int-CANCER. 

In an effort to further reduce the number of genes of interest 

nd extend our search space to other genes that may be relevant 

o our study, we merged the 55TOP-PRAD-DEGs and PRAD-DEGs- 

ROST-int-CANCER genesets, obtaining 157 genes. Subsequently, we 

lassified them using the STRING tool, grouping them in 45 clus- 

ers using kmeans clustering. For each cluster, the gene with more 

onnections was selected, assuming the hypothesis that each gene 

ould provide the biological information of its cluster. When this 

ey gene did not exist in a cluster, two were selected. Finally, we 

btained 47 candidate genes for our tool: 47-PCa-Genes. 

Table 2 shows the different gene sets considered as potential 

redictors of interest for this study. 

.5. Pre-processing and experimental set-up 

In order to build our classifier to differentiate healthy prostate 

issue from tumoral prostate tissue, we trained different models 

sing the caret [31] (Classification and Regression Training) pack- 

ge available for R 

3 . 

Since the TCGA-PRAD dataset is significantly imbalanced, 498 

umor samples vs 52 healthy samples, we applied different strate- 

ies to prevent the algorithms from being biased towards clas- 

ifying samples as tumoral just for being the majority class, in- 

luding undersampling, oversampling, weighted sample and hybrid 

pproaches. The upsampling technique creates synthetic samples 
3 https://www.R-project.org 

5

imilar to the real ones belonging to the minority class; the under- 

ampling approach reduces the number of samples in the majority 

lass by removing some of them in the population; weighted sam- 

le technique aims to assign a weight to every sample depending 

n the class they belong to, so that weights are higher for the mi- 

ority class, which would make the failures when predicting that 

lass more significant. The last strategy consists in combining the 

psampling and undersampling techniques to balance the popula- 

ion size for each class using procedures such as SMOTE [32] . Note 

hat, prior to applying these techniques to our discovery popula- 

ion, training and testing partitions were created for each fold, and 

hile the training partitions were affected by these procedures, 

he test data remained unaffected and the samples retained their 

riginal values and proportions. 

We have used a stratified 5-fold cross-validation, repeated 5 

imes, to assess the performance, amounting to a total of 25 execu- 

ions. This technique is appropriate in cases where the population 

ize is limited, reducing estimation errors, and providing a good 

ias-variance tradeoff, apart from being a computationally efficient 

rocess [33] . This technique may lead to worse but more realistic 

esults because the outcome of the algorithms is not influenced by 

he seed chosen when splitting the dataset. 

The following methods were selected for our study: k-nearest 

eighbors [34] (KNN), rpart 4 (Classification and Regression Trees - 

ART) and RF [35] . KNN and CART techniques generate models that 

re understandable to experts, and are expected to provide suf- 

cient information about the relationship between input features 

nd predictions, while allowing clinicians to answer questions re- 

ated to which genes are playing a key role in predictions. Breiman 

tated that RF [18] is an excellent alternative when performance is 

ey, pointing out that it is an excellent predictor that fails in terms 

f interpretability, which makes it necessary to use post-hoc tech- 

iques to understand its behavior as described in the next subsec- 

ion. 

Different parameters were trained depending on the algorithm: 

 for KNN: the number of the instances closest to the query to be 

onsidered; CP (complexity parameter) for rpart: its role is prun- 

ng any split in the tree that doesn’t improve the fit by at least 

P ; and mtry for RF: the number of predictors randomly selected 

s candidates at each tree split. Any other parameters for the pre- 

ious algorithms have been set to their default values, as recom- 

ended by their authors, in an effort to facilitate comparisons and 

ake advantage of using settings that perform well in the majority 

f cases instead of searching for very specific values. To evaluate 

he performance of the algorithms, several metrics that have been 

xtensively described in the literature were used, complementing 

he information provided by each one: F1, G-mean, AUC, sensitiv- 

ty and specificity [36] . 

Metrics that consider classes individually enable the analysis of 

hat specific class. Performance measures, such as “G measures”
4 https://CRAN.R-project.org/package=rpart 

https://www.R-project.org
https://CRAN.R-project.org/package=rpart
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Table 3 

Average quality metrics across the 25 test sets, for each class balancing strat- 

egy (Class Bal.) in the training sets for the TCGA-PRAD population. 

Method Class Bal. G-mean Sens. Spec. AUC F1 

RF Undersampling 0.91 0.90 0.92 0.95 0.69 

RF Hybrid 0.90 0.85 0.95 0.96 0.74 

RF Upsampling 0.84 0.71 0.99 0.96 0.76 

RF Weight 0.80 0.65 0.99 0.96 0.73 

RF - 0.79 0.63 0.99 0.96 0.71 

KNN Undersampling 0.89 0.92 0.86 0.94 0.58 

KNN Hybrid 0.89 0.91 0.88 0.93 0.61 

KNN Upsampling 0.88 0.92 0.84 0.93 0.54 

KNN Weight 0.70 0.50 0.99 0.93 0.60 

KNN - 0.70 0.50 0.99 0.92 0.60 

rpart Undersampling 0.87 0.85 0.88 0.87 0.57 

rpart Hybrid 0.86 0.82 0.89 0.86 0.58 

rpart Upsampling 0.85 0.83 0.88 0.85 0.55 

rpart Weight 0.85 0.82 0.88 0.85 0.56 

rpart - 0.73 0.56 0.97 0.77 0.59 

Fig. 3. G-mean, sensitivity and specificity values (the last two in the box) for the 

different models based on RF, KNN and rpart methods and different class-balancing 

approaches. 
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hat combine basic metrics, were designed to summarize different 

rade-offs between the individual performance measure for each 

lass. G-mean is the geometric mean of sensibility and specificity, 

nd this metric measures how balanced sensitivity and specificity 

re regardless of the majority/minority classes. This metric is in- 

ended to balance the success rate between the majority and mi- 

ority classes: in our case, a low performance in predicting con- 

rols will imply a low value for the g-mean metric even if all 

ases with PCa are correctly classified. This measure helps us 

void overfitting the majority class while underfitting the minor- 

ty group [37] . All the possible combinations using KNN, rpart and 

F with the class balancing approaches discussed earlier and the 

ataset 47-PCa-Genes were tested and ranked according to their 

-mean. 

.6. Explainability 

In this study we have used a number of ML algorithms, in- 

luding RF, which belongs to the so-called ensemble classifiers. It 

s difficult to obtain understandable explanations for these classi- 

ers, given their complexity. To understand the mechanisms be- 

ind RF models, which are more complex than the individual mod- 

ls from which they are derived, post-hoc explanatory techniques 

re needed [19] . Global explanation methods, such as the tradi- 

ional feature importance for RF, can be used to explain the overall 

ehavior of the model. However, global explanations lack the abil- 

ty to explain individual predictions and do not allow the magni- 

ude and direction of the effect of each feature on the final out- 

ome to be determined. Feature relevance explanation technique 

HAP, which we used for this work, can provide local explanations 

hat allow us to fairly explain the underlying reasons behind in- 

ividual predictions in terms of the contribution of each predictor 

o the final outcome. In addition, SHAP can also provide global ex- 

lanations by building a matrix of Shapley values with one row 

er data instance and one column per feature, allowing predictors 

o be ranked according to their average contribution. These global 

nd local explanations provide complementary information about 

he behavior of a model, which is key for experts to understand its 

echanisms, especially in highly sensitive areas such as health. 

SHAP is based on the idea of Shapley value, used in game the- 

ry, which assumes that a prediction can be explained by the as- 

umption that every feature (in our case, a gene) is a “player” in 

 game where the prediction is the “payoff”. The magnitude and 

ign of the attribution of each feature to the final result provided 

y the model are computed based on Shapley values, which allow 

he payoff to be allocated equally among the features. 

We employ SHAP to compute the importance of each feature in 

ach prediction, so that we have a more detailed idea of the mech- 

nisms behind each of these predictions. Our model generates an 

utput between 0 and 1 so that values below 0.5 are predicted as 

on-PCa-affected tissue and those equal to or above that threshold 

re classified as PCa tissue. In this context, we calculate the Shap- 

ey value for each feature in each prediction, which can be thought 

f as the effect of a specific gene on the final output and can be

alculated as shown in Equation 2 , where φi is the Shapley value 

or feature i, S is a feature subset, F is the set of all features, f S ∪{ i } 
s the model trained with the feature i present, f S is the model 

rained with the feature i withheld and x S represents the values 

f the input features in the set S . A Shapley value is basically the

arginal average contribution of a feature considering all possible 

ombinations, which requires retraining the model on all feature 

ubsets with and without including feature i . 

It has been shown that these mechanisms can provide clinicians 

ith accurate and reliable explanations, which will make medical 

xperts more comfortable with RF decisions [38] . 
6 
Gene importance was then calculated as the mean of the abso- 

ute value of these Shapley values for each feature in each sample 

elonging to a given dataset, as shown in Eq. 3 , where I j is the

mportance for feature j, n is the number of samples in the pop- 

lation and φ(i ) 
j 

is the Shapley value for sample i and feature j. 

i = 

∑ 

S ⊆F \{ i } 

| S | !(| F | − | S | − 1)! 

| F | ! [ f S ∪{ i } (x S ∪{ i } ) − f S (x S )] (2) 

 j = 

1 

n 

n ∑ 

i =1 

| φ(i ) 
j 

| (3) 

. Results and discussion 

.1. Results 

Table 3 shows the average results obtained for each quality 

etric considered in the 25 test sets, with each of the strate- 

ies used to balance the sample classes in the training sets, for 

ach method in our discovery population TCGA-PRAD. Fig. 3 shows 

 graphical overview of these results. Non-parametric tests were 

sed to compare these results in order to choose the best perform- 

ng algorithm for G-mean, F1, AUC, Sensitivity and Specificity val- 

es. Despite the heterogeneity of the methods used in this study, 

e applied Friedman’s test [39] , rejecting the null hypothesis. 

riedman’s ranking for each measure can be found in Table 4 , with 

F ranking first in 3 of the 4 measures. The Shaffer test [40] was

hen considered for pairwise comparisons between methods. For 
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Table 4 

Statistical test results for the measures G-mean, F1, AUC, Sensitivity and Speci- 

ficity . 

Ranking Ranking Ranking Ranking Ranking 

Algorithm G-mean F1 AUC Sens. Spec. 

RF 1.60 1.44 1.28 1.88 1.54 

KNN 1.84 2.06 1.90 1.84 2.24 

rpart 2.56 2.5 2.92 2.28 2.22 

APV APV APV APV APV 

Algorithm G-mean F1 AUC Sens. Spec. 

RF - - - 0.888 - 

KNN 0.396 0.028 0.05 - 0.039 

rpart 0.002 0.001 0 0.359 0.039 

Table 5 

Final classifier metrics across databases . 

Database G-mean Sens. Spec. AUC F1 

TCGA-PRAD 0.91 0.90 0.92 0.91 0.70 

GSE114740 0.85 0.90 0.80 0.85 0.86 

GSE183019 0.80 0.93 0.70 0.81 0.83 

GSE22260 0.77 0.80 0.75 0.78 0.70 

GTEX (prost.) NA 0.99 NA NA 0.99 
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ach observation, adjusted p-values (APVs) were calculated to as- 

ure the lowest degree of significance prior to rejecting the equal- 

ty hypothesis. The numerical output for the comparisons are also 

hown in Table 4 . Significant differences of at least 0.05 with the 

ther methods are observed for the measurements in which RF is 

he best method, except for KNN and g-mean, in which there are 

o significant differences. As for the sensitivity measure, we ob- 

erved that there are no significant differences between the meth- 

ds when KNN is the method best classified by Friedman, show- 

ng that all the methods present a similar behavior on the posi- 

ive class (NT). According to the statistical results obtained, we can 

tate that RF is the method with the best statistical performance 

n the 25 runs on the test sets. 

We tested the classifier with validation populations to see to 

hat extent it was able to generalize its predictions when dif- 

erent ancestries, sequencing technologies and analysis pipelines 

ame into play. We trained our final classifier using RF, in con- 

unction with the undersampling strategy to generate a model over 

he complete discovery dataset. As described in Table 5 , the results 

lso look promising, with g-mean, AUC and F1 values always above 

.7 and the following sensibility/specificity values in the different 

opulations: GSE22260 (0.8, 0.75), GSE114740 (0.9, 0.8), GSE183019 

0.93, 0.7) and GTEx (0.99, NA). There were no tumor samples 

or GTEx, so the specificity value could not be calculated, and for 

SE183019 we had to rely on the array counts provided, and could 

ot apply our RNASeq pipeline to the raw sequencing data. 

Once the results had been obtained, we focused on uncovering 

he mechanisms underlying our algorithm by using SHAP. Fig. 4 

hows a graphical representation of the importance of our top 20 

redictors, according to their importance, in our classifier for the 

CGA-PRAD dataset. Genes are ordered according to their overall 

mportance. Each dot represents the attribution of a given gene 

n the classifier’s final prediction for a specific patient, and its 

olor is determined by that gene expression value for each patient 

red = high, blue = low). Red values represent higher expression val- 

es, while blue tones are associated with poorly expressed genes. 

n the left, only samples with PCa are represented, while on the 

ight only healthy samples are shown. At the bottom, the classi- 

er’s explanation for a single patient is displayed; the numerical 

utput of the classifier is explained with the individual contribu- 

ion of each predictor, in some cases adding and in others subtract- 
7 
ng until the final value is obtained. The most influential genes are 

abeled. 

Note that blue and red tones are often separated by the zero- 

mpact value, which means that, for most genes, their contribution 

o the final outcome is strongly linked to their expression level. 

.2. Discussion 

The heterogeneity present in the way that the different datasets 

ere obtained, including a variety of analysis pipelines, sequenc- 

ng technologies and different reference genomes when aligning 

eads, leads us to believe that the results, which will be discussed 

ater, could have been even better if we had been able to apply our 

NA-SEQ pipeline to each dataset. Moreover, it also shows that our 

lassifier tolerates some flexibility regarding how the input data is 

rocessed. In addition to the input data format and the reference 

enome build used, this system is also able to correctly classify 

amples of very different ethnicities (see supplementary data, sec- 

ion Datasets). 

The strength of the present classifier is based on the final genes 

ncluded in the classifer, such as, DLX1 (Distal-Less Homeobox 1), 

hich is currently included in SelectMDX urine test as a diagnostic 

isk biomarker for classification in negative and misclassified PCa 

iopsies [41] . 

HPN (Hepsin) has also been shown to distinguish normal tis- 

ue from PCa lesions through single-cell RNA sequencing [42] ; 

he same is true for CNN1 (Calponin 1) with differences demon- 

trated between tumor and normal tissues [43] . Moreover, ANXA2 

Annexin A2 or Annexin II) has been suggested as a prognostic 

iomarker of PCa because of its association between high expres- 

ion patterns and higher grade and stage PCa [44] . 

There are also results suggesting an oncogenic role of AMACR 

alpha-methylacyl-CoA racemase) in PCa and indicating its role as 

 potential biomarker for its diagnosis [45] . It has also been shown 

o be a marker of recurrence after radical prostatectomy [46] , but 

urrently has no application in clinical screening. Moreover, MYL9 

Myosin light chain 9) is closely associated with poor prognosis in 

everal tumors such as PCa, lung, breast and melanoma. Its role as 

 molecular marker and potential target for early diagnosis, prog- 

ostic prediction and selective treatment of malignant tumors has 

een proposed [47] . 

Similar to the genes that rank first in terms of SHAP impor- 

ance, those ranked last are also biologically relevant in PCa. DCN 

as been previously reported as a prognostic marker of PCa in tis- 

ue [48] . MYO6 (Myosin VI) is suggested to play an essential role in 

Ca progression and has promising therapeutic effects [49] . There 

re not many reports citing TFF3 (trefoil factor 3), but it has been 

uggested to play a role in the stratification of PCa in combina- 

ion with HOXB13 (Homeobox B13). SVIL (Supervillin) has also been 

entioned as a possible methylation-specific marker of PCa, but 

ith low sensitivity (75.4%) [50] . With regard to TIMP3 and KRT7 , 

hey have previously been linked to a therapeutic implication in 

Ca, but not to a screening target [51] . Another important gene is 

GFR2 , which is a fibroblast growth factor receptor and a mem- 

rane receptor that promotes cell proliferation and differentiation. 

s we see in our results, the downregulation of FGFR2 is associ- 

ted with poor prognosis in PCa [52] but not in other types of 

ancers, thus, this gene seems a very specific marker and there- 

ore relevant for the specificity of our classifier. EPHA2 is also very 

nteresting, as it is the most extensively studied EphA receptor in 

Ca. Initial studies identified EPHA2 protein overexpression in PCa 

ell lines related with metastatic potential. However, normal and 

enign prostate tumor cells showed weak or no staining with the 

phA2 antibody [53] . As seen in Table 6 , another relevant gene is 

DRD1 , which is thought to function in the suppression of trans- 

osable elements during spermatogenesis. It has been observed 
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Fig. 4. SHAP analysis for our RF model. Top 20 genes, according to the importance are shown for T samples (on the left) and NT samples (on the right). Each point represents 

the impact on the model output for a specific patient and gene. Color shows expression value. At the bottom, the prediction for a single patient is shown, the impact on the 

final result of the most influential genes is represented. 

Table 6 

Inferred patterns in classifier prediction . 

Class Pattern 

T ↑ DLX1 , ↑ HPN , ↓ FGFR2 , ↓ MYL9 , ↓ CNN1 , ↑ TDRD1 

NT ↓ DLX1 , ↓ HPN , ↑ FGFR2 , ↑ AMACR , ↓ TDRD1 

Up and down arrows indicate high and low expression levels, re- 

spectively. Genes in bold represent the most relevant genes in each 

class, after DLX1 . 
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hat the TDRD1 protein is expressed in the majority of human 

rostate tumors, but not in normal prostate tissue, so in this re- 

ard it has been proposed as a novel PCa biomarker [54] . 

The most influential gene for T samples is DLX1 , followed by 

YL9, HPN, FGFR2 and CNN1 , while in the NT class the most rel-

vant gene is still DLX1 but this time followed by HPN, FGFR2, 

MACR and ANXA2 . After the predictor DLX1 , shared by both 

lasses, the most influential genes for the T and NT classes are 

YL9 and HPN , respectively. Table 6 summarizes these patterns in 

elation to the expression level of the most relevant genes. 

The expression patterns of the main genes included in 

able 6 help us to classify T and NT samples, mainly with de- 

reased expression in T samples, with FGFR2, CNN1 and ANXA2 

laying an important role. Gene silencing is also relevant in the 
8 
 samples in genes such as CA14 or EPHA2 . Furthermore, in the 

 samples, there is an increased expression in 14 genes, among 

hich the major contributors to the present algorithm are DLX1, 

PN, AMACR, HOXC6 and TDRD1 . Therefore, these 5 genes repre- 

ent a set of relevant markers because they share an increasing 

xpression pattern in all populations. Consequently, they may be 

he most reasonable choice for application in the detection of liq- 

id biopsies, as is the case with DLX1 [41] . 

It is important to highlight the contribution of the present pro- 

osal. Although some of the genes included in our classifier have 

een previously reported individually as related to prognostic tu- 

oral tissue classification in PCa; they have never been used to- 

ether until now. In addition, the present work also includes genes 

hat are barely or not at all described in PCa, that are key for deci-

ion making in both our discovery and validation populations, such 

s MYLK (Myosin Light Chain Kinase), CAV2 (Caveolin 2), TDRD1 

Tudor Domain Containing 1) as well as other genes that have 

ever been previously described in PCa such as RNF112 (Ring Fin- 

er Protein 112), APOF (Apolipoprotein F) and MYOCD (Myocardin). 

hese genes are related to the tumor microenvironment, but with 

ifferent roles. MYLK and MYOCD genes promote tumor forma- 

ion and vascularization [55,56] , RNF112 gene is related to cellular 

ifferentiation, CAV2 modulates mitotic pathways and APOF is in- 

olved in the regulation of cellular transport. However, the most 



A. Ramírez-Mena, E. Andrés-León, M.J. Alvarez-Cubero et al. Computer Methods and Programs in Biomedicine 240 (2023) 107719 

i

t

f

t

a

R

c

s

o

a

r

s

s

t

c

4

s

s

p

T

r

a

f

i

w

g

a

m

c

m

d

s

d

fi

t

v

e

p

t  

l

F

o

d

D

i

A

t

G

a

A

s

P

R

 

 

 

 

 

 

 

nteresting part is that several of them have been previously iden- 

ified as biomarkers in other tumors, but never in PCa, which rein- 

orces their utility as biomarkers. For example, APOF regulates cell 

ransport and has been described as a biomarker or target for hep- 

tocellular carcinoma [57,58] or cervical cancer [59] . In the case of 

NF112, it has been described as a prognostic biomarker in oral 

ancer [60] . 

In the near future, by combining our classifier and single-cell 

trategies we will be able to identify a tumor when there is only 

ne malignant cell, by detecting the signature of these cells from 

mong the rest of the healthy cells, which will improve the accu- 

acy of the imaging techniques currently used for diagnosis [61] . 

Finally, current genomic methodologies could provide expres- 

ion analysis in tissue (fresh or paraffin-embedded) with a high 

uccess rate and sequence coverage. Therefore, the application of 

his algorithm in current medicine and clinical practice for PCa 

lassification is feasible at a low cost. 

. Conclusions 

In this work, we have addressed the development of a clas- 

ifier to predict the risk of PCa in prostate tissue based on a 

et of biologically relevant genes that could provide explanatory 

ower to its predictions, using the well-known SHAP algorithm. 

his classifier showed good results considering several quality met- 

ics widely used in ML, not only in the discovery population but 

lso in external populations with a wide range of ancestries. The 

act that biomarkers for PCa screening are not currently used 

n clinical practice highlights the interest of this work, in which 

e have demonstrated the relevance of DLX1, MYL9 and FGFR 

enes, in addition to novel genes for PCa screening such as CAV2 

nd MYLK . The lowest ranked predictors of our classifier comple- 

ent the remaining most relevant genes to achieve the good ac- 

uracy demonstrated by the algorithm, as they are involved in 

etabolic pathways and biological processes of interest for this 

isease. 

To the best of our knowledge, this is the first time that a clas- 

ifier combining gene expression and ML has been used for PCa 

etection and screening. With the help of this tool, the misclassi- 

cation rates of anatomopathological analysis could be decreased, 

hus reducing the need for repeated biopsies. Thanks to the de- 

elopment of this tool, fundamental genes in the development and 

volution of PCa have been identified for evaluation in the clinical 

ractice. Finally, the application of this algorithm to other sample 

ypes, such as urine or blood, could allow for its use as part of the

iquid biopsy strategy in PCa in the future. 
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