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RESUMEN 

Los CAV (vehículos conectados y autónomos) se están convirtiendo en una realidad y se 

están infiltrando en los mercados de forma gradual pero constante. Los CAV prometen 

mejorar la seguridad del tráfico y se prevé que eliminen los errores cometidos por los 

conductores humanos. 

En consecuencia, el número de estudios de seguridad vial que involucran CAV ha 

aumentado recientemente. Debido a que existe una falta de información sobre el 

comportamiento real de los CAV en flujos de tráfico mixto, las plataformas de simulación 

de tráfico se utilizan para proporcionar un enfoque razonable para probar varios 

escenarios y flotas. Varias plataformas de microsimulación de tráfico con distintos 

modelos de flujo de tráfico (por ejemplo, Aimsun, VISSIM, PARAMICS y SUMO) se han 

utilizado en la literatura, donde los estudios han determinado que los CAV pueden 

mejorar la seguridad vial, particularmente en escenarios donde su porcentaje de 

penetración es alto. 

Sin embargo, la investigación existente se ha limitado a incluir uno o dos niveles de 

automatización, y/o no analiza los resultados en términos del efecto de incluir cada nivel 

de automatización. Además, el término de severidad no ha sido claramente establecido y 

discutido en estas investigaciones, ni se abordó antes una comprobación de la 

sensibilidad que presenta la seguridad vial frente a la variación de los parámetros que 

normalmente se utilizan para la calibración de los CAV. 

Esta tesis doctoral tiene como objetivo evaluar el impacto en la seguridad vial de la 

introducción progresiva de los CAV en el flujo de tráfico con diferentes niveles de 

automatización (desde el nivel 1 hasta el nivel 4), teniendo en cuenta que los vehículos de 

nivel 4 no circularán por las carreteras de inmediato. Este impacto se evalúa tanto en 

términos de frecuencia como en términos de severidad. La tesis también tiene como 

objetivo evaluar el impacto en la seguridad vial si se establece una configuración 

operacional determinada en la carretera, es decir, operar los CAV en carriles exclusivos. 

Por último, la tesis trata de resaltar los factores más influyentes en la dinámica de 

conducción desde la perspectiva de la seguridad vial. La investigación comienza con la 

modelización de varios niveles de CAV utilizando la calibración del modelo de Gipps, 

seguida de la simulación de nueve flotas mixtas de vehículos con diferentes niveles de 

CAV (nueve escenarios diferentes que representan la introducción progresiva de estos 

vehículos) en un segmento de carretera simulado. A continuación, a partir de las 

trayectorias de los vehículos, se realiza un análisis de seguridad utilizando medidas 

subrogadas. 

Según los hallazgos, la penetración gradual de los niveles de CAV resultó en una 

reducción progresiva de los conflictos de tráfico. Esta reducción va desde el 18,9% cuando 
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el 5% de los vehículos en el flujo de tráfico tienen niveles altos de automatización 

(vehículos de nivel 3 y nivel 4) hasta el 94,1% cuando todos los vehículos en el flujo de 

tráfico son de nivel 4. Además, los vehículos de conducción humana y los vehículos con 

bajos niveles de automatización (vehículos de nivel 1 y nivel 2) están más frecuentemente 

involucrados en conflictos (como posibles inductores de situaciones de riesgo; como 

vehículos seguidores) que los vehículos con altos niveles de automatización (nivel 3 y 

nivel 4). De hecho, dependiendo de la combinación de diferentes tipos de vehículos en el 

flujo de tráfico, los vehículos de conducción manual están involucrados en conflictos 

entre el 8% y el 122% más que su porcentaje de flota compartida, mientras que los 

vehículos con altos niveles de automatización están involucrados en conflictos entre el 

80% y el 18% menos que su porcentaje de flota compartida. 

Por otro lado, en general, ante condiciones de tráfico ligero, no usar un carril dedicado 

para la circulación de los CAV cuando la tasa de penetración de los mismos es inferior al 

55% (de vehículos nivel 3 y nivel 4) proporciona mejores resultados de seguridad que usar 

un carril dedicado, mientras que en condiciones de alta densidad de tráfico siempre es 

mejor utilizar un carril dedicado, independientemente del porcentaje de penetración de 

los vehículos de nivel 3 y nivel 4. 

Finalmente, a partir del estudio de sensibilidad, los parámetros que se identificaron como 

clave, por tener una mayor influencia en la seguridad vial, incluyen el tiempo de reacción, 

el espacio libre entre los vehículos, la aceleración máxima, la desaceleración normal y el 

factor de sensibilidad. Además, cuando estos parámetros se estudiaron dos a la vez, se 

descubrió que una aceleración máxima baja, aunque se combine con diferentes valores 

de otros parámetros, siempre produce el mayor número de conflictos, mientras que un 

tiempo de reacción corto, al combinarse con diferentes valores de otros parámetros, 

siempre produce los mejores resultados de seguridad vial. 

Esta tesis confirma la teoría y las conclusiones de la literatura previa que indican una 

mejora en seguridad debido a la penetración de los CAV. Por otro lado, ofrece una 

perspectiva más amplia y apoyo para la introducción progresiva de los CAV. Además, este 

estudio arroja luz sobre la cantidad de conflictos potencialmente graves que surgen 

durante el período de transición de un escenario de operación de vehículo totalmente 

manual a un escenario de operación de CAV completo. Como resultado, esta tesis amplía 

las perspectivas tanto de los fabricantes como de los investigadores sobre el 

comportamiento de los CAV para futuras implementaciones. 
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ABSTRACT 

CAV (connected and autonomous vehicles) are becoming a reality and are gradually but 

steadily infiltrating the markets. CAV have promised improving traffic safety and are 

anticipated to do away with mistakes made by human drivers. 

Accordingly, the number of traffic safety studies involving connected and autonomous 

vehicles (CAV) has recently increased. Because there is a lack of information about the 

real behaviour of CAV in mixed traffic flows, traffic simulation platforms are used to 

provide a reasonable approach for testing various scenarios and fleets. Various traffic 

microsimulation platforms with distinct traffic flow models (e.g. Aimsun, VISSIM, 

PARAMICS, and SUMO) have been used in the literature, where studies have reported 

that CAV may improve traffic safety, particularly in high sharing percentage scenarios. 

Nevertheless, the exist research was either limited for including a calibration of one or 

two levels of automation, or do not analyse and present the results in term of the effect 

of including each level of CAV. Moreover, the severity term was not clearly stated and 

discussed in these investigations. Further, a check of the sensitivity of the usual 

parameters used for CAV calibration on traffic safety has not been addressed before. 

This doctoral thesis aims to assess the impact of near-real-time introduction of CAV into 

the traffic flow with varying levels of automation (from Level 1 to Level 4) on traffic safety 

in terms of quantity and severity, taking into account the fact that Level 4 vehicles won't 

be introduced into the traffic right away. The thesis also aims to evaluate the safety 

impact of a proposed scenario for CAV introduction; operating the CAV on dedicated 

lanes. Lastly, the thesis endeavors to highlight the most influential factors of driving 

dynamics from a traffic safety perspective. The investigation began with the modelling of 

various CAV levels using Gipps' model calibration, followed by the simulation of nine 

mixed fleets of CAV levels on a simulated highway segment. Following that, the Surrogate 

Safety Assessment Model has been used for vehicle trajectory safety analysis. 

According to the findings, gradual penetration of CAV levels resulted in a progressive 

reduction in traffic conflicts. This reduction ranges from 18.9% when 5% of the vehicles 

on the traffic flow have high levels of automation (Level 3 and Level 4 vehicles) to 94.1% 

when all vehicles on the traffic flow are Level 4. Furthermore, human-driven vehicles and 

vehicles with low levels of automation (Level 1 and Level 2 vehicles) are more frequently 

involved in conflicts (as potential inductors of risky situations; as follower vehicles) than 

vehicles with high levels of automation (Level 3 and Level 4 vehicles). In fact, depending 

on the combination of different types of vehicles in the traffic flow, human-driven 

vehicles are involved in conflicts from 8% to 122% more than their fleet sharing 

percentage, whereas vehicles with high automation levels are involved in conflicts from 

80% to 18% less than their fleet sharing percentage. 
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Increasing interaction with CAV on roads reduces the severity of conflicts, especially for 

vehicles with high levels of automation (Level 3 and Level 4 vehicles). Level 4 vehicles 

operation result in conflicts with the lowest severity. 

Afterwards, in general, in relation to investigating the effect of using a dedication lane 

during the CAV introduction period, it is found that not using a dedicated lane for a 

penetration rate up to 55% (Level 3 and Level 4 vehicles) provides better safety outcomes 

than using a dedicated lane for light traffic condition, whereas, using a dedicated lane is 

better always in congestion conditions. 

Finally, by exploring the influence of driving parameters in calibration on traffic safety, 

the main key parameters that show significant influence on traffic conflicts are reaction 

time, clearance, maximum acceleration, normal deceleration, and sensitivity factor. 

Further, by exploring the influence of the interaction between each two of these key 

parameters, the results show that, a low maximum acceleration when combined with 

other parameters’ values, always generate the highest number of conflicts, whereas short 

reaction time combinations always produce the best traffic safety results. 

On one hand, this thesis confirms the theory and previous literature conclusions that 

indicate a safety gain due to CAV penetration. On the other hand, it offers a broader 

perspective and support for the implementation of CAV levels. Furthermore, this study 

sheds light on how many potential conflicts could arise as serious conflicts during the 

transition period from a fully manual vehicle operation scenario to a fully CAV operation 

scenario. As a result, this thesis broadens both manufacturers' and researchers' 

perspectives on CAV behaviour for future implementation. 
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CHAPTER I: INTRODUCTION 

 

This chapter presents the introduction to the thesis and the motivation that drives the 

research. Then, it describes the structure of the thesis. Finally, the main contributions of 

this thesis are mentioned. 

1.1. Problem statement 

Connected and Automated Vehicles (CAV) are the developing summit of the integration 

between artificial intelligence (AI), robotics, automotive design and information 

technologies. CAV have good potential to be a useful intervention for smart mobility by 

enabling the car to take control, make decisions and interact with the environment and 

traffic flow. Autonomous driving includes the control of vehicle motion in both the 

longitudinal and lateral direction. It is equipping vehicles with Advanced Driver Assistance 

Systems (ADAS) with higher computational power, improved safety features, and 

navigation systems. 

In terms of potential road safety of CAV, they are supposed to contribute in significant 

reduction of road accidents (Fagnant & Kockelman, 2015). Since CAV do not make human 

errors and do not intentionally violate traffic regulations, they are assumed to 

outperform the human driver and enhance the safety on the road. Sivak & Schoettle 

(2015) support that the first analysis of accidents with CAV indicates lower accident rates 

than those of manually human-driven vehicles (HDV). However, some studies express 

certain reservations about these expectations. ATKINS (2016) indicated that the actual 

impact of automated driving on road safety is largely unknown. 

Meanwhile, road safety experts discussed the prospected risk as an issue to be 

considered when CAV systems are completely applied. For example, soon after cruise 

control will be introduced, driving convenience will increase; that will allow drivers to pay 

less attention to the road, which may increase the number of incidents (ATKINS, 2016) at 

this level of automation. Nevertheless, with a promising future, CAV may reduce the 94% 

of all crashes that refer to driver (NHTSA, 2016) (i.e. in the case of fully automation level). 

The apparent question, what will be the safety state during that change, while different 

levels of CAV are sharing roads with other users? 

Owing to the unfeasibility of obtaining CAV behaviour in fleet as real-data for study at 

present, most research has turned to CAV simulation. Traffic simulation provides valuable 

initial insight into the implementation of CAV (Gettman et al., 2008; Wang et al., 2021). 
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As a consequence of the likely transition period where fully-CAV, partially-CAV, and HDV 

will be sharing our roads, this research is trying to understand the impact of the gradually 

entry of CAV on traffic safety by modelling the behaviour of each level of automation 

using a traffic microsimulation program (Aimsun). Aimsun software provides Internal and 

External Driver Model Application Programming Interface (API), and an external Software 

Development Kit (SDK) that are all designed to model vehicle controlling and behaviour in 

simulation process. 

The proposed modelling will be assigned to each vehicle type in different scenarios. It will 

be also tested in a calibrated motorway model. The corridor-level safety impact of CAV 

will be finally evaluated using the Surrogate Safety Assessment Model (SSAM). SSAM is a 

program that utilizes surrogate safety measures in analyzing vehicle trajectories (from 

microsimulation outputs) to identify and assess potential traffic conflicts (Gettman et al., 

2008). 

Predominantly, microsimulation has been efficiently used in solving real-traffic problems. 

It provides an advanced method of analysis, verification, and calibration. In addition, 

simulation and modelling provides inherent understanding by giving clear insights into 

complex systems. Several previous studies (El-Hansali et al., 2021; Guériau & Dusparic, 

2020; Morando et al., 2018; Papadoulis et al., 2019; Rahman et al., 2019; Sinha et al., 

2020; Virdi et al., 2019; Weijermars et al., 2021; Zhang et al., 2020) presented adequate 

and integrated work to understand the safety impact of CAV with different penetration 

rates at motorways and intersections using several microsimulation platforms (e.g. 

VISSIM, Aimsun, SUMO). They also used several surrogate safety measures (SSM) to 

discuss the traffic safety consequences. Results in these studies showed that CAV improve 

traffic safety significantly, especially at high penetration rates, although they operate with 

shorter headways. 

However, the results of the mentioned studies are restricted to only quantifying the 

safety impact while others have recommended going through other evaluation processes 

of safety performance at the CAV introduction stage. For example, Zheng et al. (2014) and 

Whang et al. (2021) recommended to provide a traffic conflict technique for severity 

analysis and to generate global adequate SSM for CAV. Further, other studies more 

focussed on traffic efficiency (Chen et al., 2017; Hamad and Alozi, 2022; He et al., 2022; 

Zhong et al., 2020) investigated the possibility of using dedicated lanes for CAV, and they 

encouraged the modellers to explore its impact from a traffic safety perspective. Afterall, 

a calling question is floaten regarding the CAV behaviour calibration: which are the 

driving behaviour parameters that may reflect the highest influence on traffic safety? 

This thesis will use a two-stage procedure with Aimsun traffic microsimulation platform. 

The proper traffic dynamic representation in Aimsun simulation process will end up with 

better understanding of CAV behaviour and their impact along the transition period from 

totally manual to fully autonomous driving. In comparison with previous research works, 
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this study will provide for the first time safety results for varying all automation levels 

penetration rates (not only for one or two levels). It will also introduce certainly 

reasonable results because of the careful parameters’ modelling and the application of 

wide-range of fleet mixes that could be faced in the real world. 

Moreover, in order to reach a further step than previous studies, this thesis presents 

other aspects of traffic safety regarding the CAV introduction. Precisely, it discusses the 

severity extent related to the potential conflicts, the safety impact of using a dedicated 

lane at the introduction stages, as well as it explores the driving parameters that exert a 

significant influence on traffic safety while converting to the autonomous driving. 

 

1.2. Thesis structure 

The thesis is organized into the following seven chapters. 

Chapter I includes the introduction to the thesis, giving an overview of the topic and the 

motivation regarding this investigation represented by a problem statement section. It is 

followed by a section that describes the thesis structure, and ends with a section that 

browses the main contributions of this investigation. 

Chapter II consists of the state of the art, which presents the sufficient background 

related to CAV, exhibits the benefits of CAV discussed in the literature, and highlights the 

results of traffic safety of studies including CAV in their investigation. Finally, as it 

demonstrates the research questions extracted from the limitations of the previous 

studies. 

Chapter III highlights the general and the specific objectives of the current dissertation, 

and shows the drawn expected hypotheses after achieveing the objectives. 

Chapter IV presents the study area calibrated in the simulation model, and describes in 

detail the modelling process (modelling the study area, model calibration and validation). 

Chapter V describes the methodology followed in detail. Starts with an overview of the 

methodological approach.  Continues demonstrating the details of CAV levels calibration 

framework. Finally, it illustrates the procedure followed to evaluate traffic safety of CAV 

levels among various perspectives. 

Chapter VI includes the results of safety evaluation from the perspectives studied at this 

investigation and lays the major findings beside the outcomes found in other studies. 

Chapter VII points out the main conclusions stated in this investigation, and highlights the 
limitations, followed by the suggested future research to address those limitations. 
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1.3. Main contributions 

The main related research activities (see the Appendix) that are generated after the 

proposed work to address the research questions are classified into four conference 

papers and three journal articles: 

Note: The first two conference papers are considered as a preliminary analysis of CAV 

introduction by studying the penetration of only one level of automation (the fully 

automation). 

Conference article 1. Miqdady, T., De Oña, R., De Oña, J. (2021). “Quantifying the safety 

impact of connected and autonomous vehicles in motorways: A simulation-based study”.  

Procedia 14th  CIT, 2021, pp. 2654–2671. 

Conference article 2. Miqdady, T., De Oña, R., De Oña, J. (2021). “Estimating traffic 

conflict severity for Connected and Automated vehicles using simulation-based surrogate 

safety indicators”. 20th CCHIT, SOCHITRAN, 21/10/2021-93b.  

Journal article 1. Miqdady, T., De Oña, R., Casas, J. and de Oña, J. (2023). "Studying Traffic 

Safety During the Transition Period Between Manual Driving and Autonomous Driving: A 

Simulation-Based Approach," IEEE Transactions on Intelligent Transportation Systems, 

doi: 10.1109/TITS.2023.3241970. 

Journal article 2.  Miqdady, T., De Oña, R., De Oña, J. (2023). "In search of severity 

dimensions of traffic conflicts for different simulated mixed fleets involving connected 

and autonomous vehicles". Journal of Advanced Transportation, 

doi.org/10.1155/2023/4116108 

Journal article 3. Miqdady, T., De Oña, R. and de Oña, J. (2023). "Traffic safety sensitivity 

analysis of parameters used for connected and autonomous vehicle calibration: A 

Simulation-Based Approach," Sustainability (Submitted 16 May. 2023). 

Conference article 3. Miqdady, T., De Oña, R., De Oña, J. (2023). “Evaluating the safety 

impact of employing a dedicated lane for connected and autonomous vehicles on a 

motorway section”. Transportation Research Procedia. Will be presented in 15th CIT in 

June. 

Conference article 4. Miqdady, T., De Oña, R., De Oña, J. (2023). “Traffic conflict 

characteristics of connected and autonomous vehicles at ramp junctions- A simulation-

based analysis”. Under preparing for the 25th Euro Working Group on Transportation 

Meeting (EWGT 2023), Santander in Septemper. 
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CHAPTER II: STATE OF THE ART 

 

The introduction of the Connected and Autonomous vehicles (CAV) is becoming a reality 

in the nearest future. Therefore, a huge research effort was directed in the recent years 

to study their employment and impact on traffic efficiency and safety. This chapter 

exhibits the background related to the technologies used in this type of vehicles, which 

result in different levels of CAV. It also demonstrates the theoretical expected behaviour 

according to the equipped technologies. The projected benefits of CAV among several 

aspects of transportation are also shown in this chapter. 

Later, the chapter illustrates extensively the related investigation about traffic safety in 

parallel to CAV introduction stages. Firstly, it shows the incorporated safety behaviour 

regarding commercial CAV deployment studies and the limited traffic safety evaluation 

studies that used real-world safety data of CAV. Afterword, it shows the related work that 

tried to evaluate traffic safety in simulation-based studies and surrogate safety measures 

(SSM). Then, it discusses the calibration of CAV behaviour parameters, the different 

values used in literature, and the trials in literature to apply a sensitivity analysis of traffic 

safety regarding these parameters or those which brought out an optimization 

combination of the safety behaviour parameters. Finally, it presents the research 

questions arised according to the critical review of the previous studies and which 

highlights the lack on the topic. 

This review will motivate and highlight the novelty of the methodological process 

proposed in this doctoral thesis, as well as its need to be applied to study traffic safety 

through the transition period between manual and fully autonomous vehicles, not only 

the first or the last stages as in other previous studies. 

2.1. Automation and connectivity 

2.1.1. Technological background 

CAV are game-changing vehicles supported by technological advances that have the 

ability to alter the way people and goods move (CAV Readiness strategy, 2022). There are 

various quickly growing technological advances applied in a vehicle to call it automated 

vehicle (AV). These built-in or externally equipped systems are called Advance Driver 

Assistance Systems (ADAS). ADAS are devices designed to support drivers while they are 

on the road, such as Adaptive Cruise Control (ACC), intelligent speed adaptation, lane 

departure warning, traffic sign recognition, collision warning systems, object detection, 

pedestrian detection, potentially combined with automatic emergency braking. As a more 

advanced technology, it was important teaching ADAS to grasp driving intention. Thus, a 
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human-machine interface based on neural networks models was recommended to be 

included in an ADAS design to promote vehicle comfort and safety. 

In general, ADAS features can be divided into two categories: comfort features and safety 

features. The comfort features' main purpose is to alert the driver by causing an alert, 

such as a flashing light, sound, vibration, or even a light steering suggestion. When a 

driver fails to react to a potentially dangerous situation, safety features are designed to 

intervene on the vehicle itself. Potential responses include hood lifting, automatic 

braking, evasive steering, safety belt preparation, and brake pre-charging. One front 

stereovision camera is the basic technology for these ADAS features. Sometimes data 

from other sensors, such as radio detection and ranging (RADAR) or light detection and 

ranging (LIDAR), is added to the camera data. To keep the glass in front of the camera as 

spotless as possible, the ADAS camera field of view is situated in the wiper area. Even at 

night, camera systems in ADAS may project what is behind or alongside the vehicle on the 

screen. They can also look for automatic lane-departure warning systems and high/low-

beam headlamp management in the video content. 

Other technology-based devices are the transmitter/receiver technologies. For example, 

a microcontroller-controlled 77 GHz transmitter in a collision-warning system sends out 

signals that are reflected off of things in front, behind, and to the sides of the vehicle. 

Several receivers built into the vehicle then pick up these signals. A single-or dual-core 

architecture optimized with extensions for image improvement filtering and edge or spot 

identification receives incoming video frames from an image sensor interface for 

processing. 

A connected vehicle (CV) is equipped with data transmission technologies. CV have 

several systems that help in driving decisions; a central computer to processing the data 

with an user interface appeared to the driver, a GPS system as a standard application or 

an additional device to follow the route, standard or advanced sensors to gather, process 

and analyse the data transmitted to vehicle, and wireless connection to help the 

vehicle/driver communicate with other vehicles (V2V), infrastructure (V2I), or with 

everything (V2X) on the road network. Accordingly, the wireless connection could be 

short-range transition (Wi-Fi technology) or a long-range transition (Long Term Evolution, 

LTE) 4G or 5G cellular network. 

Technologies for connection and autonomous devices are not necessarily dependent on 

each other. Nevertheless, integrating these technologies into vehicles enables for a 

mobility that is safer, faster, and more efficient. This is accomplished by giving machine-

driven vehicles the ability to "know" the state of the road network up ahead, to reroute 

based on fresh information (like a lane closure), and to alert vehicles behind of incidents 

such as the need to avoid a hazard. 
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After all, a CAV is a vehicle that has the same data transfer and programming capabilities 

as CV systems, as well as the ability to make independent driving decisions and act 

correspondingly. For example, if the driver of a CAV is above the speed limit, the vehicle 

decides on its own to apply the brakes to ensure the driver's safety. Figure 1 illustrates in 

a simple way how ADAS technologies help in driving process. 

 

Figure 1: CAV driving process 

Adapted from CANape (2022) 

The gathered data by the aforementioned ADAS devices (cameras, sensors, and 

transmitter/receiver) are filtered and classified regarding their quality and type in the first 

step (data pre-processing) using several data mining techniques. The classified data are 

then saved in a Meta database describing the nature of the data. An appropriate 

measurement and analysis tool is used depending on the vehicle type and driving 

situation. The outputs of data analysis are used to help the driver in decision or take the 

decision totally in highly automated CAV. Both the Meta data and decision data are used 

in reporting and machine learning for future similar driving situations. 

2.1.2. Levels of automation 

Since the late 1950s, when cruise control first began to offer some degree of limited 

automation in vehicles, the idea of automation in vehicles has been in existence (CAV 

Readiness strategy, 2022). Partially autonomous vehicles, such as self-parking, improved 

driver assistance, lane control, and autonomous emergency braking technologies, are 

now becoming accessible on the market. In the upcoming ten years, higher degrees of 

automation, where humans will be removed from the driving process, are anticipated to 

be operated on the road networks. Both academics and business are now making 

investments in autonomous driving in addition to the incorporation of ADAS features in 

existing and future vehicles. 
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According to the Society of Automotive Engineers (SAE, 2014), they classified the 

autonomous driving into six levels ranging from Level 0 (completely manual) to Level 5 

(totally autonomous). Table 1 reflects the automation levels according to (Martínez and 

Cao, 2019) tasks classification: (1) Steering, acceleration and deceleration; (2) 

Environment monitoring and (3) Fallback performance of dynamic driving task. 

Table 1: SAE classification of the levels of driving automation  

Automation 

level 
Denomination 

Steering, acceleration 

and deceleration 

Environment 

monitoring 

Fallback performance of 

dynamic driving task 

L0 No automation Human driver Human driver Human driver 

L1 Driver assistance Human driver Human driver Human driver 

L2 
Partial 

automation 
Autonomous system Human driver Human driver 

L3 
Conditional 

automation 
Autonomous System 

Autonomous 

System 
Human driver 

L4 High automation Autonomous System 
Autonomous 

System 
Autonomous System 

L5 Full automation Autonomous system 
Autonomous 

System 
Autonomous System 

 Adapted from Martínez and Cao (2019) 

Conventional vehicles without any driver assistance technology and total reliance on a 

human driver to handle all aspects of driving were considered to have no automation or 

Level 0 (Human Driven Vehicles, HDV). Automation Level 1 (L1 vehicles) was defined as a 

vehicle which allows for specific help in certain instances that either requires steering or 

acceleration/deceleration, while the majority of the tasks are anticipated to be 

performed by the human driver. Information about the driving environment provided by 

particular sensor capabilities fitted for the features' purposes helps with these activities. 

Automation Level 2 (L2 vehicles) is often defined as partial automation; it allows for 

simultaneous steering and acceleration/deceleration only in certain circumstances and 

relies on the driver to do the other driving tasks. According to Martínez and Cao (2019), 

the first three levels were not technically considered autonomous driving; however Levels 

3 (L3 vehicles), 4 (L4 vehicles), and 5 (L5 vehicles) were considered. All dynamic tasks are 

handled by autonomous driving at Level 3, although the driver is still expected to be able 

to take back control in emergency situations by making a request to intervention, which is 

called conditional automation. L4 and L5 vehicles would indeed be high and fully 

autonomous vehicles, respectively, which in any case do not require driver involvement. 

Particularly, if the human driver does not step in after the request has been issued, L4 

vehicles can resolve issues even without their involvement. Whereas, L5 vehicles can 

handle all circumstances that human drivers might handle, and intervention is never 
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required. The ability to resolve all driving modes is the primary distinction between L4 

and L5 vehicles, though in all instances the vehicle can deal with the situation even 

without the driver's involvement, which needs a stable environment with a fully (well) 

learnt machines of all potential driving circumstances. 

In parallel, the National Highway Traffic Safety Administration (NHTSA) defined the levels 

of automation with very close definitions. Table 2 compares the automation levels used 

by SAE and NHTSA. Even though the initial automation levels are similar, high automation 

levels are not easily distinguishable between SAE and NHTSA because they implemented 

a different automation levels. NHTSA classification did not distinguished clearly between 

the high automation levels (L3 and L4 vehicles), further, the case of fully connected and 

autonomous vehicle (L5 vehicles) was not clearly addressed as in SAE classification.  

Table 2: Levels of driving automation according to SAE and NHTSA 

Automated driving system SAE automation level NHTSA automation level 

No automation 0 0 

Driver assistance 1 1 

Partial automation 2 2 

Conditional automation 3 3 

High automation 4 3/4 

Full automation 5 
 

 Adapted from Martínez and Cao (2019) 

2.1.3. Theoretical background of CAV behaviour 

Transport operators are preparing to face the challenge of CAV in the next years. 

Therefore, CAV prototypes are being tested in numerous large cities across the world. 

Within the next seven to eight years, predictions state that half of all automobiles will be 

"totally autonomous" (CAV Readiness strategy, 2022). Practically, several investigations 

(Ada, 2021; ATKINS, 2016; Beckers, 2020; Fagnant & Kockelman, 2015; Naujoks et al., 

2016; Stanek et al., 2018) predicted that CAV will operate with a different behaviour from 

conventional vehicles. Because planning and managing current and future mobility 

requires understanding the interactions between fleets of CAV and conventional vehicles, 

transportation modelling came in to simulate all the thoughts of CAV behaviour and the 

facing challenges regarding their interactions. 

One of the key questions around the introduction of sharing CAV on road networks was 

how will CAV be programmed to drive? (PTV, 2017) (i.e. focusing on the microscopic 

behaviour of traffic and the driver-vehicle unit movement and its effect on the traffic 

outputs). In other words, the ways that new technology, such as improvements in 
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autonomy and connection, might affect how vehicles behave. ATKINS (2016) summarized 

the answer by three general statements: 1) vehicles' acceleration and deceleration 

patterns could be modified; 2) following different types of vehicles could cause that some 

vehicles change their longitudinal behaviour; and 3) when changing lanes, vehicles could 

display different lateral behaviours. 

They also expected that a portion of the upcoming CAV vehicle fleet will be more cautious 

than the current fleet when user preference, comfort, and safety are taken into account 

(ATKINS, 2016). Early (i.e. limited penetration) CAV deployments would include a 

proportionally high percentage of cautious vehicles (ATKINS, 2016; Weijermars et al., 

2021). This could have a negative impact on the performance of the network, especially in 

high-speed, heavily-flow scenarios. However, several studies highlighted the importance 

of CAV amount of penetration (e.g. ATKINS, 2016; Bierstedt et al, 2014; Stanek et al., 

2018). They affirmed that before a significant penetration of CAV (>75%) with advanced 

technology, the benefits will be marginal. According to Arnaout et al. (2011), the benefits 

of the behavioural improvement will not be realized until at least 40% of vehicles are 

equipped. 

Concretely, Evanson (2016) analysed thirteen projected behaviour aspects that CAV could 

perform. CAV could keep smaller standstill distances (clearance), smaller time gaps, 

accelerate faster and smoother, keep constant speed with no or smaller oscillation at free 

flow, form platoons of vehicles, following vehicles react on green signal at the same time 

as the first vehicle in the queue, communicate other vehicles, communicate with the 

infrastructure, perform more cooperative lane-changing at higher speeds, keep smaller 

lateral distances to vehicles or objects, operate on exclusive lanes with or without 

platoons, drive as a CAV on selected roads and as a conventional vehicle on others, and 

divert vehicles already on the road onto new routes and destinations (e.g. come from a 

parking to pick up a rideshare app passenger). 

ATKINS (2016) established different categories of these potential behaviours of CAV 

based on driving condition as follows. In free flow driving conditions, whereas the vehicle 

is almost driving without any effect from other traffic around, CAV is expected to perform 

with no oscillation around a desired speed even with changing the acceleration and 

deceleration profiles. In vehicle following driving conditions, CAV will be able to move 

more quickly, safely, and over shorter gaps than conventional vehicles do now. Whereas, 

in lane changing condition, CAV may safely manoeuvre between traffic streams at a 

higher speed and accept narrower gaps in the road to change their lane. 

Regarding the merging and joining the traffic stream, they assumed that CAV cooperation 

makes it possible for competing traffic streams to merge smoothly, more quickly, and 

with less gaps. Lastly, at planning and decision making (CAV reaction), they confirmed 

that CAV can provide better data supply, inter-entity communication results, and more 

efficient judgment and decision-making. However, they (ATKINS, 2016) affirmed that 
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none of these behavioural aspects’ are currently understood very well or measured in 

quantities. Therefore, they recommended to perform a range of scenarios in any attempt 

to assess the effects of these vehicles with different longitudinal behaviours on traffic 

output. They recommended also to consider different penetration rates of CAV as well as 

different CAV capabilities. 

Stanek et al. (2018) addressed other perspectives of CAV behaviour among several issues. 

Firstly, they discussed that CAV is required to obey the local regulations in driving 

operations. However, they suggested that some driving rules and regulations could be 

reproduced and updated after CAV introduction. Secondly, they pointed out that CAV 

could act differently based on network design, geometrical configurations and traffic 

control operation priorities. For example, to promote their use, CAV could use privileged 

lanes, signal phasing, or other advantages. After that, compared to HDV, they highlighted 

that CAV could perform differently in terms of performance capability, such as 

acceleration, deceleration, turning radius, etc. Lastly, they discussed the “CAV driver 

behaviour capabilities” which were presented by calibrating the parameters of traffic car-

following and lane-changing models regarding the Evanson (2016) recommendations 

within VISSIM microsimulation traffic models. 

In Levitate project -performed on Aimsun microsimulation platform-, in one hand, 

Papazikou et al. (2020) discussed the expected driving behaviour for cautious driving as 

the first generation of CAV and for aggressive driving as the second generation of CAV. In 

the caution’s behaviour, CAV always exhibit a safe behaviour, which was translated to 

longer headways and larger gaps at junctions in the car-following model. When changing 

lanes, wider anticipation zone and gaps are used. Whereas, enhanced perception and 

predicted capabilities were seen in aggressive CAV driving. Specifically, shorter spacing at 

junctions, shorter anticipation when changing lanes, and shorter clearance when 

following a car were all expected in the aggressive behaviour. Nevertheless, they 

assumed that cautious CAV driving could be still more aggressive than human driving. On 

the other hand, Weijermars et al. (2021) pointed out different highlights related to CAV 

behaviour: 1) in typical driving situations, CAV commit fewer driving errors, obey traffic 

laws more consistently, react to situations more quickly, and exhibit less variable driving 

behaviour; and 2) CAV are expected to bring out some additional risks, including the 

possibility of system failure, issues related with cyber security or hacking, and, in the 

event that CAV are not yet fully automated, the possibility of control transfer or mode 

confusion. 

2.2. Quantifying the benefits of CAV 

As discussed earlier, CAV operations will be different from those of HDV. CAV could be 

programmed to obey traffic laws. They will not ever drink and drive. Their reaction times 

will be faster, and they could be optimized to improve fuel economy, smoothen traffic 
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flow, and reduce emissions. They could transport both freight and unlicensed passengers 

to their destinations. This subsection exhibits some of the most significant potential 

benefits identified in existing research although the precise extent of these benefits is 

currently unknown. 

Numerous researches have looked into the possibility of CAV reducing congestion in 

various contexts (Fagnant & Kockelman, 2015). By attempting to reduce accelerations 

and braking in freeway traffic, different levels of CAV adoption could smooth traffic flow. 

Depending on V2V communication and how traffic-smoothing algorithms will be applied, 

this might improve fuel economy and congested vehicles speeds in the freeway travel 

stream by 23% to 39% and by 8% to 13%, respectively (Atiyeh, 2012). 

Berry (2010) calculated that a 20% reduction in accelerations and decelerations could 

result in a 5% reduction in fuel consumption and related emissions. Smart parking choices 

made by CAV could result in further fuel savings and prevent cruising for parking (Bullis, 

2011). For instance, in-vehicle technologies might interface with parking infrastructure to 

enable driverless drop-offs and pickups. 

The system's fuel and congestion savings would grow if vehicles could move closer to one 

another, and a considerable boost in highway capacity on existing lanes is expected 

(Tientrakool, 2011). According to Shladover et al. (2012), cooperative adaptive cruise 

control (CACC) adopted at market penetration rates of 10%, 50%, and 90% will enhance 

lanes' effective capacity by approximately 1%, 21%, and 80%, respectively. More 

consistent trip times are generated combined with nearly constant velocity, which is a 

crucial consideration in trip planning, timing, and route considerations. Similar to this, 

lower start-up durations at traffic signals will allow for more CAV to exploit the green 

phase of the signal more efficiently, which greatly increases intersection capacity 

(Shladover et al., 2012). 

Long-term applications of CAV's potent capabilities include new paradigms for signal 

control, like autonomous intersection management. There is some evidence that 

suggested cutting-edge technology might almost completely eliminate junction delays, 

but this idea is still purely theoretical and is still a long way off (Fagnant & Kockelman, 

2015). Dresner and Stone (2008) predicted that it may take several years before such 

technologies are deployed since a 95% or higher CAV-market penetration may be 

necessary. Although CAV may boost road capacity with greater market penetration, the 

induced demand brought on by increased car use might need an extra capacity (Bose and 

Ioannou, 2003). 

Furthermore, it was addressed that the effect of CAV on reducing traffic congestion could 

have the potential to significantly alter travel behaviour. For example, elderly drivers 

were observed to make an effort to manage driving difficulties by avoiding congested 

roads, unfamiliar routes, driving at night, and bad weather; while others give up driving 
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completely (Wood, 2002). CAV could promote individual independence mobility while 

overcoming several types of driving difficulties of different passengers (elderly, minors, 

and disabled), which also might impact the growing of travel demand (Fagnant & 

Kockelman, 2015). 

Due to more trips being taken, it was predicted that already-congested traffic patterns 

and other road infrastructure would worsen. Fagnant & Kockelman (2015) suggested that 

to mitigate growing demand, CAV might, however, offer smarter routing in combined 

with intelligent infrastructure, faster reaction times, and closer spacing between cars. In 

addition, they explained that the final outcome of the road congestion will depend on the 

amount of vehicle-miles travelled realized, the relative size of CAV advantages, and the 

application of demand control techniques, like road user fees and pricing. 

Moreover, they discussed that technologies might expand CAV sharing and dynamic ride 

sharing by enabling real-time rentals of the near shared CAV on a per-minute or per-mile 

basis. According to the preliminary results of Fagnant & Kockelman (2015) (utilizing an 

agent-based model for allocating vehicles around a region), a single shared CAV is 

supposed to replace between nine and thirteen privately owned or household-owned 

vehicles. 

The literature also addressed that the transport of freight will be affected also. For 

instance, the KPMG and CAR (2012) reported that Rio Tinto, a mining operator, employed 

150 autonomous ore trucks and intends to increase that number more and more. They 

mentioned also that the trucking industry may utilize the same technology that applies to 

autonomous cars to improve fuel efficiency and reduce the need for truck drivers even 

for long-distance trips. However, they reported that workers would still need to load and 

unload freight. Aside from improved travel times on higher capacity networks, they 

pointed out that tight platoons can also result in higher fuel savings because of the 

reduced air resistance and enabling adaptive braking of shared slipstreams. 

Regarding the platooning choices and the spacing between trucks, according to Bullis 

(2011), four-meter inter-truck spacing was found to bring out lower fuel consumption by 

10 to 15 percent. A trial run with 10-meter headways between numerous trucks was 

successfully demonstrated by Kunze et al. (2009) on German highways, and various 

autonomously platooned spacing, Volvo vehicles travelled with good conditions 10,000 

km along Spanish routes (Newcomb, 2012). In contrast, tight vehicle spacing was found to 

generate difficulties for other drivers to exit or enter highways, stimulating the 

construction of new or upgraded infrastructure with reserved platoon lanes and thicker 

pavements to handle heavy truck traffic (Fagnant & Kockelman, 2015). 

Lastly, it has been highlighted in the literature that CAV are supposed to improve traffic 

safety on the roads. The number of crashes involving CAV could be reduced dramatically. 

Over 90% of crashes are considered to be caused primarily by driver errors (NHTSA, 
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2016). Moreover, alcohol, distraction, drug use, and/or exhaustion are concurrent factors 

in more than 40% of fatal crashes (NHTSA, 2016). Additional human variables, such as 

inattention, distraction, or speeding, are frequently identified to have contributed to the 

crash probability and/or injury severity, even when the primary cause of a crash is 

attributed to the vehicle, infrastructure, or environment. Therefore, machine-driving cars 

could be immune to human error, potentially resulting in a reduction of the total 

potential crashes by more than 90% and of fatal crash rate of at least 40%. 

2.3. CAV and traffic safety 

Because traffic safety of CAV is the primary objective benefit that is investigated in this 

thesis, a detailed literature review is demonstrated in a specific subsection. As declared 

before, CAV technologies have the potential to reduce the number of collisions in the 

road (NHTSA, 2016). Over the past ten years, research has begun focusing on the 

influence of CAV on traffic safety. Researchers used a variety of techniques to determine 

the extent of CAV effect on traffic safety, including studying historical crash data and 

working with open-source real CAV datasets, as well as using simulation and modelling 

techniques. 

The initial strategy involved attempting to eliminate the impact of human error either by 

re-analysing historical collision data without the presence of human error factors 

(Fagnant & Kockelman, 2015) or by presuming that autonomous driving on roads will 

provide similar safety benefits to those seen in rail or aircraft driving environments 

(Hayes, 2011; Karjanto et al., 2017). After determining the preliminary degree of the 

safety advantages using these simplified techniques, the focus was shifted to CAV 

modelling and simulation in order to gain a more thorough understanding. 

According to the RAND Corporation's report (Blumenthal et al., 2020), they classified 

safety evaluation into three categories: evaluating safety in process (traffic safety 

optimization), safety measurement (performance), and safety threshold. The first 

category was presented by CAV trajectory optimization and modelling; to optimize the 

movements of CAV during merging and crossing manoeuvre safely and the safe space 

between vehicles using distance and time gap constrains (e.g. Ding et al., 2020; Liu et al., 

2020; H. Xu et al., 2019; X. Xu et al., 2018; Zhou et al., 2020). 

The second category (Figueiredo et al., 2009; Pereira & Rossetti, 2012; Talebpour & 

Mahmassani, 2016; Ye & Yamamoto, 2018) was directed to measuring the safety 

performance of CAV on the road by investigating either: 1) real-world CAV data, obtained 

from the preliminary pilot CAV deployment, which is limited because there is a very small 

amount of data which are publicly accessible; or 2) simulation methods that concentrate 

on CAV simulation in calibrated traffic models regarding the technology advances of CAV, 
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within microsimulation platforms, and then utilizing surrogate safety evaluation 

approaches and traffic operation dynamics to assess traffic safety. 

The third category of CAV safety evaluation was supposed to discuss the change in 

surrogate safety measures thresholds that should be applied in safety evaluation of CAV 

(Rahman et al., 2019; Sinha et al., 2020). 

Accordingly, several research works aimed to evaluate one or more of these categories in 

investigating the impact of CAV behaviour on traffic safety. 

2.3.1. CAV’s safety in process and real-world performance 

Substantially, Reed (2020) underlined that studying the safety aspects of CAV in process 

(behaviour) is the guide to evaluate the other two CAV safety categories (CAV safety 

performance and thresholds). Thus, the focus was directed to this stage by manufacturers 

and policy makers. 

Regarding the manufacturer’s projects, as example, BSI (2021) aimed to provide 

confidence for CAV trials by developing an acceptable safety case by optimizing a 

definition of the safe operational design using collected data from CAV trials. They 

offered a lot of useful details on how CAV trialling organizations should behave to 

guarantee safety performance, with resonance over how same guiding principles might 

apply in CAV when they are widely deployed. Nevertheless, they were not able with their 

trial data to develop standards for CAV safety benchmarking. 

In nVidia (2019) the researchers gave a thorough mathematical explanation of how 

autonomous vehicles could function in a dynamic environment without running into any 

other static or dynamics objects by mapping the road users and environment perception 

to the control restrictions. However, it made no attempt to define or ascertain how 

specific environmental characteristics or the behaviour of other objects might affect the 

driven vehicle. For instance, a CAV passing a motionless pedestrian at a certain distance 

would exhibit the same behaviour whatever the vehicle driving speed. 

On the other side, Waymo (2020) is widely regarded as the industry leader in CAV 

operations on public roads. Their safety framework explained how they create, test, and 

deploy CAV in the real world using a variety of methodologies to incorporate safety into 

their hardware (to be effective, secure, and robust), behaviour (to be safe and 

responsible), and operations (which are safely deployed and operated). CAV driving 

behaviour decisions were evaluated based on “hazard analysis” and “scenario-based 

verification”. Precisely, they incorporated collision avoidance testing on both closed track 

trials and simulation of millions of miles examined using the high-quality human driving as 

a base standard. In addition, they included analysis of situations where a human driver 

took over to determine whether autonomous system would have reacted appropriately. 
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Nevertheless, they did not show details about how they chose the acceptable driving 

behaviours that their CAV adopt inside their operational design domains. This may come 

with according this information as being commercially confidential. 

Other projects which aimed to develop CAV traffic safety benchmarks commercially are 

also acknowledged in this work (e.g. Automated Vehicle Safety Consortium, Connected 

Places Catapult and Roadcraft). 

Additionally, some studies used real-world data to evaluate traffic safety involving CAV on 

roads. For example, Sinha et al. (2021) conducted a detailed safety analysis using data 

from the California Department of Motor Vehicles, USA (2014-2019). The reported data 

were used to create a number of crash models that focused on injuries for all crash types. 

Machine learning classification techniques were applied to better comprehend the 

severity of CAV crashes. However, the factors that contributed to the severity of a CAV 

crash were not clearly characterized due to a lack of information on crashes involving 

CAV. 

Similar methods were utilized by Chen et al. (2020) who showed that Xtreme gradient 

boosting, a decision tree classification model, outperformed all other investigated 

classifiers in identifying injuries that occur in CAV crashes. According to their research, the 

severity of a crash dramatically increased if two automated vehicles collide at an 

intersection or do so in bad weather conditions (such as snow or fog). Furthermore, areas 

with a variety of land use patterns have a higher risk of injury-causing crashes. Multiple 

land uses (such as residential, commercial, and public) lead to a variety of traffic 

behaviour and modifications in regional traffic flow, which showed a significant impact on 

traffic safety. 

2.3.2. Safety evaluation using simulation-based surrogate safety 

measures 

Although it sounds that the real-world data evaluation strategy might be the most 

effective one, the concern is how reliable it is, given that CAV deployment is still in its 

early stages and that CAV has only been tested in very few circumstances. Therefore, 

until now the main methodology used to investigate the effects of CAV has been by 

modelling a virtual environment of CAV to answer the operational questions. Simulation 

platforms provided several advantages which enable the investigation of such complex 

environments: they permit to test specific technologies by running a software and 

hardware in the loop (PTV, 2017); they are flexible and qualified enough to quickly take 

on and evaluate countless fleet scenarios (Wang et al., 2021); and, they even enable the 

identification of the acceptable CAV accompanying-configurations for deployment. As a 

result, simulation platforms provide a forum for roundtable discussions among vehicle 
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manufacturers, technology suppliers, infrastructure designers, and transportation 

operators (PTV, 2017). 

Some researchers have simulated CAV using multi-level simulation platforms or a 

customized simulation framework (e.g. Figueiredo et al., 2009; Pereira & Rossetti, 2012; 

Talebpour & Mahmassani, 2016; Ye & Yamamoto, 2018). However, the outcomes of 

these unique models are less sound and more challenging to compare (Li et al., 2013; 

Papadoulis et al., 2019). As an alternative, additional research (El-hansali et al., 2021; 

Genders & Razavi, 2016; Morando et al., 2018; Papadoulis et al., 2019; Rahman, 2019; 

Sinha et al., 2020; Virdi et al., 2019; Weijermars et al., 2021; Xie et al., 2019; Zhang et al., 

2020) used traffic microsimulation software and its extensions. Owing to its viability and 

benefit of operating various future scenarios in a short amount of time, this method has 

become the most popular. 

A summary of previous research that used simulation to gauge the effect of CAV on traffic 

safety is presented in Table 3. The table includes the following details: the simulation 

software platform, the calibrated network, the type of vehicle taken into consideration, 

penetration rates used during the simulation, thresholds for surrogate safety measures 

used to spot potential conflicts, safety evaluation indicators, and finally the levels of CAV 

examined. 

In traffic safety studies, various microsimulation platforms were used to model CAV. 

Along with its Wiedemann 99 internal model calibration, the VISSIM interface was 

commonly used with various external car-following algorithms (e.g. Intelligent Driver 

Model, Newell's car-following model). Several studies, however, used other platforms 

(e.g. Aimsun, PARAMICS, SMART, SUMO). Aimsun's internal interface algorithms (both 

car-following and lane-change Gipps' models) and well-structured external interfaces to 

model connectivity (V2X extension, the External Agent Interface) have recently added 

more capability to CAV modelling. Yet, all of the mentioned platforms are suitable for 

CAV simulation. See Gettman et al. (2008) for more information and discussion about 

some comparisons connected to these platforms. 

CAV traffic safety has been tested in a variety of networks and vehicle types. While many 

studies focused on freeways, two-lane highways, or intersections (e.g. roundabouts, 

signalized, unsignalized) (e.g. El-Hansali et al., 2021; Papadoulis et al., 2019; Sinha et al., 

2020; Virdi et al., 2019; Zhang et al., 2020), others studied urban arterials and 

intersections (e.g. Guériau & Dusparic, 2020; M. S. Rahman et al., 2019). However, the 

results of traffic safety were comparable (i.e. high penetration rates of CAV enhance 

traffic safety). 
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Table 3: Summary of previous simulation-based studies for CAV effect on traffic safety  

Reference Simulation 
platform 

Studied 
network 

Vehicle 
type 

Penetration rates SSM 
thresholds 

Evaluation 
indicators 

Level of 
CAV 

Genders & 
Razavi (2016) 

PARAMICS Network with 
work zone 

PC 0,20,40,60,80,100 1.5s TTC Conflict 
frequency 

L2 

Morando et 
al. (2018) 

PTV-VISSIM Signalized 
intersection, 
roundabout 

PC, 
HV(5%) 

0,25,50,75,100 1.5s TTC 
(HDV-HDV, 
AV-HDV) 
1.0s 0.75s 
TTC 
(AV-AV) 
5.0s PET 

Conflict 
frequency, 
Involved vehicles 

L4 
(2 models) 

Ye & 
Yamamoto 
(2019) 

Costumized 
modelling 

2-lane road (10 
km) 

PC 0,25,50,75,100 - Distripution of 
TTC, acceleration, 
and velocity 
difference 

L2 

Papadoulis et 
al. (2019) 

PTV-VISSIM 3-lane 
motorway 
(44.27 km) 

PC 0,25,50,75,100 1.5s TTC 
5.0s PET 

Conflict 
frequency, 
Involved vehicles 

L4 

Rahman et al. 
(2019) 

PTV-VISSIM Arterial (61.15 
km) 

PC, 
HV 
(%real 
data) 

30,40,60,80,100 
(CV and L2 tested 
apartly) 

1.5s TTC 
5.0s PET 

Conflict 
frequency, 
Severity (TET, TIT, 
TERCRI, LCC, and 
NCJ) 

 
L1, L2 

Xie et al. 
(2019) 

SMARTS Freeway, 
CBD, 
Campus 

PC 0,20,40,60,80,100 1.5s TTC Conflict 
frequency 
(sensitivity 
analysis) 

L1,L2,L3,L4 

Virdi et al. 
(2019) 

PTV-VISSIM Urban 
intersections 

PC 0,10,20,…,90,100 1.5s TTC 
(?-HDV)* 
0.5s TTC 
(?-CAV) 
5.0s PET 
(?-HDV) 
1.65s PET (?-
CAV) 

Conflict 
frequency, 
Involved vehicles 

L4 

Zhang et al. 
(2020) 

PTV-VISSIM 4-lane freeway 
(7km) 

PC, 
HV 
(0%-
30%) 

0,10,20,30 2.0s TTC 
 

Severity (TET, TIT, 
TERCRI, and LCC) 

L4 

Guériau & 
Dusparic 
(2020) 

SUMO Motorway (7 
km), National 
(5.3 km), Urban 
(3x3 km) 

PC, 
HV 
(%real 
data) 

0,2.5,7,20,40,70 
(mix of L2 & L4) 

1.5s TTC 
(?-HDV) 
0.75s TTC (?-
CAV) 
5.0s PET 
(motorway & 
national) 
0.75s PET 
(urban) 

Conflict 
frequency, 
Involved vehicles 

L2, L4 

Sinha et al. 
(2020) 

PTV-VISSIM 2-lane 
motorway 

PC 0,10,20,…,90,100 1.5s TTC 
5.0s PET 
(?-HDV only) 

Crash rate (if 
PET=0), 
Severity (TTC, 
PET, Delta 
S) 

L4 

El-hansali et 
al. (2021) 

PTV-VISSIM 6-lane freeway PC 100 1.5s TTC 
5.0s PET 

Conflict 
frequency, 
Severity (MaxS, 
MaxD, 
MaxDeltaV) 

L4 

Sharma et al. 
(2021) 

Costumized 
modelling 

- PC Mixed fleet of CV 
levels 

- MTTC, DRAC L2 

Weijermars 
et al. (2021) 
 

Aimsun 3 tested 
Networks 

PC, HV Mixed fleet 1.5s TTC 
(?-HDV) 
1.0s (1st 
generation) 
0.5s (2nd 
generation) 
5.0s PET 

Crash frequency L4 (2 driving 
styles) 

Where; PC: passenger car, HV: heavy vehicle, HDV:human driven vehicle, CAV: connected and automated 
TTC: time-to-collision, PET: post encroachment time, TET: time-exposed-time-to-collision, TIT: time-integrated-time-to-collision, TERCRI: time exposed 
rear-end crash risk index, LCC: lane changing conflict, NCJ: number of critical jerks, DeltaS: difference in vehicle speeds as observed at tMinTTC, MaxS: 
maximum speed of either vehicle throughout the conflict, MaxD: maximum deceleration of the follower vehicle, MaxDeltaV: maximum DeltaV value of 
either vehicle in the conflict, MTTC: modified time-to-collision, DRAC: lower deceleration rate to avoid accident. 
*(?-HDV) means the follower vehicle is HDV whatever the first vehicle 
(?-CAV) means the follower vehicle is CAV whatever the first vehicle 

Adapted from Miqdady et al. (2023) 
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Similarly, some studies simulated only passenger cars, whereas others included a 

percentage of heavy vehicles in their simulated traffic flow to simulate more real traffic 

flow conditions (Guériau and Dusparic, 2020; Morando et al., 2018; Rahman et al., 2019; 

Weijermars et al., 2021; Zhang et al., 2020). 

Simulating the pattern of CAV introduction is critical for reflecting the implementation 

process. Although most studies represented the introduction by increasing L2 or L4 

vehicle penetration rates, Guériau and Dusparic (2020), Sharma, et al. (2021), and 

Weijermars et al. (2021) proposed a mixed fleet that included vehicles with varying levels 

of automation in the same scenario. 

2.3.2.1. Surrogate safety measures (SSM) used in safety evaluation and thresholds 

The frequency of crashes, crash rate, and crash severity are direct indicators of traffic 

safety performance. However, crashes data are not always statistically sufficient for 

studies. Traffic conflicts, on the other hand, are more frequent events. Traffic conflicts are 

observable non-crash incidents where there is a risk of accident due to interactions 

between various road users in space and time if these users do not alter their trajectories 

of movement (Amundsen and Hyden, 1977). Indeed, a conflict is considered to be 

connected to a crash, when a failure (e.g. human operator failure, road failure, or vehicle 

failure) that leads to the conflict cannot be properly corrected (Davis et al., 2011; Tarko, 

2020). Therefore, several researchers (e.g. Laureshyn et al., 2010; Wu et al., 2018) 

derived and improved several Surrogate Safety Measures (SSM) from traffic conflicts and 

validated them by field data (i.e. motion tracking from recorded videos and sensors 

utilizing human observers or by computer vision) to be used as safety indicators instead 

of crashes frequency and severity. 

Regarding simulation-based studies focusing on traffic safety, SSM were the only 

available criteria attached to this types of studies (Wang et al., 2021). According to 

previous studies (Gettman and Head, 2003; Huang et al., 2013; Ozbay et al., 2008; Zheng 

et al., 2019), simulated SSM were significantly compatible with field-observed SSM if the 

simulation models were properly calibrated. This demonstrates the validity and reliability 

of SSM based on traffic simulation. Further, in the case of CAV, where it is unfeasible to 

collect field data for mixed fleet scenarios, traffic simulation-based-SSM is the only 

criterion available to conduct traffic safety studies. 

In other words, because researchers frequently used SSM to better understand the safety 

implications of new traffic designs and alternative safety solutions, determining the safety 

effects of CAV and their interactions with HDV was considered as a relevant application of 

SSM. Moreover, SSM are employed to get several attributes of traffic safety; the number 

of conflicts as well as the conflicts’ severity by time-based, deceleration-based, and 

energy based indicators. By studying traffic trajectories and extracting the values of SSM, 

the Federal Highway Administration's (FHWA) Surrogate Safety Assessment Model 
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(SSAM) tool or other specially designed tools were frequently used in safety evaluation 

(Wang et al., 2021). 

The following are some of the SSM used in safety evaluation in simulation-based studies: 

Time-based SSM gauge the closeness interaction relation to how close it is to a collision in 

time. Time-to-collision (TTC), the most popular time-based SSM (Wang et al., 2021), was 

described as "the amount of time that is left before a crash between two vehicles would 

have occurred assuming the crash route and speed difference are maintained" (Hayward, 

1972). Time-to-accident (TA), also a popular time-based SSM, was first presented by 

Perkins and Harris (1967). When the evasive action is first noted by a field observer, TA is 

computed using the estimated distance and speed. The primary distinction between TTC 

and TA is that TTC is estimated based on the observed evasive behaviour, whilst TA is 

measured at the start of the conflict occurrence. In order to establish if a conflict is high 

risk or not, it was suggested that both indicators use specific thresholds (Gettman et al., 

2008). 

Another time-based SSM often used in simulation-based studies is the Post 

Encroachment Time (PET). PET is the minimum time between when the first vehicle last 

occupied a position and the time when the second vehicle subsequently arrived to the 

same position (Gettman et al., 2008). A value of zero indicates a collision. 

Several more intricate SSM were created based on TTC. Time-Integrated TTC (TIT) and 

Time-Exposed TTC (TET) were proposed by Minderhoud and Bovy (2001). TIT is the area 

between the TTC curve and the threshold level when the curve deviates below the 

threshold. TET is the period of time during a conflict when the TTC is below a specific 

threshold value. TET and TIT, as opposed to TTC and TA, concentrate on quantifying the 

risk connected to the length of time under hazardous driving conditions. TTC must be 

continuously calculated to derive TET and TIT. 

Deceleration-based SSM, on the other hand, were supposed to concentrate on how 

vehicle deceleration can prevent crashes rather than measuring time proximity. For 

example, Cooper and Ferguson (1976) suggested DRAC (Deceleration Rate to Avoid the 

Crash) to gauge the severity of an interaction. It was defined exactly as the minimal 

braking rate necessary for a vehicle to avoid colliding with another one. It is calculated 

under the presumption that one vehicle makes evasive manoeuvres while the other 

keeps moving in the same direction and at the same speed. For DRAC, certain thresholds 

are also necessary in order to calculate the severity of a collision. 

According to Oh et al. (2006), who assumed the lead vehicle executes an emergency 

braking manoeuvre with the maximum deceleration rate, the Rear-end Collision Risk 

Index (RCRI) was developed to identify hazardous conditions by comparing the stopping 

distance between the lead and trailing vehicles. Based on RCRI, the Time Exposed Rear-
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end Crash Risk Index (TERCRI) was proposed to measure the aggregated risk over time 

(Rahman and Abdel-Aty, 2018), which is only applicable for longitudinal car following 

cases. MaxS and DeltaS are also deceleration based SSM which were used to analyse the 

simulation-based studies (Wang et al., 2021). MaxS was defined as the Maximum Speed 

of either vehicle throughout the conflict (i.e. while the TTC is less than the specified 

threshold). Whereas, DeltaS was defined as the magnitude of the difference in vehicle 

velocities (Gettman et al., 2008). 

Energy-based SSM added a new dimension to the definition of severity: the 

consequences of the risk brought on by an interaction (conflict). According to the theory, 

strong kinematic forces caused by vehicle interactions have a significant negative impact 

on road user’s safety and almost certainly cause serious injuries and fatalities (Shelby, 

2011). Researchers have shown high confidence in this type of indicators for predicting 

crash severity over the years. In order to anticipate injuries and fatalities, DeltaV was 

employed in Carlson's (1979) attempt to construct models for assessing the likelihood of 

injuries or fatalities in a crash based on factors like the velocity of the impact and vehicles 

masses. DeltaV is the change in pre-collision and post-collision velocities (Gettman et al., 

2008). Later, Evan (1994) fitted a number of conflict-related injury and fatality prediction 

models using DeltaV. However, the creation of new equations was not significantly 

pursued because this indicator was not employed for traffic conflict analysis until its 

recent introduction into SSAM (Shelby, 2011). As a result, the traditional Evan’s models 

(Evan, 1994) continued to be applied. 

In CAV’s traffic safety studies, time-based and deceleration-based SSM have been mainly 

used. In contrast, energy-based SSM were not used before in this context (Wang et al., 

2021). The most popular SSM in CAV’s traffic safety context is TTC (Rahman et al., 2018, 

2019; Tibljaˇs et al., 2018; Li et al., 2018; Virdi et al., 2019; Morando et al., 2018; 

Papadoulis et al., 2019). TET and TIT have also been frequently used (e.g. Li et al., 2017; 

Rahman et al., 2019; Zhang et al., 2020). TA has also been implemented (Wu et al., 2018). 

The distributions of hard braking (Zhong et al., 2021), RCRI (Li et al., 2018; Rahman and 

Aty, 2018; Rahman et al., 2019), sideswipe crash risk (i.e. the number of lane-changing 

conflicts) (Rahman and Aty, 2018), and TERCRI are all applications of deceleration-based 

SSM (Rahman and Aty, 2018). Other safety indicators, such as standard deviation of 

speed (Rahman and Aty, 2018; Fu et al., 2019), MaxS (Tibljas et al., 2018), and DeltaS (El-

Hansali et al., 2021; Sinha et al., 2021; Tibljas et al., 2018) have also been used to 

evaluate CAV safety effects. 

In SSAM, TTC and PET thresholds were designed to serve as the starting point for 

determining risky interactions and the resulting SSM. SSAM's default values are 1.50 s and 

5.00 s, respectively. Evidently, a sufficient threshold must be defined to distinguish 

between serious and non-serious conflicts. The determination of this value is an ongoing 

issue involving CAV conflicts that must be resolved. Those values, however, were assigned 
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in SSAM with HDV crash validation. According to Table 3, some researchers used the 

default values after performing a sensitivity analysis with several values (Papadoulis et al., 

2019; Zhang et al., 2020). Others, on the other hand, argue that it is critical to change the 

default TTC value when dealing with CAV due to their faster reaction times and shorter 

headways. Morando et al. (2018) tested the resulting conflicts of CAV vehicle penetration 

using three TTC thresholds: 1.50 s for any conflict involving HDV, and the other two lower 

values (1.00 s and 0.75 s) for CAV-CAV interactions that showed statistically significant 

differences. Furthermore, Guériau and Dusparic (2020) used the value 0.75 s for CAV 

conflicts, whereas Virdi et al. (2019) used a value equal to 0.50 s. 

2.3.1.2. Safety evaluation regarding CAV levels 

Among the research work that investigated the traffic safety of CAV, various levels of 

automation were calibrated. Table 3 shows that, in general, a large portion of previous 

studies focused only on the effect of high level of automation (L4 vehicles penetration) 

(e.g. El-Hansali et al., 2021; Morando et al., 2018; Papadoulis et al., 2019; Sinha et al., 

2020b; Virdi et al., 2019; Weijermars et al., 2021; Zhang et al., 2020), as this is the most 

anticipated stage. Even though, many studies were conducted to deal with only low levels 

of automation and connectivity (L1 and L2 vehicles) (i.e. vehicles with one or two 

advanced systems) (Genders & Razavi, 2016; Rahman et al., 2019; Sharma et al., 2021) in 

order to reflect the near future traffic safety expectations. 

In particular, Genders and Razavi (2016) analysed L2 vehicles with connectivity between 

vehicles (Vehicle-to-Vehicle, V2V), according to those who looked into the safety impact 

of L1 and/or L2 vehicles. Thereafter, they examined three behavioural models with 

various penetration rates while considering varying levels of driver compliance (high, 

moderate, and low compliance). Viably, they discovered that the level of driver 

compliance of the data collected by V2V at work zones is correlated to traffic safety: 

moderate and low levels of driver compliance are correlated with significant traffic safety 

drawbacks, whereas a high level of driver compliance of interaction with V2V-received 

data was correlated to good results in traffic safety. Additionally, this study revealed that 

while high penetration rates increase network safety, L2 vehicles penetration rates below 

40% contributed to more traffic conflicts. As well, they recommended to analyse the 

impact of platoon spatial arrangement to assess the safety of mix fleets of HDV and L2 

vehicles with high/low compliance drivers of the connected data. 

Sharma et al. (2021) used their model also to evaluate traffic safety generated by L2 

vehicles introduction under different levels of compliance and various platoons’ 

arrangements. First, after looking into homogenous scenarios (scenarios with only one 

type of behaviour), they discovered that platoons of L2 vehicles with high compliant 

drivers achieve a higher level of safety than platoons of L2 vehicles with low compliant 

drivers (higher modified time-to-collision (MTTC) and lower deceleration rate to avoid 
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accident (DRAC)). Yet, L2 platoons with low compliant drivers still showed more safety 

advantages than HDV. In contrast, for heterogeneous scenarios, it was noted that vehicle 

placement within a platoon—rather than penetration rate—was the crucial element in 

obtaining the safety gains. The ideal vehicle configuration for a platoon was for a L2 

vehicle with poor compliance to follow a L2 vehicle with high compliance, with HDV in 

between. 

Rahman et al. (2019) used evasive action indicators (e.g. number of critical jerks and time 

exposed rear-end crash risk index) along with TTC-derived measures (e.g. TET and TIT) to 

estimate the severity of traffic conflicts when L1 and L2 vehicles enter a traffic stream. 

The findings showed that when CAV penetration rates exceeded 60%, the intensity of 

conflicts at arterial segments and intersections was significantly reduced. 

Papadoulis et al. (2019) assessed a highway safety outcome on road segments by 

introducing L4 vehicles that were calibrated by an external VISSIM interface and 

examined by the quantity of conflicts. For different days of the week, the number of 

conflicts showed reductions of 12–47%, 50–80%, 82–92%, and 90–94% for 25%, 50%, 

75%, and 100% CAV penetration rates, respectively. 

El-Hansali et al. (2021) compared the traffic safety of HDV against L4 vehicles on a 6-lane 

motorway segment that was operated entirely by either of these two vehicle types (i.e. 

100% HDV vs. 100% L4 vehicles). Only 8.6% fewer problems between autonomous and 

conventional traffic were found as a result of their study. They exhibited also the results 

of SSM (e.g. maximum speed of either vehicle throughout the conflict (MaxS) and 

maximum deceleration of the follower vehicle (MaxD)) for these two fleets. Their results 

showed higher MaxS and MaxD for L4 vehicles than those for HDV. However, they do not 

necessarily reflect reality.  

Sinha et al. (2020)'s case study was to evaluate the severity of the introduction of L4 

vehicles. They looked at the traffic flow efficiency, prospective conflicts, and predicted 

probable crash rates which estimated based on the resulted potential conflicts. Overall, 

the findings showed that CAV-HDV interaction is safer than HDV-HDV interaction. 

Zhang et al. (2020) proposed a special study focused on road segment’s configuration. 

They looked into the safety of L4 vehicles using exclusive lanes with various penetration 

rates. They emphasized how establishing even one exclusive lane would increase safety 

by reducing unsafe situations during both longitudinal and lateral movements. They also 

emphasized that creating two separate lanes is more suited for situations with heavy 

demand. 

Other researchers examined L4 traffic safety at intersections. For instance, the reduction 

in conflicts caused by L4 vehicles in Morando et al. (2018) was predicted to range from 

20% to 65% for signalized intersections and from 29% to 64% for roundabouts with 
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penetration rates between 50% and 100%, respectively. Additionally, according to Virdi et 

al. (2019), L4 vehicles advantages will be felt at large penetration rates (especially for 

signalized and diverging diamond intersections). Conflict reductions were anticipated to 

be 48%, 100%, 98%, and 81% for the signalized, priority, roundabout, and diverging 

diamond intersections, respectively, assuming 90% of L4 vehicles penetration rate. 

However, L4 vehicles will not be driving immediately; instead, they will be sharing the 

road with vehicles with lower levels of automation. More scenarios with lower levels 

should be examined in order to show more realism. In this aspect, only few earlier 

investigations simultaneously modelled multiple CAV levels. 

For example, Xie et al. (2019) used SMARTS to conduct a sensitivity analysis of the effect 

of four levels of automation (L1, L2, L3 and L4 vehicles) on traffic safety using various 

parameters (e.g. maximum acceleration/deceleration, space/time headway, reaction 

time, etc.), traffic flow (1000, 3000, and 5000 vehicles per hour), and different areas (e.g. 

urban area, interurban freeway). They discovered that while an increase in automation 

level would improve traffic efficiency, it might also increase the likelihood of conflicts at 

low penetration rates of CAV. However, there were a number of points that could be 

connected to that conclusion: they considered the same TTC threshold for HDV and 

vehicles of any level of automation, despite the fact that CAV present higher capabilities; 

they considered scenarios that were not very realistic (such as penetration rates of 100% 

for L1 or L2 vehicles), that the drivers will not see during the transition to CAV; and finally, 

they did not consider the effect of connectivity that may lead to more adapting and 

harmony between vehicles and indeed improve traffic safety. 

Guériau and Dusparic (2020) attempted to combine mixed fleets of HDV with more than 

one level of CAV (L2 and L4 vehicles). They carried out a thorough study that calibrated 

real traffic demand (with light and heavy trucks) in a variety of networks (motorway, 

national, and urban). Additionally, they used two kinds of connectivity (Vehicle-to-

Vehicle, V2V, and Vehicle-to-Infrastructure, V2I). According to their research, low CAV 

penetration rates negatively impacted traffic safety and raised conflicts by 30% when 

compared to a human-driven scenario, but high CAV penetration improved safety by 

reducing conflicts by 50% to 80%. They underlined that traffic congestion contributes 

more in potential conflicts than the penetration rates of L2 and L4 vehicles. So, they 

highlighted the importance of assessing traffic efficiency and safety at the same time. 

On the other hand, Weijermars et al. (2021) used traffic data calibrated from three city 

networks and eight mixed fleets to mimic two driving styles of CAV (i.e. cautious, 

forceful). However, the primary omission in the last two studies (Guériau and Dusparic, 

2020; Weijermars et al., 2021) is that CAV driving behaviours were not illustrated or 

covered in the findings. They only exhibited the total decrease of conflicts by CAV as one 

unit instead of demonstrating them by vehicle type (i.e. the role of each vehicle type: 

HDV, cautious CAV, and aggressive CAV in the conflicts). 
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In reality, CAV will be implemented throughout a phase of transition with a variety of 

mixed fleets and levels. Consequently, it is crucial to discuss these two issues 

simultaneously by highlighting the safety implications of increasing the penetration rates 

of CAV levels across scenarios, as well as by addressing how each level participates in 

both the total number of resulting conflicts as involved vehicles and their role as a fault 

vehicle in any potential conflicts or crashes. 

2.3.3. Dedicated lane configurations for CAV 

The impending arrival of CAV emphasizes the necessity of preparing the road network for 

traffic that includes both CAV and HDV. One of the feasible and probable approaches to 

improve the road infrastructure for mixed traffic is to designate a dedicated lane (DL) for 

CAV and test various configurations that could maximise traffic efficiency and safety. 

Accordingly, several studies have started to test this option recently. Among two-lane 

segment, Chen et al. (2017) tested the impact of three configurations of DL on the 

capacity of the road at different penetration rates of CAV: zero DL, one DL mandatory for 

HDV, and one DL mandatory for CAV. Their results showed that zero DL, in general, 

generated better capacity. As well, traffic volumes on the road beside the penetration 

rate of CAV are critical factors in giving back the benefit of DL. Mohajerpoor and 

Ramezani (2019) tested the impact on traffic delay also at different penetration rates of 

CAV. They applied four DL configurations: zero DL, one DL mandatory for HDV, one DL 

optional for CAV, and one DL mandatory for CAV. Their findings were summarised as 

follows. Zero DL performed better than DL across the entire transition period to CAV. The 

optimum strategy to use a DL was: below 50% CAV penetration rate on the road, it is 

better to use a DL for HDV; between 50 and 65% CAV penetration rate, a DL for both CAV 

and HDV (optional DL) is appropiate; and finally above 65% CAV, it is better using a DL for 

CAV. 

On the other hand, the majority of studies tested the DL configurations on more than 

two-lane highways. For instance, two consecutive studies (Zhong et al., 2020; Zhong and 

Lee, 2019) examined the impact of one DL and two DLs for CAV on road capacity and 

performance at different CAV penetration rates on a four-lane highway. Their research 

determined that when CAV penetration rate was 40% or higher, road capacity and 

performance were better with both one or two DLs. 

Hamad and Alozi (2022), on five-lane highway, applied various percentages of DLs at each 

penetration rate of CAV to get the optimum capacity. Afterwards, these optimum 

percentages of DLs were tested at different traffic volumes. Their results demonstrated 

that zero DL performed better at light traffic volumes, whereas using DLs improved the 

performance at congested traffic conditions. Specifically, delay and throughputs were 

decreased with DLs if the penetration of CAV was above 30%, while the emissions (gCO2) 

started to decrease at 40% CAV. 
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He et al. (2022) studied the impact of zero DL, one DL for CAV (optional and mandatory), 

and two DLs for CAV (optional and mandatory) configurations at two-, three-, and four-

lane highways on both capacity and throughputs at different CAV levels and penetration 

rates. By operating L3 to L5 vehicles on the DLs, they found that if the penetration rate of 

CAV is below 50%, the implementation of DLs for CAV does not have a significant positive 

impact on traffic efficiency. In such case, if a DL policy was chosen, the “mandatory use” 

was recommended compared with the “optional use”. However, the “optional use” of 

DLs is recommended when CAVpenetration rate is above 80%. 

Regarding the safety impact of DLs, Zhang et al. (2020) tested the zero, one, and two DLs 

configurations for CAV on a four-lane highway. They evaluated the longitudinal and 

lateral traffic safety at different CAV penetration rates (0%-30%) and percentage of 

trucks. Two major findings were highlighted from this study: (1) one DL was capable to 

improve traffic safety at light traffic volumes, yet two DLs were needed for congestion 

conditions; and (2) low penetration rates CAV’s scenarios had adverse effect on 

longitudinal safety. 

2.3.4. Parameters values used in CAV calibration 

Platforms for traffic simulation provide a useful approach to assess various circumstances 

and fleets including CAV. The literature has used a range of traffic microsimulation 

platforms with various traffic flow models, including Aimsun, VISSIM, PARAMICS, SUMO, 

etc. Previous findings agreed in that CAV may improve traffic safety, particularly in 

situations where there is a high penetration rate of this vehicle type. However, based on 

their projections of CAV future behaviour, each study employed different calibration 

parameters and values. Whereas, in order to get effective simulation results, it is always 

necessary to take into account the dynamic as well as the stochastic nature of traffic 

simulation models and the calibration factors inherent to these models (Schultz and 

Rilett, 2004). 

To increase traffic safety knowledge and to obtain a robust calibration of the models, 

some researchers attempted to optimize the dynamics of CAV when examining the 

system behaviour. In fact, the ability to accurately and effectively describe the interaction 

that occurs between drivers, vehicles, and the environment is essential for both 

operational and planning applications. However, due to improved computer power, 

recent years have shown an increasing trend toward model-based optimization strategies 

for trajectory planning and vehicle control (Nolte et al., 2020). 

For instance, in order to overcome the difficulty of figuring out how to calibrate the car-

following sensitivity parameter in CORSIM microscopic traffic simulation model, Schultz 

and Rilett (2004) attempted to utilize the computer capabilities. In order to enter the car-

following model, they used a genetic algorithm to compare the values of eleven 

sensitivity parameters (as various types of drivers) across several distributions (e.g. 
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lognormal distribution and normal distribution). Their findings highlighted genetic 

algorithms' capacity to calibrate sensitivity parameter distributions; also, the mean 

absolute error between observed and simulated traffic volume and journey data was 

minimized within the two studied distributions. 

Batsch et al. (2021) tested CAV in a scenario-based environment using the Gaussian 

Process. They used a number of vehicle simulation situations and developed probabilistic 

(Gaussian) prediction models to gauge the outcomes of the scenarios. They 

demonstrated that the Gaussian Process could accurately predict the results. A sensitivity 

analysis of the optimized data, taking into account two scenarios (a pedestrian crossing 

the road in front of the ego car and a traffic jam approach), revealed that the geometric 

layout of the scenario and the combinations of the road users' speeds had the greatest 

impact on the outcome of the scenario. They also found that changes in the sensor's 

parameters had a less significant impact. 

Xie et al. (2019) is the most pertinent to the current investigation. They looked at the 

relationship between automation levels, traffic efficiency (travel time), and road safety 

(traffic conflicts) by adjusting their chosen criteria, such as maximum acceleration, 

maximum deceleration, clearance, minimum headway, aggressiveness factor, reaction 

time, etc. They have demonstrated that raising the level of automation might enhance 

traffic efficiency but may also increase the likelihood of vehicle conflicts, which should 

not be disregarded if human-drivers are still required to participate in the driving process. 

In fact, without a thorough grasp of the parameters that dominate a model at particular 

operations, the adoption of model-based algorithms in this field may be unfeasible (Nolte 

et al., 2020). The main parameters for CAV calibration are highlighted in the following 

paragraphs, along with discussions of the suggested values in the literature. 

CAV parameters could be divided into three categories: technology advancement 

parameters (e.g. reaction time, gaps for follower and leader), longitudinal movement 

parameters (e.g. acceleration, deceleration, speed oscillation, platoon size), and lateral 

movement parameters (e.g. lateral clearance, look ahead distance, and overtaking 

speed). Typically, each study used three to five parameters to calibrate the CAV’s 

behaviour. The most widely used parameters are those related to the longitudinal 

behaviour, showing their sensitivity to change traffic efficiency and safety. 

According to the three discussed categories in the previous paragraph, nine examination 

parameters were noted to be significant in literature, either as the most frequently used 

in CAV calibration or less frequently utilized yet crucial from a safety standpoint. All the 

studied parameters are depicted in Figure 2. This figure also displays the ranges of values 

used in the literature to calibrate these parameters. 
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Figure 2: Parameters values used in CAV calibration  

One of the most frequently suggested technological advancements in autonomous 

driving is the reaction time (the amount of time it takes a vehicle to react to the vehicle in 

front of it) (ATKINS, 2016; Stanek et al., 2018; Weijermars et al., 2021). Previously, 

reaction time was regarded as a global characteristic (parameter) in the simulation 

platforms’ API that could not be altered throughout the experiment. As a result, this 

parameter was rarely calibrated. However, when simulating CAV with external driver 

model extension with VISSIM platform, Zhang et al. (2020) assumed a value of 0.5 s. 

Aimsun, in their most recent editions, focused on CAV modelling and developed 

extensions to model its behaviour (Aimsun, 2020). Consequently, studies that used 

Aimsun changed the reaction time directly in the internal model depending on their 

assumptions. Specifically, they predicted that the CAV could respond in 0.1 s (Mesionis et 

al., 2020; Weijermars et al., 2021). Different values were considered in a sensitivity 

analysis performed by Xie et al. (2019) (2.0, 1.5, 1.0, 0.5, 0.0 s for different CAV levels 

from L0 to L4, consecutively). 

Another crucial parameter for safety consideration is the distance between two vehicles 

when they are at a standstill (Stanek et al., 2018), often known as the minimum standstill 

spacing headway, minimal gap, or clearance. CAV are generally expected to maintain 

closer spacing than HDV (ATKINS, 2016; Stanek et al., 2018). In studies that employed 

VISSIM platform to simulate CAV, Stanek et al. (2018) and Sinha et al. (2018) used 1.2 and 

0.5 m, respectively, as alternatives to the default value (1.5 m) in VISSIM model for HDV. 

The clearance values indicated by Morando et al. (2018), who employed two models 

(ATKIN, PTV), were 0.5 and 0.75 m. According to Guériau et al. (2016), calibrating the 

SUMO model, the clearance for HDV was 2.5 m on average, compared to 1.5 m for L2 

vehicles and 1.0 m for L4 vehicles. For various levels of automation, 1.0, 1.5, 2.0, 2.5, and 

3.0 m were proposed by Xie et al. (2019) (for L4 to L0 vehicles consecutively). 
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Maximum acceleration is considered as the most common and controversial measure 

used in CAV calibration. Some studies (Guériau and Dusparic, 2020; Weijermars et al., 

2021; Zhang et al., 2020) proposed lower values for CAV than for HDV, but others 

proposed greater values (ATKINS, 2016; Sinha et al., 2020; Xie et al., 2019). In addition, 

other studies continued to use the same values for both CAV and HDV (e.g. Makridis et 

al., 2018; Stanek et al., 2018; Zhong et al., 2021). On the one hand, Karjanto et al. (2016) 

argued that the correspondent value ought to be correlated with the chosen driving style. 

They claimed that an aggressive driving style recommended a greater value than human 

driving, and a cautious driving style should be represented by low values that may reach 

the value of a light rail transit (1 m/s²). Guériau and Dusparic (2020), on the other hand, 

proposed that maximum acceleration will decrease with the amount of automation; they 

proposed values of 2.5, 1.5, and 1.0 m/s² for L0, L2, and L4 vehicles, respectively. As 

opposed to Xie et al. (2019), that asserted that this value should rise from L0 to L4 

vehicles from 1.4, 1.6, 1.8, 2.0, to 2.2 m/s², consecutively. 

Another parameter taken into account in CAV traffic safety research is speed oscillation. 

However, this parameter presents a strong correlation with acceleration, which causes 

that one parameter reflects the other. 

The same pattern of assumptions is related to the anticipated deceleration of CAV. In 

particular, normal deceleration has been presented within a wide range of values in 

literature: between 1.3 and 7.5 m/s² (Figure 2). While Guériau and Dusparic (2020) and 

Stanek et al. (2018) did not suggested any differences between human behaviour and 

autonomous behaviour, ATKINS (2016) predicted an increase in deceleration for 

autonomous vehicles. The value for CAV, according to Zhang et al. (2020), was assumed 

to be lower than for human drivers. 

Regarding the maximum deceleration, it was believed to remain constant between 

human and autonomous driving in various studies (e.g. ATKINS, 2016; Guériau and 

Dusparic, 2020; Mesionis et al., 2020; Papadoulis et al., 2019; Stanek et al., 2018; 

Weijermars et al., 2021; Zhang et al., 2020). They argued that it should not be impacted 

by technology because it is the vehicle’s capacity, which is an extreme value applied in 

both types of vehicles with the same magnitude (Stanek et al., 2018). 

Another useful indication for assessing traffic safety is the effect of overestimating or 

underestimating the leading vehicle deceleration (i.e. the sensitivity factor). A value 

below 1.0 denotes an underestimate situation, whereas a value above 1.0 denotes an 

overestimation of the leader's deceleration by the vehicle. Only one study that calibrated 

CAV using the Aimsun platform attempted to alter this parameter in the Levitate project 

(Papazikou et al., 2020). Two values were proposed: 0.7 for cautious driving and 0.5 for 

aggressive driving. They made the assumption that even while driving cautiously, CAV are 

perceived as being more aggressive than HDV from a safety perspective. 
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The maximum number of vehicles that can belong to a platoon (also known as platoon 

size) was also tested in relation to traffic safety (Aramrattana et al., 2021; Faber et al., 

2020). Aramrattana et al. (2021) considered 2, 3, 4, and 5 vehicles in their research, while 

Faber et al. (2020) considered 5, 7, and 10 vehicles. They found that more vehicles in a 

platoon generated more braking actions, worsening traffic safety in general. 

Regarding vehicle’s lateral movement, Stanek et al. (2018) talked about how CAV should 

do more cooperative lane changes given that lane changes may happen at a higher speed. 

Additionally, it can be occurred at shorter lateral clearance. However, the simulation-

based studies on this topic did not sufficiently study lateral movement. Delpiano (2021) 

recommended a study of the lateral dimension according to CAV behaviour. 

Aimsun (2020) demonstrated the feasibility of calibrating these parameters in their traffic 

model. Indeed, the effect of modifying the distance zones used in the lane-changing 

model and looking-ahead distances was analysed. To adjust where lane changes start to 

be considered; regarding CAV behaviour, a factor of minimum and maximum look ahead 

distances is defined. For instance, if the look-ahead distance is defined as 200 m, the 

minimum look-ahead factor is 0.9, and the maximum look-ahead factor is 1.2, then the 

perception of the distance will range from 180 m (calculated as 0.9 × 200) to 240 m 

(calculated as 1.2 × 200). All vehicles selected distances in the range of 180–240 m using a 

uniform random distribution. The values are given as a range in the Aimsun model to 

randomise the behaviour (Aimsun, 2020). Different values were assumed in the Aimsun 

calibration of CAV studies (1.25, 1.5 (Mesionis et al., 2020), 1–1.25, and 1.1–1.3 

(Papazikou et al., 2020)). Because CAV are projected to perform with high cooperation 

during lane-changing, the values in both studies are higher than the human driving range 

for both cautious and aggressive driving styles. 

Other parameter that was calibrated in Aimsun’s lateral movement model is the speed 

threshold that prevents an overtaking (overtaking speed threshold). The vehicle will 

attempt to pass the leading vehicle whenever it is moving more slowly than the 

overtaking speed threshold (%) of its intended speed. Previous studies using Aimsun 

platform (Mesionis et al., 2020; Papazikou et al., 2020) revealed lower values for both 

cautious and aggressive driving (80% and 85%, respectively), than the human driving 

value (90%). 
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2.4. Research questions 

After reviewing the literature presented in the previous sections, and as an outgrowth of 

the international attention to the feasibility of connected and autonomous vehicles (CAV) 

as new mobility on our roads in the following years, regarding traffic safety, the following 

research questions have been extracted: 

(1) The majority of the research studies that conducted a safety evaluation of the 

introduction of CAV mainly considered one definition and calibration of the 

autonomous vehicle (i.e. one level of automation, either the near future definition 

(L2 vehicles) or the furthest definition (L4 vehicles)) and mixing them with the 

human-driven vehicles (HDV) with various penetration rates. However, studying the 

safety related to sharing the road of different levels of automation and connectivity 

might reflect better the real effect of CAV introduction. In addition, the involving of 

CAV levels in traffic safety events needs more understanding and analysis. 

 

 

 

 

(2) The majority of traffic safety evaluation studies for CAV introduction used few 

surrogate safety indicators to quantify the traffic safety events (i.e. conflicts or the 

time under risk). A thorough investigation of the safety dimensions (e.g. proximity, 

consequences, and level of severity) could help to indicate and assess another 

dimension of safety (severity) regarding CAV introduction. 

 

 

 

 

 

(3) There is in literature a wide talk about the possibility of using dedicated lanes for CAV 

introduction. However, the existing research works sought to study their impact on 

traffic efficiency and, therefore, there is a lack of studying the safety impact of this 

choice.  

 

The actual safety evaluation depends on safety-event quantification using limited 

surrogate safety measures.  

RQ2 – Could the employment of different safety measures reflect more 

understanding of the safety dimensions regarding CAV introduction?  

The actual calibration of one or two levels of automation that are supposed to share 

the road with HDV resulted in improvement of traffic safety.  

RQ1 – Will the calibration of all levels of CAV in various mixed fleets scenarios 

representing CAV introduction can reflect different traffic safety impact than 

previous studies calibrating just one or two levels of automation?  
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(4 

 

(4) The CAV behaviour in traffic flow (in both car following and lane-change) was 

calibrated in the literature using stochastic modelling (within simulation tools). 

Moreover, different sets of parameters were utilized and several values were 

assumed  for those parameters in calibrating the CAV behaviour in literature. A stop-

and-investigate step is needed to rationalise the effect of changing these parameters 

on traffic safety and to identify the key parameters untill we will obtain real data of 

CAV behaviour. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The actual evaluation of using dedicated lanes for CAV introduction is oriented to 

traffic efficiency. 

RQ3 – How will the employment of dedicated lanes for CAV introduction affect 

traffic safety?  

The actual simulation of CAV is conducted by assumption of different parameters of 

traffic behaviour. 

RQ4 – How will the change of the values of traffic behaviour parameters affect 

traffic safety? What are the key traffic parameters that affect traffic safety? 
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CHAPTER III: RESEARCH OBJECTIVES AND 

HYPOTHESES 

 

 

Because of the research questions discussed previously and according to the state of the 

art displayed in Chapter 2, the general and the specific objectives of this investigation are 

identified in this chapter. 

3.1. General objective 

The potential of the capability of CAV is continually growing with a particular emphasis on 

technological performance and much associated work centred on traffic safety. Indeed, 

as in any other developed design, engineering process (phases) requires the auditing 

(evaluation-planning) at each phase. In CAV case, the actual phase is the pre-

implementation phase, thus, traffic pre-safety-evaluation research is conducted 

worldwide to audit this phase shown in Error! Reference source not found. . Therefore, 

the general objective of this doctoral thesis is to investigate the likely traffic safety among 

the transition period between human-driving and autonomous driving. As a necessary 

planning step to start addressing the new problems that CAV can raise, and perhaps even 

to help stakeholders and policemakers to introduce some changes in design and policies 

in the meantime to achieve safe enough roads with the introduction of CAV. 

 

Figure 3: The general objective of the thesis 
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The goal is to quantify the potential safety impact of CAV comprehensively; regarding: the 

levels of automation, establishing safety indicators, the infrastructure configuration, and 

finally the behaviour calibration until we have real-data of CAV behaviour.The thesis also 

allows to understand where we are in research from real evaluation of CAV’s impact by 

putting in hand the compatibility sides and the missing sides to assess CAV behaviour and 

impact. 

 

3.2. Specific objectives 

According to the general objective and the identified research questions, the specific 

objectives of this thesis are summarised out as follows: 

Linked to RQ1: 

 

 

 

 

 

Linked to RQ1 and RQ2: 

 

 

 

 

Linked to RQ1 and RQ3 

 

 

 

 

Linked to RQ4 

 

 

 

 

 

- To calibrate the behaviour of CAV levels in a simulation model. 

- To quantify the traffic safety impact of CAV penetration among some 

possible real-world introduction scenarios. 

- To estimate the involvement of CAV levels in traffic conflicts and their likely 

responsibilities. 

- To estimate the traffic conflict severity among the different scenarios based 

on some severity dimensions (proximity, consequences, and 

proximity/consequences) and a traffic conflict technique concerning CAV 

levels. 

- To estimate the traffic safety impact of using a dedicated lane for CAV 

introduction, allowing to set an optimal strategy of deploying a dedicated 

lane. 

- To explore the sensitivity of traffic safety to changes in the parameters that 

define the CAV behaviour (CAV calibration parameters), and to identify 

which are the key parameters affecting traffic safety. 
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3.3. Research hypotheses 

Related to the previous research objectives, we adopt seven main hypotheses, which are 

to be tested using the methodological approaches set out in this thesis. 

Hypothesis 1: calibrating all the CAV levels will generate wider knowledge about the 

safety impact of CAV introduction. 

Hypothesis 2: the increase in the penetration rate of CAV in general will enhance traffic 

safety. 

Hypothesis 3: HDV and vehicles with low level of automation will be more involved in 

conflicts than vehicles with high level of automation at mixed traffic fleets. 

Hypothesis 4: the penetration of low levels of automation will provide no significant 

improvement in traffic safety, while high automation levels will do. 

Hypothesis 5: increasing the level of automation and its penetration in the traffic stream 

will generate less serious conflicts. 

Hypothesis 6: roads configured with dedicated lanes will satisfy good traffic safety results 

at high CAV’s penetration rates. 

Hypothesis 7: reaction time and car following parameters are key parameters in 

enhancing  traffic safety on roads.    
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IV STUDY AREA 
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CHAPTER IV: STUDY AREA  

 

 

 

This chapter provides a corresponding background for the study area chosen for 

modelling and analysis work in this thesis, then presents the modelling criteria used to set 

the study area into the microsimulation process. 

 

 

 

 

 

4.1. Description of the study area  

This section provides a brief description of the analysed motorway segment; the road 

geometry and traffic data collected by the general directorate of traffic (Dirección 

General de Tráfico, DGT).  

4.1.1. An overview 

The selected segment for our investigation (shown in Figure 4) is an urban motorway 

segment of Granada (Spain). This segment corresponds to part of the GR-30 highway, and 

it has 20.27 km of length (PK-111 to PK-132). The GR-30, also known as the 

“Circunvalación de Granada” or “Variante Interior de Granada”, encircles Granada from 

the west as well as many municipalities in the first belt of Granada city. It consists of the 

A-44's initial ring road, which was opened in 1990. The original portion closest to the city 

was given the new name GR-30 with the launching of the second ring road (“Segunda 

Circunvalación de Granada”) in 2020, which was constructed to solve the congestion 

problem in the first ring), which was heavily utilized according to its importance as one of 

the major routes in Spain, with 120,000 to 150,000 cars passing through each day, 5% of 

which are heavy vehicles (The Granada Independent, 2016). 

In fact, the GR-30 includes the two main entry points to Granada city, providing a 

strategic alignment and access to its most important locations (i.e. city centre, hospitals, 

schools, university, etc.). Moreover, the segment includes sixteen ramp junction 

(entry/exit) points.  
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Figure 4: Study area (GR-30) illustration 

Wikipedia (GR-30, 2022) 

4.1.2. Road characteristics 

GR-30 is a combination-type (i.e. of elevated and ground-level) highway, mostly accessed 

by straight ramps with acceleration/deceleration lanes or it is connected with weaving 

segments of two successive entrance and exit. The GR-30 provides north- and 
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southbound routes, and it consists of several link types; of two-, three-, and four-lane 

two-way. However, the selected segment is three-lanes two-way (i.e. six-lane divided 

highway). The details of the roadway cross section are obtained from the Dirección 

General de Tráfico (DGT) as shown in Figure 5. The cross section of the road segment 

consists of three lanes at each direction, lane width of 3.0 m, paved left shoulders width 

equals to 2.2 m, and a median part. The median part which meters in total 5.0 m, 

contains the right shoulders of each direction (right shoulder width of 1.0 m) and a rised 

dick median.  

 

 

Figure 5: Cross section of the GR-30 (m) 

 

4.1.3. Traffic volume characteristics 

As explained in the overview of the current section, GR-30  is an important highway in 

Spain and especially in the south of the country. This section provides some traffic 

information regarding GR-30 highway. Firstly, it presents a summary of traffic volume 

data for the highway segment, afterwards, it provides time-based distribution charts that 

describe the hourly and daily variations in traffic volumes. 

The data collected by DGT of traffic volume at 10 continuous count stations were used to 

extract the mentioned characteristics. DGT data were taken in February of 2020. Before 

analysis, a check of the minimum number of count stations needed was applied following 

the student’s t-distribution criteria (Garber and Hoel, 2014) for a 95% level of accuracy for 

the representative data. In our case, the 10 stations were enough, given thatthe mean of 

traffic volumes achieved the 95% at 8.06 stations. 

The collected data during the specified time period, in groups of 15 minutes intervals, 

were analysed and the main traffic characteristics are summarized in Table 4. The average 

of 24-hour counts that collected over the 29 days of February of 2020 (Average Daily 

Traffic, ADT) was 85,191 veh/day. In addition, maximum number of vehicles that pass the 

highway during 60 consecutive minutes (Peak Hour Volume, PHV) was 8.409 veh/hr. 

Whereas, over the count period (29 days), traffic sensors at count stations provided a 

vehicle classification in two-types: 87.55% of the passed vehicles recorded as passenger 

cars and 12.45% recorded as heavy vehicles in general. 
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Table 4: Summary of Traffic Volume Data for GR-30 segment 

     ADT (veh/day) 85191 

     PHV (veh/h) 8409 

     Vehicle classification (%) 

              Passenger car 

              Heavy vehicles 

 

87.55 

12.45 

 

As well, traffic counts at the segment show that traffic volume varies from hour to hour 

and from day to day. Hourly and daily traffic variations during the collection time period is 

shown in Figure 6 and Figure 7. Traffic volumes in the figures are related to the first week 

of the collection period (1-7 February 2020), which are collected at an average link 

(section) of traffic characteristics. 

A closer look to Figure 6 (the hourly variations) reflects that there is limited traffic 

between 1:00-6:00 am. The rush hours related to weekdays generally lies between three 

time periods: morning peak (7:30-9:30 am), noon peak (13:00-15:00 pm for Monday, 

Thursday and Friday, and 14:00-16:00 pm for Tuesday and Wednesday), and evening peak 

(18:00-20:00 pm). It can be indicated that the peaks are mostly caused by work trips 

according to the variation of peak hours in weekend days, where the morning peaks 

moves to be at late morning that is connected with noon peak. Likewise, the evening 

peak moves to be between 19:30-21:30 pm. 

 

Figure 6: Hourly traffic volume variation on the GR-30 segment by day 
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Figure 7 shows that  traffic volumes on Tuesday, Wednesday, and Thursday are similar, 

whereas a peak was observed on Monday and Friday. This suggests that when short 

counts are being considered for further analysis, it is helpful to schedule the collection of 

weekday counts for Tuesday, Wednesday, or Thursday, and, if required, to schedule the 

collection of weekend counts, it is better to do it separately for Friday and Saturday. 

 

Figure 7: Daily traffic variation on the GR-30 segment 

4.2. Modelling the study area  

Following the traffic modelling guidelines provided by the Roads and Maritime Services 

(2013) for applying a microsimulation model, three steps are mandatory to obtain a 

useful and stable model (i.e. to achieve models that can provide accurate outputs that 

minimise risk in the forecasting process). As shown in Figure 8, the microsimulation 

modelling process starts by defining a study area to be built in the simulation platform. 

Afterwards, the network and traffic demand are calibrated. Finally, the operations on the 

calibrated model are validated by observed operations of the real network.  

 

Figure 8: Microsimulation modeling phases 

Regarding the microsimulation platform selected to apply this process in our research 

work, practically, we meant to select a platform that could highly serve in the calibration 

Model 
build

Model 
calibration

Model 
validation
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of CAV behaviour. Basically, we were able to get the following observation from a critical 

look at various microsimulation platforms utilized to calibrate both longitudinal and 

lateral movements (Pereira and Rossetti, 2012): Aimsun has enhanced their most recent 

editions (Aimsun next 8.4.3 to 20) to offer more specialized tools to calibrate CAV 

behaviour as a vehicle type, despite the fact that PTV-VISSIM has long been a popular 

choice for this kind of analysis. In addition, Aimsun is regarded as user-friendly platform, 

and it has various developed external API extensions to accurately depict the CAV, 

including the connectivity (V2X extension). Furthermore, drawing tools and an imported 

Open Street Map are used in the Aimsun platform to generate the segment's geometry 

details with substantial level of accuracy. Therefore, Aimsun next 20 API is considered as 

an appropriate platform for our microsimulation work. 

4.2.1. Modelling phase   

To build a model (a study area) with a sufficient complexity that could be compatible with 

our objectives (Roads and Maritime Services, 2013), a case study of 20.27 km segment of 

the GR-30 motorway, displayed in Figure 9, is modelled in Aimsun platform.  

An Open Street Map was imported in the platform to be utilized in creating the geometry 

as well as the detailing of the segment (i.e. curves of the road segment, lane width, the 

length of sections, and merging and diverging areas) using various drawing tools provided 

by the platform and overlapping the sections created with the imported map. Many types 

of intersections belong to this property. However, only the links are considered and the 

intersections were modelled as access points. 

In addition, as mentioned previously, 10 detectors were used for data collection along 

this segment, installed by the Dirección General de Tráfico (DGT); six on the northbound 

route and four on the southbound one. The placement of the detectors along the real 

motorway segment was established also in the model using Aimsun tools for getting the 

modelled traffic counts later. 
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Figure 9: Modelled study area (GR-30 motorway section)  

Adapted from Miqdady et al. (2023a)  

4.2.2. Model calibration 

Based on Roads and Maritime Services (2013) modelling guidelines, model calibration is 

splitted into three steps: network verification, demand calibration, and route choice 

calibration. After the verification of the details of the modelled network (including 

number of lanes, lane widths, slopes and the basic geometry), data collected from 

different detectors throughout the segment by DGT on a weekday – Tuesday, 11 February 

2020 (10:00-11:00 am as off-peak hour, and 7:45-8:45 am as peak hour) – were used to 

calibrate the traffic demand and connections in term of turns and route choice. The 

speed limit, the average instantaneous speed of vehicles traversing the section during 

intervals of 15 minutes, the amount of traffic per lane (veh/hr/ln), and the distribution of 

traffic were all included in the DGT data (for passenger cars and heavy vehicles) (see 

Table 5) and used for data calibration. 
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Table 5: Descriptive observed traffic data on the segment 

 Off-peak Peak 

Speed limit (Km/hr) 80, 90, 100, and 120 80, 90, 100, and 120 

Average instantaneous 

speed (Km/hr) 
83 to 118 39 to 98 

Volume (veh/hr) 
547-3570 pc/hr, 

89-499 hv/hr 

869-5556 pc/hr, 

58-621 pc/hr 

 

Accordingly, the data from detectors were calibrated as traffic states of volumes with 

distribution of movements and route choice at the access points to achieve the actual 

traffic demand collected at detectors. Regarding the behaviour calibration, this step used 

the default behavioural parameters’ values recommended in Aimsun (2020) for both 

passenger cars and heavy vehicles (trucks). 

The preparation for simulation was also handled after calibration process, according to 

previous studies (e.g. Papazikou et al., 2020; Morando et al., 2018; Papadoulis et al., 

2019). The calibrated demand in this work was simulated for one hour with 0.1 s time 

steps, and an 18 minute warming-up period, calculated in accordance with Wunderlich et 

al. (2019), taking into account the length of the freeway segment and the average speeds 

within the segment. Shahdah et al. (2015) define the statistically sufficient number of 

simulations runs (N) to reach a 90% confidence interval level as (Eq. 1): 

                                                            N = (
  𝑡(1−𝛼/2),𝑁−1∗𝜎

𝐸
)

2
                                                                               (1) 

Where σ equals the sample standard deviation of the simulation output, t is the student’s 

t-statistic for two-sided error of a α/2 with N−1 degree of freedom and E equals the 

allowed error range, where E=ε*μ; μ is the mean of the number of simulated conflicts 

based on the initial set of simulations runs and ε is the allowable error specified as a 

fraction of the mean. Accordingly, it was found that 15 runs of simulation are statistically 

sufficient for further analysis. 

4.2.3. Model validation 

Model validation refers to the independent verification process that is used to prove that 

a model has been calibrated sufficiently to accurately reproduce on-street circumstances. 

Particularly, it is necessary to deliver a statistical comparison of model performance to 

observed operations. The decision to accept or reject a model depends on their 

verification of the guidelines criteria (Roads and Maritime Services, 2013). 
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Applying the criteria of the modelling guidelines of the Roads and Maritime Services 

(2013), four measures were checked:  

(1) the Geoffrey E. Havers (GEH) statistic function (see Eq. 2), which measures traffic 

volume deviation between the modelled and the on-street networks, where 85% and 

100% of traffic volumes should render GEH statistics of less than 5 and 10, respectively, 

                                                                        GEH = √
2 (𝑀−𝐶)²

𝑀+𝐶
                                                                         (2) 

Where M is the hourly traffic volume from a link or a point of the modelled network, and 

C is the real-world hourly traffic. 

GEH volumes during the one-hour simulation period at 15-min intervals are shown in 

Table 6 for each traffic count location. Results in Table 6 satisfy both conditions, which 

suggests that the modeled network adequately reflects the real network and it is ready to 

perform the microsimulation. 

Table 6: Traffic 15 minutes volume validation using GEH statistic  

Northbound direction 

Detector Observed (veh/15minutes) Modelled (veh/15minutes) GEH 

 PC HV PC HV PC HV 

PK-131 577 - 671 21 - 37 494 - 552 19 - 36 3.59 – 5.42 0.17 – 0.86 

PK-129 872 - 941 59 - 68 834 - 890 54 - 62 0.03 – 1.69 0.67 – 1.00 

PK-123 566 - 675 17 - 29 523 - 606 18 - 31 0.53 – 2.73 0.22 – 0.37 

PK-119 250 - 285 21 - 29 195 - 261 19 - 28 1.09 – 4.49 0.40 – 0.80 

PK-117 164 - 212 18 - 27 165 - 209 17 - 27 0.07 – 0.22 0.00 – 0.39 

PK-111 117 - 151 18 - 28 112 - 159 15 - 30 0.47 – 0.79 0.20 – 0.74 

Southbound direction 

Detector Observed (veh/15minutes) Modelled (veh/15minutes) GEH 

 PC HV PC HV PC HV 

PK-117 176 - 231 20 - 28 168 – 227 21 - 29 0.26 – 0.77 0.19 – 0.58 

PK-119 339 - 386 26 - 32 326 – 390 26 - 30 0.11 – 0.71 0.19 – 0.57 

PK-125 759 - 874 112 - 132 756 – 869 90 - 121 0.11 – 0.44 0.98 – 2.19 

PK-132 262 - 371 83 - 116 271 – 376 86 - 119 0.22 – 0.55 0.28 – 0.88 

Adapted from Miqdady et al. (2023a)  
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(2) R² of the observed vs. modeled volumes plot: the modelling guidelines also address 

that if we plot the observed volumes vs. the modelled generated volumes, they should be 

enough correlated, which should be presented by R² above 0.90. This criterion is also 

achieved in our work with R² equal to 0.98 and 0.99 for the northbound and southbound 

directions respectively (Figure 10). 

 

 

Figure 10: Observed volumes vs modeled volumes in northbound route, southbound route  

Adapted from Miqdady et al. (2023a) 
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 (3) In addition, these guidelines recommend to check the modelled travel times along the 

segment by cumulative graphing of average travel time by section (between detectors).It 

should be within 15% or one minute (whichever greater) of the observed travel time. 

According to the results shown in Figure 11, the average travel times are within 15% of 

the observed cumulative plot for both directions. 

 

 

Figure 11: Travel time comparison for the northbound route, southbound route  

Adapted from Miqdady et al. (2023a) 
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(4) The modelled average travel speed was also validated. It was ranging between 86.44% 

and 90.36% of the speeds registered by the DGT. The mentioned variations in speed (-

9.64% and -13.56%) are considered acceptable, because they are below the 15% variation 

threshold recommended by the Roads and Maritime Services (2013) modelling 

guidelines. 

  

 

 

 

 

 

 

 



Chapter IV: Study area 

 

Doctoral Thesis. Tasneem Miqdady                                                                                                                57 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V METHODOLOGY 
 



 

 



    Chapter V: Methodology 

 

Doctoral Thesis. Tasneem Miqdady                                                                                                                59 

CHAPTER V: METHODOLOGY  

This thesis investigates traffic safety of CAV introduction among various dimensions. To 

address the research questions proposed at this thesis, this chapter displays the 

methodological approach used to calibrate the behaviour of CAV levels and the 

approaches and indicators used to gage traffic safety extents. Subsection 5.1 presents an 

overview of the methodology, and the other subsections comprehensively exhibit each of 

its parts. 

5.1. Overview of the methodology  

The methodological framework developed to fulfill the research objectives and to address 

the research questions established in Subsection 2.4 has been structured in two main 

blocks: measuring the traffic safety impact of sharing CAV levels on the road, and a traffic 

safety sensitivity analysis of changing the CAV behaviour on the road. Error! Reference 

source not found. shows the mentioned framework followed in this research. 

 

Figure 12: Overview of the methodological framework of the thesis 
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First, as the fully connected and autonomous vehicles will not enter the roads totally once 

at a time, a close approach to the on-street condition is to model the expected real 

introduction of the different levels of automation and connectivity. For that, the first step 

was a try to calibrate these CAV levels in a data mining approach depending on 

literature, design, and operation expectations. After the calibration of the behaviour of 

CAV levels, a comprehensive safety evaluation of three axes was conducted to thoroughly 

investigate the safety on the road regarding the transition period between human-driving 

and autonomous driving. Particularly, the safety evaluation includes: (1) quantifying the 

safety effect based on vehicle dynamics harmony, the number of identified conflicts and 

the involvement of CAV with different levels of autonomy in conflicts, (2) investigate the 

severity extent of the identified conflicts within several dimensions (proximity in time 

threshold to identify serious vs. non-serious conflicts, conflict consequences (using 

maximum speed and the difference between vehicles’ speeds at conflict as jerk 

measures) and proximity/consequences indicator as reflexive measure of the level of 

severity, and (3) investigate the safety impact of using different infrastructure 

configuration (a dedicated lane) for CAV introduction and try to find the best strategy in 

deploying this configuration.  

Afterwards, in an exploratory and critical view, a traffic safety sensitivity analysis of the 

most commonly parameters used in science for calibrating the CAV behaviour is applied 

to highlight the key parameters that modellers should consider until we will have the real 

validated values for these parameters. 

5.2. CAV levels calibration in simulation models 

This section illustrates the calibration of driving behaviour regarding CAV levels as 

different vehicles in the microsimulation platform (Aimsun next 20 API (Aimsun, 2020)), 

as specified by the SAE (2014). Given that a specific motorway segment is studied under 

specified conditions, L5 vehicles are not taken into consideration in this study. L4 vehicles 

therefore indicate completely autonomous vehicles in the tested setting.  

CAV calibration is carried out by proposing some differences in driving behaviour among 

different CAV levels (i.e. how these vehicles will flow and interact throughout the 

transition phase) based on literature and manufactural interpretations (e.g. ATKINS, 

2016; Papazikou et al., 2020; Guériau & Dusparic, 2020; Xie et al., 2019). These 

behavioural variations are implemented in Aimsun while considering specific parameters 

for both car-following and lane-changing traffic models. 

Gipps' model’s default values represent the HDV’s behaviour. However, according to 

subsection 2.1.3, it is expected that CAV will maintain different standstill distances, 

accelerate and decelerate more quickly and smoothly, maintain a constant speed with 

fewer oscillations in free flow, form platoons of vehicles that follow the leader, and 
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perform more cooperative lane changes because they may occur at a higher speed 

cooperatively. However, since CAV will be interacting with HDV during their initial 

introduction to the traffic stream, Levitate research project (Papazikou et al., 2020; 

Weijermars et al., 2021) predicts that CAV will have a cautious behaviour, while a second 

generation of CAV could to be more aggressive. Our work is based on the cautious driving 

style in an effort to project the most accurate portrayal of the introduction of CAV in the 

near future. 

A data analysis technique is used as a type of data mining to simulate the behaviour of 

each level of automation. To identify the crucial parameters to calibrate our models, all 

the parameters used in empirical and simulation research are previously investigated and 

analysed (subsection 2.3.4). The important variables are those that have received the 

most attention from researchers who affirmed their impact on CAV behaviour. After that, 

the following approach is used to compare the values of important parameters across 

automation levels: 

 If the parameter is examined in empirical research (for L1 or L2 vehicles), the 

value is taken from these studies (e.g. normal deceleration and maximum 

acceleration (Karjanto et al., 2016)), and occasionally, the empirical data is 

utilized to determine the direction of parameter values among automation 

levels (Naujoks et al., 2016). 

 If we assign values for parameters at particular levels (L2 and L4 vehicles, for 

example) based on the previous two conditions, the choice for intermediate 

automation levels (i.e. values related to L1 and L3 vehicles) is made based on 

technology advances interpretation for that parameter (e.g. reaction time is 

kept constant in L1 and L2 vehicles because the driver is still reacting in both 

vehicles, whereas speed limit acceptance is represented with some 

improvement in L2 if compared to L1 vehicles). 

 If the parameter is not thoroughly calibrated (e.g. sensitivity factor, 

aggressiveness level), a sensitivity analysis is carried out in order to determine 

an appropriate value. 

In general, as a vehicle equipped with a driver assistance system is defined as L1 vehicle, 

modest changes are anticipated to perform its behaviour, reflected by improved 

acceptance of the speed limit and higher acceptance of the guidance of the leader. In 

contrast, L2 vehicles are provided by more sophisticated technologies (such as 

Cooperative Adaptive Cruise Control, CACC), and they behave with more controlled 

acceleration and deceleration and less aggression while lane-changing. Even though the 

CACC algorithm could occasionally take control of driving, the driver is always in control 

because he/she is the one reacting. Lower reaction times and more careful driving are 

displayed by L3 vehicles, which reflect greater autonomous advancements when changing 

lanes and in car-following (e.g. cooperating in creating gaps without imprudent lane 
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change). Finally, L4 vehicles represent fully autonomous vehicles with a high degree of 

regulation in both longitudinal and lateral directions, very short reaction time and low 

level of aggression. 

The parameters considered for Gipps' car-following and lane-change models at each level 

of automation are detailed in Table 7. The estimates are based on prior research and are 

influenced by the anticipated benefits of incorporating cutting-edge technologies as 

discussed in previous paragraphs. The mean, standard deviation, lowest and maximum 

values serve to establish the parameter distribution for both trucks and passenger cars 

(see Figure 13Error! Reference source not found. and Table 7). In the meaning of reliance 

on technology, standard deviation values typically decrease as automation levels rise 

(Stanek et al., 2018). The Gipps modelling default distribution is the one that is used 

(normal distribution).  

 

Figure 13: Parameters calibration in Aimsun platform 

The definitions for the calibrated parameters as they are presented in the Aimsun user 

manual (Aimsun, 2020) and previous research that serve as a guide for the calibration of 

the parameters used in the current work are as follows: 

Speed acceptance: How much vehicles could take a speed greater than speed limit 

(ATKINS, 2016; Guériau & Dusparic, 2020; Mesionis et al., 2020; Ye & Yamamoto, 2019).  
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Clearance (m): Distance that vehicle keeps with the preceding one when stopped 

(ATKINS, 2016; Guériau & Dusparic, 2020a; Morando et al., 2018; Stanek et al., 2018; 

Weijermars et al., 2021; Xie et al., 2019). 

Guidance acceptance (%): The probability that a vehicle will follow the recommendations 

(Stanek et al., 2018). 

Reaction time (s): The time to react in generla (Mesionis et al., 2020;  Xie et al., 2019).  

Reaction time at stop (s): This is the time it takes for a stopped vehicle to react to the 

acceleration of the vehicle in front (Mesionis et al., 2020; Weijermars et al., 2021). 

Max acceleration (m/s²): The highest value that the vehicle can achieve under any 

circumstances (Guériau & Dusparic, 2020; Stanek et al., 2018; Zhang et al., 2020).  

Normal deceleration. (m/s²): The maximum deceleration that the vehicle can use under 

normal conditions (Karjanto et al., 2017; Zhang et al., 2020).  

Sensitivity factor: How much the vehicle could be sensitive to the deceleration of the 

leader (Papazikou et al., 2020). 

Gap (sec.): How much override the headway calculated by car following model (Guériau 

& Dusparic, 2020; Mesionis et al., 2020; Zhong et al., 2021). 

Overtake speed threshold (%): The threshold that delaminates an overtaking maneuver 

(Papazikou, et al., 2020; Mesionis et al., 2020; Weijermars et al., 2021).  

Imprudent lane change: Defines whether a vehicle will still change lane after assessing an 

unsafe gap (Papazikou et al., 2020). 

Cooperate in creating a gap: Vehicles can cooperate in creating a gap for a lane changing 

vehicle (Bakhshi & Ahmed, 2021; Guériau & Dusparic, 2020).  

Aggressiveness Level: The higher the level, the smaller the gap the vehicle will accept, 

being a level of 1 is the vehicle’s own length (Papazikou, et al., 2020; Mesionis et al., 

2020).  

Distance Zone Factor (Look ahead distance factor): To modify the distance zones used in 

the Lane Changing Model to adjust where lane changes start to be considered and, if a 

range is given, to randomize behavior (Papazikou, et al., 2020; Mesionis et al., 2020). 

Additionally, the connectivity of the simulated vehicles is introduced in the following way: 

HDV and L1 vehicles are assumed to be modelled without connectivity; L2 vehicles are 

connected only with the CACC assistance system; L3 vehicles are connected with both 
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CACC and V2V connectivity (100% and 65%, respectively); and all L4 vehicles (100%) are 

assumed to be completely connected with V2V connectivity. 

The next three subsections provide more information regarding the theory and 

connectivity calibration of the Gipps' models: 

 



 

 

Table 7: CAV levels driving parameters modeled (Aimsun next, Gipps’ model)  
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 HDV L1 L2 L3 L4 

Parameters Mean dev Min. Max Mean dev Min. Max Mean dev Min. Max Me
an 

dev Mi
n. 

Ma
x 

Me
an 

dev Min. Max 

Speed 
acceptance 

1.1 
1.05* 

0.1 
0.1 

0.9 
0.85 

1.3 
1.25 

1.1 
1.05 

0.05 
0.1 

1.0 
0.85 

1.2 
1.25 

1.05 
1.05 

0.05 
0.05 

0.95 
0.95 

1.15 
1.15 

1.0 
1.0 

0.05 
0.05 

0.9 
0.9 

1.1 
1.1 

1 
(1) 

0.05 
0.05 

0.9 
0.9 

1.1 
1.1 

Clearance (m) 1.0 
1.5 

0.3 
0.5 

0.5  
1.0 

1.5 
2.5 

1.0 
1.5 

0.2 
0.5 

0.6  
1.0 

1.4 
2.5 

1.0 
1.2 

0.2 
0.3 

0.6 
1.2 

1.4 
2.1 

1.5 
2.0 

0.1 
0.1 

1.3 
1.9 

1.7 
2.2 

1.5 
2.0 

0.1 
0.05 

1.3 
1.95 

1.7 
2.1 

Guidance 
acceptance 

(%) 

70 
 100 

10 
10 

50  
80 

90 
100 

80 
100 

10 
10 

60  
80 

100 
100 

80 
100 

10 
10 

60  
80 

100 
100 

90 
100 

5 
5 

80 
90 

10
0 

10
0 

100 
100 

0.0 
0.0 

100 
100 

100 
100 

Reaction time 
(sec) 

0.8 
0.8 

- - - 0.8 
0.8 

- - - 0.8 
0.8 

- - - 0.5 
0.5 

- - - 0.1 
0.1 

- - - 

Reaction time 
at stop (sec) 

1.2  
1.3 

- - - 1.2 
1.3 

- - - 1.1 
1.2 

- - - 1.0 
1.0 

- - - 0.1 
0.1 

- - - 

Max 
acceleration 

(m/s²) 

3.0 
1.0 

0.2 
0.5 

2.6 
0.6 

3.4 
1.8 

3.0 
1.0 

0.2 
0.5 

2.6 
0.6 

3.4 
1.8 

2.0 
1.0 

0.2 
0.5 

1.6 
0.6 

2.4 
1.8 

1.0 
0.8 

0.1 
0.3 

0.8 
0.6 

1.2 
1.2 

1 
0.8 

0.1 
0.3 

0.8 
0.6 

1.2 
1.2 

Normal 
deceleration. 

(m/s²) 

4.0 
3.5 

0.25 
1.0 

3.5 
2.5 

4.5 
4.8 

4.0 
3.5 

0.25 
1.0 

3.5 
2.5 

4.5 
4.8 

3.5 
3.0 

0.2  
1.0 

3.1  
2.0 

3.9 
4.3 

3 
2.5 

0.2  
1 

2.6 
1.5 

3.4 
3.8 

3 
2.5 

0.2  
1.0 

2.6 
1.5 

3.4 
3.8 

Sensitivity 
factor 

1.0 
1.0 

0.0 
0.0 

1.0 
1.0 

1.0 
1.0 

1.0 
1.0 

0.0 
0.0 

1.0 
1.0 

1.0 
1.0 

1.0 
1.0 

0.1 
0.1 

0.8 
0.8 

1.2 
1.2 

1.1 
1.1 

0.1 
0.1 

0.9 
0.9 

1.3 
1.3 

1.2 
1.2 

0.1 
0.1 

1.0 
1.0 

1.4 
1.4 

Gap (sec.) 1.2  
1.5 

0.2 
0.2 

0.8 
1.1 

1.6 
1.9 

1  
1.5 

0.2 
0.2 

0.6 
1.1 

1.4 
1.9 

0.8  
1.0 

0.1 
0.1 

0.6 
0.8 

1  
1.2 

0.8 
1.0 

0.05 
0.05 

0.7 
0.9 

0.9 
1.1 

0.6 
0.8 

0.05 
0.05 

0.5 
0.7 

0.7 
0.9 

Overtake 
speed 

threshold (%) 

90 
90 

- - - 90 
90 

- - - 90 
90 

- - - 85 
85 

- - - 85 
85 

- - - 

Imprudent 
lane change 

Yes 
Yes 

- - - Yes 
Yes 

- - - Yes 
Yes 

- - - No 
No 

- - - No 
No 

- - - 

Cooperate in 
creating a gap 

No 
No 

- - - No 
No 

- - - No 
No 

 

- - - Yes 
Yes 

- - - Yes 
Yes 

- - - 

Aggressivenes
s Level 

0-1 
0-1 

- - - 0-1 
0-1 

- - - 0-0.5 
0-0.5 

- - - 0.0 
0.0 

- - - 0.0 
0.0 

- - - 

Distance Zone 
Factor (Look 

ahead 
distance 
factor) 

0.8 -
1.2 

0.8 -
1.2 

- - - 0.8 -
1.2 

0.8 -
1.2 

- - - 0.8 -
1.2 

0.8 -
1.2 

- - - 1 -
1.2
5 
1-
1.2
5 

- - - 1.1 
-1.3 
1.1-
1.3 

- - - 
 
 
 
 

*the first value in a row is related to passenger car, while the second value is related  to heavy vehicles (HV) calibration 
Adapted from Miqdady et al. (2023a) 
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5.2.1. Car following model 

The Aimsun next API Gipps’ models are used to change the way that vehicles drive in 

relation to each CAV level. Gipps (1981) car-following model is used to calibrate the 

parameters to control car-following decisions in the algorithm according to each level of 

automation. The "type of driver" (i.e. acceptance of the speed limit by the vehicle), the 

geometry of the section (i.e. speed limits on the section, speed limits on turns, etc.), or 

the impact of vehicles on adjacent lanes can all be calibrated locally inside the 

microsimulation to achieve this control (Aimsun, 2020). However, acceleration and 

deceleration are the two main elements of Gipps’ model. The first reflects a vehicle’s 

willingness to reach a certain desired speed, while the second simulates the restrictions 

imposed by the preceding vehicle when attempting to travel at that speed. The maximum 

speed that a vehicle (n) can attain during a time period (t,t+T) is provided by Eq. 3: 

                              Va (n,t+T) = V(n,t) + 2.5a(n)T (1 − 
𝑉(𝑛,𝑡)

𝑉∗(𝑛)
) √0.025 +

𝑉(𝑛,𝑡)

𝑉∗(𝑛)
                                     (3) 

Where: Va(n,t) is the speed of vehicle n at time t; V*(n) is the desired speed of the vehicle 

n for the current section; a(n) is the maximum acceleration for vehicle n; and T is the 

reaction time. At the same time, the maximum speed that vehicle n can reach during the 

same time interval (t, t+T), according to its own characteristics and the limitations 

imposed by the presence of the lead vehicle (vehicle n-1) is provided by Eq. 4: 

      Vb (n,t+T) = d(n) T +√𝑑(𝑛)2𝑇2 − 𝑑(𝑛) [2(𝑥(𝑛 − 1), 𝑡) − 𝑠(𝑛 − 1) − 𝑥(𝑛, 𝑡)) − 𝑉(𝑛, 𝑡)𝑇 −  
𝑉(𝑛−1,𝑡)²

𝑑´(𝑛−1)
]            (4) 

Where d(n) (<0) is the maximum deceleration desired by vehicle n; x(n,t) is the position of 

vehicle n at time t; x(n-1,t) is the position of the preceding vehicle (n-1) at time t; s(n-1) is 

the effective length of vehicle n-1; and d’(n-1) is an estimation of vehicle n-1 desired 

deceleration. 

The minimum of these two speeds is the speed of vehicle n during time interval (t, t+dt) 

(Eq. 5): 

                                              V(n,t+dt)= min{Va(n,t+dt), Vb(n,t+dt)}                                                       (5) 

The integration of the speed is then used to update the position of vehicle n in the 

current lane. Different methods are used to integrate the acceleration and deceleration 

phases. The rectangle method is used to integrate the acceleration phase, which 

corresponds to the following equation (Eq. 6): 

                                                   x(n,t+dt) = x(n,t) + V(n,t+dt)dt                                                                      (6) 

While the trapezoid method is used for deceleration phase integration as follows (Eq. 7): 
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                                         x(n,t+dt) = x(n,t) +0.5(V(n,t) + V(n,t+dt))×dt                                                         (7) 

The estimated deceleration of the leader is a function of the "Sensitivity Factor (α)" 

parameter, which is defined per vehicle type (Eq. 8): 

                                                         d´(n-1) = d(n-1) × α                                                                                   (8) 

When α is < 1, the vehicle underestimates the leader's deceleration, which causes it to 

become more aggressive and close the distance between itself and the leader. While, 

when α is greater than 1, the vehicle overestimates the leader's deceleration, and as a 

result, the vehicle becomes more cautious, increasing the gap ahead of it. As a constraint 

of the deceleration component, the model also includes the minimum headway between 

leader and follower. 

Before updating the position x(n,t+T), this constraint is applied. The minimum headway 

constraint is expressed as follows (Eq. 9): 

If  x(n-1, t+T) – [x(n,t) + V(n, t+T)T] < V(n, t+T) . MinHW(n)  

Then 

 V(n, t+T) = 
𝑥(𝑛−1,𝑡+𝑇)−𝑥(𝑛,𝑡)

𝑀𝑖𝑛𝐻𝑊(𝑛)+𝑇
                                                                                                                            (9) 

Where: x(n,t) is the position of vehicle n at time t; x(n-1,t) is position of preceding vehicle 

(n-1) at time t; and MinHW(n) is the minimum headway of vehicle (n) between it and 

vehicle (n+1). 

Accordingly, the car-following parameters are adjusted in the model as follows: 

 Speed acceptance: With higher CAV levels, it is anticipated that CAV will operate 

with greater speed uniformity and less oscillating. In other words, they will show 

more acceptance of speed limits on the road (ATKINS, 2016; Stanek et al., 2018, 

Ye and Yamamoto, 2019). The default value for HDV is 1.1 for passengers cars 

(PC) and 1.05 for heavy vehicles (HV) (both operate with speed greater than the 

speed limit). Mesionis et al. (2020) use the value 1.0 for L4 vehicles, whereas 

Guériau & Dusparic (2020) use 1.05 for L2 vehicles and 1.0 for L4 vehicles. 

Therefore, the same values are used in this work, while in the cases of L1 and L3 

vehicles, we are keeping the HDV’s value with lower deviation for L1 vehicles, 

and the same values of L4 vehicles for L3 vehicles as they operate approximately 

with the same advanced systems. 

 Clearance (m): the clearance that a vehicle keeps with the preceding one in the 

traffic stream is adopted mainly from ATKINS (2016) report and other studies ( 

Guériau & Dusparic, 2020a; Morando et al., 2018; Stanek et al., 2018; 

Weijermars et al., 2021; Xie et al., 2019) based on minimum space headway 
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values. In addition, following the cautious driving behaviour, the clearance 

increases as the automation level increases. 

 Guidance acceptance (%): increases as the CAV level increases from 70% for 

HDV to 100% for L4 vehicles following Stanek et al. (2018) assumption that L4 

vehicles could have about 25% better detection system. In the case of trucks, 

driving operations in general are more homogenous and following the leaders as 

it must adhere to other restrictions (other laws and speed limits) (Law, 2020). So, 

the 100% guidance acceptance is kept for all levels. 

 Reaction time (s): the default value for HDV is 0.8 s. Most of previous research 

that used other software in calibration did not consider this parameter. Even 

though, Zhang et al. (2020) address a value extracted from Adaptive Cruise 

Control real data (i.e. L1 or L2 vehicles) to be 0.50 s. Other authors (Mesionis et 

al., 2020; Xie et al., 2019) suggested that this value should be lower in L2 and L3 

vehicles and around zero for L4 vehicles to reflect the effect of connection-

automation technologies. However, as L1 and L2 vehicles operate under the 

human driver control, they are kept with the same value as for HDV. The same 

behaviour will be on unexpected stops, that requires a higher connection 

technology or referring to the driver. 

 Acceleration and deceleration (m/s²): their values are discussed in abundance in 

CAV calibration as detailed in subsection 2.3.4.  In fact, as this study considers 

the cautious CAV driving hypothesis, it follows Guériau and Dusparic (2020) and 

Zhang et al. (2020) values in decreasing both maximum acceleration and normal 

deceleration with increasing the CAV level. On the other hand, it also follows 

previous  studies ( Guériau and Dusparic, 2020; Stanek et al., 2018; Zhang et al., 

2020) in keeping the same value of maximum deceleration for all levels, 

indicating that this parameter is used at emergence situations and it could be 

reflected by the same magnitude whichever the driving style as it is related more 

to the vehicle motor capacity, and not to the driving behaviour . 

 Sensitivity factor: in cautious driving, CAV are supposed to be more sensitive to 

the leader deceleration to keep the safety distance (clearance higher than that 

kept in HDV-HDV interaction). Thus, the value of sensitivity factor is assumed to 

be higher than 1.00 (the vehicle overestimates the leader deceleration) for high 

level of automation (L3 and L4 vehicles) and 1.0 for levels that are still under 

human control all the time (L1 and L2 vehicles). Practically, a sensitivity analysis 

for the potential conflicts resulting of applying the values 0.5, 0.75, 1.0, 1.25, 1.5 

in L4 vehicles is applied-with applying the values of other assumed parameters’ 

values in L4 case- to analyse this factor. The values 0.5 and 0.75 (if the follower 

underestimated the leader deceleration) have shown 31.5% and 33.7% more 
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potential conflicts than the default value (1.0) without significant difference 

between them but with significant differences with the other values (1.0, 1.25, 

and 1.5). The values 1.25 and 1.5 (if the follower overestimated the leader 

deceleration) showed a decrease in the potential conflicts by about 21.2% and 

24.1% respectively, indicating the safety benefit of CAV. Again, these values 

(1.25 and 1.5) have not shown significant differences between them. Our 

decision for this value was to increase the value above 1.0 for high automation 

CAV levels, as the considered driving style is cautious. 

 Gap (s): different studies (Guériau and Dusparic, 2020; Mesionis et al., 2020; 

Zhong et al., 2021) propose the values of 1.2 s and 1.5 s for HDV (for PC and HV, 

respectively), 0.8 s for L2 vehicles, and 0.6 s for L4 vehicles. These values are 

used directly in this work and in-between values are adopted for L1 and L3 

vehicles. 

5.2.2. Lane-changing model 

Lane-change is modelled as a decision process in Gipps (1986)’ algorithm, which analyses 

the necessity of lane change (such as for turn manoeuvres determined by the route), the 

desirability of lane change (to reach the desired speed when the leader vehicle is slower, 

for example), and the feasibility of lane change (using forward, backward, and adjacent 

gap evaluation) depending on the position of the vehicle in the road network with respect 

to the lane geometry and adjacency. 

As a result, there are five aspects to simulate for vehicles lane change at sections: 

• Computation of the lane-changing zone's distance, 

• Calculation of the target lanes, 

• Consideration of the target lanes by vehicles, 

• Acceptance of lane-changing gap sizes, and 

• Cooperation with the target gap. 

The essential look-ahead distances provide limits on lane-changing zones (Stanek et al., 

2018). The look-ahead distance is the distance upstream from the target lane that the 

vehicle is aware of, where it searches for a gap (downstream or adjacent) and tries to 

adjust speed. The upstream distance before the start of lane-changing is the vital look-

ahead, where vehicles are scrambling to get to their valid lane, searching upstream for 

gaps and slowing down as needed. 

According to Liu et al. (2018), the parameters are determined by multiplying the time 

needed for each zone by the section's posted speed restriction. The perception of the 

look-ahead and the critical look-ahead is given as a factor range in the Aimsun API. For 
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instance, if a look-ahead distance is specified as 200 m, the minimum look-ahead factor is 

0.9, and the maximum look-ahead factor is 1.2, then a uniform random distribution 

would predict that the perceived distance would range from 180 m (calculated as 0.9 x 

200) to 240 m (calculated as 1.2 x 200). 

When generating two sets of acceptable lanes, the microscopic model considers the 

"Visibility distance" of all obstacles as a result of look-ahead and critical look-ahead 

distances. The following technique defines the driving behaviour of those vehicles as they 

attempt to enter the set of target lanes: 

 The critical look-ahead zone controls the behaviour of the vehicle if its present 

lane is not one of the subset of valid lanes that it has identified. 

 The look-ahead distance zone governs the behaviour of the vehicle if its present 

lane is inside the subset of valid lanes specified by the critical look-ahead zone 

but outside the subset of legal lanes determined by the look-ahead distance. 

 The "overtaking manoeuvre model" is applied to the traffic circumstances in the 

vehicle's present lane if it is one of the subsets of valid lanes in both zones. 

The gap acceptance model is then utilized while maintaining the consistency of the car-

following model. Gipps has imposed two key limitations to accomplish this objective to 

prevent the occurrence of contrived breakdown scenarios: (1) Gipps car-following model 

is steady (needs no decelerations greater than the maximum required deceleration); (2) 

To avoid collisions and to follow a new leader in the target lane, the gap and speed must 

remain positive during the slowing phase and at its conclusion. The two constraints can 

be met with the following condition at time t, which must be met for both the upstream 

and downstream gaps, according to the Gipps Gap acceptance model (Eq. 10, 11): 

Gap Up ≥ max {0,
𝑉2 𝑘(𝑡)

2𝑏 𝑘
+ 0.5 𝑉𝑢𝑝(𝑡)𝑇𝑢𝑝 + max [0, (−

𝑉2𝑢𝑝(𝑡)

2𝑏 𝑢𝑝
 + 𝛼 𝑢𝑝 (1 − 0.5𝛼 𝑢𝑝)𝑏 𝑢𝑝 𝑇2𝑢𝑝 +

(1 − 𝛼 𝑢𝑝)𝑉𝑢𝑝(𝑡)𝑇𝑢𝑝)]}                                                                                                                           (10)      

And 

Gap Dw ≥ max {0,
𝑉2 𝐷𝑤(𝑡)

2𝑏 𝐷𝑤
+ 0.5 𝑉𝑘(𝑡)𝑇𝑘 + max [0, (−

𝑉2𝑘(𝑡)

2𝑏 𝑘
 + 𝛼 𝐷𝑤 (1 − 0.5𝛼 𝐷𝑤)𝑏 𝑘 𝑇2𝑘 +

(1 − 𝛼 𝐷𝑤)𝑉𝑘(𝑡)𝑇𝑘)]}                                                                                                                                (11) 

Where, Gap up is the gap calculated for the upstream, Gap Dw is the gap calculated for the 

downstream, vk is the speed of the subject vehicle, v Up, v Dw are the speeds of the vehicles 

preceding and following, α is the sensitivity factor, b is the vehicle leader desired 

deceleration, and T is the reaction time. 

By specifying the following parameters in Aimsun API (Aimsun, 2020), the gap acceptance 

in the lane-changing model can be changed: aggressiveness (enabling vehicles to 
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approach lesser gaps without requiring the back vehicle to brake), and imprudent lane 

changing (vehicles can enter gaps that do not ensure car-following stability). The lane-

changing cooperation parameter is used to define the percentage of upstream vehicles 

that collaborate in the lane-changing model for each automation level. If a vehicle is in its 

set of legal lanes when it switches lanes to pass another vehicle that is also considered an 

overtaking move. The overtake speed threshold parameter is assessed to encourage or 

discourage overtaking. This indicates that a vehicle will attempt to overtake anytime it is 

forced to drive slower than Overtake Speed Threshold of its desired speed. 90% is the 

default setting. All the parameters that have been considered in relation to automation 

levels are shown in Table 7. 

The values among CAV levels are adjusted as follows: 

 Overtake speed threshold (%): is the percentage of the desired speed of a 

vehicle below which the vehicle may decide to overtake. This means that 

whenever the leading vehicle is driving slower than the overtake speed 

threshold (in percentage) of its desired speed, the vehicle will try to overtake 

(Mesionis et al., 2020). Papazikou, et al. (2020), Mesionis et al.(2020) and 

Weijermars et al. (2021) (using Aimsun API) propose lower values for L4 vehicles 

(80% or 85%) than for HDV. In our calibration, we use the proposed value 85% 

for L3 and L4 vehicles and keep the 90% for other levels of automation that are 

still under human control (HDV, L1, and L2 vehicles) as this parameter is related 

to driver decision basically. 

 Imprudent lane changing: this research follows Papazikou et al. (2020)’s 

argument in that HDV could be still changing lane even after assessing an unsafe 

gap (the same for L1 and L2 vehicles that are still under human control) while 

high automation levels (L3 and L4 vehicles) will not show this imprudent 

behaviour, especially in cautious mode. 

 Cooperate in creating a gap: multiple assumptions have been drawn for this 

parameter. Stanek et al. (2018) tick the choice just for L4 vehicles, indicating that 

vehicles of this type can cooperate in creating a gap for lane-changing. Guériau 

and Dusparic (2020) propose a value of 0.5 (50% of cooperation) for HDV and L2 

vehicles and a value of 1.0 (always cooperate) for L4 vehicles (for both PC and 

HV). On the other hand, for the studies that used Aimsun API, Mesionis et al. 

(2020) tick the parameter for HDV and both L4 vehicles driving styles (cautious 

and aggressive), whereas Papazikou et al. (2020) supposed that the cooperation 

will be present in HDV but not in L4 vehicles driving styles. In our calibration, we 

see that one of the technology benefits could be addressed by the ability of CAV 

to be more cooperative in creating gaps (Bakhshi and Ahmed, 2021; Guériau and 



    Chapter V: Methodology 

Doctoral Thesis. Tasneem Miqdady                                                                                                                73 

Dusparic, 2020). Thus, the followed logic is considering the cooperation 

behaviour for L3 and L4 vehicles. 

 Aggressiveness level in gap acceptance to make a lane-change. Papazikou et al. 

(2020) suggest the values 0.00-0.25 for L4 assertive driving vehicles and the 

value 0.00 (without any aggressiveness level) for cautious driving. Mesionis et al. 

(2020) assume that L4 vehicles should show 0.00 aggressiveness level whatever 

the driving style. We assume that aggressiveness level will still oscilate between 

0.00-1.00 for L1 vehicles, and it will decrease with more assistance advance 

systems (L2 vehicles) to 0.00-0.50. Afterward, it should show 0.00 aggressiveness 

level for high technologies in L3 and L4 vehicles, especially as we are modelling 

the cautious driving style. 

 Distance zone factor (look ahead distance factor): As CAV are supposed to 

cooperate in creating gaps, they are leading to improve their manoeuvres 

(Papazikou et al., 2020; Mesionis et al., 2020). Therefore, the zones that are 

considered while lane-change are modified to larger zones following Papazikou 

et al. (2020) values for L4 cautious driving, and in-between values for L3 vehicles. 

Whereas, for HDV, L1 and L2 vehicles the value is kept the same as default 

because the main controller in the driving process is human. 

5.2.3. Vehicle connectivity 

By creating a Vehicle Ad-hoc Network (VANet) using the V2X Aimsun next extension (V2X 

Software Development Kit (SDK)) in addition to the CACC built-in Aimsun API, the 

connectivity of vehicles is modelled in the current research. Since V2I is expected to cover 

networks in the long future and our work aims to capture the most recent reality, only 

V2V connectivity is taken into consideration. 

When platooning, the simulated cars have a dynamic "Cruise Control Status" employing 

the forward collision warning algorithm that the Federal Highway Administration (FHWA) 

proposed in Liu et al. (2018) (Eq. 12- 15): 

 Acceleration: asv (t) = (vsv(t) – vsv(t-Δt))/ Δt)                                                                                    (12) 

 Current speed: vsv(t) = vsv(t-Δt)+ kpek(t) kde´k (t)                                                                             (13) 

 Time gap error: ek(t)=d(t- ∆t)-tg* vsv(t- ∆t)-L                                                                                   (14) 

 Speed error: e´
k(t)=vl (t- ∆t)- vsv(t- ∆t)-tg* asv (t- ∆t).                                                                      (15) 

Where: asv: acceleration recommended by the CACC controller to the subject vehicle 

(m/s²); vsv: current speed of the subject vehicle (m/s); Δt: time step for each update (s); kp 

and kd: gains for adjusting the time gap between the subject vehicle and preceding 
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vehicle (kp in s−1 and kd have no units); kp corresponds to the parameter called Distance 

Gain in the CACC tab of the vehicle type editor and kd corresponds to the parameter 

called Speed Gain in the CACC tab of the vehicle type editor; ek: time gap error; tg: is the 

constant time gap between the last vehicle of the preceding CACC string and the subject 

vehicle (s); L: length of the preceding vehicle; vl: is the current speed of the preceding 

vehicle (m/s); and d: is the distance between the subject vehicle’s front bumper and the 

preceding vehicle’s front bumper (m). 

The CACC gap regulation mode specifically compares the gap-to-leader at each time step 

to lower/upper gap criteria, allowing the vehicles to switch between CACC and manual 

driving modes if the algorithm predicts a potential accident. Additionally, Platooning is 

accomplished by using the follower and leader iterations of the Gap Regulation mode. 

The Time Gap that is employed in the formula varies between those variations. If a 

platoon is full when a vehicle tries to join it, the vehicle will take control of its own 

platoon instead. 

CACC is applied by defining the percentage of vehicles equipped with this system (as 

highlighted in Figure 14), keeping the default gap thresholds defined in the FHWA 

algorithm the same (Weijermars et al., 2021): speed gain = 0.0125, distance gain = 0.45/s, 

time gap for leader = 1.5 s, time gap for follower = 0.6 s, the lower gap threshold = 1.5 s 

and the upper gap threshold = 2.0 s (Figure 15). 

 

Figure 14: CACC % in Aimsun API 
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Figure 15: CACC calibration in Aimsun API 

Making automobiles more aware of the presence and intents of other vehicles around is 

one of the services provided by Aimsun (2020) in their V2X extension. 

A group of connected vehicles that are close to one another constitute the ephemeral 

network known as VANet (Figure 16). 

 

Figure 16: V2V connectivity network components and process 
 Aimsun (2020) 
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V2V network consists of (Figure 16): (1) On-Board Unit (OBU) equipped in CAV, 

representing the receiver and transmitter in the vehicle; (2) Channels, simulating the 

radio hardware and protocols which provide communication among vehicles; (3) 

Cooperative Awareness Messages, providing information about the presence, activity and 

position of CAV; and (4) the Traffic Management Centre (TMC), which joins the previous 

protocols, and controls all the connectivity process. 

Vehicles use a communication channel connected to their OBU to communicate data over 

a specific set of messages inside a defined space. The TMC, which is devoted to 

communication management, receives messages from the vehicle-oriented 

communication channel in its local area. The equipped vehicles in the traffic network are 

informed of the TMC's decisions via channel signals after the TMC has evaluated the 

information. The "Vehicle Rules Engine" adds the V2X data from other vehicles to the 

vehicle's already-existing understanding of the traffic in the space. This class of rules is 

utilized in simulation to evaluate (before the time step) and perform action (after the 

time step). The Rules Engine then influences vehicle behaviour and decision making in 

terms of changing its longitudinal and lateral clearance, speed, acceleration, deceleration, 

and lane-change process. 

Primarily, channel design is recognized as an important phase in designing the V2V 

connectivity network (Chen et al., 2019; Mir and Filali, 2014; Stibor et al., 2007; Teixeira 

et al., 2014). Channels are a sort of communication protocol that are used to convey data 

between vehicles, therefore their significance in this process is clear. Channels often 

perform using a long-range LTE cell-based transmission channel or a short-range Wi-Fi 

technology channel such as IEEE 802.11p (Mir and Filali, 2014). A network member, such 

as a vehicle in a VANet, must adhere to certain protocols for each type of channel that 

deal with entering and exiting a data network as well as handling channel congestion. 

V2X SDK, the Aimsun extension, provides a default objected coded channel, simplifying 

the protocol when designing the important channel characteristics of reliability and the 

range of communication, which are expressed by packet loss (the percentage of packets 

not received), range of transmission, and latency (which reflects the delay in packet 

transmission). 

Accordingly, especially in light of Chen et al. (2019) and Mir and Filali (2014), we apply 

IEEE 802.11p characteristics in our design VANets because implementing the V2V 

connection requires a short-range connection channel. The range of 250 m is chosen for 

this investigation because this sort of channel has demonstrated experimentally (Stibor et 

al., 2007) its great efficiency up to 250-300 m. Furthermore, various experimental studies 

(Chen et al., 2019; Mir and Filali, 2014; Stibor et al., 2007; Teixeira et al., 2014) have 

demonstrated that the number and speed of probable connected vehicles in the channel 

range have a significant impact on channel efficiency (latency and packet loss). The range 

in our case study could accomplish the largest studied category of connected vehicles 
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(125 vehicles), and the registered speeds were between 83-118 km/hr. Thus, as exhibited 

in Figure 17, the selected channel (IEEE 802.11p /250 m) was suggested to allow a 2100 

ms latency and 0.75% packet loss following the experimented data in the aforementioned 

studies. 

 

Figure 17: V2V channel calibration 

5.3. Evaluating traffic safety among CAV levels 

Microsimulation doesn't offer quantitative measurements for assessing traffic safety. The 

process that is typically used for CAV safety evaluation falls into two categories (Gettman 

et al., 2008; Wang et al., 2021): (1) analysing traffic dynamics and behaviour  among its 

trajectory, showing the aggressiveness and jerk interactions during the simulation; and 

(2) analysing the microsimulation outputs (vehicle trajectories) with the SSAM to extract 

the potential traffic conflicts. While processing a trajectory file, SSAM tracks the position 

of the vehicles in a series of time steps. Vehicles are reported as having an overlap 

situation (a conflict) if they maintain the same speed and projection up to the TTC and 

PET thresholds (Gettman et al., 2008). 

Gettman et al. (2008) gave the following definitions of the TTC and PET: 

“TTC is the minimum time-to-collision value observed during the conflict. This estimate is 

based on the current location, speed, and future trajectory of two vehicles at a given 

instant. A TTC value is defined for each time step during the conflict event. A conflict 

event is concluded after the TTC value rises back above the critical threshold value. This 

value is recorded in seconds.” 

 “PET is the minimum post-encroachment time observed during the conflict. Post-

encroachment time is the time between when the first vehicle last occupied a position 

and the time when the second vehicle subsequently arrived at the same position. A value 

of zero indicates a collision. A post-encroachment time is associated with each time step 
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during a conflict. A conflict event is concluded when the final PET value is recorded at the 

last location where a time-to-collision value was still below the critical threshold value.”  

Mathematically, TTC indication is defined in Hayward (1972) as follows (Eq. 18): 

                      TTCi (t) = {

𝑥𝑖−1 (𝑡) – 𝑥𝑖 (𝑡) – 𝑙𝑖−1

𝑣𝑖(𝑡)−𝑣𝑖−1(𝑡)
, 𝑖𝑓 𝑣𝑖(𝑡) > 𝑣𝑖 − 1(𝑡)

∞, 𝑖𝑓 𝑣𝑖(𝑡) ≤ 𝑣𝑖 − 1(𝑡)
,                                        (18) 

Where TTCi(t) denotes the TTC value of the following vehicle i, at a time instant; t, x, and 

v denote the time, position, and velocity of the vehicles, respectively; and li−1 represents 

the length of the leading vehicle. 

Whereas, Allen (1978) defines PET as the time gap between one vehicle leaving and 

another vehicle entering a designated conflict area (Eq. 19): 

PET (veh1, veh2 at conflict area CA) = tentry (veh2, CA) – texit (veh1, CA)                              (19) 

Assuming that the first vehicle (veh1) passes the conflict area CA before the second 

vehicle (veh2). 

In order to determine the macroscopy safety effect of CAV's gradual introduction, we 

propose different scenarious that represent different mixed fleets, and employ two 

methods: (1) the analysis of trajectory dynamics by illustrating acceleration and velocity-

difference distributions among the studied fleet mixes; and (2) the analysis of vehicle 

trajectories using SSAM to first identify the potential conflicts registered in each scenario 

and then to visualize the potential conflicts classification by each vehicle type interacting 

at them. 

A two-steps process was used for identifying conflicts based on TTC thresholds and 

vehicle type: (1) the vehicle trajectory file was obtained from Aimsun next 20 (with 

GetAllInfVeh API extension), improved by Python code to extract vehicle type information 

that it is not a regular output; and (2) the trajectory file, containing proper vehicles 

information, was concatenated with SSAM output file to end up with a file that contains 

both conflicts data (i.e. SSM, conflict type, the leader and the follower vehicle involved in 

a conflict) and vehicles data (i.e. vehicle type, speed, acceleration, and position). StataMP 

16 is used for that concatenation and afterward, it is used for a pro-filtration criterion for 

identifying the conflicts, given that different TTC thresholds are used depending on the 

vehicle types involved. 

The default value for TTC is 1.50 s, and the default value for PET is 5.00 s. TTC is the 

indicator most frequently used in HDV and CAV conflict analysis and for examining traffic 

safety (Wang et al., 2021).  
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Consequently, following the concept in the literature that faster reaction times of CAV 

could increase their capability to significantly decrease TTC threshold (Guériau and 

Dusparic, 2020; Morando et al., 2018; Virdi et al., 2019), and taking into account a 

previously conducted sensitivity analysis (Miqdady et al., 2021) that revealed a 

statistically significant difference when comparing the change in conflict frequency 

evolved by L4 vehicles comparing several TTC values (0.50, 1.00, 1.50, 2.00, and 2.50 s), in 

this work the TTC thresholds used are: 

- TTC=1.50 s for identifying conflicts between human driven vehicles (HDV-HDV) 

or between human driven and autonomous vehicles when the follower is the 

human driven one (CAV-HDV) (Sinha et al., 2020). 

- TTC=0.75 s for conflicts between autonomous vehicles (CAV-CAV) or between 

autonomous and human driven vehicles when the autonomous vehicle is the 

follower (HDV-CAV). 

The first group (TTC=1.50 s) includes L1 and L2 vehicles because both require human 

intervention while driving and reflect modest levels of automation, whereas the CAV is 

associated with higher levels of automation (L3 and L4 vehicles). The recommended value 

of 0.75s is consistent with two previous research studies (Guériau and Dusparic, 2020; 

Morando et al., 2018). Despite that Morando et al. (2018) tested two TTC criteria (1.00 

and 0.75 s) for the identification of CAV conflicts and found that the results for 0.75 s had 

higher consistency. Virdi et al. (2019) utilized a smaller value (0.50 s), and even with a 

very low CAV penetration on traffic (only 10%), their results showed significantly 

reduction in conflicts. Whereas, Levitate project (Papazikou et al., 2020) analysed two 

values: 0.50 s for the second generation (aggressive driving) and 1.00 s for the first 

generation (cautious driving). These presumptions suit their modelled excessive driving 

behaviours. Therefore, the value used in this investigation (0.75 s) might be a 

representative value of all previously suggested values in the literature. 

As a result, the potential conflicts among the examined scenarios are discussed in this 

study and described in terms of conflict type (rear-end, lane-change) and conflict 

reduction to the base scenario (scenario where all vehicles are HDV). To assess potential 

substantial changes in safety by comparing the outcomes of various scenarios, an analysis 

of variance using one-way ANOVA test respect the number of conflicts among the 

proposed scenarios is also presented. 

As mentioned before, the information about the vehicle type (HDV or L1 to L4 vehicles) 

involved in the conflicts is available as the pro-filtration conflicts file contains the details 

of conflict data per vehicle. These data are utilized to analyze the conflicts by the involved 

vehicles and the interactions between them to broaden the understanding of how the 

different levels of CAV affect traffic safety. To follow that aim, three measures are 

represented as follows: 
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1. Involving ratio is a ratio computed for each type of vehicle among the scenarios, as 

follows (Eq. 20): 

                          Involving ratio vt (i) = [
𝑁𝑜.𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠 𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑣𝑡 (𝑖)

𝑁𝑜.𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠 (𝑖)
]. 

1

% 𝑝𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑣𝑡(𝑖)
                   (20) 

Where, vt is vehicle type (HDV, L1-L4 vehicles), and i is the scenario. Therefore, involving 

ratio of vt in i is calculated by dividing the number of conflicts which include vt whatever 

as a first or a second vehicle by the total number of conflicts in that scenario; later, the 

ratio is divided by the penetration rate of vt in the scenario for standardization to 

consider its presence in the studied fleet mix. Then, if this value is higher than one, it 

means that this type of vehicle takes part in a higher number of conflicts than those 

proportional to its penetration rate at that scenario. On the contrary, if the ratio is below 

one, this implies that the participation of this type of vehicle in the conflicts is lower than 

its presence in the traffic fleet. 

2. Interaction involvement ratio. Picturing the most repeated interactions of vehicles 

involved in the potential conflicts of each scenario (the leader and the follower 

vehicle of each conflict) represents a key analysis for illustrating traffic safety effect 

of CAV levels penetration at the transition period. Conflict proportion by vehicle   

interaction is represented in Eq. 21: 

Interaction involving ratiovc (i) = [
𝑁𝑜.𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠 𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑣𝑐 (𝑖)

𝑁𝑜.𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠 (𝑖)
]

1

% 𝑝𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑣𝑡1(𝑖) .  % 𝑝𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑣𝑡2(𝑖) 
 (21) 

Where, vc is the vehicle interaction (e.g. HDV-HDV, HDV-L1) in a conflict, and i is 

the scenario. Conflict proportion by vehicle interaction (vc) in i is calculated by 

dividing the number of conflicts which include vc by the total number of conflicts 

in that scenario. Later, the interaction proportion is normalized by dividing it on 

the sharing percentages of both types of vehicles in that interaction. 

3. Finally, as the follower vehicle in a conflict is considered as the main responsible of a 

conflict, the involving ratio for the follower vehicle at potential conflicts was 

calculated (Eq. 20) to highlight the type of vehicle that mostly could induce conflicts. 

The involving ratio of the follower in a scenario is calculated by dividing the number 

of conflicts where the corresponding vehicle type is the follower vehicle by the total 

number of conflicts in that scenario; then, the ratio is divided by the penetration rate 

of the follower vehicle type in the scenario for standardization purposes to consider 

its presence in the studied fleet mix. 

A further step in traffic safety evaluation is to investigate traffic conflict severity rather 

than only its frequency. The next subsection presents this investigation to understand 

more the safety impact of CAV introduction on our roads. 
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5.4. Assessing conflict severity related to the levels of CAV 

The three issues posed by Laureshyn et al. (2017a) are taken into account in our work to 

assess the severity of traffic conflicts in different simulated scenarios: (i) How can the 

proximity to a collision be determined?; (ii) How can the severity of a prospective crash's 

consequences be gauged?; and (iii) How may the two dimensions be combined? 

Limited studies have examined how severe the conflicts are in the CAV context (Rahman 

et al., 2019; Sinha et al., 2020). But neither the totality of severity dimensions nor the 

totality of automation levels have been examined. Several SSAM indicators are used to 

establish the proximity and consequence dimensions for each conflict for the scenarios 

that have been considered. 

5.4.1. Proximity threshold 

According to the literature, the most common indicator used to represent the severity of 

a traffic conlict is regarded to its proximity in time or space. A low TTC value indicates a 

high risk of collision at a given time instant. 

To distinguish between severe and non-severe conflicts, a TTC threshold must be 

established to evaluate the severity of vehicle-following incidents (Archer, 2005). Setting 

a common TTC level to gauge dispute seriousness has been under debate, especially with 

the advent of CAV. According on a review of prior studies, multiple thresholds between 

0.9 and 5.0 s have been suggested for various HDV traffic, and between 0.5 and 1.5 s for 

CAV scenarios (Das and Maurya, 2020). 

The most typical HDV’s TTC value is 1.5 s (Gettman et al., 2008). This value is also the 

SSAM's default. This value is suggested in our work for conflicts involving HDV or vehicles 

with minimal automation (L1 and L2 vehicles) as follower vehicle. Sensitivity analysis was 

performed to establish a fair threshold for conflicts when the follower is a vehicle with a 

high level of automation (L3 or L4 vehicles). 

To highlight the ideal value for various situations, five distinct values (0.5, 0.75, 1.0, 1.25, 

and 1.5 s) for the TTC threshold were explored for each scenario, applying the various TTC 

values to assess whether there were any significant differences between them using one-

way analysis of variance (ANOVA). 

5.4.2. Conflict consequences as severity indicators 

It is important to remember that being near to a collision that causes a minor crash is not 

the same as being near one that could cause serious injuries. Therefore, another measure 

to be used to account for the severity will indicate the probable consequences of a crash 

(Laureshyn et al., 2010). The dynamic consequences of a conflict can be extracted using a 
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variety of SSM (Gettman et al., 2008; Wang et al., 2021). However, very few studies have 

taken this dimension into account (Laureshyn et al., 2017a). 

The current work measures the severity of conflicts based on the measures MaxS and 

DeltaS as indicators of the conflict consequences (Gettman & Head, 2003; Svensson, 

2010). High MaxS and DeltaS values suggest high severity of the conflicts. MaxS is defined 

as the maximum speed of any vehicle throughout the conflict. Whereas the difference in 

vehicle speed (i.e. the velocity of vehicles involved in a conflict) measured at the 

minimum value registered for TTC is what is meant by Delta S. Both indicators simulate 

road dynamics and are outputs of the SSAM analysis. 

Additionally, the conflict severity associated with the various vehicle types involved in 

conflicts (HDV and L1, L2, L3, and L4 vehicles) is measured in this research using MaxS and 

DeltaS, accounting distinct vehicle interactions which lead to different traffic flow 

dynamics and, as a result, leading to distinct conflict severities. 

5.4.3. Levels of severity (proximity/consequence) 

The goal of CAV development designers, legislators, and road planners is to create a 

transportation system that uses CAV without any fatalities or serious injuries (Reed, 

2021). Therefore, avoiding severe crashes while also reducing the overall number of 

collisions is a primary objective of the introduction of CAV. As a result, a better indicator 

could reflect the proximity to a serious (fatal/injurious) crash rather than one that merely 

expresses the proximity to a crash. Evidently, only a few traffic conflict indicators and 

techniques shown in literature (e.g. Brown, 1994; Hydén, 1987; Souleyrette and 

Hochstein, 2012; van der Horst and Kraay, 1986) have taken the severity of the 

consequences into account. 

These traffic conflict techniques (such as the Swedish, Dutch, and Canadian approaches) 

have been adjusted and verified for HDV in several situations. Though fundamentally 

different could be for CAV, they serve the same purpose: to substantially create a 

subjective score that can be added to the objective nearness-in-time (proximity) 

indicator(s) to account for likely consequences (Figure 18). 

In our case, the proposed proximity indicator in SSAM is TTC value, and an energy-based 

indicator was investigated to express the conflict consequences.  
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Figure 18: Theoretical concept of collision Proximity/consequences  

Adapted from Laureshyn et al. (2017a) 

Scientifically, significant fluctuations in velocity, both in magnitude and direction, indicate 

that a vehicle is being impacted by high forces that could result in serious harm. Thus, 

according to evidence offered by several experts, DeltaV is the best predictor of collision 

severity (Evan, 1994; Laureshyn et al 2017a; Shelby, 2011). DeltaV is the difference 

between the pre-collision and post-collision velocities. 

In other words, it is assumed that a hypothetical collision is happened between two 

opposing vehicles and the consequences that are caused by the kinametic energy (vehicle 

mass and velocity) result in a change in the final velocity (i.e. pre-collision and post-

collision trajectories of a vehicle throughout the contemplated conflict) (Figure 19).  

 

Figure 19: Illustration of DeltaV for two colliding vehicles  

Adapted from Shelby (2011) 

In the SSAM, MaxDeltaV represents the maximum velocity vector magnitude among 

colliding vehicles. Gettman et al. (2008) indicated that FirstDeltaV (Δv1) and 

SecondDeltaV (Δv2) are calculated based on the difference between the conflict velocity 

(pre-collosion) (from FirstVMinTTC (speed) and FirstHeading (heading)) and the post-

collision velocity (from PostCrashV (speed) and PostCrashHeading (heading)). The higher 
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value between FirstDeltaV (Δv1) and SecondDeltaV (Δv2) is called MaxDeltaV. The 

foregoing is defined as follows. 

- FirstVMinTTC (SecondVMinTTC) is the speed of the first (second) vehicle at 

tMinTTC, which is the simulation time at which the minimum TTC value for a 

conflict is observed. 

- FirstHeading (SecondHeading) is the heading of the first (second) vehicle during 

the conflict. This heading is approximated by the change in position from the 

start to the end of the conflict. 

- PostCrashV is an estimate of the post-collision velocity of both vehicles. This 

estimate assumes that the vehicles crash at the estimated conflict angle and 

velocities observed at tMinTTC. An inelastic collision between the center of mass 

of both vehicles is assumed such that both vehicles subsequently move in the 

same direction and at the same velocity. 

- PostCrashHeading is the estimated heading (at tMinTTC) of both vehicles 

following a hypothetical collision. 

Basically, Souleyrette and Hochstein (2012)’s HDV criterion is used to provide two scores 

for a proposed CAV traffic conflict technique: a TTC score (x-axis) and a MaxDeltaV score 

(y-axis). The combined score, which is expressed as the severity level by region, is created 

by adding the two scores (Figure 20). The method is initially put into practice in a scenario 

of pure HDV functioning (i.e. all the vehicles in the simulation are HDV). 

 

Figure 20: Conceptual illustration of conducting the overall severity score  

Adapted from Miqdady et al. (2023b) 
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The process is then applied to every single pure scenario (i.e. that scenario which is 

conducted using one vehicle type only; HDV, L1, L2, L3 or L4 vehicles). For each pure 

scenario, 15 microsimulation runs are carried out, and the TTC distributions are 

represented to identify the inflection points. For the TTC distribution analysis, all conflicts 

that have a TTC value equal to or less than 5.0 s are considered. 

According to Souleyrette and Hochstein (2012), the inflection points of the TTC 

cumulative distribution of the pure HDV and pure autonomous vehicle scenarios can be 

used to get these severe conflicts. These points are used as thresholds to delineate the 

few severe conflicts from all those that are not severe. Then, the non-severe conflicts are 

divided into three approximately equal groups. Each group (one severe conflict group and 

three non-severe conflict groups) assigns a TTC score, which is subsequently used to 

obtain the overall score. Table 8 summarizes the proposed TTC scores and thresholds to 

determine the overall scores of the pure HDV and automated vehicle operation scenarios. 

Table 8: The assigned TTC score by vehicle type 

TTC 

score 

HDV L1 L2 L3 L4 

Thresh

olds 

Sampl

e size 

(%) 

Thresho

lds 

Sample 

size (%) 

Thresho

lds 

Sample 

size (%) 

Thresho

lds 

Sample 

size (%) 

Thresho

lds 

Sample 

size (%) 

0 

4.0 < 

TTC ≤ 

5.0 

30.0 

4.2 < 

TTC ≤ 

5.0 

28.9 

4.2 < 

TTC ≤ 

5.0 

30.4 

4.3 < 

TTC ≤ 

5.0 

29.9 

4.3 < 

TTC ≤ 

5.0 

32.8 

1 
2.5 < 

TTC ≤ 

4.0 

26.9 

2.5 < 

TTC ≤ 

4.2 

31.9 

2.5 < 

TTC ≤ 

4.2 

31.1 

2.6 < 

TTC ≤ 

4.3 

33.6 

2.6 < 

TTC ≤ 

4.3 

31.1 

2 
1.5 < 

TTC ≤ 

2.5 

27.6 

1.0 < 

TTC ≤ 

2.5 

32.4 

1.0 < 

TTC ≤ 

2.5 

32.3 

0.75 < 

TTC ≤ 

2.6 

31.5 

0.75 < 

TTC ≤ 

2.6 

31.5 

3 
TTC ≤ 

1.50 
15.3 

TTC ≤ 

1.0 
6.6 

TTC ≤ 

1.0 
6.1 

TTC ≤ 

0.75 
4.8 

TTC ≤ 

0.75 
4.4 

Adapted from Miqdady et al. (2023b) 

In Table 8 there are differences between the pure vehicle type operation scenarios 

(scenarios operated only by HDV, L1, L2, L3, or L4 vehicles) in terms of the thresholds (the 

inflection point) that identify serious conflicts (with a TTC score of 3). Vehicles with high 

automation levels (L3 and L4 vehicles) reach the inflection points at smaller values than 

other vehicles, demonstrating their autonomy. For the pure situations of L3 and L4 

vehicles, L1 and L2 vehicles, and HDV, the inflection points (TTC thresholds) are identified 
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to be 0.75, 1.0, and 1.5 s, respectively. The variation in the inflection point has an impact 

on the other thresholds, as seen in the table. 

To determine the chance of conflict-related injuries and fatalities, Souleyrette and 

Hochstein (2012) employed Evan's (1994) equation, which was based on MaxDeltaV, to 

generate the consequence score. Their findings demonstrated that crucial (inflection) 

MaxDeltaV values of 30 and 60 km/h significantly increased the likelihood of severe 

conflicts. These two crucial values can be thought of as being the same for all automation 

levels and interactions because the Evan’s equation only depends on MaxDeltaV and the 

consequences of a crash with specific MaxDeltaV values have the same impact on HDV 

and CAV (with varying automation levels). 

As a result, the severity level regarding MaxDeltaV is separated into three scores 

according to Souleyrette and Hochstein (2012): score 1, MaxDeltaV ranging from 0 to 30 

km/h; score 2, MaxDeltaV ranging from 30 to 60 km/h; and score 3, MaxDeltaV exceeds 

60 km/h. The following step is to combine the TTC and MaxDeltaV scores to get a final 

score. 

 

Figure 21: Establishing the iso-lines of severity levels 

Adapted from Miqdady et al. (2023b) 

By getting the overall score following the addition criterion (i.e. TTC score plus MaxDeltaV 

score) illustrated in Figure 20, similar graphs are created for the analysed automation 

levels, where each region score signifies an overall severity level. However, severity levels 

are better identified by lines or curves rather than by square areas, as suggested by 

previous studies (Souleyrette and Hochstein, 2012; Laureshyn et al., 2017a). For this 

reason, in each developed graph, the scores were re-divided to 5 sub-scores (in both TTC 

and MaxDeltaV range scores), with increments of 0.2 units (Figure 21). In the end, the 

step graded lines that resulted of the equal overall scores were reshaped in smooth lines 

(iso-lines). 
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5.5. Evaluating the safety impact of dedicated lane 

configurations 

Dedicated Lanes (DLs) have been suggested as a possible deployment scenario for CAV on 

the road networks (Hamad & Alozi, 2022; Razmi Rad et al., 2020). However, the traffic 

safety impact of this scenario is not sufficiently studied. In our research, we present a 

study to understand more this issue, using several assigned mixed fleet scenarios, traffic 

conditions, and DLs policies. 

Concretely, under the same simulation conditions (1 hr, 0.1 time step, 18 minutes 

warming time), the studied mixed fleet scenarios are re-employed on the same motorway 

segment and the safety impact of operating with and without a DL is discussed at both 

free-flow and congested traffic conditions. Traffic conflicts are identified by TTC 

thresholds used previously. 

5.6. Applying a sensitivity analysis of the traffic modelling 

parameters 

CAV are designed to alter numerous aspects of traffic behaviour. The improvements in 

technology bring out quicker reaction times and shorter headways. Different longitudinal 

road behaviour could be calibrated using both acceleration and deceleration. 

Additionally, different CAV degrees of sensitivity to the leader's movement or different 

platoon sizes may be present in the future. Parallel to this, lateral movements are 

expected to change also when CAV are introduced. 

Therefore, applying a sensitivity analysis for the significant parameters contained within 

the aforementioned models is the best approach to comprehend how the CAV will 

influence traffic flow models and how much this change in traffic models will affect traffic 

safety. The precise methodological strategy that is used to apply the sensitivity analysis is 

illustrated in Figure 22. 

The procedure (Figure 22) begins with the extraction of the key variables to be dealt with 

in the sensitivity analysis, which is frequently calibrated to reflect CAV or those that are 

considered to have a substantial impact on traffic safety. This process is described in 

depth in Chapter II (subsection 2.3.4). After the careful revision of the parameters 

reviewed, step-values are assigned for each parameter that is supposed to be analyzed. 

The standard deviation of the step value is also taken into consideration to not overlap 

the normal distribution of the chosen step values for one parameter because the step 

value is also known as the average value in the Gipps’ models (i.e. the mean +/- 2 

standard deviation of one step value will not overlap this range of other step values). 
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Figure 22: Framework of the applied sensitivity analysis  



    Chapter V: Methodology 

Doctoral Thesis. Tasneem Miqdady                                                                                                                89 

Next, in accordance with these step-values, a ceteris paribus sensitivity analysis is 

performed on the parameters for each step value of one parameter. 

Half of the motorway segment (10 km) is used to handle the time-consuming and 

trajectory outputs of the enormous number of runs evaluated, but with keeping the same 

simulated time (1 hr of free-flow traffic condition) and equal time step (0.1 s) of the first 

analysis. Then, we are altering the value of one model parameter while leaving the others 

at their default values (which are proposed to reflect the human driven driving). 

When TTC is less than the default threshold, the vehicle trajectories (the outputs) of 

these runs are then passed into the safety analysis tool (SSAM) to extract the number of 

conflicts. The threshold for a critical scenario is assigned in this analysis to be 1.5 s as in 

Batsch et al. (2021). In order to demonstrate the impact of changing the examined 

parameter on traffic safety, the variations between the results of the step values are then 

analyzed using ANOVA. 

According to statistics, changing a parameter without demonstrating a significant impact 

on traffic safety suggests that the parameter's role in the effect of CAV behaviour 

modelling is less important. Contrarily, in CAV modelling, the variables that will have a 

substantial impact on traffic safety will be given great consideration and moving on to the 

next stage. 

They are exposed to a two-at-a-time microsimulation that runs with a statistically 

adequate number of runs for each step-value, changing two parameters simultaneously 

while leaving the others at their default levels. Once more, using SSAM and the identical 

TTC threshold (1.5 s), the outputs of altering each of the two parameters are safety-wise 

assessed. The total number of conflicts is then subjected to a two-way analysis of 

variance (ANOVA) to determine the impact of the tested value combinations. 
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CHAPTER VI: RESULTS AND DISCUSSION 

 

 

 

This chapter displays the results as an intent to achieve the thesis objectives by answering 

the research questions and testing the proposed hypotheses at the beginning of the 

investigation. The chapter also browses various discussions about the findings in 

comparison with previous studies in the context to provide the main contributions of this 

thesis and its additive key findings. 

To achieve the assigned objectives, a preliminary analysis (Miqdady et al., 2021) was 

conducted to find a statistically sufficient number of replications to be run in all 

investigations’ scenarios. Based on the Shahdah et al. (2015) and Eq. 1, 15 runs achieves 

the statistical robustness. Further, a statistically significant test was conducted to 30 and 

50 runs for each scenario, and the outcomes did not significantly change from the 15 runs 

sample, showing that the sample size of 15 runs is representative. 
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6.1. Evaluating traffic safety among the levels and 

penetration of CAV 

This section tries to provide the answer to the first research question:  

 

 

 

 

It particularly checks the following hypotheses:  

Hypothesis 1: calibrating all the CAV levels will generate wider knowledge about the 

safety impact of CAV introduction. 

Hypothesis 2: the increase in the penetration rate of CAV in general will enhance traffic 

safety. 

Hypothesis 3: HDV and vehicles with low level of automation will be more involved in 

conflicts than vehicles with high level of automation at mixed traffic fleet. 

Hypothesis 4: the penetration of low levels of automation will provide no significant 

improvement in traffic safety, while high automation levels will do. 

By acheving the related objectives: 

 

 

 

 

 

Concretely, this section offers the microsimulation results for the calibrated CAV levels 

(see parameters values in  Section 5.2) in the context of quantifying the impact of CAV on 

traffic safety. As an indirect traffic safety measure, these results firstly present traffic flow 

dynamics. Later, SSAM-dependent prospective traffic conflicts are offered along with an 

analysis of these conflicts as a direct traffic safety measure, using the conflict 

identification criteria described in Section 5.3, where TTC along vehicle trajectory is below 

TTC threshold (with diferent TTC threshold for high automation vehicles). 

 

 

 

RQ1 – Will the calibration of all levels of CAV in various mixed fleets scenarios 

representing CAV introduction can reflect different traffic safety impact than 

previous studies calibrating just one or two levels of automation?  

- To calibrate the behaviour of CAV levels in a simulation model. 

- To quantify the traffic safety impact of CAV penetration among some 

possible real-world introduction scenarios. 

- To estimate the involvement of CAV levels in traffic conflicts and their likely 

responsibilities. 
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6.1.1. Fleet mix scenarios 

For traffic microsimulation, nine potential fleet combinations are taken into consideration 

within this investigation. These hypothetical situations are shown in Table 9Error! 

Reference source not found. to provide a closer picture of the introduction of CAV levels 

in the real world. The other Li vehicles are the levels of CAV, where i ranges from 1 to 4, 

and HDV is the human-driven vehicle. 

Table 9: Fleet mix scenarios considered 

Scenario HDV L1 L2 L3 L4 

A 100% 0% 0% 0% 0% 

B 75% 10% 10% 5% 0% 

C 50% 10% 25% 10% 5% 

D 40% 15% 20% 15% 10% 

E 20% 20% 25% 20% 15% 

F 5% 10% 30% 30% 25% 

G 0% 0% 10% 40% 50% 

H 0% 0% 0% 25% 75% 

I 0% 0% 0% 0% 100% 

 

In fact, scenario A accurately depicts the initial state in which all vehicles are HDV. 

Scenario B is the first time a CAV is introduced, and only 25% of almost L1 and L2 vehicles 

are sharing the road. Then, two hypothetical scenarios that reflect the growth of CAV at 

differing automation degrees are described (C and D). Later, in scenario E, a completely 

mixed fleet is used to depict a probable equal penetration of all vehicle categories. 

Scenarios F, G, and H depict fleet combinations with high levels of automation. Finaly, 

scenario I describes a scenario in which all the vehicles are L4. 

6.1.2. Traffic flow dynamics 

One of the main traffic safety indicators is to draw clear insight into traffic flow dynamics  

(ATKINS, 2016; Stanek et al., 2018; Talebpour & Mahmassani, 2016). This work adopts Ye 

& Yamamoto (2019)'s method in analyzing traffic trajectories by their exposure to risky 

situations, including high acceleration/deceleration or velocity differences between the 

leader and the follower among different fleet mixes. The acceleration distributions of the 

various scenarios (from A to I) are shown in Figure 23. 
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Even though the distribution patterns exposed for these scenarios are very similar, it is 

possible to identify two different patterns: one for scenarios A to E, and another one for 

scenarios F to I.  

 

 

 

Figure 23: Acceleration distribution under the proposed scenarios (A to I) 

Adapted from Miqdady et al. (2023a) 
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Note: acceleration values outside the range -3 m/s² to 3 m/s² are negligable and were not 

represented in these plots 

Figure 23: Acceleration distribution under the proposed scenarios (continued)  

Focusing on the second pattern, when the penetration rate of L3 and L4 vehicles is over 

50% (from scenario F onward), the ratio of the acceleration values around 0.00 m/s² 

increased, diminishing the ratio of acceleration values higher than 1.00 m/s2 or lower 

than -1.00 m/s2. This indicates smoother and harmonized driving patterns. This result is 

expected given the behavior parameters used for L3 and L4 vehicles design. For example, 

as imprudent lane changing is banned for them, less extreme acceleration values might 

be shown. Moreover, as L3 and L4 vehicles are modeled for cooperation in creating gaps, 

acceleration rates closer to 0 m/s2 are also expected.  

Ye and Yamamoto (2019) also found that the increase of CAV penetration rate leads to 

gradual increase of the ratio of 0.00 m/s² acceleration rate. In addition, they pointed out 

that the aforementioned behavior is expressed by more traffic safety on the road. The 

findings of Sinha et al. (2020) marked similar results by finding that high variation of 

acceleration records are decreasing with more CAV in traffic flow. 
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Figure 24: Velocity-difference distribution under the proposed scenarios (A to I) 

Adapted from Miqdady et al. (2023a) 
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Figure 24: Velocity-difference distribution under the proposed scenarios (continued)  

Regarding the difference in velocity between the leader and the follower vehicles, Figure 

24: Velocity-difference distribution under the proposed scenarios (continued)  shows that, 

for all scenarios, it follows a bell-shaped distribution. However, a closer look to each 

scenario reveals the gradual change in this shape. The first five scenarios (A-E), where the 

greatest number of vehicles are HDV, L1 and L2 vehicles, presented a bell shape with a 

low peak and a wide velocity range. The bell peak starts to increase at high sharing 

percentages of L3 and L4 vehicles (above 50%), which are scenarios from F to I. At these 

scenarios, the difference in velocity between vehicles is reduced and tends to cluster 

around low values. This phenomenon shows that traffic flow homogenizes with high L3 

and L4 vehicles penetration rates.  

According to earlier research (Talebpour & Mahmassani, 2016; Ye & Yamamoto, 2019), 

velocity difference had a propensity to cluster around 0.00 m/s at high L4 and L2 

penetration rates (respectively). In particular, Ye & Yamamoto (2019) emphasized that 

the anticipated reduction in the frequency of these risky situations, namely, situations 

with a high velocity difference, would improve traffic safety.  

Finally, it should be highlighted, that these more harmonized driving patterns (related to 

acceleration and velocity-difference distributions) found at scenarios with high 

proportions of L3 and L4 vehicles, are partly a consequence of a safer and more 

cooperative behavior of L3 and L4 vehicles. 
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6.1.3. Traffic conflicts among different scenarios 

This work presents several aspects of traffic conflict analysis that lead us to a better 

understanding of the safety impact of penetration rates of different levels of CAV vehicles 

at the traffic flow. Firstly, using TTC (1.50 s and 0.75 s) and PET (5.00s) thresholds (as 

discussed in subsection 5.3), Table 10 shows the average results of the number of 

conflicts resulting from our study for each scenario, differentiated by the total number of 

conflicts and conflict type. In addition, this table shows the percentage of reduction in the 

number of total conflicts considering scenario A (where all the vehicles are HDV) as a 

reference. Moreover, analysis of variance (ANOVA) identifies whether the differences in 

the number of conflicts between scenarios are statistically significant. 

 

Table 10: Number of conflicts by scenario and type of conflict  

Scenario 
Total conflicts Rear-end conflicts Lane-change conflicts 

Avg. (St. dev.) % Reduction Avg. (St. dev.) % Avg. (St. dev.) % 

A 3251a*(647.26)  3072  (620.72) 94.5 179 (30.35) 5.5 

B 2637 b (503.62) 18.9 2473 (482.84) 93.8 164 (25.98) 6.2 

C 1675 c (247.79) 48.5 1542 (22.32) 92.1 133 (23.29) 7.9 

D 1137 d (135.15) 65.0 1039 (125.93) 91.4 98 (15.42) 8.6 

E 899d, e(103.93) 72.3 818 (96.17) 90.9 81 (12.16) 9.0 

F 648 e, f (75.21) 80.1 591 (70.17) 91.2 57 (8.86) 8.8 

G 398 f, g (38.43) 87.7 369 (35.94) 92.7 29 (5.33) 7.3 

H 199 g (22.92) 93.9 179 (20.89) 89.9 20 (4.73) 10.1 

I 192 g (19.54) 94.1 175 (16.04) 91.1 17(4.82) 8.9 

*For each value contains a, b…letter, it denotes values of statistically significant differences (p < 0.05). Two or 

more values with the same letter denote a homogeneous subgroup. 

Adapted from Miqdady et al. (2023a) 

 

In general, as the CAV penetration rates increase, from B to I scenarios, the number of 

conflicts decreases. This reduction is higher for higher penetration rates of CAV and for 

higher automation levels, reaching reductions from 18.9% up to 94.1% from scenario B to 

scenario I respectively. Moreover, the ANOVA statistical analysis shows statistically 

significant differences with a 95% confidence level for the average number of conflicts 

between most of the scenarios. 

In Table 10, from Scenario B to Scenario D, where CAV volume has been progressively 

increased across the scenarios (from 0% in Scenario A to 25%, 50%, and 60%, 

respectively), the reduction in the number of conflicts is statistically significant, close to 
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20 percentage points between them (18.9%, 48.5%, and 65.0%, respectively).  

In contrast, when the percentage of vehicles with a high level of automation (L3 and L4 

vehicles) is over 35% (i.e. scenario E) and the presence of HDV is low or non-existent, the 

differences in the number of conflicts are not statistically significant between all these 

scenarios (scenarios E, F, G, H, and I), but homogenous groups of scenarios are identified 

with statistical inter-group differences.  

This indicates that scenario E (with 20% HDV, 20% L1, 25% L2, 20% L3, 15% L4) represents 

again (as in traffic flow dynamics) the beginning of the saturation level of CAV 

penetration gained safety benefits.  

The results from scenario D and E (identified in Table 10) shape subgroup d, where the 

composition of vehicles is highly mixed, differ from those of the last three scenarios G, H, 

and I that conform to subgroup g, where the penetration rates of vehicles with a high 

level of automation (L3 and L4 vehicles) are either 90% or 100%. This suggests that the 

most significant reductions in the number of conflicts are going to be reached in the first 

stages of CAV penetration during the transition period, while during later stages, even 

though the number of potential conflicts continues to decrease, these reductions will not 

be significant.  

In the literature, although there was no statistically significant comparison for the safety 

saturation CAV penetration level, it can be noted that it was presented at different rates. 

Papadoulis et al. (2019) and Morando et al. (2018), for example, stated that 75% of L4 

vehicles should operate the road to obtain the saturation level. While the findings of Virdi 

et al. (2019) confirmed the results of the current study, with saturation penetration at 

30% of L4 vehicles, particularly at roundabouts and priority intersections (unsignalized 

intersections). This change in results is related to the different calibrations of L4 behavior. 

In particular, in scenario B, where the operating levels of the CAV (almost L1 and L2) 

represent 25% of the traffic flow, a reduction of less than 20% is obtained for the 

resulting conflicts with respect to the total human driving scenario (A). This supports 

earlier research ( Papadoulis et al., 2019; Rahman et al., 2019; Guériau & Dusparic, 2020). 

However, many of the mentioned studies studied the first introduction of CAV as L4; thus, 

our results add to the literature that the first introduction of CAV will even provide 

significant safety improvement even if they have low levels of automation (L1 and L2). 

For instance, Virdi et al. (2019) suggested a significant reduction even with a 10% CAV 

penetration rate. They justified that such a significant reduction was due to a full-scale 

CAV cooperation that was adopted in their simulation, while other studies adopted low 

autonomous features, including adaptive cruise control and lane guidance, to simulate 

the highly promising features of CAV. In addition, they used a TTC threshold of 0.5 s to 

identify conflicts that involve a CAV, which is a very low value that can identify a low 

number of conflicts.  
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In the two suggested scenarios for various automation levels operating almost as the 

medium of the traffic fleet (scenarios C and D, 50% and 60%, respectively), the results 

show a significant reduction of 50%-65% with respect to scenario A. This reduction was 

below the values reported by Papadoulis et al. (2019) and Virdi et al. (2019) (93.8% 

reduction). The corresponding difference in reduction could be justified as both previous 

studies considered only L4 vehicles, whereas the 50% CAV in the current study is related 

to L1, L2, L3, and L4 vehicles. This indicates that using mixed levels of automation (closer 

to reality) does not significantly improve traffic safety, as has been acknowledged in 

previous studies.  

On the contrary, our value is larger than that of Morando et al. (2018) (23.5% reduction) 

and Rahman et al. (2019) (around 12% reduction) values, who analyzed either without 

connectivity or low levels of automation (L1 and L2 vehicles) alone. Furthermore, several 

considerations in the model calibration may lead to differences in the results of these 

research studies, such as the parameters included in the calibration, the magnitude and 

direction in modifying the default model parameters (increasing/decreasing), and 

whether the calibration follows the conception of cautious or assertive CAV behavior.  

In scenario I, where the traffic flow is composed only of L4 vehicles, the reductions at this 

level of CAV penetration rate agree with with Papadoulis et al. (2019) and Virdi et al. 

(2019) (over 90% of reduction analyzing L4 vehicles), which upholds a complete removal 

of conflicts. Indeed, it is the projected benefit of high technological advancement, which 

all acknowledged studies have highlighted. Nevertheless, these reductions are higher 

than those identified in previous studies  (Morando et al., 2018; Rahman et al., 2019; Xie 

et al., 2019; Guériau & Dusparic, 2020). This variation in the results is expected due to the 

distinct calibration of CAV and the different levels of CAV mixed in traffic within each 

study.  

Table 10 also shows the effect of the CAV penetration rates on the type of conflict. The 

resulting conflicts at this motorway are mostly rear-end conflicts in all scenarios (89.9%-

94.5%), in accordance with previous studies, such as, El-hansali et al. (2021). Rear-end 

conflicts show a slight reduction with respect to scenarios A and B, which are mostly 

operated by HDV.  

Therefore, once the number of HDV is reduced (with a penetration rate equal to or lower 

than 50%), the percentage of rear-end conflicts diminishes from 1 to 4 percentage points. 

On the other hand, the opposite effect was observed in the case of lane-change conflicts. 

When the CAV levels share the road, the percentage of lane-change conflicts may 

increase, which agrees with El-hansali et al. (2021), In general, the corresponding change 

in the results within scenarios is related to the distinct behavior of HDV and CAV levels in 

the car-following and lane-change processes (i.e. imprudent lane change, cooperation in 

creating gaps, and aggressiveness level) (ATKINS, 2016; Stanek et al., 2018). 
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6.1.4. CAV involvement in traffic conflicts 

Furthermore, this study analyzes traffic conflicts to examine how often CAV levels or HDV 

are involved in the conflicts resulting in each scenario by defining an involving ratio (Eq. 

20). Figure 25 shows conflicts involving ratios for HDV and CAV levels. 

 

Figure 25: Conflict involving ratios for CAV levels  

Adapted from Miqdady et al. (2023a) 

For example, in scenario B, the involving ratios of HDV and L1 vehicles (1.03, 1.04) 

indicate that these types of vehicles are involved in conflicts 3% and 4% more than the 

expected values regarding their sharing percentages in the fleet. Alternatively, L2 and L3 

vehicles’ involving ratios (0.87, 0.66) demonstrate that these types of vehicles are 

involved in conflicts 13% and 34% less than the expected values regarding their sharing 

percentages in the fleet. 

Figure 25 shows that the conflict involving ratios related to HDV, L1, or L2 vehicles are 

steadily increasing in the totally mixed scenarios (i.e. scenarios C, D, E, and F, that include 

all types of vehicles) and by increasing CAV penetration rates in general. On the whole, L2 

vehicles showed lower involving ratios than HDV and L1 vehicles. However, its involving 

ratio was below one if the majority of the shared vehicles are HDV and L1 (at scenarios B, 

C, or D), and started to be over one in scenarios including L3 and L4 vehicles (E and F). 

Whereas, its involving ratio is suddenly increased in scenario G where they are sharing 

the road only with L3 and L4 vehicles. 

In contrary, the involving ratio of L3 vehicles was in the most of cases below one except in 

G and H scenarios. This could be explained because L3 vehicles in scenarios G and H are 
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sharing the road only with L4 vehicles (which have a more cautious behavior), therefore, 

it could reveal that L3 vehicles would expose more traffic conflicts than L4 vehicles. This 

finding agrees with the involving ratio of L4 vehicles that always settles below the value 

one. Xie et al. (2019) obtained convergent results as they found that traffic mixed of HDV 

with L1 or L2 vehicles exposed a higher number of conflicts, while safety benefits come 

out by high penetration rates of L3 and L4 vehicles.  

The distribution of two-vehicle interactions at conflicts was also analyzed (see Eq. 21). 

Considering that all possible interactions would be difficult to handle, and because of the 

high similarities identified in conflict involving ratio between L1 and L2 vehicles as well as 

between L3 and L4 vehicles, the four levels of CAV were merged into two groups: L1 and 

L2 vehicles as low CAV levels (LCAV), and L3 and L4 vehicles as high CAV levels (HCAV) 

(see Table 11). 

The conflict distribution per vehicle interaction is shown in Table 11 exhibits the conflict 

distribution by vehicle interaction as a conflict proportion to the total number of conflicts 

in the scenario, normalized by the sharing percentages of the vehicle types, obtaining an 

involving ratio of that interaction (the values in bold). The table includes the results along 

the scenarios B to G (A and I scenarios were excluded because all the vehicles were HDV 

and L4 vehicles respectively).   

In general, Table 11 shows that when HDV is the follower vehicle (-HDV), the involvement 

ratio is always larger than one. Moreover, the involvement ratio increases with increasing 

the penetration rates of CAV (scenarios E, F, G), indicating the higher probabilities of 

HDV’s responsibility in such scenarios. Specifically, it ranges from 1.26 to 2.2 (as shown in 

the first gray shaded row), indicating that HDV are involved in conflicts as followers 

between 8% and 122% more than its sharing percentage on fleets. 

Similar findings from earlier investigations have been noted. Morando et al. (2018) found 

that if the penetration rate of L4 vehicles is 50%, the ratio of HDV-HDV and L4-HDV 

conflicts by the total conflicts equals to 0.88. In parallel, Sinha et al. (2020) demonstrated 

that crash rate of HDV-HDV is much higher than L4-HDV while L4 vehicles penetration 

rate is up to 50%.  

A similar pattern is shown in scenarios E, F, and G related to conflicts involving LCAV as a 

follower (HDV-LCAV, LCAV-LCAV, and HCAV-LCAV). It fact, the highest involving ratio is 

reached on scenario G for the interaction HCAV-LCAV (2.56). Therefore, when LCAV and 

HCAV are the unique types of vehicles on the fleet, the LCAV are responsible for most of 

the conflicts. Additionally, in scenario G, the high penetration rate of HCAV (90%) leads to 

highly involving them in conflicts (a 74 % of conflicts HCAV is the follower vehicle). This 

result agrees somehow Morando et al. (2018). When L4 vehicles presented a 75% 

penetration rate L4-L4 and L4-HDV represented 95% of total conflicts. 
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Table 11: Conflict distribution & involving ratio by type of interaction (Miqdady et al. 2023) 

INTERACTION 
Scenario 

B C D E F G 

HDV-HDV* 

0.60** 

(0.56) 

1.07 

0.29 

(0.25) 

1.19 

0.20 

(0.16) 

1.28 

0.06 

(0.04) 

1.52 

0.01 

(0.00) 

1.85 

0 

LCAV-HDV 

0.16 

(0.15) 

1.09 

0.21 

(0.18) 

1.17 

0.18 

(0.14) 

1.29 

0.13 

(0.09) 

1.49 

0.04 

(0.02) 

2.16 

0 

HCAV-HDV 

0.05 

(0.04) 

1.30 

0.12 

(0.07) 

1.58 

0.17 

(0.10) 

1.67 

0.13 

(0.07) 

1.83 

0.06 

(0.03) 

2.36 

0 

Sum –HDV*** 

0.81 

(0.75) 

1.08 

0.62 

(0.50) 

1.24 

0.55 

(0.40) 

1.38 

0.32 

(0.20) 

1.62 

0.11 

(0.05) 

2.22 

0 

HDV-LCAV 

0.13 

(0.15) 

0.87 

0.16 

(0.18) 

0.91 

0.14 

(0.14) 

1.00 

0.10 

(0.09) 

1.13 

0.03 

(0.02) 

1.39 

0 

LCAV-LCAV 

0.04 

(0.04) 

0.93 

0.12 

(0.12) 

1.01 

0.13 

(0.12) 

1.05 

0.24 

(0.20) 

1.20 

0.25 

(0.16) 

1.55 

0.02 

(0.01) 

2.25 

HCAV-LCAV 

0.01 

(0.01) 

1.29 

0.07 

(0.05) 

1.32 

0.12 

(0.09) 

1.38 

0.24 

(0.16) 

1.52 

0.40 

(0.22) 

1.80 

0.23 

(0.09) 

2.56 

Sum  –LCAV 

0.18 

(0.20) 

0.90 

0.35 

(0.35) 

1.00 

0.39 

(0.35) 

1.11 

0.58 

(0.45) 

1.29 

0.68 

(0.40) 

1.70 

0.25 

(0.10) 

2.50 

HDV-HCAV 

0.00 

(0.04) 

0.09 

0.01 

(0.08) 

0.16 

0.02 

(0.10) 

0.21 

0.02 

(0.07) 

0.23 

0.01 

(0.03) 

0.34 

0 

LCAV-HCAV 

0.00 

(0.01) 

0.08 

0.01 

(0.05) 

0.15 

0.02 

(0.09) 

0.21 

0.03 

(0.16) 

0.22 

0.06 

(0.22) 

0.30 

0.05 

(0.09) 

0.61 

HCAV-HCAV 

0.00 

(0.00) 

0.00 

0.01 

(0.02) 

0.23 

0.02 

(0.06) 

0.26 

0.04 

(0.12) 

0.34 

0.14 

(0.30) 

0.46 

0.69 

(0.81) 

0.85 

Sum –HCAV 

0.00 

(0.05) 

0.00 

0.03 

(0.15) 

0.20 

0.06 

(0.25) 

0.24 

0.09 

(0.35) 

0.26 

0.21 

(0.55) 

0.38 

0.74 

(0.90) 

0.82 

*The second vehicle in the interaction column represents the follower vehicle. E.g. in LCAV-HDV, HDV is the 

follower. 

**The first value is the conflict distribution by type of interaction, the value in brackets is the probability of that 

interaction in the fleet, the bolded value is the involving ratio of the vehicle interaction  (see Eq. 3) 

***The gray shaded rows represent the sum of all interactions where the follower vehicle is indicated after Sum-. 

Adapted from Miqdady et al. (2023a) 

However, whenever a HCAV in a conflict (interaction) is the follower, the results indicate 

a considerably low involvement ratio. It ranges from 0.20 to 0.82 (as shown in the last 

gray shaded rows), indicating that HCAV are involved in conflicts as followers from 80% to 
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18% less than its sharing percentage on fleets. The highest involving ratio for HCAV as a 

follower (0.85) is reached for the interaction HCAV-HCAV in scenario G. 

After looking at vehicles involved in traffic conflicts, the follower (i.e. the second vehicle 

in a conflict) was considered as the vehicle mostly carrying the load in decision making 

and presenting proper behavior. Table 12 presents the follower conflict-involving ratio for 

each vehicle type in each scenario (see Eq. 21). 

The conflicts where HDV is the follower vehicle is higher than the expected ones in all 

scenarios, and it increases as the penetration rate of CAV levels increases (i.e. its ratio is 

always over one and its value increases across the scenarios, ranging from 1.08 to 2.22). 

This result shows that HDV, that is fully reliant on human’s behavior, contributes more in 

increasing traffic conflicts. L1 vehicles, with limited assistant systems, also present a 

similar effect on safety and they could be a major inductor to generate conflicts in all 

scenarios.  

Table 12: The follower conflict involving ratio for several vehicle types 

Vehicle type 

Scenario HDV L1 L2 L3 L4 

A 1 (100%)* - - - - 

B 1.08 (75%) 1.05 (10%) 0.75 (10%) 0.09 (5%) - 

C 1.24 (50%) 1.20 (10%) 0.92 (25%) 0.16 (10%) 0.16 (5%) 

D 1.38 (40%) 1.32 (15%) 0.95 (20%) 0.21 (15%) 0.23 (10%) 

E 1.62 (20%) 1.48 (20%) 1.14 (25%) 0.25 (20%) 0.27 (15%) 

F 2.22 (5%) 1.95 (10%) 1.59 (30%) 0.34 (30%) 0.43 (25%) 

G - - 2.56 (10%) 1.17 (40%) 0.54 (50%) 

H - - - 1.11 (25%) 0.96 (75%) 

I - - - - 1 (100%) 

* between ( ) value is the penetration rate of vehicle in that scenario 

Adapted from Miqdady et al. (2023a) 

 

On the other hand, L2 vehicles with more driving control in both the longitudinal and 

lateral directions have a lower propensity to participate as followers at potential conflicts 

than HDV and L1 vehicles in scenarios B, C, and D, where L2 vehicles are considered more 

advanced CAV. However, they reach larger values (1.14, 1.59, and 2.56) when they share 

traffic flow with more advanced CAV (L3 and L4 vehicles) in scenarios E, F, and G, 

respectively.  
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L3 vehicles show the same pattern as L2, but with much lower conflict ratios, indicating 

the safety benefit of increasing driving assistance technologies. Lastly, L4 vehicles present 

ratios below 1 in all scenarios, and they could be considered as the safest vehicles, as 

they hardly contribute as followers towards causing either rear-end or lane change 

conflicts. 

These results present evidence about the concept in literature that CAV may increase the 

safety benefit and enhance driving performance as the level of connection and 

automation of the vehicles increases. Nevertheless, previous research that examined 

vehicle engagement in conflicts did not analyze the participation of the follower vehicle 

as a tentative inductor of traffic conflicts; moreover, they only analyzed L2, L4, or both 

types of vehicles as a unique type of CAV when they presented results and did not 

perform a systematic and complete exploration of the outcomes (Morando et al., 2018; 

Virdi et al., 2019; Xie et al., 2019; Sinha et al., 2020; Guériau & Dusparic, 2020; Sharma et 

al., 2021). 
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6.2. Estimating conflict severity related to CAV levels 

Zheng et al. (2014) reviewed the literature and found that a multidimensional definition 

of severity besides the application of a sensitivity analysis to choose the SSM's threshold 

were required to build an adequate traffic conflict technique for evaluating traffic conflict 

severity. Thus, in order to develop a trustworthy method for evaluating the traffic conflict 

among CAV, this work took into account these two research comprehensive approaches 

in estimating traffic conflict severity. This part of research employed the results of SSAM 

brought out in Section 6.1, so that the studied scenarios are the same as those exhibited 

in Table 9 (Subsection 6.1.1). 

Concretely, the present approach uses three dimensions: 1) the proximity to a collision, 2) 

potential conflict consequences, and 3) combination of proximity and consequences; the 

conflicts are classified by severity level. Initially, sensitivity analysis was performed to 

determine the threshold of proximity to a collision involving CAV. Because the TTC 

threshold is the margin value for severe conflicts, a sensitivity analysis of this threshold is 

performed to identify the key values producing severe conflicts when CAV of various 

levels are introduced on roads. Thereafter, the consequences of conflict severity are 

presented using some SSM (i.e. maximum speed (MaxS) and vehicle speed difference 

(DeltaS)). A comparison of these values is conducted considering several scenarios and 

types of vehicle interaction. Finally, a TTC/DeltaV diagram is developed for each 

automation level to derive several severity levels. 

Accordingly, this section provides the answer to the second research question: 

 

 

And it contributes to the related hypothesis:  

Hypothesis 2: the increase in the penetration rate of CAV in general will enhance traffic 

safety. 

Hypothesis 4: the penetration of low levels of automation will provide no significant 

improvement in traffic safety, while high automation levels will do. 

Hypothesis 5: increasing the level of automation and its penetration in the traffic stream 

will generate less serious conflicts. 

By acheving the related objective: 

 

 

RQ2 – Could the employment of different safety measures reflect more 

understanding of the safety dimensions regarding CAV introduction?  

- To estimate the traffic conflict severity among the different scenarios based 

on some severity dimensions (proximity, consequences, and 

proximity/consequences) and a traffic conflict technique concerning CAV 

levels. 
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6.2.1. Proximity threshold sensitivity analysis 

When applying the several TTC values (0.50, 0.75, 1.00, 1.25 and 1.50 s) to assess 

whether there are any significant differences between them using one-way analysis of 

variance, Table 13 lists the total number of conflicts resulted in each scenario. The table 

lists the changes resulting from using any value if compared to the basic value (1.50 s). 

According to Table 13,  in general: 

 TTC does not present a significant influence on the number of conflicts at 

scenarios with low penetration rates of HCAV (scenarios D or below).   

 TTC presents a very significant influence on the number of conflicts at scenarios 

with high penetration rates of HCAV (scenarios G or over).   

 At intermediate scenarios (E or F), representing moderate penetration rates of 

HCAV, the number of traffic conflicts starts to present significant differences if 

the TTC value is below 1.0 s.  

 

These results emphasize the importance of using different TTC values to obtain a reliable 

assessment of traffic safety related to high penetration of HCAV. Moreover, the results 

verify the theoretical vision of CAV introduction: when CAV penetration rate is high, 

traffic flow improves by achieving more harmonized speeds and by reducing reaction 

times that probably have a direct effect on the TTC threshold. 

These results support the values suggested in previous studies. Morando et al. (2018) 

used two TTC values (0.75 and 1.0 s) to identify conflicts involving CAV; both values were 

assumed to be appropriate. Other studies used 0.75 s as the TTC value (Guériau & 

Dusparic, 2020) for fixed conflicts in CAV participation. Some studies have reduced the 

TTC threshold to 0.5 s (Papazikou et al., 2020; Virdi et al., 2019). Papazikou et al. (2020), 

claimed that CAV operating with assertive driving styles could lead to different 

circumstances resulting in a low TTC threshold. However, Virdi et al. (2019) claimed that if 

the distance traveled by CAV is reduced to one-third, then the threshold defining the 

conflict is also proporionally reduced. Certain studies have also applied the same TTC 

value to HDV or CAV interactions  (El-Hansali et al., 2021; Papadoulis et al., 2019) without 

considering the higher capabilities of CAV compared with HDV. Therefore, these 

investigations do not provide sufficiently soundness results for measuring the traffic 

safety impact of CAV introduction.   
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Table 13: Sensitivity analysis of different values of TTC threshold (for -L3 and -L4) 

Scenario 
TTC threshold 

No. of conflicts % Change 
-HDV, -L1, or -L2 -L3 or -L4 

A (0)* 1.5 - 3251 - 

B (5) 1.5 

0.50 

0.75 

1.00 

1.25 

1.50 

2636 

2637 

2637 

2640 

2655 

-0.69 

- 0.68 

- 0.60 

- 0.56 

- 

C (15) 1.5 

0.50 

0.75 

1.00 

1.25 

1.50 

1671 

1675 

1697 

1724 

1779 

-6.08 

- 5.86 

- 4.62 

- 3.11 

- 

D (25) 1.5 

0.50 

0.75 

1.00 

1.25 

1.50 

1131 

1137 

1156 

1200 

1272 

-11.10 

- 10.61 

- 8.40 

- 5.64 

- 

E (35) 1.5 

0.50 

0.75 

1.00 

1.25 

1.50 

890 a** 

900 a 

935 a 

980 a,b 

1071 b 

- 16.85 

- 15.91 

- 12.69 

- 8.50 

- 

F (55) 1.5 

0.50 

0.75 

1.00 

1.25 

1.50 

628 a 

648 a 

709 a,b 

770 b 

913 c 

- 31.22 

- 28.29 

- 22.36 

- 15.66 

- 

G (90) 

 
1.5 

0.50 

0.75 

1.00 

1.25 

1.50 

255 a 

298 a 

415 b 

528 c 

754 d 

- 66.13 

- 60.46 

- 44.88 

- 29.99 

- 

H (100) - 

0.50 

0.75 

1.00 

1.25 

1.50 

149 a 

198 b 

341 c 

467 d 

709 e 

- 79.03 

- 72.02 

- 51.91 

- 34.06 

- 

I (100) - 

0.50 

0.75 

1.00 

1.25 

1.50 

133 a 

192 b 

365 c 

517 d 

771 e 

- 82.79 

- 75.12 

- 52.67 

- 32.99 

- 

*The value in ( ) denotes to the percentages of L3 plus L4 in the scenario 

**For each value containing a, b…letter in a scenario (in the No. of conflicts column), it denotes values of 

statistically significant differences (p < 0.05). Two or more values with the same letter denote a homogeneous 

subgroup. 

Adapted from Miqdady et al. (2023b) 
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6.2.2. Conflict consequences as severity indicators 

MaxS and DeltaS were used in this study to assess conflict severity in relation to different 

types of vehicles involved in conflicts (HDV and L1, L2, L3, and L4 vehicles) in the 

scenarios investigated. Different vehicle interactions can cause different traffic flow 

dynamics, potentially resulting in conflicts between vehicles with different maximum 

vehicle speeds and variations in vehicle speeds; as a result, the severity levels differ. 

Figure 26 shows the variations in MaxS and DeltaS of different vehicles involved in a 

conflict within different traffic fleet scenarios. For simplicity and clarity in presenting the 

results, L1 and L2 vehicles and L3 and L4 vehicles are grouped as low and high CAV, 

respectively they are called LCAV and HCAV. They are referred to as LCAV and HCAV in 

Figure 26. The shown values are extracted as the average value of 15 runs in each 

scenario. The blue–yellow–red scale indicated the increase in severity towards the red 

color. In addition, each figure is divided into three groups based on the vehicles involved 

in the conflict: −HDV, –LCAV, and –HCAV, indicate that the follower vehicle is a HDV, 

LCAV, and HCAV, respectively.  

As shown in Figure 26a, the higher MaxS during conflicts is typically observed in scenarios 

in which the penetration rate of HCAV is from low to moderate (less than 55%, or 

scenario F) . By contrast, high penetration rates of HCAV (scenarios G, H, and I) result in 

lower MaxS during conflicts.  

A similar conclusion is reached regarding the observed difference in vehicle speeds 

(DeltaS) in the conflict (Figure 26b). Sinha et al. (2020) reported a pattern similar to that 

of the aforementioned results. They obtained low crash rates and flat distributions of 

DeltaS values as the penetration rates of CAV with a high automation level (L4 vehicles) 

increased. In addition to SSAM, Rahman et al. (2019) observed, using other surrogate 

safety indicators (e.g. TET, TIT, number of critical jerks, and time exposed rear-end crash 

risk index), that an increase in the penetration rate of vehicles with low automation levels 

(i.e. L1 and L2 vehicles) decreased the conflict severity. They found that the highest 

reduction in severity was achieved when the penetration rate was 100% CAV. By contrast, 

the reduction was insignificant when the penetration rate was less than 40%. 
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(a) 

Figure 26: MaxS (a) and DeltaS (b) among several vehicle interactions and scenarios 

Adapted from Miqdady et al. (2023b) 
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 (b) 

Note: LCAV groups L1 and L2 vehicles; HCAV groups L3 and L4 vehicles. 

-HDV refers to the conflicts where HDV is a follower vehicle, the same for –LCAV and –HCAV 

Figure 26: MaxS (a) and DeltaS (b) among several vehicle interactions and scenarios (continued)  

The interactions of vehicles within a conflict are also evaluated to determine the effect of 

CAV introduction on micro-level traffic conflict severity. Consistent with the results of 

Sinha et al. (2020), the conflicts shown in Figure 26 involving CAV generally have low 

severity. Severity further decreases if the involved CAV have high levels of automation 
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(i.e. L3 and L4 vehicles). This effect is restrictively indicated by MaxS, whereas DeltaS 

better represents the conflict severity consequences because it is an energy-based 

indicator  (Wang et al., 2021). 

Specifically, DeltaS’s results  show that: 

 HDV–HDV interaction presents the highest severity among all vehicle 

interactions.  

 In addition, as the supposed behavior of LCAV does not considerably differ from 

the HDV behavior, the LCAV–LCAV interaction exhibits relatively high severity.  

 When a HDV is the follower vehicle (such as LCAV–HDV and HCAV–HDV), 

severity is higher than if the follower vehicle is a LCAV or HCAV.  

 The largest reduction in severity is achieved when a HCAV is the follower vehicle.  

This highlights the benefit of increasing the level of automation, as implicitly discussed by 

Rahman et al (2019). By contrast, Sinha et al. (2020) analyzed the collisions in the HDV–

HDV and CAV–HDV interactions based on the effect of the penetration rate of L4 vehicles 

(not mixed fleets of vehicles with several automation levels were consider, neither HDV–

CAV or CAV–CAV interactions were analyzed) and they did not find a significant difference 

between the severity of both types of interactions.  

6.2.3. Level of severity among scenarios 

One of the primary goals of this part of research is to estimate the change in traffic 

conflict severity between the current HDV scenario and the 100% L4 vehicle scenario. The 

developed severity levels charts (Figure 27) are used in this part to determine the number 

of conflicts classified with each level of severity among the simulated scenarios. 

The reshaping of the sub-scores iso-lines calculated in Figure 21 (Subsection 5.4.3) are 

represented as smooth contour lines for HDV and all L1–L4 vehicles as shown in Figure 

27. In the figure, the variation of the magenta color from light to dark represents the 

increment in severity level. 
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Figure 27: The developed severity levels for HDV and different automation levels: (a) for HDV, (b) for L1 & L2 

vehicles, and (c) for L3 & L4 vehicles 

Adapted from Miqdady et al. (2023b) 



       Chapter VI: Results and discussion   

117                                                                                            Doctoral Thesis. Tasneem Miqdady 

The total conflicts for each scenario were divided into subgroups based on the type of 

follower vehicle (i.e. from HDV to L4). The chart that should be used for severity level 

classification was then chosen based on the subgroup of the follower vehicle. If the 

follower vehicle in conflict is a HDV, Figure 27a is used, if the follower vehicle is a L1 or L2 

vehicle, Figure 27b is used, and if the follower vehicle is an L3 or L4 vehicle, Figure 27c is 

used. Figure 28 depicts the results of applying the severity level charts for conflict severity 

classification as a percentage of total conflicts among the simulated scenarios. 

As shown in Figure 28, a significant reduction in the percentage of conflicts (from the 

total number of conflicts) with high severity levels (severity level4 or higher) in the 

transition scenarios between the roads operated only with HDVs (scenario A) and those 

solely operated with L4 vehicles (scenario I) is observed. The reduction in the percentage 

of conflicts with severity level4 from scenarios A to I was −74.76% (from 14.98% to 3.78% 

of the total number of conflicts). For severity level5 or higher, the reduction in the 

percentage of conflicts was −86.11% (from 1.44% to 0.2%). The scenarios with high 

vehicle variation (D, E, and F) have also exhibited notable reductions compared with 

scenario A. These were between −66.62% (from 14.98% to 5%) and −69.82% (from 

14.98% to 4.52%) for severity level4 and between −21.52% (from 1.44% to 1.13%) and 

−40.97% (from 1.44% to 0.85%) for severity level5 or higher. 

 

 

Figure 28: Severity levels frequency (%) among scenarios 

Adapted from Miqdady et al. (2023b) 
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Considering the first introduction of CAV in scenario B where CAV share the road with a 

percentage of 25% (5% of the CAV have high automation levels (L3 and L4), the most 

severe conflicts (severity level4 plus level5 or higher) were reduced by 29.23% (from 

(14.98% + 1.44%) to (9.96% + 1.66%)). In scenario C, where half of the operated vehicles 

are CAV (15% are L3 and L4 vehicles), the reduction in severity level4 plus level5 or higher 

was remarkable (−60.96%). This noteworthy reduction in the high severity conflicts from 

scenarios B and C indicates that scenario C is a significant scenario in CAV introduction 

with respect to the traffic safety vision of policymakers. 

Furthermore, Figure 28 captures the reduction in moderate severity conflicts along the 

transition toward the fully automation vehicles. For example, the number of conflicts 

with severity level3 was gradually decreased by increasing the penetration rates of CAV. 

The reduction in scenario I was −62.0% (from 37.11% to 14.1% of the total conflicts). Two 

scenarios also had significant reductions in moderate severity conflicts. The highly mixed 

scenarios, D and E, which include more than 50% CAV, exhibit notable reductions 

compared with previous scenarios. Scenario G, which includes 90% L3 and L4 vehicles, has 

shown a distinct reduction of −60.60% (from 37.11% to 14.62%).  

Finally, Figure 28 indicates that the less severe (potential) conflicts are the representative 

conflicts of scenarios in which the fleet consists of L3 and/or L4 vehicles (scenarios G, H, 

and I). The percentage of conflicts (with severity level1 plus level2) in these scenarios 

exceeds 80% of the total number of conflicts. 

In general, these results agree with those of previous studies that considered the severity 

term in CAV traffic safety studies. For instance , Rahman et al. (2019) claimed that the 

duration for a vehicle to be under severe conditions decreased with increasing CAV 

penetration rates. In addition, the number of evasive actions that mitigate severe crashes 

decreases as the CAV penetration rate increases. Further, Sinha et al. (2020) used the 

crash rate term to express the severity that has also decreased by increasing the 

penetration rates of CAV scenarios.  

The findings highlight also the outstanding impact of CAV operation on road traffic safety. 

The use of CAV reduces the total number of conflicts while also preventing severe 

conflicts. Evidently, the resulting conflicts are mostly with low severity. 
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6.3. Traffic safety impact of dedicated lane configurations 

This section provides the answer to the third research question: 

 

 

 

It particularly checks the following hypothesis:  

Hypothesis 2: the increase in the penetration rate of CAV in general will enhance traffic 

safety. 

Hypothesis 6: roads configured with DLs will satisfy good traffic safety results at high 

CAV’s penetration rates. 

By achieving the related objectives: 

 

 

 

 

To reach the proposed objective some circumstances related to the deployment of DL on 

the modelled segment should be clarified: 

 Sections with only two-lanes in the simulated motorway are always considered 

without a DL, based on the studies which emphasized that installing a DL on two-

lane highways did not perform well along the introduction period of CAV (Chen 

et al., 2017; Hamad & Alozi, 2022; Mohajerpoor and Ramezani, 2019; Razmi Rad 

et al., 2020). Whereas, those sections with three- or four-lanes are configured 

with a DL for CAV on the left handside of the road. As a result, the total length of 

sections that are modelled with a DL is 9,038 m in the northbound direction and 

9,419 m in southbound direction (i.e. about half of the motorway modeled).  

 Following He et al. (2022), only L3 and L4 vehicles (passenger cars and trucks) are 

assumed to operate in the DL. So, only HCAV will used the DL. 

 In Zhang et al. (2020), they considered that one third of the vehicles will pass on 

the DL if a roadway is of three lanes. Consequenctly, this analysis follows the 

same logic that the scenarios where the percentage of HCAV is below 30%, 

following, the configuration considered is one DL with mandatory policy for 

HCAV. Whereas, in scenarios where the percentage of HCAV is more than 30%, it 

is considered a configuration with one DL with optional policy, which is 

recommended as well by the results of He et al. (2022). 

RQ3 – How will the employment of dedicated lanes (DLs) for CAV introduction 

affect traffic safety?  

- To estimate the traffic safety impact of using a DL for CAV introduction, 

allowing to set an optimal strategy of deploying a DL. 
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 Two traffic conditions are considered for this analysis: free-flow (off-peak) and 

congested (peak) conditions. Consequently, a new traffic demand (peak-hour 

demand) is used to analyze the congested condition, keeping the same 

microsimulation characteristics considered before (with free-flow condition) but 

increasing the warming time to 25 minutes. 

Subsequently, this section presents the traffic safety results of applying two 

configurations of DL in both peak and off-peak traffic flow conditions. As it is explained 

previously, the applied configurations are: zero DL and  one DL for CAV (with mandatory 

policy if the percentage of HCAV is below or equal to 30% at traffic flow, and optional 

policy if it is  above 30%).  

Table 14 displays the scenarios considered for testing the impact of DL configurations, 

where the potential percentage of vehicles on the DL (i.e. L3 plus L4 vehicles) is displayed 

in the shaded columns. Basically, the considered scenarios are with the same vehicle 

composition that were used in the previous parts of the thesis (in Section 6.1 and 6.2), 

except for scenario E and G, that they were modified to achieve uniformity in the 

introduction of HCAV along the scenarios: 5%, 15%, 25%, 30%, 55% and 75%. 

Also, as the configuration with only one DL is applied exclusively on sections with three- 

or four-lanes in the studied motorway, the results are presented to discuss that influence 

on the traffic safety for the entire motorway segment as well as for only those sections 

with DL. 

Table 14: Employed mix fleet in testing dedicated lane configurations 

Scenario HDV L1 L2 L3 L4 Policy 

B 75% 10% 10% 5% 0% Mandatory 

C 50% 10% 25% 10% 5% Mandatory 

D 40% 15% 20% 15% 10% Mandatory 

E* 20% 20% 30% 15% 15% Mandatory 

F 5% 10% 30% 30% 25% Optional  

G* 0% 0% 25% 40% 35% Optional  

*Scenario with different vehicle composition than what used in Section 6.1   

6.3.1. The optimum strategy regarding DL configurations 

The next figures (Figure 29 and Figure 30) exhibit the conflicts obtained in both road 

configurations (zero DL and one DL for HCAV), allowing to evaluate the traffic safety 

impact of these both operational configurations that could be implemented during the 

transition period between manual driving and autonomous driving. 



       Chapter VI: Results and discussion   

121                                                                                            Doctoral Thesis. Tasneem Miqdady 

Figure 29 reflects the traffic safety impact of zero and one DL configurations in off-peak 

traffic flow condition, to assess when it could be useful from traffic safety perspective to 

choose one DL configuration during the transition period between manual and 

autonomous driving. Figure 29 shows the resulted conflicts at both configurations and the 

computed percentage of change between these two values at each scenario. For 

example, the percentage of change caused by employing a DL in scenario B at off-peak 

condition for the entire segment is +793.44% (i.e. the number of conflicts increased from 

2,637 to 23,560 when one DL is considered). In this case (scenario B) we have a 

mandatory use of the DL for HCAV. 

 

 

Figure 29: Resulted conflicts of DL configurations in off-peak condition 

According to the mentioned figure (Figure 29), zero DL configuration generally 

performs better than one DL (i.e. generates fewer conflicts) with CAV introduction at low 

traffic volumes, which is not different in the whole section case than analyzing only 

sections configured with a DL. However, there is a point where it generates an opposite 
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impact on traffic safety, and configuring a DL could enhance traffic safety on roads with 

free flow condition.In this case, the optimum strategy is to configurate a DL with optional 

policy only when the penetration rate of HCAV is above 55% (scenario G). In terms of 

traffic efficiency, earlier studies came up with a number of optimum points, regarding 

CAVs penetration rate, for implementing a DL, including 30% (Hamad and Alozi, 2022), 

40% (Zhong et al., 2020), 50% (Mohajerpoor and Ramezani, 2019), and 80% (optional 

policy) (He et al., 2022). They also concurred that if traffic flow is light, zero DL is a 

superior configuration especially for low CAV penetration rates in general (i.e. LCAV and 

HCAV). 

 

 

Figure 30: Resulted conflicts of DL configurations in peak condition 

Additionally, at the 55% point (scenario F), the presence of DL with optional policy 

registered 41.97% more conflicts at the overall segment than the zero DL. However, when 

only looking at the three- and four-lane sections that are configured with DL in our case, 
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they registered 27.09% fewer conflicts than the base case (i.e. zero DL), demonstrating 

the impact of this level of penetration on traffic safety on these sections even though it 

was unable to improve the traffic safety of the entire segment. 

In contrast to the off-peak conditions, during peak conditions we obtain a different 

outcome (Figure 30), suggesting that using one DL could increase traffic safety in all 

scenarios and under all conditions (i.e. low penetration rates of CAV with mandatory 

policy and high penetration rates of CAV with optional policy). The results are consistent 

for both the entire segment level and for the sections containing the DL, with conflicts 

reduction ranging from 6.75 to 68.01% for the entire segment and from 11.25 to 64.62% 

for the segments with the DL. 

6.3.2. Traffic safety feasibility of DL among scenarios 

This subsection investigates in depth whether one DL is beneficial from the standpoint of 

traffic safety. To put it more precisely, it enables comparison of the percentage change in 

the stream conflicts between each scenario and scenario B, which serves as the baseline 

scenario, demonstrating whether one DL configuration results in greater reduction than 

zero DL configuration during the CAV introduction period. Once more, the results are 

divided by traffic flow conditions (off-peak vs. peak) as well as by segment as a whole or 

only the DL-equipped sections. Figure 31 demonstrates this comparison (zero DL vs. one 

DL) that is related to the off-peak traffic condition. Considering B as the base scenario, 

the reduction pattern, in general, is similar in both the entire segment and only the 

sections with DL, with lower reduction of one DL case compared to zero DL at low 

penetration rates of HCAV (scenarios C and D) and higher reduction in scenarios with 

higher percentages of HCAV (scenarios F and G).  

Scenario E shows different outcomes depending on the section analyzed: one DL provides 

a slightly better safety at the entire segment level, while this is not the case when only 

sections that have been configured with DL are taken into account. Nevertheless, the 

reduction at this scenario still shows a huge reduction if compared with scenario D under 

off-peak conditions (i.e. the reduction is -42.22% in scenario D, while it is -70.4% in 

scenario E). 
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Figure 31: DL configurations conflicts reduction regarding CAV introduction (off-peak condition) 
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Figure 32: DL configurations conflicts reduction regarding CAV introduction (peak condition) 

On the other hand, the reduction of conflicts during peak conditions regarding zero DL 

and one DL configuration is presented in Figure 32. A distinct pattern is reflected as 

opposed to off-peak conditions. The safety impact of DL on the entire segment level is not 

shown up until the segment is operated with high penetration rates of HCAV (55% and 

75%, respectively, in scenarios F and G). 

The existence of only 15% of HCAV on the road (scenario C) reduces the overall safety of 

the highway for one DL configuration (the number of conflicts increase if compared to 

scenario B). Later, with 25% and 30% HCAV on the road (scenarios D and E), operating 

mandatory on the DL, the safety of the motorway segment in both zero DL and one DL 

configurations nearly matches. On the other hand, when considering only the sections 

configured with DL (three- and four-lane sections) a larger reduction due to one DL 
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configuration is visibly apparent. Particularly, the drop begins when the penetration rate 

of HCAV is 25% (scenario D). 

The results in Zhang et al. (2020), who studied the safety impact of DLs with  penetration 

rates of CAV up to 30%, revealed thatwhen using a single mandatory DL configuration, 

the maximum reduction in potential crash risk reached up to about 53% in off-peak 

conditions and about 48% in peak conditions. At this amount of CAV penetration 

(scenario E), however, our data does not demonstrate as better safety gains, where off-

peak condition does not result in any safety gain (711% to 1196% more conflicts) and 

peak condition demonstrates between 10.77% and 21.71% less conflicts (Figure 31, 

Figure 32). The reasonable discrepancy between both studies is due to different inputs, 

including different CAV calibration in traffic flow and lane-change models, the inclusion of 

all levels of automation in this study while only discussing one level in their study, and, 

finally, different measures of safety (crash-risk/conflicts) in each study. Practically, they 

utilized surrogate safety measures that estimate the time that the vehicle is exposed to 

risk based on the time-to-collision (TTC) integration (e.g. time exposed time-to-collision 

(TET), and time-integrated time-to-collision (TIT)), whereas the current study employed 

the TTC for conflict identification. 

On the other side, He et al. (2022), who calibrated all levels of automation and 

penetration rates and implemented various DL policies, comprise the bulk of our analysis, 

although they examined traffic efficiency no traffic safety. They demonstrated that the 

most effective strategy to increase traffic efficiency on the roads is to operate a DL with 

high automation levels at high penetration rates. Additionally, traffic efficiency studies 

that considered both peak and off-peak traffic volumes confirm that the one DL 

configuration has a greater impact during peak conditions (congestion) than it does 

during lower traffic volumes, which generally resulted in the zero DL configuration's 

superior performance (Chen et al., 2017; Hamad and Alozi, 2022; Zhong et al., 2020). 
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6.4. Traffic safety sensitivity analysis regarding CAV 

calibration parameters 

This section provides the answer to the fourth research question: 

 

 

 

It particularly checks the hypothesis:  

Hypothesis 7: reaction time and car following parameters are key parameters in 

enhancing  traffic safety on roads.    

By acheving the related objectives: 

 

 

 

 

RQ4 – How will the change of the values of traffic behaviour parameters affect 

traffic safety? What are the key traffic parameters that affect traffic safety? 

- To explore the sensitivity of traffic safety to changes in the parameters that 

define the CAV behaviour (CAV calibration parameters), and to identify 

which are the key parameters affecting traffic safety. 
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6.4.1. The simulation runs 

Based on the critical review conducted in subsection 2.3.4, various step values were 

assigned to each of the paramteres proposed to be tested. Table 15 shows the introduced 

step values for the examined parameters in the sensitivity analysis and the total number 

of runs applied for each parameter. 

Primarly, 15 runs were applied for each step-value for each parameter analysed in the 

ceteris paribus analysis, and then 15 runs were applied for each pair of step values of the 

parameters analysed in the two-at-a-time sensitivity analysis. In total, 2,985 runs were 

conducted in this study: 615 runs for the ceteris paribus analysis and 2,370 runs for the 

two-at-a-time analysis after the significant parameters from a safety perspective were 

identified. 

Table 15: The proposed values to be tested with each parameter 

Parameter values  

Total number of 

runs (for ceteris 

paribus) 

Reaction time (s) 0.1/0.2/0.3/0.4/0.5/0.6/0.7/0.8 120 

Clearance (m) 0.5/1.0/1.5/2.0 60 

Max. acceleration (m/s²) 1.0/2.0/3.0/4.0 60 

Normal deceleration (-m/s²) 2.0/3.0/4.0 45 

Sensitivity factor 0.5/0.7/0.9/1/1.1/1.3 90 

Platoon size (No.) 4.0/6.0/8.0/10.0 60 

Lateral clearance (m) 0.2/0.3/0.4/0.5 60 

Look ahead distance factor 0.8-1.2/0.9-1.2/1.0-1.25/1.1-1.3 60 

Overtake speed threshold (%) 80/85/90/95 60 

 

6.4.2. The key parameters 

 This analysis takes an important step toward understanding how the proposed changes 

in CAV behaviour can affect road traffic safety. As outlined in a previous section 

(subsection 2.3.4), some parameters have been proposed to be analysed for calibrating 

the CAV behaviour. The parameters included the reaction time, clearance, maximum 

acceleration, normal deceleration in the flow, sensitivity to leader deceleration, platoon 

size, lateral clearance, looking-ahead distance, and overtaking speed threshold. The 

results of changing their values one-at-a-time were obtained as the number of 

simulation-based traffic conflicts.  
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The results are illustrated in Table 16. The shaded values represent the default values in 

Gipps’ models (i.e. it is related to human driving behaviour). Table 16 also shows the 

number of conflicts as the average value of the 15 runs and the standard deviation for 

each parameter value examined. The results of the ANOVA among the examined values 

of each parameter appear with letters in the last column (Homogeneous subgroups) to 

identify statistically significant differences among the number of conflicts. The same 

letter indicates the same homogeneous subgroup between the different values of that 

parameter. Therefore, the parameters that showed only one letter are not considered for 

the next step (two-at-a-time analysis).  

Technology advancement provided by CAV is proposed to decrease the reaction time and 

change the clearance which promises to significantly enhance traffic safety.Xie et al. 

(2019) confirmed these predictions when they tested several values of reaction time 

related to automation levels; shorter reaction times resulted in a lower number of 

conflicts in both freeways and urban streets and within different traffic volumes. 

In addition, this analysis (Table 16) shows that traffic safety conflicts are highly sensitive 

to driver reaction times. Stanek et al. (2018) also emphasised the significant change that 

faster reaction time of CAV could produce in both shorter headways and lane change’s 

shorter gap acceptance. Precise findings of the current study indicate the following: each 

0.1 s change in reaction time presented statistically significant differences (p<0.05) in the 

number of conflicts arisen, except for 0.2 to 0.5 s that shape two homogeneous groups. 

Reaction time equal to 0.2 and 0.3 s represents group b, and reaction time equal to 0.3, 

0.4, and 0.5 s represents group c. Therefore, the main significant steps are as follows: if 

compared to the base value, the first 0.1 and 0.2 s decrease (0.7 and 0.6 s reaction time) 

have shown about 25 and 38% improvement respectively in traffic safety. Reaction time 

equal to 0.3, 0.4 and 0.5 s has registered a value higher than 50% of traffic conflict 

reduction, and a drop of about two third of the default resulted conflicts is reached with 

0.2 and 0.3 s reaction time. Lastly, reaction time equal to 0.1 s improved traffic safety by 

about 77%. 

However, Table 16 demonstrates that in standstill situation, traffic safety does not exhibit 

a strong sensitivity to the distance between vehicles (clearance). Nevertheless, the 

assertive driving style (0.5 m clearance) duplicates the traffic conflicts of the suggested 

human driving clearance (1.0 m). Though there are no statistically significant differences 

between the other values which represent the cautious driving (1.5 and 2.0 m), they show 

a reduction in traffic conflicts if compared with the default value (1.0 m). Precisely, they 

represent 70.2% and 64.7% of the default value’s result. Xie et al. (2019) examined traffic 

safety among levels of automation (with decreasing clearance by increasing automation 

level) and found higher traffic conflicts for small clearances. They also highlighted that 

this effect increases with higher traffic volumes (moderate and congested traffic 

conditions). 
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Table 16: One way ANOVA analysis results for the examined parameters 

Parameter Examined values 
No. of conflicts 

Mean (std.)  

Homogeneous 

Subgroups* 

Reaction time (s) 0.1 50(10.32)  a 

0.2 74(10.84) b 

0.3 87(10.70) b,c 

0.4 99(12.86) c 

0.5 105(18.07) c 

0.6 137(20.17) d 

0.7 165(19.23) e 

0.8 218(24.86) f 

Clearance (m) 0.5 497(95.22) a 

1.0 218(24.86) b 

1.5 153(13.32) c 

2.0 141(10.52) c 

Max. acceleration (m/s²) 1.0 1613(313.50) a 

2.0 237(32.95) b 

3.0 218(24.86) b 

4.0 199(28.34) b 

Normal deceleration (m/s²)  - 2.0 330(96.01) a 

- 3.0 250(56.93) b 

- 4.0 218(24.86) b 

Sensitivity factor 0.5 1299(57.48) a 

0.7 649(44.17) b 

0.9 211(16.07) c 

1.0 218(24.86) c 

1.1 546(328.01) b 

1.3 1517(205.33) d 

Platoon size (No.) 4.0 215(25.57) a 

6.0 202(22.31) a 

8.0 206(24.90) a 

10.0 218(24.86) a 

Lateral clearance (m) 0.2 208(21.59) a 

0.3 218(24.86) a 

0.4 202(21.90) a 

0.5 199(23.79) a 

Look ahead distance factor 0.8-1.2 218(24.86) a 

0.9-1.2 222(25.69) a 

1.0-1.25 216(23.86) a 

1.1-1.3 210(17.62) a 

Overtake speed threshold (%) 80 202(26.38) a 

85 200(16.67) a 

90 218(24.86) a 

95 214(16.79) a 

*Different letters ( a, b, etc.) denote  statistically significant differences (p < 0.05) between the values of one 

parameter. Two or more values with the same letter denote a homogeneous subgroup. 

Note: The shaded values are the default values in Aimsun models 
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The behaviour related to longitudinal movement is expected to change with the 

introduction of CAV. A wide range of assumptions are made in calibrating the car-

following model parameters to represent the CAV behaviour, as explained in Section 

2.3.4. In summary, Table 16 shows that low values of maximum acceleration and normal 

deceleration may dramatically reduce traffic safety on the road. However, this could 

change if all vehicles exhibit the same cautious behaviour (Virdi et al., 2019). 

Table 16 also shows that the normal values around the default values did not show 

statistically significant differences. However, as these parameters define the dynamics in 

the driving models, CAV behaviour calibration in the literature is mainly dependent on 

these parameters (e.g. ATKINS, 2016; Sinha et al., 2020; Talebpour & Mahmassani, 2016). 

Moreover, regarding previous studies which calibrated CAV behaviour by assigning values 

of different parameters simultaneously (including acceleration and deceleration 

parameters), the results were as follows: studies which used low values (e.g. 1.0 and 1.5 

m/s²) for CAV acceleration (e.g. Guériau & Dusparic, 2020; Zhang et al., 2020) presented a 

considerable effect on traffic safety enhancement, however, they calibrated the 

acceleration with other performance parameters that could enhance traffic safety on the 

road (i.e., with low reaction time or lower speed deviation). Whereas, the use of values 

around the default value (e.g. ATKINS, 2016; Sinha et al., 2020; Xie et al., 2019) did not 

significantly change the effect on traffic safety, which is confirmed by our sensitivity 

analysis.. This indicates that acceleration and deceleration could present significantly 

different effects if they are calibrated individually or with other parameters.  

Another parameter could point out the car-following issue, which is the sensitivity factor 

to leader deceleration. Both the underestimation (<1.0) and overestimation (>1.0) of the 

leader deceleration on the road negatively affect traffic safety. Many errors in 

programming, performance, or even the application of highly cautious or assertive driving 

behaviour can lead to a CAV which behaves as a highly sensitive or very low sensitivity to 

its leader vehicle deceleration.  Table 16 also presents an interesting finding. Traffic safety 

is highly sensitive to these two situations, and is more sensitive in the overestimation 

case (when the sensitivity factor is above 1).  

For example, traffic safety will not be statistically significantly affected if the leader 

deceleration is underestimated by 10% (sensitivity factor = 0.9), but it is not the case 

when an overestimation of 10% (sensitivity factor = 1.1), which will multiplicate traffic 

conflicts by 2.5 times (from 100% to 250%) which is in the same significant group as the 

underestimation of 30% of leader deceleration (sensitivity factor = 0.7).  

This indicates that the aggressiveness of the vehicle deceleration to its leader, which 

normally decelerates (overestimation), increases the potential of crashes significantly 

when compared to the case when the vehicle maintains its normal deceleration while the 

leader could present breaking behaviour. Finally, to calibrate the CAV to present a precise 
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and highly efficient estimation of the leader dynamics, 1.0 or 0.9 sensitivity factor is 

recommended. 

In addition, the platoon size that will be performed in the CAV by a co-operative adaptive 

cruise control system was tested in this study. Four, six, eight, and ten vehicles in a 

platoon did not show a statistically significant difference in traffic safety. Nevertheless, 

decreasing the number of vehicles in the platoon slightly enhanced the traffic safety and 

decreased the number of traffic conflicts. This result was previously reported by both 

Aramrattana et al. (2021) and Faber et al. (2020) who explained that a higher number of 

vehicles in a platoon reflects more braking actions which may result in a higher number of 

conflicts. 

As CAV could also affect traffic behaviour in lateral movements, we selected three 

parameters that reflect lateral movements and lane-changing manoeuvres to be 

analysed. First, several values of lateral clearance between vehicles were tested, and the 

results showed that increasing the lateral clearance could enhance traffic safety. 

However, there were no significant differences. It should be highlighted that this analysis 

in urban and/or congested cases could have a significant effect on traffic safety.  

Moreover, the upstream distance to the point where the vehicle is aware of its target 

lanes (look-ahead distance) for the lane-change process was studied by changing the 

range of the minimum and maximum look-ahead factors. Owing to the projected 

facilitation of CAV lane changing, all the ranges tested were for values above the default 

one. The results did not show any statistically significant differences among the ranges 

tested.  

The last parameter selected is the overtake-speed threshold. In the overtaking case of the 

vehicle moving forward, whenever a vehicle is constrained to drive slower than the 

overtake-speed threshold as a percentage of its desired speed, it will try to overtake. The 

tested thresholds for overtaking did not show statistically significant differences in the 

number of traffic conflicts. However, it can be indicated that the lower thresholds (80% 

and 85%) provided by Mesionis et al. (2020) and Papazikou et al. (2020), have shown a 

slight enhancement in traffic safety if combined with very low values of reaction time and 

aggressiveness measures.   

6.4.3. Key parameters combinations 

As mentioned previously, the key parameters are those that have shown a statistically 

significant impact on traffic safety when their values have changed and are frequently 

employed in CAV behaviour calibration. Consequently, based on the results in the 

previous subsection, platoon size, lateral clearance, look-ahead distance factor, and 

overtaking speed threshold are not considered for the two-at-a-time sensitivity analysis,  

as they are non-key parameters. In contrary, a two-at-a-time sensitivity analysis 

accompanied by a two-way ANOVA is performed by combining the key parameters. 
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Figures 33 to 42 and Tables 17 to 26 display the findings of this analysis on the number of 

conflicts (based on 15 runs at each two-way step value). 

 

 

Figure 33: Reaction time (s) vs clearance (m) two-at-a-time analysis 

Figure 33 

Figure 33 shows that traffic safety is improved by simultaneously decreasing the reaction 

time and increasing clearance. A short clearance (0.5 m) demonstrates the highest 

number of conflicts regardless of the reaction time. However, the effect is smoothed with 

very short reaction times (below 0.3 s), which show a number of conflicts lower than the 

result of the default value (i.e. when the reaction time is 0.8 s and clearance is 1.0 m). 

These results go in line with Stanek et al. (2018) discussion that CAV will provide both 

shorter reaction time and clearance together, which indicates that lower reaction times 

will overcome the risk derived by lower clearance values. 

Figure 34 shows how both the reaction time and the maximum acceleration are 

extremely significant parameters for traffic safety. Every small step in these parameters 

generates a significant group (see Table 18). In addition, combinations which include low 

maximum acceleration (1 m/s²) reflect the highest adverse impact on traffic safety, 

regardless of the reaction time. Nevertheless, the shortest reaction times (0.1 s, 0.2 s) 

showed better safety in these cases. For the rest of the combinations with other than 1 

m/s² maximum acceleration, a gradual improvement in traffic safety is registered by 

decreasing the reaction time and increasing the maximum acceleration. Only two studies 
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have considered these two parameters at the same time (Miqdady et al., 2023a; Zhang et 

al., 2020). In Zhang et al. (2020), a low value of acceleration (1 m/s²) was combined with 

0.5 s of reaction time, and their results varied between deteriorating and enhancing 

traffic safety on the road. However, their results were related to special road 

configuration and policy operation (exclusive lanes). Whereas, in Miqdady et al. (2023a), 

two different combinations for reaction time and maximum acceleration to calibrate 

CAVs at the same traffic model were used (0.5 s & 1 m/s² and 0.1 s & 1 m/s²). They found 

similar results to this study (the combination 0.1 s & 1 m/s² provided lower number of 

conflicts).  

A similar pattern was identified in the reaction time/normal deceleration case (Figure 35). 

The scale clearly indicates that traffic safety improves by simultaneously decreasing the 

reaction time and increasing the normal deceleration at the same time. The results agree 

those findings in Miqdady et al. (2023a), where their calibrated combination 0.1 s & -3 

m/s² resulted in less conflicts than the 0.5 s & -3 m/s² combination, indicating the crucial 

impact of reaction time parameter. 

 

 

Figure 34: Reaction time (s) vs maximum acceleration (m/s²) two-at-a-time analysis 
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Figure 35: Reaction time (s) vs normal deceleration (m/s²) two-at-a-time analysis 

 

 

Figure 36: Reaction time (s) vs sensitivity factor two-at-a-time analysis 
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Considering both reaction time and sensitivity factor together (Figure 36), the results 

underline that, in general, traffic safety is more sensitive to reaction time as the number 

of conflicts decreases, mainly while decreasing the reaction time. Very short reaction 

times (0.1–0.3 s) resulted in the highest improvement in traffic safety, regardless of the fit 

of estimation of the leader deceleration. In contrast, the effect of under/over estimation 

of the leader deceleration (i.e. the error in estimation) on traffic safety is adversely 

increased with an increase in the reaction time to take action and averting traffic 

incidents.  

These results agree with the Levitate project’s results (Mesionis et al., 2020; Weijermars 

et al., 2021), which after calibrating Gipps’ models for CAV behaviour with two different 

combinations of reaction time and sensitivity factor (0.1 s & 0.5 and 0.1 s & 0.7), they 

identified that the combination 0.1 s & 0.7 generated a lower number of conflicts. 

Likewise, Miqdady et al. (2023a) found that 0.5 s & 1.1 combination generates a higher 

number of conflicts than 0.1 s & 1.2. 

Studying the effect of clearance and maximum acceleration together reflects the 

following: combining both high clearance/maximum acceleration values indicates a high 

traffic safety improvement (Figure 37, Table 21), Most of these two-way values follow 

homogeneous groups and represent a similar number of conflicts. The most significant 

groups with negative effects on traffic safety were 0.5 m & 1 m/s² and 1.0 m & 1.0 m/s². 

A similar effect was demonstrated by the clearance/normal deceleration combination 

(Figure 38,  

 

 

Table 22). Increasing both values results in an enhancement in traffic safety. The 

combinations used in CAV calibration in Miqdady et al. (2023a) confirms the results of the 

current study, in that there are slight differences while clearance is larger than 1.0 m. 

On the other hand, Figure 39 and Table 23 shows that combining low values of maximum 

acceleration (1 m/s² or even 2 m/s²) with different values of normal deceleration 

generates a significant negative effect on traffic safety. However, none of the other 

combinations, even with low deceleration (-2 m/s ²), showed statistically significant 

differences in the number of conflicts. Thus, traffic safety is more sensitive to maximum 

acceleration. However, in one hand, both factors are regarded as sensitive factors in CAV 

calibration and in driving behaviour in general (ATKIN, 2016; Stanek et al., 2018). And, on 

the other hand, as previously shown in this section, the changes regarding the two factors 

are affected by reaction time combined value as well. 
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Figure 37: Clearance (m) vs maximum acceleration (m/s²) two-at-a-time analysis 

 

Figure 38: Clearance (m) vs normal deceleration (m/s²) two-at-a-time analysis 
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Figure 39: Maximum acceleration (m/s²) vs normal deceleration (m/s²) two-at-a-time analysis 

Regarding the sensitivity factor parameter combinations, sensitivity factor/clearance 

(Figure 40, Table 24) shows an interesting result: the under/overestimation of the leader 

deceleration, even with high percentages (30%), could be overcome by introducing 

sufficiently long clearance values (1.5, 2.0 m). However, shorter clearances (0.5, 1.0 m) 

would adversely affect traffic safety if combined with under/overestimation cases. The 

outcomes obtained by Miqdady et al. (2021) showed that under large clearance value for 

CAV (1.5 m), if the sensitivity factor is near to the default value (i.e. lower 

under/overestimation); a value equal to 1.1, resulted in better traffic safety than with 

larger values (1.2). 

In the sensitivity factor/maximum acceleration analysis (Figure 41, Table 25), the greatest 

traffic safety improvement is registered when the sensitivity factor is equal to 0.9 or 1.0, 

and the maximum acceleration shift between 2–4 m/s² (i.e. the combinations 0.9 & 2.0 

m/s², 0.9 & 3.0 m/s², 0.9 & 4.0 m/s², 1.0 & 2.0 m/s², 1.0 & 3.0 m/s², and 1.0 & 4.0 m/s²) 

without statistically significant differences among the means. A sensitivity factor of 0.7 

also presents good safety values. This indicates that a low underestimation of leader 

deceleration (0.7 and 0.9) can be addressed by increasing the maximum acceleration. On 

the other hand, high undere/overestimation (sensitivity factor = 0.5 or 1.3) combinations 

show the worst results regardless of the maximum acceleration applied. Keeping the 

default value of maximum acceleration, Levitate project (Papazikou et al., 2020) tested 

the values of 0.5 and 0.7 of sensitivity factor and it was found in their traffic safety 

evaluation (Weijermars et al., 2021) that 0.7 & 3.0 m/s² combination resulted in lower 
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number of conflicts than 0.5 & 3.0 m/s² combination, which is sounding the current 

results. 

 

Figure 40: Sensitivity factor vs clearance (m) two-at-a-time analysis 

 

Figure 41: Sensitivity factor vs maximum acceleration (m/s²) two-at-a-time analysis 
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Finally, from Figure 42 and Table 26 , the high sensitivity to leader deceleration (0.9 or 1) 

presents the minimum brought out traffic conflicts without statistically significant 

differences among their means, regardless of the normal deceleration on the road (2, 3, 

or 4 m/s²). The logical relationship between these two parameters is shown in Figure 42. 

If the deceleration in traffic flow is already high (-4 m/s²) and greatly underestimated (0.5 

and 0.7), the risk will be higher, and traffic safety will worsen significantly. On the other 

hand, a small overestimation of the leader deceleration could be overcome by higher 

deceleration values (1.1 & -4 m/s² combination). However, if the overestimation of leader 

deceleration is high (1.3), the negative effect on traffic safety will be significant, although 

the deceleration value is high (1.3 & -4 m/s² combination). 

Likewise, under the same normal deceleration value (for example -3.0 and -4.0 m/s²), the 

30% underestimation shows significantly better traffic safety than that of 50% of 

underestimation, which agrees with earlier studies (Papazikou et al., 2020; Weijermars et 

al., 2021). 

 

Figure 42: Sensitivity factor vs normal deceleration (m/s²) two-at-a-time analysis 
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Table 17: Two-way ANOVA results of reaction time vs clearance 

 
 

Clearance (m) 

0.5 1.0 1.5 2.0 

Mean St.d Group Mean St.d Group Mean St.d Group Mean St.d Group 

R
e

ac
ti

o
n

 t
im

e
 (

s)
 

0.1 108 22.3 e,g,h 50 10.3 a,b,c 35 7.3 a,b 25 7.1 a 

0.2 155 33.4 i 73 10.8 b,c,d,e,f 46 6.7 a,b 37 7.2 a,b 

0.3 226 27.9 j 87 10.7 c,d,e,f 44 5.5 a,b 40 4.9 a,b 

0.4 248 30.7 j,k 99 12.8 d,e,f,g 50 6.2 a,b,c 46 5.6 a,b 

0.5 282 48.6 k 105 18.1 d,e,g,h 49 8.3 a,b,c 45 7.6 a,b 

0.6 384 66.2 l 137 20.1 g,h,i 68 11.6 b,c,d,f 62 10.5 a,b,c,f 

0.7 475 55.6 m 164 19.2 i 101 17.5 d,e,g,h 99 16.9 d,e,f,g 

0.8 497 95.2 m 218 24.8 j 153 13.3 i 141 10.5 h,i, 

 

Table 18: Two-way ANOVA results of reaction time vs maximum acceleration 

 Max acceleration (m/s²) 

1 2 3 4 

Mean St.d Group Mean St.d Group Mean St.d Group Mean St.d Group 

R
e

ac
ti

o
n

 t
im

e
 (

s)
 

0.1 422 36.0 j 177 11.1 d,e,f,g,h 50 10.3 a,b 47 6.3 a 

0.2 289 33.5 i 173 28.5 d,e,f,g,h 73 10.8 a,b,c,d 60 8.9 b,c,d 

0.3 624 64.6 j 129 15.1 a,b,c,d,e,f,g 86 10.7 a,b,c,d,e 85 12.9 a,b,c,d,e 

0.4 757 100.3 K 142 25.2 a,b,c,d,e,f,g 99 12.8 a,b,c,d,e,f 85 10.1 a,b,c,d,e 

0.5 774 130.8 k,l 155 22.2 b,c,d,e,f,g,h 105 18.1 a,b,c,d,e,f 90 22.3 a,b,c,d,e 

0.6 848 342.2 k,l 167 20.5 d,e,f,g,h 137 20.2 a,b,c,d,e,f,g 101 17.3 a,b,c,d,e,f 

0.7 868 107.6 l 190 34.7 e,f,g,h,i 164 19.2 c,d,e,f,g,h 150 21.7 a,b,c,d,e,f,g
,h 

0.8 992 113.1 l 250 28.6 h,i 218 24.8 g,h,i 200 22.8 f,g,h,i, 
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Table 19: Two-way ANOVA results of reaction time vs normal deceleration 

 Normal deceleration (m/s²) 

2 3 4 

Mean St.d Group Mean St.d Group Mean St.d Group 

R
e

ac
ti

o
n

 t
im

e
 (

s)
 

0.1 145 30.0 c,d,e 86 17.9 a,b 50 10.3 a 

0.2 167 24.7 e,f,g 110 16.2 a,b,c 73 10.8 a,b 

0.3 323 40.0 J 150 18.6 d,e,f 86 10.7 a,b 

0.4 382 83.4 k 182 39.7 e,f,g,h 99 12.8 a,b,c 

0.5 410 70.7 k 182 31.3 e,f,g,h 105 18.1 b,c,d 

0.6 370 63.3 j,k 197 33.7 f,g,h 137 20.2 c,d,e 

0.7 460 53.9 l 205 24.0 g,h 164 19.2 e,f,g 

0.8 489 55.7 l 272 31.0 i 218 24.8 h 

 

Table 20: Two-way ANOVA results of reaction time vs sensitivity factor 

 Sensitivity factor 

0.5 0.7 0.9 1.0 1.1 1.3 

Mean St.d Group Mean St.d Group Mean St.d Group Mean St.d Group Mean St.d Group Mean St.d Group 

R
e

ac
ti

o
n

 t
im

e
 (

s)
 

0.1 36 9.7 a 36 12.2 a 38 11.2 a 50 10.3 a,b 64 18.2 a,b,c 202 59.1 c,d,e,f,g,h,i 

0.2 57 15.5 a,b 54 18.4 a,b 57 16.8 a,b 73 10.8 a,b,c,d 93 13.7 a,b,c,d,e,f,g 279 41.3 h,I,j,k 

0.3 112 7.6 a,b,c,d,e,f,g 84 16.1 a,b,c,d,e,f 64 9.8 a,b,c 86 10.7 a,b,c,d,e,f 223 23.7 f,g,h,i,j 355 44.6 j,k,l 

0.4 146 9.9 a,b,c,d,e,f,g,h 76 19.7 a,b,c,d 76 11.8 a,b,c,d,e 99 12.8 a,b,c,d,e,f,g 309 57.0 i,j,k 719 274 p,q 

0.5 183 5.9 b,c,d,e,f,g, h,i 68 10.6 a,b,c 63 16.4 a,b,c 105 18.1 a,b,c,d,e,f,g 386 71.2 k,l 846 322.3 m,q 

0.6 856 37.8 m,q 418 28.4 k,l,n 144 10.9 a,b,c,d,e,f,g,h 137 20.2 a,b,c,d,e,f,g 686 133.3 o,p 1045 141.5 r,s 

0.7 984 43.5 m,r 453 39.8 l,n 235 29.0 g,h,i,j 574 19.2 a,b,c,d,e,f,g,h 915 177.7 m,r 1149 155.5 s 

0.8 1299 57.5 t 649 44.2 o,p 211 16.0 d,e,f,g, h,i 218 24.8 e,f,g, h,I,j 546 328.0 n,o 1516 205.3 t 

Table 21: Two-way ANOVA results of clearance vs maximum acceleration 

 Max acceleration (m/s²) 

1 2 3 4 

Mean St.d Group Mean St.d Group Mean St.d Group Mean St.d Group 

C
le

ar
an

c

e
 (

m
) 

0.5 3964 595.7 d 379 59.9 c 346 49.1 b,c 251 31.9 a,b,c 

1 1612 313.5 d 237 32.9 a,b,c 218 24.8 a,b,c 199 28.3 a,b,c 

1.5 284 59.7 a,b,c 148 16.5 a,b 153 13.3 a,b 168 16.2 a,b,c 

2 114 20.2 a 131 38.2 a,b 141 10.5 a,b 183 22.3 a,b,c 
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Table 22: Two-way ANOVA results of clearance vs normal deceleration 

 
 
 
 

Normal deceleration (m/s²) 

2 3   4 

Mean St.d Group Mean St.d Group Mean St.d Group 

C
le

ar
an

c

e
 (

m
) 

0.5 616 193.9 f 332 40.4 d,e 346 49.1 e 

1 330 96.1 d,e 214 32.5 a,b,c 218 24.8 a,b,c 

1.5 248 48.7 c,d 190 25.8 a,b,c 153 13.3 a,b 

2 232 61.6 b,c 146 10.4 a 141 10.5 a 

 

Table 23: Two-way ANOVA results of maximum acceleration vs normal deceleration 

 Normal deceleration (m/s²) 

2 3   4 

Mean St.d Group Mean St.d Group Mean St.d Group 

M
ax

 

ac
ce

le
ra

ti
o

n
 

(m
/s

²)
 1 4175 620.5 b 2384 644.9 b 1612 313.5 b 

2 1033 577.2 b 334 67.8 a 237 32.9 a 

3 330 96.0 a 214 32.5 a 218 24.8 a 

4 399 106.1 a 269 44.6 a 199 28.3 a 

 

Table 24: Two-way ANOVA results of sensitivity factor vs clearance 

 Clearance (m) 

0.5   1.0 1.5 2.0 

Mean St.d Group Mean St.d Group Mean St.d Group Mean St.d Group 

Se
n

si
ti

vi
ty

 

fa
ct

o
r 

0.5 1745 56.9 c 1299 57.4 b,c 491 15.8 a 404 37.3 a 

0.7 511 34.9 a 694 44.2 a,b 279 14.5 a 302 85.9 a 

0.9 257 23.1 a 211 16.1 a 185 19.3 a 193 38.2 a 

1.0 497 95.2 a 218 24.8 a 153 13.3 a 151 17.7 a 

1.1 2582 2296 d 546 328.1 a 222 21.6 a 177 39.1 a 

1.3 6972 1264 e 1516 205.3 c 179 7.9 a 181 22.6 a 
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Table 25: Two-way ANOVA results of sensitivity factor vs maximum acceleration 

 Max acceleration (m/s²) 

1 2 3 4 

Mean St.d Group Mean St.d Group Mean St.d Group Mean St.d Group 

Se
n

si
ti

vi
ty

 

fa
ct

o
r 

0.5 1626 99.7 g,h 1286 86.8 e,f,g 1299 57.5 e,f,g 1250 51.5 d,e,f 

0.7 644 128.3 b,c 351 43.6 a,b 649 44.2 d,c 339 22.0 a,b 

0.9 1488 755.7 e,f,g 203 16.1 a 211 16.1 a 184 18.3 a 

1.0 1612 313.5 f,g,h 237 32.9 a 218 24.8 a 199 28.3 a 

1.1 2456 547.4 i 1133 681.9 d,e 546 328.0 a,b,c 546 328.0 a,b,c 

1.3 1368 273.4 e,f,g 1954 206.3 h 1516 205.3 f,g 885 224.1 c,d 

 

Table 26: Two-way ANOVA results of sensitivity factor vs normal deceleration 

 Normal deceleration (m/s²) 

2 3   4 

Mean St.d Group Mean St.d Group Mean St.d Group 

Se
n

si
ti

vi
ty

 

fa
ct

o
r 

0.5 796 47.2 d,e 861 79.7 e 1299 57.5 f 

0.7 379 35.5 a,b 378 26.5 a,b 649 44.2 c,d 

0.9 264 26.9 a 235 32.7 a 211 16.1 a 

1.0 330 96.0 a 214 32.5 a 218 24.8 a 

1.1 1422 213.7 f,g 952 298.3 e 546 328.0 b,c 

1.3 1581 170.7 g 1324 95.1 f 1516 205.3 g 
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CHAPTER VII: CONCLUSIONS, LIMITATIONS 

AND FUTURE RESEARCH  

 

This chapter presents the main conclusions of this doctoral thesis, explains the limitations 

and propose some possible related future lines of research. 

 

7.1. Conclusions  

The aim of this work was to evaluate the traffic safety of the transition period between 

manual driving and autonomous driving. By employing a two-stage methodology: based 

on the outputs of simulated future probable scenarios (the first stage), the SSAM tool was 

used (the second stage) to assess traffic safety within frequency and severity 

perspectives. 

The simulation-based-SSAM method has shown its usefulness in testing nine different 

fleet mixes after an intention of calibrating the variety of levels of automation that could 

be faced in the transition period on freeways. Practically, the work achieves several 

objectives: (1) quantifying traffic conflict by fleet mix as well as by vehicle type; (2) 

estimating conflict severity through different severity definitions; (3) assessing the need 

of dedicated lanes (as a probable scenario in the transition period) in term of 

enhancement of traffic safety; and (4) applying a traffic safety sensitivity analysis to the 

main driving behaviour parameters used in this methodology.  

In general, according to the set of research hypotheses established in Section 3.3, and 

tested along this thesis, the results met all the hypotheses:  

(1) Calibration of all CAV levels rather than only one or two levels resulted in a 

further understanding about how the progressive implementation of CAV would 

affect traffic safety. 

(2) The general increase in CAV penetration rate improved traffic safety. 

(3) The number of traffic conflicts will decrease with an increase in the level of 

automation. 

(4) Low levels of automation will not significantly improve traffic safety, whereas 

high levels of automation will do it. 

(5) Less severe conflicts are attributed to an increase in the level of automation of 

CAV and its introduction into the traffic stream. 
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(6) With high volumes of HCAV the freeway with one dedicated lane delivered 

satisfying traffic safety results. However, the opposite occurs with low volumes 

of HCAV (i.e. during off-peak periods or with low proportions of HCAV). 

(7) Key factors in boosting traffic safety on roads are reaction time and car following 

parameters.    

Specifically, the main achieved conclusions of the mentioned analysis presented in this 

doctoral thesis are the following: 

General conclusions 

- This work shows the effectiveness and usefulness of the simulation-based-SSAM 

methodology to model the CAV behaviour and evaluate its impact on traffic 

safety. 

- CAV are expected to perform with different behaviour if compared to human-

driven vehicles. Accordingly, they have been calibrated to perform different 

reactions and dynamics in longitudinal and lateral movements. Moreover, traffic 

flow dynamics obtained by studying mixed fleets of CAV introduction, 

represented by vehicle acceleration/deceleration and velocity difference 

distribution, show the impact of CAV penetration, especially in the case of HCAV 

(L3 and L4 vehicles), in harmonising the traffic flow and reducing the jerk 

movements. 

- Increasing CAV penetration rates on our roads will enhance traffic safety. It will 

reduce traffic conflicts and downgrade the severity of these conflicts. The main 

vehicles responsible for this enhancement will be those with high automation 

levels (i.e. HCAV). 

Conflict frequency 

- The number of traffic conflicts will decrease as the penetration of CAV into the 

traffic flow increase. However, this investigation has found that significant 

conflict reduction could be achieved in the early stages of CAV introduction (up 

to 60% of CAV penetration). Scenarios with further penetration rates will 

improve safety, but not to the same extent as in scenarios with lower 

penetration rates. 

- The vehicle-type involvement ratio will decrease with increasing levels of 

automation and connectivity. However, this is mainly related to the vehicle-

types shared in the traffic fleet. For instance, L2 vehicles are less involved in 

conflicts when HDV or L1 vehicles are prevalent; whereas their involvement in 

conflicts is greater in scenarios where they share the road with HCAV only. 

Likewise, considering the follower vehicle to be the main responsible for 

decision-making in a conflict, the main finding is that the involvement ratio of 

follower vehicles decreases as connectivity and automation levels increase. 
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Moreover, HCAV exhibit less than the expected responsibility (based on their 

representativeness in the traffic flow) in almost all scenarios. 

Conflict severity 

- Traffic conflicts severity estimation was analysed using three different 

approaches: (i) discussing the proximity threshold; (ii)evaluating the conflict 

consequences; and (iii)developing a traffic conflict technique to identify the 

levels of severity for the levels of automation. In general, all the approaches 

agree showing that high levels of automation downgrade traffic conflicts severity 

significantly. 

i. The proximity threshold (based on TTC) in scenarios where HCAV is the 

follower vehicle yields interesting results. If the presence of HCAV is low 

in the traffic flow (below 35%), the number of conflicts for all the TTC 

considered in the analysis (i.e. 0.5, 0.75, 1.0, 1.25, and 1.5 s) is not 

statistically significant. By contrast, when HCAV present moderate 

sharing percentages (35%–55%) the TTC starts to show a significant 

difference at 1.0 s. In scenarios where the operation percentage of 

HCAV is high (over 55%) TTC presents significant differences in the 

number of conflicts for all values. Therefore, the importance of applying 

different TTC threshold values for such scenarios must be recognized. 

ii. MaxS and DeltaS (considered severity indicators) show that if HCAV 

penetration is 55% or over most of the conflicts show a low severity 

(low speeds and low speed differences among vehicles involved in 

conflicts). In addition, the highest severity is identified when HDV are 

the follower vehicles, followed by situations where the follower vehicle 

is a LCAV (L1 and L2 vehicles). 

iii. Proximity/consequence charts (based on TTC and MaxDeltaV) have 

been also used to investigate the severity in each scenario. The results 

indicate that increasing the percentages of CAV significantly decreases 

the number of conflicts with high severity. When HCAV represents 

approximately 100% of the traffic flow severe conflicts are anticipated 

to disappear, and those with low severity are reduced. 

Influence of dedicated lanes 

- From a traffic safety perspective, the dedicated lanes should not be considered 

under low traffic volumens (i.e. off-peak conditions) with exception of very high 

penetration rates of HCAV (over 55%).  

- In contrast, the dedicated lanes provide better safety outcomes under high 

traffic volumens (i.e. peack conditions) for almost all penetrations scenarios.
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Influence of CAV’s parameters on traffic safety  

- The ceteris paribus sensitivity analysis of the parameters has highlighted the 

significant impact of varying the clearance, reaction time, sensitivity factor, 

maximum acceleration, and normal deceleration on traffic safety.  

- The reaction time parameter shows a negative linear correlation with traffic 

safety.  

- Clearance, maximum acceleration, and normal deceleration at extremely low 

values exhibit an extremely negative impact on traffic safety.  

- The sensitivity factor for CAV is recommended to be close to 1.0.  

- Traffic safety of motorways under off-peak traffic conditions is not highly 

dependent on the lateral movement parameters.  

- The platoons with four and six vehicles provide better traffic safety than those 

with eight or ten vehicles. 

- Maximum acceleration of 1 m/s² combined with any other parameter results in 

the highest number of conflicts. 

- Among the maximum acceleration/normal deceleration combinations, those 

with high acceleration and deceleration yield the best safety results. However, 

the maximum acceleration is more sensitive within these combinations.  

- Traffic safety improves by decreasing the reaction time and simultaneously 

increasing the maximum acceleration or normal deceleration.  

- Low underestimation (−10 to −30%) of the leader deceleration can be addressed 

by increasing the maximum acceleration and clearance. However, in the case of 

high under/overestimation (−50% and +30%) of the leader deceleration, 

increasing the maximum acceleration is not sufficient to mitigate the negative 

effect on traffic safety, whereas a larger clearance achieves this outcome.  

- In reaction time/sensitivity factor combinations, traffic safety is more sensitive 

to reaction time. Moreover, regardless of the fit of the assessment of the leading 

deceleration, very short reaction times (0.1–0.3 s) show the largest improvement 

in traffic safety. 

Finally, the following are the main strength of this work in comparison with previous 

studies:  

- A wide range of parameters are calibrated to robustly cover CAV behaviour.  

- All CAV levels are modelled, analyzed, and discussed.  

- Nine different scenarios of fleets, different CAV levels, penetration rates, and 

vehicle types (passenger cars and heavy vehicles) are taken into consideration to 

present a thorough and near-real scheme of CAV introduction. 

- Traffic safety is studied from various perspectives, including through traffic flow 

dynamics, conflicts frequency, involving in conflicts by vehicle type, conflict 

severity using three different approaches and conflict severity by vehicle type.  
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- The influence of a dedicated lane on traffic safety is studied considering several 

CAV penetration rates and two traffic conditions (peak and off-peak). 

- The key parameters which affect traffic safety, that are used in microsimulation 

models for representing CAV behaviour, have been identified through a 

comprehensive sensitivity analysis. 

 

7.2. Limitations and future research 

Although this thesis provides valuable contributions regarding the investigation of traffic 

safety during the transition period between manual and autonomous driving, it is normal 

to have limitations in terms of conditions and cases. As a result, the following potential 

investigations could be added to the current literature to help in understanding the safety 

impact of CAV introduction: 

 

1. Additional research is required to validate the calibration of CAV traffic flow models. 

The parameters used for CAV calibration have a direct impact on the safety analysis. 

Therefore, if different values are assigned to these parameters, the results may 

differ. Consequently, the following lines of investigation could be explored: 

- All the analysis and assumptions in this work only apply and examin the cautious 

driving style of CAV. Another similar procedure could be applied to investigate 

the aggressive driving style that may appear when most of vehicles on the roads 

are CAV. 

- The sensitivity analysis conducted in this study is limited to two-at-a-time 

analysis. It is suggested to further optimize traffic safety by performing 

sensitivity analyses of all calibrated parameters to determine the combined 

effect of these parameters. Moreover, sensitivity analysis with different 

parameter distributions should be used to gain a better understanding of the 

effects of calibrating these parameters. 

- Whenever real data and information on CAV behaviour among varios levels of 

automation and connectivity in flow and lane-change dynamics are available, the 

simulation models should be calibrated accordingly to re-analyze traffic safety. 

- Furthermore, while applying the CCAV FHWA algorithm, some parameters’ 

constrains in the algorithm could represent the transition from human to 

autonomous driving system. However, there was no clear performance of this 

transition in terms of vehicle parameter calibration as seen in other parameters 

of car-following and lane-changing models. As a result, future work could focus 

on the driving transition in L2 and L3 vehicles in microsimulation models and its 

effect on CAV behaviour and traffic safety. 



Chapter VII: Conclusion, limitations and future research 

Doctoral Thesis. Tasneem Miqdady                                                                                                              152 

2. This thesis is limited to a specific traffic flow condition and road type section. 

Therefore, the traffic safety impact of CAV introduction should be investigated under 

various traffic volumes, road types and sections, and circumstances (e.g. road surface 

conditions, weather condition, events, policies). 

3. In terms of safety evaluation, this thesis provides a thorough investigation of traffic 

conflict analysis and studies severity across several dimensions. However, it is unclear 

whether the SSM (Surrogate Safety Measure) validated in conventional traffic 

conditions is applicable when modelling safety in mixed autonomy or fully 

automated traffic. 

- To solve this issue, various TTC (Time to Collision) threshold values are tested 

and applied in our work. However, once real data is available, the validity of the 

SSM must be thoroughly reviewed and validated. Therefore, new CAV data 

sources will be critical for the development of a universal SSM set that can 

accommodate all levels of automation. 

- Moreover, untill real data on CAV behaviour is available, more complex safety 

measures could be  applied and developed by deriving and integrating time-

based and energy-based SSM (e.g. TIT, TET, Extended DeltaV)  to measure both 

longitudinal and lateral safety. 

- Subsequently, when CAVs are operating on our roads with mixed traffic fleets 

and providing real crash data to be quantified and analyzed, further studies 

should be conducted to validate the safety results obtained from simulation-

based studies. 
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