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A B S T R A C T

The main objective of this paper is to build stochastic models to describe the evolution-in-time of a system and
to estimate its characteristics when direct observations of the system state are not available. One important
application area arises with the deployment of sensor networks that have become ubiquitous nowadays with
the purpose of observing and controlling industrial equipment. The model is based on hidden Markov processes
where the observation at a given time depends not only on the current hidden state but also on the previous
observations. Some reliability measures are defined in this context and a sensitivity analysis is presented in
order to control for false positive (negative) signals that would lead to believe erroneously that the system is
in failure (working) when actually it is not. System maintenance aspects based on the model are considered,
and the concept of signal-runs is introduced. A simulation study is carried out to evaluate the finite sample
performance of the method and a real application related to a water-pump system monitored by a set of sensors
is also discussed.
1. Introduction

The advances in sensing and automated data collection from multi-
ple sensors has given rise to the availability of large datasets providing
useful information (signals or indicators) about certain aspects of the
real health of industrial equipment [1,2]. The nature of this information
can be very heterogeneous, producing multiple types of variables, such
as, speed or vibration signals, temperature or pressure measurements,
for instance. The key question is how to interpret such signals to
establish a reliable diagnostic of the real level of performance of the
equipment [2–4].

In summary, multi-sensors or control devices are used to provide
raw signals which need to be processed to model the physical state
and degradation of components. It is a very important challenge for
engineers to provide methods to define the state of their equipment
(broken or functioning) given the values of these indicators or signals.

In this context, different techniques have been proposed in the
literature to predict the health state of a system and prevent potential
failures using sensed data, one of these techniques are Hidden Markov
Models (HMM), which are a powerful and popular statistical tool
for modelling partially observable systems and has been successfully
applied in many application areas in Engineering. In [5] a bibliographic
review of HMMs and extensions is presented in general and in [6] in
reliability, in particular. In Table 1 we present a short review of recent
literature.
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In this paper a stochastic model based on Hidden Markov processes
is build to describe the evolution-in-time of a system and its properties
are estimated from observations that do not directly inform the true
current state of the system but provide only some indicators.

Hidden Markov models are based on a coupled process (e.g. Markov
chain), say (𝑋, 𝑌 ), where 𝑋 is an unobserved random sequence de-
scribing the state of the system (i.e., engine), and 𝑌 is assumed an
observable random sequence, giving the values of the parameters of
some indicators (i.e., vibration, pressure, temperature, etc.), whose law
depends on the value of the corresponding unobserved sequence 𝑋.
In order to be able to handle the above coupled process, we have to
assume some particular probabilistic structure. For example, for 𝑋 we
can suppose that it is an i.i.d sequence or a Markov or semi-Markov
chain; while for 𝑌 , usually it is thought as conditionally independent
with its law depending on the corresponding value of 𝑋. In this case,
if 𝑋 is a Markov chain, we denote the process as M1M0-HMM [7,8].

In the present paper, we assume that the observations not only
depend on the hidden state but also on the previous observation [9].
Thus, the hidden process is a Markov chain and the observed process
(the measurement process) conditionally to the hidden one is also a
Markov chain. Such a coupled process (𝑋, 𝑌 ) is called a double Markov
chain in [10]. We prefer notation M1M1-HMM for the double Markov
chain to emphasize its relation to the basic model HMM with structure
M1M0. Very close to this model are the so called regime-switching
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Table 1
Review of bibliography (in alphabetical order) on recent applications of HMM and related models in Reliability Engineering.

Reference Technique Contribution/Application

Chen et al. (2019) [9] HMM-AO Degradation modelling of manufacturing
systems and a maintenance policy based
on remaining useful life (RUL)

Cheng et al. (2023) [14] CT -HMM Optimization of inspection
and condition based mission abort policy
for a partially observed safety-critical system

Coraça et al. (2023) [15] HMM Building an unsupervised learning framework
for vibration based health monitoring of a structure

Danisman & Kocer (2021) [16] BD-HMM Capture first-order Markov
dependency with application to earthquakes and stock market

Gamiz et al. (2023a) [7] HMM New reliability measures and maintenance
strategies based on critical probabilities

Gamiz et al. (2023b) [8] CT -HMM Discretization strategies for estimating
the CT model

Ghasvarian Jahromi et al. (2023) [17] HMM Short-term wind speed and power forecasting

Gualeni et al. (2023) [18] HMM Maintenance in ships engine room,
the space available around machinery and systems

Guo & Liang (2022) [19] HMM & MDP Optimization of inspection and
maintenance strategies for multi-state systems

Habayeb et al. (2018) [20] HMM Identify at an early stage the bug reports
that would require a long time to fix

Khan & Abuhasel (2021) [21] HMM & GA Detection of threat in Industrial Internet of things

Li et al. (2020) [22] HMM RUL prediction and estimation of suitable
maintenance interval for the component of a
hydro-turbine that cannot be online monitored

Lin et al. (2023) [23] HMM & NN Fit the local fluctuations in the degradation process
of lithium batteries

Martindale et al. (2021) [24] H -HMM Smart annotation of cyclic data to reduce
the cost of labelling data based on sensors

Soleimani et al. (2021) [25] HMM & BN Fault diagnosis and prognosis for complex,
multi-state, transient, and dynamic systems
such as automotive propulsion systems

Zhao et al. (2021) [26] HMM Description of multi-state systems degradation
with data from a nuclear power plant

Notation: AR= Auto-regressive; AO=Auto-correlated Observations; CT=Continuous-time; BD=Binary Dependence; MDP= Markov Decision Process;
GA= Genetic Algorithm; NN=Neural Network;H= Hierarchical; BN=Bayesian Network. HMM refers to the model in discrete time with
dependence structure M1-M0.
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models in which the system dynamic behaviours are allowed to be
changed over time according to the states of an underlying Markov
chain, which is also called a modulating Markov chain (see [11,12]
or [13] for distinct reliability applications of this model).

In practice it is common that the observations are registered through
a longitudinal study and therefore we assume that there is some corre-
lation between the successive observed measurements (see [9,10]).

These models have recently proven great potential in applications as
can be seen in [20,27], and [28], to cite some recent works. In particu-
lar in [9] a hidden Markov model with auto-correlated observations
is developed to handle the degradation modelling of manufacturing
systems.

Firstly, we focus on a continuous-time model to describe both the
hidden-state process and the observed-indicator process. However, we
assume that observations are registered regularly in time, which is a
quite realistic situation in practice. This means that observations can
be treated as realizations of a discrete-time model. So we also present
the model in discrete-time.

For the continuous-time model, we assume that 𝑋 = {𝑋𝑡; 𝑡 ≥ 0}
s a Markov chain taking values in a finite set 𝐸, where transitions
etween states are given by an unknown generating matrix 𝐀; and,
hat 𝑌 = {𝑌𝑡; 𝑡 ≥ 0} is also a Markov chain whose distribution at time
depends on the state of 𝑋𝑡, that is, given the event {𝑋𝑡 = 𝑖}, the
enerating matrix governing the transitions of 𝑌 is 𝐁𝑖, for each 𝑖 ∈ 𝐸.
e consider the case where 𝑌 takes values in a finite set  .
The problem here is to estimate the generating matrix of the Markov

chain 𝑋, i.e. 𝐀, as well as the set of generating matrices {𝐁 , 𝑖 ∈ 𝐸},
2

𝑖

efined above. To do it, we will use the discretization approach pre-
ented in [8]. The estimation of the characteristics of the discrete-time
1M1-HMM process can be done by extending the algorithms used for
1M0-HMM model such as the Baum-Welch algorithm (see [29–31]).
hen, a back transformation will allow us to build the continuous-time
MM.

The main contributions of this paper are the following:

• A new dynamic modelling frame for the reliability analysis of a
system based on a longitudinal follow-up that only provides infor-
mation on certain aspects related to the system operation condi-
tions, while the real state of the system is hidden or, in any case,
unobserved during the follow-up. The auto-correlation of the ob-
served measurements is considered in the model, which is a real-
istic situation (as can be seen from the real application presented)
and generalizes [7,8]. We denote our model M1M1-HMM.

• Maximum-likelihood estimators of the model are obtained and
their theoretical properties are discussed. The reliability con-
cept is adapted to this context. Both versions, discrete-time and
continuous-time, are considered.

• A sensitivity analysis is carried out based on the concepts of false-
positive and false-negative that are also introduced in this paper in
the context of HMMs.

• Finally, some maintenance related questions are discussed based
on the sequence of registered indicators, which will be called
signal-runs in this paper.
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To illustrate the method we analyse a dataset from a water pump
installed in a small area. The information is collected by a set of sensors
which monitor parts of the water pump over time. Specifically there are
50 sensors measuring temperature, pressure, vibration, load capacity,
volume, flow density, and others, every minute from 01-04-2018 to
31-08-2018. In total there are 220320 data points and 50 variables.
Unlike [2,4,22] that propose different data fusion models, we do not
combine the information provided by the full multi-sensors platform,
rather we use the individual information provided by a unique sensor
at a time. Then we can compare the results provided by all sensors to
decide which one determines the true state of the machine with the
lowest error.

The present paper is organized as follows. Section 2 describes the
model M1M1-HMM in continuous time. In Section 3, the M1M1-HMM
model is presented in discrete time, and a discretization strategy is
presented to estimate the model in continuous time. In Section 4,
the reliability function of the system based on this type of models is
introduced, both in discrete time and in continuous time. Sensitivity
analysis is introduced in Section 5 and maintenance related questions
are also discussed. In Section 6 simulations are carried out and a real
case based sensor-data from a water pump is studied. Section 7 gives
the conclusions. Finally, in the Appendix supplementary material is
provided.

2. The continuous-time M1M1-HMM model

2.1. Example. A two-unit system with hot standby redundancy

Consider the following situation. A structure consists of 2 units
operating in redundancy as follows. Each unit can be in one of two
states. When the unit 𝑖 is in state ON, it changes to state OFF at a rate
𝜆𝑖, and it changes from OFF to ON at a rate 𝜇𝑖, for 𝑖 = 1, 2. The units
operate independently and the current state of each unit is not available
to the observer. In other words, the states of the units are hidden.

The only information about the system performance is given by an
indicator variable 𝑌𝑡 that gives value 0 when the performance is good
and 1 otherwise.

The state-space of the structure (i.e., the two-unit system) can be
represented by the set 𝐸 = {1, 2, 3, 4} with the following encoding: 1=
‘‘both units are ON’’; 2= ‘‘unit 1 is ON and unit 2 is OFF’’; 3= ‘‘unit 1
is OFF and unit 2 is ON’’; 4= ‘‘both units are OFF’’.

If we denote 𝑋(𝑡) the state occupied by the non-observed structure
at time 𝑡, then {𝑋𝑡, 𝑡 > 0} is a continuous-time Markov chain (CTMC)
taking values in 𝐸, with generating matrix given by

𝐀 =

⎛

⎜

⎜

⎜

⎜

⎝

−(𝜆1 + 𝜆2) 𝜆2 𝜆1 0
𝜇2 −(𝜇2 + 𝜆1) 0 𝜆1
𝜇1 0 −(𝜇1 + 𝜆2) 𝜆2
0 𝜇1 𝜇2 −(𝜇1 + 𝜇2)

⎞

⎟

⎟

⎟

⎟

⎠

. (1)

For 𝑡 > 0, 𝐏(𝑡) = 𝑒𝐀𝑡 is the transition probability matrix. We assume
that {𝑌𝑡, 𝑡 > 0} is a continuous-time Markov chain taking values in
 = {0, 1} with generating matrix conditioned on the true internal
configuration of the structure as follows. If 𝑋𝑡 = 𝑖, then the transition
intensities of the process 𝑌 are given by the matrix 𝐁𝑖, for 𝑖 = 1, 2, 3, 4,
and 𝐐𝑖(𝑡) = 𝑒𝐁𝑖𝑡 is the corresponding transition probability matrix, that
is, the matrix whose entries are 𝑄𝑖;01(𝑡) = P(𝑌𝑡 = 1 ∣ 𝑋𝑡 = 𝑖, 𝑌0 = 0) =
1 − 𝑄𝑖,00(𝑡), and 𝑄𝑖;10(𝑡) = P(𝑌𝑡 = 0 ∣ 𝑋𝑡 = 𝑖, 𝑌0 = 1) = 1 − 𝑄𝑖;11(𝑡), for
𝑖 ∈ 𝐸.

A full description of the system behaviour is be given by the two-
dimensional process (𝑋𝑡, 𝑌𝑡), whose state space is the set 𝐸 = 𝐸 ×  .
Our main purpose is to derive the distribution characteristics of this
two-dimensional process.
3

.2. The model

In general, {(𝑋𝑡, 𝑌𝑡); 𝑡 > 0} is a two-dimensional continuous-time
arkov chain with state-space 𝐸 = 𝐸 × and transition matrix 𝐏̃ with

lements

𝑡̃((𝑖, 𝑦′), (𝑗, 𝑦)) = 𝑃𝑖𝑗 (𝑡)𝑄𝑗;𝑦′𝑦(𝑡),

or 𝑖, 𝑗 ∈ 𝐸 and 𝑦′, 𝑦 ∈  , and 𝑃⋅⋅ and 𝑄⋅;⋅⋅ defined above.
The corresponding generating matrix is 𝐀̃ with elements 𝐴((𝑖, 𝑦𝑙),

𝑗, 𝑦ℎ)) for (𝑖, 𝑦𝑙), (𝑗, 𝑦ℎ) ∈ 𝐸. This matrix is obtained by studying the
ollowing limits

im
𝑡→0

1
𝑡

{

P(𝑋𝑡 = 𝑗, 𝑌𝑡 = 𝑦ℎ ∣ 𝑋0 = 𝑖, 𝑌0 = 𝑦𝑙) − 𝛿𝑖𝑗𝛿𝑦𝑙𝑦ℎ
}

= lim
𝑡→0

P(𝑋𝑡 = 𝑗 ∣ 𝑋0 = 𝑖)P(𝑌𝑡 = 𝑦ℎ ∣ 𝑌0 = 𝑦𝑙 , 𝑋𝑡 = 𝑗) − 𝛿𝑖𝑗𝛿𝑦𝑙𝑦ℎ
𝑡

= lim
𝑡→0

𝑃𝑖𝑗 (𝑡)𝑄𝑗;𝑦𝑙𝑦ℎ (𝑡) − 𝛿𝑖𝑗𝛿𝑦𝑙𝑦ℎ
𝑡

,

for different values of 𝑖, 𝑗 ∈ 𝐸 and 𝑦𝑙 , 𝑦ℎ ∈  , and where 𝛿⋅⋅ is the
function delta of Kronecker.

We consider 4 cases:

• 𝑖 ≠ 𝑗 and 𝑙 ≠ ℎ, then

𝐴((𝑖, 𝑦𝑙), (𝑗, 𝑦ℎ)) = lim
𝑡→0

𝑃𝑖𝑗 (𝑡)𝑄𝑗;𝑦𝑙𝑦ℎ (𝑡)
𝑡

= 0,

using that for 𝑖 ≠ 𝑗, 𝑃𝑖𝑗 (𝑡) → 0, and, for 𝑙 ≠ 𝑘, 𝑄𝑗;𝑦𝑙𝑦ℎ (𝑡)∕𝑡 →
𝐵𝑗;𝑦𝑙𝑦ℎ < +∞, as 𝑡→ 0.

• 𝑖 = 𝑗 and 𝑙 ≠ ℎ, then

𝐴((𝑖, 𝑦𝑙), (𝑖, 𝑦ℎ)) = lim
𝑡→0

𝑃𝑖𝑖(𝑡)𝑄𝑗;𝑦𝑙𝑦ℎ (𝑡)
𝑡

= 𝐵𝑗;𝑦𝑙𝑦ℎ ,

using that 𝑃𝑖𝑖(𝑡) → 1, and 𝑄𝑗;𝑦𝑙𝑦𝑘 (𝑡)∕𝑡→ 𝐵𝑗;𝑦𝑙𝑦ℎ , as 𝑡 → 0.
• 𝑖 ≠ 𝑗 and 𝑦𝑙 = 𝑦ℎ = 𝑦, then

𝐴((𝑖, 𝑦), (𝑗, 𝑦)) = lim
𝑡→0

𝑃𝑖𝑗 (𝑡)𝑄𝑗;𝑦𝑦(𝑡)
𝑡

= 𝐴𝑖𝑗 ,

using that 𝑄𝑗;𝑦𝑦(𝑡) → 1, and 𝑃𝑖𝑗 (𝑡)∕𝑡→ 𝐴𝑖𝑗 , as 𝑡 → 0.
• 𝑖 = 𝑗 and 𝑦𝑙 = 𝑦ℎ = 𝑦, then

𝐴((𝑖, 𝑦), (𝑖, 𝑦)) = lim
𝑡→0

𝑃𝑖𝑖(𝑡)𝑄𝑗;𝑦𝑦(𝑡) − 1
𝑡

= 𝐴𝑖𝑖 + 𝐵𝑗;𝑦𝑦,

where we write

lim
𝑡→0

𝑃𝑖𝑖(𝑡)𝑄𝑗;𝑦𝑦(𝑡) − 1
𝑡

= lim
𝑡→0

(𝑃𝑖𝑖(𝑡) − 1)𝑄𝑗;𝑦𝑦(𝑡) +𝑄𝑗;𝑦𝑦(𝑡) − 1
𝑡

= lim
𝑡→0

𝑃𝑖𝑖(𝑡) − 1
𝑡

+ lim
𝑡→0

𝑄𝑗;𝑦𝑦(𝑡) − 1
𝑡

,

using that lim𝑡→0𝑄𝑗;𝑦𝑦(𝑡) = 1, for any 𝑦 ∈  .

2.2.1. Example. A two-unit system with hot standby redundancy
In this example, the generating matrix of the internal structure

(unobserved) is given in Eq. (1).
Then, for the two-dimensional process (𝑋𝑡, 𝑌𝑡), the state space 𝐸 =

×  , with 𝐸 = {1, 2, 3, 4} and  = {0, 1}, can be written as

𝐸 = {(1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1), (4, 0), (4, 1)},

and the corresponding generating matrix 𝐀̃ is given in Box I.

2.2.2. Matrix notation
Without loss of generality, we can represent the states of the hidden

MC by 𝐸 = {1,… , 𝑑}, and for the observable MC we take  =
{𝑦1,… , 𝑦𝑠}. Then the elements of the set 𝐸 can be ordered as follows

𝐸 = {(1, 𝑦1),… , (1, 𝑦𝑠), (2, 𝑦1),… , (2, 𝑦𝑠),… , (𝑑, 𝑦1),… , (𝑑, 𝑦𝑠)}.

Then, the generating matrix of the two-dimensional process can be
expressed as

𝐀̃ = 𝐀⊗ 𝐈 + Diag(𝐁 ,… ,𝐁 ), (2)
𝑠 1 𝑑
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𝐀̃ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐴11 + 𝐵1;00 𝐵1;01 𝐴12 0 𝐴13 0 𝐴14 0
𝐵1;10 𝐴11 + 𝐵1;11 0 𝐴12 0 𝐴13 0 𝐴14
𝐴21 0 𝐴22 + 𝐵2;00 𝐵2;01 𝐴23 0 𝐴24 0
0 𝐴21 𝐵2;10 𝐴22 + 𝐵2;11 0 𝐴23 0 𝐴24
𝐴31 0 𝐴32 0 𝐴33 + 𝐵3;00 𝐵3;01 𝐴34 0
0 𝐴31 0 𝐴32 𝐵3;10 𝐴33 + 𝐵3;11 0 𝐴34
𝐴41 0 𝐴42 0 𝐴43 0 𝐴44 + 𝐵4;00 𝐵4;01
0 𝐴41 0 𝐴42 0 𝐴43 𝐵4;10 𝐴44 + 𝐵4;11

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Box I.
where ⊗ denotes the Kronecker product of matrices, and with Diag
we denote a function that transforms a set of 𝑑 square matrices of
dimension 𝑠 × 𝑠 each into a matrix of dimension 𝑑 ⋅ 𝑠 × 𝑑 ⋅ 𝑠 that can be
written in blocks as follows

Diag(𝐁1,… ,𝐁𝑠) =

⎛

⎜

⎜

⎜

⎜

⎝

𝐁1 𝟎𝑠 … 𝟎𝑠
𝟎𝑠 𝐁2 … 𝟎𝑠
⋮ ⋮ ⋱ ⋮
𝟎𝑠 … 𝟎𝑠 𝐁𝑑

⎞

⎟

⎟

⎟

⎟

⎠

, (3)

where 𝟎𝑠 is a square matrix of zeros with dimension 𝑠 × 𝑠.

Remark
In the particular case of the two-unit system the transition matrix 𝐏̃

is determined by the following vector of parameters

𝜃 = (𝜆1, 𝜆2, 𝜇1, 𝜇2, 𝐵1;01, 𝐵1;10, 𝐵2;01, 𝐵2;10, 𝐵3;01, 𝐵3;10, 𝐵4;01, 𝐵4;10, ).

All these parameters are interpretable from the point of view of the
system behaviour. For example, 𝐵2;01 (𝐵3;01) gives the failure rate of
the system when unit 1 (2) is ON and unit 2 (1) is OFF. If for instance,
the corresponding estimations show a relation 𝐵̂1;01 > 𝐵̂2;01, this can
suggest unit 1 has a bigger impact in the system performance, which
can lead to detecting weaknesses in the system structure and, among
other things, maintenance strategies can be designed based on priority
units. All this, provided that the indicators give reliable information as
will be discussed later in Section 5.1.

3. The discrete-time M1M1-HMM model

In this section, we are not concerned with time. Rather, we are just
interested in the successive states occupied by the system at a (pre-
specified) grid of equispaced times and thus we consider a discrete-time
stochastic process to represent the system behaviour.

3.1. Model description

Let {(𝑋𝑛, 𝑌𝑛), 𝑛 ≥ 0} be a two-dimensional stochastic process such
that 𝑋𝑛 is a discrete-time Markov chain (DTMC) taking values in the
set 𝐸 = {1, 2,… , 𝑑} (i.e., states), and 𝑌𝑛 is a DTMC with values in
 = {𝑦1, 𝑦2,… , 𝑦𝑠} (i.e., signals).

Let us denote 𝐏 = (𝑃𝑖𝑗 ; 𝑖, 𝑗 ∈ 𝐸) the transition matrix of the MC 𝑋𝑛.
For a fixed 𝑖 ∈ 𝐸 transitions of the MC 𝑌𝑛 occur according to the matrix
𝐐𝑖, that is,1

𝑄𝑖(𝑦𝑙 , 𝑦ℎ) = P(𝑌𝑛 = 𝑦ℎ ∣ 𝑌𝑛−1 = 𝑦𝑙 , 𝑋𝑛 = 𝑖),

for all 𝑦𝑙 , 𝑦ℎ ∈  . In total we have
{

𝐐1,𝐐2,… ,𝐐𝑑
}

potential transition
laws for the DTMC 𝑌𝑛.

1 Since confusion is not likely here, we consider this notation, although
we have already used 𝐏 to denote the matrix of transitions functions in the
continuous-time model. Same discussion can be considered for notation 𝐐.
4

Fig. 1. The discrete-time HMM with M1-M1 structure of dependence.

Then {(𝑋𝑛, 𝑌𝑛), 𝑛 ≥ 0} is a two-dimensional discrete-time Markov
chain with transition matrix that is denoted as 𝐏̃ and has elements

𝑃 ((𝑖, 𝑦𝑙), (𝑗, 𝑦ℎ)) =

= P((𝑋𝑛, 𝑌𝑛) = (𝑗, 𝑦ℎ) ∣ (𝑋𝑛−1, 𝑌𝑛−1) = (𝑖, 𝑦𝑙))

= 𝑃𝑖𝑗𝑄𝑗 (𝑦𝑙 , 𝑦ℎ), (4)

for all (𝑖, 𝑦𝑙), (𝑗, 𝑦ℎ) ∈ 𝐸. This matrix, can be written in a compact way
as follows. First, for all 𝑖 ∈ 𝐸, let us define the subset of pairs whose
first components is 𝑖, that is, 𝑖̃ = {(𝑖, 𝑦1),… , (𝑖, 𝑦𝑠)}. Then we can split
the state space as follows 𝐸 = 1̃ ∪ 2̃ ∪ … 𝑑 and finally the transition
matrix of the two-dimensional process can be written in blocks as

𝐏̃ =

⎛

⎜

⎜

⎜

⎜

⎝

𝑃11𝐐1 𝑃12𝐐2 … 𝑃1𝑑𝐐𝑑
𝑃21𝐐1 𝑃22𝐐2 … 𝑃2𝑑𝐐𝑑

⋮ ⋮ ⋱ …
𝑃𝑑1𝐐1 𝑃𝑑2𝐐2 … 𝑃𝑑𝑑𝐐𝑑

⎞

⎟

⎟

⎟

⎟

⎠

, (5)

where, for 𝑖, 𝑗 ∈ 𝐸, the sub-matrix 𝑃𝑖𝑗𝐐𝑗 gives transitions from the class
of states 𝑖̃ to 𝑗.

We assume that the first component of the coupled process, i.e. 𝑋𝑛,
is not observable while the only information that can be registered
over time is about the second component, i.e. 𝑌𝑛, see Fig. 1. Then
{(𝑋𝑛, 𝑌𝑛), 𝑛 ≥ 0} is a discrete-time hidden Markov process with struc-
ture dependency M1-M1. In the following we will denote this process
DT-M1M1-HMM.

3.2. Maximum-likelihood estimation

Let us assume that we observe the dataset 𝑌 𝑁1 =
{

𝑌1, 𝑌2,… , 𝑌𝑁
}

,
where the following notation is being considered.

Notation:

• 𝑌 𝑘1+𝑘2𝑘1
=
{

𝑌𝑘1 , 𝑌𝑘1+1,… , 𝑌𝑘1+𝑘2
}

• 𝑋𝑘1+𝑘2
𝑘1

=
{

𝑋𝑘1 , 𝑋𝑘1+1,… , 𝑋𝑘1+𝑘2

}

• 𝜽 vector of unknown parameters: 𝜽 = (𝜃1, 𝜃2); and, with 𝜽0
denoting the true vector of parameters.
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• 𝜃1 = 𝐏∗ where, 𝐏∗ is the matrix 𝐏 without the 𝑑th column. The
number of distinct parameters in 𝜃1 is: 𝑑 ⋅ (𝑑 − 1).

• 𝜃2 = (𝐐∗
1 ,𝐐

∗
2 ,… ,𝐐∗

𝑑 ) with 𝐐∗
𝑖 matrix 𝐐𝑖 without the 𝑠th column.

The total number of parameters to be estimated in 𝜃2 is: 𝑑 ⋅(𝑠−1)⋅𝑠.
Then, the size of vector 𝜃 is 𝑑 ⋅ (𝑑 − 1) + 𝑑 ⋅ 𝑠 ⋅ (𝑠 − 1)

• Initial conditions: 𝑋0 = 1, 𝑌0 = 𝑦1, then 𝛼 = (1, 0,… , 0)(1×𝑑),
𝛽 = (1, 0,… , 0)(1×𝑠)

The likelihood function is given by

𝐿(𝜽) = 𝑝𝜽(𝑌 𝑁1 ) =
∑

𝑋𝑁1 ∈𝐸𝑁
P𝜽(𝑋𝑁

1 , 𝑌
𝑁
1 ), (6)

and then the aim is to find 𝜽̂ maximizing the log-likelihood function,
that is

𝜽̂ = argmax
𝜽

𝓁(𝜽), (7)

with 𝓁(𝜽) = log𝐿(𝜽).

3.3. Estimation of the CT-M1M1-HMM based on discretization

To estimate the characteristics of the model described in Section 2
we consider a procedure that uses observations of the state of the
system regularly registered in a pre-specified grid of times, i.e. 𝑡0 < 𝑡1 <
⋯ < 𝑡𝑁 , with 𝑡𝑛−𝑡𝑛−1 = ℎ, for all 𝑛 = 1,… , 𝑁 , and with ℎ > 0 and small.
We consider the approach presented in [8] where a continuous-time
HMM with dependence structure M1-M0 is analysed.

Usually, among others, for economical reasons, a continuous follow-
up of the system is not possible, and rather observations are registered
regularly in time. In other words, let us assume that the system is
observed at times 𝑡𝑛 = 𝑛 ℎ, with ℎ > 0, some constant. Then we
can consider a discrete version of the two-dimensional process, that
is {(𝑋̂𝑛, 𝑌𝑛), 𝑛 = 0, 1,…}, where 𝑋̂𝑛 is the internal configuration of the
system at time 𝑡𝑛, that is 𝑋̂𝑛 = 𝑋𝑡𝑛 ; and 𝑌𝑛 = 𝑌𝑡𝑛 is the observed indicator
of system performance at time 𝑡𝑛 (see [8]).

Given that the generating matrix of the hidden chain is 𝐀 =
lim𝑡→0(𝐏(𝑡) − 𝐈)∕𝑡, with 𝐈 the identity matrix, we can define

𝐏(ℎ) = 𝐀ℎ + 𝐈,

and, equally, we have

𝐐𝑖(ℎ) = 𝐁𝑖ℎ + 𝐈.

for all 𝑖 ∈ 𝐸.
More specifically, 𝑃𝑖𝑗 (ℎ) is the (𝑖, 𝑗)-element of matrix 𝐏(ℎ) defined

above, that is 𝑃𝑖𝑗 (ℎ) = 𝐴𝑖𝑗ℎ+𝛿𝑖𝑗 , for 𝑖, 𝑗 ∈ 𝐸; and, similarly, for 𝑦′, 𝑦 ∈  ,
𝑄𝑖;𝑦′𝑦(ℎ) = 𝐵𝑖;𝑦′𝑦ℎ + 𝛿𝑦′𝑦, for 𝑖 ∈ 𝐸.

Based on the observations {𝑌 𝑁1 } we obtain the estimators 𝐏̂(ℎ) and
𝐐̂𝑖(ℎ), for all 𝑖 ∈ 𝐸, and then define the following estimators of the
corresponding parameters of the continuous-time model

𝐀̂ =
𝐏̂(ℎ) − 𝐈

ℎ
,

and

𝐁̂𝑖 =
𝐐̂𝑖(ℎ) − 𝐈

ℎ
, 𝑖 ∈ 𝐸,

or ℎ sufficiently small. The asymptotic properties of these estimators
an be deduced using similar arguments as in [8].

. Reliability based on M1M1-HMM models

In this section we define the reliability function based on both
pproaches, discrete-time as well as continuous time.
5

𝑅

4.1. The continuous-time model

The model {(𝑋𝑡, 𝑌𝑡); 𝑡 > 0} is a two-dimensional continuous-time
arkov chain with state-space 𝐸 = 𝐸 ×  and generating matrix 𝐀̃

s deduced in Section 2. Following the arguments in [7], we assume
hat the state-space 𝐸 is split into two subsets such that 𝐸 = 𝑈 ∪ 𝐷,
here we can denote for instance 𝑈 ∶= {1,… , 𝑚}, the working states,
nd 𝐷 ∶= {𝑚 + 1,… , 𝑑}, the down states. For simplicity, and without
oss of generality, this notation is used for the states of the system.
dditionally, the system up states can be defined not only by 𝑈 ∈ 𝐸
ut also by some subset of  . In some situations, the information we
et about the system functioning can be categorized into two groups
f signals. On the one hand, we have a group of signals indicating
good performance, the subset 1; and, on the other hand, there is

nother group of signals 2 for warning of some serious problem in
he system that involves the operation interruption thus causing the
ystem failure, that is, we have also the partition  = 1 ∪ 2. The
et of states of the two-dimensional process (𝑋𝑛, 𝑌𝑛) can be written as
̃ = 𝐸 ×  , with 𝐸 = {(1, 𝑦1),…, (𝑑, 𝑦1), (1, 𝑦2),…, (𝑑, 𝑦2),… , (1, 𝑦𝑠),
2, 𝑦𝑠),… , (𝑑, 𝑦𝑠)}. Let us define ̃ = 𝑈 × 1 and ̃ = ̃ ⧵ ̃ , with
̃ = 𝐸 × already defined. Thus, the corresponding generating matrix
̃ has elements given in Eq. (2) and can be written in blocks as

=
(

𝐀𝑈𝑈 𝐀𝑈𝐷̃
𝐀𝐷̃𝑈 𝐀𝐷̃𝐷̃

)

. (8)

Let us denote  the first time the system visits the set of down states 𝐷,
i.e., the hitting time of set 𝐷. Let us consider ̃ = 𝑈×1 and ̃ = ̃⧵̃ ,
being 𝐸 = 𝐸 × . Then  = inf{𝑡 > 0 ∶ ̃ = (𝑋𝑡, 𝑌𝑡) ∈ ̃}. Therefore the
eliability of the system can be defined as 𝑅c(𝑡) = P( > 𝑡), for 𝑡 ≥ 0.

Conditioning on the initial state (𝑖, 𝑦) ∈ 𝑈 = 𝑈 × 1, we write

𝑅c
(𝑖,𝑦)(𝑡) = P𝑖( > 𝑡) = P𝑖(𝑋𝑠 ∈ 𝑈, 𝑌𝑠 ∈ 1, 0 < 𝑠 ≤ 𝑡)

= P𝑖((𝑋𝑡, 𝑌𝑡) ∈ 𝑈, 0 < 𝑠 ≤ 𝑡), (9)

and then

𝑅c(𝑡) =
∑

(𝑖,𝑦)∈𝑈

𝑅c
(𝑖,𝑦)(𝑡),

or 𝑡 > 0. Using matrix notation, we can write

̃c(𝑡) = 𝛼 exp
(

𝐀̃𝑈𝑈 𝑡
)

𝟏𝑈 ,

here 𝐀̃𝑈𝑈 denotes the sub-matrix of 𝐀̃ with all transition rates among
tates of subset 𝑈 , as given in 8. Based on a sample 𝑌2,… , 𝑌𝑁 , with
̂ = 𝑌 (𝑡𝑛ℎ) for a fixed ℎ small enough, we define the following estimator
f the reliability function in continuous time

̂̃c
ℎ(𝑡) = 𝛼 ⋅ exp(̂̃𝐀ℎ,𝑈𝑈 𝑡) ⋅ 𝟏𝑈 , 𝑡 ≥ 0.

Using similar arguments as in [8], the following result can be
btained.

roposition 1. The estimator ̂̃𝑅c
ℎ(𝑡) is asymptotically Normal, as 𝑁 → ∞,

nd ℎ→ 0, for any 𝑡 ≥ 0, i.e.,

𝑛(̂̃𝑅c
ℎ(𝑡) − 𝑅

c(𝑡))
𝑑

⟶ 𝑁(0, 𝛴𝑅c ).

4.2. The discrete-time model

The model {(𝑋𝑛, 𝑌𝑛); 𝑛 = 0, 1,…} is a two-dimensional discrete-time
Markov chain with state-space 𝐸 = 𝐸 ×  and transition matrix 𝐏̃
as deduced in Section 3. Let us denote  the first time the system
visits the set of down states 𝐷, i.e., the hitting time of set 𝐷, that is,

= min{𝑛 > 0 ∶ ̃ = (𝑋𝑛, 𝑌𝑛) ∈ ̃}. Therefore the reliability of the
ystem can be defined as 𝑅d(𝑛) = 𝐏( > 𝑛), for 𝑛 ≥ 0. Conditioning on
he initial state (𝑖, 𝑦) ∈ 𝑈 = 𝑈 × 1, we write

̃d

(𝑖,𝑦)(𝑛) = P𝑖( > 𝑛) = P𝑖(𝑋𝑚 ∈ 𝑈, 𝑌𝑚 ∈ 1, 0 < 𝑚 ≤ 𝑛)
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= P𝑖((𝑋𝑛, 𝑌𝑛) ∈ 𝑈, 0 < 𝑚 ≤ 𝑛), (10)

and then

𝑅d(𝑛) =
∑

(𝑖,𝑦)∈𝑈

𝑅d
(𝑖,𝑦)(𝑛),

or 𝑛 = 1, 2…. Using matrix notation, we can write

̃d(𝑛) = 𝛼(𝐏̃𝑈𝑈 )
𝑛𝟏𝑈 ,

here 𝐏̃𝑈𝑈 is the sub-matrix of 𝐏̃ with all transition probabilities among
tates of subset 𝑈 , considering a block partition of matrix 𝐏 similar to
. Based on a sample 𝑌1,… , 𝑌𝑁 , we define the following estimator of
he reliability function in discrete time as

̂̃d(𝑛) = 𝛼(̂̃𝐏𝑈𝑈 )
𝑛𝟏𝑈 , 𝑛 ≥ 0.

Using similar arguments as in [7], the following result can be
btained.

roposition 2. The estimator ̂̃𝑅d(𝑛) is asymptotically Normal, as 𝑁 → ∞,
or any 𝑛 ≥ 1, i.e.,

𝑁(̂̃𝑅d(𝑛;𝑁) − 𝑅d(𝑛))
𝑑

⟶ 𝑁(0, 𝛴𝑅d ).

5. Maintenance

Since the observations are registered in a discrete grid of time-
points, let us formulate the problem of maintenance strategies based
on the discrete-time HMM model defined above. That is, let (𝑋𝑛, 𝑌𝑛) be
defined as in Section 3. Following Section 4 we assume that the system
state-space can be split into two subsets, that is 𝐸 = 𝑈 ∪ 𝐷, with 𝑈
the working states, and 𝐷 the down states. As well, the set of signals is
split into two subsets  = 1 ∪2, with 1 the safe signals, and 2 the
warning signals. We consider maintenance policies as follows.

The system is inspected at regular intervals to detect any problem
and intervene if necessary. The natural strategy would consider to
maintain when a warning of the subset 2 is received. However, even

hen a warning arrives, there is a non-zero probability that the system
s working properly. Then an unnecessary maintenance action would
e carried out incurring the corresponding cost of intervention. On the
ther hand, when a safe signal is received, i.e. the subset 1, there
s a positive probability that the system has failed nevertheless. Thus,
he system is not inspected although the operation is stopped which
eans a production loss. In any of the two cases, undesirable economic

onsequences can be triggered for the system environment.
In order to prevent these situations, we propose to implement a

reventive maintenance policy that minimizes the probabilities of error
efined in the next section.

.1. Sensitivity analysis

Two types of error can be committed when a decision is taken based
n the registered signal. On the one hand, there is a positive probability
f receiving a signal of system failure (alarm) while the system is
unctioning properly, we call this False Positive. On the other hand, a
ignal can be emitted indicating good performance while the system
s out of work. This is a False Negative case. What is expected is that
he mechanism that emits the signals works well in the sense that the
robability of getting false positive signals (𝐹𝑃𝑃 ) and the probability of
etting false negative signals (𝐹𝑁𝑃 ) are small enough. In what follows
e discuss the discrete-time model only.

efinition 1. Types of error

1. The probability of False Positive (FPP) is defined as

𝐹𝑃𝑃 (𝑛) ∶= P(𝑌 ∈  ∣ 𝑋 ∈ 𝑈 ), 𝑛 = 1, 2,… . (11)
6

𝑛 2 𝑛
2. The probability of False Negative (FNP) is defined as

𝐹𝑁𝑃 (𝑛) ∶= P(𝑌𝑛 ∈ 1 ∣ 𝑋𝑛 ∈ 𝐷), 𝑛 = 1, 2,… . (12)

It can be checked that

𝐹𝑃𝑃 (𝑛) = 1 −
𝐴𝑣(𝑛)
𝐴𝑣(𝑛)

, (13)

and

𝐹𝑁𝑃 (𝑛) =
P(𝑌𝑛 ∈ 1) − 𝐴𝑣(𝑛)

1 − 𝐴𝑣(𝑛)
, (14)

here 𝐴𝑣(𝑛) = P(𝑋𝑛 ∈ 𝑈 ), for 𝑛 = 1, 2,…, gives the (internal) availabil-
ty of the system at the 𝑛th observation, and 𝐴𝑣(𝑛) = P((𝑋𝑛, 𝑌𝑛) ∈ 𝑈 ) is
he probability that the system is operative and the signal received is
ndicating good performance.

.2. Signal-runs

While an efficient mechanism of control for false positive is crucial
o establish the ability of our model in order to detect the (unobserved)
ailure of the system, for the sake of a competitive maintenance plan,
t is very important to precisely measure the degree of confidence that
e have when recording a warning signal (i.e. 𝑌𝑛 ∈ 2) that the system

tate is indeed in failure (i.e. 𝑋𝑛 ∈ 𝑈). So we introduce the concept of
ignal-runs.

At the 𝑛th observation time 𝑡𝑛 let us assume that the signal received
s an alarm, i.e. 𝑌𝑛 ∈ 2, meaning that the system is not working
roperly. The question is to know how much we trust this observation.
n other words, we want to know whether the system is truly in failure,
.e. 𝑋𝑛 ∈ 𝑈 . This question is analogous to the evaluation of the accuracy
f diagnostic testing. A key issue in clinical studies that are aimed at
etermining the true state of a patient with respect to a disease based
n the result of a screening or diagnostic test (see [32]).

efinition 2. Signal-run of length 𝑘.
For 𝑛 ≥ 1 and 1 ≤ 𝑘 ≤ 𝑛, let us define the following function

(𝑖, 𝑦𝑛𝑛−𝑘+1, 𝑘, 𝑛) ∶= P(𝑋𝑛 = 𝑖 ∣ 𝑌 𝑛𝑛−𝑘+1 = 𝑦𝑛𝑛−𝑘+1),

or 𝑖 ∈ 𝐸, and 𝑦𝑛𝑛−𝑘+1 ∈ 𝑘. In particular, we define a positive 𝑘- run as

+(𝑘, 𝑛) = P(𝑋𝑛 ∈ 𝐷 ∣ 𝑌𝑛−𝑘+1 ∈ 2,… , 𝑌𝑛 ∈ 2),

or 𝑛 ≥ 𝑘− 1, where 𝐷 ⊂ 𝐸 is the subset of failure states and 2 ⊂  is
he subset of warning signals.

On the other hand, we define a negative 𝑘- run as

−(𝑘, 𝑛) = P(𝑋𝑛 ∈ 𝑈 ∣ 𝑌𝑛−𝑘+1 ∈ 1,… , 𝑌𝑛 ∈ 1),

or 𝑈 ⊂ 𝐸, the subset of operative states and 1 ⊂  is the subset of
afe signals that indicate correct functioning of the system.

emark.
Since the main objective is to predict system failures, we are spe-

ially interested in signal-runs of successive warnings, that is 𝛾+(𝑘, 𝑛),
or 1 ≤ 𝑘 ≤ 𝑛. For simplicity we will refer to them as 𝑘-runs.

As particular cases, for any 𝑛 > 0, based on runs of length 𝑘 = 1
e obtain a probability that has a similar meaning as the concept of
redictive values that are used in biostatistics (see [32]). Specifically,

+(1, 𝑛) = P(𝑋𝑛 ∈ 𝐷 ∣ 𝑌𝑛 ∈ 2), 𝑛 = 1, 2,… ,

is the probability that the system is failed when a warning signal is
observed. We call this probability the positive predictive value at the
𝑛th observation time, and

𝛾−(1, 𝑛) = P(𝑋𝑛 ∈ 𝑈 ∣ 𝑌𝑛 ∈ 1), 𝑛 = 1, 2,… ,

which is the probability that the system is working when a safe signal
is registered, and we will call it the negative predictive value.
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To calculate these values we consider the following expressions

𝛾+(1, 𝑛) =
P(𝑌𝑛 ∈ 2 ∣ 𝑋𝑛 ∈ 𝐷)P(𝑋𝑛 ∈ 𝐷)

P(𝑌𝑛 ∈ 2 ∣ 𝑋𝑛 ∈ 𝐷)P(𝑋𝑛 ∈ 𝐷) + P(𝑌𝑛 ∈ 2 ∣ 𝑋𝑛 ∈ 𝑈 )P(𝑋𝑛 ∈ 𝑈 )

=
(1 − 𝐹𝑁𝑃 (𝑛))(1 − 𝐴𝑣(𝑛))

(1 − 𝐹𝑁𝑃 (𝑛))(1 − 𝐴𝑣(𝑛)) + 𝐹𝑃𝑃 (𝑡)𝐴𝑣(𝑛)
,

and,

𝛾−(1, 𝑛) =
P(𝑌𝑛 ∈ 1 ∣ 𝑋𝑛 ∈ 𝑈 )P(𝑋𝑛 ∈ 𝑈 )

P(𝑌𝑛 ∈ 1 ∣ 𝑋𝑛 ∈ 𝑈 )P(𝑋𝑛 ∈ 𝑈 ) + P(𝑌𝑛 ∈ 1 ∣ 𝑋𝑛 ∈ 𝐷)P(𝑋𝑛 ∈ 𝐷)

=
(1 − 𝐹𝑃𝑃 (𝑛))𝐴𝑣(𝑛)

(1 − 𝐹𝑃𝑃 (𝑛))𝐴𝑣(𝑛) + 𝐹𝑁𝑃 (𝑛)(1 − 𝐴𝑣(𝑛))
.

Using the assumptions A1-A2 given in Appendix A, we can obtain
the stationary distribution of the chain 𝑋𝑛 as well as the stationary
istribution 𝑌𝑛, and then we can define the corresponding stationary
easures as follows.

efinition 3. Limiting values.
Let us denote {𝜋(𝑖, 𝑦); (𝑖, 𝑦) ∈ 𝐸} the stationary distribution of

he process (𝑋𝑛, 𝑌𝑛), then the stationary positive predictive value is
btained as

+ =

∑

(𝑖,𝑦)∈𝐷×2
𝜋(𝑖, 𝑦)

∑

(𝑖,𝑦)∈𝐸×2
𝜋(𝑖, 𝑦)

,

nd the stationary negative predictive value is

− =

∑

(𝑖,𝑦)∈𝑈×1
𝜋(𝑖, 𝑦)

∑

(𝑖,𝑦)∈𝐸×1
𝜋(𝑖, 𝑦)

.

.3. Maintenance strategy based on 𝑘-runs

Then, the frequency of alarm signals has to be studied which might
epend on many factors. For example, if we wish to monitor remote
ites we could be receiving continuous monitoring signals or on the
ontrary, we might need to access the site to collect some information
bout the system performance. This will depend on the importance
f the equipment that is being monitored, the budget, the existence
r not of a communication infrastructure etc. The implementation of
ow cost, wireless monitoring sensors and other monitoring equipment
s becoming common in many areas, therefore, receiving continuous
nformation about the system health is becoming usual.

Let us consider that a warning signal is emitted by the system
nvironment. Should we maintain always in this situation? That is, a
arning signal emitted at a single time point is sufficient to believe

hat the system is actually in failure and must be repaired or, on the
ontrary, an uninterrupted sequence of warnings of a certain length is
equired to believe that the system is really not working.

Given the M1-M1 structure of our model, the following result holds.

roposition 3. Let (𝑋𝑛, 𝑌𝑛) a DT-M1M1-HMM defined as above. Then,
or any 𝑖 ∈ 𝐸, any 𝑘 ≥ 2, and 𝑦𝑛𝑛−𝑘 ∈ 𝑘+1, we have that

(𝑖, 𝑦𝑛𝑛−𝑘+1, 𝑘, 𝑛) = 𝛾(𝑖, 𝑦𝑛𝑛−1, 2, 𝑛).

roof. Let us assume that the initial state of the system is 𝑖0 and the
irst signal emitted is fixed as 𝑦0, then we can prove that

(𝑖, 𝑦𝑛𝑛−𝑘+1, 𝑘, 𝑛) = P(𝑋𝑛 = 𝑖 ∣ 𝑌 𝑛𝑛−𝑘+1 = 𝑦𝑛𝑛−𝑘+1) =
P(𝑋𝑛 = 𝑖, 𝑌 𝑛𝑛−𝑘+1 = 𝑦𝑛𝑛−𝑘+1)

P(𝑌 𝑛𝑛−𝑘+1 = 𝑦𝑛𝑛−𝑘+1)

P(𝑌𝑛 = 𝑦𝑛 ∣ 𝑋𝑛 = 𝑖, 𝑌 𝑛−1𝑛−𝑘+1 = 𝑦𝑛−1𝑛−𝑘+1)P(𝑋𝑛 = 𝑖 ∣ 𝑌 𝑛−1𝑛−𝑘+1 = 𝑦𝑛−1𝑛−𝑘+1)

P(𝑌𝑛 = 𝑦𝑛 ∣ 𝑌 𝑛−1𝑛−𝑘+1 = 𝑦𝑛−1𝑛−𝑘+1)
.

Using that

(𝑋𝑛 = 𝑖 ∣ 𝑌 𝑛−1𝑛−𝑘+1 = 𝑦𝑛−1𝑛−𝑘+1) =

=
∑

P(𝑋𝑛 = 𝑖 ∣ 𝑋𝑛−1 = 𝑗)P(𝑋𝑛−1 = 𝑗) = P(𝑋𝑛 = 𝑖),
7

𝑗∈𝐸
and the Markov property of {𝑌𝑛}, we obtain

𝛾(𝑖, 𝑦𝑛𝑛−𝑘, 𝑘, 𝑛) =
P(𝑋𝑛 = 𝑖, 𝑌𝑛 = 𝑦𝑛, 𝑌𝑛−1 = 𝑦𝑛−1)

P(𝑌𝑛 = 𝑦𝑛, 𝑌𝑛−1 = 𝑦𝑛−1)
= 𝛾(𝑖, 𝑦𝑛𝑛−1, 2, 𝑛). □

We can conclude that under the M1-M1 assumption, we only need
to inspect the system when runs of alarm signals of length 1 or 2 are
registered. In these cases, when the probability of a down state is above
a certain threshold, the system should be maintained. Specifically, we
propose to inspect the system regularly at time intervals of length 𝜏𝑞
where

𝜏𝑞 = min{𝑛 ≤ 2 ∶ max{𝛾+(1, 𝑛), 𝛾+(2, 𝑛)} ≥ 𝑞}, (15)

with 0 < 𝑞 < 1 previously fixed.

6. Numerical examples

In the first practical case a simulated example modelled using a
CT-M1M1-HMM is discussed while in the second one a real dataset is
analysed using a DT-M1M1-HMM.

6.1. Simulations: A two-unit system with hot redundancy

For the example presented in Section 2.1 we take the following
particular values of the elements of matrix 𝐀 in (1), 𝜆1 = 0.1, 𝜆2 = 0.2,
𝜇1 = 𝜇2 = 0.5.

As in the previous sections, at regular instants of time, one has
ccess to some indicators (signals) related somehow to the level of
erformance of the system. In particular, each time, we receive a signal
f good functioning (i.e., 1 = 𝑂𝑁) or a signal of failure in the system
i.e., 2 = 𝑂𝐹𝐹 ). The matrices ruling the conditional behaviour of the
bservable process 𝑌𝑡, over the event {𝑋𝑡 = 𝑖}, for 𝑖 = 2, 3 are taken as

𝐁2 =
(

−0.2 0.2
0.7 −0.7

)

, 𝐁3 =
(

−0.4 0.4
0.4 −0.4

)

.

In this case we assume that P(𝑌𝑡 = 1 ∣ 𝑋𝑡 = 1) = 1, and P(𝑌𝑡 = 2 ∣
𝑋𝑡 = 4) = 1 for all 𝑡 > 0, and then when 𝑋𝑡 = 1 the state 2 of MC 𝑌 is
uch that 𝐵1;22 = +∞, that is, state 2 is an instantaneous state as defined
n [33]. In a similar way, we assume that when the two units of the
ystem have failed, i.e. 𝑖 = 4, the only possible output is 2, and then, in
his case state 1 is an instantaneous states for the MC 𝑌 over the event
𝑡 = 4. So, we re-define the state space of the coupled process as the

et 𝐸 = {(1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (4, 2)}, with transition intensity
matrix given by

𝐀̃ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−0.3 0.2 0 0.1 0 0
0.5 −0.8 0.2 0 0 0.1
0.5 0.7 −1.3 0 0 0.1
0.5 0 0 −1.1 0.4 0.2
0.5 0 0 0.4 −1.1 0.2
0 0 0.5 0 0.5 −1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Let us denote 𝑋0, 𝑋1,… , 𝑋𝑁 the successive (unobserved) states of
the system, taking values in the set 𝐸 = {1, 2, 3, 4}; and, 𝑌0, 𝑌1,… , 𝑌𝑁
the successive observed indicators, which are assumed to range in the
set  = {1, 2}. We consider that inspections are carried out at times
𝑛 = 0, 𝛥, 2𝛥,…, for simplicity we take 𝛥 = 1. At time 𝑛 = 0 we assume
that the system is new so that the initial state is 𝑋0 = 1, and also that
𝑌0 = 1.

For each system we have simulated Markovian sample paths of size
𝑁 = 50, 100, 500 using the corresponding true model (𝛼,𝐀). Then, to
generate the sequence of observed signals, we consider at each time,
the generated state, that is if 𝑋𝑛 = 𝑖 then we simulate the next output
𝑌𝑛, using the intensity matrix 𝐁𝑖, for any 𝑛 = 1,… , 𝑁 .

To avoid wrong conclusions due to the randomness in the simulation
process the experiment has been repeated a total of 500 times for

each sample size. The estimation results are represented in Fig. 2. The
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Fig. 2. Reliability estimation for the two-unit system in hot redundancy.

true reliability is given by the black curve. For each sample we have
estimated the reliability function based on the HMM model. The results
have been summarized through averaging. That is, we consider the
following

𝑅𝑎𝑣;𝑁 (𝑡) = 1
500

500
∑

𝑟=1
𝑅(𝑟)
𝑁 (𝑡),

where 𝑅(𝑟)
𝑁 is the estimated reliability function based on the 𝑟th sample,

for 𝑟 = 1,… , 500, and for the sample size 𝑁 .
The red curve represents the average of the estimated curves along

the 500 replications for each case 𝑁 = 50, 100, 500. As expected, the
accuracy of the estimator decreases with the sample size.

6.2. A real case: Water pump sensor data

We analyse a dataset related to the functioning of a water pump
of a small area. The data have been taken from the data platform
www.kaggle.com/ and a further analysis can be found in [34].

Very few technical details about the system are available from the
website. The information provided consists of timestamp measurements
recorded by 50 sensors and machine status every minute from 01-
04-2018 to 31-08-2018. In total there are 220320 data points and 51
variables.

Sensors are used to record temperature, pressure, vibration, load
capacity, volume, flow density, and others. We have a longitudinal
follow up of one single system with observations taken with a time span
of just one minute between two consecutive data points. We do not take
all the records in the sample but consider only daily registers since 01-
04-2018 to 31-08-2018. Then, we have a sample of size 𝑁 = 153 that
consists of all records taken at 00:00 every day. We have considered
the model in discrete time for this example.

First of all, we have performed auto-correlation tests for the se-
quence of measurements provided by the sensors. The results indicate
dependence between successive observations, so that the dependence
structure considered in the model is justified in this case. We have
explored every series of measurements reported in the full dataset, and
the results are very similar in all cases. For illustration, let us consider
8

for example sensor labelled with number 08 in the dataset. The Durbin–
Watson test has reported a test statistic 𝐷𝑊 = 1.2079 and then the
𝑝-value= 4.084e−07 is significant. So, we reject the null hypothesis and
then the values in the series are autocorrelated. Also, from the ACF
plot displayed in Fig. 3 we conclude that autocorrelation of first order
cannot be rejected.

The goal is to find out which sensors provide the more useful
information about the true machine status. That is we perform a
sensitivity analysis to determine which sensors report a lower rate of
error when predicting the machine state. Let us focus on sensor labelled
# that measures a particular characteristic, 𝑌# of the machine taking
values in  ∈ R. For all sensors considered in the study, lower values
reported indicate good machine performance, while higher values warn
of a machine failure. Then, for the machine status we consider the 1
represents the operative state and 2 is the failure state.

6.2.1. Sensitivity analysis
We proceed as follows:

1. Let 𝑦1 < ⋯ < 𝑦100, a set of possible values in the range of
measurements of sensor #.

2. For each 𝑗 = 1,… , 100, let us define 𝑌𝑗 taking value 1 if 𝑌# > 𝑦𝑗 ,
and 2, otherwise. Then we have 𝑌𝑗,1,… , 𝑌𝑗,𝑁 a sample of the
DT-M1M1-HMM.

3. Fit the model following Section 3.3 to obtain estimations of 𝐏
and 𝐐1 and 𝐐2. Then we calculate an estimation of the transition
matrix of the coupled process. Let us denote 𝐏̃𝑗 such estimation,
for 𝑗 = 1,… , 100.

4. Estimate the two error probabilities defined in Section 5.1,
which are

𝐹𝑃𝑃𝑗 =
𝐏̃𝑗 (1, 2)

𝐏̃𝑗 (1, 1) + 𝐏̃𝑗 (1, 2)
,

and

𝐹𝑁𝑃𝑗 =
𝐏̃𝑗 (2, 1)

𝐏̃𝑗 (2, 1) + 𝐏̃𝑗 (2, 2)
.

5. Build the ROC curve as the set of points {(𝐹𝑃𝑃𝑗 , 1 − 𝐹𝑁𝑃𝑗 ), 𝑗 =
1,… , 100};

6. Let (𝐹𝑃𝑃0, 1 − 𝐹𝑁𝑃0) the point of the curve that minimizes the
distance to the point (0,1).

7. Finally define the sensitivity index of sensor # as 𝑆𝑒# = 1−𝐹𝑁𝑃0,
and the specificity index is given by 𝑆𝑝# = 1 − 𝐹𝑃𝑃0.

The most informative sensor will be chosen as the one displaying the
highest combination of sensitivity and specificity. We have considered
in our study the complete network of 50 sensors. As can be seen from
the results in Table 2 the subset of sensors with labels from 17 to 26
are the most sensible to the real state of the water pump. As we have
already mentioned, the technical information about this system and
in particular referring to the location and mission of each sensor is
not given in the website that provides the dataset. However posterior
analyses by the users have shed some light on the matter. In particular
it is specified that this group of sensors (17 to 26) have to do with
certain characteristics of the impeller of the pump.

6.2.2. Maintenance based on 𝑘-runs
For each sensor we have calculated the corresponding probability

of system failure based on runs of length 𝑘 = 1 and 𝑘 = 2.
The results indicated that the estimated probability that the system

is failed conditioning on 𝑘-runs with 𝑘 = 2 is smaller than with
𝑘 = 1 for all sensors except for sensor number 37. In this example
we are considering only daily sensor measurements, however in the
real problem sensors are continuously monitoring the water pump. Our
results are likely due to an intervention in the system previous to the
next observation that we consider on the following day. In other words,

http://www.kaggle.com/
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Fig. 3. Autocorrelation test for measurements from 𝑠𝑒𝑛𝑠𝑜𝑟08.
Table 2
Sensitivity analysis of the sensor network for a water pump system.
Sensor 00 01 02 03 04 05 06 07 08 09

𝑆𝑒 0.465 0.650 0.606 0.537 0.493 0.485 0.581 0.678 0.558 0.510
𝑆𝑝 0.908 0.929 0.900 0.880 0.943 0.908 0.757 0.878 0.881 0.889

Sensor 10 11 12 13 14 16 17 18 19 20
𝑆𝑒 0.616 0.616 0.656 0.695 0.700 0.632 0.804 0.804 0.809 0.809
𝑆𝑝 0.970 0.970 0.767 0.899 0.940 0.941 0.937 0.937 0.944 0.944

Sensor 21 22 23 24 25 26 27 28 29 30
𝑆𝑒 0.809 0.816 0.809 0.809 0.809 0.809 0.578 0.809 0.716 0.817
𝑆𝑝 0.944 0.937 0.944 0.944 0.944 0.944 0.831 0.937 0.911 0.932

Sensor 31 32 33 34 35 36 37 38 39 40
𝑆𝑒 0.727 0.713 0.727 0.760 0.760 0.760 0.750 0.492 0.714 0.560
𝑆𝑝 0.931 0.881 0.930 0.933 0.933 0.933 0.967 0.909 0.797 0.756

Sensor 41 42 43 44 45 46 47 48 49 50
𝑆𝑒 0.479 0.503 0.509 0.616 0.469 0.474 0.483 0.674 0.465 0.710
𝑆𝑝 0.902 0.861 0.882 0.970 0.914 0.888 0.862 0.807 0.914 0.771
it could mean that a maintenance action took place or the system was
reset between the two successive observations that we are considering
here.

Let us focus for example on sensor number 08, although results
regarding the complete set of sensors are available from the authors. In
Fig. 4 the estimated probability of system failure conditioned to 𝑘-runs
with 𝑘 = 1, 2 are represented based on the observations of this sensor.
As we can observe from the plot, in the beginning, the sensor network
seems to be not well tuned, because there is very little probability of
system failure even when warning signals are being emitted by a sensor.
However, it is clear that after some time the sensors are better adjusted
so that information provided is more reliable.

A reference line has been plotted for a threshold probability equal
to 0.5. Using Eq. (15), in this case 𝜏 = 13 is estimated, meaning
that according to this criterion, with 𝑞 = 0.5, the system should be
maintained every 13 days according to the information provided by
this sensor because after 13 days, the probability of system failure
given a warning signal has been produced is bigger than 0.5. Here a
threshold of 0.5 has been taken just for illustrative purposes, but in a
real situation a more appropriate value for 𝑞 should be chosen using
certain criteria based on cost optimization for instance.
9

7. Conclusions

The main objective of this paper is to build a stochastic model
based on Hidden Markov processes to describe the evolution-in-time of
a system and to estimate some dependability functions when no direct
observation of the true current state of the system is available but only
some indicators or signals.

The deployment of low cost, wireless monitoring sensors is be-
coming usual in many areas, in particular in many engineering appli-
cations where observations related to the health state of the system
are recorded over a period of time. The challenge is to interpret the
measurements provided by a sensor (which can record temperature,
pressure, vibration, among others) in terms of the internal state of the
system. Besides, when a longitudinal follow-up is carried out one of the
key consequences is that measurements over time might be correlated.

To account for this dependence between observations, we propose a
Hidden Markov model with structure of type M1-M1 to infer the state
of the system. That is, both the hidden process as well as the signal
(observable) process are Markov chains. Thus, we generalize the model

M1-M0 that is considered more usually in practice.
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The main contributions of the paper are: 1. The proposed model
nd some dependability measures have been estimated by maximum-
ikelihood and some theoretical properties have been studied. The
stimation has been approached by means of two versions of the model,
n discrete-time as well as in continuous-time. 2. From the point of
iew of the practical applications in reliability engineering, we have
ntroduced a sensitivity analysis in the context of HMMs. In particular
e have defined two types of errors that can be incurred when the
idden state of the system is diagnosed based on observations (signals),
hese are false positive and false negative errors. Additionally, we have
ntroduced the concepts of sensitivity, specificity and predictive values
these are usual concepts in clinical essays in biostatistics). Finally,
e have defined the concept of signal runs. All these measurements

an help the decision makers to adopt a better maintenance strategy,
voiding maintaining the system before it is really necessary.

As a future work, we plan to extend the research on maintenance
trategies. Furthermore, we will consider a multidimensional observa-
ion process. The motivation for this problem can be also inspired by
ensor applications. Any industrial equipment is monitored by a set of
ensors, more than just one, and the information provided by all of
hem must be processed together to determine the state of health of the
achine. We believe that the insights in this paper and future research

an result of great use for engineers.
On the other hand, a deeper knowledge of the real system that is

eing investigated will be also of great help for us since we will be
ble improve the accuracy of our model on the basis of expert opinion.
o, while it is not always easy, a better communication with engineers
ould be mutually beneficial.
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ppendix A. Maximum-likelihood estimation of the DT-M1M1-
MM

The following conditions are assumed [35]:

A1 The Markov chain 𝑋 is ergodic, i.e., irreducible and aperiodic,
and stationary;

A2 The Markov chain 𝑌 is ergodic, i.e., irreducible and aperiodic,

and stationary;
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A3 There exists an integer 𝑛 ∈ N such that the Fisher information
matrix

𝐼𝑛(𝜽0) = −𝐸𝜽0

⎛

⎜

⎜

⎝

𝜕2 log 𝑝𝜽(𝑌 𝑛0 )
𝜕𝜃𝑖𝜕𝜃𝑗

|

|

|

|

|

|𝜽=𝜽0

⎞

⎟

⎟

⎠𝑖,𝑗

is nonsingular, where log 𝑝𝜽(𝑌 𝑁0 ) is the log-likelihood function
defined from Eq. (6).

Based on [29,30,35], and, [7] the following result is straightforward.

Theorem 1. Under assumptions 𝐴1 - 𝐴3, given a sample of observations
{𝑌 𝑁1 }, the maximum-likelihood estimator 𝜽̂𝑁 = (𝜃1, 𝜃2)𝑁 of 𝜽 = (𝜃1, 𝜃2) is
strongly consistent as 𝑁 tends to infinity. Moreover, the random vector
√

𝑁 (𝜽̂𝑁 − 𝜽0) =
√

𝑁 [((𝑃 (𝑖, 𝑗)1≤𝑖≤𝑑,1≤𝑗<𝑑 ), (𝑄̂𝑖(𝑦𝑙 , 𝑦ℎ)1≤𝑖≤𝑑;1≤𝑙≤𝑠;1≤ℎ<𝑠))

− ((𝑃 0(𝑖, 𝑗)1≤𝑖≤𝑑,1≤𝑗<𝑑 ), (𝑄0
𝑖 (𝑦𝑙 , 𝑦ℎ)1≤𝑖≤𝑑;1≤𝑙≤𝑠;1≤ℎ<𝑠))]

is asymptotically Normal, as 𝑁 → +∞, with zero mean and covariance
matrix the inverse of the asymptotic Fisher information matrix 𝐼(𝜽0).

The asymptotic Fisher information matrix is given by

𝐼(𝜽0) = −𝐸𝜽0

(

𝜕2 logP𝜽(𝑌0|𝑌−1, 𝑌−2,…)
𝜕𝜃𝑖𝜕𝜃𝑗

|

|

|

|

|𝜽=𝜽0

)

𝑖,𝑗

,

ee [29], and in [36] it is shown that 𝐼(𝜽0) is nonsingular under
assumption A2.

From Theorem 1 we immediately obtain the consistency and the
asymptotic normality of the estimator of matrix 𝐏̃.

Consistency

Proposition 4. Under the Assumptions 𝐴1–𝐴3, given a sample of
observations {𝑌 𝑁1 }, the maximum likelihood estimator of

𝑃 ((𝑖, 𝑦𝑙), (𝑗, 𝑦ℎ))
)

(𝑖,𝑦𝑙 ),(𝑗,𝑌ℎ)∈𝐸
, that is

(

̂̃𝑃 ((𝑖, 𝑦𝑙), (𝑗, 𝑦ℎ))
)

(𝑖,𝑦𝑙 ),(𝑗,𝑦ℎ)∈𝐸
, is

trongly consistent as 𝑁 tends to infinity.

roof. The transition probabilities for the two-dimensional process
𝑋, 𝑌 ) are obtained as 𝑃 ((𝑖, 𝑦𝑙), (𝑗, 𝑦ℎ)) = 𝑃 (𝑖, 𝑗)𝑄𝑗 (𝑦𝑙 , 𝑦ℎ) for all 𝑖, 𝑗 ∈ 𝐸

and 𝑦𝑙 , 𝑦ℎ ∈  . From the vector of parameters 𝜽 we define the function

𝛷 ∶ [0, 1]𝑑⋅(𝑑−1)+𝑑⋅𝑠⋅(𝑠−1) ⟶ [0, 1]𝑑
2⋅𝑠2

such that 𝛷 =
(

𝛷𝑖,𝑗,𝑙,ℎ; 𝑖, 𝑗 = 1, 2,… , 𝑑; 𝑙, ℎ = 1,… , 𝑠
)

∈ [0, 1]𝑑2⋅𝑠2 with
the following:

• 1 ≤ 𝑖, 𝑗 ≤ 𝑑, 𝑗 ≠ 𝑑; 1 ≤ 𝑙, ℎ ≤ 𝑠, ℎ ≠ 𝑠,

𝛷𝑖,𝑗,𝑙,ℎ(𝜽) = 𝑃𝑖𝑗𝑄𝑗 (𝑦𝑙 , 𝑦ℎ); (A.1)

• 1 ≤ 𝑖, 𝑗 ≤ 𝑑, 𝑗 ≠ 𝑑; 1 ≤ 𝑙 ≤ 𝑠, ℎ = 𝑠,

𝛷𝑖,𝑗,𝑙,𝑠(𝜽) = 𝑃𝑖𝑗

(

1 −
𝑠−1
∑

ℎ=1
𝑄𝑗 (𝑦𝑙 , 𝑦ℎ)

)

; (A.2)

• 1 ≤ 𝑖 ≤ 𝑑, 𝑗 = 𝑑; 1 ≤ 𝑙, ℎ ≤ 𝑠, ℎ ≠ 𝑠,

𝛷𝑖,𝑑,𝑙,ℎ(𝜽) =

(

1 −
𝑑−1
∑

𝑗=1
𝑃𝑖𝑗

)

𝑄𝑑 (𝑦𝑙 , 𝑦ℎ); (A.3)

• 1 ≤ 𝑖 ≤ 𝑑, 𝑗 = 𝑑; 1 ≤ 𝑙, ℎ ≤ 𝑠, ℎ = 𝑠,

𝛷𝑖,𝑑,𝑙,𝑠(𝜽) =

(

1 −
𝑑−1
∑

𝑗=1
𝑃𝑖𝑗

)(

1 −
𝑠−1
∑

ℎ=1
𝑄𝑗 (𝑦𝑙 , 𝑦ℎ)

)

; (A.4)

This function returns a vector whose components are the elements
of matrix 𝐏̃ conveniently sorted. Then, using the consistency of the
11
estimator 𝜽̂𝑁 , which is expressed in Theorem 1 above, and applying
the continuous mapping theorem to the function 𝛷 defined above, we
obtain the desired result. □

Asymptotic normality

Proposition 5. Under the Assumptions 𝐴1 − 𝐴3, given a sample of
observations {𝑌 𝑁1 }, the random vector 𝐅𝑁 =

(

𝐹(𝑖,𝑙),(𝑗,ℎ);𝑖,𝑗∈𝐸;𝑙,ℎ∈
)

such
that

𝐹(𝑖,𝑙),(𝑗,ℎ) =
√

𝑁

[

(

̂̃𝑃 ((𝑖, 𝑦𝑙), (𝑗, 𝑦ℎ))
)

𝑖,𝑗∈𝐸;𝑙,ℎ∈

−
(

𝑃 ((𝑖, 𝑦𝑙), (𝑗, 𝑦ℎ))
)

𝑖,𝑗∈𝐸;𝑙,ℎ∈

]

is asymptotically Normal, as 𝑁 → +∞ with 0 mean and covariance matrix
𝛴𝑃 = 𝛷′ ⋅𝛴𝜽 ⋅𝛷′⊤, where 𝛴𝜽 is the covariance matrix of the random vector
𝜽̂𝑁 and 𝛷 is the function defined in (A.1)–(A.4) whose partial derivative

atrix is denoted by 𝛷′.

ppendix B. The EM algorithm for the M1M1-DTHMM

Instead of directly solving the optimization problem (7), we con-
ider a version of the EM-algorithm [7,10,29,37] for our context of
1M1-HMM, which can be summarized as follows.

Let us denote 𝛩 the set of possible parameters of the model, and
define the following function

𝜓(𝜽,𝜽(0)) = E 𝜽(0)
[

logP(𝑋𝑁
1 , 𝑌

𝑁
1 ∣ 𝜽, 𝑌 𝑁1 )

]

(B.1)

ith 𝜽,𝜽(0) ∈ 𝛩. For 𝜽(0) given, the aim is to obtain 𝜽(1) such that
(1) = argmax

𝜽
𝜓(𝜽 ∣ 𝜽(0)).

(

𝜽 ∣ 𝜽(0)
)

= E 𝜽(0)

[

log

( 𝑁
∏

𝑘=1
P𝜽(𝑋𝑘−1, 𝑋𝑘 ∣ 𝑌 𝑁1 )P𝜽(𝑋𝑘, 𝑌𝑘−1, 𝑌𝑘 ∣ 𝑌 𝑁1 )

)]

=
𝑁
∑

𝑘=1

∑

𝑖∈𝐸

∑

𝑗∈𝐸
log𝑃𝑖𝑗P𝜽(0)

[

𝑋𝑘−1 = 𝑖, 𝑋𝑘 = 𝑗 ∣ 𝑌 𝑁1
]

+
𝑁
∑

𝑘=1

∑

𝑖∈𝐸
log𝑄𝑖(𝑌𝑘−1, 𝑌𝑘)P𝜽(0) (𝑋𝑘 = 𝑖 ∣ 𝑌 𝑁1 )

= 𝜓1

(

𝜃(1)1 ∣ 𝜽(0)
)

+ 𝜓2

(

𝜃(1)2 ∣ 𝜽(0)
)

.

We can split the 𝜓 function and maximize separately in 𝜃(1)1 and 𝜃(1)2 ,
nd define 𝜽(1) = (𝜃(1)1 , 𝜃(1)2 ).

.1. The M-step

At the 𝑚 iteration of the algorithm we have an estimation of the
nknown vector 𝜽 given by 𝜽(𝑚−1) =

(

𝜃(𝑚−1)1 , 𝜃(𝑚−1)2

)

. Then, we have to
aximize 𝜓

(

𝜽 ∣ 𝜽(𝑚−1)
)

and obtain 𝜽(𝑚).
First we consider 𝜓1

(

𝜃1 ∣ 𝜽(𝑚−1)
)

, that is,

(𝑚)
1 = argmax

𝜃1

𝑁
∑

𝑘=1

∑

𝑖,𝑗∈𝐸

(

log𝑃𝑖𝑗
)

P𝜽(𝑚−1)
[

𝑋𝑘−1 = 𝑖, 𝑋𝑘 = 𝑗 ∣ 𝑌 𝑁1
]

,

ubject to ∑

𝑗∈𝐸 𝑃𝑖𝑗 = 1.
Using the method of Lagrange multipliers we obtain

(𝑚)
𝑖𝑗 =

∑𝑁
𝑘=1 P𝜽(𝑚−1)

(

𝑋𝑘−1 = 𝑖, 𝑋𝑘 = 𝑗 ∣ 𝑌 𝑁1
)

∑𝑁
𝑘=1 P𝜽(𝑚−1)

(

𝑋𝑘−1 = 𝑖 ∣ 𝑌 𝑁1
)

Second, let us consider 𝜓2
(

𝜃2 ∣ 𝜽(𝑚−1)
)

2
(

𝜃2 ∣ 𝜽(𝑚−1)
)

=
𝑁
∑∑ ∑

log𝑄𝑖(𝑦, 𝑦′)𝟏{𝑌𝑘−1=𝑦,𝑌𝑘=𝑦′}P𝜽(𝑚−1) (𝑋𝑘 = 𝑖 ∣ 𝑌 𝑁1

𝑘=1 𝑖∈𝐸 𝑦,𝑦′∈
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i

Again using Lagrange multipliers, we get

𝑄(𝑚)
𝑖 (𝑦, 𝑦′) =

∑𝑁
𝑘=1 P𝜽(𝑚−1)

(

𝑋𝑘 = 𝑖 ∣ 𝑌 𝑁1
)

𝟏{𝑌𝑘−1=𝑦,𝑌𝑘=𝑦′}
∑𝑛
𝑘=1 P𝜽(𝑚−1)

(

𝑋𝑘 = 𝑖 ∣ 𝑌 𝑁1
)

𝟏{𝑌𝑘−1=𝑦}
,

here 𝟏{⋅} takes value 1 if condition {⋅} is true and 0 otherwise.

.2. The E-step

At the 𝑚 iteration of the algorithm we have to calculate the follow-
ng probabilities:

• P𝜽(𝑚)
(

𝑋𝑘−1 = 𝑖, 𝑋𝑘 = 𝑗 ∣ 𝑌 𝑁1
)

; ∀𝑖, 𝑗 ∈ 𝐸, ∀𝑘 = 1,… , 𝑁
• P𝜽(𝑚)

(

𝑋𝑘 = 𝑖 ∣ 𝑌 𝑁1
)

; ∀𝑖 ∈ 𝐸, ∀𝑘 = 1,… , 𝑁

To do it we define the family of backward and forward probabilities:

1. Forward probabilities
Let 𝑘 = 0, 1,… , 𝑛, 𝑖 ∈ 𝐸, we define

𝐹 (𝑚)
𝑘 (𝑖) = P𝜽(𝑚)

(

𝑌 𝑘0 , 𝑋𝑘 = 𝑖
)

.

Then we have
{

𝐹 (𝑚)
𝑘 (𝑖), 𝑖 ∈ 𝐸; 𝑘 = 0, 1,… , 𝑁

}

, that satisfies the
following recurrence equation

𝐹 (𝑚)
𝑘 (𝑖) =

∑

𝑗∈𝐸
𝐹 (𝑚)
𝑘−1(𝑗)𝑃

(𝑚)
𝑗𝑖 𝑄

(𝑚)
𝑖

(

𝑌𝑘−1, 𝑌𝑘
)

; ∀𝑘 = 1,… , 𝑁, ∀𝑖 ∈ 𝐸.

For 𝑘 = 0 we get that 𝐹 (𝑚)
0 (𝑖) = 𝛼(𝑖)𝛽𝑖(𝑌0).

2. Backward probabilities
For 𝑘 = 0, 1,… , 𝑁 − 1, 𝑖 ∈ 𝐸, let us define

𝐵(𝑚)
𝑘 (𝑖) = P𝜽(𝑚)

(

𝑌 𝑁𝑘+1 ∣ 𝑋𝑘 = 𝑖, 𝑌𝑘
)

.

Then we have a family of probabilities
{

𝐵(𝑚)
𝑘 (𝑖), 𝑖 ∈ 𝐸, 𝑘 = 0,… ,

𝑁}, satisfying

𝐵(𝑚)
𝑘 (𝑖) =

∑

𝑗∈𝐸
𝑃 (𝑚)
𝑖𝑗 𝑄(𝑚)

𝑗
(

𝑌𝑘, 𝑌𝑘+1
)

𝐵(𝑚)
𝑘+1(𝑗).

for 𝑘 = 0,… , 𝑁 − 1 and 𝐵(𝑚)
𝑁 (𝑖) = 1, ∀𝑖 ∈ 𝐸.

Also we have that P𝜽(𝑚) (𝑌
𝑁
1 ) =

∑

𝑖∈𝐸 𝐵
(𝑚)
𝑘 (𝑖)𝐹 (𝑚)

𝑘 (𝑖), for any 𝑘 =
0,… , 𝑁 , and, in particular, P𝜽(𝑚) (𝑌

𝑁
1 ) =

∑

𝑖∈𝐸 𝐹𝑁 (𝑖).
Finally, for 𝑘 = 1,… , 𝑁 ,

P𝜽(𝑚)
(

𝑋𝑘 = 𝑖 ∣ 𝑌 𝑁1
)

=
𝐹 (𝑚)
𝑘 (𝑖)𝐵(𝑚)

𝑘 (𝑖)
∑

𝑗∈𝐸 𝐹
(𝑚)
𝑘 (𝑗)𝐵(𝑚)

𝑘 (𝑗)
,

and

P𝜽(𝑚)
(

𝑋𝑘−1 = 𝑖, 𝑋𝑘 = 𝑗 ∣ 𝑌 𝑁1
)

=
𝐹 (𝑚)
𝑘−1(𝑖)𝑃

(𝑚)
𝑖𝑗 𝑄(𝑚)

𝑗
(

𝑌𝑘−1, 𝑌𝑘
)

𝐵(𝑚)
𝑘 (𝑗)

∑

ℎ∈𝐸 𝐵
(𝑚)
𝑘 (ℎ)𝐹 (𝑚)

𝑘 (ℎ)
.
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