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An extended superscaling analysis of quasielastic electron-scattering data is proposed by parametrizing
the scaling function as the sum of a symmetric function corresponding to the emission of a single particle
plus a contribution from the phase space of two-particle emission. The phase space of two-particle emission
(2p2h) is multiplied by a q-dependent parameter that has been fitted to describe the tail behavior of the
scaling function. This approach allows for an alternative description of the quasielastic electron scattering
data, incorporating the contributions from both single-particle and two-particle emission processes induced
by the one-body current and explaining the asymmetry of the scaling function. In a factorized schematic
model based on the independent-pair approximation, the 2p2h parameter is related to the high-momentum
distribution of the pair averaged over 2p2h excitations. However, in the phenomenological fitting approach
undertaken here, this coefficient includes other contributions such as interference with two-body currents
and effects of the final-state interactions. We present predictions for the inclusive two-nucleon emission
cross section induced by electrons and neutrinos.
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I. INTRODUCTION

Knowledge of the neutrino-nucleus interaction and the
electron-nucleus interaction is essential for current neutrino
experiments with accelerators [1–7]. The emission of one
nucleon is the most important contribution to the inclusive
cross section in the quasielastic (QE) region, centered
around ω ¼ jQ2j=2m�

N , where ω is the energy transfer,
Q2 ¼ ω2 − q2 < 0, and q is the momentum transfer to a
nucleon with relativistic effective mass m�

N [8–11]. Recent
theoretical work have shown the importance of two-particle
(2p2h) excitation in the QE cross section (about 20% of the
total cross section) [12–23].
The emission of two particles requires interaction mech-

anisms with a pair of nucleons. Regardless of the final-state
interactions, this can be achieved with meson-exchange
currents (MEC) [24,25] and with short-range correlations
(SRC) models [26–29]. Alternatively SRC have also been
introduced as a two-body correlation operator [12,30–33].
In Ref. [13] the two-body one-pion exchange operator is
modified to include SRC via the Landau Migdal para-
meters. One effect of SRC is to provide high momentum
components to nucleons due to the nuclear force at short
distances [28,29,34,35]. This is being exploited to extract
the number of SRC pairs from semi-inclusive and inclusive

ðe; e0NNÞ reactions [36–38]. However, in general, SRC and
MEC interfere with each other, and it is not possible to
separate or isolate them from other effects such as final-
state interactions.
In this work, we present a method to obtain the

contribution to the inclusive response of 2p2h (two-particle,
two-hole) induced by the one-body current from the
phenomenological scaling function. The QE scaling func-
tion is obtained from the ðe; e0Þ data by dividing by a single
nucleon cross section [39–41]. The starting point is the
superscaling analysis with relativistic effective mass
(SuSAM*) that is based in the relativistic mean-field model
(RMF) of nuclear matter [8,9]. The SuSAM* scaling
function describes most of the QE events but it contains
residual effects due to SRC, MEC and other contributions.
In Ref. [22] the MEC 2p2h contribution was subtracted
from the ðe; e0Þ data, using a RMF calculation, and a new
scaling function was obtained without contamination from
the MEC 2p2h channel. But this function still contains
contributions from other non-QE mechanisms, in particular
from 2p2h excitations produced by the one-body current,
including SRC, interferences with MEC, and final-state
interactions (FSI).
To extract the 2p2h contribution of the one-body (OB)

current we assume that the tail of the scaling function,
f�ðψ�Þ, for high values of the scaling variable, ψ�—or
equivalently for high values of the energy transfer—is due
mainly to the 2p2h phase space. In particular SRC produce
high-momentum components in the nuclear wave function
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while the excitation of nucleons with high momentum
implies high values of the scaling variable, ψ� > 1, which
gives a contribution to the tail of f�ðψ�Þ. It is important to
note that the contribution of SRC to the 2p2h response is
entangled with other effects, such as interference with MEC
and FSI effects. This entanglement makes it not possible to
extract the SRC contribution unambiguously from the data
alone. In this work we assume that the 2p2h response
function induced by OB current can be parametrized with
a semiempirical formula similar to that of the MEC
responses [23]. By this assumption the 2p2h response will
be proportional to the 2p2h phase space and to the single-
nucleon response. The combined effects of SRC, MEC,
FSI, and possibly other nuclear dynamics will be encoded
in 2p2h parameters fitted to reproduce the tail of the scaling
function. Our approach is alternative and complementary to
current search on SRC pairs from inclusive electron-
scattering data in the zone of low-energy and high-
transferred momentum q > 1.5 GeV=c. [37].
In this work we focus on intermediate momentum

transfer q ≤ 1 GeV=c. This region is of interest for neutrino
experiments where we are going to apply our results. One
of the processes we will analyze in this work is the emission
of two particles as a result of energy and momentum
transfers to a pair of correlated nucleons whose wave
function contains high-momentum components. In the
independent-pair approximation, the high-momentum
component is thought to originate from the interaction
between nucleon pairs in the nuclear medium, which can be
mathematically expressed as the solution to the Bethe-
Goldstone (BG) equation. We will demonstrate that the
product of the OB current with the high-momentum wave
function of a nucleon pair leads to an effective two-body
correlation current. If we make the approximation of
factorizing an average of the one-body current and the
phase space in this model, we obtain a coefficient that is
related to the average of the high-momentum distribution of
a pair of correlated nucleons.
In our scaling analysis, we observe that the scaled data,

when plotted as a function of the scaling variable, exhibit a
compatible behavior and can be effectively parametrized as
the sum of a symmetric scaling function and a 2p2h-like
contribution. This 2p2h-like contribution, proportional to
the 2p2h phase space, accurately reproduces the tail of the
data for high values of ω, the 2p2h coefficients now being
adjustable parameters to describe the tail of the scaling
function.
To obtain the scaled data, we divide the cross section by

the averaged single nucleon response. By doing so, we can
assume that the 2p2h component of the scaling function
arises from the 2p2h emission induced by the one-body
current. This assumption is based on the observation that
the 2p2h-like contribution captures the high-energy tail of
the data. By parametrizing the scaling function in this way,
we are able to disentangle the 2p2h contribution from the

1p1h one and extract information about the underlying
dynamics of the reaction. This allows us to investigate the
role of 2p2h processes induced by the one-body current and
their impact on the scaling behavior observed in the
experimental data.
In the SuSAM* approach the superscaling analysis of

electron scattering data is used to predict QE neutrino-
nucleus cross sections [42]. The neutrino (antineutrino)
cross section was extended to the 2p2h sector with a
relativistic MEC operator in the RMF model of nuclear
matter [23], where the semiempirical formula for
two-nucleon emission responses was fitted to the exact
results for momenta in the range q ¼ 200 MeV=c and
2000 MeV=c. The semiempirical formula allows to com-
pute accurately the 2p2h MEC responses using an analyti-
cal formula, thus reducing the calculation time. Similarly,
in this work, we extend the new parametrization of the
scaling function to the case of neutrino scattering. We use
the same 2p2h parameters obtained from electron scatter-
ing, but multiply them by the weak responses of a nucleon
instead of the electromagnetic responses. By applying this
approach to neutrino scattering, we aim to investigate
the role of 2p2h processes induced by the weak one-
body current and their contribution to the charged-current
(CC) neutrino cross section. By utilizing the same 2p2h
parameters, we can effectively compare the 2p2h contri-
butions in electron and neutrino scattering and assess the
universality of the scaling behavior across different inter-
action channels.
The scheme of the paper is as follows. In Sec. II we

present the superscaling formalism. In Sec. III we study the
particular case of the correlation current in the independent-
pair approximation. In Sec. IV we introduce the semi-
empirical formula for the 2p2h response function induced
by the OB current. In Sec. V we presents the results.
Finally, in Sec. VI we draw our conclusions.

II. FORMALISM

We follow the formalism of Ref. [2]. We start with the
inclusive electron scattering cross section in plane-wave
Born approximation with one-photon exchange

dσ
dΩdϵ0

¼ σMottðvLRLðq;ωÞ þ vTRTðq;ωÞÞ; ð1Þ

where the incident electron has energy ϵ, the scattering
angle is θ, the final energy is energy ϵ0, and Ω is the solid
angle for the electron detection. The energy transfer is
ω ¼ ϵ − ϵ0, the momentum transfer is q. In Eq. (1) σMott is
the Mott cross section, vL and vT are kinematic factors
coming from the leptonic tensor

vL ¼ Q4

q4
; vT ¼ tan2

θ

2
−

Q2

2q2
: ð2Þ
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Finally, the longitudinal and transverse response functions,
only depend on ðq;ωÞ and are the following components of
the hadronic tensor

RLðq;ωÞ ¼ W00; RTðq;ωÞ ¼ W11 þW22; ð3Þ

where Wμν is the nuclear-hadronic tensor, see Ref. [2] for
details.
In Refs. [22,23] we developed a model of the reaction

where the responses are the sum of QE plus 2p2h MEC
contribution

RKðq;ωÞ ¼ RQE
K ðq;ωÞ þ RMEC

K ðq;ωÞ þ � � � ; ð4Þ

for K ¼ L, T, where contributions of pion emission, and
beyond are not included in our model. The MEC responses
were studied in detail in [23], where a semiempirical
formula was derived from a microscopical relativistic
current in the RMF model of nuclear matter. We focus
in this work on the QE responses that we describe using the
SuSAM* approach [22,41]. This model is an extension of
the RMF model of nuclear matter [8], where the initial and
final nucleons are interacting with the nuclear mean field
and acquire an effective mass m�

N . The 1p1h response
functions are

RQE
K ðq;ωÞ ¼ V

ð2πÞ3
Z

d3h
ðm�

NÞ2
EE0 δðE0 − E − ωÞ

× θðp0 − kFÞθðkF − hÞ2UK: ð5Þ

The initial nucleon has momentum h below the Fermi
momentum, h < kF, and on shell energy E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þm�

N
2

p
.

The final nucleon has momentum p0 ¼ hþ q, and the final
on-shell energy is E0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p02 þm�

N
2

p
. Pauli blocking

implies p0 > kF. The UK are the single-nucleon responses
for the 1p1h excitation

UL ¼ w00; UT ¼ w11 þ w22; ð6Þ

corresponding to the single-nucleon hadronic tensor

wμν ¼ 1

2

X
ss0

jμOBðp0;hÞ�s0sjνOBðp0;hÞs0s ð7Þ

and jμOB is the electromagnetic-current matrix element

jμOBðp0;hÞs0s ¼ ūðp0Þs0
�
F1γ

μ þ i
F2

2mN
σμνQν

�
uðhÞs; ð8Þ

where F1 and F2, are the Dirac and Pauli form factors. To
compute the integral of Eq. (5), the usual procedure is to
change from variable θh to E0. The integral over E0 is made
using the Dirac delta, this fixes the value of the angle

between h and q, cos θh ¼ ð2EωþQ2Þ=ð2hqÞ, and the
integration over the azymuthal angle ϕ gives 2π by
symmetry of the responses when q is on the z-axis [2].
We are left with an integral over the initial nucleon energy

RQE
K ðq;ωÞ ¼ V

ð2πÞ3
2πm�3

N

q

Z
∞

ϵ0

dϵ nðϵÞ 2UKðϵ; q;ωÞ; ð9Þ

where ϵ ¼ E=m�
N is the initial nucleon energy in units of

m�
N , and ϵF ¼ EF=m�

N is the (relativistic) Fermi energy in
the same units. Moreover we have introduced the energy
distribution of the Fermi gas nðϵÞ ¼ θðϵF − ϵÞ. The lower
limit, ϵ0 of the integral in Eq. (9) corresponds to the
minimum energy for a initial nucleon that absorbs energy ω
and momentum q. It can be written as (see Appendix C of
Ref. [2])

ϵ0 ¼ Max

�
κ

ffiffiffiffiffiffiffiffiffiffiffi
1þ 1

τ

r
− λ; ϵF − 2λ

�
; ð10Þ

where we have introduced the dimensionless variables

λ ¼ ω=2m�
N; κ ¼ q=2m�

N; τ ¼ κ2 − λ2: ð11Þ

Nowwe define a mean value of the single-nucleon responses
[43] by averaging with the energy distribution nðϵÞ

ŪKðq;ωÞ ¼
R∞
ϵ0
dϵ nðϵÞUKðϵ; q;ωÞR

∞
ϵ0
dϵ nðϵÞ : ð12Þ

Using these averaged single-nucleon responses we can
rewrite Eq. (9) in the form

RQE
K ðq;ωÞ ¼ V

ð2πÞ3
2πm�3

N

q
2ŪK

Z
∞

ϵ0

dϵ nðϵÞ: ð13Þ

The superscaling function is defined as

4

3
ξFf�ðψ�Þ ¼

Z
∞

ϵ0

nðϵÞdϵ; ð14Þ

where ξF ¼ ϵF − 1 ≪ 1 is the kinetic Fermi energy in units
of m�

N . Note that this integral only depends on the variable
ϵ0, which in turn depends on ðq;ωÞ. The definition (14) is,
except for a factor, similar to that of the y-scaling function
fðyÞ [44,45], where the scaling variable y was the minimum
moment of the initial nucleon. In this paper we use the ψ�-
scaling variable. The minimum energy of the nucleon, ϵ0, is
transformed by a change of variable into the scaling variable,
ψ�, defined as

ψ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ0 − 1

ϵF − 1

s
sgnðλ − τÞ: ð15Þ
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In relativistic Fermi gas (RFG) and in nuclear matter with
RMF 1 ≤ ϵ0 ≤ ϵF and consequently the RFG superscaling
function is zero outside this interval, that corresponds to
1 < jψ�j for all nuclei. However, in a real nucleus the
momentum is not limited by kF, since nucleons can have
higher momentum, especially correlated nucleons can
greatly exceed the Fermi momentum. This has the effect
that the phenomenological superscaling function is not zero
for jψ�j > 1. Equivalently, the high-energy tail of the
phenomenological scaling function, for ψ > 1, can be
described as a consequence of two-particle emission induced
by the one-body current. This means that the observed
asymmetry in the scaling function can be attributed to the
contribution of two-particle emission processes.
Using V=ð2πÞ3 ¼ N=ð8

3
πk3FÞ we can write

RQE
K ¼ ξF

m�
Nη

3
Fκ

ðZŪp
K þ NŪn

KÞf�ðψ�Þ; ð16Þ

where we have added the contribution of Z protons and N
neutrons to the response functions, and ηF ¼ kF=m�

N . The
SuSAM* approach, extends the formula (16) using a
phenomenological scaling function, obtained from experi-
mental data of ðe; e0Þ. In the SuSAM* of Ref. [22] the 2p2h
contribution of MEC was first subtracted from the inclusive
cross section and then divided by the contribution of the
single nucleon,

f�QE ¼ ð dσ
dΩdωÞexp − ð dσ

dΩdωÞMEC

σMðvLrL þ vTrTÞ
; ð17Þ

where

rK ¼ ξF
m�

Nη
3
Fκ

ðZŪp
K þ NŪn

KÞ: ð18Þ

Second a selection of the QE data points was done by
noting that approximately half of the data collapse into a
point cloud around the RFG scaling function. This point
cloud constitutes the data that can be considered approx-
imately QE and we reject the rest, which contribute to
inelastic processes. Examples of the selected QE data are
shown in Figs. 1 and 2. In these figures, it is evident that the
scaled quasielastic data cluster together, forming an asym-
metric thick band that exhibits a tail for high energies. In
the results section, we will show that this tail can be
parametrized with a function that is proportional to the
2p2h phase space.

III. 2P2H RESPONSE FUNCTIONS WITH
CORRELATED PAIRS

Before introducing our parametrization of the 2p2h
response due to the OB current, we first investigate the
expected structure of the 2p2h response functions in a
simple model. In this model, the OB current induces

two-particle emission when acting on the wave function
of a correlated pair of nucleons. This is expected to be one
of the contributions to the 2p2h response, although not the
only one. In this section, other effects, such as interference
with the two-body current, are not considered.
Our theoretical motivation is based on the RFG and the

independent-pair approximation or Bethe-Goldstone equa-
tion for the wave function of a pair of correlated nucleons in
presence of the nuclear medium. Our aim is not to develop a

FIG. 1. Diagram illustrating the correlation current, Eq. (30).
The spins of the final particles are s01 and s02, whereas σ1, σ2
denotes one of the spin components of the relative wave function
of high momentum, represented by the shaded rectangle.

FIG. 2. Scaling function of the SuSAM* model (green)
compared to the contribution f�2p2h in the 2p2h channel (blue)
for several values of q, as a function of the scaling variable ψ�.
For each q we show only the scaled 12C data for q� 50 MeV=c.
The original data are taken from [46,47].
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detailed and exhaustive microscopic model, but rather to
provide some basic outlines in a schematic model, as a
starting point for proposing a formula that accounts for the
fundamental ingredients that determine the 2p2h response.
For convenience we use here square brackets in the

notation of normalized states within the volume box V,
indicating that the states are normalized to unity within
the box

j½p�i≡ eip·rffiffiffiffi
V

p
���� 12 s

�
⊗

���� 12 t
�
; ð19Þ

while the absence of brackets indicates that the states are
normalized over the entire space to a Dirac’s delta of
momentum, i.e.,

jpi≡ eip·r

ð2πÞ3=2
���� 12 s

�
⊗

���� 12 t
�
: ð20Þ

The previous states carry implicit spin and isospin indices,
which we do not write for convenience and to keep the
equations short in order to enhance clarity.
In the absence of correlations, the only mechanism of

interaction that can excite a 2p2h state is a two-body
current, particularly meson exchange currents, whose
matrix elements in the RFG can be written as

h½p0
1p

0
2�jJμðq;ωÞj½h1h2�i ¼

ð2πÞ3
V2

δðp0
1 þp0

2 − q−h1 −h2Þ
× jμðp0

1;p
0
2;h1;h2Þ; ð21Þ

where p0
i > kF and hi < kF. The two-body current func-

tions jμðp0
1;p

0
2;h1;h2Þ also depends implicitly on spin-

isospin indices.
The corresponding inclusive hadronic tensor in the 2p2h

channel can be written as

Wμν
2p2hðq;ωÞ ¼

V
ð2πÞ9

Z
d3p0

1d
3p0

2d
3h1d3h2

ðm�
NÞ4

E1E2E0
1E

0
2

wμνðp0
1;p

0
2;h1;h2Þθðp0

1 − kNF ÞθðkNF − h1Þθðp0
2 − kN

0
F ÞθðkN0

F − h2Þ

× δðE0
1 þ E0

2 − E1 − E2 − ωÞδðp0
1 þ p0

2 − q − h1 − h2Þ; ð22Þ

where Ei, E0
i are the on shell energies of nucleons with

momenta hi, p0
1, and with relativistic effective mass m�

N ,
The function wμνðp0

1;p
0
2;h1;h2Þ represents the hadron

tensor for a single 2p2h transition, summed up over spin
and isospin,

wμνðp0
1;p

0
2;h1;h2Þ

¼ 1

4

X
s1s2s01s

0
2

X
t1t2t01t

0
2

jμð10; 20; 1; 2Þ�Ajνð10; 20; 1; 2ÞA; ð23Þ

where the two-body current function is antisymmetrized

jμð10; 20; 1; 2ÞA ≡ jμð10; 20; 1; 2Þ − jμð10; 20; 2; 1Þ: ð24Þ

The factor 1=4 in Eq. (23) accounts for the antisymmetry of
the two-body wave function with respect to exchange of
momenta, spin, and isospin quantum numbers, to avoid
double counting of the final 2p2h states.
Let us now consider the matrix element of the one-body

current Jμðq;ωÞ ¼ JμOB ¼ P
i J

μ
i , where the J

μ
i acts on the

ith particle. We have

hp0
1p

0
2jJμOBjh1h2i ¼ hp0

1p
0
2jJμ1 þ Jμ2jh1h2i ¼ 0 ð25Þ

Indeed, a one-body current cannot produce 2p2h excita-
tions due to the orthogonality of plane waves hp0

ijhji ¼ 0.
The situation changes when we consider that the two

states jhii are interacting in the medium, with a short-range

NN potential VNN that produces scattering to unoccupied
states. If we turn on the NN interaction the wave function
jh1h2i of the pair is modified, but due to Pauli blocking it
can only acquire momentum components above the Fermi
momentum. In the independent-pair approximation the
wave function jh1h2i is replaced by the correlated wave
function jΦh1h2

i

jh1;h2i → jΦh1h2
i ¼ jh1;h2i þ jΔΦh1h2

i; ð26Þ

where jΔΦh1h2
i only has high-momentum components. In

the independent-pair approximation the wave function is
obtained from the solution of the BG equation for the
correlated wave function [48]. Since the NN interaction
conserves the total momentum, the correlated part of the
wave function in momentum space verifies

hp1p2jΔΦh1h2
i ¼ δðp1 þ p2 − h1 − h2ÞΔφh1h2

ðpÞ; ð27Þ

where p ¼ 1
2
ðp1 − p2Þ is the relative momentum of the

nucleon pair. andΔφh1h2
ðpÞ is the relative wave function of

ΔΦh1h2
. From the BG equation, it is given by [49]

Δφh1h2
ðpÞ¼θðp1−kFÞθðp2−kFÞ

h2−p2
hpj2μVNN jφh1h2

i; ð28Þ

where φh1h2
ðpÞ is the relative wave function of Φh1h2

,
μ ¼ mN

2
is the reduced mass of the two-nucleon system and
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h ¼ ðh1 − h2Þ=2 is the initial relative momentum, while
p1 ¼ ðh1 þ h2Þ=2þ p and p2 ¼ ðh1 þ h2Þ=2 − p. The
Pauli blocking functions in Eq. (28) ensure that the wave
function has high-momentum components. As we can see,
it is not possible to remove the dependence on the total
momentum h1 þ h2 appearing in the Pauli-blocking step
functions. Therefore, a dependence of short-range corre-
lations on the CM momentum of the pair appears.
Now, by applying a one-body current to a system

of two correlated nucleons, it is possible to generate a
two-particle state that exists above the Fermi level. The
2p2h matrix element of the one-body current is computed
in Appendix A. It can be written similarly to Eq. (21)

h½p0
1p

0
2�jJμOBðqÞj½Φh1h2

�i ¼ ð2πÞ3
V2

δðp0
1 þ p0

2 − q− h1 − h2Þ
× jμcorðp0

1;p
0
2;h1;h2Þ: ð29Þ

It is noteworthy that the matrix element describing the
effect of the one-body current on the wave function of two
correlated nucleons is formally similar to the matrix
element of a two-body correlation current, which is
represented by the function jμcor

jμcorðp0
1;p

0
2;h1;h2Þ

¼ ð2πÞ3jμOBðp0
1;p

0
1 − qÞΔφh1h2

	
p0 −

q
2




þ ð2πÞ3jμOBðp0
2;p

0
2 − qÞΔφh1h2

	
p0 þ q

2



; ð30Þ

where p0 ¼ ðp0
1 − p0

2Þ=2 is the relative momentum of the
final particles.
The correlation current is the sum of the products of the

OB current multiplied by the high-momentum wave
function of the initial correlated pair. This is illustrated
in the diagrams of Fig. 1. The shaded rectangle represents
the correlations resulting in the production of high-
momentum components of the correlated pair ðh1;h2Þ.
One of the high-momentum nucleons absorbs a photon
with momentum q, while the other nucleon is emitted
through its interaction with the first nucleon. In Eq. (30) the
products are, in fact, a multiplication of spin matrices,
although we have left this out of Eq. (30) for clarity. The
complete formula dependent on spin is provided in
Eq. (A8). Note also that the current depends on isospin.
Hence, when the initial state consists of a proton-neutron
pair, the current acting on the first particle must correspond
to the proton current, while the current acting on the second
particle should correspond to the neutron current.
By inserting the correlation current (30) in Eq. (23) the

hadronic tensor for a 2p2h transition is obtained. The
isospin sums in Eq. (23) can be written as sums over pp,
pn, and nn correlated pairs. Therefore,

wμνðp0
1;p

0
2;h2;h2Þ ¼ wμν

pp þ wμν
np þ wμν

nn: ð31Þ

Writing explicitly the isospin indices, N;N0 ¼ p, n, the
diagonal components of the hadronic tensor wμμ

NN0 are the
following

wμμ
NN0 ðp0

1;p
0
2;h1;h2Þ ¼ ð2πÞ6

����jμNðp0
1;p

0
1 − qÞΔφNN0

h1h2

	
p0 −

q
2


����
2

þ ð2πÞ6
����jμN0 ðp0

2;p
0
2 − qÞΔφNN0

h1h2

	
p0 þ q

2


����
2

þ 2ð2πÞ6Re
�
jμ�N ðp0

1;p
0
1 − qÞΔφNN0�

h1h2

	
p0 −

q
2



jμN0 ðp0

2;p
0
2 − qÞΔφNN0

h1h2

	
p0 þ q

2


�
: ð32Þ

In the independent pair approximation the 2p2h hadronic
tensorWμν

NN0 ðq;ωÞ due to SRC, is defined as the integral of
the correlated-pair tensor wμν

NN0 ðp0
1;p

0
2;h2;h2Þ over the

momentum space of 2p2h excitations, using Eq. (22).
The computation of this tensor falls outside the scope of
the present work. The proposed approach for such a
calculation would require solving the Bethe-Goldstone
equation for every nucleon pair h1, h2 while considering
the center of mass of the two particles h1 þ h2 ≠ 0, and
performing a seven-dimensional integration. In Ref. [49],
the BG equation was solved for the particular case of back-
to-back nucleons, h1 þ h2 ¼ 0, moving along the z-axis in
a multipole expansion with a potential VNN fitted to NN
scattering data [50]. Although the computation seems
feasible, incorporating the center of mass for particles

moving in any direction requires careful consideration of
various technical details.
The phenomenological approach of scaling analysis relies

on the factorization approximation of the single-nucleon
response. In the subsequent section, we will explore the
consequences of adopting this approximation in the model
introduced in the current section. We will further generalize
it to derive an empirical factorized formula that can be
applied within the scaling approach. However, it is impor-
tant to note that the factorization approximation is a
simplification and may overlook certain many-body effects
that can play a role in the response. Therefore, the empirical
factorized formula should be seen as an approximation that
captures the main trends observed in the scaling behavior
rather than a complete microscopic description.
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IV. SEMIEMPIRICAL 2P2H
RESPONSE FUNCTIONS

The 2p2h response functions for two-body operators
(MEC) was explored in Ref. [23]. Our analysis revealed
that the responses of a pair can be factorized out of the
integral (22) with reasonable approximation. By doing so,
we derived a semiempirical expression for the MEC
responses, with the coefficients to be determined by later
fitting. In this work, we make the assumption that a similar
factorization occurs for the 2p2h response induced by the
one-body current. This implies that the 2p2h response can
be proportional to the phase-space integral of two nucleons.
In the framework of the RMF of nuclear matter the 2p2h
phase-space function is given by the integral

FNN0 ðq;ωÞ¼
Z

d3p0
1d

3p0
2d

3h1d3h2
ðm�

NÞ4
E1E2E0

1E
0
2

×θðp0
1−kNF ÞθðkNF −h1Þθðp0

2−kN
0

F ÞθðkN0
F −h2Þ

×δðE0
1þE0

2−E1−E2−ωÞ
×δðp0

1þp0
2−q−h1−h2Þ; ð33Þ

where N, N0 can be proton or neutron, depending on the
initial correlated state pp, pn, or nn and kNF is the Fermi
momentum of the nucleon of N kind. The phase space
function is roughly proportional to the number of 2p2h
excitations allowed by the kinematic for momentum and
energy transfer ðq;ωÞ.
The concept of factorization in the 2p2h channel bears

some resemblance to that employed in the 1p1h channel,
where the response was written as a single-nucleon
averaged response multiplied by the superscaling function.
In the 2p2h case, we will also define the two-nucleon tensor
averaged over the momentum space of 2p2h excitations, by
dividing the hadronic tensor over the phase space function
as follows:

w̄μν
NN0 ðq;ωÞ≡ Wμν

NN0 ðq;ωÞ
V

ð2πÞ9 FNN0 ðq;ωÞ : ð34Þ

In the definition given in Eq. (34) Wμν
NN0 ðq;ωÞ can be in

general the exact hadronic tensor for 2p2h emission
including the one-body current and possibly other inter-
ference contributions, not only the correlations. This leads
to an exact factorization of the 2p2h hadronic tensor as the
averaged two-nucleon tensor multiplied by the phase space,

Wμν
NN0 ðq;ωÞ ¼ V

ð2πÞ9 FNN0 ðq;ωÞw̄μν
NN0 ðq;ωÞ: ð35Þ

In this formula the averaged two-nucleon tensor accounts
for the correlations and other interaction contributions such
as interferences with the two-body current, while the phase
space does not contain any information about them.

The phase space is exclusively related to the kinematics
of independent particles without interactions in the
Fermi gas.
To proceed further, we analyze the specific case of the

hadronic tensor in the model of independent pairs that was
introduced in the previous section. The average of the
tensor wμν

NN0 in Eq. (32) is typically complicated. Two
approximations lead to the simplification of this term. We
will make the assumption that the average of the product
can be written as the product of averages, and neglect on the
average the interference term between the two particles,
given by the last term in Eq. (32). In this way we obtain for
the diagonal components

w̄μμ
NN0 ðq;ωÞ ≃ ð2πÞ6ðjjμN j2 þ jjμN0 j2Þ × jΔφNN0

h1h2
j2; ð36Þ

where we use the notation

jjμN j2 ≡ jjμNðp0
1;p

0
1 − qÞj2 ¼ jjμNðp0

2;p
0
2 − qÞj2; ð37Þ

jΔφNN0
h1h2

j2 ≡
����ΔφNN0

h1h2

	
p0 þ q

2


����
2

¼
����ΔφNN0

h1h2

	
p0 −

q
2


����
2

: ð38Þ

Therefore, by performing the factorization approximation
of the OB current in the independent-pair model and
neglecting the interferences, we find that the corresponding
hadronic tensor, based on Eqs. (35) and (36), includes
the product of three factors; the 2p2h phase-space integral,
the averaged response of a single nucleon (coming from the
one-body current), and a factor related to the averaged
high-momentum distribution of a pair. In the semiempirical
formula for the 2p2h response we assume the same
factorization, we will replace this factor with an adjustable
parameter that is not necessarily associated solely with
correlations, as it will include contributions and interfer-
ences with other processes, particularly MEC. Hence, we
propose the following semiempirical formula for the 2p2h
responses induced by the OB current in electron scattering,

RK
2p2h ¼

V
ð2πÞ9

1

m2
Nm

4
π

2

AðA − 1Þ

×

�
ZðZ − 1Þ

2
Fppðq;ωÞcppK ðqÞð2Ūp

KÞ

þ NZFpnðq;ωÞcpnK ðqÞðŪp
K þ Ūn

KÞ

þ NðN − 1Þ
2

Fnnðq;ωÞcnnK ðqÞð2Ūn
KÞ
�
: ð39Þ

The mass of the pion ðmπÞ4 in the denominator has
been introduced for convenience by analogy to MEC
responses [23] and the mass of the nucleon m2

N in the
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denominator is set so that the 2p2h parameters cNN0
K ðqÞ are

dimensionless.
In Eq. (39), we have separated the contributions of the

pairs, pp, pn, and nn. Each of them is proportional to the
sum of the corresponding single-nucleon responses, Ūp

K
and/or Ūn

K. This is because the photon can be absorbed by
both nucleons of the pair. Also, each contribution has been
multiplied by the number of pairs pp, pn, or nn and
divided by the total number of pairs, AðA − 1Þ=2, to take
into account asymmetric matter Z ≠ N. This approach
follows the lines of the model of Ref. [38].
Since we expect that the 2p2h parameters cKðqÞ are

related, at least partially, to the high-momentum compo-
nents of a nucleon pair, they should strongly depend on
isospin, given that the high-momentum components of
proton-neutron dominate over proton-proton and neutron-
neutron. Here we will assume that they are proportional
cppK ðqÞ ¼ cnnK ðqÞ ¼ αcpnK ðqÞ, where α is a small constant.
Experiments on 12C have reported a number of np pairs
18 times larger than their pp counterparts [51,52]. Then a
reasonable value is α ¼ 1=18.
Is also reasonable to assume that the cNN0

K coefficients are
the same for both the longitudinal and transverse response,
cNN0
L ¼ cNN0

T ¼ cNN0
. This assumption greatly simplifies the

semiempirical formula because it only depends on two
parameters cpn and α. It is important to note that this
assumption may not hold true in all cases, and care should
be taken when interpreting results obtained using this
simplification.
In the particular case of the factorized independent-pair

model neglecting the interferences, based on Eq. (36), the
2p2h parameter cpnðqÞ is related to the average momentum
distribution of a proton-neutron pair in the 2p2h excitation

cpnðqÞ
m2

Nm
4
π
≃ ð2πÞ6

	 X
s1s2s01s

0
2

jΔφpn
h1h2

ðp0 þ q=2Þj2


: ð40Þ

However, in the real case, this may not necessarily hold true
because there are other mechanisms to consider, such as
interference with two-body currents, FSI, etc. Therefore, in
the present phenomenological approach, the 2p2h para-
meters are considered as adjustable quantities to reproduce
the tail of the scaling function. In other words, they quantify
to some extent the asymmetry of the phenomenological
scaling function (see next section).
In the case of symmetric nuclei, N ¼ Z, Eq. (39)

reduces to

RK
2p2h¼

V
ð2πÞ9Fðq;ωÞ

ZþαðZ−1Þ
2Z−1

cpnðqÞ
m2

Nm
4
π
ðŪp

KþŪn
KÞ: ð41Þ

From the response functions we can write the semi-
empirical formula for the inclusive cross section in the
2p2h channel induced by the one-body current

	
dσ

dΩ0dϵ0



em

2p2h
¼ σMottV

ð2πÞ9
Fðq;ωÞcpnðqÞ

m2
Nm

4
π

Z þ αðZ − 1Þ
2Z − 1

× ½vLðŪp
L þ Ūn

LÞ þ vTðŪp
T þ Ūn

TÞ�: ð42Þ

In the next section we use the 12Cðe; e0Þ cross section data
to fit the 2p2h parameter cpnðqÞ for each q.
In the case of CC neutrino scattering the semiempirical

formula extends naturally by replacing the electromagnetic
single nucleon responses with the corresponding to the
nðνμ; μÞp or pðν̄μ; μþÞn, assuming the same relation
between the 2p2h parameters of the nn and (pp in the
case of antineutrino) pairs to the np pairs in the initial state
cnn ¼ cpp ¼ αcpn

	
dσ

dΩ0dϵ0



ν

2p2h
¼ σ0V

ð2πÞ9
Fðq;ωÞcpnðqÞ

m2
Nm

4
π

Z þ αðZ − 1Þ
2Z − 1

× ½VCCŪCC þ 2VCLŪCL þ VLLŪLL

þ VTŪT � 2VT 0ŪT 0 �; ð43Þ

where σ0 is

σ0 ¼
G2 cos2 θc

4π2
k0

ϵ
½ðϵþ ϵ0Þ2 − q2�; ð44Þ

with G the Fermi constant and θc the Cabibbo angle. The
lepton coefficients for neutrino scattering VK are given in
Ref. [2]. The average single-nucleon responses ŪK are
given in Appendix B. Here we use a new version of these
responses using the definition (12) with the distribution
nðϵÞ obtained from the phenomenological scaling function.
This differs from the traditional definition [42] only for
ψ > 1, where the contribution of the nucleons with
momentum greater than kF is correctly taken into account,
while the traditional definition is an extrapolation of the
RFG where the nucleons are limited by kF [43].
Finally, in the semiempirical formula will make use

of the following approximation for the phase-space
function [53]:

FNN0 ðq;ωÞ ¼ ð4πkNFkN0
F Þ3m

�2
N

18

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m�2
N

ð2m�
N þ ωÞ2 − q2

s
:

ð45Þ

Equation (45) makes use of the frozen nucleon approxi-
mation to compute the integral (33). The exact phase space
was studied in depth in Ref. [54] as a function of ðq;ωÞ for
the kinematics of interest for neutrino experiments,
q ∼ 1 GeV, around the quasielastic peak. For these kin-
ematics it was seen that the frozen approximation gives
results very close to the exact value. The frozen approxi-
mation was also found to be quite accurate in the 2p2h
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MEC responses [55]. and in the semiempirical formula of
the MEC responses [23].

V. RESULTS

In this section, we extend the superscaling model
introduced in Sec. II and perform a new analysis of the
(e,e’) data assuming that the scaling function contains a
contribution from 2p2h that produces the tail of the
quasielastic scaling data. Therefore, in the extended scaling
model, we replace the quasielastic superscaling function
f�QE with f

�
1p1h þ f�2p2h. The 2p2h component of the scaling

function is parametrized using the semiempirical formula
for the 2p2h response discussed in the previous section, and
thus it is proportional to the phase space function Fðq;ωÞ.
This can be seen as an alternative to the traditional
superscaling analysis, which typically parametrizes the
2p2h component using Gaussian functions, while in this
approach, we impose an additional condition.
The extended scaling analysis is carried out in three

steps: (i) A preliminary scaling analysis is performed as
usual to obtain the function f�QE, after subtracting the
contribution of the MEC from the data, Eq. (17); (ii) For
each value of q, the 2p2h parameter is adjusted such that the
function f�2p2h reproduces the high-energy tail of the scaling
function f�QE; (iii) The contribution of f�2p2h is subtracted
from the data, and a new scaling analysis is performed to
extract the 1p1h scaling function f�1p1h.
After this procedure, it is observed that the resulting

f�1p1h function is compatible with a symmetric function,
indicating that the assumed dependence for the tail is
appropriate. In other words, the tail of the scaling function
is consistent with the phase space function, and this is in
agreement with the hypothesis that the tail is generated by
2p2h excitations. This is why the symmetric scaling
function is referred to as f1p1h because it no longer includes
2p2h contributions, which have been subtracted from the
analysis.
For each value of q, the coefficient cpnðqÞ is fitted from

the phenomenological scaling function f�QE under the
hypothesis that the high energy tail (ψ� > 1) is produced
mainly by 2p2h excitations, In Fig. 2 we show the
experimental data of f�QE for

12C and for different q values.
These data have been obtained from the inclusive cross
section by subtracting the 2p2h MEC contribution
and dividing by the single nucleon cross section,
Eq. (18). The Fermi momentum is kF ¼ 225 MeV=c and
M� ¼ m�

N=mN ¼ 0.8 [22]. The errors of these parameters
were estimated in Ref. [41] in a χ2 fit. They are ΔkF ¼
8 MeV=c and ΔM� ¼ 0.044. From the figure we see that
the scaling is only approximate and the data are concen-
trated in a narrow band. The band is shown in Fig. 3 for
q ≤ 1000 MeV=c. The scaling model is based on two
assumptions; first the single-nucleon factorization, which

can be done assuming that the FSI are small in the
quasielastic region. The second assumes that the scaling
function depends solely on the scaling variable, which is a
consequence of approximating the nuclear system by an
infinite Fermi gas. The small-scaling violation can be
attributed to nuclear effects that breaks this approximation
such as FSI, finite size and off shell effects. Still the band of
Fig. 3 is well-defined following the shape of an asymmetric
bell, with an evident tail on the right. The phenomeno-
logical scaling function of the SuSAM* model is obtained
by fitting a sum of Gaussians to this band,

f�QEðψ�Þ ¼ a3e−ðψ
�−a1Þ2=ð2a22Þ þ b3e−ðψ

�−b1Þ2=ð2b22Þ: ð46Þ

Note that there are no QE data above ψ� ¼ 1.5. Then it is
not possible to know from the data how the tail
would extend above this value. This is because the region
ψ� > 1.5 requires high values of the energy far from the QE
region. For low q there are not enough cross section data
in this region, and for higher momentum transfer,
q > 500 MeV=c we enter the inelastic zone with pion
emission and the data no longer scale.
If we assume that the tail of the scaling function is

primarily due to the emission of two nucleons, then the
semiempirical formula offers a theoretical framework to
extrapolate the model to high values of ψ� (or high-energy
transfer ω). This hypothesis is supported by numerous
calculations [26,33,56,57] which have shown that 2p2h
inclusive responses exhibit an increasing behavior with
energy transfer, contributing to the formation of a tail in the
cross section at high energies. Although these calculations
are based on various MEC and/or SRC models using
different approaches, they all qualitatively resemble the
2p2h phase space, which aligns with the semiempirical
approach proposed in this work.
In Fig. 2 we show the 2p2h contribution to the scaling

function using the semiempirical formula, for different

FIG. 3. Experimental data of the scaling function f�QE compared
to the 2p2h contribution. Only data with q ≤ 1000 MeV=c are
shown. The solid line is the SuSAM* fit.

EXTENDED SUPERSCALING WITH TWO-PARTICLE EMISSION … PHYS. REV. D 108, 013007 (2023)

013007-9



values of q ≤ 2000 MeV=c. In all panels the SuSAM*
scaling function, f�QEðψ�Þ, is also shown. The 2p2h results
have been obtained by dividing the semiempirical formula,
Eq. (42) by the averaged cross section of the single nucleon
as in Eq. (17)

f�2p2h ≡
ð dσ
dΩdωÞ2p2h

σMðvLrL þ vTrTÞ
: ð47Þ

Dividing Eq. (42) over (18) this gives

f�2p2hðq;ωÞ¼
VFðq;ωÞ
ð2πÞ9

m�
Nη

3
Fκ

ZξF

ZþαðZ−1Þ
2Z−1

cpnðqÞ
m2

Nm
4
π
: ð48Þ

Note first that f�2p2hðq;ωÞ does not scale, i.e., it depends on
ψ but also on q. Second the dependency on energy of
f�2p2hðq;ωÞ comes solely from phase space. This is because
the single nucleon cross section has canceled with the
denominator in Eq. (47). Then here the 2p2h contribution
to the scaling function is parametrized with a function
increasing with energy as the phase space times a parameter
that is q dependent. The 2p2h parameter cpnðqÞ is chosen to
make f�2p2h to coincide with the tail of the scaling function
for ψ� ¼ 1.5. The 2p2h coefficients are given in Table I for
q ¼ 100 up to 1000 MeV=c. In the table we provide
two sets of coefficients corresponding to the parameter
α ¼ 1=18 and also α ¼ 0 (neglecting the pp and nn
contribution). It is found that the coefficient cpnðqÞ
decreases with q. Roughly it behaves as cpnðqÞ ∼ 1=q.
Since the experimental data of the scaling function are

distributed in a thick band, as seen in Fig. 2, the coefficients
cpnðqÞ have an uncertainty that can be estimated by fitting
the lower or upper part of the band for ψ� ¼ 1.5. The error
in cpnðqÞ is approximately 38% and it is large because it
corresponds to the uncertainty of the scaling function in the
tail zone for ψ� ¼ 1.5.
Our fit has been made for q ≤ 1000 MeV=c that is the

region of interest for electron and neutrino scattering.
For higher q the right side of the QE peak is missing from
the data due to pion emission. In Fig. 3 we show
the contribution f�2p2h calculated with Eq. (48) for
the kinematics of all the QE experimental data with
q < 1000 MeV=c. We see that these points generate a
band that can explain the tail of the scaling function. To
compute f�2p2h for arbitrary q-values we have interpolated
the coefficients cpnðqÞ using the formula

cpnðqÞ ¼ a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�

N þ q
q

s
m�

N

q
ð49Þ

that fits well the q dependence of cpnðqÞwith the parameter
a0 ¼ 345� 130, for α ¼ 1=18 (see Fig. 4).
As an example, the decrease of cpnðqÞ is also expected in

the particular case of the independent-pair factorized
model. In fact it can be observed from Eq. (28) that the
high-momentum function Δφh1h2

ðpÞ has a denominator of
h2 − p2, causing the average distribution jΔφh1h2

ðpþ
q=2Þj2 to rapidly diminish as q increases. However in this
simplified model, the precise dependence may not neces-
sarily follow the exact form described by Eq. (49).
Once the coefficients of the semiempirical formula have

been fitted, we propose to carry out a new scaling analysis
without the contribution of the emission of two particles. To
do this we subtract the f�2p2h contribution from the f�QE data.
Since the MEC contribution had already been subtracted,
the new data no longer contain 2p2h contribution and can
thus be considered purely 1p1h data. The result of this new
scaling analysis is shown in Fig. 5. As we see, after the
subtraction a new band of points is obtained that is
symmetrical, since the emission of two nucleons has been
eliminated. A new phenomenological scaling function can
now be fitted with a Gaussian

f�1p1hðψ�Þ ¼ be−ðψ�Þ2=a2 : ð50Þ

The fitted coefficients are a ¼ 0.744� 0.082 and
b ¼ 0.682� 0.102. The errors in the parameters have been

TABLE I. Coefficients of the semiempirical formula for different values of the parameter α. The estimated error of cpnðqÞ is 38%.

q ðGeV=cÞ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

cpnðα ¼ 0Þ 8067 2750 1558 1008 733 550 458 367 312 275
cpnðα ¼ 1

18
Þ 7710 2628 1489 964 701 526 438 350 298 263

FIG. 4. Fitted values of the coefficients of the semiempirical
formula with error bars compared to the interpolating function
of Eq. (49).
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estimated by fitting Gaussians to the upper and lower part
of the band.
With the present approach we can compute the inclusive

effective section of electrons and neutrinos by adding
separately the contributions of SuSAM* 1p1hþ 2p2h plus
MEC contributions,

dσ
dΩ0dϵ0

¼
	

dσ
dΩ0dϵ0



1p1h

þ
	

dσ
dΩ0dϵ0



2p2h

þ
	

dσ
dΩ0dϵ0



MEC

;

ð51Þ

where the 1p1h cross section is computed with the scaling
function (50), the 2p2h with the semiempirical formula
fitted above, and the MEC with the semiempirical formula
fitted in [23].
Results are shown if Fig. 6 for electrons and Fig. 7 for

neutrinos. In Fig. 6 we show the inclusive cross section of
12C for several kinematics as a function of ω. We show the
separate contributions of the three terms of Eq. (51) and the
total contribution of the model. The pion emission is not
included.
The ω-dependence of the SuSAM*-2p2h is similar to the

MEC contribution and extends from the QE peak to the dip
region and also to the Δ region. The order of magnitude is
similar to the MEC, except at the Δ peak where the MEC
are larger. For incident electron energy ϵ ¼ 680 MeV we
compare with the SRC model of Ref. [26] whose results are
quite similar to ours. The present results are also similar to
the SRC calculation of 56Feðe; e0Þ of Ref. [58].
A similar behavior is seen in Fig. 7 where we show the

ðνμ; μÞ cross section from 16O and 12C for fixed neutrino
energy and for two scattering angles as a function of ω.
A comparison with the SRC results of [13] is also shown
for 16O and θμ ¼ 60°.
In Fig. 8, we present a detailed comparison between the

SuSAM* 2p2h contribution to the cross section and the
SRC models discussed in Refs. [26] and [13]. Firstly, we
observe that both models exhibit a similar dependence on
ω, which is consistent with the 2p2h phase space upon
which our parametrization of the scaling function tail is

FIG. 5. Experimental values of the scaling function of 12C
before and after the subtraction of the 2p2h contribution. The
solid line is the new SuSAM* 1p1h scaling function.

FIG. 6. Calculations of the 12Cðe; e0Þ cross section in the separated 1p1h, 2p2h, and MEC channels for several kinematics. The total is
the sum of the three channels. In the case ϵ ¼ 680 MeV we compare with the SRC-2p2h of Ref. [26]. The experimental data are
from [46,47].
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based. Additionally, the order of magnitude of the cross-
section is similar to what is obtained with our parametriza-
tion of the 2p2h scaling function. This suggests that both
models reasonably describe the tail of the phenomeno-
logical scaling function.

This comparison provides further support for the idea
that the tail of the scaling function can be attributed to 2p2h
contributions and that our parametrization captures its
behavior effectively. However, it’s important to note that
while these models exhibit qualitative agreement, there
may still be quantitative differences due to various factors
such as different assumptions, formalism, or input param-
eters used in each model.
Using the results of these models, we can take advantage

of them to readjust the coefficient cpnðqÞ that results from a
microscopic calculation. In the case of the Ghent calcu-
lation, the kinematics correspond to momentum transfer
values varying in a small interval around q ¼ 600 MeV=c.
The fit to the semiempirical formula of 2p2h provides a
theoretical value of the coefficient cpnðqÞ, which is shown
as a data point in Fig. 4. We see that its value is slightly
lower than the SuSAM* value but within its uncertainty
interval. The kinematics of the Valencia model corresponds
to q values around 650 MeV=c. The adjusted value of
cpnðqÞ to this model also shown as a data point in Fig. 4, is
also below the SuSAM* value from, but always within the
error interval.
Using the results of these microscopic models to readjust

the 2p2h parameter is a valid approach. While there are
differences between the microscopic models and our semi-
empirical formula, the adjusted values of cpnðqÞ obtained
from these models are consistent with our fits and within
the error intervals. Indeed, the comparison between differ-
ent theoretical calculations, such as those based on elec-
trons and neutrinos and involving different kinematics, can

FIG. 8. Detailed comparison of the SuSAM*-2p2h results with
the models of Refs. [13,26] for electron and neutrino scattering.

FIG. 7. Calculations of the 12C and 16O ðνμ; μÞ cross section in the separated 1p1h, 2p2h, and MEC channels for fixed neutrino energy.
The total is the sum of the three channels. In the case 16O, θμ ¼ 60° we compare with the 2p2h model of Ref. [13].
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provide valuable insights into the compatibility and
consistency of these models. The fact that our pheno-
menological parametrization of the 2p2h function in the
SuSAM* scaling analysis shows agreement with these
theoretical calculations highlights another useful aspect
of the extended scaling approach.
The parametrization of the 2p2h response presented in

this scaling analysis is similar to the pure phase-space
model proposed by Mosel et al. [59], which is imple-
mented in the GiBUU event generator. In this scheme, the
2p2h response is parametrized as the product of the 2p2h
phase space and the dipole electromagnetic form factor,
which is proportional to the single-nucleon response in
our parametrization. The present work further strengthens
the validity of this approach for its use in neutrino
scattering cross section calculations. Additionally, the
parameters of our model are alternatively fitted to qua-
sielastic scaling data, which is associated with the high-
energy tail of the electron scattering data. This highlights
the potential of this approach to describe both quasielastic
and 2p2h processes in neutrino-nucleus scattering and
supports its application in the analysis of neutrino scatter-
ing experiments.

VI. CONCLUSIONS

In conclusion, this work presents a extension of the
superscaling analysis of electron scattering data using a
new parametrization of the phenomenological scaling
function in the quasielastic peak. The new parametrization
assumes that the high-energy tail of the scaling function is
produced by the emission of two nucleons with the one-
body current through the 2p2h phase space function. By
incorporating this 2p2h contribution and considering the
interference effects with two-body currents and other
processes, we account for the phenomenological aspects
of two-nucleon emission with the OB current and its
contributions to scaling violation.
The new parametrization allows for the restoration of

symmetry in the 1p1h scaling function with respect to the
scaling variable ψ�. It effectively separates the 1p1h and
2p2h contributions, providing a clearer understanding of
the underlying physics in the scaling analysis. Importantly,
the new 1p1hþ 2p2h parametrization describes the experi-
mental data as well as the traditional parametrization. It
captures the features of the scaling function, including the
tail region, and provides a consistent description of the
observed scaling phenomena.
We have also studied a simple model based on the

independent-pairs approximation to investigate the basic
structure of two-particle emission in the factorized scaling
analysis. In this schematic model, the 2p2h parameters are

related to the average high-momentum distribution in a
2p2h excitation. In reality, the coefficients that characterize
the high-energy tail of the scaling function encompass
additional entangled contributions, including interference
effects from MEC and FSI. Although the current phenom-
enological analysis offers valuable initial insights, a com-
prehensive understanding of the influence of SRCs on the
scaling function’s high-energy tail necessitates a more
detailed investigation using a realistic model.
An important utility of this extended scaling analysis is

that it provides a procedure to derive a simplified expres-
sion for the two-nucleon emission cross section in nuclei.
This simplified expression can be valuable in reducing the
computational effort required for simulations of neutrino-
nucleus interactions. By parametrizing the 2p2h response,
it also offers a method to compare different models of the
process, including comparisons between electron scatte-
ring and neutrino scattering at different kinematics. This
capability can be particularly useful in Monte Carlo event
generators used for the analysis of neutrino oscillation
experiments with accelerators.
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APPENDIX A: MATRIX ELEMENT OF
THE OB CURRENT WITH
CORRELATED NUCLEONS

Here we derive the matrix element of the OB current
between a correlated pair and a two-particle state above the
Fermi level, Eqs. (29) and (30). It is obtained as the sum of
the OB current acting on each of the particles,

h½p0
1p

0
2�jJμOBðqÞj½Φh1h2

�i ¼ h½p0
1p

0
2�jJμ1 þ Jμ2j½ΔΦh1h2

�i:
ðA1Þ

Let us calculate the matrix element of Jμ1 writing explicitly
the spin indices. We assume that the two-hole uncorrelated
state is jh1s1h2s2i. The corresponding correlated wave
function is denoted by

jΦs1s2
h1h2

i ¼ jh1s1h2s2i þ jΔΦs1s2
h1h2

i; ðA2Þ

where jΔΦs1s2
h1h2

i carries the high-momentum compo-
nents. First we introduce a complete set of momentum
states
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h½p0
1s

0
1p

0
2s

0
2�jJμ1j½ΔΦs1s2

h1h2
�i

¼
Z

d3p1d3p2

X
σ1σ2

h½p0
1s

0
1p

0
2s

0
2�jJμ1jp1σ1p2σ2i

× hp1σ1p2σ2j½ΔΦs1s2
h1h2

�i: ðA3Þ

The first matrix element inside the integral is

h½p0
1s

0
1p

0
2s

0
2�jJμ1jp1σ1p2σ2i ¼ h½p0

1s
0
1�jJμ1j½p1σ1�ihp0

2s
0
2jp2σ2i

¼ ð2πÞ3
V

δðp0
1 − p1 − qÞ

× jμOBðp0
1;p

0
1 − qÞs0

1
σ1

× δðp0
2 − p2Þδs0

2
σ2 ; ðA4Þ

where jOB is the OB current function given in Eq. (8) in the
electromagnetic case, and we have exchanged the bracket
of p0

2 for p1. The matrix element of the high-momentum
wave function is

hp1σ1p2σ2j½ΔΦs1s2
h1h2

�i ¼ ð2πÞ3
V

hp1σ1p2σ2jΔΦs1s2
h1h2

i

¼ ð2πÞ3
V

δðp0
1 þ p0

2 − h1 − h2Þ
× Δφs1s2

h1h2
ðpÞσ1σ2 : ðA5Þ

Inserting Eqs. (A4) and (A5) into (A3) and integrating
using the Dirac deltas we obtain

h½p0
1s

0
1p

0
2s

0
2�jJμ1j½ΔΦs1s2

h1h2
�i

¼ ð2πÞ6
V2

δðp0
1 þ p0

2 − q − h1 − h2Þ

×
X
σ1

jμOBðp0
1;p

0
1 − qÞs0

1
σ1
Δφs1s2

h1h2

	
p0
1 − p0

2 − q
2



σ1s02

:

ðA6Þ

Proceeding analogously to calculate the matrix element of
J2, we obtain the equation

h½p0
1s

0
1p

0
2s

0
2�jJμ2j½ΔΦs1s2

h1h2
�i

¼ ð2πÞ6
V2

δðp0
1 þ p0

2 − q − h1 − h2Þ

×
X
σ2

jμOBðp0
2;p

0
2 − qÞs0

2
σ2
Δφs1s2

h1h2

	
p0
1 − p0

2 þ q
2



s0
1
σ2

:

ðA7Þ

By analogy with Eq. (21), the 2p2h correlation current
function turns out to be

jcorðp0
1;p

0
2;h1;h2Þ

¼ ð2πÞ3
X
σ

jμOBðp0
1;p

0
1 − qÞs0

1
σΔφ

s1s2
h1h2

	
p0
1 − p0

2 − q
2



σs0

2

þ ð2πÞ3
X
σ

jμOBðp0
2;p

0
2 − qÞs0

2
σΔφ

s1s2
h1h2

	
p0
1 − p0

2 þ q
2



s0
1
σ

:

ðA8Þ

APPENDIX B: AVERAGED SINGLE-NUCLEON
RESPONSES IN THE SUSAM* MODEL

The single-nucleon responses can be extended beyond
values jψ�j > 1 using the energy distribution function (B1)
obtained form the superscaling function by differentiating
the two sides of the Eq. (14) with respect to ϵ0

nðϵ0Þ ¼ −
2

3

1

ψ�
df�ðψ�Þ
dψ� : ðB1Þ

We use the noncorrelated superscaling function f�ðψ�Þ ¼
b expð−ðψ�Þ2=a2Þ to compute the energy distribution
and the averaged single-nucleon responses, Eq. (12),
giving nðϵ0Þ ¼ − 4

3a2 f
�ðψ�Þ. The single-nucleon responses

UKðϵ; q;ωÞ for neutrinos (antineutrinos) are given in the
Appendix C of Ref. [2]. The averaged single-nucleon
responses after integration over ϵ are given by

ŪCC ¼ −w1

κ2

τ
þ w2λ

2 þ 2λw2½1þ ξFðψ�2 þ a2Þ� þ w2½1þ 2ξFðψ�2 þ a2Þ þ ξ2Fðψ�4 þ 2a2ψ�2 þ 2a4ÞÞ� þ 4λ2w4; ðB2Þ

ŪCL ¼ λ

κ

�
w1

κ2

τ
−w2λ

2 − 2λw2½1þ ξFðψ�2 þ a2Þ�−w2½1þ 2ξFðψ�2 þ a2Þ þ ξ2Fðψ�4 þ 2a2ψ�2 þ 2a4Þ�
�
− 4λκw4; ðB3Þ

ŪLL¼
λ2

κ2

�
−w1

κ2

τ
þw2λ

2þ2λw2½1þξFðψ�2þa2Þ�þw2½1þ2ξFðψ�2þa2Þþξ2Fðψ�4þ2a2ψ�2þ2a4Þ�
�
þ4κ2w4; ðB4Þ

ŪT ¼ 2w1 þ 2w2λ
τ

κ2
½1þ ξFðψ�2 þ a2Þ� − w2 þ w2

τ

κ2
½1þ 2ξFðψ�2 þ a2Þ þ ξ2Fðψ�4 þ 2a2ψ�2 þ 2a4Þ� − τ2

κ2
w2; ðB5Þ
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ŪT 0 ¼ 2w3

τ

κ
fλþ ½1þ ξFðψ�2 þ a2Þ�g: ðB6Þ

The single-nucleon structure functions, w1, w2, w3, and w4

are given [2] by

w1 ¼ τð2G�V
M Þ2 þ ð1þ τÞG2

A; ðB7Þ

w2 ¼
ð2G�V

E Þ2 þ τð2G�V
M Þ2

1þ τ
þ G2

A; ðB8Þ

w3 ¼ GA2G�V
M ; ðB9Þ

w4 ¼
ðGA − τG�

PÞ2
4τ

; ðB10Þ

whereG�V
E andG�V

M are the electric- and magnetic-isovector
form factors G�V

E;M ¼ ðG�P
E;M −G�N

E;MÞ=2 modified in the
medium with the relativistic effective mass [60]. For the
axial form factor, GA, we use dipole parametrization with

axial mass MA ¼ 1.032 GeV. Finally, the pseudoscalar
form factor G�

P ¼ 4mNm�
NGA=ðm2

π −Q2Þ.
For electron scattering the equations are similar for

ŪL ¼ ŪCC and ŪT , without the axial contribution,
w3 ¼ w4 ¼ 0. For protons and neutrons the corresponding
structure functions are

wem
1 ¼ τðG�

MÞ2; ðB11Þ

wem
2 ¼ ðG�

EÞ2 þ τðG�
MÞ2

1þ τ
; ðB12Þ

with the electric and magnetic form factors

G�
E ¼ F1 − τ

m�
N

mN
F2; G�

M ¼ F1 þ
m�

N

mN
F2: ðB13Þ

For the Fi form factors of the nucleon, we use the Galster
parametrization [61].
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Jiménez, G. D. Megias, and I. Ruiz Simo, J. Phys. G 47,
124001 (2020).

[3] U. Mosel, Annu. Rev. Nucl. Part. Sci. 66, 171 (2016).
[4] T. Katori and M. Martini, J. Phys. G 45, 013001

(2018).
[5] L. Alvarez-Ruso, Y. Hayato, and J. Nieves, New J. Phys. 16,

075015 (2014).
[6] A. M. Ankowski and C. Mariani, J. Phys. G 44, 054001

(2017).
[7] O. Benhar, P. Huber, C. Mariani, and D. Meloni, Phys. Rep.

700, 1 (2017).
[8] R. Rosenfelder, Ann. Phys. (N.Y.) 128, 188 (1980).
[9] B. D. Serot and J. D. Walecka, in Advances in Nuclear

Physics, edited by J. W. Negele and E. Vogt (Plenum, New
York, 1986), Vol. 16.

[10] D. Drechselt and M.M. Giannini, Rep. Prog. Phys. 52, 1083
(1989).

[11] K. Wehrberger, Phys. Rep. 225, 273 (1993).
[12] M. Martini, M. Ericson, G. Chanfray, and J. Marteau,

Phys. Rev. C 80, 065501 (2009).
[13] J. Nieves, I. Ruiz Simo, and M. J. Vicente Vacas, Phys. Rev.

C 83, 045501 (2011).
[14] K. Gallmeister, U. Mosel, and J. Weil, Phys. Rev. C 94,

035502 (2016).
[15] G. D. Megias, M. V. Ivanov, R. Gonzalez-Jimenez,

M. B. Barbaro, J. A. Caballero, T. W. Donnelly, and J. M.
Udias, Phys. Rev. D 89, 093002 (2014); 91, 039903(E)
(2015).

[16] G. D Megias, J. E. Amaro, M. B. Barbaro, J. A. Caballero,
T. W. Donnelly, and I. Ruiz Simo, Phys. Rev. D 94, 093004
(2016).

[17] G. D. Megias, J. E. Amaro, M. B. Barbaro, J. A. Caballero,
and T.W. Donnelly, Phys. Rev. D 94, 013012 (2016).

[18] A. M. Ankowski, Phys. Rev. D 92, 013007 (2015).
[19] R. Gran, J. Nieves, F. Sanchez, and M. J. Vicente Vacas,

Phys. Rev. D 88, 113007 (2013).
[20] V. Pandey, N. Jachowicz, M. Martini, R. Gonzalez-Jimenez,

J. Ryckebusch, T. Van Cuyck, and N. Van Dessel,
Phys. Rev. C 94, 054609 (2016).

[21] M. Martini, N. Jachowicz, M. Ericson, V. Pandey, T. Van
Cuyck, and N. Van Dessel, Phys. Rev. C 94, 015501 (2016).

[22] V. L. Martinez-Consentino, I. R. Simo, and J. E. Amaro,
Phys. Rev. C 104, 025501 (2021).

[23] V. L. Martinez-Consentino, J. E. Amaro, and I. Ruiz Simo,
Phys. Rev. D 104, 113006 (2021).

[24] A. De Pace, M. Nardi, W.M. Alberico, T. W. Donnelly, and
A. Molinari, Nucl. Phys. A726, 303 (2003).

[25] I. Ruiz Simo, J. E. Amaro, M. B. Barbaro, A. De Pace, J. A.
Caballero, and T.W. Donnelly, J. Phys. G 44, 065105
(2017).

[26] T. Van Cuyck, N. Jachowicz, R. González-Jiménez, M.
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