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A B S T R A C T

In this paper, based on the analysis of the most widely used dispersion measure in the real context (namely,
the variance), we introduce the notion of fuzzy dispersion measure associated to a finite set of data given by
fuzzy numbers. This measure is implemented as a fuzzy number, so there is no loss of information caused
by any defuzzification. The proposed concept satisfies the usual properties in a genuinely fuzzy sense and it
avoids limitations in terms of its geometric shape or its analytical properties: under this conception, it could
have a piece of its support in the negative part of the real line. This novel notion can be interpreted as a way
of fusing the information included in a fuzzy data set in order to make a decision based on its dispersion.
To illustrate the main characteristics of this approach, we present an example of a fuzzy dispersion measure
that allows to conclude that this new way to deal this problem is coherent, at least, from the point of view
of human intuition.
. Introduction

Dispersion of data is defined as the degree to which the data ap-
roaches to an average value. This information plays a very important
ole in Statistics for Data Analysis and Data Science [1,2]. For real data,
dispersion measure is performed by determining a central position
easurement (usually the arithmetic mean) and calculating the average
istance (or semi-distances) from the data to such value. For instance,
he variance is worked out as the average squared distance to the
ean. This measure is characterized by some general properties: it

s invariant by translations and, if all inputs are multiplied by the
ame scalar, then the variance is multiplied by the square of such
eal number. Furthermore, this dispersion measure is naturally a non
egative real number, and its lowest value (which is 0) characterizes the
owest dispersion (there is none dispersion when all data are equal). In
inance, it is common to associate some dispersion measure (usually,
he variance) to risk. Low variance corresponds to lower risk and a
ower return. Among two investments with the same expected return,
t is usual to consider the one with the higher variance to be riskier.

Beyond the real case, the fuzzy set theory, introduced by Zadeh [3]
n 1965, is a powerful tool to describe and model situations in which
he data are imprecise or vague. Due to the uncertainty in the real
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world, fuzzy numbers have been successfully applied in many different
research areas (see [4–13]).

The studies about the computation of the variance involving fuzzy
numbers started in the 80s and 90s of the 20th century. Those defini-
tions of variance of fuzzy numbers can be in turn divided into two main
blocks, which respectively correspond to the two main interpretations
of fuzzy sets, namely the “ontic interpretation” and the “epistemic
interpretation”. According to the “ontic interpretation” of fuzzy sets, the
variance of fuzzy numbers is defined as a crisp number representing
the mean of the squared (crisp) distances between the corresponding
fuzzy numbers and their arithmetic mean (see [14–22]). According to
the “epistemic interpretation”, the (fuzzy) variance of a collection of 𝑛
fuzzy numbers is defined as a fuzzy set. Each 𝛼-cut corresponds to the
set of all the variances associated to all the possible collections of 𝑛
crisp numbers {𝑥1,… , 𝑥𝑛}, each of them (𝑥𝑖) included in the 𝛼-level set
(𝖠𝑖)𝛼 of the corresponding fuzzy number 𝖠𝑖. This definition was given
by Kruse [23], and Kruse and Meyer [24], in the 1980s (see also [25]
for a discussion on different definitions, and [26–30] to consider some
optimization problems for the computation of the extreme points of the
𝛼-cuts of the fuzzy variance).
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In trying to extend the concept of real variance to the fuzzy setting,
several difficulties naturally arise. First of all, it is worth mentioning
the arithmetic. To compute the variance of some real numbers, the
four basic arithmetic operations are involved: sum, subtraction, product
(the square) and division. Although there is an arithmetic with fuzzy
numbers that extends and generalizes the usual arithmetic with real
numbers (see [31–34]), it does not preserve some properties of the
arithmetic with real numbers. For instance, it is possible to take two
distinct non zero fuzzy numbers 𝖠 and 𝖡 such that 𝖠 − 𝖡 = 𝖡 − 𝖠.
urthermore, the product of two triangular fuzzy numbers is not, in
eneral, a fuzzy number of the same class: it is rather an LR-fuzzy
umber (see [9]).

Secondly, if we desire to compare fuzzy dispersions, we need to con-
ider a ranking methodology in the set of all possible fuzzy quantities
hat can be obtained. This ranking procedure will play a key role in this
opic. The family of all fuzzy numbers is not endowed with a globally
ccepted partial order that extends the real order. In this line of study,
everal ranking methodologies have been introduced in the last fifty
ears (see [35,36] and references therein).

Thirdly, under the epistemic interpretation in the fuzzy setting,
he non-negativity of the real variance has been translated into the
ondition that the support of a fuzzy variance must necessarily be
ncluded in the non-negative part of the real line. From our point of
iew, this property has not been sufficiently discussed in the literature
nd this paper tries to address this issue. On the contrary, such property
f the real variance could be rather interpreted as an extraordinary
but desired) chance: it comes from the fact that the square of any real
umber is non-negative, which is a property that does not hold when
andling fuzzy numbers. In the presence of a ranking methodology,
on-negative fuzzy numbers are defined by the simple comparison with
he crisp null fuzzy number. This condition says nothing about the level
ets (or the support) of the fuzzy number: it is usual to have a piece in
he positive part of the real line, but it is not impossible for a positive
uzzy number to have a piece in its negative part. It basically depends
n the ranking methodology. The deep analysis of the structure of the
nterval of all possible real variances (that is, [0,+∞)) leads to that of
n ordered convex cone with an absolute minimum: closed for sums
nd products by positive real numbers, and endowed with an absolute
inimum. That is why, in the fuzzy setting, once the fuzzy ranking
ethodology to be applied has been chosen, it seems reasonable to

mpose that the values obtained as fuzzy dispersion measures form a
onvex cone with respect to the chosen fuzzy binary relation.

Finally, in spite of the amount of studies about fuzzy variance, it
s difficult to find a research that quantifies the dispersion avoiding
he lost of information. On the contrary, the involved procedures
ften employ defuzzifications or real computations on level sets. Such
rocesses enjoys two main advantages: they are full of significance and
hey inherit the main properties of the variance in the real context.
owever, they also lead to some inconsistency with the fuzzy point of
iew: such proposals take fuzzy numbers, they immediately move to
real scenario, they all time perform real operations (for instance, the

omputation of the real variance), and they only come back to the fuzzy
ramework at the end of the process in order to interpret the obtained
esult.

In this context, the main aim of this work is to introduce the min-
mal theoretical framework in which a fuzzy dispersion measure among
uzzy quantities (especially, when the input data are fuzzy numbers)
an be defined. As a result, this paper deals with two shocking ideas:
n the one hand, we definitively search for an approach that avoids
he lost of information, that is, completely fuzzy-based; on the other
and, we search for a notion in which the fuzzy dispersion measure
ould have a piece of its support in the negative part of the real
ine. Under this view-point, this algebraic structure is characterized by
ive basic properties (namely symmetry, crisp-invariance, homogeneity,
ormality and positivity with respect to a binary relation), but other
2

easonable conditions that a fuzzy dispersion measure could satisfy
are also described. We also highlight the importance of fixing at the
beginning of the study the classes of considered fuzzy quantities (inputs
and outputs) and the fuzzy binary relation. To support this proposal,
examples of such measures are introduced but, mainly, it is shown that
the translation to the fuzzy setting of classical notion of variance of
triangular fuzzy numbers permit to consider a fuzzy dispersion space
with respect to the binary relation introduced in [36] that, additionally,
is 2-homogeneous, conservative and of variance-type.

To develop these ideas, this paper is organized as follows. In Sec-
tion 2 the necessary preliminaries to understand the contents of the
paper are introduced. Section 3 contains the notion of fuzzy dispersion
measure and some of the reasonable properties that it can satisfy. Later,
Section 4 is devoted to describe and study a canonical example of fuzzy
dispersion measure, and to show some of its main properties. In fact, we
compare its results with those obtained by employing the Kruse fuzzy
variance. In Section 5 we compute and compare the dispersion (in a
fuzzy sense) of two distinct sets of four triangular fuzzy numbers of
the real line. It is also highlighted that the canonical example of fuzzy
dispersion measure is non-negative when the ranking methodology
presented in [36] is applied. Finally, some conclusions and prospect
works in this line of study are commented.

2. Preliminaries

Through this manuscript, N = {1, 2,…} denotes the set of all positive
ntegers, and R will stand for the family of all real numbers. Given
∈ N, we use [𝑛] for the indices set {1, 2,… , 𝑛}. To fix the notation,

iven a set 𝑇 = {𝑡1, 𝑡2,… , 𝑡𝑛} of 𝑛 real numbers, the variance var(𝑇 ) of
such set is the real number

var(𝑇 ) = 1
𝑛

𝑛
∑

𝑖=1
(𝑡𝑖 − 𝑇 )2,

here 𝑇 = 1
𝑛
∑𝑛

𝑖=1𝑡𝑖 is the mean of the real numbers 𝑡1, 𝑡2,… , 𝑡𝑛.
Given a non-empty subset 𝐷 ⊆ R, a function 𝑓 ∶ 𝐷 ⊆ R → R is:

ncreasing (or non-decreasing) if 𝑓 (𝑡) ≤ 𝑓 (𝑠) for all 𝑡, 𝑠 ∈ 𝐷 such that
≤ 𝑠; strictly increasing if 𝑓 (𝑡) < 𝑓 (𝑠) for all 𝑡, 𝑠 ∈ 𝐷 such that 𝑡 < 𝑠;
ecreasing (or non-increasing) if 𝑓 (𝑡) ≥ 𝑓 (𝑠) for all 𝑡, 𝑠 ∈ 𝐷 such that
≤ 𝑠; strictly decreasing if 𝑓 (𝑡) > 𝑓 (𝑠) for all 𝑡, 𝑠 ∈ 𝐷 such that 𝑡 < 𝑠;

trictly monotone if 𝑓 is either strictly increasing or strictly decreasing.
Given two real closed intervals [𝑎, 𝑏] and [𝑐, 𝑑], we will say that a

unction 𝑓 ∶ [𝑎, 𝑏] → [𝑐, 𝑑 ] is a parametrization from [𝑎, 𝑏] onto [𝑐, 𝑑 ] if
is continuous and bijective from [𝑎, 𝑏] onto [𝑐, 𝑑 ] (so it is also strictly
onotone). A parametrization is direct if it is strictly increasing, and

nverse if it is strictly decreasing.
From now on, let 𝑋 be a non-empty set. Given 𝑛 ∈ N, we denote by

𝑛 to the Cartesian product 𝑋 ×𝑋 × (𝑛)…×𝑋. A binary relation on 𝑋 is a
on-empty subset  of the Cartesian product 𝑋 ×𝑋. For simplicity, if
𝑥, 𝑦) ∈ , we denote it by 𝑥 ⪯ 𝑦, and we will say that ⪯ is the binary
elation on 𝑋. A binary relation ⪯ is total (or linear) if 𝑥 ⪯ 𝑦 or 𝑦 ⪯ 𝑥
hatever 𝑥, 𝑦 ∈ 𝑋 (see [37]). Each total binary relation is reflexive (that

s, 𝑥 ⪯ 𝑥 for each 𝑥 ∈ R). A set 𝑋 is a singleton if it contains a unique
lement.

.1. Background on fuzzy sets and fuzzy numbers

Given a set 𝑋, a fuzzy set 𝐴 on 𝑋 is a family of pairs { ⟨𝑥, 𝜂𝐴(𝑥)⟩ ∶
∈ 𝑋 } such that 𝜂𝐴(𝑥) ∈ [0, 1] for each 𝑥 ∈ 𝑋. Each value 𝜂𝐴(𝑥)

epresent the membership degree of 𝑥 to the fuzzy set 𝐴, and the
unction 𝜂𝐴 ∶ 𝑋 → [0, 1] is called the membership function of the fuzzy
et 𝐴. For the sake of simplicity, we will identify each fuzzy set 𝐴 with
ts corresponding membership function, and we will say that a fuzzy set
n 𝑋 is a mapping 𝐴 ∶ 𝑋 → [0, 1].

For each 𝛼 ∈ (0, 1], the 𝛼-level set (or 𝛼-cut) of 𝐴 is the set 𝐴𝛼 = { 𝑥 ∈
∶ 𝐴(𝑥) ≥ 𝛼 }. The kernel (or core) of 𝐴 is ker(𝐴) = 𝐴1 and the support

f 𝐴 is the set

upp(𝐴) = { 𝑥 ∈ 𝑋 ∶ 𝐴(𝑥) > 0 } =
⋃

𝐴𝛼 ⊆ 𝑋.

𝛼∈(0,1]
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f 𝛼, 𝛽 ∈ (0, 1] are such that 𝛼 ≤ 𝛽, then ker(𝐴) = 𝐴1 ⊆ 𝐴𝛽 ⊆ 𝐴𝛼 ⊆
upp(𝐴).

efinition 2.1. A fuzzy number 𝖠 of the real line is a fuzzy set 𝖠 ∶ R →
0, 1] satisfying the following properties:

𝐹𝑁1) 𝖠 is normal, that is, there is 𝑡0 ∈ R such that 𝖠(𝑡0) = 1;

𝐹𝑁2) 𝖠 is fuzzy convex (i.e., 𝖠 (𝜆𝑡 + (1 − 𝜆) 𝑠) ≥ min{𝖠(𝑡),𝖠(𝑠)} for all
𝑡, 𝑠 ∈ R and all 𝜆 ∈ [0, 1]);

𝐹𝑁3) 𝖠 is upper semicontinuous at every 𝑡0 ∈ R (i.e., for all 𝜀 > 0, there
exists 𝛿 > 0 such that 𝖠(𝑡) − 𝖠(𝑡0) < 𝜀, whenever |

|

𝑡 − 𝑡0 || < 𝛿);

(𝐹𝑁4) the support of 𝖠 is bounded.

We will denote by FN(R) to the family of all fuzzy numbers of R.

Some authors omit the condition (𝐹𝑁4), so they can consider fuzzy
numbers with non-bounded supports. However, for our purposes, we
will only consider fuzzy numbers with bounded support.

In general, the family FN(R) is very extensive. Each real number
𝑟 ∈ R is identified with the fuzzy number �̃� ∶ R → [0, 1] (that will
also be denoted by cr(𝑟) when necessary) defined by �̃�(𝑡) = 1, if 𝑡 = 𝑟,
and �̃�(𝑡) = 0, if 𝑡 ≠ 𝑟 (see Fig. 1.e). These fuzzy numbers are known
as crisp. We denote by R̃ the set of all crisp fuzzy numbers, that is,
R̃ = { �̃� ∶ 𝑟 ∈ R } ⊂ FN(R). A fuzzy number 𝖠 on R is a generalized
triangular fuzzy number if there are three real numbers (called the
corners of the triangular fuzzy number) 𝑎, 𝑏, 𝑐 ∈ R, with 𝑎 ≤ 𝑏 ≤ 𝑐,
such that the membership function of 𝖠 is given as in Fig. 1.a. In such
a case, we denote 𝖠 = (𝑎∕𝑏∕𝑐). We will stand TFN(R) for the family of
all generalized triangular fuzzy numbers of R.

Depending on the vertices, there are four classes of generalized
triangular fuzzy numbers, represented in Fig. 1.b–e. The only case in
which a triangular fuzzy number is a continuous function on R, and
its graphic representation recalls a triangle of basis [𝑎, 𝑐] and vertex at
𝑡 = 𝑏, occurs when 𝑎 < 𝑏 < 𝑐. In this case we will say that the triangular
fuzzy number is proper. The case 𝑎 = 𝑏 < 𝑐 corresponds to a function
that is not continuous at 𝑡 = 𝑏 from the left; if 𝑎 < 𝑏 = 𝑐, then the fuzzy
number is not continuous at 𝑡 = 𝑏 from the right; and if 𝑎 = 𝑏 = 𝑐,

e obtain a crisp fuzzy number. The name “generalized” advices about
ases 𝑎 = 𝑏 and/or 𝑏 = 𝑐 in where the membership functions are not
ontinuous at 𝑡 = 𝑏, but they have an important advantage: a crisp fuzzy
umber is not a proper triangular fuzzy number, but it is a generalized
riangular fuzzy number (that is, R̃ ⊂ TFN(R)). For simplicity, from
ow on, we will call about “triangular fuzzy numbers” agreeing that
3

hey are “generalized triangular fuzzy numbers”.
The support of a triangular fuzzy number is an interval, but it can be
losed, open, or none of them. Considering the four above-commented
ases, the support of (𝑎∕𝑏∕𝑐) is: {𝑏}, if 𝑎 = 𝑏 = 𝑐; [𝑏, 𝑐), if 𝑎 = 𝑏 < 𝑐; (𝑎, 𝑏],
f 𝑎 < 𝑏 = 𝑐; and (𝑎, 𝑐), if 𝑎 < 𝑏 < 𝑐. What is common in all cases is its
losure (in the Euclidean topology of R), which is always the interval
𝑎, 𝑐]. In general, associated to any fuzzy number, we denote

supp(𝖠) = { 𝑡 ∈ R ∶ 𝖠(𝑡) > 0 }

which, in the case of triangular fuzzy numbers, leads to supp(𝑎∕𝑏∕𝑐) =
𝑎, 𝑐]. Although the 𝛼-level sets of a fuzzy set are only defined for
∈ (0, 1], it is usual to consider that supp(𝐴) is its 0-level set. This

is according to the fact that all 𝛼-level sets of a fuzzy number are non-
empty, closed and bounded intervals, as it is described in the following
result.

Lemma 2.2. [(cf. [38–40])] A fuzzy set of the real line 𝐴 ∶ R → [0, 1]
ith compact support is a fuzzy number if, and only if, its level sets are
etermined by:

𝛼 = [𝖠𝐿(𝛼), 𝖠𝑅(𝛼) ] for all 𝛼 ∈ (0, 1].

here 𝖠𝐿 ∶ (0, 1] → R is an increasing and left-continuous function and
𝖠𝑅 ∶ (0, 1] → R is a decreasing and left continuous function. In such a
case, 𝖠𝐿(𝛼) ≤ 𝖠𝐿(1) ≤ 𝖠𝑅(1) ≤ 𝖠𝑅(𝛼) for all 𝛼 ∈ (0, 1] and the functions
𝖠𝐿 and 𝖠𝑅 are bounded.

Given 𝛼 ∈ (0, 1], the 𝛼-level set of 𝖠 = (𝑎∕𝑏∕𝑐) is 𝖠𝛼 = [ 𝑎 + (𝑏 −
𝑎)𝛼, 𝑐 − (𝑐 − 𝑏) 𝛼 ]. Therefore, the extremes of these closed intervals are,
for each 𝛼 ∈ (0, 1]:

𝖠𝐿(𝛼) = 𝑎 + (𝑏 − 𝑎)𝛼 and 𝖠𝑅(𝛼) = 𝑐 − (𝑐 − 𝑏) 𝛼. (1)

These expressions are also valid for 𝛼 = 0 when we agree that the 0-
level set is 𝐴0 = supp(𝐴) = [𝑎, 𝑐] so, henceforth, we will agree that
he functions 𝖠𝐿 and 𝖠𝑅 are defined on the whole interval [0, 1]. This

extension can be done for all fuzzy numbers of R, where 𝖠0 = supp(𝖠) =
[𝖠𝐿(0), 𝖠𝑅(0) ].

Proposition 2.3. If 𝖠 = (𝑎∕𝑏∕𝑐) is a triangular fuzzy number, then the
following properties hold.

1. The kernel of 𝖠 is {𝑏}.
2. The functions 𝖠𝐿,𝖠𝑅 ∶ [0, 1] → R, given by (1), are continuous on

[0, 1] and they satisfy
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(𝖠 + 𝖡)𝐿(𝛼) = 𝖠𝐿(𝛼) + 𝖡𝐿(𝛼), (𝖠 + 𝖡)𝑅(𝛼) = 𝖠𝑅(𝛼) + 𝖡𝑅(𝛼),
(𝖠 − 𝖡)𝐿(𝛼) = 𝖠𝐿(𝛼) − 𝖡𝑅(𝛼), (𝖠 − 𝖡)𝑅(𝛼) = 𝖠𝑅(𝛼) − 𝖡𝐿(𝛼),
(𝖠 ⋅ 𝖡)𝐿(𝛼) = min

(

𝛥𝖠,𝖡(𝛼)
)

, (𝖠 ⋅ 𝖡)𝑅(𝛼) = max
(

𝛥𝖠,𝖡(𝛼)
)

,

where 𝛥𝖠,𝖡(𝛼) =
{

𝖠𝐿(𝛼)𝖡𝐿(𝛼), 𝖠𝐿(𝛼)𝖡𝑅(𝛼), 𝖠𝑅(𝛼)𝖡𝐿(𝛼), 𝖠𝑅(𝛼)𝖡𝑅(𝛼)
}

.

Box I.
𝖠 + 𝖡 = ( 𝑎 + 𝑎′ ∕ 𝑏 + 𝑏′ ∕ 𝑐 + 𝑐′ ),
𝖠 − 𝖡 = ( 𝑎 − 𝑐′ ∕ 𝑏 − 𝑏′ ∕ 𝑐 − 𝑎′ ),

�̃�𝖠 =
{

( 𝑟𝑎 ∕ 𝑟𝑏 ∕ 𝑟𝑐 ), if 𝑟 ≥ 0,
( 𝑟𝑐 ∕ 𝑟𝑏 ∕ 𝑟𝑎 ), if 𝑟 < 0.

Box II.
P
(

2

i
t
m
G

I

I

D
𝖠

𝑎 = 𝖠𝐿(0) ≤ 𝖠𝐿(𝛼) ≤ 𝖠𝐿(𝛽) ≤ 𝖠𝐿(1) = 𝑏 = 𝖠𝑅(1)

≤ 𝖠𝑅(𝛼) ≤ 𝖠𝑅(𝛽) ≤ 𝖠𝑅(0) = 𝑐

for each 𝛼, 𝛽 ∈ [0, 1] such that 𝛼 ≤ 𝛽.
3. If 𝑎 = 𝑏, then 𝖠𝐿 is constantly “ 𝑎” in [0, 1], and if 𝑎 < 𝑏, then

𝖠𝐿 ∶ [0, 1] → [𝑎, 𝑏] is a direct parametrization.
4. If 𝑏 = 𝑐, then 𝖠𝑅 is constantly “ 𝑐” in [0, 1], and if 𝑏 < 𝑐, then

𝖠𝑅 ∶ [0, 1] → [𝑏, 𝑐] is an inverse parametrization.

Triangular fuzzy numbers are particular cases of LR-fuzzy numbers,
hich form the most general kind of fuzzy numbers that we will use in

his study. An LR-fuzzy number (see [31]) is a fuzzy number 𝖠 ∶ R →
0, 1] defined by:

(𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝙻(𝑡), if 𝑎 < 𝑡 < 𝑏,
1, if 𝑡 = 𝑏,
𝚁(𝑡), if 𝑏 < 𝑡 < 𝑐,
0, otherwise,

where 𝑎, 𝑏, 𝑐 ∈ R are three real numbers satisfying 𝑎 ≤ 𝑏 ≤ 𝑐 are such
that, if 𝑎 < 𝑏, 𝙻 ∶ [𝑎, 𝑏] → [0, 1] is a direct parametrization, and if
𝑏 < 𝑐, 𝚁 ∶ [𝑏, 𝑐] → [0, 1] is an inverse parametrization (in particular,
(𝑎) = 𝚁(𝑐) = 0 and 𝙻(𝑏) = 𝚁(𝑏) = 1 when 𝑎 < 𝑏 < 𝑐). Notice that if

𝑎 = 𝑏, the function 𝙻 does not play a role, and if 𝑏 = 𝑐, then 𝚁 can
e omitted. In this study we will handle LR-fuzzy numbers obtained as
quares of triangular fuzzy numbers. Finally, we remark that trapezoidal
uzzy numbers [31,38] and finite fuzzy numbers [41] are other kinds of
ften employed in scientific studies fuzzy numbers.

To finish this subsection, we comment that a defuzzification is a
apping  ∶  → R defined on a subset  ⊆ FN(R) of fuzzy numbers

hat associates a unique real number to any fuzzy number of . We
ill denote by 𝑐 ∶ FN(R) → R to the defuzzification that associates

o each fuzzy number 𝖠 ∈ FN(R) the midpoint of its kernel, that is,
𝑐 (𝖠) = (𝖠𝐿(1) + 𝖠𝑅(1))∕2.

.2. Arithmetic with triangular fuzzy numbers

There is an arithmetic with fuzzy numbers that extends the usual
rithmetic with real numbers (see [31–34]). The most usual way to
perate with fuzzy numbers is throughout the interval arithmetic with
he 𝛼-level sets [3] and the functions 𝖠𝐿 and 𝖠𝑅. Thus, for every
,𝖡 ∈ FN(R), the sum 𝖠 + 𝖡, the difference 𝖠 − 𝖡 and the product
⋅ 𝖡 are defined through their level sets as follows in Box I:

The previous general rules let to deduce that if 𝖠 and 𝖡 are fuzzy
umbers, then 𝖠 + 𝖡, 𝖠 − 𝖡 and 𝖠 ⋅ 𝖡 are so. When 𝖠 and 𝖡 are
riangular, the sum, the difference and the product by real scalars can
e described in terms of the corners in the following way: if 𝖠 = (𝑎∕𝑏∕𝑐),

′ ′ ′
4

= (𝑎 ∕𝑏 ∕𝑐 ) ∈ TFN(R) and 𝑟 ∈ R, then (see Box II)
roposition 2.4. If 𝖠 and 𝖡 are triangular and �̃� is crisp, then (𝖠 + �̃� ) −
𝖡 + �̃� ) = 𝖠 − 𝖡.

.3. The Roldán López de Hierro et al.’s binary relation ≼

In recent times, fuzzy binary relations have been employed for rank-
ng fuzzy numbers. In [36], Roldán López de Hierro et al. introduced
he following binary relation on FN(R), that we will denote on this
anuscript by ≼. Let 𝜇 denote the Euclidean measure of subsets of R.
iven two FNs 𝖠,𝖡 ∈ FN(R), let consider the subsets:

𝖠,𝖡 =
{

𝛼 ∈ [0, 1] ∶ 𝖠𝐿(𝛼) ≤ 𝖡𝐿(𝛼) and 𝖠𝑅(𝛼) ≤ 𝖡𝑅(𝛼)
}

and

𝖡,𝖠 =
{

𝛼 ∈ [0, 1] ∶ 𝖡𝐿(𝛼) ≤ 𝖠𝐿(𝛼) and 𝖡𝑅(𝛼) ≤ 𝖠𝑅(𝛼)
}

.

efinition 2.5 (Roldán López de Hierro et al. [36], Definition 4). Given
,𝖡 ∈ FN(R), we will write 𝖠 ≼ 𝖡 if (see Box III)

The main advantages of the binary relation ≼ are: (1) it is a
genuinely way to ranking fuzzy numbers, that is, it is not based on any
ranking index; (2) in most of cases, it is according to human intuition;
(3) it satisfies a great list of reasonable properties; (4) it serves to
ranking arbitrary FNs; and (5) it is a total binary relation on FN(R)
(for more details, see [36,42]).

2.4. The Kruse fuzzy variance

The Kruse fuzzy variance of the fuzzy numbers 𝖠1,𝖠2,… ,𝖠𝑛, de-
noted by Var(𝖠1,𝖠2,… ,𝖠𝑛), is the fuzzy number whose level sets are
determined by:

Var(𝖠1,𝖠2,… ,𝖠𝑛)𝐿(𝛼)

= min
{

var(𝑡1, 𝑡2,… , 𝑡𝑛) ∶ 𝑡𝑖 ∈ (𝖠𝑖)𝛼 for all 𝑖 ∈ [𝑛]
}

and
Var(𝖠1,𝖠2,… ,𝖠𝑛)𝑅(𝛼)

= max
{

var(𝑡1, 𝑡2,… , 𝑡𝑛) ∶ 𝑡𝑖 ∈ (𝖠𝑖)𝛼 for all 𝑖 ∈ [𝑛]
}

.

Example 2.6. Let 𝖠1 = (1∕3∕7) and 𝖠2 = (4∕6∕8) (see Fig. 2.a).
Then (𝖠1)𝛼 = [1 + 2𝛼, 7 − 4𝛼] and (𝖠2)𝛼 = [4 + 2𝛼, 8 − 2𝛼] for each
𝛼 ∈ [0, 1]. On the one hand, the furthest points of the respective 𝛼-cuts
are 1 + 2𝛼 ∈ (𝖠1)𝛼 and 8 − 2𝛼 ∈ (𝖠2)𝛼 (plotted in red color in Fig. 2.b),
so their variance is:

Var(𝖠1,𝖠2)𝑅(𝛼) = var(1 + 2𝛼, 8 − 2𝛼)

=
(1 + 2𝛼)2 + (8 − 2𝛼)2

2
−
( 9
2

)2
=
( 4𝛼 − 7

2

)2
.

On the other hand, if 𝛼 ∈ [0, 0.5], then 5 ∈ (𝖠1)𝛼 ∩ (𝖠2)𝛼 so there
is no distance between (𝖠1)𝛼 and (𝖠2)𝛼 and Var(𝖠1,𝖠2)𝐿(𝛼) = 0, but if
𝛼 ∈ [0.5, 1], the closest points of the respective 𝛼-cuts are 7−4𝛼 ∈ (𝖠 )
1 𝛼
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⎪

⎩

𝑒𝑖𝑡ℎ𝑒𝑟 𝜇
(

I𝖠,𝖡
)

≥ 𝜇
(

I𝖡,𝖠
)

𝑎𝑛𝑑𝜇
(

I𝖠,𝖡
)

> 0,
𝑜𝑟 𝜇

(

I𝖠,𝖡
)

= 𝜇
(

I𝖡,𝖠
)

= 0 𝑎𝑛𝑑
𝖠𝐿(0) + 𝖠𝐿(1) + 𝖠𝑅(1) + 𝖠𝑅(0) ≤ 𝖡𝐿(0) + 𝖡𝐿(1) + 𝖡𝑅(1) + 𝖡𝑅(0).

Box III.
Fig. 2. Triangular fuzzy numbers and their Kruse fuzzy variance (Example 2.6).
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nd 4 + 2𝛼 ∈ (𝖠2)𝛼 (plotted in blue color in Fig. 2.b), so, in this case, if
∈ [0.5, 1],

ar(𝖠1,𝖠2)𝐿(𝛼) = var(7 − 4𝛼, 4 + 2𝛼)

=
(7 − 4𝛼)2 + (4 + 2𝛼)2

2
−
( 11
2

− 𝛼
)2

=
(

3(2𝛼 − 1)
2

)2
.

aking into account these extremes for the level sets of Var(𝖠1,𝖠2), we
conclude that this fuzzy variance is given as in Fig. 2.c, and plotted in
Fig. 2.d.

3. Dispersion measures on fuzzy numbers

In this section we present, at a theoretical level, the essential tools
to be able to work out the dispersion associated to a finite set of
fuzzy numbers within a specific class. With this aim, we reflect on
the need to handle both two classes of fuzzy numbers (those that
generate the dispersion and those that model the dispersion) and a
fuzzy ranking methodology (which serves to discern when a result
is greater than or equal to another one). To face the open problem
of introducing an appropriate notion of fuzzy dispersion measure, we
will take into account the properties that the real variance satisfies:
symmetry, invariance, homogeneity, normality and non-negativity.

Our intuition leads us to consider, as a first tentative, associated
to a finite set  = {𝖠1,𝖠2,… ,𝖠𝑛} of fuzzy numbers, the algebraic
combination:

𝑝() = 1
𝑛

𝑛
∑

𝑖=1
(𝖠𝑖 − 𝖠 )𝑝, (2)

here 𝑝 ∈ N and 𝖠 = 1
𝑛
∑𝑛

𝑖=1𝖠𝑖 is the fuzzy mean. However, when
= 2, some researchers can consider that this expression is not a true
5

fuzzy variance in a strict sense: on the one hand, it can produce fuzzy
numbers whose level sets include a piece in the negative part of the real
line (which, in the fuzzy setting, could cause a lack of interpretability),
and, on the other hand, due to the previous fact, it can seem less
informative than the real variance. Notice that the case 𝑝 = 1 is not
rivial in the fuzzy context: although in the real case it leads to zero,
n the fuzzy framework it is a fuzzy number whose kernel includes the
umber 0 (but it could have a piece in (0,+∞) and another piece on
−∞, 0)).

Throughout this section, let ,′ ⊆ FN(R) be two subsets of fuzzy
numbers of the real line and let ≾ be a binary relation on ′. For the
sake of clarity, we denote by ≺ to the binary relation on ′ such that

≺ 𝖡 when 𝖠 ≾ 𝖡 holds but 𝖡 ≾ 𝖠 is false, and by ∼ to the binary
elation on ′ such that 𝖠 ∼ 𝖡 when 𝖠 ≾ 𝖡 and 𝖡 ≾ 𝖠 at the same time.

In the next definition we will consider a mapping  ∶ ∪
𝑛∈N

𝑛 → ′.
or simplicity, we will denote the fuzzy number |𝑛 (𝖠1,𝖠2,… ,𝖠𝑛) by
(𝖠1,𝖠2,… ,𝖠𝑛) or simply by () where  = {𝖠1,𝖠2,… ,𝖠𝑛} ⊆ .

efinition 3.1. A fuzzy dispersion space is a quadruple (,′, , ≾)
here ,′ ⊆ FN(R) are two non-empty subsets of fuzzy numbers such

hat 0̃ ∈ ′, ≾ is a total binary relation on ′ and  ∶ ∪
𝑛∈N

𝑛 → ′ is
mapping satisfying the following properties for each 𝑛 ∈ N and each
1,𝖠2,… ,𝖠𝑛 ∈ :

(𝑎) Symmetry (or commutativity): for each permutation 𝜎 ∶
{1, 2,… , 𝑛} → {1, 2,… , 𝑛},

(𝖠𝜎(1),𝖠𝜎(2),… ,𝖠𝜎(𝑛)) = (𝖠1,𝖠2,… ,𝖠𝑛);

(𝑏) crisp-invariance:  is closed under sums with crisp fuzzy numbers
and, for all �̃� ∈ R̃,
(𝖠1 + �̃�, 𝖠2 + �̃�,… , 𝖠𝑛 + �̃� ) = (𝖠1,𝖠2,… ,𝖠𝑛);
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(𝑐) 𝑚-homogeneity : there is 𝑚 ∈ N such that, for all �̃� ∈ R̃,

( �̃�𝖠1, �̃�𝖠2,… , �̃�𝖠𝑛 ) = |̃𝑟|
𝑚
(𝖠1,𝖠2,… ,𝖠𝑛);

𝑑) normality :

(𝖠1,𝖠2,… ,𝖠𝑛) = 0̃ ⇔ 𝖠1 = 𝖠2 = ⋯ = 𝖠𝑛 ∈ R̃;

𝑒) ≾-positivity :

0̃ ≾ (𝖠1,𝖠2,… ,𝖠𝑛).

In this case, the mapping  is called the fuzzy dispersion measure
of (,′, , ≾) and the fuzzy number (𝖠1,𝖠2,… ,𝖠𝑛) ∈ ′ is
called the fuzzy dispersion of the set {𝖠1,𝖠2,… ,𝖠𝑛} w.r.t. the fuzzy
dispersion space (,′, , ≾).

For short, we will write FDS rather than “Fuzzy Dispersion Space” and
𝐹𝐷𝑀 rather than “Fuzzy Dispersion Measure”. A FDM can also satisfy
another reasonable properties that we now comment.

Definition 3.2. We will say that a mapping  ∶ ∪
𝑛∈N

𝑛 → ′ is:

(𝑓 ) positive if supp((𝖠1,𝖠2,… ,𝖠𝑛)) ⊆ [0,+∞);
(𝑔) conservative if the midpoint of the kernel of (𝖠1,𝖠2,… ,𝖠𝑛) is the

real variance of the midpoints of the kernels of 𝖠1,𝖠2,… ,𝖠𝑛, that
is,

𝑐 ((𝖠1,𝖠2,… ,𝖠𝑛)) = var(𝑐 (𝖠1),𝑐 (𝖠2),… ,𝑐 (𝖠𝑛));

(ℎ) of variance-type if R̃ ⊆  and:

( �̃�1, �̃�2,… , �̃�𝑛 ) = cr
(

var(𝑟1, 𝑟2,… , 𝑟𝑛)
)

;

(𝑖) quasi-normal if:

𝖠1 = 𝖠2 = ⋯ = 𝖠𝑛 ∈ R̃ ⇒ (𝖠1,𝖠2,… ,𝖠𝑛) = 0̃

⇒ 𝖠1 = 𝖠2 = ⋯ = 𝖠𝑛.

Remark 3.3.

1. In Definition 3.1.e we have set that a FDM must provide fuzzy
numbers that are greater than or equal to 0̃ w.r.t. the binary
relation ≾. This condition directly depends on ≾, but it says
nothing about the geometrical shape of the obtained FDM or
about the sign of the numbers on its support. In fact, it is usual
that a fuzzy number could be greater than zero even having a
support with a piece included in the negative part of the set of
all real numbers. For instance, most of ranking methodologies
consider that the symmetric triangular fuzzy number (−𝛿∕0∕𝛿)
are equivalent to 0̃.

2. The crisp fuzzy number 0̃ could be replaced in items (𝑑) and (𝑒)
of Definition 3.1 by any other fuzzy number. Anyway, we have
decided to maintain this fuzzy number for simplicity.

3. The class  is a convex cone if it is closed under sums (if 𝖠,𝖡 ∈ ,
then 𝖠 + 𝖡 ∈ ) and products by positive scalars (if 𝖠 ∈ 
and 𝑟 > 0, then �̃�𝖠 ∈ ). Notice that some of the properties
associated to a FDM that we have introduced could require that
 is a convex cone.

4. If in properties (𝑔) and (ℎ) of Definition 3.2 we replace the real
variance by the standard deviation (or any other real dispersion
measure such as the coefficient of variation), and we accord-
ingly modify other items, then we could call about a FDM of
standard-deviation-type.

Example 3.4. Let  = FN(R), let ′ = R̃, let ≾0 the binary relation on
R̃ such that �̃� ≾0 �̃� ⇔ 𝑟 ≤ 𝑠, and let 0 the mapping defined as:

0(𝖠1,𝖠2,… ,𝖠𝑛) = cr(var(𝑐 (𝖠1),𝑐 (𝖠2),… ,𝑐 (𝖠𝑛))). (3)

Then 0 is symmetric, crisp-invariant, 2-homogeneous, ≼-positive, pos-
itive, shift-invariant, conservative and of variance type. However, it is
6

not a FDM because it is neither normal nor quasi-normal.
Example 3.5. If in the previous example we take  = R̃ and we define
0 as in (3), then (,′,0, ≾0) is a FDS, and the FDM 0 satisfies all the
above-mentioned properties. In a wide sense, 0 is the crisp translation
to R̃ of the notion of real variance.

Example 3.6. Let  = ′ = TFN(R) and let ⪯ be a total binary relation
on TFN(R) such that 0̃ ⪯ 𝖠 when supp(𝖠) ⊆ [0,+∞) (see [37]). Given
 = {𝖠𝑖 = (𝑎𝑖∕𝑏𝑖∕𝑐𝑖) }𝑛𝑖=1 ⊂ TFN(R), let 𝑊 = {var{𝑎𝑖}, var{𝑏𝑖},
var{𝑐𝑖}}. Although the ordering of the elements of 𝑊 is not known
(cf. [43]), we can define:

T(𝖠1,𝖠2,… ,𝖠𝑛) =
(

min𝑊 ∕ med𝑊 ∕ max𝑊
)

,

where med𝑊 is the median of the set 𝑊 (the central element).
Then T is symmetric, crisp-invariant, 2-homogeneous, ⪯-positive and
positive. However, it is not a FDM because it is quasi-normal rather
than normal.

The previous examples show that, in general, the above-mentioned
properties are not interesting when they are isolatedly considered, but
we must consider a combination of such properties properly adapted to
the study in progress.

Theorem 3.7. The Kruse fuzzy variance is a positive FDM on TFN(R) w.r.t.
the Roldán López de Hierro et al.’s binary relation ≼.

The following sections are dedicated to study the main properties
of the measure described in (2) in the case in which 𝑝 = 2. One of
the main aims of this work is to prove that it defines a FDM when it
is considered associated to the fuzzy binary relation ≼ introduced in
[36]. Before that, we develop a complete study about the geometrical
shapes and analytical properties that a fuzzy number obtained by (2)
must satisfy, at least in the case that all input data are triangular fuzzy
numbers. In this line, notice that

1
𝑛

𝑛
∑

𝑖=1
(𝖠𝑖 − 𝖠 )2 = 1

𝑛

𝑛
∑

𝑖=1
(𝖠𝑖 − 𝖠 ) ⋅ (𝖠𝑖 − 𝖠 )

employs the four basic arithmetic operations with fuzzy numbers (sum,
subtraction, product and division), but the product is reduced to com-
pute the square of a fuzzy number.

4. The canonical fuzzy dispersion measure

In this section we describe some of the main properties of the
mapping 2 ∶ ∪

𝑛∈N
TFN(R)𝑛 → FN(R) defined, for each 𝑛 ∈ N and each

et  = {𝖠𝑖 = (𝑎𝑖∕𝑏𝑖∕𝑐𝑖) }𝑛𝑖=1 of 𝑛 triangular fuzzy numbers (such that
𝑎𝑖 ≤ 𝑏𝑖 ≤ 𝑐𝑖 for all 𝑖 ∈ [𝑛]) as:

2() = 1
𝑛

𝑛
∑

𝑖=1
(𝖠𝑖 − 𝖠 )2. (4)

One of the main aims of this work is to prove that 2 is a FDM on
TFN(R). In fact, it is 2-homogeneity, conservativity and it is of variance-
ype (see Theorem 4.6). To do it, we previously need to introduce some
uxiliary results.

roposition 4.1. If the kernels of two fuzzy numbers 𝖠,𝖡 ∈ FN(R) are
ingleton, then the kernels of 𝖠 + 𝖡, 𝖠 − 𝖡, �̃�𝖠 and 𝖠2 are also singleton.

In fact, if ker 𝖠 = {𝑎} and ker 𝖡 = {𝑏}, then ker(𝖠 + 𝖡) = {𝑎 + 𝑏},
ker(𝖠 − 𝖡) = {𝑎 − 𝑏}, ker( �̃�𝖠) = {𝑟𝑎} and ker(𝖠2) = {𝑎2}.

For convenience, we will introduce the notation we will use
throughout the following sections. From now on, unless otherwise is
stated,  = {𝖠𝑖 = (𝑎𝑖∕𝑏𝑖∕𝑐𝑖) }𝑛𝑖=1 will denote a set of 𝑛 triangular fuzzy
numbers (𝑎𝑖 ≤ 𝑏𝑖 ≤ 𝑐𝑖 for all 𝑖 ∈ [𝑛]) and 𝖠 = (1∕𝑛)(𝖠1 + 𝖠2 +⋯ + 𝖠𝑛) =
𝑎 ∕ 𝑏 ∕ 𝑐 ) will denote its mean, where 𝑎 = (𝛴𝑎𝑖)∕𝑛, 𝑏 = (𝛴𝑏𝑖)∕𝑛 and
𝑐 = (𝛴𝑐𝑖)∕𝑛. Clearly 𝑎 ≤ 𝑏 ≤ 𝑐. We also use the notation 𝖡𝑖 = 𝖠𝑖 − 𝖠 =
( 𝑎𝑖 − 𝑐 ∕ 𝑏𝑖 − 𝑏 ∕ 𝑐𝑖 − 𝑎 ) ∈ TFN(R) for each 𝑖 ∈ [𝑛] and

𝛥 = {
(

𝑎 − 𝑐
)2 ,

(

𝑎 − 𝑐
) (

𝑐 − 𝑎
)

,
(

𝑐 − 𝑎
)2 } and
𝑖 𝑖 𝑖 𝑖 𝑖
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)2 ,
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𝑐𝑖 − 𝑎
)2 }

for each 𝑖 ∈ [𝑛]. To simplify the notation, we will sometimes denote
𝖬 = 2() defined by (4).

emma 4.2. Given a set of 𝑛 triangular fuzzy numbers  = {𝖠𝑖 =
(𝑎𝑖∕𝑏𝑖∕𝑐𝑖) }𝑛𝑖=1, the following properties hold.

1. ker
(

2()
)

= { var(𝑏1, 𝑏2,… , 𝑏𝑛) }.
2. The functions 2()𝐿,2()𝑅 ∶ [0, 1] → R are continuous on [0, 1]

and they are given by:

2()𝐿 = 1
𝑛

𝑛
∑

𝑖=1
[(𝖠𝑖 − 𝖠 )2]𝐿 and 2()𝑅 = 1

𝑛

𝑛
∑

𝑖=1
[(𝖠𝑖 − 𝖠 )2]𝑅.

(5)

3. The 0-level set of 2() is the interval

supp(2()) =

[

1
𝑛

𝑛
∑

𝑖=1
min𝛥𝑖,

1
𝑛

𝑛
∑

𝑖=1
max𝛥′

𝑖

]

.

4. Furthermore, [2()]𝐿(0) + [2()]𝑅(0) ≥ 0.
5. In particular,

2()𝑅(0) =
1
𝑛

𝑛
∑

𝑖=1
max{

(

𝑎𝑖 − 𝑐
)2 ,

(

𝑐𝑖 − 𝑎
)2 } ≥ 0,

and the equality holds if, and only if, 𝖠1 = 𝖠2 = ⋯ = 𝖠𝑛 ∈ R̃.

Proof. Item (1) Since 𝖠𝑖 and 𝖠 are triangular fuzzy numbers, their
kernels are singletons (recall item 1 of Proposition 2.3); concretely,
ker 𝖠𝑖 = {𝑏𝑖} and ker 𝖠 = {𝑏}. Using Proposition 4.1 we deduce that:

ker 𝖠𝑖 = {𝑏𝑖}, ker 𝖠 = {𝑏} ⇒ ker(𝖠𝑖 − 𝖠 ) = {𝑏𝑖 − 𝑏}

⇒ ker
(

(𝖠𝑖 − 𝖠 )2
)

= {(𝑏𝑖 − 𝑏)2}

⇒ ker

( 𝑛
∑

𝑖=1
(𝖠𝑖 − 𝖠 )2

)

=

{ 𝑛
∑

𝑖=1
(𝑏𝑖 − 𝑏)2

}

⇒ ker
(

2()
)

=

{

1
𝑛

𝑛
∑

𝑖=1
(𝑏𝑖 − 𝑏)2

}

= { var(𝑏1, 𝑏2,… , 𝑏𝑛) }.

Item (2) Since, for each 𝑖 ∈ [𝑛], 𝖡𝑖 = 𝖠𝑖 −𝖠 = (𝑎𝑖 − 𝑐∕𝑏𝑖 − 𝑏∕𝑐𝑖 − 𝑎) ∈
FN(R) is a triangular fuzzy number, the functions (𝖡𝑖)𝐿, (𝖡𝑖)𝑅 ∶ [0, 1] →
are continuous in [0, 1]. Therefore, for each 𝛼 ∈ (0, 1], as

[ (𝖠𝑖 − 𝖠 )2 ]𝐿(𝛼)

= [ (𝖡𝑖)2 ]𝐿(𝛼) = min{ ((𝖡𝑖)𝐿(𝛼))2, (𝖡𝑖)𝐿(𝛼) ⋅ (𝖡𝑖)𝑅(𝛼), ((𝖡𝑖)𝑅(𝛼))2 } and
(6)

[ (𝖠𝑖 − 𝖠 )2 ]𝑅(𝛼)

= [ (𝖡𝑖)2 ]𝑅(𝛼) = max{ ((𝖡𝑖)𝐿)2(𝛼), (𝖡𝑖)𝐿(𝛼) ⋅ (𝖡𝑖)𝑅(𝛼), ((𝖡𝑖)𝑅(𝛼))2 }, (7)

then the functions [ (𝖠𝑖−𝖠 )2 ]𝐿 and [ (𝖠𝑖−𝖠 )2 ]𝑅 are also continuous in
(0, 1]. Letting 𝛼 → 0+ and using the continuity of the involved functions,
this means that (5) holds in [0, 1] and such functions are continuous in
[0, 1].

Item (3) Since 𝖡𝑖 = 𝖠𝑖−𝖠 = (𝑎𝑖−𝑐∕𝑏𝑖−𝑏∕𝑐𝑖−𝑎), then (𝖡𝑖)𝐿(0) = 𝑎𝑖−𝑐
nd (𝖡𝑖)𝑅(0) = 𝑐𝑖 − 𝑎. Using (6)–(7), we deduce that

(𝖠𝑖 − 𝖠 )2]𝐿(0)

= [(𝖡𝑖)2]𝐿(0) = min{ [(𝖡𝑖)𝐿(0)]2, (𝖡𝑖)𝐿(0) ⋅ (𝖡𝑖)𝑅(0), [(𝖡𝑖)𝑅(0)]2 }

= min{
(

𝑎𝑖 − 𝑐
)2 ,

(

𝑎𝑖 − 𝑐
) (

𝑐𝑖 − 𝑎
)

,
(

𝑐𝑖 − 𝑎
)2 } = min𝛥𝑖,

nd similarly [ (𝖠𝑖 − 𝖠 )2]𝑅(0) = max𝛥𝑖. Taking into account that if
𝑡, 𝑠 ∈ R, then

𝑡𝑠 + max{𝑡2, 𝑠2} ≥ 0 (8)
7

(because 𝑡𝑠 ≤ |𝑡𝑠| ≤ max{𝑡2, 𝑠2}) and applying this property to
𝑡 = 𝑎𝑖 − 𝑐 and 𝑠 = 𝑐𝑖 − 𝑎, we deduce that

(

𝑎𝑖 − 𝑐
) (

𝑐𝑖 − 𝑎
)

≤
max{

(

𝑎𝑖 − 𝑐
)2 ,

(

𝑐𝑖 − 𝑎
)2 }. As a result,

[ (𝖠𝑖 − 𝖠 )2]𝑅(0) = max𝛥𝑖 = max{
(

𝑎𝑖 − 𝑐
)2 ,

(

𝑎𝑖 − 𝑐
) (

𝑐𝑖 − 𝑎
)

,
(

𝑐𝑖 − 𝑎
)2 }

= max{
(

𝑎𝑖 − 𝑐
)2 ,

(

𝑐𝑖 − 𝑎
)2 } = max𝛥′

𝑖 .

Finally, applying (5), we derive that

2()𝐿(0) =
1
𝑛

𝑛
∑

𝑖=1
[(𝖠𝑖 − 𝖠 )2]𝐿(0) =

1
𝑛

𝑛
∑

𝑖=1
min𝛥𝑖 and

2()𝑅(0) =
1
𝑛

𝑛
∑

𝑖=1
[(𝖠𝑖 − 𝖠 )2]𝑅(0) =

1
𝑛

𝑛
∑

𝑖=1
max𝛥′

𝑖 . (9)

Item (4) Also applying inequality (8) to 𝑡 = 𝑎𝑖 − 𝑐 and 𝑠 = 𝑐𝑖 − 𝑎, we
educe that

𝑎𝑖 − 𝑐
) (

𝑐𝑖 − 𝑎
)

+ max{
(

𝑎𝑖 − 𝑐
)2 ,

(

𝑐𝑖 − 𝑎
)2 } ≥ 0.

Hence
⎧

⎪

⎨

⎪

⎩

(

𝑎𝑖 − 𝑐
)2 + max{

(

𝑎𝑖 − 𝑐
)2 ,

(

𝑐𝑖 − 𝑎
)2 } ≥ 0,

(

𝑎𝑖 − 𝑐
) (

𝑐𝑖 − 𝑎
)

+ max{
(

𝑎𝑖 − 𝑐
)2 ,

(

𝑐𝑖 − 𝑎
)2 } ≥ 0,

(

𝑐𝑖 − 𝑎
)2 + max{

(

𝑎𝑖 − 𝑐
)2 ,

(

𝑐𝑖 − 𝑎
)2 } ≥ 0,

so:

min𝛥𝑖 + max𝛥′
𝑖 = min{

(

𝑎𝑖 − 𝑐
)2 ,

(

𝑎𝑖 − 𝑐
) (

𝑐𝑖 − 𝑎
)

,
(

𝑐𝑖 − 𝑎
)2 }

+ max{
(

𝑎𝑖 − 𝑐
)2 ,

(

𝑐𝑖 − 𝑎
)2 } ≥ 0.

As a result,

2()𝐿(0) + 2()𝑅(0) =
1
𝑛

𝑛
∑

𝑖=1

(

min𝛥𝑖 + max𝛥′
𝑖
)

≥ 0.

Item (5). By (9),

2()𝑅(0) =
1
𝑛

𝑛
∑

𝑖=1
max𝛥′

𝑖 =
1
𝑛

𝑛
∑

𝑖=1
max{

(

𝑎𝑖 − 𝑐
)2 ,

(

𝑐𝑖 − 𝑎
)2 } ≥ 0.

As all the maximums are non-negative, the equality to zero is equiva-
lent to say that

(

𝑎𝑖 − 𝑐
)2 =

(

𝑐𝑖 − 𝑎
)2 = 0 for each 𝑖 ∈ [𝑛]. Then 𝑎𝑖 = 𝑐

and 𝑐𝑖 = 𝑎 for all 𝑖 ∈ [𝑛], which implies that

𝑐 = 𝑎𝑖 ≤ 𝑏𝑖 ≤ 𝑐𝑖 = 𝑎 ≤ 𝑐,

so 𝑎𝑖 = 𝑏𝑖 = 𝑐𝑖 = 𝑟 ∈ R for each 𝑖 ∈ [𝑛], that is, 𝖠1 = 𝖠2 = ⋯ = 𝖠𝑛 = �̃� ∈
R̃. ■

Lemma 4.3. If  = {𝖠𝑖 = (𝑎𝑖∕𝑏𝑖∕𝑐𝑖) }𝑛𝑖=1 is a set of 𝑛 triangular fuzzy
numbers such that 𝑏1 = 𝑏2 = ⋯ = 𝑏𝑛, then, for each 𝛼 ∈ [0, 1],

2()𝐿 (𝛼) ≤ 0 ≤ 2()𝑅 (𝛼) and 0 ≤ 2()𝐿 (𝛼) + 2()𝑅 (𝛼) .

Proof. Let denote 𝖬 = 2(). If 𝖬 = 0̃, then 𝖬𝐿 (𝛼) = 𝖬𝑅 (𝛼) = 0 for
ach 𝛼 ∈ [0, 1], and the announced inequalities are, in fact, equalities.
ext, suppose that 𝖬 ≠ 0̃. By item 1 of Lemma 4.2, [𝖬𝐿 (1) , 𝖬𝑅 (1) ] =
er (𝖬) = { var(𝑏1, 𝑏2,… , 𝑏𝑛) } = {0} because 𝑏1 = 𝑏2 = ⋯ = 𝑏𝑛.
herefore, for each 𝛼 ∈ [0, 1],

𝐿 (𝛼) ≤ 𝖬𝐿 (1) = 0 = 𝖬𝑅 (1) ≤ 𝖬𝑅 (𝛼) ,

hich proves the first inequality. Next, let compute 𝖬𝐿 (𝛼) and 𝖬𝑅 (𝛼)
or each 𝛼 ∈ (0, 1]. Let 𝑖 ∈ [𝑛] and 𝛼 ∈ (0, 1] be arbitrary. Since
1 = 𝑏2 = ⋯ = 𝑏𝑛, then 𝖡𝑖 = 𝖠𝑖 − 𝖠 = ( 𝑎𝑖 − 𝑐 ∕ 𝑏𝑖 − 𝑏 ∕ 𝑐𝑖 − 𝑎 ) =
𝑎𝑖 − 𝑐 ∕ 0 ∕ 𝑐𝑖 − 𝑎 ) ∈ TFN(R), which means that 𝑎𝑖 − 𝑐 ≤ 0 ≤ 𝑐𝑖 − 𝑎

and

(𝖡𝑖)𝐿(𝛼) = (𝑎𝑖 − 𝑐) + [0 − (𝑎𝑖 − 𝑐)]𝛼 = (𝑎𝑖 − 𝑐) (1 − 𝛼) and
𝖡𝑖)𝑅(𝛼) = (𝑐𝑖 − 𝑎) + [(𝑐𝑖 − 𝑎) − 0]𝛼 = (𝑐𝑖 − 𝑎) (1 − 𝛼) .

Then

[ (𝖠 − 𝖠 )2] (𝛼)
𝑖 𝐿
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T

P

= [(𝖡𝑖)2]𝐿(𝛼) = min{ [(𝖡𝑖)𝐿(𝛼)]2, (𝖡𝑖)𝐿(𝛼) ⋅ (𝖡𝑖)𝑅(𝛼), [(𝖡𝑖)𝑅(𝛼)]2 }

= min{
(

𝑎𝑖 − 𝑐
)2 (1 − 𝛼)2,

(

𝑎𝑖 − 𝑐
) (

𝑐𝑖 − 𝑎
)

(1 − 𝛼)2,
(

𝑐𝑖 − 𝑎
)2 (1 − 𝛼)2 }

= (1 − 𝛼)2 min{
(

𝑎𝑖 − 𝑐
)2 ,

(

𝑎𝑖 − 𝑐
) (

𝑐𝑖 − 𝑎
)

,
(

𝑐𝑖 − 𝑎
)2 } = (1 − 𝛼)2 min𝛥𝑖

and similarly [ (𝖠𝑖 −𝖠 )2]𝑅(𝛼) = (1 − 𝛼)2 max𝛥𝑖. Since 𝑎𝑖 − 𝑐 ≤ 0 ≤ 𝑐𝑖 − 𝑎,
then

(

𝑎𝑖 − 𝑐
) (

𝑐𝑖 − 𝑎
)

≤ 0, so

(𝖠𝑖 − 𝖠 )2]𝐿(𝛼) = (1 − 𝛼)2
(

𝑎𝑖 − 𝑐
) (

𝑐𝑖 − 𝑎
)

≤ 0 and

[ (𝖠𝑖 − 𝖠 )2]𝑅(𝛼) = (1 − 𝛼)2 max𝛥′
𝑖 .

herefore

𝖬𝐿 (𝛼) = 1
𝑛

𝑛
∑

𝑖=1
[ (𝖠𝑖 − 𝖠 )2]𝐿(𝛼)

= (1 − 𝛼)2 1
𝑛

𝑛
∑

𝑖=1

(

𝑎𝑖 − 𝑐
) (

𝑐𝑖 − 𝑎
)

≤ 0 and (10)

𝖬𝑅 (𝛼) = 1
𝑛

𝑛
∑

𝑖=1
[ (𝖠𝑖 − 𝖠 )2]𝑅(𝛼)

= (1 − 𝛼)2 1
𝑛

𝑛
∑

𝑖=1
max{

(

𝑎𝑖 − 𝑐
)2 ,

(

𝑐𝑖 − 𝑎
)2 } ≥ 0. (11)

Using inequality (8) with 𝑡 = 𝑎𝑖 − 𝑐 and 𝑠 = 𝑐𝑖 − 𝑎, we deduce that
(

𝑎𝑖 − 𝑐
) (

𝑐𝑖 − 𝑎
)

+ max{
(

𝑎𝑖 − 𝑐
)2 ,

(

𝑐𝑖 − 𝑎
)2} ≥ 0

so, in particular,

𝖬𝐿 (𝛼) +𝖬𝑅 (𝛼)

= (1 − 𝛼)2 1
𝑛

𝑛
∑

𝑖=1

[

(

𝑎𝑖 − 𝑐
) (

𝑐𝑖 − 𝑎
)

+ max{
(

𝑎𝑖 − 𝑐
)2 ,

(

𝑐𝑖 − 𝑎
)2 }

]

≥ 0.

The previous inequality has just been demonstrated for each 𝛼 ∈ (0, 1],
but as 𝖬𝐿 and 𝖬𝑅 are continuous on [0, 1], then it also holds for 𝛼 = 0.

■

Corollary 4.4. If 𝖠1 = 𝖠2 = ⋯ = 𝖠𝑛 = (𝑎∕𝑏∕𝑐), then 2() =
cr[(𝑐 − 𝑎)2] (−1∕0∕1)2, whose level sets are, for each 𝛼 ∈ [0, 1]:

2()𝛼 = [−(1 − 𝛼)2 (𝑐 − 𝑎)2 , (1 − 𝛼)2 (𝑐 − 𝑎)2 ].

Proof. It follows from 𝖠𝑖 − 𝖠 = (𝑎∕𝑏∕𝑐) − (𝑎∕𝑏∕𝑐) = (𝑎 − 𝑐∕0∕𝑐 − 𝑎) =
cr[𝑐 − 𝑎](−1∕0∕1), so

(𝖠𝑖 − 𝖠 )2 = (cr[𝑐 − 𝑎](−1∕0∕1))2 = cr[𝑐 − 𝑎](−1∕0∕1) cr[𝑐 − 𝑎](−1∕0∕1) =

= cr[𝑐 − 𝑎] cr[𝑐 − 𝑎](−1∕0∕1)(−1∕0∕1) = cr[(𝑐 − 𝑎)2](−1∕0∕1)2.

Hence

2()

= 1
𝑛

𝑛
∑

𝑖=1
(𝖠𝑖 − 𝖠 )2 = 1

𝑛

𝑛
∑

𝑖=1
cr[(𝑐 − 𝑎)2](−1∕0∕1)2 = cr[(𝑐 − 𝑎)2](−1∕0∕1)2.

The second part follows from equations (10)–(11) taking into account
that 𝑎𝑖 = 𝑎 = 𝑎 and 𝑐𝑖 = 𝑐 = 𝑐 for all 𝑖 ∈ [𝑛]. ■

Lemma 4.5. 2 is of variance-type.

roof. Clearly R̃ ⊂ TFN(R). Given �̃�1, �̃�2,… , �̃�𝑛 ∈ R̃, their mean is

𝗋 =
�̃�1 + �̃�2 +⋯ + �̃�𝑛

𝑛
= cr

(

𝑟1 + 𝑟2 +⋯ + 𝑟𝑛
𝑛

)

= cr
(

𝑟
)

and each subtraction and square in the crisp case work as in the real
case:
(

�̃� − 𝗋
)2 =

(

�̃� − cr
(

𝑟
))2 =

(

cr
(

𝑟 − 𝑟
))2 = cr

(

(

𝑟 − 𝑟
)2
)

,
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𝑖 𝑖 𝑖 𝑖
so:

2( �̃�1, �̃�2,… , �̃�𝑛) =
1
𝑛

𝑛
∑

𝑖=1
( �̃�𝑖 − 𝗋 )2 = 1

𝑛

𝑛
∑

𝑖=1
cr

(

(

𝑟𝑖 − 𝑟
)2
)

=

= cr

(

1
𝑛

𝑛
∑

𝑖=1

(

𝑟𝑖 − 𝑟
)2
)

= cr
(

var(𝑟1, 𝑟2,… , 𝑟𝑛)
)

. ■

The main result in this paper is the following one.

Theorem 4.6. The mapping 2 defined in (4) is a FDM w.r.t. the fuzzy
binary relation ≼ introduced by Roldán López de Hierro et al. in [36] and,
consequently, the quadruple ( = TFN(R),′ = FN(R),2, ≼) is a FDS.

Furthermore, the FDM with 𝑚 = 2, 2 also satisfies the following
properties: 2-homogeneity, conservativity and it is of variance-type.

Proof. We check all properties. The symmetry is immediate because the
sum of fuzzy numbers is commutative. Also notice that, by Lemma 4.5,
2 is of variance-type.

• Crisp-invariance.
The class  = TFN(R) is closed under sums with crisp fuzzy
numbers and

(𝑎∕𝑏∕𝑐) + �̃� = (𝑎∕𝑏∕𝑐) + (𝑟∕𝑟∕𝑟) = ( 𝑎 + 𝑟 ∕ 𝑏 + 𝑟 ∕ 𝑐 + 𝑟 ) ∈ TFN(R).

Then

𝖠′ = mean(𝖠1 + �̃�, 𝖠2 + �̃�,… , 𝖠𝑛 + �̃� )

= 1
𝑛

𝑛
∑

𝑖=1

(

𝖠𝑖 + �̃�
)

=

(

1
𝑛

𝑛
∑

𝑖=1
𝖠𝑖

)

+ �̃� = 𝖠 + �̃�.

As a result, by Proposition 2.4,

(𝖠𝑖 + �̃� ) − 𝖠′ = (𝖠𝑖 + �̃� ) − (𝖠 + �̃� ) = 𝖠𝑖 − 𝖠,

so

2(𝖠1 + �̃�,𝖠2 + �̃�,… ,𝖠𝑛 + �̃�) = 1
𝑛

𝑛
∑

𝑖=1

(

(𝖠𝑖 + �̃� ) − 𝖠′
)2

= 1
𝑛

𝑛
∑

𝑖=1
(𝖠𝑖 − 𝖠 )2 = 2(𝖠1,𝖠2,… ,𝖠𝑛).

• 2-homogeneity.
Let �̃� ∈ R̃. If �̃� = 0̃, then 0̃𝖠𝑖 = 0̃, so 2(�̃�𝖠1, �̃�𝖠2,… , �̃�𝖠𝑛) =
(0̃, 0̃,… , 0̃) = 0̃ = 0̃ 2 2(𝖠1,𝖠2,… ,𝖠𝑛). Suppose that 𝑟 > 0. Then
�̃�𝖠𝑖 = �̃� (𝑎𝑖∕𝑏𝑖∕𝑐𝑖) = (𝑟𝑎𝑖∕𝑟𝑏𝑖∕𝑟𝑐𝑖) for each 𝑖 ∈ [𝑛], and its mean is

𝖠′ = mean( �̃�𝖠1, �̃�𝖠2,… , �̃�𝖠𝑛 )

= 1
𝑛

𝑛
∑

𝑖=1
(𝑟𝑎𝑖∕𝑟𝑏𝑖∕𝑟𝑐𝑖) = �̃� 1

𝑛

𝑛
∑

𝑖=1
(𝑎𝑖∕𝑏𝑖∕𝑐𝑖) = �̃�𝖠.

Therefore,
(

�̃�𝖠𝑖 − 𝖠′
)2

=
(

�̃�𝖠𝑖 − �̃�𝖠
)2

=
[

�̃�
(

𝖠𝑖 − 𝖠
)]2

= �̃�
(

𝖠𝑖 − 𝖠
)

�̃�
(

𝖠𝑖 − 𝖠
)

= �̃� �̃�
(

𝖠𝑖 − 𝖠
) (

𝖠𝑖 − 𝖠
)

= 𝑟2
(

𝖠𝑖 − 𝖠
)2

= �̃� 2
(

𝖠𝑖 − 𝖠
)2

.

As a result,

2(�̃�𝖠1, �̃�𝖠2,… , �̃�𝖠𝑛) =
1
𝑛

𝑛
∑

𝑖=1

(

�̃�𝖠𝑖 − 𝖠′
)2

= 1
𝑛

𝑛
∑

𝑖=1
�̃� 2

(

𝖠𝑖 − 𝖠
)2

= �̃� 2 1
𝑛

𝑛
∑

𝑖=1

(

𝖠𝑖 − 𝖠
)2

= �̃� 2 2(𝖠1,𝖠2,… ,𝖠𝑛).

If 𝑟 < 0, then �̃�𝖠𝑖 = �̃� (𝑎𝑖∕𝑏𝑖∕𝑐𝑖) = (𝑟𝑐𝑖∕𝑟𝑏𝑖∕𝑟𝑎𝑖), but the proof is
similar taking into account that for each 𝖡 ∈ TFN(R), (−𝖡)2 =

2 2 2
(−𝖡)(−𝖡) = (−1)𝖡(−1)𝖡 = (−1) 𝖡 = 𝖡 .
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• Conservativity.
From item 1 of Lemma 4.2 we have that
ker

(

2()
)

= { var(𝑏1, 𝑏2,… , 𝑏𝑛) }, so

𝑐 (2(𝖠1,𝖠2,… ,𝖠𝑛)) = var(𝑏1, 𝑏2,… , 𝑏𝑛)

= var(𝑐 (𝖠1),𝑐 (𝖠2),… ,𝑐 (𝖠𝑛)).

• Normality.
If 𝖠1 = 𝖠2 = ⋯ = 𝖠𝑛 ∈ R̃, then there is �̃� ∈ R̃ such that
𝖠1 = 𝖠2 = ⋯ = 𝖠𝑛 = �̃�, so Lemma 4.5 guarantees that

2(𝖠1,𝖠2,… ,𝖠𝑛) = 2( �̃�, �̃�,… , �̃� ) = cr (var(𝑟, 𝑟,… , 𝑟)) = 0̃.

Conversely, suppose that 2(𝖠1,𝖠2,… ,𝖠𝑛) = 2() = 0̃. There-
fore [2()]𝑅(0) = 0, so item 5 of Lemma 4.2 concludes that
𝖠1 = 𝖠2 = ⋯ = 𝖠𝑛 ∈ R̃.

• ≼-positivity.
Let denote 𝖬 = 2() and 𝑣0 = var(𝑏1, 𝑏2,… , 𝑏𝑛) ≥ 0. By item 1 of
Lemma 4.2,

[

𝖬𝐿(1),𝖬𝑅(1)
]

= ker (𝖬) = {𝑣0}. Therefore, for each
𝛼 ∈ [0, 1], 0 ≤ 𝑣0 = 𝖬𝑅(1) ≤ 𝖬𝑅(𝛼). We consider the following
three cases.

– Case (1) Suppose that 𝜇(I0̃,𝖵) = 𝜇(I𝖵,0̃) = 0.

In this case, by item 4 of Lemma 4.2,

𝖬𝐿(0) +𝖬𝐿(1) +𝖬𝑅(1) +𝖬𝑅(0) = 2𝑣0 + [2()]𝐿(0)

+ [2()]𝑅(0) ≥ 0

= 0̃𝐿(0) + 0̃𝐿(1) + 0̃𝑅(1) + 0̃𝑅(0).

By the definition of the binary relation ≼, we conclude that 0̃ ≼ 𝖬.

– Case (2) Suppose that 𝑣0 > 0.

If 𝑣0 > 0, then 𝖬𝑅(𝛼) ≥ 𝑣0 > 0 = 0̃𝑅(𝛼) for each 𝛼 ∈ [0, 1], which
means that

I𝖬,0̃ = { 𝛼 ∈ [0, 1] ∶ 𝖬𝐿(𝛼) ≤ 0 and 𝖬𝑅(𝛼) ≤ 0 } = ∅.

In this case, 𝜇(I𝖬,0̃) = 0 ≤ 𝜇(I0̃,𝖬). If 𝜇(I0̃,𝖬) > 0, then we can
conclude that 0̃ ≺ 𝖬, and if 𝜇(I0̃,𝖬) = 0, then 𝜇(I0̃,𝖬) = 𝜇(I𝖬,0̃) = 0
as in the previous case.

– Case (3) Suppose that 𝑣0 = 0.

Since 𝑣0 = var(𝑏1, 𝑏2,… , 𝑏𝑛) = 0, then 𝑏1 = 𝑏2 = ⋯ = 𝑏𝑛. In
this case, Lemma 4.3 guarantees that 𝖬𝐿(𝛼) ≤ 0 ≤ 𝖬𝑅(𝛼) and
𝖬𝐿(𝛼) +𝖬𝑅(𝛼) ≥ 0 for each 𝛼 ∈ [0, 1]. We claim that I𝖬,0̃ ⊆ I0̃,𝖬.
Let 𝛼 ∈ I𝖬,0̃ be arbitrary. Then 𝖬𝐿(𝛼) ≤ 0 and 𝖬𝑅(𝛼) ≤ 0. Hence
𝖬𝑅(𝛼) ≤ 0 ≤ 𝖬𝑅(𝛼), so 𝖬𝑅(𝛼) = 0. Furthermore,

𝖬𝐿(𝛼) ≤ 0 ≤ 𝖬𝐿(𝛼) +𝖬𝑅(𝛼) = 𝖬𝐿(𝛼),

so 𝖬𝐿(𝛼) = 0. Since 𝖬𝐿(𝛼) = 𝖬𝑅(𝛼) = 0, then 𝛼 ∈ I0̃,𝖬. This proves
that I𝖬,0̃ ⊆ I0̃,𝖬. Therefore 0 ≤ 𝜇(I𝖬,0̃) ≤ 𝜇(I0̃,𝖬). If 𝜇(I0̃,𝖬) > 0 then
0̃ ≺ 𝖬 by definition. And if 𝜇(I0̃,𝖬) = 0, then 𝜇(I𝖬,0̃) = 𝜇(I0̃,𝖬) = 0
and we can apply the first case. ■

Corollary 4.7. Given 𝜆 > 0, let 𝜆
2 ∶ ∪

𝑛∈N
TFN(R)𝑛 → FN(R) defined, for

each 𝑛 ∈ N and each set  = {𝖠𝑖 = (𝑎𝑖∕𝑏𝑖∕𝑐𝑖) }𝑛𝑖=1 of 𝑛 triangular fuzzy
numbers, as:

𝜆
2 () = 𝜆

𝑛

𝑛
∑

𝑖=1
(𝖠𝑖 − 𝖠 )2.

hen the quadruple ( = TFN(R),′ = FN(R),𝜆
2 , ≼) is a FDS. Further-

more, the FDM 𝜆
2 is conservative and 2-homogeneous.

Proof. The properties of 𝜆
2 can be directly derived from the properties

of 2. For the homogeneity, notice that
𝜆

9

2 ( �̃�𝖠1, �̃�𝖠2,… , �̃�𝖠𝑛 )
= 𝜆
𝑛

𝑛
∑

𝑖=1
(𝖠𝑖 − 𝖠 )2 = 𝜆 1

𝑛

𝑛
∑

𝑖=1
(𝖠𝑖 − 𝖠 )2 = 𝜆2( �̃�𝖠1, �̃�𝖠2,… , �̃�𝖠𝑛 )

= 𝜆 |̃𝑟|
2
2(𝖠1,𝖠2,… ,𝖠𝑛)

= |̃𝑟|
2
𝜆2(𝖠1,𝖠2,… ,𝖠𝑛) = |̃𝑟|

2
𝜆
2 (𝖠1,𝖠2,… ,𝖠𝑛). ■

Remark 4.8. The mapping  ′
2 ∶ ∪

𝑛∈N
TFN(R)𝑛 → FN(R) be defined, for

each 𝑛 ∈ N and each set  = {𝖠𝑖 = (𝑎𝑖∕𝑏𝑖∕𝑐𝑖) }𝑛𝑖=1 ⊂ TFN(R), as:

 ′
2() = 1

𝑛 − 1

𝑛
∑

𝑖=1
(𝖠𝑖 − 𝖠 )2,

satisfies the same properties than 2, so it is a FDM. It can be called
the canonical sampled FDM.

In the following example we compute and compare the above-
mentioned fuzzy dispersions of the set considered in Example 2.6.

Example 4.9. Let  = {𝖠1 = (1∕3∕7), 𝖠2 = (4∕6∕8) } be as in
Example 2.6 (see Fig. 2.a). The Kruse fuzzy variance Var() was given
in Fig. 2.c and plotted in Fig. 2.d. After carrying out the necessary
accounts, it can be checked that the canonical FDM 2() is:

2()(𝑡) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

103 −
√

909 − 400𝑡
100

, if −97
4

≤ 𝑡 ≤ −9
20

,

53 −
√

1449 − 160𝑡
20

, if −9
20

≤ 𝑡 ≤ 1
32

,

89 +
√

488𝑡 − 9
122

, if 1
32

≤ 𝑡 ≤ 9
4
,

109 −
√

328𝑡 − 9
82

, if 9
4
≤ 𝑡 ≤ 145

4
,

0, otherwise.

Fig. 3 shows both LR-fuzzy numbers: the Kruse fuzzy variance
ar() (in red color) and the canonical FDM 2() (in blue color).
e observe that ker(2()) = ker(Var()) = { 9

4 } = {var(3, 6)} =
{var(𝑐𝖠1,𝑐𝖠2)}.

In the previous example we have computed two distinct ways
(Var() and 2()) of measuring the fuzzy dispersion of the same set
 of fuzzy numbers. It has no much sense to compare such fuzzy
dispersions because they have been obtained by employing distinct
methodologies. This makes us reflect on the fact that the two disper-
sions provide distinct information: the Kruse fuzzy variance informs us
about the real variances that we can obtain by employing real numbers
on the respective level sets, and the canonical FDM informs us about
a fuzzy number that is defined by employing the usual operations
among fuzzy numbers. Both methodologies have their advantages and
disadvantages.

• The Kruse fuzzy variance is easy to interpret and generates posi-
tive supports, but it is difficult to compute in practice when more
than ten fuzzy numbers are involved (the optimization process
is far from human capabilities). Furthermore, it suffers the fuzzy
incoherence of descending to the real setting in order to compute
real variances rather than using fuzzy operations.

• The canonical FDM can be described as a piecewise function that
employs fuzzy operations, but it has no a clear interpretability
further from the fact of measuring the mean of the squared
differences from each term to the global mean.

It is true that the canonical FDM leads to fuzzy numbers with a
piece of its support included in the negative part of the real line.
However, this is not an incoherence because we are only measuring
the dispersion in terms of positive fuzzy numbers w.r.t. the considered
ranking methodology. One can believe that the canonical FDM is less
informative than the Kruse fuzzy variance, but we believe this is not

the case because they represent distinct information. Furthermore, if
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Fig. 3. Kruse fuzzy variance (in red) and canonical FDM (in blue) in Example 4.9.
Fig. 4. Graphic representation of the fuzzy numbers in  and in ′.
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we have compared the fuzzy numbers Var() and 2() obtained in
Example 4.9, we would have obtained that 2() ≺ Var() so, at least
in this example, 2 measures the fuzzy dispersion by employing lower
fuzzy numbers than Var.

5. Comparison of fuzzy dispersions

This section is devoted to compute and compare the fuzzy dispersion
measures of a pair of sets of triangular fuzzy numbers by employing the
canonical FDM. In this process, we will use the fuzzy binary relation
≼ introduced in [36]. From the theoretical point of view, in a FDS
(,′, , ≾), since we assume that the binary relation ≾ is total on ′,
the fuzzy dispersions of two sets of fuzzy numbers are always compa-
rable by ≾. The main sense of Definition 3.1 is to set the framework in
which such fuzzy dispersions can be compared. This is what we do in
the following lines.

Definition 5.1. Given a FDS (,′, , ≾) and two subsets
 = {𝖠1,𝖠2,… ,𝖠𝑛} ⊆  and ′ = {𝖡1,𝖡2,… ,𝖡𝑚} ⊆ , we will say
that the dispersion of  is:

• less than (or equal to) the dispersion of ′ if () ≾ (′);
• less than the dispersion of ′ if () ≺ (′);
• equal (or equivalent) to the dispersion of ′ if () ∼ (′).

Next we compare the canonical FDM of two distinct sets of four
triangular fuzzy numbers. In order to show that the comparison of their
corresponding FDMs is a deeper methodology than the comparison of
their real kernels, we will choose two sets of four triangular fuzzy
numbers with the same centers. Let  = {𝖠𝑖 = (𝑎𝑖∕𝑏𝑖∕𝑐𝑖) }4𝑖=1 and
′ = {𝖠′

𝑖 = (𝑎′𝑖∕𝑏𝑖∕𝑐
′
𝑖 )}

4
𝑖=1 be the sets whose fuzzy numbers are, on the

one hand, 𝖠1 = (4∕7∕8), 𝖠2 = (3∕4∕6), 𝖠3 = (4∕5∕7) and 𝖠4 = (3∕5∕9),
and, on the other hand, 𝖠′

1 = (5∕7∕9), 𝖠′
2 = (2∕4∕6), 𝖠′

3 = (3∕5∕7)
and 𝖠′

4 = (2∕5∕8) (see Fig. 4). Notice that all fuzzy numbers in ′ are
symmetric, and they have the same kernels than their corresponding

′

10

fuzzy numbers in , that is, ker 𝖷𝑖 = 𝑦𝑖 = ker 𝖷𝑖 for each 𝑖 ∈ [4]. t
After carrying out all necessary accounts, it can be computed the
canonical FDM 2() of  and 2(′) of ′, that are jointly plotted
in Fig. 5 (it is highlighted the unique points in which such fuzzy
numbers are not differentiable). It can be checked that (2())𝑅(𝛼) <
(2(′))𝑅(𝛼) for each 𝛼 ∈ [0, 1) and (2())𝑅(1) = (2(′))𝑅(1).
Furthermore,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(2())𝐿(𝛼) < (2(′))𝐿(𝛼), 𝑖f 𝑎𝑙𝑝ℎ𝑎 ∈
(

47
58 , 1

)

,

(2())𝐿(𝛼) = (2(′))𝐿(𝛼), if 𝛼 ∈
{

47
58 , 1

}

,

(2())𝐿(𝛼) > (2(′))𝐿(𝛼), if 𝛼 ∈
[

0, 4758
)

.

In particular, for each 𝛼 ∈
(

47
58 , 1

)

, (2())𝐿(𝛼) < (2(′))𝐿(𝛼) and
2())𝑅(𝛼) < (2(′))𝑅(𝛼), which means that 2() ≺ 2(′) by
mploying the fuzzy binary relation ≼. As conclusion, the fuzzy dis-
ersion of the set  is smaller than the fuzzy dispersion of the set ′

y employing the mentioned ranking methodology.

. Conclusions and prospect research

In this paper we have introduced the notion of fuzzy dispersion
easure and have described some of the reasonable properties that
FDM could satisfy. We have reflected about the difficulties that

aturally arise when we try to translate the real variance to the fuzzy
etting, especially due to the traditional definition of the operations
subtraction and product) among fuzzy numbers. Accordingly to a
enuine fuzzy view-point, we have only employed the fuzzy arithmetic
perations (avoiding the real framework) and, coherently, we have
xplored the unknown field where a FDM can have a piece of its support
n the negative interval of real numbers.

Prospect research must be done in this line of study. On the one
and, the variance is important in Statistics to compare the dispersion
f distinct variables. In this case, we have not only computed the FDM
f two distinct set of triangular fuzzy numbers, but we have compared
hem by using a ranking procedure. Hence, it will be interesting to
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Fig. 5. Graphic representation of the fuzzy variances of  (red) and ′ (blue).
tudy how the FDM are ordered by using distinct ranking procedures.
n the other hand, as we can see in Fig. 5, the canonical FDM 2 is a

uzzy number whose support could contain negative numbers. It is not
lear the significance of this fact, but is does not mean that such fuzzy
umber could be negative (it depends on the ranking methodology we
re using). Anyway, some researchers could prefer to define ()(𝑡) = 0
or each 𝑡 < 0. It remains as an open problem to study the necessity of
efining () as zero on the negative part of the real line, or to take
dvantage of the knowledge of the general function  even on negative
eal numbers, that is, to determine if such membership function could
rovide more information about the dispersion of the variable.
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