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Summary

Artificial neural networks are a family of algorithms whose principles are inspired by the

behaviour of biological neurons in the human brain. They have been very successful in per-

forming a wide variety of tasks, and are making a considerable impact on our daily lives.

Moreover, many industries have been reaping the rewards from the use of these technolo-

gies for decades. But this is not the case in many areas of engineering, and more specifically,

civil/structural engineering, where their application is mainly confined within the research

domain. Even though civil engineering is a sector with tight margins where safety is the

number one priority, and therefore, the benefits of a successful implementation could be

significant. The reasons behind such little interest are diverse, from scarcity of quality data,

to general distrust about their potential and applicability in the sector.

Indeed, artificial neural networks are often considered as a black box system, given that

they can approximate any function but without providing insights about its structure or

form. Besides, they suffer from a series of drawbacks and their predictions are not always

correct. Hence, quantifying the uncertainty in the outputs of the neural networks becomes

of great importance. The state-of-the-art Bayesian neural networks, such as Variational In-
ference, Hamiltonian Monte Carlo, or Probabilistic Backpropagation, have largely contributed to

cast light on this matter, but their method to quantify the uncertainty may be considered

as rigid. This is mainly due to the use of parametric probability models for the likelihood

function and/or the weights and bias, but also because of the limitations specific to the

backpropagation algorithm.

In this thesis, a novel training algorithm for Bayesian neural networks based on approx-

imate Bayesian computation is proposed, hereafter called BNN by ABC-SS. The weights

and bias parameters are trained probabilistically without backpropagation or gradient eval-

uation, thus issues such as local minima are avoided and the stability of the algorithm is

improved. Also, predefined parametric probability models are not used for the weights and

bias, but they can adopt any form depending on the training data. As a result, BNN by

ABC-SS presents great flexibility to learn from the observed data, and more importantly, to

quantify the uncertainty inherent in such data. The output of the Bayesian neural network

trained with ABC-SS is a non-parametric probability density function that can be under-

stood as the degree of belief of such output in light of the data available.

As previously mentioned, lack of data is also an important limitation for artificial neu-

ral networks, as their training is entirely dependent on them. Furthermore, extrapolation is
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outside their capabilities, which means that the predictions made outside the domain of the

training data are often random, and should not be trusted in most cases. This problem can be

overcome, or at least mitigated, by introducing the knowledge extracted from physics-based

models into the neural network architecture. While these hybrid algorithms are becoming

more and more popular within the scientific community, they normally insert the physics

in the loss function through some known boundary conditions, in the form of partial dif-

ferential equations. The error is then backpropagated to adjust the weights, forcing them to

comply with the given laws of physics. A different approach is followed in this thesis, where

the physics are introduced independently in three parts of the neural network, namely the

input neurons, the output neurons and the metric function (ρ in ABC-SS), resulting in three

different variants which are then trained with ABC-SS. The need for data is reduced and

the extrapolation capabilities of the overall model improved notably, especially when the

physics are added to the output neurons like an extra bias parameter. Additionally, the use

of ABC-SS as learning engine provides stability and a more realistic quantification of the

uncertainty, yielding a more reliable algorithm. This is especially interesting in engineering,

as it allows us to exploit both the valuable knowledge within the physics-based models and

the flexibility of artificial neural networks to capture the nonlinear behaviour often found in

real data.

The aforementioned principles lead us to the last stage of this doctoral dissertation, when

they are applied to prognostics, an engineering discipline that focuses on predicting how the

damage and performance of a system will evolve through time. To that end, the capacity

of handling sequential data is of great importance, and that is particularly where recurrent

neural networks excel at. In the literature, these data-driven algorithms have also been

combined with physics-based models and provided promising results, however, they are

specially sensitive to gradient related problems, such as vanishing gradients. More com-

plex architectures like Long-Short-Term-Memory have proven to mitigate this issue, but at the

expense of increasing the number of parameters and activation functions. In this thesis, a

physics-guided recurrent neural network trained with ABC-SS is proposed to make predic-

tions about the future performance of an engineering system based on historical sequential

data and physics-based knowledge. The probabilistic nature of the ABC-SS algorithm, along

with its flexible quantification of the uncertainty, translates into a reliable algorithm that

avoids the issues associated to the evaluation of the gradient and its propagation through

time, thus long-term dependencies can be learnt without the need for more complex ar-

chitectures. Moreover, the combination of physics-based knowledge and Bayesian regular-

ization contributes to an improved extrapolation capacity of the proposed recurrent neural

network, which is paramount in multi-step ahead forecasting.

Several case studies are presented to evaluate the performance of the proposed algo-

rithms in different engineering problems, from fatigue in composite materials to displace-

ment and accelerations in concrete structures subjected to seismic loads. The key findings
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from those case studies are the realistic quantification of the uncertainty provided by ABC-

SS, high accuracy comparable to that of the state-of-the-art neural networks, stability thanks

to the absence of gradient evaluation, and the ability to make precise predictions beyond

the domain of the training data when combined with physics-based models. Regarding

real-world applications, the proposed Bayesian neural networks can be envisaged becom-

ing part of a wider PHM tool, helping to make informed decisions about future maintenance

operations based on prognostics about the structural integrity of the system.
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Resumen

Las redes neuronales artificiales son una familia de modelos computacionales inspirados en

el comportamiento de las neuronas biológicas del cerebro humano. Estos algoritmos han

tenido un considerable éxito en diversas aplicaciones y están teniendo un gran impacto en

nuestra vida diaria. De hecho, muchas industrias llevan décadas cosechando los frutos del

uso de estas tecnologı́as. Pero ese no es el caso en muchas áreas de la ingenierı́a y, más

especı́ficamente, en la ingenierı́a civil/estructural, donde su aplicación se limita principal-

mente al terreno de la investigación. Incluso cuando la ingenierı́a civil es un sector con

márgenes ajustados donde la seguridad es la prioridad número uno y por lo tanto, los ben-

eficios de su implementación podrı́an ser significativos. Las razones detrás de este limitado

interés son diversas, desde la escasez de datos de calidad, hasta la desconfianza general-

izada sobre su potencial y aplicabilidad en el sector.

En efecto, las redes neuronales artificiales a menudo se consideran como un sistema

de caja negra, dado que pueden aproximar cualquier función pero sin proporcionar infor-

mación sobre su estructura o forma. Además, adolecen de una serie de inconvenientes y sus

predicciones no siempre son correctas. Por lo tanto, la cuantificación de la incertidumbre

sobre los resultados proporcionados por las redes neuronales se vuelve de gran importan-

cia. Particularmente, las redes neuronales Bayesianas actuales, como “Variational Inference”,

“Hamiltonian Montecarlo” o “Probabilistic Backpropagation”, han contribuido en gran medida

a arrojar luz sobre este asunto, pero su método para cuantificar la incertidumbre puede

considerarse como rı́gido. Esto se debe principalmente al uso de modelos de probabilidad

paramétricos para definir la función de densidad de los pesos y sesgos, pero también a otras

limitaciones especı́ficas del algoritmo de retropropagación (“backpropagation”).

En esta tesis se propone un nuevo algoritmo de entrenamiento para redes neuronales

Bayesianas basado en computación Bayesiana aproximada, en adelante denominado BNN

by ABC-SS. Los pesos y sesgos de la red se entrenan de forma probabilı́stica sin retropropa-

gación ni evaluación del gradiente o derivadas parciales, por lo que se evitan problemas

como el estancamiento en mı́nimos locales y se mejora la estabilidad del algoritmo. Además,

no se predefinen modelos de probabilidad paramétricos para la función de densidad de los

pesos y sesgos, sino que estas pueden adoptar cualquier forma acorde a los datos de en-

trenamiento. Como resultado, BNN by ABC-SS presenta una gran flexibilidad para apren-

der de los datos observados y, lo que es más importante, para cuantificar la incertidumbre

presente en dichos datos. Las predicciones de esta red neuronal Bayesiana entrenada con

vii



ABC-SS son funciones de densidad no paramétricas, que pueden entenderse como el grado

de creencia en dichas predicciones en base a los datos disponibles.

Como se mencionó anteriormente, la falta de datos también es una limitación importante

para las redes neuronales artificiales, ya que su entrenamiento depende completamente de

ellos. Además, la extrapolación está fuera de sus capacidades, lo que significa que las predic-

ciones realizadas fuera del dominio de los datos de entrenamiento suelen ser aleatorias y,

en la mayorı́a de los casos, no se debe confiar en ellas. Este problema se puede superar, o al

menos mitigar, introduciendo modelos basados en fı́sica dentro de la arquitectura de la red

neuronal. Si bien estos algoritmos hı́bridos son cada vez más populares dentro de la comu-

nidad cientı́fica, normalmente la fı́sica es insertada en la función de coste a través de algunas

condiciones de contorno conocidas, en forma de ecuaciones diferenciales parciales. Luego,

el error se retropopaga para ajustar los pesos y sesgos, obligándolos a cumplir con las leyes

de la fı́sica dadas. En esta tesis se sigue un enfoque diferente, donde la fı́sica se introduce de

forma independiente en tres partes de la red neuronal, a saber, las neuronas de entrada, las

neuronas de salida y la función métrica (ρ en ABC-SS), lo que da como resultado tres vari-

antes que son entrenadas con ABC-SS. En consecuencia, la necesidad de datos se reduce y

las capacidades de extrapolación del modelo hı́brido mejoran notablemente, especialmente

cuando la fı́sica se agrega a las neuronas de salida como un parámetro de sesgo adicional.

Además, el uso de ABC-SS como motor de aprendizaje proporciona estabilidad y una cuan-

tificación más realista de la incertidumbre, lo que genera un algoritmo más fiable. Esto es

especialmente interesante en ingenierı́a, ya que nos permite aprovechar y explotar el valioso

conocimiento que existe dentro de los modelos basados en fı́sica, ası́ como la flexibilidad de

las redes neuronales artificiales para capturar el comportamiento no lineal que a menudo se

encuentra en los datos reales.

Los principios antes mencionados nos llevan a la última etapa de esta tesis doctoral,

cuando estos son aplicados a la ingenierı́a de pronóstico, una disciplina que se enfoca en

predecir cómo evolucionará el daño y el rendimiento de un sistema a lo largo del tiempo.

Para ello, la capacidad de manejar datos secuenciales es de gran importancia, y es ahı́ donde

destacan las redes neuronales recurrentes. En la literatura existente se puede observar como

estos algoritmos basados en datos también se combinaron con modelos basados en fı́sica.

Mientras estos modelos recurrentes hı́bridos han proporcionado resultados prometedores,

también han mostrado ser especialmente sensibles a problemas relacionados con la retro-

propagación del gradiente, conocidos como “vanishing gradients”. Arquitecturas más com-

plejas como “Long-Short-Term-Memory” han demostrado mitigar este problema, pero a ex-

pensas de aumentar la cantidad de parámetros y funciones de activación. En esta tesis, se

propone una red neuronal recurrente guiada por fı́sica y entrenada con ABC-SS, para hacer

predicciones sobre el rendimiento futuro de un sistema de ingenierı́a basándose en datos

secuenciales históricos y modelos fı́sicos. La naturaleza probabilı́stica del entrenamiento

Bayesiano ABC-SS, junto con su cuantificación flexible de la incertidumbre, proporciona

un algoritmo fiable que evita los problemas asociados con la evaluación del gradiente y
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su retropropagación en el tiempo, por lo que las dependencias a largo plazo pueden ser

aprendidas sin la necesidad de arquitecturas más complejas. Además, la combinación del

conocimiento basado en fı́sica y la regularización Bayesiana contribuye a mejorar la capaci-

dad de extrapolación de la red neuronal recurrente propuesta, lo que es fundamental para

realizar predicciones sobre un horizonte lejano.

Para evaluar el rendimiento de los algoritmos propuestos en esta tesis se presentan var-

ios casos de estudio con diferentes problemas de ingenierı́a, desde fatiga en materiales com-

puestos hasta desplazamientos y aceleraciones en estructuras de hormigón armado someti-

das a cargas sı́smicas. En todos ellos se observa una cuantificación realista de la incertidum-

bre proporcionada por ABC-SS, alta precisión comparable a la de las redes neuronales ac-

tuales, estabilidad gracias a la ausencia de evaluación del gradiente, y la capacidad de hacer

predicciones precisas más allá del dominio de los datos de entrenamiento cuando se combi-

nan con modelos basados en fı́sica. Con respecto a las aplicaciones a casos reales, las redes

neuronales Bayesianas propuestas se podrı́an considerar como parte de una herramienta

de PHM más amplia, ayudando a tomar decisiones mejor informadas sobre futuras opera-

ciones de mantenimiento, basadas en pronósticos sobre la integridad estructural del sistema.
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ŷt Output at time step t in RNN

it Output of input gate at time step t in LSTM

ft Output of forget gate at time step t in LSTM

ot Output of the output gate at time step t in LSTM

Ct Cell state at time step t at time step t in LSTM

C̃t Candidate input information at time step t in LSTM

xiv



Contents

Aknowledgements i

Summary iii

Resumen vii

Acronyms xi

Symbols xiii

I INTRODUCTION 13

Chapter 1 Status quo and motivation 15

Chapter 2 Research objectives 21

Chapter 3 Completion of objectives 25

Chapter 4 Theorical fundamentals 29

4.1 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Bayesian Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Approximate Bayesian Computation by Subset Simulation . . . . . . . . . . . 32

4.4 Physcics-guided Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.6 Long Short Term Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

II CONTRIBUTIONS 39

Chapter 5 BNN by ABC-SS 41

5.1 Proposed Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Illustrative Problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3 Illustrative Problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

1



Chapter 6 PG-BNN by ABC-SS 49

6.1 BNN by ABC-SS guided by physics-based models . . . . . . . . . . . . . . . . 49

6.1.1 Physics learnt through the metric function . . . . . . . . . . . . . . . . 49

6.1.2 Physics learnt through input neurons . . . . . . . . . . . . . . . . . . . 51

6.1.3 Physics learnt through output neurons . . . . . . . . . . . . . . . . . . 52

6.2 Illustrative problem: projectile motion . . . . . . . . . . . . . . . . . . . . . . . 53

6.2.1 Description and data processing . . . . . . . . . . . . . . . . . . . . . . 53

6.2.2 Algorithmic details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Chapter 7 PG-BRNN by ABC-SS 61

7.1 RNN trained with ABC-SS and guided by physics-based models . . . . . . . . 61

7.2 LSTM trained with ABC-SS and guided by physics-based models . . . . . . . 64

7.3 Data-driven illustrative example: Fatigue in composite materials . . . . . . . 65

7.3.1 Description and data processing . . . . . . . . . . . . . . . . . . . . . . 65

7.3.2 Algorithmic details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.3.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

III CASE STUDIES 71

Chapter 8 Hyperparameter sensitivity analysis 73

Chapter 9 Fatigue damage in composite materials 75

9.1 Description and data processing . . . . . . . . . . . . . . . . . . . . . . . . . . 75

9.2 Probabilistic Safety Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

9.3 Algorithmic details and performance metrics . . . . . . . . . . . . . . . . . . . 76

9.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

9.4.1 Comparison with the state-of-the-art BNN . . . . . . . . . . . . . . . . 78

9.4.2 Probability safety assessment . . . . . . . . . . . . . . . . . . . . . . . . 81

Chapter 10 Reinforced concrete column during seismic events 85

10.1 Description, data processing and physics-based model . . . . . . . . . . . . . 85

10.2 Algorithmic details and performance metrics . . . . . . . . . . . . . . . . . . . 88

10.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Chapter 11 Accelerations in concrete structures 95

11.1 Description, data processing and physics-based model . . . . . . . . . . . . . 95

11.2 Algorithmic details and performance metrics . . . . . . . . . . . . . . . . . . . 97

11.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

2



IV CONCLUSIONS 103

Chapter 12 Conclusions and future work 105

Chapter 13 Conclusiones y trabajos futuros 111

Appendix A Research records 117

A.1 Journal articles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

A.2 International conference and article . . . . . . . . . . . . . . . . . . . . . . . . . 118

A.3 International research stay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A.4 Open Access Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

References 119

3





List of Figures

4.1 Generic example of a basic FNN . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Generic diagram of physics-guided artificial neural networks . . . . . . . . . 34

4.3 Schematic representation of the folded and unfolded RNN . . . . . . . . . . . 35

4.4 Generic diagram of Long Short Term Memory neural networks (by J. Leon). . 36

5.1 Conceptual scheme of the main steps of the BNN by ABC-SS method. The

steps corresponding to the while-loop option are depicted using dashed-blue

line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 BNN by ABC-SS (left) and Batch Gradient Descent (right), Illustrative Prob-

lem 1. Black crosses are training samples, dark red lines are median predic-

tions, light red lines are intermediate levels median predictions, dark grey

region is the interquantile range (IQR) of predictions, and the light grey re-

gion is the range between percentile 5 and 95 of predictions, also known as

the uncertainty band. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3 BNN by ABC-SS, illustration of the uncertainty about the trained parameters

(left) and predictions (right), Illustrative Problem 1. . . . . . . . . . . . . . . . 45

5.4 BNNs by ABC-SS (left) and Batch Gradient Descent (right), Illustrative Prob-

lem 2. Black crosses are training samples, dark red lines are median predic-

tions, dark grey region is the interquantile range (IQR) of predictions, and

light grey region is the range between percentile 5 and 95 of predictions, also

known as the uncertainty band. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.5 Illustrations of the uncertainty about the trained parameters (a), and predic-

tions made by the BNN trained with ABC-SS (b) both within and outside

the domain of the training data set, Illustrative Problem 2. Figure (b) clearly

shows greater uncertainty in those predictions made outside the domain of

the training data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.1 Schematic representation of proposed PG-BNN by ABC-SS . . . . . . . . . . . 51

6.2 Architecture of PG-BNN by ABC-SS via the input layer . . . . . . . . . . . . . 51

6.3 Physics-based model fed into the input neuron . . . . . . . . . . . . . . . . . . 52

6.4 Architecture of PG-BNN by ABC-SS via the output layer . . . . . . . . . . . . 53

6.5 Physics-based model fed into the output neuron like a bias parameter . . . . 53

5



6.6 Illustrative Problem. Probabilistic predictions made by PG-BNN by ABC-SS

(3) shown as a light grey density function, within the domain of the training

data (interpolation) and outside of it (extrapolation). The mean predictions

of the hybrid model are shown in red and green respectively. The predictions

made by the purely physics-based model are shown in dashed black line and

the true value of the projectile range in continuous black line. . . . . . . . . . 58

6.7 Illustrative problem. Scatter plot of target values against predicted values by

the hybrid model PG-BNN by ABC-SS(3) in green, data-driven model BNN

by ABC-SS in blue and the physics-based model in grey, for Test Data Set 1

(interpolation) in panel (a) and for Test Data Set 2 (extrapolation) in panel (b). 59

7.1 Schematic representation of the folded Physics-guided BRNN by ABC-SS . . 63

7.2 Predictions (normalized) made by RBNN by ABC-SS and MC Dropout LSTM

RNN on test data. The green line represents one-step-ahead predictions at

time ’t’, where the input data is the real value of the target variable at time

’t-1’. The red line are multi-steps-ahead predictions, where the input data are

the previous predictions made by the RNN. The dashed black line represents

the target values. The grey hatches are the uncertainty bounds (P5-P95). . . . . 69

9.1 Real Case Study, BNN by ABC-SS trained with data set from NASA. Black

crosses are training samples, dark red lines are median predictions, dark grey

region is the interquantile range (IQR) of predictions, and light grey region

is the range between percentile 5 and 95 of predictions, also known as the

uncertainty band. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

9.2 Real Case Study with data set from NASA. BNN by ABC-SS. Black crosses

are training samples, dark green crosses represent unseen data, dark red lines

are median predictions, dark grey region is the interquantile range (IQR) of

predictions, and light grey region is the range between percentile 5 and 95 of

predictions, also known as the uncertainty band. . . . . . . . . . . . . . . . . . 79

9.3 Analysis of the MSE achieved in 50 independent simulations of BNN by ABC-

SS (ReLU) and Variational Inference with Bayes by Backprop (ReLU and LeakyReLU).

The MSE achieved with each neural network throughout the 50 simulations

is represented by their minimum, first quartile, median, third quartile, maxi-

mum and outliers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

9.4 Illustrative comparison between the state-of-the-art BNN on uncertainty quan-

tification (axes normalized). Black crosses are training samples, dark red lines

are median predictions, dark grey region is the interquartile range (IQR) of

predictions, and light grey region is the range between percentile 5 and 95

of predictions, also known as the uncertainty band. For Probabilistic Back-

propagation the uncertainty is expressed as ±3 standard deviations from the

mean, as per the original manuscript [1]. . . . . . . . . . . . . . . . . . . . . . . 82

6



9.5 Evaluation of the probability of failure (0 to 1), based on the predictions made

by the different Bayesian Neural Networks. The threshold for plausible fail-

ure was set at 0.8 micro-crack density (normalized). . . . . . . . . . . . . . . . 83

9.6 Probability density function (PDF) of predictions made by BNN by ABC-SS

at different loading cycles. Those predictions, shown in green, are compared

against the observed data, which are shown in light grey. The red line repre-

sents the failure threshold, and the probability of failure is given by the area

of the PDF located to the right of this line. . . . . . . . . . . . . . . . . . . . . . 83

10.1 Double-ended reinforced concrete beam-column specimen details, adapted

from [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

10.2 Schematic view of the nonlinear model of a cantilever reinforced concrete

beam-column modelled using OpenSeespy. On the right-hand side, plots of

the constitutive material monotonic behavior are presented. . . . . . . . . . . 87

10.3 Engineering case study. Mean predictions made by PG-BNN by ABC-SS (3)

on training data (red) and test data (green). The uncertainty is represented by

the light grey PDF, the prediction of the physics-based model is given by the

dashed line and the target value is the black continuous line. . . . . . . . . . . 91

10.4 Predictions about lateral force made by PG-BNN by ABC-SS (3) on training

data (red) and on test data (green). The uncertainty is represented by the grey

hatch, the prediction of the physics-based model is given by the dashed line,

the training data set is represented by ‘+’ and the test data set is represented

by ‘x’. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

10.5 Data sensitivity analysis. The uncertainty quantified PG-BNN by ABC-SS (3)

is represented by the grey hatch, the prediction of the physics-based model is

given by the dashed line, the training data set is represented by ‘+’ and the

test data set is represented by ‘x’. The vertical grey lines divide the training

data domain from the test data domain. It can be seen how the uncertainty

reduces gradually as more data is available for training. . . . . . . . . . . . . . 93

11.1 Violin plot of the MSE obtained for each algorithm after 30 independent runs. 100

11.2 PDF (P5 - P95) of the predictions made by PG-BRNN by ABC-SS (green) PG-

MC Dropout LSTM RNN (blue). The black line represents the target value

and the dashed grey line is the prediction made by the physics-based model. 101

11.3 Comparison of the Fourier amplitudes provided by the physics-based model

[3] (dashed-grey), PG-BRNN by ABC-SS (green), and experimental measure-

ments (black). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7





List of Tables

6.1 Comparison between PG-BNN by ABC-SS, BNN by ABC-SS, standard ANN,

the physics-based model and the state-of-the-art PGNN, for the illustrative

problem in Section 6.2. The results, expressed in terms of RMSE, were ob-

tained after 50 independent runs of each algorithm. . . . . . . . . . . . . . . . 58

7.1 Performance of recurrent neural networks, evaluated using MSE after 30 in-

dependent runs of the algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . 69

9.1 Comparison between BNN by ABC-SS, Variational Inference (VI) with Bayes

by Backprop, Hamiltonian Monte Carlo (HMC) and Probabilistic Backprop-

agation (PBP). Each of the algorithms have been run 50 times independently

and the results, expressed in terms of MSE, are summarised in this table. . . . 81

9.2 Probability of failure, based on the probabilistic predictions made by the pro-

posed algorithms. The failure threshold is set at 0.80 micro-crack density (nor-

malized). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

10.1 Input parameters values of the reinforced concrete model in the engineering

case study of Section 10.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

10.2 Detailed comparison, based on a training/test data ratio of 60/40, between

PG-BNN by ABC-SS, BNN by ABC-SS, Standard ANN, the purely physics-

based model, and the state-of-the-art PGNN. The results, expressed in terms

of MSE, were obtained after 50 independent runs of each algorithm. . . . . . . 91

10.3 Sensitivity analysis about different ratios of training/test data and the accu-

racy of the algorithms. The results, expressed in terms of MSE, refer to the

median value (P50) of the error obtained on test data after 50 independent

runs of each algorithm, based on different ratios of training/test data. . . . . 92

11.1 Values of the model parameters proposed in [3] . . . . . . . . . . . . . . . . . 97

11.2 Performance of data-driven Recurrent Neural Networks, Physics-Guided Re-

current Neural Networks and the Physics-based Model, evaluated using MSE

after 30 independent runs of the algorithms. . . . . . . . . . . . . . . . . . . . 100

9





List of Algorithms

1 BNN by ABC-SS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2 Physics learnt through the metric function . . . . . . . . . . . . . . . . . . . . . . . 50

3 Training algorithm for RNN with ABC-SS . . . . . . . . . . . . . . . . . . . . . . 62

4 Training algorithm for LSTM with ABC-SS . . . . . . . . . . . . . . . . . . . . . . 65

11





”Learning and innovation go hand in hand. The arrogance
of success is to think that what you did yesterday will be
sufficient for tomorrow”

— WILLIAM POLLARD

I
INTRODUCTION





1
Status quo and motivation

Artificial Intelligence (AI) has experienced a fast pace development during the last decade

and promises large benefits in many fields of different nature. Particularly, artificial neural

networks (ANN) have revolutionised the world of machine learning, with more complex

models that have made computer vision [4] and speech recognition [5] a reality, in some

cases even reaching human accuracy [6]. As a result, we often encounter this technology in

our daily life, in the form of email classification [7], fraud prevention [8] or border controls

[9], to name but a few examples.

This technology is not limited to the aforementioned applications but it has also been

explored in the civil engineering field. The first journal article about the application of ANN

to structural/civil engineering dates from 1989, by Adeli and Yeh 1989 [10], and since then,

a significant number of articles have been published in a variety of prestigious journals,

covering a wide spectrum of disciplines. ANN have been applied to building materials to

calculate some of their properties, such as the elastic modulus or ultimate strength [11]; in

hydrology for identifying the value of certain aquifer parameters [12]; in geomechanical

engineering for the estimation of soil properties such as the consolidation pressure [13]; and

even in construction management for cost estimation [14]. However, the application of ANN

to a real-world scenario in the civil engineering industry is not common, and often limited

to research. The main reason is that ANN are not without drawbacks, which prevent them

from being used in critical systems.

Predictions made by the standard ANN are deterministic by nature, providing numer-

ical values or labels as outputs. But those predictions are not always correct, given that
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the model only has partial information about the observed reality. Thus, it becomes dif-

ficult to determine if the output of the model should be trusted. Therefore, it is clear that

ANN are subject to uncertainty, which may be critical in applications where small variations

in the predictions might cause disproportionate consequences, such as in safety evaluation

of power plants [15] or trajectory and safety assessment in civil aviation [16]. This uncer-

tainty can be classified into two categories, epistemic and aleatory [17]. In machine learning,

epistemic uncertainty mainly refers to the lack of training data in some areas of the input

domain, and the choice of hyperparameters that delivers the right balance between model

complexity and low generalization error [18]. On the other hand, the aleatory uncertainty

refers to the randomness inherent in nature and implicit in the data, such as noise in the

measurements. While aleatory uncertainty is mostly irreducible, epistemic related to lack

of knowledge can be mitigated in some ways, for instance gathering more data [19]. In

all cases, quantifying the total uncertainty in the predictions provides valuable information

[20].

A branch of methods have appeared in the literature for quantifying uncertainty in

ANN. Among those, Bayesian Neural Networks (BNN) are experiencing an increase in pop-

ularity within the machine learning community. BNN emerged in the early 90s to robustly

quantify uncertainty in the neural network modelling using the Bayesian Inverse Problem for

updating the network parameters [21, 22, 23, 24, 25]. The best known training methods used

in BNNs are the Variational Inference method (VI) [26, 27, 28] (more specifically Bayes by

Backprop [29, 30]), Probabilistic Backpropagation (PBP) [1] and Hamiltonian Monte Carlo

(HMC) [31, 32]. Generally, these methods require the evaluation of the gradient of a cost

function using the back-propagation algorithm [33], which is prone to suffer from draw-

backs such as exploding gradient [34] when large derivatives propagate down the model,

vanishing gradient [34] if derivatives are small, or dying ReLU [35], all of which affect the

learning process and the accuracy of the predictions. It is also common among these meth-

ods the adoption of a particular probability model for the likelihood function and the pos-

terior probability density function (PDF) of the parameters, often assumed to be Gaussian,

which leads to a constrained quantification of the uncertainty. However, identifying and

quantifying such uncertainty is not the only challenge that ANN need to deal with in civil

engineering, as we are about to see.

Modern algorithms are capable of learning patterns in complex natural processes with-

out the need to identify and/or understand them, provided that enough data are available

[36, 37, 38]. And for that same reason, in those situations where data is scarce or imbalanced

[39], their performance may be poor and unreliable. Moreover, machine learning algorithms

do not perform well when making predictions about events or processes which are outside

the training data space (extrapolating) [40]. Contrariwise, physics-based models approxi-

mate reality relatively well and are transparent to human understanding. But despite their

successful applications, it is complicated for them to include comprehensive details of real

natural phenomena without becoming overly complex themselves and difficult to use, with
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practically unidentifiable parameters [41]. There is a wide range of engineering applications

where there only exist relatively simple models that partially explain the phenomenon of in-

terest and the availability of data is very limited. Therefore, it seems sensible to seek hybrid

models that can benefit from both, physics-based and data-driven approaches.

During the last few years, ANN that include some physics-based knowledge about the

process that generated the experimental data in their loss function, such as boundary con-

ditions, have increased in popularity. The way this physics-based knowledge is embedded

within the machine learning algorithm is very diverse and depends on the application in

hand. One of the most prominent algorithms in this area of research is the so-called physics-
informed neural networks (PINN) [42], which encourages the ANN to follow certain laws of

physics, described by partial differential equations, by increasing the cost of solutions that

do not satisfy them. This methodology has also set the foundations for a wide range of ANN

algorithms [43] and applications [44, 45, 46, 47, 48, 49]. Another interesting approach to

introduce prior domain knowledge in neural networks is by specifying certain constraints,

such as logical or algebraic expressions, that should hold over the output space. This method

has shown efficiency in computer vision, when mapping from an image to the location of

an object it contains [50]. Following the same principles, in the field of mechatronic systems

(e.g., presses, pumps, hydraulic valves or compressors) the neural network augmented physics
(NNAP) [51] algorithm proposes neural layers that are inserted in the physics-based model,

with the novelty of simultaneously optimizing both the neural network and physical param-

eters. Physics-guided neural networks (PGNN) are another family of hybrid methods that

are providing promising results. Among the different variants of PGNN that can be found in

the literature, Jinjiang Wang et al. [52] proposed a cross physics-data fusion (CPDF) scheme

to combine the information obtained by a physics-based model and a data driven model for

machining tool wear prediction. Ruiyang Zhang et al. [53] presented the Physics-guided

Convolutional Neural Network (PhyCNN) for prediction of building’s response subjected

to earthquakes. Uduak Inyang-Udoh and Sandipan Mishra [54] developed a physics-guided

convolutional recurrent neural network (ConvRNN) for droplet-based additive manufactur-

ing and proved that the data required to train this model are much less compared to a pure

black-box model. Anuj Karpatne et al. [55, 56] was probably the first attempt to introduce

some physics-based principles within the neural network architecture, achieving low errors

in a lake temperature modeling problem. While most of these algorithms are deterministic

in nature, there are some hybrid models that are able to quantify the uncertainty in their

predictions, using Bayesian methods [57], arbitrary polynomial chaos (aPC) and Dropout
[58, 59], or Monte Carlo Dropout [60], among others. However, this quantification of the un-

certainty could be defined as rigid [20], given that the weights and/or the likelihood function

of those neural networks are parametric and defined by a pre-shaped likelihood function,

typically Gaussian again. In addition, their learning process is based on the evaluation of

the gradient of a physics-based loss function via the back-propagation algorithm [33], which
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may suffer from problems like Dying ReLU or vanishing/exploding gradient, as explained

before.

Data in civil engineering are not only scarce, but in most cases, they appear in a se-

quential manner. This type of data is also known as time-series and can be found in many

engineering problems, such as electricity production forecasting [61] or fatigue prediction

[62]. Recurrent neural networks (RNN) have provided an outstanding performance when

applied to sequential data. There are many different variants of RNN, from Long Short

Term Memory (LSTM) [63] to Gated Recurrent Unit (GRU) [64], and they are responsible

for many tools and software, such as speech recognition [65], or sentiment analysis [66].

Moreover, they have been also applied to construction related tasks [67].

Nevertheless, RNN also present some issues, mostly related to the use of the backprop-

agation algorithm to train the weights of the neural network. While these problems are not

exclusive of RNN, the fact that the gradient of the loss function is backpropagated through

many time-steps makes this type of neural network more prone to suffer from them [34].

RNN also suffer from data scarcity and poor extrapolation capacity, just like standard ANN.

Different types of hybrid RNN can be found in the literature, which deal with those

problems by combining physics-based and data-driven approaches. Depending on the na-

ture of the laws of physics, these are inserted in the RNN in a different manner. For example,

Y Chen et al. [68] proposed LSTM neural networks for fault detection in gearboxes. Manu

Lahariya et al. [69] integrated physics-based constraints into the training process of the

LSTM to identify the flexibility in the evaporative cooling process. Primarily based on the

works of Raissi et al. [42], some authors have successfully applied physics-informed RNN

to problems where the physics are governed by partial differential equations [70, 71, 72, 73].

In these cases the neural network is forced to minimise a loss function that includes those

physics-based differential equations and boundary conditions. In the area of Prognostics

and Health Management (PHM), RG Nascimiento et al [74, 75, 76] developed a recurrent

cell that combined physics-based and data-driven models for fleet prognosis and cumu-

lative damage modeling. Physics-guided recurrent neural networks are another family of

hybrid algorithms, where the physics are often introduced in the loss function. In this line of

research, Xiaowei Jia et al. [77] successfully combined RNN and physics-based models for

simulating temperature profiles in lakes. Bayesian methods, such as Monte Carlo Dropout

(MC Dropout), have also been combined with physics-guided RNN for quantification of the

prediction uncertainty, as can be seen in the works of Arka Daw [60]. Despite the promising

results provided by those hybrid RNN, they are still subject to the drawbacks of backprop-

agation and the evaluation of the gradient of a predefined loss function [78].

In summary, ANN have demonstrated great potential in a wide variety of applications,

but not so much in civil engineering. The main challenges that ANN face in this industry

is the quantification of the uncertainty or degree of belief of the predictions, the lack of real

and valuable data, and the ability to handle time-series data. There exist different BNN

that provide a quantification of the prediction uncertainty, but this is rigid and limited by
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predefined likelihood functions (e.g., Gaussian). Hybrid models that could tackle the data

scarcity problems have also been developed, but they often ignore the uncertainty and in-

clude the physics only in the loss function, through differential equations and boundary con-

ditions. Hybrid RNN have been used to process sequential data, but these algorithms are

trained with the backpropagation algorithm, which raises multiple gradient-related prob-

lems. Therefore, a new family of models is needed, one able to quantify the uncertainty in

a flexible manner without being constrained to predefined probability models for the like-

lihood function; that includes physics-based models in the forward pass to mitigate data

scarcity and improve the extrapolation capacity; and one that can handle sequential data

without being subjected to the issues arising from the use of backpropagation.
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2
Research objectives

The application of ANN to civil engineering is often limited to research [11, 12, 13], and not

commonly found in real world applications. This is mostly due to a series of drawbacks in

this technology that may prevent its deployment at the scale of civil infrastructure. While

ANN have demonstrated the ability to make accurate predictions in other fields, these are

normally deterministic, and do not take into consideration the uncertainty inherent in the

observed data. Some methods, such as the state-of-the-art BNN, have already addressed this

problem [29, 1, 31], but they are limited by predefined likelihood functions, which results in

a constrained quantification of the uncertainty [20]. The scarcity of quality data is another

challenge that the civil engineering industry faces, and that is a major limitation for the ap-

plication of ANN. Hybrids methods that fuse physics and data-driven algorithms have been

developed to mitigate this situation, however, they normally use partial differential equa-

tions which are embedded in the loss functions [42], whilst again ignoring the uncertainty

in the data. And even if quality data is available, this is normally sequential in nature and

needs to be processed by other types of neural networks, such as RNN. But these are not

without drawbacks either, as they use the backpropagation algorithm to train the weights,

which is prone to gradient-related problems [34, 34, 35]. Therefore, the main goal of the

research presented in this thesis is to develop a new methodology to train neural networks

that is suitable for civil and structural engineering problems, can quantify the uncertainty,

performs well in conditions where data is scarce, and is not subject to gradient-related prob-

lems when handling sequential data. To that end, several hypothesis are formulated below,

leading to more specific objectives:
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1. Despite the numerous applications of standard ANN, including in civil engineering,

most of them are deterministic and do not quantify the uncertainty in their predic-

tions. This problem has been addressed by BNN, which produce probabilistic outputs,

or in other words, a range of plausible prediction outputs. While they use probability

density functions to define their parameters (weights and bias) and likelihood func-

tions, these are predefined by the user, normally Gaussian. This translates into a rigid

quantification of the uncertainty [20], given that both the parameters and likelihood

functions are being forced to follow a specific shape.

Hypothesis 1: The value of the weights and bias of ANN could be optimised using

Approximate Bayesian Computation by Subset-Simulation (ABC-SS).

⇒Research objective 1: Develop a new training method for neural networks based on ABC-
SS, where the likelihood function, and the parameters do not need to follow a predefined shape.

2. Quality data are a rare sight in civil engineering applications [79, 80]. The reasons be-

hind this situation are diverse: the life span of infrastructure assets is too long to have

records about their whole life cycle, inspections and maintenance operations are not

always recorded in a usable manner for data-driven algorithms, the digitalization of

structural elements through sensorization is just beginning to occur, and lack of knowl-

edge between fellow civil engineers about the potentials of data-driven methods, just

to name but a few. And when enough data is not available, then the algorithms need to

be able to extrapolate beyond the domain of the training data, which is something that

standard ANN are not good at [40]. However, hybrid methods that include physics

in their algorithm have demonstrated good performance in situations where data is

scarce. Even so, they also present some issues and limitations, as they normally work

with differential equations inside the loss function [42], and ignore the quantification

of the uncertainty. In civil engineering, a great part of the knowledge gathered along

centuries is in the form of mathematical or empirical formulations, and the uncertainty

plays a major role given the serious consequences of miscalculations. At the moment,

the uncertainty in physics-based models is often mitigated through safety coefficients.

Hypothesis 2: The limitations related to data scarcity, extrapolation and quantifica-

tion of the uncertainty could be mitigated if physics-based models are included in the

forward pass of the neural network in the form of mathematical formulations, and

Bayesian training is used.

⇒Research objective 2: Propose different ways of introducing the physics-based models in
the forward pass of the neural network, and use ABC-SS as Bayesian training algorithm.

3. When the records of a data set are stored consecutively, and there exists a dependence

between consecutive points, this data set is considered to be sequential. This type of

data is common in civil engineering, and can be found in fatigue damage, degrada-

tion processes, seismic events, and so forth [80]. Recurrent neural networks (RNN)
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are a special type of ANN, which can analyse the temporal dependencies between the

data points, and find patterns in them [81, 82, 83]. Moreover, they provide the best

performance when making predictions about future events based on historical data.

But they are also subject to problems such as the ones mentioned before about data

scarcity and the quantification of the uncertainty, although the same proposed solu-

tions would apply to them. However, this type of neural networks are very sensitive

to gradient-related problems, given that the derivatives need to be propagated back-

wards through many time steps [78]. While this has been mitigated through other

types of RNN that include complex gates inside the recurrent cell, such as Long Short

Term Memory (LSTM) neural networks [63], they comprise a larger number of pa-

rameters and the backpropagation of the gradients may still cause instabilities due to

finding a different local minima of the loss function on each run of the algorithm, re-

ducing the reliability of the model.

Hypothesis 3: A RNN that includes physics-based models in its forward pass and is

trained using Bayesian methods can avoid the aforementioned limitations and may

provide a useful methodology for prognostics. Additionally, gated units could be

avoided, reducing the number of weights and bias required.

⇒Research objective 3: Propose a RNN that includes physics-based models in their forward
pass, and train them with ABC-SS.
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3
Completion of objectives

The main research objectives of this thesis have been presented previously in Chapter 2. The

work undertaken towards the completion of such objectives, including the methodologies

developed, and the experiments carried out to demonstrate such methodologies, are briefly

outlined in this chapter. Also, references to where they can be found in this document are

included in the text below. Most of this information has already been published in journals

or conference proceedings, which are listed in Appendix A.

Research objective 1:

Develop a new training method for neural networks based on ABC-SS, where the likelihood
function, and the parameters do not need to follow a predefined shape.
The Bayesian inference algorithm ABC-SS was published in 2014 [84], and since then

it has been applied to a wide range of Bayesian inference problems [85]. However, this

algorithm has never been used before for training neural networks, thus a number of

modifications are required to achieve such purpose. The adjustments made to ABC-SS

to transform it into a training algorithm for neural networks can be found in Chapter 5.

The result is a Bayesian gradient-free training method, where the weights are not de-

fined by parametric functions, and the outputs reflect the uncertainty in the observed

data. This new methodology, henceforth called BNN by ABC-SS, has been applied to

two illustrative problems, also shown in Chapter 5 (Sections 5.2 and 5.3), where it can

be seen that the weights are defined by free-form probability density functions, and

the uncertainty in the predictions is quantified faithful to the observed reality. The

proposed BNN by ABC-SS has also been applied to a real case study about fatigue in
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composite materials. The propagation of damage in this type of materials is not yet

well understood, given the complexity of the process with several modes of failure

interacting among them [86], and therefore, the quantification of the uncertainty could

be critical [87]. The performance of BNN by ABC-SS in this case study has been com-

pared against the state-of-the-art BNN, including Hamiltonian Mote Carlo [31, 88],

Variational Inference (Bayes by backprop) [29] and Probabilistic Backpropagation [1].

The results and their discussion can be found in Chapter 9.

Research objective 2:

Propose different ways of introducing the physics-based models in the forward pass of the neu-
ral network, and use ABC-SS as Bayesian training algorithm.
The so-called physics-informed neural networks normally include the physics in the

loss function, through differential equations and boundary conditions [42]. However,

the objective of this thesis is to introduce physics-based models, represented by mathe-

matical formulations, in the forward pass of the neural network. Thus, the physics are

not only used during the training phase, but also afterwards when making predictions

in a real-world scenario. Three variants have been proposed in Chapter 6, introducing

the physics-based models in the metric function of ABC-SS, through the input neurons,

and through the output neurons. All three variants exhibit a different behaviour, from

regularization properties to an improved extrapolation capability. This new family of

algorithms, from now on called physics-guided Bayesian neural network by ABC-SS

(PG-BNN by ABC-SS), fuse the knowledge embedded in physics-based models, with

the non-linearity of ANN and the flexibility of ABC-SS to quantify the uncertainty. An

illustrative problem is presented in Chapter 6 (Section 6.2), where a set of synthetic

data about projectile motion under different wind conditions is created in a simplis-

tic manner, so the concepts can be easily understood. An engineering case study is

also provided in Chapter 10, where PG-BNN by ABC-SS is applied to experimental

data from a reinforced concrete column subjected to lateral forces. The performance of

the proposed algorithms are compared against their data-driven counterparts and the

state-of-the-art physics-guided neural networks.

Research objective 3:

Propose a RNN that includes physics-based models in their forward pass, and train them with
ABC-SS.
RNN have excelled at handling sequential data, but like standard neural networks,

they cannot quantify the uncertainty in their predictions or extrapolate outside the

domain of the training data [40]. Moreover, they are specially sensitive to gradient-

related problems [78]. By applying the concepts explained in research objectives 1

and 2 to RNN, a new type of physics-guided Bayesian recurrent neural network (PG-

BRNN by ABC-SS) has been developed. The training algorithm of BNN by ABC-SS has
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been adapted to accommodate the weights and bias matrices found in standard RNN,

and the physics-based model has been included in the recursive forward pass. This

is explained in Chapter 7, specifically in Algorithm 3. Thanks to ABC-SS, the hidden

state of each time-step does not need to be stored, nor their gradient backpropagated

through time. As a result, complex gates inside the recurrent cell are also avoided.

This new algorithm has been applied to a case study about accelerations in concrete

buildings during seismic events, and its performance compared against the state-of-

the-art RNN, such as LSTM [63], Gated Recurrent Unit (GRU) [89], Bidirectional LSTM

[90] and Monte Carlo Dropout LSTM [91]. The results are presented in Chapter 11.
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4
Theorical fundamentals

This chapter aims at providing the theoretical framework that supports the methodolo-

gies proposed in this thesis. From Section 4.1 to Section 4.5, the following concepts are

explained: ANN and their formulation, BNN and their probabilistic nature, ABC-SS as in-

ference engine, the combination of data-driven approaches and physics-based models into

hybrid methods, and finally, the principles of RNN.

4.1 Artificial Neural Networks

ANN have been an active line of research in the recent years, however, their invention dates

from 1943 and is attributed to Warren McCulloch, a neurophysiologist, and Walter Pitts,

a mathematician [92]. The principles of ANNs are inspired in the behaviour of biological

neurons, although their architecture and mechanisms to process information differ notably.

Many different types of ANN have been developed to specifically solve a diverse set of

tasks, such as regression, classification, visual recognition or natural language processing.

Feedforward Neural Networks (FNN) are considered the simplest type and the one many

others are built upon [93]. Feedforward models can be understood as a function f , defined

by a set of parameters including weights w and bias b, which maps some input information

x ∈ X ⊂ Rn to a predicted output ŷ ∈ O, where O ⊂ Rl for a regression task, thus

ŷ = f (x; w, b). These models can comprise several layers, where each of them executes a

linear transformation of the input information using the parameters w and b, followed by a

non-linear transformation using an activation function. The number of layers indicates the

depth of our model. Figure 4.1 shows a simple FNN, with one input layer, one hidden layer

and one output layer. The mapping from inputs to outputs for the generic case in Figure 4.1,

also known as forward propagation, is formulated as follows:
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ŷk = f (x; w, b) = g(
m

∑
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Figure 4.1: Generic example of a basic FNN

where xi is the ith input unit; w(1)
i j , w(2)

jk , b(1)j and b(2)k represent the weights and biases; ŷk is

the kth output neuron; H j is the jth neuron in the hidden layer; h and g are the activation

functions in the hidden and output layers respectively; n is the number of input neurons; m
is the number of neurons in the hidden layer; and s the number of output neurons.

The selection of the activation functions in the hidden units is an active area of research,

and it is difficult to know which one will perform best, thus a trial and error process is

often followed. Rectified Linear Units (ReLU) have proved to work well in a wide variety

of models, while others such as Maxout Units [94] have the potential to reduce the number

of parameters required. On the contrary, the activation function in the output units is task-

specific and its choice is critical for a good performance of the FNN.

With regard to the output, a FNN model defines a probability distribution p (y|x; w, b),
where y ∈ Y represents the observed outputs in a training data setD = (x, y) ∈ X ×Y , and

in most cases, the principle of maximum likelihood estimation is used to learn the parame-

ters w and b. This is equivalent to minimizing the negative log-likelihood, namely the cost

function C(w, b) = − log p (y|x). The performance of a FNN is measured by such cost func-

tion, whose form depends on the output units, and therefore, on the task. A regularization

method is often used to avoid overfitting and reduce the generalization error.

In many cases, the parameters of a FNN are learnt via a training algorithm based on

descending the cost function using the gradient, such as stochastic gradient descent. In-

formation from the cost function flows backward, computing the gradient using the back-

propagation algorithm [33].
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4.2 Bayesian Neural Networks

From a frequentist point of view, the parameters w and b of an ANN are assumed to be

known deterministically with a single value which we want to find. Given a training data

setD = (x, y), a learning algorithm could be used, as specified in Section 4.1, to approximate

the optimal value of the parameters. However, there is an implicit uncertainty about the

value of those parameters that is not covered by the frequentist approach.

If a Bayesian interpretation is followed, such uncertainty is considered and the objective

is no longer to find the true value of the parameters but instead, a distribution of plausible

values of the parameters that are consistent with the training data set. Under this perspec-

tive, neural network predictions are obtained with quantified uncertainty, by considering

the most plausible values of the parameters rather than a single one. In this context, the

parameters of a Bayesian Neural Network (BNN) are inferred using a probability logic ap-

proach based on the Bayes’ theorem [95, 96, 97, 98].

From a mathematical point of view, a BNN provides a probabilistic output ŷ based on

the uncertainty about a set of model parameters θ = {w, b} ∈ Θ ⊆ Rd given a model

classM. In this framework, the model classM refers to the network architecture, namely,

the number of layers and neurons per layer; the activation functions in each of the hidden

and output layers; and the prior information about the model parameters θ, referred to as

p(θ|M). Using Bayes’ theorem, this prior information can be updated according to the

training data set D(x, y), as follows:

p (θ|D,M) =
p (D|θ,M) p (θ|M)

p (D|M)
(4.2)

where p (θ|D,M) is the posterior PDF of the model parameters given the data, and p (D|θ,M)

is known as the likelihood function. This function measures how likely the modelM spec-

ified by the parameters θ reproduces the observed data D. As described above, the term

p (θ|M) is the prior PDF which quantifies our initial belief about the plausibility of the val-

ues of parameters θ given a model class M, and automatically enforces a regularization

effect thus preventing the over-fitting of the network model. Finally, the term p (D|M) is

known as the evidence and represents how likely the data set D is reproduced if model class

M is adopted. The computation of the evidence comprises the evaluation of a multidimen-

sional integral which is analytically intractable in most of the cases. However, stochastic

simulation methods such as Markov chain Monte Carlo (MCMC) [99, 100] can be used to

draw samples from the posterior while circumventing the evaluation of the evidence.

Besides, in many cases the evaluation of the likelihood function is computationally pro-

hibitive or even analytically intractable. However, methods such as ABC may be used to

approximate the posterior distribution of the parameters.
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4.3 Approximate Bayesian Computation by Subset Simulation

ABC methods were born with the purpose of evaluating the posterior distribution of the

parameters in those cases where the likelihood function is analytically intractable [101]. Also

known as likelihood-free computation algorithms, ABC use a stochastic simulation approach to

avoid evaluating the likelihood function explicitly.

Let ŷ = f (θ, x) ∈ O ⊂ Rl be the predicted outcome from p (ŷ|θ,M), which is the

forward model classM with parameters θ ∈ Θ, and D(x, y) a data set where x ∈ X are the

inputs and y ∈ Y the observed outputs. Then, Equation (4.2) can be adapted when applied

to the pair (θ, ŷ) ∈ Θ×O ⊂ Rd+l as follows:

p (θ, ŷ|D) ∝ p (D|ŷ,θ) p (ŷ|θ) p(θ) (4.3)

where the conditioning to the model classM has been omitted for clarity since the method

is valid for anyM.

From the last equation, it is clear that when the likelihood function p (D|ŷ,θ) is in-

tractable or directly unknown, the posterior p (θ, ŷ|D) cannot be obtained. The ABC meth-

ods provide us with an efficient alternative, bypassing the evaluation of the likelihood func-

tion using an approximated simulation based approach [102]. Indeed, through the use of a

tolerance parameter ϵ and a user-defined metric function ρ, the method selects as posterior

samples the pairs (θ, ŷ) ∈ S ⊆ Θ×O which satisfy that ŷ ∼ p (ŷ|θ) lay within a specified

region around the data y given by Bϵ(y) = {ŷ ∈ O : ρ(η(ŷ), η(y)) ⩽ ϵ}, where the metric

function ρ(·) evaluates the closeness between ŷ and y using a vector of summary statistics

η(·) [103] which, if required, allows the comparison between both vectors in a weak manner.

Thus, under the ABC perspective, Equation (4.3) can be rewritten as [84]:

pϵ (θ, ŷ|D) ∝ P (ŷ ∈ Bϵ(y)|θ) p(ŷ|θ)p(θ) (4.4)

where P (ŷ ∈ Bϵ(y)|θ) is the approximated likelihood function which takes the unity when

ρ(η(ŷ), η(y)) ⩽ ϵ, and 0 otherwise. In the last equation, P(·) denotes probability and p(·) a

PDF. By this means, the ABC marginal posterior of the parameters can be straightforwardly

obtained as:

pϵ (θ|D) ∝ P (ŷ ∈ Bϵ(y)|θ) p(θ) (4.5)

Observe that this basic form of the ABC method is conceived as a rejection algorithm

which generates (θ, ŷ) ∼ p (ŷ|θ) p(θ) and accepts them conditional on ŷ being close to y
under a tolerance valueϵ. It should be noted thatϵ is desired to be very small so predictions

ŷ are accurate, but this is at the expense of highly inefficient computations. Also, if ϵ → 0

then necessarily η(ŷ) ≃ η(y), which is unlikely under a probabilistic forward model p(ŷ|θ).
On the contrary, choosing a high value forϵ would make the approximate posterior pϵ (θ|D)
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very similar to the prior p(θ), given that the majority of samples drawn from the prior would

be accepted.

As can be seen, choosing the tolerance parameter ϵ entails a trade-off between accuracy

of the posterior approximation and computational cost. In the literature, several techniques

have been proposed to address this trade-off by combining the ABC principles with sam-

pling methods like Markov Chain Monte Carlo [104], Parallel Tempering [105], or Popula-

tion Monte Carlo [106]. While some of them have demonstrated efficiency, using ϵ→ 0 still

translates into heavy computation. Thus, other techniques that use a decreasing sequence of

tolerance levels ϵ have emerged, which achieve improved computational performance for

lowϵ values [107]. Among those, the so-called Approximate Bayesian Computation by Sub-

set Simulation algorithm, namely ABC-SubSim (ABC-SS) algorithm [84], has been proved

to be one of the most efficient ABC algorithms in the literature, having been included in

several well-known ABC user-platforms like ABCpy [108] and Pi4U [109].

ABC-SS exploits the ABC principles with the Subset Simulation method [110] which

transforms a rare event simulation problem into a sequence of simulations with larger prob-

abilities, resulting in a reduction of the computational cost [111, 112]. Indeed, in ABC-SS the

region S containing the possible solutions under a tolerance ϵ is defined as the intersection

of a sequence of nested regions S j, j = 1, . . . , ℓ such that S1 ⊃ S2 . . . ⊃ Sℓ = S , where:

S j = {(θ, ŷ) : ρ(η(ŷ, η(y)) ⩽ ϵ j}, and ϵ j+1 < ϵ j ∀ j = 1, . . . , j (4.6)

Following this approach, the probability of a predicted outcome ŷ from a Bayesian neural

network to belong to a specified region S , which is referred to as P((θ, ŷ) ∈ S) and denoted

for simplicity as P(S), can be defined as:

P(S) = P(S1)
ℓ

∏
j=2

P
(
S j
∣∣S j−1

)
(4.7)

where P(S1) can be efficiently obtained using the Monte Carlo method, whilst the remaining

factors P
(
S j
∣∣S j−1

)
, j ⩾ 2, can be estimated through samples by satisfying that P

(
S j
∣∣S j−1

)
=

P0, where P0 is a conditional probability acting as a hyper-parameter defined by the mod-

eller.

4.4 Physcics-guided Neural Networks

Physics-based models aim to explain natural phenomena and processes through mathemat-

ical expressions, and have provided predictive tools for the last few centuries by using rel-

atively small amounts of data. However, despite their good performance in many fields,

it is fair to say that they are just a representation of a hypothesised physical reality, which

will always differ from the true reality. This is because physics-based models cannot take

into account every single subtlety of the real world. Furthermore, the closer to reality, the

more complex these models need to be [113], reaching computational inefficiency and be-

coming unsuitable for large-scale real-time prediction activities. In addition, the amount
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and frequency of data collection nowadays is beyond the processing capabilities of most

physics-based models. On the contrary, ANN have the flexibility of capturing patterns and

processes by learning directly from real-world data. They have excelled in many fields and

different tasks, such as regression or classification problems. However, they also suffer from

some drawbacks, and their need for huge amounts of data is an important one. In simplistic

terms, the performance of ANN depends on the amount and quality of the data used to train

them. Unfortunately, data is still scarce and noisy in many industries.

Therefore, it seems sensible to make use of both approaches and create hybrid models

[114, 115, 116] that benefit from the knowledge gained through physics-based models and

the flexibility of ANN to learn from data. These models can be found in the literature un-

der different names, such as Physics-Informed Neural Networks (PINN) [42], Neural Networks
Augmented Physics Models (NNAP) [51] or Physics-Guided Neural Networks (PGNN) [117]. The

way physics and ANN are combined mostly depends on the physics-based models and their

formulation, as they can be introduced in different parts of the hybrid model, such as the

loss function or the forward pass. In this thesis we will focus on PGNN (Residual Model),

given their ability to fill the gaps between reality and the physics and to extrapolate outside

the training data domain. Figure 4.2 illustrates the concept of physics-guided ANN.

DATA

ARTIFICIAL
NEURAL NETWORK

PHYSICS-BASED
MODEL

MERGE PREDICTION

Figure 4.2: Generic diagram of physics-guided artificial neural networks

4.5 Recurrent Neural Networks

The concept of RNN was born in the 1980s [81, 82, 83], motivated by the need of ANN to

handle sequential data. Indeed, RNN have tackled two major challenges inherent in such

type of data: input information of varying lengths, and the fact that previous inputs may

influence future inputs and outputs. All that is possible thanks to ‘parameter sharing’, where

the same weights are recursively applied through each time step of the neural network. This

way, information about the immediate past is stored and added to the present, to then make

predictions about the future. This principle is illustrated in Figure 4.3, and the formulation

of the forward pass for the most basic form of RNN is shown in Equation 4.8 (note that

tanh and sigmoid are interchangeable by any other activation function, and b and c are bias

parameters).
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Figure 4.3: Schematic representation of the folded and unfolded RNN

at = b + Wht−1 + Uxt

ht = tanh(at)

ot = c + Vht

ŷt = sigmoid(ot)

(4.8)

Many different types of RNN can be found in the literature. Depending on the input-

output relationship present in the data, there exist several design patterns: one to one, one to
many, many to one or many to many [118]. Sentiment analysis or text classification are good

examples of many to one patterns, just as machine translation is of many to many. The number

of variables will also determine if the model is uni-variate or multi-variate. Furthermore, the

original concept of RNN has evolved into more sophisticated and complex algorithms, such

as Bidirectional RNN [90], Gated Recurrent Unit (GRU) [89] or Long Short Term Memory

(LSTM) [63, 64]. The interested reader is referred to [118] (Chapter 10) for further details

about the implementation of the different versions of RNN and their characteristics.

Despite the great success achieved by RNN in various applications, they are not without

drawbacks. They mostly rely on the backpropagation algorithm [82], which becomes more

complex in RNN and is the source of issues such as vanishing and exploding gradients. Also,

RNN do not perform well when making predictions outside the domain of the training data,

just like any other ANN. In fact, this problem is aggravated in univariate multistep-ahead

forecasting, where the predicted value of the current time step is used to determine the value

of the next time step, recursively. Interestingly, this situation is common in engineering, and

more specifically, in structural health monitoring (SHM) and prognostics and health man-

agement (PHM) [119], where the updated information about the health state of the structure

is recursively used to prognosticate the future health states of the system. While those is-

sues can be mitigated in varying degrees, like using LSTM for gradient-related problems,

Chapter 7 will present a different approach to avoid such drawbacks.
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4.6 Long Short Term Memory

As mentioned in Section 4.5, LSTM RNN have solved, or at least mitigated, some of the

difficulties found in the successful implementation of vanilla RNN, specially those related

to the backpropagation of the gradient. Hence, they became the golden standard of RNN

in both, research and industry. Moreover, tasks like speech recognition and object detec-

tion/classification were enabled for use in real case scenarios only after the introduction of

this methodology.

In theory, vanilla RNN are able to learn long-term dependencies between input and out-

put information, even when there exists a significant number of time steps between them.

However, this is not always true in practise, as demonstrated by Sepp Hochreiter in his

thesis [120], where he studied in depth the vanishing gradient problem in artificial neural

networks and found solid theoretical reasons. In 1995 they released a technical report, to

then publish the first paper about LSTM in 1997 [63]. Many different variants and upgrades

have been published since then, but they are all based on the original principles.
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Figure 4.4: Generic diagram of Long Short Term Memory neural networks (by J. Leon).

LSTM RNN are designed to store those long-term dependencies between the input and

output information. This is achieved thanks to the cell state, which passes the information

through the different time steps with minimal interaction. The addition or removal of in-

formation from the cell state is managed by a series of gates. The piece of information to be

discarded is decided by the forget gate, where a sigmoid function acts as an outlet, regulat-

ing what goes through and what goes away depending on its value (0 to 1). The input gate
controls what new information is stored in the cell state, again using a sigmoid function, but

also a tangent hyperbolic function. Then, the old and new information are combined into

the next cell state using the update gate. Finally, the output information for each time step is

obtained by passing the new cell state through a tangent hyperbolic function, to keep values
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between -1 and 1, and then multiplying it by the output of the input gate. Figure 4.4 shows

a schematic representation of the process inside an LSTM cell.

it = σ(xtUi + ht−1W i)

ft = σ(xtU f + ht−1W f )

ot = σ(xtUo + ht−1Wo)

C̃t = tanh(xtUg + ht−1Wg)

Ct = σ( ftCt−1 + itC̃t)

ht = tanh(Ct)ot

(4.9)

The formulation for one time-step can be found in Equation 4.9, where C represents the

cell state, U and W are the weights matrices, h are the hidden state for each time step, f is

the output of the forget gate, i is the output of the input gate, C̃ represents the candidate input

information and o regulates the output of the overall cell.
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”Nothing in life is to be feared, it is only to be understood.
Now is the time to understand more, so that we may fear
less.”

— MARIE CURIE
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5
BNN by ABC-SS

In this Chapter, the ABC-SS algorithm is adapted to train the weights and bias parameters

in ANN. Following the principles explained in Chapter 4 (Section 4.3), the forward model

classM now represents the architecture of the ANN, andθ = {w, b}. While the state-of-the-

art BNN update their parameters based on the evaluation of the gradient of a cost function

∇θC(θ) using the backpropagation algorithm, ABC-SS aims at obtaining the posterior distri-

bution function of the parameters θ through statistical simulation. Thus, the most plausible

values of θ, which better explain the observed data y, are obtained under a specified tol-

erance value ϵ chosen by the user. The methodology, including a chart and a pseudocode,

is explained in Section 5.1, and the capabilities of this training algorithm are illustrated in

Sections 5.2 and 5.3 with two low complexity problems. These examples, with scaled ar-

chitectures, allow us to graphically appreciate the learning process and the mechanisms of

BNN by ABC-SS to capture both the aleatory and epistemic uncertainty.

5.1 Proposed Methodology

The method starts by generating N random samples of parametersθ = {w, b} from the prior

PDF p(θ) defined by the user, which are subsequently used to run a forward pass and obtain

N outputs ŷ(θ). The resulting N simulated pairs {θ, ŷ(θ)} form the preliminary subset S0

and they are distributed as p ((θ, ŷ)0|S0). At this stage, the metric ρ(η(ŷ), η(y)) is evaluated

for each sample {θ, ŷ(θ)} ∈ S0 and an amount of NP0 of those with the lowest metric value

ρ are selected as seeds of the next subset S1. These seeds are distributed as p ((θ, ŷ)1|S1)

and are used to: (1) automatically fix the tolerance value ϵ1, as the highest metric value ρ(·)
among the seeds; (2) obtain (1/P0 − 1) new samples from each seed within the region S1,

until the total population in S1 reaches N samples. The generation of samples is done by the
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Modified Metropolis Algorithm (MMA) [110, 121], ensuring that the new samples generated

from the seeds lie within S1, which is done by verifying that ρ(·) ⩽ ϵ1. The method is re-

peated until the final subset S , associated to the desired toleranceϵ, is achieved, whereby the

final approximate posterior p ((θ, ŷ)|S) is defined. Note that the final subset S constitute a

set of N parameter configurations θ(1)S ,θ(2)S , ...,θ(n)S , ...,θ(N)
S , whose predicted outputs ŷ(θ(n)S )

lie within a tolerance ϵ, under the metric ρ(·), given the data D. The distribution of param-

eters in the final subset constitute the marginalised posterior pϵ(θ|y) whose information is

used to produce robust predictions and quantify their uncertainty. A conceptual scheme

is provided in Figure 5.1 to help understanding the BNN by ABC-SS method. Besides, a

pseudo-code implementation of the BNN by ABC-SS method is provided in Algorithm 1.

Note that a slightly different version from the one provided in Algorithm 1 can be ob-

tained by changing the for loop (step 16) by a while loop, so instead of specifying the number

of simulations levels to be carried out, the algorithm performs as many simulations levels as

needed to reach the desired tolerance valueϵ, which should be specified within the inputs to

the algorithm. Also, to ease the reproducibility of the pseudo-code, it should be noted that a

matrix M can be used to store the N sets of parameters and their corresponding metrics val-

ues ρ(·) for each jth simulation level. This matrix is further updated throughout Algorithm

1 in steps 11-14, 22, 23, 32, 35 and 40. Thus, such matrix can be rearranged in ascending

order of the metric ρ, step 17, and the seeds may be easily selected, step 22. Parameters w
and b are extracted from the matrix M and appropriately rearranged to undertake a forward

pass, step 29.

Finally, it should be noted that special care is needed for the selection of the algorithm

hyper-parameters N, P0 along with the standard deviation σ j in the proposal PDF of the

MMA at every region S j. Recommendations for the selection of those values can be found

in [84], while some advances in the scaling of the Subset Simulation algorithm is covered in

[121].

5.2 Illustrative Problem 1

Training data for the first illustrative problem is generated from the cosenoidal function y =

cos(x) +ζ , where ζ ∼ N (0, 0.1) simulates some noise in the observed data y. The domain

of the training inputs x is uniformly distributed over the interval [-3,3]. The training data

set comprises a single batch of 200 samples with no preprocessing. The architecture of the

BNN consists of one input layer with one neuron, one hidden layer with two neurons and an

output layer with one neuron. The activation function used for both the hidden and output

layers is the hyperbolic tangent, as this function fits particularly well the training data. The

hyper-parameters chosen are: P0=0.2, N=5000 and ℓ=6. Mean Squared Error (MSE) has been

used as the metric ρ in the ABC-SS language. The same training data has been used to fit

a conventional FNN with the same architecture, and trained with a batch gradient descent

algorithm (learning rate (lr)=0.001 and epochs=10000), for reference purposes.
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Prior simulations (S0)
θ = {ω, b}; ω(n)

0 ∼ p(ω), b(n)0 ∼ p(b), n = 1, . . . , N

Run forward pass Eq. 4.1: ŷ
(n)
0 = f(x; θ

(n)
0 )

for j=1 : ℓ | (do while):

Evaluate the metric:
ρ
(n)
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(
η(ŷ

(n)
j−1), η(y)

)
, n = 1, . . . , N.
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(n)
j−1), η(y))

)}N

n=1

Define the region Sj:{
(θ

(n)
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(n)
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Select NP0 seeds:(
{θ, ŷ}j,(k)(1)

)
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(
{θ, ŷ}j−1,(n)

)
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(
· |Sj

)
,

k = 1, . . . , NP0

Generate 1/P0 Markov
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{θ, ŷ}j,(k)(1)

)
, . . . ,

(
{θ, ŷ}j,(k)(1/P0)

)]
∼ p

(
· |Sj

)

where ŷ = f(x; θ) (recall Eq. 4.1)

Renumber
[(
{θ, ŷ}j,(k)(i)

)]

k = 1, . . . , NP0;
i = 1, . . . , 1/P0 as:[(
{θ, ŷ}(1)j

)
, . . . ,

(
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j
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If
ϵj ⩽ b
End

Figure 5.1: Conceptual scheme of the main steps of the BNN by ABC-SS method. The steps
corresponding to the while-loop option are depicted using dashed-blue line.
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Algorithm 1 BNN by ABC-SS

1: Inputs:

2: FNN architecture and activation functions

3: P0 ∈ [0, 1]

4: ℓ {number of simulation levels}
5: N {samples per simulation level}
6: ρ() {metric/cost function, such as MSE}
7: η() {summary statistic, such as median}
8: σ0 ← (ℓ+ 1)0.1

9: Begin:

10: for n : 1, ..., N do

11: Sample initial parametersθ(n)0 , whereθ0 includes all weights w and bias b of the BNN,

from priors p(w) and p(b), such as N (0, I)
12: ŷ(n)0 ← Use Equation (4.1) to run a forward pass with parameters θ

(n)
0 and input x

from D

13: ρ
(n)
0 ← ρ(η(ŷ(n)0 ), η(y))

14: Set M = {θ(n)0 , ŷ(n)0 ,ρ(n)0 }N
n=1

15: end for

16: for j : 1, ..., ℓ do

17: Renumber [θ(n)j−1, n : 1, . . . , N] so that ρ(1)j−1 ⩽ . . . ⩽ ρ
(n)
j−1 ⩽ . . . ⩽ ρ

(N)
j−1

18: ϵ j ← ρNP0
j−1

19: σ j ← σ0 − 0.1ℓ {proposed standard deviation decreases in each simulation level}
20: C← 1 {set counter to 1}
21: for i : 1, . . . , NP0 do

22: θ
(i)
j ← θ

(i)
j−1 {select seeds}

23: ρ
(i)
j ← ρ

(i)
j−1

24: end for

25: for k : 1, . . . , NP0 do

26: µ ← θ
(k)
j

27: for i : 1, . . . , (1/P0)− 1 do

28: θ∗ ∼ N (µ,σ j)

29: ŷ∗ ← Use Equation (4.1) to run a forward pass with parameters θ∗

30: ρ∗ ← ρ(η(ŷ∗), η(y))
31: if ρ∗ ⩽ ϵ j then

32: θ
(NP0+C)
j ← θ∗, and ρ

(NP0+C)
j ← ρ∗

33: µ ← θ∗

34: else

35: θ
(NP0+C)
j ← θk

j , and ρ
(NP0+C)
j ← ρk

j

36: end if
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37: C← C + 1

38: end for

39: end for

40: Update M as M = {θ(n)j , ŷ(n)j ,ρ(n)j }N
n=1

41: end for

As can be seen in Figure 5.2, both algorithms have obtained similar predictions, how-

ever, BNN by ABC-SS consistently reached similar outcomes while those from the FNN,

trained with ordinary gradient descent, experience more variability between different runs

of the algorithm. This suggests that BNN by ABC-SS is robust regardless the initialization

of the parameters. In addition, BNN by ABC-SS provides an accurate quantification of the

uncertainty in its predictions, representing the degree of belief in light of data. This out-

put uncertainty is obtained by simulating the model considering the posterior distribution

of the weight parameters learnt by the BNN, as shown in Figure 5.3. Of special interest is

Figure 5.3(a), as it provides us with the posterior PDF of parameter w(1)
1,1 , without being con-

strained by any hypothesis about the family of functions it may belong to. Light red lines in

Figure 5.2(a) shows the learning process throughout the intermediate simulation levels.

(a) BNN by ABC-SS (b) FNN trained with Batch Gradient Descent

Figure 5.2: BNN by ABC-SS (left) and Batch Gradient Descent (right), Illustrative Problem 1.
Black crosses are training samples, dark red lines are median predictions, light red lines are
intermediate levels median predictions, dark grey region is the interquantile range (IQR) of
predictions, and the light grey region is the range between percentile 5 and 95 of predictions,
also known as the uncertainty band.

(a) Posterior PDF of weight w(1)
11 . (b) PDF of prediction ŷ for x=-1.0.

Figure 5.3: BNN by ABC-SS, illustration of the uncertainty about the trained parameters
(left) and predictions (right), Illustrative Problem 1.
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5.3 Illustrative Problem 2

A second illustrative example is provided to show a more complex architecture, which is

able to better capture the uncertainty in its parameters and predictions. In this case, the

training data D = (x, y) is generated from the sinusoidal function y = 10 sin(2πx) + ζ

with ζ ∼ N (0, 0.1). The training data set comprises 100 samples with x ∈ [−0.5, 0.5]. The

proposed architecture consists of one input layer with one neuron, two hidden layers with

15 neurons each, and one output layer with one neuron, making a total of 286 parameters

to be learned. A ReLU activation function is assigned to the neurons of the hidden layers,

while a linear function, f (x) = x, is applied to the neuron in the output layer. Similarly to

the first illustrative problem, the hyper-parameters chosen are: P0=0.1, N=20000 and ℓ=8.

Again, the MSE function has been used for the metric ρ.

As shown in Figures 5.4(a) and 5.5(b), the quantified uncertainty within the input do-

main of the training data is relatively small and proportional to the noise introduced by ζ ,

which can be classified as aleatory. However, as we exit the domain of the training data

the epistemic uncertainty comes into play and grows as we move further away from the

training data. This can be interpreted as a mechanism to express its lack of confidence when

making predictions about regions of data it has not seen before. In contrast, a conventional

neural network, Figure 5.4(b), is equally confident both inside and outside the domain of

the training data.

Regarding the posterior PDF of the parameters, Figure 5.5(a) shows a more complex

function, which varies between different runs of the BNN by ABC-SS algorithm. This con-

firms that, given a tolerance value ϵ, the number and diversity of valid sets of parameters

θ = {w, b} ∈ Θ ⊆ Rd, under tolerance ϵ, increases with the dimension d of the parameter

space. Figure 5.5(a) also shows a statistical correlation in the weights which is taken into

account by the proposed algorithm when making predictions.

(a) BNN by ABC-SS (b) FNN trained with Batch Gradient Descent

Figure 5.4: BNNs by ABC-SS (left) and Batch Gradient Descent (right), Illustrative Problem
2. Black crosses are training samples, dark red lines are median predictions, dark grey region
is the interquantile range (IQR) of predictions, and light grey region is the range between
percentile 5 and 95 of predictions, also known as the uncertainty band.
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(a) Posterior PDF of weights w(1)
11 and w(2)

22 .

(b) PDF of prediction ŷ for x=0 (within the domain of the training
data) in dark grey, and for x=0.6 (outside the domain of the train-
ing data) in light grey.

Figure 5.5: Illustrations of the uncertainty about the trained parameters (a), and predictions
made by the BNN trained with ABC-SS (b) both within and outside the domain of the train-
ing data set, Illustrative Problem 2. Figure (b) clearly shows greater uncertainty in those
predictions made outside the domain of the training data.
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6
PG-BNN by ABC-SS

This chapter aims at providing different ways of introducing physics-based models into

the forward pass of ANN. Building upon BNN by ABC-SS explained in Chapter 5, a new

physics-guided Bayesian neural network is proposed in Section 6.1. This new algorithm

benefits from both, the advantages of ABC-SS as inference engine, and the extrapolation

capabilities of physics-based models when data is scarce. An illustrative example is also

included in Section 6.2 to ease the understanding of the concepts.

6.1 BNN by ABC-SS guided by physics-based models

Three different methods are proposed to combine physics-based models with BNN by ABC-

SS to obtain hybrid Bayesian neural networks, the so-called PG-BNN by ABC-SS. Details of

the implementation, changes to the original BNN by ABC-SS algorithm and a description of

the expected behaviour of the hybrid models are provided in Sections 6.1.1, 6.1.2 and 6.1.3.

The proposed neural network architectures are also shown graphically so they can be com-

pared against the standard ANN shown in Chapter 4 (Figure 4.1 and Equation 4.1). It should

be noted that, depending on the nature of the problem to be solved, the physics-based mod-

els described below may be substituted by any model M(x) = ŷ, where M represents the

model class, x is the input information and ŷ the output of the model.

6.1.1 Physics learnt through the metric function

ANN base their training and updating of parameters on a loss function, while BNN often

use a predefined likelihood function chosen by the user. BNN by ABC-SS lacks both of

them, and instead approximates the likelihood function to P (ŷ ∈ Bϵ(y)|θ), which can be

interpreted as the probability of ŷ to fall within a region Bϵ(y) = {ŷ ∈ O : ρ(η(ŷ), η(y)) ⩽
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ϵ}, where a metric function ρ(·) assesses the distance between prediction ŷ and data y ∈
D(x, y), based on a summary statistics η(·) chosen by the user. Thus, a set of parametersθ =

{w, b}will be accepted only if ρ(η(ŷ), η(y)) ⩽ ϵ, in other words, only if prediction ŷ is close

enough to the data y. As mentioned in Section Chapter 5, this lack of likelihood function

provides an enhanced flexibility, which results in a fairer representation of the uncertainty.

In this thesis, a new metric function ρp based on the laws of physics, is proposed in addi-

tion to the current data-driven metric. This will ensure that during training a set of param-

eters θ is accepted only if, given an input x ∈ D(x, y), the prediction ŷ is also close enough

to the prediction yp made by the physics-based model. Moreover, two hyperparameters α

and β are included in the final metric function, so the user can control how much weight is

given to the physics-based model and to the data-driven approach. Algorithm 2 shows the

necessary adaptation of BNN by ABC-SS, and Figure 6.1 a schematic representation of the

concept.

Algorithm 2 Physics learnt through the metric function

1: Every time ρ() needs to be calculated in Algorithm 1 of Chapter 5, replace it as follows:

2: New terms:

3: ρd() {data-driven metric}
4: ρp() {physics-based metric}
5: ρ f () {overall or final metric}
6: yd {data y from training data D(x, y)}
7: yp {prediction from physics-based model}
8: α {weight given to the data-driven approach}
9: β {weight given to the physics-based approach}

10: Begin:

11: ρd ← ρ(η(ŷ), η(yd))

12: ρp ← ρ(η(ŷ), η(yp))

13: ρ f ← αρd +βρp

The proposed physics-based metric is expected to provide a regularization effect, which

will be added to the natural regularization of BNN thanks to the prior information. This

may translate into better generalization, helping to avoid overfitting. Extrapolation might

also improve slightly in some cases as the BNN is encouraged to comply with the actual

physics, however, since the physics-based model is not implicitly included in the forward

pass, accurate extrapolation is not anticipated nor should it be considered as a goal. The

uncertainty quantified by the proposed algorithm might also be reduced, given that the

BNN now has more information and will discard those data points that depart significantly

from the laws of physics.
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Output
Neuron

w(2)
jk H j

...

Metric (ρ)
ρd ← ρ(η(ŷ), η(yd))
ρp ← ρ(η(ŷ), η(yp))
ρ f ← αρd +βρp

Fix tolerance value ϵ with
ρ f and update weights

and bias accordingly

w(2)
1k H1

b(2)k

ŷk

Figure 6.1: Schematic representation of proposed PG-BNN by ABC-SS

6.1.2 Physics learnt through input neurons

Principal Components Analysis (PCA) is an interesting method to reduce the dimensionality

of big data sets where there exists a large number of variables [122]. Briefly, PCA aims to find

any existing relationship between variables, and then uses linear combinations representing

such relationships as new variables. Although reducing the dimensionality of data sets

is not the objective of this thesis, the conceptual idea of PCA about identifying correlations

between variables and use them as new inputs could serve as an analogy and inspiration for

introducing the laws of physics in neural networks. After all, in engineering applications the

input and output variables of the neural network are related by the laws of physics. Figure

6.2 shows how physics could be embedded into the architecture of the neural network via

the input layer. The term Physics refers to the output of the physics-based model, and the

subscript p = 1, .., s in Physicsp indicates the number of outputs in the physics-based model,

in case there are multiple outputs.

...

...

...
...

b(1)j

b(1)j

b(2)k

b(2)k

xi=1

xi=n

Physicsp=1

Physicsp=s

H j=1

H j=m

ŷk=1

ŷk=s

Input
layer

Hidden
layer

Output
layerw(1)

i j /w(1)
p j w(2)

jk

Figure 6.2: Architecture of PG-BNN by ABC-SS via the input layer

When the output of the physics-based model is used as a new input to the neural net-

work, as in Figure 6.3, the latter is informed about a relationship between the input and
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Physics Based Model Input
Neuron

x1,x2,...,xn

Inputs to ANN

Figure 6.3: Physics-based model fed into the input neuron

output variables. That information could be comprehensive or incomplete, but it will con-

tribute to the learning process in all cases. Moreover, during training the weights and bias

of the neural network will learn how to manipulate and change the physics, based on the

inputs, so the predictions of the neural network match the observed data.

The forward pass now includes the laws of physics, as shown in Equation 6.1. Therefore,

this knowledge is also applied to predictions made outside the domain of the training data,

thus improving the extrapolation capacities of the neural network. The uncertainty is also

expected to reduce, given that the neural network is now better informed. Apart from the

forward pass, the algorithm of BNN by ABC-SS remains unchanged.

ŷk = g(
m

∑
j=1

w(2)
jk h(

n

∑
i=1

w(1)
i j xi +

s

∑
p=1

w(1)
p j Physicsp + b(1)j ) + b(2)k ) (6.1)

6.1.3 Physics learnt through output neurons

The laws of physics should be able to explain most processes and actions that occur in the

real world, however, we see that this is not the case nowadays. Quoting the British statis-

tician George E. P. Box, “All models are wrong, but some are useful”. There is much truth

in that sentence, although it does not mean that the real world is not governed by physics,

but that we are not able to precisely model all the complexities of the real world. In fact,

the more complex models are, the more hyperparameters they include and more prone they

are to overfitting. Conversely, simple models tend to generalize better and are less sensi-

ble to the tuning of the hyperparameters, probably at the expense of making less accurate

predictions. This is where ANN may help, given their capacity to learn non-linear patterns

from observed data. Therefore, it seems sensible to use ANN to identify and learn those

complexities in the real world that simple physics-based models cannot.

As shown in Figure 6.4, this idea can be materialized by adding the outputs of the

physics-based model to the output layer of the neural network, just like another bias pa-

rameter (Figure 6.5). With this new architecture the weights and bias of the neural network

are forced to adjust to compensate the information coming from the laws of physics, learn-

ing those complexities and patterns that are missing in the physics-based model, such as

environmental factors. Furthermore, those complexities do not need to be identified or de-

fined in advance, given that BNN by ABC-SS provides great flexibility to adapt to different

patterns and capture the uncertainty present in the observed data as a whole, no matter their

nature. The physics-based model is therefore included in the forward pass as per Equation
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6.2, which will improve the extrapolation capacities of the neural network significantly. Be-

sides, the patterns learnt during training to compensate the physics will be propagated to

those unexplored regions of the output variable space. The uncertainty is expected to re-

duce greatly within the domain of the training data, but also outside of it. Apart from the

forward pass, the algorithm of BNN by ABC-SS remains unchanged.

...
...

...

Physics Based Model

b(1)j

b(1)j

b(2)k

b(2)k

xi=1

xi=2

xi=n

H j=1

H j=m

ŷk=1

ŷk=s

Input
layer

Hidden
layer

Output
layerw(1)

i j w(2)
jk

Figure 6.4: Architecture of PG-BNN by ABC-SS via the output layer

Physics Based Model

Output
Neuron

w(2)
1k H1 + ... + w(2)

jk H j

b(2)k

x1,x2,...,xn

Inputs to ANN

ŷk

Figure 6.5: Physics-based model fed into the output neuron like a bias parameter

ŷk = g(
m

∑
j=1

w(2)
jk h(

n

∑
i=1

w(1)
i j xi + b(1)j ) + b(2)k + Physicsk) (6.2)

6.2 Illustrative problem: projectile motion

In this section, the illustrative problem is described, along with an explanation about how

the experimental data set has been created. Then, the results are presented and discussed.

6.2.1 Description and data processing

A projectile motion problem, using synthetic data generated in Python, has been chosen

to illustrate the concepts presented in Section 6.1. In this case, a two-dimensional prob-

lem is considered where there is no lateral movement, and therefore, the motion along the
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perpendicular axis ’x’ (horizontal) and ’y’ (vertical) can be studied independently. The vari-

able of interest (output) is the distance travelled by the projectile dt, which depends on the

initial velocity v0 of the projectile, the initial angle λ0 relative to the horizontal assuming

a level ground, and some unknown environmental conditions. The non-linear relationship

between the independent variables v0 and λ0 is given by the following physics-based model:

R =
v2

0 sin 2λ0

g
(6.3)

where g represents the vertical acceleration due to gravity, which is approximated to 9.81

m/s2.

Finally, some unknown or environmental conditions need to be modelled so the syn-

thetic observed data differs from the pure physics. For this example, some headwind has

been added so that the distance travelled by the projectiles is reduced depending on the

initial angle λ0. It has been assumed that, when such angle is less than 45◦ the distance dt is

reduced by N (0.02R, 1), and N (0.04R, 1) otherwise. This is to simplistically simulate the

surface friction near the ground which forces the wind to slow. That results in projectiles

with high initial angle λ0 and long range R to be more affected by the wind (∼4% of R)

than those with flatter angles and short ranges (∼2% of R). It is worth mentioning that the

observed data has been created with the only purpose of illustrating the concept of PG-BNN

by ABC-SS and its potential, hence the headwind is just a non-complex pattern that is added

to account for some unknown conditions.

Three data sets have been created, one training data set and two test data sets, thus the

interpolation (Test Set 1) and extrapolation (Test Set 2) capabilities of the different algorithms

can be evaluated. Therefore, the synthetic data is generated as follows:

Training Data Set





300 data points

Inputs: λ0 ∈ [30, 60] and v0 ∈ [30, 60]

Outputs: dt





v2
0 sin 2λ0

g −N (0.02R, 1) when λ0 ≤ 45◦

v2
0 sin 2λ0

g −N (0.04R, 1) when λ0 > 45◦

Test Data Set 1





150 data points

Inputs: λ0 ∈ [30, 60] and v0 ∈ [30, 60]

Outputs: dt





v2
0 sin 2λ0

g −N (0.02R, 1) when λ0 ≤ 45◦

v2
0 sin 2λ0

g −N (0.04R, 1) when λ0 > 45◦
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Test Data Set 2





150 data points

Inputs: λ0 ∈ [10, 30] ∪ [60, 80] and v0 ∈ [10, 30] ∪ [60, 80]

Outputs: dt





v2
0 sin 2λ0

g −N (0.02R, 1) when λ0 ≤ 45◦

v2
0 sin 2λ0

g −N (0.04R, 1) when λ0 > 45◦

The input vectors are organised in two-dimensional arrays including the initial angle

and velocity [λ0,v0], while the output vectors are one-dimensional arrays containing the

distance travelled by the projectile [dt]. The physics-based information is arranged in one-

dimensional arrays [R].

6.2.2 Algorithmic details

The algorithms used in the illustrative problem are listed below. Their architecture com-

prises two hidden layers with Rectified Linear Units (ReLU) as the activation function, and

the output layer with one neuron and a linear activation function. Note that the physics-

guided neural networks, both the proposed models PG-BNN by ABC-SS and the benchmark

models state-of-the-art (SOTA) PGNN, have an index number from (1) to (3) depending on

where the physics are introduced in the ANN architecture, being (1) through the metric/loss

function, (2) through the input neurons, and (3) through the output neurons.

• BNN by ABC-SS: A BNN trained with ABC-SS as per Algorithm 1 in Chapter 5, to

be used as a data-driven Bayesian benchmark. The neural network structure com-

prises two input neurons, 15 neurons per hidden layer, and one output neuron. The

hyperparameters chosen are P0=0.1, N=100,000, σ0=0.9, p=0.50 and tolerance value

(normalized) ϵ=0.0007.

• Standard ANN with L2 regularization: A standard neural network using TensorFlow,

to serve as a deterministic data-driven benchmark. Adam optimizer [123] with early
stopping and L2 regularization are used during training. The neural network structure

comprises two input neurons, 15 neurons per hidden layer, and one output neuron.

The hyperparameters used are L2=0.01, epochs=20,000 and patience=100.

• PbM: Physics-based model to be used as a physics-based benchmark. The model for-

mulation can be found in Equation 6.3.

• PG-BNN by ABC-SS: The proposed hybrid BNN trained with ABC-SS as per Section

6.1. Three variants are used as follows:

– (1): A hybrid BNN as per Section 6.1.1. The architecture comprises 2 input neu-

rons, 15 neurons per hidden layer, and one output neuron. The hyperparameters

chosen are P0=0.1, N=100,000, σ0=0.9, p=0.50 and tolerance value (normalized)

ϵ=0.0007. Also, three values ofα (0.25, 0.5 and 0.75) have been tested.

– (2): A hybrid BNN as per Section 6.1.2. The neural network structure comprises

3 input neurons, 5 neurons per hidden layer and one output neuron. The hy-

perparameters chosen are P0=0.2, N=10,000, σ0=0.9, p=0.50 and tolerance value

(normalized) ϵ=0.0007.
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– (3): A hybrid BNN as per Section 6.1.3. In this case, the same network structure

and hyperparameters as for (2) are used, but with 2 input neurons.

• SOTA PGNN: A physics-guided neural network trained with the state-of-the-art back-

propagation algorithm using TensorFlow, to be used as a physics-guided benchmark.

Three variants are tested as follows:

– (1): A PGNN which follows the present-day approach of introducing the physics

in the loss function. The training process uses the backpropagation algorithm

to minimize a hybrid loss function, which includes a standard data-driven term

(Lossd) and a physics-based one (Lossp), as follows:

arg min
(w,b)

Lossd(ŷ, y) + λpLossp(ŷ, yp) (6.4)

where: Lossd(ŷ, y) = 1
N ∑

N
n=1(ŷn − yn)2; Lossp(ŷ, yp) = 1

N ∑
N
n=1(ŷn − yp,n)2; ŷ is

the output of the neural network; y is the training data; and yp is the output of

the physics-based model described in Equation 6.3. The neural network architec-

ture is the same as that of BNN by ABC-SS, with 15 neurons per hidden layer.

Adam optimizer [123] with early stopping is used for training, and the values of

the hyperparameters are λp=0.5, epochs=20,000 and patience=100.

– (2): A PGNN with the architecture presented in Figure 6.2, where the physics

are introduced through the input layer. The number of neurons per layer are

the same as PG-BNN by ABC-SS (2). Adam optimizer [123] with early stopping is

used for training, and the values of the hyperparameters are epochs=10,000 and

patience=80.

– (3): A PGNN with the architecture presented in Figure 6.4, where the physics are

introduced through the output neurons. The number of neurons per layer are

the same as PG-BNN by ABC-SS (3). Adam optimizer [123] with early stopping is

used for training, and the values of the hyperparameters are epochs=10,000 and

patience=60.

6.2.3 Results and discussion

As explained in Section 6.2, a projectile motion problem is adopted to illustrate the proposed

concepts, evaluate the performance of the proposed hybrid algorithms, and compare them

against purely data-driven and physics-based models, as well as the state-of-the-art (SOTA)

PGNN trained with backpropagation. All algorithms presented in Section 6.2.2 have been

trained and tested with the data sets presented in Section 6.2.1 through 50 independent runs.

The RMSE from those different runs has been recorded and the results are shown in Table

9.1. It can be seen that the proposed hybrid models where the laws of physics are intro-

duced in the metric ρ, as per PG-BNN by ABC-SS (1), neither provide better results than the

data-driven approach with BNN by ABC-SS, nor seem to improve extrapolation. However,

the new metric ρp may be understood as a regularization tool, which may force the neural

network to ignore those training data points that differ significantly from the physics. This
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suggests that this hybrid model might be useful in those cases where there is a significant

amount of noise in the observed data. PG-BNN by ABC-SS (2) has provided better results

than the purely data-driven approaches but, even though its predictions on Test Data Set 2

have outperformed those from BNN by ABC-SS and Standard ANN, it does not extrapo-

late better than the physics-based model. The best results are given by PG-BNN by ABC-SS

(3) and SOTA PGNN (3), especially when extrapolating in Test Data Set 2, outperforming

the physics-based model, the data-driven algorithms, and the the other variants of physics-

guided neural networks. The neural network in PG-BNN by ABC-SS (3) seems to find a

pattern in the discrepancy between the physics-based model and the observed data which

could be, for instance, some environmental conditions not included in the model, like the

headwind in our case. Then, when asked to extrapolate, it applies that pattern to the physics

included in the overall hybrid model, thus improving the predictions of the purely physics-

based model. But most importantly, ABC-SS allows for an accurate quantification of the

uncertainty as shown in Figure 6.6, where the predictions made outside the domain of the

training data (extrapolation) are more disperse. That also provides us with valuable infor-

mation about the degree of belief on the predictions made by the hybrid model. Finally, a

mixed model where the physics-based model is introduced in both the input and output

neurons was tested, however, it did not provide better results than PG-BNN by ABC-SS (3).

This illustrative experiment has shown that neural networks can help physics-based

models to consider complex aspects that were not included in the original model, such

as environmental conditions, in the same way that physics-based models can help neural

networks to extrapolate outside the domain of the training data. This last aspect is graph-

ically explained in Figure 6.7, where we see that the hybrid model benefits from both, the

data-driven approach to improve the physics-based predictions, and especially from the

physics-based model when extrapolating (panel b). That symbiosis brings to light the fact

that hybrid models are specially useful when solving engineering problems where data is

scarce but there exist relatively simple physics-based models, or at least, some prior knowl-

edge of the task in hand. Also, the use of ABC-SS as learning engine has provided more

flexibility and accuracy than standard backpropagation. This Bayesian training is the main

advantage of the proposed PG-BNN by ABC-SS over the state-of-the-art methods, as it pro-

vides the user with valuable information about the uncertainty present in the observed data.

Lastly, it should be noted that the computational cost of the hybrid algorithms in this exper-

iment is comparable to that of their data-driven counterparts. However, if very complex

physics-based models with high computational costs are used, then the running time of the

hybrid algorithms could be impacted.
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Table 6.1: Comparison between PG-BNN by ABC-SS, BNN by ABC-SS, standard ANN, the
physics-based model and the state-of-the-art PGNN, for the illustrative problem in Section
6.2. The results, expressed in terms of RMSE, were obtained after 50 independent runs of
each algorithm.

Statistics of RMSE obtained in 50 independent runs of the training algorithm

Neurons per
Hidden Layer

Test Data Set 1
(Interpolation)

Test Data Set 2
(Extrapolation)

Q1
(P25)

Median
(P50)

Q3
(P75)

Q1
(P25)

Median
(P50)

Q3
(P75)

PG-BNN by ABC-SS (1)
(α=0.25)

15 11.618 12.319 13.423 124.756 136.819 149.348

PG-BNN by ABC-SS (1)
(α=0.5)

15 10.361 11.288 12.560 116.899 137.623 152.801

PG-BNN by ABC-SS (1)
(α=0.75)

15 10.191 11.209 12.294 120.976 131.285 147.468

PG-BNN by ABC-SS (2) 5 5.249 5.909 6.588 21.271 32.211 39.404

PG-BNN by ABC-SS (3) 5 3.670 3.856 3.985 5.253 5.919 6.833

BNN by ABC-SS 15 10.254 11.376 12.529 121.682 133.947 146.087

Physics-based Model N/A 8.780 8.780 8.780 10.527 10.527 10.527

SOTA PGNN (1) 15 23.258 23.945 24.704 113.396 115.289 117.182

SOTA PGNN (2) 5 3.755 3.766 3.788 31.938 34.780 38.839

SOTA PGNN (3) 5 3.875 3.930 3.967 5.990 6.703 8.407

Standard ANN with L2 Reg 15 5.540 7.905 20.093 126.270 134.994 140.120

(a) Prediction inside the domain of the training
data (interpolation)

(b) Prediction outside the domain of the training
data (extrapolation)

Figure 6.6: Illustrative Problem. Probabilistic predictions made by PG-BNN by ABC-SS (3)
shown as a light grey density function, within the domain of the training data (interpolation)
and outside of it (extrapolation). The mean predictions of the hybrid model are shown in
red and green respectively. The predictions made by the purely physics-based model are
shown in dashed black line and the true value of the projectile range in continuous black
line.
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(a) Test Data Set 1 (interpolation)

(b) Test Data Set 2 (extrapolation)

Figure 6.7: Illustrative problem. Scatter plot of target values against predicted values by the
hybrid model PG-BNN by ABC-SS(3) in green, data-driven model BNN by ABC-SS in blue
and the physics-based model in grey, for Test Data Set 1 (interpolation) in panel (a) and for
Test Data Set 2 (extrapolation) in panel (b).

59





7
PG-BRNN by ABC-SS

In this chapter, the concepts and methodologies developed in Chapters 5 and 6 are applied to

RNN. This type of neural network is specifically designed to process sequential data, which

is very common in civil engineering. Moreover, making predictions about future events,

such as time of failure, based on historical data is one of the main objectives in SHM. This

new algorithm is in line with such objectives, and constitutes a new Bayesian prognostic

tool. A data-driven illustrative problem is also provided, however, it is built upon the case

study presented in Chapter 9, thus it is recommended that the reader explores such case

study before proceeding with this illustrative example.

7.1 RNN trained with ABC-SS and guided by physics-based models

Based on the principles explained in Chapter 4 (Sections 4.3, 4.4 and 4.5), a novel RNN

is proposed in this section, which combines the methods described in Chapters 5 and 6,

to avoid some of the drawbacks of the state-of-the-art approaches. Starting from a vanilla

RNN, the most basic form of the forward pass is maintained in the proposed RNN, as per

Equation 4.8. However, the hidden states no longer need to be stored anywhere, given that

the weights are now trained with ABC-SS instead of backpropagation, and the gradient of

the loss function does not need to be evaluated. This Bayesian learning engine will allow

for long-term dependencies to be learnt, without the need for more complex architectures

comprising a greater number of parameters. A detailed implementation of ABC-SS to train

RNN can be found in Algorithm 3 below. So far in this section, it has been discussed how

the principles of ABC-SS and RNN may be combined into a data-driven Bayesian RNN,

hereafter called BRNN by ABC-SS.
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Algorithm 3 Training algorithm for RNN with ABC-SS

1: Begin:

2: Create ABC-SS matrix MRNN , with N rows and as many columns as the total number of

parameters (θ) in U, W, V, b and c, plus one additional column to store the metric ρ

3: for n : 1, ..., N do

4: Sample initial parameters θ
(n)
0 , a vector containing all the weights and bias in the

RNN, from prior PDFs, such as N (0, I), and store them in MRNN

5: Rearrange θ(n)0 in matrices U, W, V, b and c
6: for t : 1, ..., T do

7: h0 ← Initiate the hidden state at time-step t = 0 with a zero matrix

8: ŷ(n)0 ← Recurrent forward pass using Equation 4.8 (or Equation (7.1) for physics-

guided RNN), U
θ
(n)
0

, W
θ
(n)
0

, V
θ
(n)
0

, b
θ
(n)
0

and c
θ
(n)
0

, and input x from D

9: end for

10: ρ
(n)
0 ← ρ(η(ŷ(n)0 ), η(y))

11: Store ρ
(n)
0 in MRNN = {θ(n)0 ,ρ(n)0 }N

n=1

12: end for

13: Set j← 1, ℓ←Maximum number of simulations, and Lϵ ← Tolerance threshold

14: while j < ℓ and ϵ j < Lϵ do

15: Renumber rows in MRNN [θ(n)j−1, n : 1, . . . , N] so that ρ(1)j−1 ⩽ . . . ⩽ ρ
(n)
j−1 ⩽ . . . ⩽ ρ

(N)
j−1

16: ϵ j ← ρNP0
j−1

17: σ j ← σ j−1 ∗ p {where p represents the decrease rate of standard deviation per simula-

tion level}
18: MSubSet ← Initiate the SubSet matrix with NP0 rows and same number of columns

than MRNN

19: C← 1 {Initiate counter}
20: for i : 1, . . . , NP0 do

21: θ
(i)
j ← θ

(i)
j−1 and ρ

(i)
j ← ρ

(i)
j−1

22: end for

23: MSeeds = {θ(n)j ,ρ(n)j }
NP0
n=1 {Create the Seeds matrix}

24: for k : 1, . . . , NP0 do

25: µ ← θ
(k)
j

26: for i : 1, . . . , (1/P0)− 1 do

27: θ∗ ∼ N (µ,σ j)

28: Rearrange θ∗ in matrices U, W, V, b and c
29: for t : 1, ..., T do

30: h0 ← Initiate the hidden state at time-step t = 0 with a zero matrix

31: ŷ∗ ← Use Equation (4.8), or (7.1) for physics-guided RNN, to run a recurrent

forward pass with Uθ∗ , Wθ∗ , Vθ∗ , bθ∗ and cθ∗

32: end for
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33: ρ∗ ← ρ(η(ŷ∗), η(y))
34: if ρ∗ ⩽ ϵ j then

35: Store θ∗ and ρ∗ in MSubSet as {θ(NP0+C)
j ,ρ(NP0+C)

j }
36: µ ← θ∗

37: else

38: Store θk
j and ρk

j in MSubSet as {θ(NP0+C)
j ,ρ(NP0+C)

j }
39: end if

40: C← C + 1

41: end for

42: end for

43: Update MRNN = {θ(n)j ,ρ(n)j }N
n=1 as the concatenation of MSeeds and MSubSet

44: j← j + 1

45: end while

The next step consists of introducing the physics-based model into the proposed BRNN

by ABC-SS. In light of the results obtained in the illustrative problem in Chapter 6 (Section

6.2.3), the approach proposed in the third variant (Section 6.1.3), where the physics are in-

troduced in the forward pass through the output neurons, is followed and applied to BRNN

by ABC-SS. Figure 7.1 illustrates the proposed physics-guided recurrent forward pass, and

Equation 7.1 provides its mathematical formulation (note that f1 and f2 represent the acti-

vation functions chosen by the user). It can be seen that the physics-based model now acts

like an extra bias parameter.

ht

ŷt

xt

Physics
W

U

V

Figure 7.1: Schematic representation of the folded Physics-guided BRNN by ABC-SS

at = b + Wht−1 + Uxt

ht = f1(at)

ot = c + Vht + Physics(xt)

ŷt = f2(ot)

(7.1)
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The result is a physics-guided RNN trained with ABC-SS, hereafter called PG-BRNN

by ABC-SS, which provides probabilistic outputs based on physics-based knowledge and

observed data. The Bayesian training, and more specifically, the absence of gradient eval-

uation and non-parametric formulation of the weights, may provide a series of benefits,

such as: avoid problems like exploding/vanishing gradients or getting stuck at an undesired

local minima of the loss function; probabilistic predictions coupled with a flexible quantifi-

cation of the uncertainty; and a Bayesian regularization effect in the inference of the weights

thanks to the prior PDF. Finally, the physics-based model is part of the forward pass, thus it

is expected to improve the extrapolation capabilities of the neural network. These potential

benefits are evaluated and discussed in Chapter 11.

7.2 LSTM trained with ABC-SS and guided by physics-based models

As explained in Chapter 4, LSTM neural networks were fundamentally developed to avoid

gradient-related issues in RNN, and more specifically, the vanishing gradient problem. This

is achieved at the expense of a more complex algorithm with more parameters and activation

functions. Since ABC-SS completely avoids this drawback thanks to its gradient-free nature,

it may seem that LSTM trained with ABC-SS would bring little benefit over BRNN by ABC-

SS previously discussed.

Notwithstanding the foregoing, a physics-guided LSTM trained with ABC-SS (PG-LSTM

by ABC-SS) is proposed in this section. Thus, it can be compared against PG-BRNN by

ABC-SS, and evaluate whether it provides any further benefit. The implementation of the

proposed algorithm follows the same principles as PG-BRNN by ABC-SS, however, the for-

ward pass and the weights matrix MRNN needs to be adjusted to accommodate the forget,
input, update and output gates, including the extra parameters required.

The forward pass of PG-LSTM by ABC-SS can be found in equation 7.2, and the pseu-

docode of the ABC-SS based training is given in Algorithm 4. Sigmoid functions are repre-

sented by σ , and function f could be any activation function chosen by the user. As can be

seen, the physics are introduced in the neural network through the output neuron, as per

Figure 7.1, but with the recurrent cell structure shown in Figure 4.4 of Chapter 4.

it = σ(xtUi + ht−1W i + bi)

ft = σ(xtU f + ht−1W f + b f )

ot = σ(xtUo + ht−1Wo + bo)

C̃t = tanh(xtUg + ht−1Wg + bc)

Ct = σ( ftCt−1 + itC̃t)

ht = tanh(Ct)ot

ŷt = f (Vht + Physics(xt) + by)

(7.2)

As shown in Equation 7.2, and Algorithm 4, the amount of parameters to be adjusted

in PG-LSTM by ABC-SS is considerably higher than in PG-BRNN by ABC-SS, hence the
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Algorithm 4 Training algorithm for LSTM with ABC-SS

The pseudocode in Algorithm 3 needs to be adjusted to train LSTM as follows:

Line 2: Create ABC-SS matrix MLSTM, with N rows and as many columns as the total

number of parameters (θ) in LSTM matrices Ui, W i, bi,U f , W f , b f , Uo, Wo, bo, Ug, Wg, bc,

V, and by, plus one additional column to store the metric

Line 5 and 28: Parameters vector θ(n)j need to be rearranged in LSTM matrices Ui, W i,

bi,U f , W f , b f , Uo, Wo, bo, Ug, Wg, bc, V, and by.

Line 8 and 31: ŷ(n)0 ← Forward pass as per Equation 4.9 for LSTM by ABC-SS, or Equation

7.2 for PG-LSTM by ABC-SS, with LSTM matrices.

Line 43: Matrix MLSTM to be updated as the concatenation of MSeeds and MSubSet.

computation time is expected to escalate. A significant improvement in performance is then

required to justify such increase in the complexity of the neural network architecture.

7.3 Data-driven illustrative example: Fatigue in composite materials

This illustrative example aims at evaluating the performance of the proposed Bayesian

RNN, and compare it against the state-of-the-art data-driven algorithms. The same data

set as in Chapter 9 is used on purpose, so the superiority of RNN over standard feed for-

ward neural networks can be demonstrated. Therefore, it is recommended that such case

study is explored before proceeding to the illustrative example below.

7.3.1 Description and data processing

Composite materials, and especially carbon fiber polymer composites (CFRP), have become

very popular in several industries such as wind energy and aerospace, thanks to their out-

standing performance and characteristics. Indeed, these materials can reach strenght-to-

weight and stiffness-to-weight ratios up to 5 times larger than grade steel, and they are

corrosion resistant [124]. However, they are heterogeneous materials and their damage re-

sponse is very complex to understand [86], let alone predicting with accuracy the damage

behaviour of several interacting parts subjected to fatigue loads. In simplistic terms, fa-

tigue damage in CFRP comprises different families of intralaminar and interlaminar cracks,

which in turn may or may not influence the propagation of each other. This uncertainty

about the long term behaviour of CFRP materials under fatigue conditions and our inability

to accurately predict their remaining useful life, are among their main obstacles to be mas-

sively used as main structural materials in industries such as aerospace engineering [87].

There is a clear need for efficient physics-based models that could unify all the different

damage modes into a single formulation. Moreover, these models should also take into ac-

count small imperfections that appear during the manufacturing process. While this could

be extraordinarily complex, data-driven methods are providing promising results and are

becoming a solid alternative for the evaluation of fatigue and its propagation in composites.

In this illustrative example, RNN are used to determine the evolution of micro-crack

density in a CFRP coupon subjected to tension-tension fatigue loading. The data used are
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taken from the NASA Ames Prognostics Data 283 Repository (CFRP Composites Dataset)

[125], corresponding to the cross-ply laminates TD19 and TD21 ([02/914]s). The damage

data were collected using Lamb wave signals and piezoelectric sensors located on either

side of the coupon. Each coupon underwent 500,000 loading cycles, and measurements

from each pair of sensors (36 possible combinations) were taken at 18 specific cycles during

the experiment, resulting on 648 data points per specimen. For this illustrative example,

only information about micro-crack density is used, which is lagged to form the inputs and

outputs as shown below, resulting in univariate forecasting. The data have been structured

in 72 sequential samples, where each sample includes the micro-crack density for the full

loading history of each pair of sensors. The full loading cycle of the first pair of sensors in

TD19 has been held out as test data. Both training and test data have been normalized.

Lagged micro-crack density data





Input array→ (x1, x2, ..., x17)

Output array→ (x2, x3, ..., x18)

As explained before, this data set is used in Chater 9 as a case study to evaluate the per-

formance of BNN by ABC-SS. Therefore, this illustrative example will also provide a fair

evaluation of the benefits of using RNN to process sequential data, over standard feedfor-

ward architectures.

7.3.2 Algorithmic details

The proposed algorithms have been applied to the illustrative example described in Section

7.3.1. Their performance have been evaluated and compared against the state-of-the-art

RNN. The details of each algorithm and their implementation are given below. An architec-

ture with one input neuron, one output neuron and one single hidden layer with 5 hidden

units has been chosen as the baseline for all algorithms, unless specified otherwise. The

results and discussion can be found in Section 7.3.3.

• BRNN by ABC-SS: A vanilla RNN trained with ABC-SS, as detailed in Section 7.1. The

values of the hyperparameters are: P0=0.2, N=10,000, σ0=0.9, p=0.50, ϵ=0.003 and the

activation function for the hidden layer is tanh.

• LSTM RNN: As explained in Chapter 4, this advanced type of RNN comprises a series

of gates that allows the algorithm to forget irrelevant information, add or update new

information, and finally pass such updated information forward. This process allows

the network to remember long-term dependencies, while mitigates the vanishing gra-
dient problem. In our case, the algorithm has been implemented using Tensorflow [126]

and the hyperparameters used are: minimum squared error (MSE) as the loss function,

the optimizer Adam [127], batchsize=1 and 200 epochs.

• LSTM by ABC-SS: A LSTM RNN trained with ABC-SS as detailed in Section 7.2. The

values of the hyperparameters are: P0=0.2, N=10,000, σ0=0.9, p=0.50, ϵ=0.003 and the

activation function for the hidden layer is tanh.
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• Bidirectional LSTM RNN: First proposed in 2005 [128], this neural network is used pri-

marily on natural language processing. In brief, this type of RNN adds an extra LSTM

layer that conveys the information on the other direction, so input information flows

back and forth. Therefore, the output information at a certain time-step is influenced

by past, present and future inputs. This algorithm has been implemented using Ten-
sorflow and the hyperparameters used are: minimum squared error (MSE) as the loss

function, the optimizer RMSprop and batchsize=1 and 25 epochs.

• GRU RNN: This type of recurrent neural network first appeared in 2014 [64], and

like LSTM, it is a gated algorithm but with fewer parameters. While it has a forget

gate, it lacks the output gate, making it slightly less complex. GRU also mitigates the

vanishing gradient problem and its performance is comparable to that of LSTM. This

algorithm has been implemented using Tensorflow and the hyperparameters used are:

minimum squared error (MSE) as the loss function, the optimizer Adam batchsize=1

and 200 epochs.

• Monte Carlo Dropout RNN (MC Dropout): The Dropout method, published in 2014

[129], meant to mitigate the overfitting problem. This was the origin of a new Bayesian

training algorithm for neural networks, MC Dropout [130]. This algorithm provides

probabilistic outputs and a quantification of the uncertainty, and has demonstrated

better performance than other state-of-the-art Bayesian methods such as Variational In-
ference [131]. In our case, MC Dropout LSTM has been implemented following [91] and

the code in GitHub1, with Pytorch [132]. The dropout method is based on some neu-

rons being dropped on each forward/backward pass with a given probability. That

means that a higher number of hidden units are required for the RNN to work. In

our experiments, the architecture of MC Dropout RNN has been chosen so it reaches

a similar performance than the other state-of-the-art approaches. That is, two LSTM

layers with 128 and 32 hidden units respectively. Regarding the hyperparameters, the

dropout probability is 0.5, the loss function is MSE and batch size=8. The number of

epochs is 150 and the learning rate lr=0.01.

The performance of the different algorithms has been evaluated after 30 independent

runs. The accuracy of each algorithm is determined by the average and median MSE ob-

tained, while the stability and reliability of the algorithm is measured by the interquar-

tile range (IQR). The ability to quantify the uncertainty, in those algorithms trained with

Bayesian methods, is evaluated graphically.

7.3.3 Results and discussion

In this experiment the proposed BRNN by ABC-SS and LSTM by ABC-SS, along with the

state-of-the-art RNN detailed in Section 7.3.2, have been trained using full sequences about

fatigue damage evolution, and then tested on unseen data, as per Section 7.3.1. During

testing, the RNN were provided with the first 4 time-steps of the sequence, corresponding

1https://github.com/PawaritL/BayesianLSTM
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to 22% of such loading sequence, and were then asked to make predictions about future

time-steps, taking as inputs their own output from the previous time-step, also called recur-

sive multi-step forecasting. That way, the ability of the different RNN to make long-term

predictions about the progression of micro-crack density can be assessed. The results are

shown in Table 7.1. In terms of accuracy, it can be seen that BRNN by ABC-SS and LSTM

by ABC-SS have comparable performance to the state-of-the-art LSTM and MC Dropout,

although the later required a more complex architecture with significantly more neurons.

GRU obtained slightly less accurate results, while the performance of Bidirectional LSTM

was significantly worse than the rest of the algorithms for this experiment. The lowest val-

ues of MSE, on an individual basis, were achieved by LSTM, as can be seen from its P25. In

terms of reliability, BRNN by ABC-SS achieved a low IQR value, circa 4 times lower than

the state-of-the-art algorithms. This means that throughout the 30 runs of the algorithm,

the proposed Bayesian RNN consistently obtained similar results, with little deviation. The

ability to quantify the uncertainty in the observed data is graphically assessed in Figure

9.1, where the proposed BRNN by ABC-SS is compared against the state-of-the-art Bayesian

RNN, namely MC Dropout. The uncertainty bounds of the algorithms trained with ABC-SS

naturally increases as we move rightwards along the time-steps axis. Which makes sense

given that, in a real world scenario, predictions about the structural behaviour of an asset in

the far future tend to be more uncertain than those ones about the near future. In addition,

the uncertainty bounds of RBNN by ABC-SS encapsulates all the target values.

Also, the results obtained in this example improve those in in Chapter 9, which confirms

that RNN generally perform better on sequential data than feedforward neural networks.

Overall, RBNN by ABC-SS has demonstrated great accuracy, comparable to that of LSTM

and MC Dropout, while showing more stability, becoming a more reliable option. The ab-

sence of gradient evaluation is behind such stability, given that ABC-SS does not rely on

finding a local minima of a loss function which, in the case of the state-of-the-art RNN,

varies on each run of the algorithm. The quantification of the uncertainty is significantly

more accurate in BRNN by ABC-SS, mostly thanks to the non-parametric formulation of

the weights, which provide great flexibility to adapt to the observed data. Finally, LSTM

by ABC-SS does not provide better results than BRNN by ABC-SS, which confirms that the

gradient-related issues in RNN are solved by the use of ABC-SS. Therefore, combining ABC-

SS with complex RNN architectures, such as LSTM neural networks, do not seem to provide

any additional benefit, and may only result in an increase of the computational time due to

the higher number of parameters to be trained. Providing that enough data was available,

BRNN by ABC-SS might become a useful option for an onboard structural health monitor-

ing system.
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Table 7.1: Performance of recurrent neural networks, evaluated using MSE after 30 indepen-
dent runs of the algorithms.

Statistics of MSE obtained in 30 independent runs of the training algorithms

Average
Q1

(P25)
Median

(P50)
Q3

(P75)
IQR

(Q3-Q1)

RBNN by ABC-SS 0.00149 0.00141 0.00150 0.00155 0.00014

LSTM by ABC-SS 0.00195 0.00177 0.00191 0.00208 0.00030

MC Dropout LSTM RNN 0.00161 0.00144 0.00152 0.00191 0.00047

LSTM RNN 0.00153 0.00126 0.00148 0.00172 0.00047

Bidirectional LSTM RNN 0.05857 0.04420 0.06019 0.06835 0.02414

GRU RNN 0.00220 0.00167 0.00207 0.00256 0.00089

(a) RBNN by ABC-SS

(b) MC Dropout LSTM RNN

Figure 7.2: Predictions (normalized) made by RBNN by ABC-SS and MC Dropout LSTM
RNN on test data. The green line represents one-step-ahead predictions at time ’t’, where
the input data is the real value of the target variable at time ’t-1’. The red line are multi-steps-
ahead predictions, where the input data are the previous predictions made by the RNN. The
dashed black line represents the target values. The grey hatches are the uncertainty bounds
(P5-P95).
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”See now the power of truth; the same experiment which at
first glance seemed to show one thing, when more carefully
examined, assures us of the contrary.”

— GALILEO GALILEI

III
CASE STUDIES





8
Hyperparameter sensitivity analysis

In Chapters 9, 10 and 11, a series of cases studies are presented, where different algorithms

are used. The performance of those algorithms depend on a certain number of hyperpa-

rameters that need to be optimised. As per most data-driven methods, hyperparameters

in ANN are tuned through a trial and error process, testing the algorithms with different

combinations of hyperparameters and evaluating their performance. This is also known as

a hyperparameter sensitivity analysis, given that during the tuning process the impact of

each hyperparameter in the overall performance of the ANN is exposed, along with its sen-

sitivity to small changes. While every case study includes different algorithms with different

hyperparameters, the methodology for finding the optimum value of such hyperparameters

is the same, and it is briefly explained below:

• Model architecture: Different architectures have been tested, from multi-layer percep-

trons with one single hidden layer, to more complex configurations with 4 hidden lay-

ers and sophisticated gated cells. The number of units tested per hidden layer varied

from 1 to 400 in some cases. The data used in all case studies are not significantly com-

plex, in terms of size and number of features. So in most cases, a low number of units

was enough to provide a good performance. When a comparable performance was

found between two different architectures, the simplest one was selected. Regarding

the activation functions, the following types were used: ReLU, leaky ReLU, sigmoid,

tangent hyperbolic and linear. Generally, ReLU provided the best results in feedfor-

ward neural networks, while tangent hyperbolic was the best for RNN. In the case of

gated algorithms, such as LSTM or GRU, sigmoid and tangent hyperbolic are always

used in the recurrent cell. When choosing the best combination of hidden layers, units
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per layer and activation functions, different validation hold-out sets from the training

data were used.

• Model hyperparameters:

– Training based on backpropagation: The hyperparameters to be tuned vary from

algorithm to algorithm, and these are: the number of epochs, the learning rate,

the patience of the early stopping optimizer, the dropout probability, the λL2 pa-

rameter in L2 regularization, and λp in the state-of-the-art physics guided neural

network (SOTA PGNN (1)). As explained previously, different hold-out data sets

within the training set are used. The number of epochs is selected by monitoring

the training loss and validation loss, trying to find the inflexion point where more

training epochs do not provide a lower validation loss. The learning rate dictates

how much to change the model parameters on each epoch, and it is a sensitive

hyperparameter with high impact in the search of the global minima. The patience
is fixed to a value which avoids overfitting without compromising on model ac-

curacy. Low values of patience may lead to underfitting, while higher numbers

may stop the training too late, leading to overfitting. The λL2 penalty parameter

is also used to avoid overfitting, and needs to be adjusted iteratively to find the

balance between model complexity and closely fitting the model to the training

data. The dropout probability influences the number of neurons being activated

in each forward pass of the algorithm. This value represents a trade-off between

convergence rate and generalization. Finally, λp in SOTA PGNN (1) regulates the

importance of the physics-based model during training. When low values are

used the physics are not strongly considered, leading to better fit of the model

to training data, however, higher values penalise data fitting and prioritise the

physics, which may improve extrapolation.

– Training based on ABC-SS: The hyperparameters to be optimised are P0, N, σ0, p
and ϵ. A similar process was followed, using validation hold-out data sets. The

value of P0 dictates the proportion of samples that are kept on every simulation

level as seeds, and N provides the total number of samples per simulation level.

In terms of sensitivity, for more complex architectures P0 needs to be set to a

smaller value, while a bigger number of samples N are required. The values of

σ0 and p, which refer to how new samples are drawn from the proposal PDF, are

more sensitive and need to be adjusted simultaneously. The value of the tolerance

ϵ has a similar effect to the patience parameter, as it stops the simulation when a

certain error is reached. This value should be set to avoid overfitting, but without

compromising the accuracy of the model. A full sensitivity analysis about ABC-

SS hyperparameters can be found in [84].

As a final remark, test data sets are not used during training or for hyperparameter tuning,

but always reserved for the testing stage only.
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9
Fatigue damage in composite materials

This chapter presents a case study about micro-crack density prediction in composite mate-

rials using the proposed BNN by ABC-SS in Chapter 5. The performance of the proposed

algorithm is compared against the state-of-the-art BNN, and a probability safety assessment

is also provided. The experiment is first described in Section 9.1, the probability safety

assessment is explained in Section 9.2, the algorithms used are shown in Section 9.3, and

finally the results and their discussion are provided in Section 9.4.

9.1 Description and data processing

The performance of the BNN by ABC-SS is investigated using experimental data about fa-

tigue damage in carbon fibre composite materials. These are high performance heteroge-

neous materials with very high strength-to-weight ratios extensively used in the aerospace

and wind energy industries, among others. Damage in composites typically comprises sev-

eral families of internal fractures (both intralaminar and interlaminar cracks [86]) which result

in changes in the macro-scale mechanical properties of the material. The temporal evolution

and propagation of these damage modes is a complex and partially unknown process sub-

ject to much uncertainty [87]. In this particular case study, the data consist of sequences

of both intralaminar micro-cracks density and stiffness reduction measurements for three

different laminates with the same cross-ply ([02/904]s) layup. The data used are taken from

the NASA Ames Prognostics Data Repository (CFRP Composites Dataset) [125] and corre-

spond to the laminates TD19, TD21 and TD22. This monitoring data were collected from a

network of 12 piezoelectric (PZT) sensors using Lamb wave signals and three triaxial strain-

gages [133]. For this study the dataset is designated asD(x, y1, y2), which comprises loading

cycles as inputs x and micro-cracks density and stiffness reduction as observed outputs y1
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and y2, respectively. Thus, the BNN by ABC-SS method is used to predict two different out-

puts ŷ1 and ŷ2 from one single input x. It should be noted that some stiffness measurements

are missing for the last loading cycles of the test so they have been synthetically generated

to complete the data. Also, the training data set has been normalized to take values in the

range [0, 1]. For the comparison exercise, the different BNN are asked to predict the micro-

crack density (ŷ1) given the loading cycles x as inputs.

9.2 Probabilistic Safety Assessment

Safety is critical in aerospace engineering, and it is the primary driver for all decisions about

materials, designs and technologies to be implemented. As discussed in Section 9.1, the

behaviour of composite structures under fatigue, and the interaction between their different

modes of failure, are not yet well understood, which limits their implementation. Therefore,

a reliable evaluation of their probability of failure is an important step towards a large scale

application.

The proposed methodology starts by setting a failure threshold for the target variable,

micro-crack density in our case study. This a value which, if exceeded, the composite struc-

ture will perform below a required safety standard, and does not necessarily mean material

breakage. In this context, it is case specific and may differ depending on the particular

application. In the experiment described in this chapter, the threshold has been set to 0.8

(normalized). Next, the different BNN are trained, so we can make predictions on the test

data. These neural networks are probabilistic by nature, so their outputs are not determinis-

tic values but a density function. The number of samples that are drawn from this output is

chosen by the user, and in our case they can be found in Section 9.3. Finally, the probability

of failure, being 0 very unlikely and 1 very certain, is calculated based on the proportion of

samples that fall beyond the failure threshold, as follows:

Pf ailure =
Number o f Samples >= threshold

Total Number o f Samples
(9.1)

The experimental data is also used to calculate the real observed probability of failure,

so it can be compared against the predictions obtained from the Bayesian neural networks

and check if they are consistent.

9.3 Algorithmic details and performance metrics

Refer to Chapter 8 for information about the hyperparameter sensitivity analysis. The base-

line architecture used by the different algorithms comprises one input layer with one neu-

ron (loading cycles), two hidden layers with 5 neurons each, and one output layer with one

neuron (micro-cracks density). The activation functions are ReLU for the hidden layers and

linear for the output layer. The rest of the hyperparameters have been chosen individually

for each algorithm as follows:

• BNN by ABC-SS: A BNN trained with Algorithm 1 in Chapter 5, adapted with a while
loop and σ j = σ0 p. Two different architectures are used, the baseline architecture for
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the comparison with the state-of-the-art BNN in Section 9.4.2, and a modified version

with two output neurons to test the performance of BNN by ABC-SS when provid-

ing heterogeneous outputs, micro-cracks density and stiffness reduction. The hyper-

parameters chosen are P0=0.1, N=100,000,σ0=0.75, p=0.58 and tolerance valueϵ=0.012

(ϵ=0.007 is used in the comparison exercise).

• Variational Inference, Bayes by Backprop (BBP) [29]: A BNN with the baseline ar-

chitecture, trained with an open source algorithm1 implemented in Keras [134]. The

hyperparameters have been chosen based on those found in the original code and

slightly adjusted to suit the training data, including a scale mixture prior P(θ) of two

Gaussian densities with σ1 = 1.5, σ2 = 0.1, π = 0.5, Adam optimizer [123], lr = 0.001

and epochs = 100, 000. The same BNN has also been trained with LeakyReLU [135] as

the activation function in the hidden layers.

• Probabilistic Backpropagation (PBP) [1]: A BNN with the baseline architecture, trained

with the open source algorithm2 provided in [1]. The only hyperparameter to be ad-

justed is the number of epochs, which has been chosen based on the regression task

found in the original code, epochs = 30.

• Hamiltonian Monte Carlo (HMC) [88]: A BNN with the baseline architecture, trained

with hamiltorch3. The hyperparameters have been chosen based on those found in the

regression task of the original code and [31] as follows; step size ε = 0.001, leapfrog

steps L = 10, prior p(θ) a Gaussian with prior precision for the parameters τ = 1,

likelihood output precision τout = 100 and 500 samples where 250 are burned (not

included during inference or to evaluate the metric). The same BNN has also been

trained with LeakyReLU as the activation function in the hidden layers.

The performance of BNN by ABC-SS is evaluated using the full loading cycle from the

first sensor in TD19 as test data, and in two different ways. First, by its ability to simultane-

ously predict two heterogeneous output values (micro-crack density and stiffness reduction)

from one single input (loading cycles), while quantifying the uncertainty in the predictions

for each of the outputs individually. The mean squared error (MSE) is used as the metric,

and the capacity to quantify the uncertainty is graphically assessed by its Inter Quantile

Range (IQR). Second, a comparison with BBP, PBP and HMC is undertaken by running the

different algorithms 50 times independently and calculating their MSE in each of the runs.

The performance of the algorithms throughout the 50 runs, shown in Figure 9.3, Figure 9.4,

Figure 9.1(a) and Table 9.1, is expressed in the following terms: precision, measured by the

median and the maximum and minimum MSE; variability, measured by the quartiles (Q1

and Q3) and IQR; stability, measured by the number of outliers; computation time (Intel®

Core™ i7-10510U CPU @ 1.80GHz (8 Threads) ∼2.3GHz, 8GB RAM); and the capacity of

1https://github.com/krasserm/bayesian-machine-learning - Variational Inference in Bayesian Neural Net-
works

2https://github.com/HIPS/Probabilistic-Backpropagation
3https://github.com/AdamCobb/hamiltorch
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the algorithms to quantify the uncertainty, evaluated graphically by the ability of the uncer-

tainty band to capture the variability observed in the data.

9.4 Results and discussion

As shown in Figure 9.1, the proposed BNN methodology has shown accuracy and efficiency

in simultaneously representing the evolution of different damage features of CFRP compos-

ites while accounting for the uncertainty associated to the different outputs, namely micro-

cracks density and stiffness reduction. This is a relevant practical result given the complexity

to accurately reproduce the damage evolution in composites using physics-based models

[86]. The presented modelling exercise is based on experimental damage data taken un-

der laboratory-controlled conditions yet showing high variability. This translates into high

modelling uncertainty that will significantly increase under real-life conditions, making the

adoption of deterministic physics-based models unfeasible [136]. Failing to account this

uncertainty results in high safety factors, which undermines the high utilisation potential

of composites in material-extensive industries such as civil engineering, among others. In

fact, a BNN model such as the proposed here can be useful for on-board structural health

monitoring systems where damage data is collected in a sequential manner and predictions

with quantified uncertainty can be made during operation using incomplete data. If a large

enough amount of data has been collected up to a particular time then predictions consistent

with the future damage evolution can be made, as shown in Figure 9.2. It should be noted

that this predictive capability will entirely depend on whether the BNN has learnt enough

from the collected data, which in turn will depend on whether or not the damage process

has reached an almost stationary stage (as shown in the experimental dataset during the last

70% of the process).

As a remark, nowadays physics-based models have proved efficiency and predictability

only in low-scale structures and highly controlled environments. Furthermore, they are

deterministic and do not consider the uncertainty inherent in fatigue damage of composite

materials, even in laboratory conditions. The proposed data-driven method allows for the

scalability to complex structures and environments, while the uncertainty in the observed

data is quantified. Therefore, BNN by ABC-SS has the potential to create new opportunities

for the application of prognosis and health management systems to real life scenarios.

9.4.1 Comparison with the state-of-the-art BNN

A comparative assessment has also been carried out. In particular, the results were com-

pared with those obtained using the Variational Inference (VI) method, more specifically

Bayes by Backprop (BBP) with Keras [134], Hamiltonian Monte carlo (HMC) and Probabilis-

tic Backpropagation (PBP). The architecture selected for the chosen BNN has been presented

in Section 9.3. Figure 9.3 provides a box plot of the MSE obtained after training each BNN

50 times independently, and the numerical values are shown in Table 9.1. In terms of preci-

sion, PBP provides the most accurate predictions although closely followed by the proposed

BNN by ABC-SS and HMC. However, BNN by ABC-SS has achieved the lowest IQR value,

78



(a) Predictions of micro-cracks density. (b) Predictions of stiffness reduction.

Figure 9.1: Real Case Study, BNN by ABC-SS trained with data set from NASA. Black crosses
are training samples, dark red lines are median predictions, dark grey region is the in-
terquantile range (IQR) of predictions, and light grey region is the range between percentile
5 and 95 of predictions, also known as the uncertainty band.

(a) Predictions of micro-cracks density. (b) Predictions of stiffness reduction.

Figure 9.2: Real Case Study with data set from NASA. BNN by ABC-SS. Black crosses are
training samples, dark green crosses represent unseen data, dark red lines are median pre-
dictions, dark grey region is the interquantile range (IQR) of predictions, and light grey
region is the range between percentile 5 and 95 of predictions, also known as the uncer-
tainty band.

which translates into reliability thanks to the low variability of its predictions in different

independent runs of the algorithm. BNN by ABC-SS has demonstrated high stability, which

is measured by the number of outliers. It is presumed that such outliers, present in the

other BNN, may be caused by the saturation of some neurons, meaning that their gradient

falls to 0, or the so called Dying ReLU effect [35]. When this phenomenon happens and the

training algorithm is based on backpropagation, as is the case with VI(BBP), HMC and PBP,

the learning process is affected and the weights stop updating. This may be overcome us-

ing different activation functions such as Leaky-ReLU, which, as observed in Figure 9.3 and

Table 9.1, outperforms ReLU in terms of MSE and the number of outliers. The capability

of the different BNN to quantify the uncertainty, or the degree of belief on the predictions,
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is graphically assessed and illustrated in Figure 9.4 and Figure 9.1(a). There is a significant

number of micro-crack density measurements (black crosses) with high variability for each

loading cycle, which translates in high uncertainty in the training data. As it can be seen,

most of those training points fall within the uncertainty band of BNN by ABC-SS, resulting

in a more flexible and realistic representation of the actual uncertainty inherent in the data.

In terms of computation time, PBP and HMC have proved to be the fastest algorithms, in

line with [1]. While BNN by ABC-SS seems to demand a longer computation time, it also

needs to be noted that the proposed algorithm has been implemented in Python [137] with-

out using optimised libraries, unlike HMC and PBP which are implemented in Pytorch [132]

and Theano [138] respectively. It is presumed that the computation time of BNN by ABC-SS

may be improved by using libraries based on graphs like Tensorflow [126], and possibly with

parallel computation, remaining both options as a potential continuation of this research.

By looking at the results obtained, it can be concluded that BNN by ABC-SS provides accu-

rate predictions, comparable to those from PBP and HMC, along with low variability and

high stability in different runs of the algorithm, presumably due to its gradient-free nature,

which denotes reliability. And more importantly, BNN by ABC-SS complements its predic-

tions with a fairer representation of the uncertainty, which provides valuable information for

the subsequent decision making process. It is therefore this robustness and capability to ac-

curately quantify the uncertainty that could make the proposed algorithm more suitable for

the task in hand than other state-of-the-art BNN, given the high variability and uncertainty

inherent in fatigue data from composite materials.

Figure 9.3: Analysis of the MSE achieved in 50 independent simulations of BNN by ABC-
SS (ReLU) and Variational Inference with Bayes by Backprop (ReLU and LeakyReLU). The
MSE achieved with each neural network throughout the 50 simulations is represented by
their minimum, first quartile, median, third quartile, maximum and outliers.
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Table 9.1: Comparison between BNN by ABC-SS, Variational Inference (VI) with Bayes by
Backprop, Hamiltonian Monte Carlo (HMC) and Probabilistic Backpropagation (PBP). Each
of the algorithms have been run 50 times independently and the results, expressed in terms
of MSE, are summarised in this table.

Statistics of MSE obtained in 50 independent runs of the training algorithm

Q1
(P25)

Median
(P50)

Q3
(P75)

IQR
(Q3-Q1)

Absolute
Min-Max

Outliers
Comput.

Time

BNN by ABC-SS 0.0057 0.0060 0.0062 0.0005 0.0052-0.0068 0 144s

VI ReLU 0.0307 0.0317 0.0394 0.0087 0.0114-0.1159 21 315s

VI LeakyReLU 0.0089 0.0162 0.0168 0.0079 0.0081-0.0309 2 324s

HMC ReLU 0.0054 0.0069 0.0158 0.0104 0.0046-0.1148 6 48s

HMC LeakyReLU 0.0052 0.0060 0.0076 0.0024 0.0048-0.0564 4 52s

PBP 0.0049 0.0052 0.0055 0.0006 0.0041-0.0187 3 44s

9.4.2 Probability safety assessment

The probability of failure has been calculated for the last cycles of the experiment, following

the methodology explained in Section 9.2, and the results are shown in Table 9.2. It can be

seen that BNN by ABC-SS provides the closest probabilities to the observed data. This is

clear when comparing the average difference (root mean squared error) between the proba-

bilities given by the different algorithms and the observed data, which are: BNN by ABC-SS

(0.15), HMC (0.29), PBP (0.31) and VI (0.24). The results in Table 9.2 have also been illus-

trated in Figure 9.5, where we can see that the green line is the best fit. Moreover, those data

suffer from noise, which is most likely responsible for the negative slope in some parts of

the dashed grey curve. This issue is solved by all four algorithms, as they are monotonically

increasing, however, HMC and PBP seem to provide a more simple approximation, going

from 0 to 1 in just a few loading cycles.

Table 9.2: Probability of failure, based on the probabilistic predictions made by the proposed
algorithms. The failure threshold is set at 0.80 micro-crack density (normalized).
Probability of failure, from 0 (very improbable) to 1 (certain)

Number of cycles
100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000 500,000

Observed 0.00 0.00 0.39 0.80 0.58 0.90 0.81 0.89 0.86

BNN by ABC-SS 0.01 0.05 0.17 0.37 0.63 0.82 0.88 0.89 0.88

HMC 0.00 0.00 0.00 0.04 0.97 0.98 0.98 0.98 0.98

PBP 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00

VI 0.00 0.00 0.02 0.15 0.48 0.78 0.93 0.98 0.99

81



(a) Variational Inference (Bayes by Backprop) (b) Hamiltonian Monte Carlo

(c) Probabilistic Backpropagation

Figure 9.4: Illustrative comparison between the state-of-the-art BNN on uncertainty quan-
tification (axes normalized). Black crosses are training samples, dark red lines are median
predictions, dark grey region is the interquartile range (IQR) of predictions, and light grey
region is the range between percentile 5 and 95 of predictions, also known as the uncertainty
band. For Probabilistic Backpropagation the uncertainty is expressed as ±3 standard devia-
tions from the mean, as per the original manuscript [1].

Finally, the predictions made by BNN by ABC-SS during the last cycles of the experiment

are shown in Figure 9.6 (green PDF), and compared against the given data (grey PDF). While

the shape of those density functions are not a perfect match, the overall estimation about the

probability of failure, meaning the area of the PDFs located to the right of the threshold line

(red), are acceptably accurate. Again, this is thanks to the flexibility of BNN by ABC-SS to

capture the uncertainty and variability in the observed data.
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Figure 9.5: Evaluation of the probability of failure (0 to 1), based on the predictions made by
the different Bayesian Neural Networks. The threshold for plausible failure was set at 0.8
micro-crack density (normalized).

.

Figure 9.6: Probability density function (PDF) of predictions made by BNN by ABC-SS at
different loading cycles. Those predictions, shown in green, are compared against the ob-
served data, which are shown in light grey. The red line represents the failure threshold,
and the probability of failure is given by the area of the PDF located to the right of this line.

.
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10
Reinforced concrete column during seismic

events

This chapter presents a case study about displacement in a reinforced concrete column dur-

ing seismic events, using PG-BNN by ABC-SS as explained in Chapter 6 . The proposed hy-

brid models have been compared and benchmarked against their data-driven and physics-

based counterparts, as well as the state-of-the-art PGNN. The experimental framework and

the physics-based model used are first described in Section 10.1, the algorithms and per-

formance metrics are shown in Section 10.2, and finally the results and their discussion are

provided in Section 10.3.

10.1 Description, data processing and physics-based model

The engineering application of the proposed PG-BNN by ABC-SS consists of a cantilever re-

inforced concrete beam-column, subjected to constant axial load and variable cyclic lateral

deformation. The lateral force F (shear strength) of the column is the variable of interest in

this case, as it was the distance dt in the illustrative problem in Chapter 6. The data used in

this experiment is publicly available and were taken from [139]. In particular, the test No. 1

performed by [2] is used. This data set comprises 626 data points, which are sequential in na-

ture, given that the displacement and shear strength were recorded continuously through-

out the loading cycles. The specimen consisted of a double-ended beam column of 3300

[mm] length and 550x550 [mm] cross section (see Figure 10.1), with 12 reinforcing bars with

a nominal diameter of 24 [mm] as longitudinal reinforcement, symmetrically distributed in

the cross section. Lateral reinforcement comprised two 10 [mm] diameter stirrups spaced

every 80 [mm]. The average concrete compressive strength was measured as 23.1 [MPa].
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The yield strength of the longitudinal and transverse reinforcement was 375 [MPa] and 297

[MPa], respectively. The specimen was subjected to a constant axial compressive load of

1815 [kN]. According to [139], the data of the specimen have been adapted to the case of an

equivalent cantilever column by means of an equivalent cantilever length. Accordingly, the

equivalent length for the selected specimen is set equal to 1200 [mm].

3300

300

1050

600

1050

300

Load frame

A A

SECTION A-A

1825 KN

1825 KN

5 SETS Ø 10@ 135

8 SETS Ø 10@ 80

6 SETS Ø 10@ 85

8 SETS Ø 10@ 80

5 SETS Ø 10 @ 135

12 Ø 24

trasverse reinforcement

Figure 10.1: Double-ended reinforced concrete beam-column specimen details, adapted
from [2].

The physics-based model used consists of a force-based formulation of a beam-column

nonlinear element, fed with fiber sections. This model outputs the shear strength Fm of

the column based on: (1) the lateral displacement of the free side of the cantilever, (2) the

stiffness and constitutive behavior of the materials, and (3) the geometric characteristics of

the element. OpenSeespy software [140] is used to construct the numerical model. The

beam-column element deformations are solved using 5 Newton-Cotes integration points,

each with the same fiber section. A discretization is done to model the axial and flexure

behaviour of the section by means of uni-axial constitutive models, where Concrete01 and

Steel02 models are used to represent the concrete and steel uni-axial behaviour, respectively.

The input parameters of the uni-axial models are defined according to the recommendations

given in [141]. Note that the concrete inside the stirrup cage is subjected to lateral pressure
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due to Poisson’s effect and the passive action of the stirrups; and that the lateral pressure

affects the uni-axial behaviour of the concrete, giving additional strength and deformation

capacity. This behaviour is considered by the confinement factor, which is estimated us-

ing the recommendations of [142]. Table 10.1 summarizes the input data of the numerical

model, whereas Figure 10.2 depicts the configuration of the numerical model and the uni-

axial constitutive models of the steel reinforcement and concrete.

The experimental input data fed into the neural networks are three: the lateral displace-

ment dl , the direction of the displacement dd (positive or negative), and the number of cycles

nc (where one cycle is a full lateral displacement on each direction). All three inputs are ob-

tained by processing the displacement data in [2]. Therefore, the objective is to predict the

lateral force F (shear strength) at a certain time of the experiment given the lateral displace-

ment, the direction of such displacement and the number of cycles that the column has

experienced at that point. Moreover, only the first cycles of the experimental data will be

used for training, and the rest will be used as test data. Thus, we can evaluate the extrapo-

lation capabilities of the algorithms, based on their ability to make predictions about future

cycles.

L
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Figure 10.2: Schematic view of the nonlinear model of a cantilever reinforced concrete beam-
column modelled using OpenSeespy. On the right-hand side, plots of the constitutive mate-
rial monotonic behavior are presented.

The input vectors are organised in three-dimensional arrays including lateral displace-

ment, the direction of such displacement, and the number of cycles [dl ,dd,nc], while the

output vectors are one-dimensional arrays containing the observed force (shear strength)

[F]. The physics-based information coming from the OpenSeespy model is arranged in one-

dimensional arrays [Fm].

87



Table 10.1: Input parameters values of the reinforced concrete model in the engineering case
study of Section 10.1

Axial
Force

Steel
Yield

Strength

Concrete
Compressive

Strength

Cross
Section

Length
Confinement

Factor

Longitudinal
reinforcement

ratio

Strain
hardening

ratio
1815 375 23.10 550x550 1200 1.70 0.0179 0.0013

A data sensitivity analysis has also been carried out, where different ratios of train-

ing/test data have been used, namely 20/80, 40/60, 60/40 and 80/20. Thus the performance

of the physics-guided and data-driven algorithms under different conditions of availability

of data can be evaluated. It can be seen from Table 10.3, Figure 10.5 and discussion in Section

10.3, that the amount of data used for training has a significant effect on the performance of

all algorithms, as could be expected.

10.2 Algorithmic details and performance metrics

The proposed hybrid models have been compared and benchmarked against their data-

driven and physics-based counterparts, as well as the state-of-the-art PGNN and a standard

ANN, both trained with the backpropagation algorithm using TensorFlow, so their perfor-

mance and potential benefits can be evaluated. The results from this comparison can be

found in Tables 10.2 and 10.3, and Figures 10.3-10.5. The methodology used for selecting the

optimal architecture and tuning the hyperparameters is explained in Chapter 8.

The architecture used in all algorithms comprise two hidden layers with Rectified Linear

Units (ReLU) as the activation function, and the output layer with one neuron and a linear

activation function. The number of neurons in the input layer varies between the algo-

rithms. Note that the physics-guided neural networks, both the proposed models PG-BNN

by ABC-SS and the benchmark models state-of-the-art (SOTA) PGNN, have an numerical

index depending on where the physics are introduced in the ANN architecture, being (2)

through the input neurons and (3) through the output neurons. Thus, the proposed algo-

rithms can be easily compared against their correspondent state-of-the-art algorithms. Also,

in light of the poor results they provide and in line with the discussion in the illustrative

problem in Chapter 6, algorithms PG-BNN by ABC-SS (1) and SOTA PGNN (1) are not in-

cluded in this case study.

• BNN by ABC-SS: A BNN trained with ABC-SS as per Algorithm 1 in Chapter 5, to

serve as a Bayesian data-driven benchmark. The neural network structure comprises 3

input neurons, 15 neurons per hidden layer, and one output neuron. The hyperparam-

eters chosen are P0=0.1, N=100,000, σ0=0.9, p=0.50 and tolerance value (normalized)

ϵ=0.0009.

• Standard ANN with L2 regularization: A standard neural network using TensorFlow,

to serve as a deterministic data-driven benchmark. Adam optimizer [123] with early
stopping and L2 regularization are used during training. The neural network structure
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comprises 3 input neurons, 15 neurons per hidden layer, and one output neuron. The

hyperparameters used are L2=0.01, epochs=20,000 and patience=100.

• PbM: Physics-based model to be used as a physics-based benchmark. The model for-

mulation can be found in Section 10.1.

• PG-BNN by ABC-SS: The proposed hybrid BNN trained with ABC-SS as per Chapter

6. Two variants are used as follows:

– (2): A hybrid BNN as per Section 6.1.2 in Chapter 6. The neural network structure

comprises 4 input neurons, 5 neurons per hidden layer, and one output neuron.

The hyperparameters chosen are P0=0.2, N=10,000, σ0=0.9, p=0.50 and tolerance

value (normalized) ϵ=0.009.

– (3): A hybrid BNN as per Section 6.1.3 in Chapter 6. In this case, the same network

structure and hyperparameters as for (2) are used, but with 3 input neurons.

• SOTA PGNN: A physics-guided neural network trained with the state-of-the-art back-

propagation algorithm using TensorFlow, to be used as a physics-guided benchmark.

Three variants are tested as follows:

– (2): A PGNN with the architecture presented in Figure 6.2 in Chapter 6, where the

physics are introduced through the input layer. The number of neurons per layer

are the same as PG-BNN by ABC-SS (2). Adam optimizer [123] with early stopping
is used for training, and the values of the hyperparameters are epochs=10,000 and

patience=80.

– (3): A PGNN with the architecture presented in Figure 6.4 in Chapter 6, where

the physics are introduced through the output neurons. The number of neu-

rons per layer are the same as PG-BNN by ABC-SS (3). Adam optimizer [123]

with early stopping is used for training, and the values of the hyperparameters are

epochs=10,000 and patience=60.

The metric proposed to evaluate the performance of the algorithms is chosen taking

into account the magnitude of the target variable F. This is expressed in Newtons [N],

and takes significantly large values. Therefore, mean-square-error (MSE) of the normalized

data is used. The precision and stability of the algorithms is measured by the value of

quartiles Q1(P25), Q2(P50) and Q3(P75). The ability to quantify the uncertainty is evaluated

graphically.

10.3 Results and discussion

The proposed algorithms have been applied to one of the column tests recorded in the The

PEER Structural Performance Database [139] as explained in Section 10.1, and benchmarked

against the purely data-driven methods, such as BNN by ABC-SS and Standard ANN, the

physics-based model described in that same section, and the state-of-the-art physics-guided

neural networks. The algorithms, along with the choice of architecture and hyperparame-

ters, are explained in Section 10.2 and the results of the experiment can be found in Table

10.2. Overall, the results of this experiment are similar to those obtained in the illustrative
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problem in Chapter 6. When evaluated on test data, PG-BNN by ABC-SS (3) and SOTA

PGNN (3) outperform the other physics-guided neural networks, the physics-based model,

BNN by ABC-SS and Standard ANN, even when these purely data-driven approaches re-

quired a more complex architecture with more neurons in the hidden layers. Once again, the

neural network has been able to learn a pattern in the difference between the physics and

the data, so when asked to make a prediction about unseen data it compensates the infor-

mation coming from physics-based model with such pattern, thus it closely matches reality.

Also, the time of computation of the hybrid models is significantly lower, given its simpler

architecture and relatively small number of samples N required. Interestingly, SOTA PGNN

(2) and PG-BNN by ABC-SS (2) achieve low MSE values when evaluated on training data,

which may suggest that introducing the physics through the input neurons is more prone

to overfitting. This might be because the neural network also manipulates the physics in-

troduced through the input layer to match the observed data. For that same reason, the

performance of both SOTA PGNN (2) and PG-BNN by ABC-SS (2) seem to be worse on test

data. The quantification of the uncertainty is the main advantage that the proposed hybrid

models share with BNN by ABC-SS, given that both are trained with approximate Bayesian

computation [84]. This is shown in Figure 10.3, where we see that PG-BNN by ABC-SS (3)

not only make better predictions than the physics-based model, especially on test data, but

also quantifies the uncertainty realistically. It seems natural that such uncertainty (light grey

density function), translated into the width of range of plausible values, grows as we move

away from the training data, as in panel (b) of Figure 10.3 and Figure 10.4. Lastly, and in line

with the results obtained in the illustrative problem, the good performance of PG-BNN by

ABC-SS (3) outside the domain of the training data (extrapolation) is notable, as can be seen

again in Table 10.2, Figure 10.3 panel (b) and Figure 10.4, where the predictions about future

cycles (green line) are acceptably accurate. As a final remark, from the results provided by

both PG-BNN by ABC-SS (3) and the physics-guided SOTA PGNN (3) used as benchmark,

it may be concluded that introducing the physics through the output neuron provides the

best performance. Moreover, PG-BNN by ABC-SS (3) also allows for a flexible quantification

of the uncertainty, which will improve the subsequent decision making process. In terms of

efficiency, the proposed hybrid models showed comparable running times to that of their

data-driven counterparts, as per in the illustrative example.

A sensitivity analysis about the performance of the algorithms based on the availability

of data has also been carried out, and the results are shown in Table 10.3. When data is very

scarce, such as 20%, the hybrid models do not seem to benefit from them significantly, as

their accuracy on test data is in the same order of magnitude than the purely physics-based

model. However, when a greater amount of data is available, such as 40% or 60%, the hybrid

models benefit considerably from them and outperform both the data-driven methods and

the purely physics-based model. This becomes more evident when 80% of the total data is

available for training, as both PG-BNN by ABC-SS (3) and SOTA PGNN (3) provide very

accurate predictions in comparison with all other methods. Regarding the quantification
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Table 10.2: Detailed comparison, based on a training/test data ratio of 60/40, between PG-
BNN by ABC-SS, BNN by ABC-SS, Standard ANN, the purely physics-based model, and
the state-of-the-art PGNN. The results, expressed in terms of MSE, were obtained after 50
independent runs of each algorithm.

Statistics of MSE obtained in 50 independent runs of the training algorithm

Neurons per
Hidden Layer

Training Data Set Test Data Set

Q1
(P25)

Median
(P50)

Q3
(P75)

Q1
(P25)

Median
(P50)

Q3
(P75)

PG-BNN by ABC-SS (2) 5 0.0042 0.0045 0.0047 0.0103 0.0129 0.0160

PG-BNN by ABC-SS (3) 5 0.0051 0.0054 0.0056 0.0052 0.0056 0.0073

BNN by ABC-SS 15 0.0050 0.0054 0.0057 0.0157 0.0184 0.0299

Physics-based Model N/A 0.0308 0.0308 0.0308 0.0521 0.0521 0.0521

SOTA PGNN (2) 5 0.0023 0.0030 0.0038 0.0118 0.0144 0.0243

SOTA PGNN (3) 5 0.0009 0.0011 0.0057 0.0046 0.0088 0.0127

Standard ANN with L2 Reg 15 0.0047 0.0052 0.0079 0.0357 0.0494 0.0745

(a) Prediction on training data (b) Prediction on test data (extrapolation)

Figure 10.3: Engineering case study. Mean predictions made by PG-BNN by ABC-SS (3) on
training data (red) and test data (green). The uncertainty is represented by the light grey
PDF, the prediction of the physics-based model is given by the dashed line and the target
value is the black continuous line.

of the uncertainty, Figure 10.5 shows how it evolves with the percentage of data available

for training. The uncertainty reduces drastically as more data is gathered, and the biggest

difference appears between 20% and 40%.

Regarding the applicability of this experiment to a real world scenario, the seismic struc-

tural engineering field could become a good candidate. One of the problems that arise in a

post-earthquake scenario is the difficulty in deciding if a structure remains safe and can still

be used [143], in relation to the capability of that structure to withstand the aftershocks, all

aggravated by the significant uncertainty inherent to this type of phenomena. This can be of

special interest for healthcare facilities, where the evacuation (or closure) of the building is

not a straightforward decision during an emergency. The combination of visual inspections
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with the proposed hybrid model framework could become an effective tool for fast evalu-

ation, which is required to take an informed decision during this kind of critical scenarios.

Moreover, the presented tool aligns with the current tendency in seismic structural engi-

neering, about the need to account for uncertainties on the behaviour of structural elements

[144].

Figure 10.4: Predictions about lateral force made by PG-BNN by ABC-SS (3) on training
data (red) and on test data (green). The uncertainty is represented by the grey hatch, the
prediction of the physics-based model is given by the dashed line, the training data set is
represented by ‘+’ and the test data set is represented by ‘x’.

Table 10.3: Sensitivity analysis about different ratios of training/test data and the accuracy
of the algorithms. The results, expressed in terms of MSE, refer to the median value (P50)
of the error obtained on test data after 50 independent runs of each algorithm, based on
different ratios of training/test data.

Median value (P50) of MSE obtained on test data after 50 independent runs

Neurons per
Hidden Layer

Percentage of data used for training

20% 40% 60% 80%

PG-BNN by ABC-SS (2) 5 0.0392 0.0186 0.0129 0.0112

PG-BNN by ABC-SS (3) 5 0.0460 0.0083 0.0056 0.0031

BNN by ABC-SS 15 0.1947 0.1616 0.0184 0.0162

SOTA PGNN (2) 5 0.0740 0.0540 0.0144 0.0107

SOTA PGNN (3) 5 0.0481 0.0362 0.0088 0.0030

Standard ANN with L2 Reg 15 0.1250 0.1244 0.0494 0.0334

Physics-based Model NA 0.0459 0.0512 0.0521 0.0587
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(a) 20% of data used for training (b) 40% of data used for training

(c) 60% of data used for training (d) 80% of data used for training

Figure 10.5: Data sensitivity analysis. The uncertainty quantified PG-BNN by ABC-SS (3)
is represented by the grey hatch, the prediction of the physics-based model is given by the
dashed line, the training data set is represented by ‘+’ and the test data set is represented by
‘x’. The vertical grey lines divide the training data domain from the test data domain. It can
be seen how the uncertainty reduces gradually as more data is available for training.

93





11
Accelerations in concrete structures

This chapter presents a case study about accelerations in a concrete building during a seis-

mic event, using PG-BRNN by ABC-SS as explained in Chapter 7 . The proposed hybrid

models have been compared and benchmarked against their data-driven and physics-based

counterparts, as well as the state-of-the-art PG-RNN. The experimental framework and the

physics-based model used are first described in Section 11.1, the algorithms and perfor-

mance metrics are shown in Section 11.2, and finally the results and their discussion are

provided in Section 11.3.

11.1 Description, data processing and physics-based model

The potential of PG-BRNN by ABC-SS to become part of a wider SHM system is explored in

this chapter. The application of machine learning algorithms to SHM has already been stud-

ied in the existing literature [145, 146], however, those approaches usually consist on using

a computational model of the structure to produce synthetic data, which are then used to

train a neural network, by generating scenarios of damage and evaluating its impact on the

response of specific parts of the structure. The trained neural network is then utilized to pre-

dict the health of the structure, using accelerations measurements of the real structure. This

approach relies on the capabilities of the model and mainly, on the decisions made during

the development of the data set to train the neural network. Therefore, it does not benefit

from all the advantages of both, the model and the data. The application of PG-BRNN by

ABC-SS allows to compensate and improve the structural model using the observed data,

resulting in a hybrid model that can be used in the context of an SHM system to predict the

response of buildings, in terms of accelerations, and inform the post-earthquake decision-

making process.

95



The data used in this case study comes from a experimental seismic test of a 17-story con-

crete structure on a shake table, performed by [147] (available in https://datacenterhub.

org/deedsdv/publications/view/564). The specimen was subjected to several impulsive

seismic records and the response was measured in terms of displacement and acceleration in

some floors of the building. In particular, the acceleration data used in this experiment cor-

responds to TS1-Run2, 9th floor. The input signal at the base of the building is also available

in that data set.

Unlike the illustrative data-driven example in Chapter 7, where the data comprised 72

full loading cycles with 18 time-steps each, the data in this experiment consist of a single

sequence of accelerations measured at the 9th floor of the experimental structure during

the simulated seismic event. In order to make those data suitable for training RNN, they

were lagged and divided in 10-time-steps long samples, as shown below. Therefore, we

face univariate time-series forecasting, where predictions about the target variable are made

based on historic values of the same variable. The data set is split into training and test

data with a 60/40 ratio, meaning that the RNN are trained only with the first 60% of the

accelerations. Furthermore, the test data is not fed into the RNN, but starting from the last

sample of training data the RNN are asked to recursively predict the next values, where the

output from the single-step ahead prediction becomes the last time-step in the input for the

next prediction, also known as multi-step ahead forecasting. The test data is only used to

calculate the metric, and evaluate the performance of the algorithms.

Lagged acceleration data





Input array (1)→ (x1, x2, ..., x10)

Output array (1)→ (x2, x3, ..., x11)

Input array (2)→ (x2, x3, ..., x11)

Output array (2)→ (x3, x4, ..., x12)
...

The physics-based model used in the hybrid neural networks is based on the computa-

tional model proposed in [3]. The model comprises 17 masses of 250 kg that are jointed in

series by elastic perfectly plastic springs and linear dashpots. The stiffness and damping of

the building specimen were not defined in the available information of the test, therefore,

Barros et al. [3] applied the method called A2BC-SubSim to obtain the values of the model

parameter that better explain accelerations in the monitored floors. Table 11.1 shows the

maximum a posteriori (MAP) values of the parameters, together with the mean, median

and standard deviation of each parameter distribution. The MAP value of such parameters

has been used to create the physics-based model.
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Table 11.1: Values of the model parameters proposed in [3]
θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8

MAP 9.60E+07 7.90E+07 2.50E+08 2.30E+07 9.10E+07 1.80E+08 2.80E+08 2.50E+08
µ 9.30E+07 8.00E+07 2.40E+08 2.40E+07 9.10E+07 1.80E+08 2.70E+08 2.50E+08
σ 9.50E+06 1.60E+07 4.00E+06 2.60E+06 3.50E+06 9.30E+06 2.50E+07 1.80E+07

θ9 θ10 θ11 θ12 θ13 θ14 θ15 θ16

MAP 2.46E+08 1.03E+08 2.39E+08 1.06E+08 1.77E+08 1.85E+08 1.22E+07 1.76E+08
µ 2.47E+08 1.02E+08 2.36E+08 1.07E+08 1.79E+08 1.85E+08 1.30E+07 1.75E+08
σ 5.14E+06 5.84E+06 3.00E+07 8.68E+06 3.41E+06 1.83E+07 3.41E+06 1.32E+07

θ17 θ18 θ19 θ20 θ21 θ22 θ23 θ24

MAP 1.70E+08 3.92E+07 1.75E+07 3.50E+07 3.21E+07 3.88E+07 4.50E+07 4.53E+07
µ 1.70E+08 3.89E+07 1.72E+07 3.54E+07 3.22E+07 3.85E+07 4.45E+07 4.55E+07
σ 3.54E+06 2.38E+06 1.70E+06 1.97E+06 390594 2.66E+06 2.31E+06 2.66E+06

θ25 θ26 θ27 θ28 θ29 θ30 θ31 θ32

MAP 3.77E+07 1.13E+07 3.05E+07 1.23E+07 4.25E+07 4.32E+07 1.24E+07 2.93E+07
µ 3.77E+07 1.23E+07 3.03E+07 1.29E+07 4.25E+07 4.33E+07 1.20E+07 2.96E+07
σ 895961 5.07E+06 3.18E+06 4.28E+06 4.84E+06 697790 1.12E+06 1.83E+06

θ33 θ34 θ35

MAP 4.00E+07 2.04E+07 7424.2
µ 4.04E+07 2.01E+07 7529.9
σ 2.40E+06 1.05E+06 278.306

Note: θ1 toθ17 are the corresponding elastic stiffness of each floor. θ18 toθ34 are the corresponding yield strength
of each floor. θ35 is the damping coefficient of every floor.

11.2 Algorithmic details and performance metrics

The details of the algorithms used in this case study, along with their implementation are

given below. An architecture with one input neuron, one output neuron and one single

hidden layer with 5 hidden units has been chosen as the baseline for all algorithms, unless

specified otherwise. The results and discussion can be found in Section 11.3.

• BRNN by ABC-SS: A vanilla RNN trained with ABC-SS, as detailed in Chapter 7.

The values of the hyperparameters are: P0=0.2, N=10,000, σ0=0.9 and p=0.50. The

activation function for the hidden layer is ReLU and the tolerance value is ϵ=0.005.

• LSTM RNN: As explained in Section 7.3.2 of Chapter 7, this algorithm has been imple-

mented using Tensorflow [126] and the hyperparameters used are: minimum squared

error (MSE) as the loss function, the optimizer Adam [127], batchsize=1 and 100 epochs.

• LSTM by ABC-SS: A LSTM RNN trained with ABC-SS as detailed in Section 7.2 of

Chapter 7. The values of the hyperparameters are: P0=0.2, N=10,000, σ0=0.9, p=0.50,

ϵ=0.005 and the activation function for the hidden layer is tanh.

• Bidirectional LSTM RNN: As explained in Section 7.3.2 of Chapter 7, this algorithm

has been implemented using Tensorflow and the hyperparameters used are: minimum
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squared error (MSE) as the loss function, the optimizer RMSprop, batchsize=1 and 50

epochs.

• GRU RNN: As explained in Section 7.3.2 of Chapter 7, this algorithm has been imple-

mented using Tensorflow [126] and the hyperparameters used are: minimum squared

error (MSE) as the loss function, the optimizer Adam [127], batchsize=1 and 100 epochs.

• Monte Carlo Dropout RNN (MC Dropout):As explained in Section 7.3.2 of Chapter

7, MC Dropout LSTM has been implemented following [91] and the code in GitHub1,

with Pytorch [132]. Regarding the hyperparameters, the dropout probability is 0.5, the

loss function is MSE and batch size=8. The hyperparameters used are are 50 epochs

and lr=0.0001.

• PG-BRNN by ABC-SS: A physics-guided RNN trained with ABC-SS as per Chapter 7,

Section 7.1. The physics-based model, specified in Section 11.1, is introduced into the

RNN through the output neuron. The hyperparameters are: P0=0.2, N=10,000, σ0=0.9

and p=0.50. The activation function in the hidden layer is ReLU and the tolerance

value ϵ=0.0047.

• PG-LSTM RNN: A physics-guided LSTM RNN, with the physics-based model intro-

duced in the output neuron, as per figure 7.1 in Chapter 7. The hyperparameters are:

MSE as the loss function, the optimizer Adam, batchsize=1 and 10 epochs.

• PG-LSTM by ABC-SS: A physics-guided LSTM trained with ABC-SS as per Chapter 7,

Section 7.2. The physics-based model, specified in Section 11.1, is introduced into the

RNN through the output neuron. The hyperparameters are: P0=0.2, N=10,000, σ0=0.9

and p=0.50. The activation function in the hidden layer is ReLU and the tolerance

value ϵ=0.0047.

• PG-Bidirectional LSTM RNN: A physics-guided Bidirectional LSTM RNN, with the

physics-based model introduced in the output neuron, as per figure 7.1 in Chapter 7.

The hyperparameters are: MSE as the loss function, the optimizer RMSprop, batch-

size=1 and 30 epochs.

• PG-GRU RNN: A physics-guided GRU RNN, with the physics-based model intro-

duced in the output neuron, as per figure 7.1 in Chapter 7. The hyperparameters are:

MSE as the loss function, the optimizer Adam, batchsize=1 and 10 epochs.

• PG-MC Dropout LSTM RNN: A physics-guided MC Dropout LSTM RNN, with the

physics-based model introduced in the output neuron, as per figure 7.1 in Chapter 7.

The hyperparameters are: dropout probability is 0.5, the loss function is MSE, batch

size=8, lr=0.0001 and 40 epochs.

• PbM: Physics-based model to be used as a reference in the engineering case study.

Details about the model can be found in Section 11.1.

The performance of the different algorithms has been evaluated after 30 independent

runs for each experiment. The accuracy of each algorithm is determined by the average and

median MSE obtained, while the stability and reliability of the algorithm is measured by the

1https://github.com/PawaritL/BayesianLSTM
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interquartile range (IQR). The ability to quantify the uncertainty, in those algorithms trained

with Bayesian methods, is evaluated graphically.

11.3 Results and discussion

As explained in Section 11.1, this case study can be considered a multi-step-ahead time-

series forecasting task. This is one of the greatest challenges that RNN face nowadays, that

is, making predictions many time-steps ahead based on its own previous predictions. Multi-

step-ahead forecasting might be seen as a form of extrapolation, where the neural network

needs to make predictions about data it has not seen before. And that is exactly where

physics-based models may help, as explained in Chapter 4 Section 4.4, given their capacity

to generalize well throughout the whole domain of the data space. Therefore, PG-BRNN by

ABC-SS along with the physics-guided version of the state-of-the-art RNN are applied to

this case study.

The results from the experiment, after 30 independent runs of each algorithm, are shown

in Table 11.2. Overall, it can be seen that the physics-guided version of the different RNN

have clearly achieved better results than their data-driven counterparts. The neural net-

works seemed to have learnt a pattern in the discrepancy between the physics-based model

and the observed reality during training, and then applied such pattern to the test data, also

improving the results obtained from the stand-alone physics-based model. This superior-

ity is even more obvious when looking at the violin plot in Figure 11.1, where the left side

of each plot is a density function of the MSE obtained by the physics-guided versions, and

the right side refers to the data-driven versions of each RNN. The main reason behind the

poor performance of the data-driven RNN lies in their inability to extrapolate, and the fact

that the error of each prediction is sequentially added up, thus new predictions are built

upon increasingly wrong predictions. That leads to unreliable outputs just a few time-steps

away from the starting point. In this case, making a comparison between the different data-

driven approaches seems irrelevant, given their instability. Regarding the physics-guided

versions of the RNN, they provide accurate results with comparable precision across all the

algorithms. PG-GRU RNN and PG-LSTM RNN have achieved the lowest P25 and median

MSE values respectively, which demonstrates their capacity to find the optimal local min-

imum of the loss function, while PG-BRNN by ABC-SS provided the lowest average MSE

and P75. That, added to the low IQR value, reinforces the stability and reliability of PG-

BRNN by ABC-SS over the state-of-the-art PG-RNN. Regarding PG-LSTM by ABC-SS, this

has not provided better results than PG-BRNN by ABC-SS, even when the LSTM architec-

ture is more complex. This fact confirms that ABC-SS solves the gradient-related issues in

vanilla RNN, and therefore, combining this Bayesian training method with more complex

RNN may not present any further benefit. Finally, the quantification of the uncertainty of

PG-BRNN by ABC-SS is more realistic than that of its Bayesian competitor PG-MC Dropout

LSTM, as shown in Figure 11.2. PG-BRNN by ABC-SS seems slightly more confident as well

as precise. Another reading from Figure 11.2 is that both Bayesian RNN are quite confident
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about the point when accelerations change in direction, but not so much about when they

reach their highest levels. This suggest that the inflexion point between accelerating and

decelerating is the most difficult part to predict.

Table 11.2: Performance of data-driven Recurrent Neural Networks, Physics-Guided Recur-
rent Neural Networks and the Physics-based Model, evaluated using MSE after 30 indepen-
dent runs of the algorithms.

Statistics of MSE obtained in 30 independent runs of the training algorithms

Average
Q1

(P25)
Median

(P50)
Q3

(P75)
IQR

(Q3-Q1)

PG-BRNN by ABC-SS 0.00046 0.00045 0.00046 0.00048 0.00003

PG-MC Dropout LSTM RNN 0.00076 0.00071 0.00076 0.00081 0.00010

PG-LSTM RNN 0.00053 0.00042 0.00044 0.00057 0.00015

PG-LSTM by ABC-SS 0.00053 0.00046 0.00049 0.00060 0.00014

PG-Bidirectional LSTM RNN 0.00052 0.00046 0.00049 0.00055 0.00008

PG-GRU RNN 0.00049 0.00042 0.00045 0.00057 0.00015

BRNN by ABC-SS 0.06020 0.03319 0.05689 0.08901 0.05281

MC Dropout LSTM RNN 0.09804 0.08399 0.10925 0.11719 0.0332

LSTM RNN 0.28129 0.10344 0.17070 0.33212 0.22868

LSTM by ABC-SS 0.09772 0.04711 0.07268 0.14234 0.09523

Bidirectional LSTM RNN 0.07643 0.04177 0.06278 0.08725 0.04548

GRU RNN 0.21473 0.09021 0.14304 0.21798 0.12776

Physics-based Model 0.00825

Figure 11.1: Violin plot of the MSE obtained for each algorithm after 30 independent runs.
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(a) Time-step 270 (acceleration reaches
maximum levels)

(b) Time-step 427 (change in direction
of the acceleration)

Figure 11.2: PDF (P5 - P95) of the predictions made by PG-BRNN by ABC-SS (green) PG-MC
Dropout LSTM RNN (blue). The black line represents the target value and the dashed grey
line is the prediction made by the physics-based model.

The predictions provided by PG-BRNN by ABC-SS have also been evaluated in the fre-

quency domain after applying the fast Fourier transform (FFT) [148], as shown in Figure

11.3. These values are used in structural engineering to identify the modal characteristics of

a dynamical system, such as their fundamental frequency. It can be seen that the physics-

based model captures the dynamic characteristics of the specimen, as it correctly predicts

the fundamental frequency of the system, however, it clearly overestimates the amplitude

of the movement. On the other hand, PG-RNN by ABC-SS clearly corrects the deficiency

of the physics-based model, providing an accurate estimation of the FFT. This information

could become valuable for future assessments about the structural integrity of the building.

Figure 11.3: Comparison of the Fourier amplitudes provided by the physics-based model
[3] (dashed-grey), PG-BRNN by ABC-SS (green), and experimental measurements (black).
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“An expert is a person who has made all the mistakes that
can be made in a very narrow field.”

— NIELS BOHR
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12
Conclusions and future work

Standard artificial neural networks need a considerable amount of data for training, and

even if these are available, extrapolation is beyond their capabilities. Moreover, their train-

ing is based on the backpropagation algorithm, which is the cause of gradient-related prob-

lems. These drawbacks hinder the implementation of artificial neural networks in many

areas of engineering, where data is scarce and safety is the number one priority.

In this doctoral thesis, a new training algorithm based on approximate Bayesian compu-

tation by Subset Simulation was presented. While this methodology provides comparable

accuracy to that of the state-of-the-art neural networks, it also quantifies the uncertainty in-

herent in the observed data. This translates into valuable information for the subsequent

decision-making process, and may contribute to build trust around the use of artificial neu-

ral networks in engineering. Furthermore, this new Bayesian training method was com-

bined with physics-based models into a hybrid algorithm, reducing the amount of data

required and improving significantly the extrapolation capabilities. Finally, the aforemen-

tioned principles were applied to recurrent neural networks, so sequential data could be ex-

ploited using the proposed methodology. The probabilistic nature of approximate Bayesian

computation avoids the gradient-related problems of backpropagation, allowing for long-

term dependencies between distant data points to be learnt without the use of complex

architectures.

These new concepts were explained using illustrative examples, and the performance of

the proposed algorithms were evaluated in three different engineering case studies, mainly

related to the structural integrity of different elements and materials. The results demon-

strated the potential of the methodology to become a part of PHM systems, given its ability
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to quantify the uncertainty and provide real-time predictions based on historical data and

physics-based models.

More specifically, the following conclusions could be extracted from each of the hypoth-

esis and research objectives described in Chapter 2. The limitations of the proposed method-

ologies and potential future works are also summarised below:

Hypothesis 1: The value of the weights and bias of ANN could be optimised using Ap-

proximate Bayesian Computation by Subset-Simulation (ABC-SS).

Most state-of-the-art Bayesian training algorithms use rigid parametric PDFs for the like-

lihood function and/or the weights and bias, such as a Gaussian PDF defined by their mean

and standard deviation, which limits their capacity to represent the uncertainty in the ob-

served data. Moreover, they are often subject to the drawbacks of gradient descent and

backpropagation.

In Chapter 5, a novel training method for Bayesian neural networks was developed us-

ing approximate Bayesian computation combined with Subset Simulation as inference en-

gine. The resulting methodology, named in this thesis as BNN by ABC-SS, was illustrated

in Sections 5.2 and 5.3 of Chapter 5 using two academic examples with synthetic data cre-

ated from sine and cosine functions with added noise, and then applied to an engineer-

ing case study about fatigue damage in composite structures in Chapter 9. The results re-

vealed that the non-parametric formulations of the likelihood function and the PDF of the

weights provide a realistic uncertainty quantification according to the training data. Be-

sides, through comparison with the Variational Inference, Hamiltonian Monte Carlo and

Probabilistic Backpropagation methods, BNN by ABC-SS showed more stability when mak-

ing predictions, presumably due to absence of gradient. Particularly for the case study about

damage propagation in composites, the proposed data-driven methodology can be seen as

an alternative to purely physics-based models, which fail at quantifying the real amount of

prediction uncertainty.

In addition, a probabilistic safety assessment was carried out in Section 9.2 of Chapter

9, using the predictions made by the different Bayesian neural networks. The objective

was to model the probability of failure at a given loading cycle based on the probabilistic

output of the algorithm and a predefined damage threshold. BNN by ABC-SS provided

the best results, demonstrating flexibility to capture the variability in the data. Thereby, its

predictions about the probability of failure approximated the observed data significantly

well.

Finally, it may be concluded that this new training algorithm becomes specially useful

when applied to problems where a decision is significantly dependent on the amount of

uncertainty. Moreover, their predictions can be used in subsequent probabilistic safety as-

sessments, which in turn also helps to make informed decisions regarding maintenance, or

the potential replacement of the structural element.
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Regarding future works, the scalability of the proposed method to train deep neural net-

works, with high-dimensional parameter spaces and large training data sets, could further

extend the range of potential applications of this methodology. Also, a more directed sam-

pling method should be investigated, so the number of samples required can be reduced

and the efficiency of the overall method improved. Both paths are closely related and estab-

lishes a natural continuation to this line of research.

Hypothesis 2: The limitations related to data scarcity, extrapolation and quantification

of the uncertainty could be mitigated if physics-based models are included in the forward

pass of the neural network in the form of mathematical formulations, and Bayesian training

is used.

Chapter 6 of this thesis presented a new algorithm which combines BNN by ABC-SS

with physics-based models, the so-called PG-BNN by ABC-SS. Unlike other physics-guided

neural networks where the physics are often introduced in the loss function or through

boundary conditions, and then backpropagated during training, the proposed algorithm in-

serts the physics directly in the forward pass, which improves the extrapolation capabilities.

Moreover, ABC-SS is a Bayesian gradient-free training method that provides the proposed

algorithm with stability, flexibility and the ability to quantify the uncertainty. Those prop-

erties were evaluated in a case study about the behaviour of a reinforced concrete column

during a seismic event, where the accuracy and reliability of PG-BNN by ABC-SS surpassed

those of the state-of-the-art physics-guided neural networks trained with backpropagation,

and outperformed significantly the purely physics-based and data-driven approaches.

The two main advantages of PG-BNN by ABC-SS, namely its ability to extrapolate out-

side the domain of the training data set and to quantify the uncertainty in the outputs,

significantly improve the accuracy of predictions about future events, and limit the risk in

the subsequent decision making process. The results in the engineering case study showed

the potential of the proposed algorithm to become, if combined with visual inspections, an

effective and fast tool to evaluate and diagnose the condition of structural elements after

seismic events. Certainly, a tool that can anticipate the outcome of an event of which there

is little data, with a defined degree of confidence, could be particularly useful in different

engineering fields.

Future research should focus on different ways of introducing the physics-based models

within the architecture of the artificial neural network, so the parameters of both data-driven

and physics-based models are closely interconnected. Also, the use of adaptive activation

functions should be explored.
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Hypothesis 3: A RNN that includes physics-based models in its forward pass and is

trained using Bayesian methods can avoid the aforementioned limitations and may provide

a useful methodology for prognostics. Additionally, gated units could be avoided, reducing

the number of weights and bias required.

When the observed data is sequential, the success of RNN in all their different versions

is unquestionable, however, their performance heavily rely on big training data sets, and

those are a rare sight in the civil and structural engineering industry. Furthermore, the

training process of the state-of-the-art RNN is based on the evaluation of a loss function and

the use of the backpropagation algorithm, which implies some well known drawbacks such

as vanishing and exploding gradients, or reaching different local minima in each run of the

algorithm, providing varying results.

In Chapter 7, a novel physics-guided Bayesian RNN trained with ABC-SS was proposed.

The physics-based models are introduced in the forward pass of the RNN, which mitigates

the problems related to lack of data and allows for extrapolation. This is especially impor-

tant in prognostics, where multistep-ahead forecasting is required. At the same time, the

use of ABC-SS as the learning engine translates into non-parametric probabilistic weights,

Bayesian regularization, absence of gradient evaluation, and probabilistic outputs with ac-

curate quantification of the uncertainty. The same principles were applied to LSTM neural

networks, the so-called LSTM by ABC-SS, to assess if there is any additional benefit in using

complex gated architectures even when there is no gradient evaluation.

The proposed Bayesian RNN has been applied to two different structural engineering

experiments about fatigue damage progression in composites and seismic accelerations in

reinforced concrete buildings. The results have shown that while PG-BRNN by ABC-SS

provide comparable accuracy to the state-of-the-art physics-guided RNN, its predictions

in different runs of the algorithm present very little deviation, resulting in a more reliable

option. Also, when compared with its Bayesian competitor MC Dropout, the proposed

algorithm provided a more precise and realistic quantification of the uncertainty. Finally,

PG-LSTM by ABC-SS did not present any improvement over PG-BRNN by ABC-SS in terms

of accuracy or stability, while the computation time increased significantly due to the higher

number of parameters to be trained. This demonstrates that ABC-SS allows the basic RNN

architecture to capture long term dependencies, without the need for gated units.

In relation to future works, BRNN by ABC-SS could be explored as a quasi-real time

predictor for onboard PHM systems, provided that enough real data is available. Likewise,

PG-BRNN by ABC-SS has demonstrated potential to become an on-site prediction tool for

seismic events and/or aftershocks in buildings, thus helping to rapidly evaluate its struc-

tural integrity and the safety of the utility systems. Lastly, and in line with the conclusions

in Hypothesis 1, ABC-SS is limited by the dimension of the parameter space, and may not be

suitable for training RNN with a very large number of neurons, such as those used for com-

plex video activity recognition. While engineering applications do not often require such
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high-dimensional neural networks, extending the training capacity of ABC-SS to more com-

plex architectures needs to be explored. The use of parallel computing could also accelerate

the sampling method in ABC-SS, helping to optimize the computational resources available.
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13
Conclusiones y trabajos futuros

Las redes neuronales artificiales necesitan una cantidad considerable de datos para su en-

trenamiento, e incluso si estos están disponibles, la extrapolación va más allá de sus capaci-

dades. Además, su entrenamiento se basa en el algoritmo de retropropagación (“backprop-
agation”), que es la causa de los problemas relacionados con el gradiente. Estos inconve-

nientes dificultan la implementación de las redes neuronales artificiales en muchas áreas de

la ingenierı́a, donde los datos son escasos y la seguridad es la prioridad número uno.

En esta tesis doctoral se presentó un nuevo algoritmo de entrenamiento basado en com-

putación Bayesiana aproximada por simulación de subconjuntos. Si bien esta metodologı́a

proporciona una precisión comparable a la de las redes neuronales actuales, también cuan-

tifica la incertidumbre inherente a los datos observados. Esto se traduce en información

valiosa para la posterior toma de decisiones y puede contribuir a generar confianza en

torno al uso de redes neuronales artificiales en ingenierı́a. Este nuevo método de entre-

namiento Bayesiano también se combinó con modelos basados en fı́sica para crear un algo-

ritmo hı́brido, lo que redujo la cantidad de datos necesarios y mejoró significativamente las

capacidades de extrapolación. Finalmente, los principios antes mencionados se aplicaron a

redes neuronales recurrentes, por lo que los datos secuenciales pueden explotarse utilizando

la metodologı́a propuesta. La naturaleza probabilı́stica de la computación Bayesiana aprox-

imada evita los problemas relacionados con el gradiente, lo que permite aprender las rela-

ciones de dependencia existentes entre datos de entrenamiento alejados en el tiempo sin el

uso de arquitecturas complejas.
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Estos nuevos conceptos se explicaron con ejemplos ilustrativos, para luego evaluar el

rendimiento de los algoritmos propuestos con tres casos de estudio diferentes, principal-

mente relacionados con la integridad estructural de diferentes elementos y materiales. Los

resultados demostraron el potencial de la metodologı́a propuesta para formar parte de sis-

temas de pronóstico y gestión de la salud estructural (PHM), dada su capacidad para cuan-

tificar la incertidumbre y realizar predicciones en tiempo real basadas en datos históricos y

modelos fı́sicos.

Más especı́ficamente, las siguientes conclusiones se pueden extraer de cada una de las

hipótesis y objetivos de investigación descritos en el Capı́tulo 2. Las limitaciones de las

metodologı́as propuestas y los posibles trabajos futuros también se resumen a continuación:

Hipótesis 1: El valor de los pesos y sesgos en las redes neuronales artificiales podrı́a op-

timizarse utilizando computación Bayesiana aproximada por simulación de subconjuntos

(ABC-SS).

La mayorı́a de los algoritmos de entrenamiento Bayesiano actuales usan funciones de

densidad de probabilidad (FDP) paramétricas rı́gidas para describir la función de verosimil-

itud y/o los pesos y sesgos, generalmente una función gaussiana definida por su media y

desviación tı́pica, lo que condiciona su capacidad para representar la incertidumbre en los

datos observados. Y no es la única limitación, ya que a menudo están sujetos a los inconve-

nientes del gradiente y la retropropagación.

En el capı́tulo 5, se desarrolló un nuevo método de entrenamiento para redes neuronales

Bayesianas utilizando computación Bayesiana aproximada por simulación de subconjuntos

como motor de inferencia. La metodologı́a resultante, denominada en esta tesis como BNN

by ABC-SS, se ilustra en las secciones 5.2 y 5.3 del capı́tulo 5 usando ejemplos académicos

con datos sintéticos creados a partir de funciones de seno y coseno con ruido agregado, y

luego aplicados a un caso de estudio sobre fatiga en estructuras compuestas en el Capı́tulo

9. Los resultados revelaron que la formulación no paramétrica de la función de verosimili-

tud y la FDP de los pesos proporciona una cuantificación realista de la incertidumbre acorde

a los datos de entrenamiento. Ası́ mismo, mediante la comparación con el método “Varia-
tional Inference”, “Hamiltonian Monte Carlo” y “Probabilistic Backpropagation, BNN by ABC-SS

demostró mayor estabilidad al realizar predicciones, en gran parte gracias a la ausencia de

gradiente. Particularmente para el caso de estudio sobre la propagación de daño en mate-

riales compuestos, la metodologı́a propuesta puede verse como una alternativa a aquellos

modelos puramente fı́sicos que no logran cuantificar la cantidad real de incertidumbre en

las predicciones.

Asimismo, se realizó una evaluación probabilı́stica de seguridad en la Sección 9.2 del

Capı́tulo 9, utilizando las predicciones llevadas a cabo por las diferentes redes neuronales
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Bayesianas. El objetivo era modelar la probabilidad de fallo en un ciclo de carga determi-

nado en función de la predicción probabilistica del algoritmo y un umbral de daño pre-

definido. BNN by ABC-SS proporcionó los mejores resultados, demostrando flexibilidad

para capturar la variabilidad en los datos. Por lo tanto, sus predicciones sobre la probabili-

dad de fallo se aproximaron significativamente bien a los datos observados.

Finalmente, se puede concluir que este nuevo algoritmo de entrenamiento es especial-

mente útil cuando se aplica a problemas donde se requiere tomar una decisión teniendo

en cuenta la cantidad de incertidumbre existente. Por la misma razón, sus predicciones

también se pueden utilizar en evaluaciones de seguridad, lo que a su vez ayuda a tomar

decisiones mejor informadas con respecto al mantenimiento, o la posible sustitución del

elemento estructural.

En cuanto a trabajos futuros, la escalabilidad del método propuesto para entrenar redes

neuronales profundas, con espacios de parámetros de alta dimensión y grandes conjuntos

de datos de entrenamiento, podrı́a ampliar aún más el rango de aplicaciones potenciales

de esta metodologı́a. Igualmente, se debe investigar un método de muestreo más dirigido,

de modo que se pueda reducir el número de muestras requeridas y mejorar la eficiencia

del método en general. Ambos caminos están estrechamente relacionados y establecen una

continuación natural a esta lı́nea de investigación.

Hipótesis 2: Las limitaciones relacionadas con la escasez de datos, la extrapolación y

la cuantificación de la incertidumbre podrı́an mitigarse si modelos basados en fı́sica se in-

cluyen en la ecuación de la red neuronal en forma de formulaciones matemáticas, y se usa

un entrenamiento Bayesiano.

El capı́tulo 6 de esta tesis presentó un nuevo algoritmo que combina BNN by ABC-SS con

modelos basados en fı́sica, el llamado PG-BNN by ABC-SS. A diferencia de otras redes neu-

ronales guiadas/informadas por fı́sica, en las que esta a menudo se introduce en la función

de coste o a través de ciertas condiciones de contorno, y luego se retropropaga durante el

entrenamiento, el algoritmo propuesto inserta la fı́sica directamente en la ecuación de la

red neuronal Bayesiana, lo que mejora las capacidades de extrapolación. Adicionalmente,

ABC-SS es un método de entrenamiento sin evaluación del gradiente que dota al algoritmo

de estabilidad, flexibilidad y capacidad de cuantificar la incertidumbre. Esas propiedades

fueron evaluadas utilizando un caso de estudio sobre el comportamiento de una columna de

hormigón armado durante un evento sı́smico, donde la precisión y fiabilidad de PG-BNN

by ABC-SS superó las de las actuales redes neuronales guiadas por fı́sica y entrenadas con

retropropagación, y mejoró significativamente a los modelos basados puramente en fı́sica y

datos.

Las dos ventajas principales de PG-BNN by ABC-SS, a saber, su capacidad para extrap-

olar fuera del dominio del conjunto de datos de entrenamiento y para cuantificar la incer-

tidumbre en los resultados, mejoran significativamente la precisión de las predicciones sobre
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eventos futuros y limitan el riesgo en el posterior proceso de toma de decisiones. Los resul-

tados del caso de estudio mostraron el potencial del algoritmo propuesto para convertirse,

si se combina con inspecciones visuales, en una herramienta eficaz y rápida para evaluar

y diagnosticar el estado de los elementos estructurales después de eventos sı́smicos. Cier-

tamente, una herramienta que pueda anticipar el resultado de un evento del que existen

pocos datos, con un grado definido de confianza, podrı́a ser particularmente útil en difer-

entes campos de la ingenierı́a.

Los futuros esfuerzos de investigación deben centrarse en diferentes formas de intro-

ducir los modelos fı́sicos dentro de la arquitectura de la red neuronal artificial, de modo que

los parámetros de los modelos basados en datos y en fı́sica estén estrechamente interconec-

tados. También se debe explorar el uso de funciones de activación adaptativas.

Hipótesis 3: Una red neuronal recurrente (RNN) que incluye modelos basados en fı́sica

en su ecuación y es entrenada usando métodos Bayesianos puede evitar las limitaciones ya

mencionadas, proporcionando una metodologı́a útil para el pronóstico. Del mismo modo,

se pueden evitar las “gated units”, reduciendo la cantidad de pesos y sesgos requeridos.

Cuando los datos observados son secuenciales, el éxito de las RNN en todas sus difer-

entes versiones es incuestionable; sin embargo, su rendimiento depende en gran medida de

la disponibilidad de grandes cantidades de datos de entrenamiento, y esto no es algo fre-

cuente en ingenierı́a civil. Por otro lado, el proceso de entrenamiento de las RNN actuales

se basa en la evaluación de una función de coste y el uso del algoritmo “backpropagation”, lo

que implica algunos inconvenientes bien conocidos como “vanishing gradient” y “exploding
gradient”, o el estancamiento en mı́nimos locales, proporcionando resultados variables.

En el Capı́tulo 7, se propuso una nueva RNN Bayesiana guiada por fı́sica y entrenada

con ABC-SS. Los modelos basados en fı́sica se introducen en la ecuación de la RNN, lo que

mitiga los problemas relacionados con la falta de datos y permite la extrapolación. Esto es

especialmente importante en la realización de pronóstico sobre horizontes lejanos. Al mismo

tiempo, el uso de ABC-SS como motor de aprendizaje se traduce en pesos y sesgos proba-

bilı́sticos no paramétricos, regularización Bayesiana, ausencia de evaluación del gradiente y

predicciones probabilı́sticas con cuantificación de incertidumbre. Los mismos principios se

aplicaron a las redes neuronales LSTM, denominadas LSTM by ABC-SS en esta tesis, para

evaluar si existe algún beneficio adicional en el uso de arquitecturas más complejas, incluso

cuando no se lleva a cabo la evaluación del gradiente.

La RNN bayesiana propuesta se ha aplicado a dos experimentos de ingenierı́a estruc-

tural diferentes sobre la progresión del daño por fatiga en materiales compuestos y las acel-

eraciones en edificios de hormigón armado durante eventos sı́smicos. Los resultados han

demostrado que, si bien PG-BRNN by ABC-SS proporciona una precisión comparable a las

RNN guiadas por fı́sica actuales, sus predicciones en diferentes ejecuciones del algoritmo
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presentan muy poca desviación, lo que resulta en una opción más fiable. Además, en com-

paración con su competidor Bayesiano MC Dropout, el algoritmo propuesto mostró una

cuantificación más precisa y realista de la incertidumbre. Finalmente, PG-LSTM by ABC-SS

no presentó ninguna mejora sobre PG-BRNN by ABC-SS en términos de precisión o estabili-

dad, mientras que el tiempo de computación aumentó significativamente debido a la mayor

cantidad de parámetros a entrenar. Esto demuestra que ABC-SS permite que la arquitectura

básica de RNN capture dependencias a largo plazo, sin necesidad de “gated units”.

En relación a trabajos futuros, BRNN by ABC-SS podrı́a explorarse como método de

predicción en tiempo “quasi-real” para sistemas PHM a bordo, siempre que haya suficientes

datos reales disponibles. Asimismo, PG-BRNN by ABC-SS ha demostrado potencial para

convertirse en una herramienta de predicción “in-situ” para eventos sı́smicos y/o réplicas

en edificios, ayudando ası́ a evaluar rápidamente su integridad estructural y la seguridad de

los sistemas de servicios públicos. Por último, y en lı́nea con las conclusiones de la Hipótesis

1, ABC-SS está limitado por la dimensión del espacio de parámetros y puede no ser ade-

cuado para entrenar RNN muy grandes con una gran cantidad de neuronas, como las que

se usan para el reconocimiento de video. Si bien las aplicaciones de ingenierı́a no suelen

requerir redes neuronales con un elevado número de pesos y sesgos, es necesario explorar

la posibilidad de ampliar la capacidad de entrenamiento de ABC-SS a arquitecturas más

complejas. El uso de computación paralela también podrı́a acelerar el método de muestreo

en ABC-SS, ayudando a optimizar los recursos computacionales disponibles.
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A
Research records

A.1 Journal articles

The methodologies and results presented in this thesis, along with other related contribu-

tions of the author, have been partially reflected in the following publications:

• Juan Fernández, Manuel Chiachı́o, Juan Chiachı́o, Rafael Muñoz, Francisco Herrera.

Uncertainty quantification in Neural Networks by Approximate Bayesian Computa-

tion: Application to fatigue in composite materials. Engineering Applications of Artificial
Intelligence (2022), vol. 107, p. 104511 (I.F: 7.802, Rank:19-190=10%, 10 cites)

• Juan Fernández, Juan Chiachı́o, Manuel Chiachı́o, José Barros, Matteo Corbetta. Physics-

guided Bayesian neural networks by ABC-SS: Application to reinforced concrete columns.

Engineering Applications of Artificial Intelligence (2023), vol. 119, p. 105790 (I.F: 7.802,

Rank:19-190=10%)

• Manuel Chiachı́o, Marı́a Megı́a, Juan Chiachı́o, Juan Fernández, Marı́a L. Jalón. Struc-

tural digital twin framework: Formulation and technology integration. Automation in
Construction (2022), vol. 140, p. 104333 (I.F: 10.517, Rank:5-175=2.857%, 4 cites)

• Ali Saleh, Manuel Chiachı́o, Juan Fernández, Athanasios Kolios. Self-adaptive opti-

mized maintenance of offshore wind turbines by intelligent Petri nets. Reliability Engi-
neering System Safety (2023), vol. 231, p. 109013 (I.F: 7.247, Rank:12-102=11.765%)
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A.2 International conference and article

• 14th Annual Conference of the Prognostics and Health Management Society (Nov 1 –

4, 2022), Nashville, Tennessee, USA.

– Juan Fernández, Juan Chiachı́o, Manuel Chiachı́o, Ali Saleh. Probabilistic Safety

Assessment in Composite Materials using BNN by ABC-SS. In Annual Conference
of the PHM Society (2022, Vol. 14, No. 1).

A.3 International research stay

• Research stay and collaboration with the Diagnostics & Prognostics Group in the In-

telligent Systems Division at NASA Ames Research Center, Moffet Field, California,

USA.

– Application of physics-informed neural networks to predictions about the per-

formance of real engineering components in aviation (unmanned aerial vehicles),

using approximate Bayesian computation as the training method to allow for un-

certainty quantification.

A.4 Open Access Code

A basic implementation in Python of Bayesian Neural Networks trained with Approximate

Bayesian Computation by SubSet Simulation was uploaded to GitHub, and the link can be

found below. Furthermore, two illustrative examples are provided to explain the learning

process through the simulation levels, and also how the uncertainty varies when interpolat-

ing and extrapolating. Similar examples are also described in this thesis, specifically Illus-

trative Problem 1 and Illustrative Problem 2 in Chapter 5.

Link→ https://github.com/J-Fdez/BNN-by-ABC-SS.git
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