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1 INTRODUCTION

Consider the following facts from the classical theory of minimal surfaces.

(1) If𝑀 is a compact minimal disk in 𝐑𝑛, if 𝐹 ∶ 𝐑𝑛 → 𝐑 is linear, and if 𝐹−1(𝑐) ∩ 𝑀 contains an
interior critical point of 𝐹|𝑀 with multiplicity 𝑘, then 𝐹−1(𝑐) ∩ 𝜕𝑀 contains at least 2(𝑘 + 1)
points (see [12, p. 794,(c)]).

(2) If𝑀 is a minimal disk in 𝐑𝑛, if 𝐹 ∶ 𝐑𝑛 → 𝐑 is linear, and if 𝐹 ∶ 𝜕𝑀 → 𝐑 has at most 𝑘 local
minima, then 𝐹|𝑀 has at most 𝑘 − 1 interior critical points, counting multiplicity (see [14,
Lemma 2]).

These facts are powerful tools in minimal surface theory. For instance, Radó [13] used (1) to
prove that if the boundary of minimal disk in𝐑𝑛 projects homeomorphically to the boundary of a
convex region in a plane, then the interior of the disk is a smooth graph over that region. (Actually,
Radó stated the theorem only for 𝑛 = 3, but Osserman [11, Theorem 7.2] pointed out that Radó’s
proof works for any 𝑛.) Radó also showed that if the boundary of a minimal disk in 𝐑𝑛 projects
homeomorphically onto the boundary of a planar star-shaped region, then the interior of the disk
has no branch points [12, p. 794]. Finn andOsserman [2] used an analog of (1) to prove a curvature
estimate that implies Bernstein’s theorem (an entire solution 𝑢 ∶ 𝐑2 → 𝐑 of the minimal surface
equation must be a plane.) Schneider [14] used (2) to show that for a minimal disk in Euclidean
space, the sum of the orders of the interior branch points is bounded by

𝜅

2𝜋
− 1,

where 𝜅 is the total curvature of the boundary. More recently, (2) was used in the variational
existence proof of genus-one helicoids in 𝐑3 [8].
In this paper, we sharpen (1) and (2) and extend them to minimal surfaces of arbitrary genus in

Riemannian manifolds. See Theorem 41 for the generalization of (1). Generalizing (2), we show:

Theorem 1. Suppose that 𝑀 is a compact minimal surface with boundary in a Riemannian
manifold𝑁. Suppose that 𝐹 ∶ 𝑁 → 𝐑 is a continuous function such that

(1) if dim𝑁 = 3, the level sets of 𝐹 are minimal surfaces, and
(2) if dim𝑁 > 3, the level sets of 𝐹 are totally geodesic.
(3) for each 𝑡, {𝐹 = 𝑡} is in the closure of {𝐹 > 𝑡} and of {𝐹 < 𝑡}.

Suppose also that 𝐹 is nonconstant on each connected component of𝑀, and that the set 𝑄 of local
minima of 𝐹|𝜕𝑀 is finite. Then the number 𝖭(𝐹|𝑀) of interior critical points of 𝐹|𝑀 (counting
multiplicity) and the number 𝑠𝜕(𝐹) of boundary saddle points of 𝐹|𝑀 (countingmultiplicity) satisfy

𝖭(𝐹|𝑀) + 𝑠𝜕(𝐹) = |𝑄| − 𝜒(𝑀),
where 𝜒(𝑀) is the Euler characteristic of𝑀 and where |𝑄| is the number of elements in the set 𝑄.

 14697750, 0, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12791 by U

niversidad D
e G

ranada, W
iley O

nline L
ibrary on [04/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



MORSE–RADÓ THEORY FOR MINIMAL SURFACES 3

(Theorem 1 is a special case of Theorem 24; Theorem 8 and Remarks 9 and 10 show that the
hypotheses of Theorem 1 imply the hypotheses of Theorem 24. Theorem 1 is also true for branched
minimal surfaces; see Section 9.)
A continuous function whose level sets form a foliation and that satisfies hypothesis (3) of The-

orem 1 is called a foliation function. If the leaves are minimal, it is called a minimal foliation
function, and if the leaves are totally geodesic, it is called a totally geodesic foliation function.
In Theorem 1, “interior critical point of 𝐹|𝑀” means “interior point 𝑝 of tangency of𝑀 and the

level set {𝐹 = 𝐹(𝑝)},” and the multiplicity of such a critical point is the order of contact of𝑀 and
{𝐹 = 𝐹(𝑝)}. Boundary saddle points and their multiplicities are defined in Definition 23.
It would be natural in Theorem 1 to assume that 𝐹 is𝐶1 (or even smooth) with nowhere vanish-

ing gradient. However, that assumptionwould be undesirable for the following reason. Consider a
minimal foliation of a Riemannian 3-manifold. Of course the leaves are smooth. At least locally,
the foliation can be given as the level sets of a continuous function 𝐹. However, for someminimal
foliations, there is no such function that is 𝐶1 with nowhere vanishing gradient. (A simple exam-
ple from [15, §1] is the minimal foliation of {(𝑥, 𝑦, 𝑧) ∶ 𝑥 > 0} consisting of the halfplanes 𝑧 = 𝑠𝑥
with 𝑠 ⩾ 0 and the halfplanes 𝑧 = 𝑠with 𝑠 < 0. If 𝐹 is a 𝐶1 function whose level sets are the leaves,
then 𝐷𝐹(𝑥, 𝑦, 0) = 0.)
For that reason, throughout the paper we work with functions that are only assumed to

be continuous.
Theorem 1 provides an exact formula for 𝖭(𝐹|𝑀). In many situations, a good upper bound for

𝖭(𝐹|𝑀) suffices. Simply dropping the term 𝑠𝜕(𝐹) in Theorem 1 gives the bound

𝖭(𝐹|𝑀) ⩽ |𝑄| − 𝜒(𝑀),
which is often adequate. Indeed, that gives Schneider’s bound (2). But one can get a better upper
bound as follows. Let 𝐴 be the set of local maxima and local minima of 𝐹|𝜕𝑀 that are not local
maxima or local minima of 𝐹|𝑀. Then 𝑠𝜕(𝐹) ⩾ |𝐴| (where |𝐴| is the number of elements of 𝐴),
so from Theorem 1, we deduce

Corollary 2. Under the hypotheses of Theorem 1,

𝖭(𝐹|𝑀) ⩽ |𝑄| − 𝜒(𝑀) − |𝐴|.
See Theorem 26, which also specifies when equality holds in Corollary 2.

Remark 3. In practice, one sometimes encounters 𝐹 and𝑀 that satisfy all but one of the hypothe-
ses of Theorem 1, namely the hypothesis that the set of localminimaof𝐹|𝜕𝑀 is finite. In particular,
that hypothesis will fail if 𝐹 is constant on one or more arcs of 𝜕𝑀. One can handle such examples
as follows. Suppose𝐹 is not constant on any connected component of 𝜕𝑀. Let �̃� be obtained from
𝑀 by identifying each arc of 𝜕𝑀 on which 𝐹 is constant to a point. Let �̃� be the function on �̃�
corresponding to 𝐹 on𝑀. If �̃�|𝜕�̃� has a finite set �̃� of local minima, then

𝖭(𝐹|𝑀) = 𝖭(�̃�|�̃�)
= |�̃�| − 𝜒(𝑀) − 𝑠𝜕(�̃�)
⩽ |�̃�| − 𝜒(𝑀) − |�̃�|,
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4 HOFFMAN et al.

where �̃� is the set of local minima and local maxima of �̃�|𝜕�̃� that are not local minima or local
maxima of �̃�|𝑀. These facts follow from Theorems 24, 26, and 48.

Special cases of Theorem 1 have been important tools for analyzing properly embedded trans-
lators for mean curvature flow in𝐑3, in particular for the classification of translating graphs in [4,
5], the classification of semigraphical translators (such as the doubly periodic Scherk-type transla-
tors and the Nguyen singly periodic translators) [6, 7], the classification of low entropy translators
[3], and for the construction of families of nonrotationally invariant translating annuli (analogs
of catenoids). (See a forthcoming paper by Hoffman, Martín, and White.)
There is also a version of Theorem 1 for noncompact𝑀:

Theorem 4. Let −∞ ⩽ 𝑎 < 𝑏 ⩽ ∞. In Theorem 1, suppose the hypothesis that 𝑀 is compact is
replaced by the hypotheses that 𝐹 ∶ 𝑀 → (𝑎, 𝑏) is proper, that 𝑑1(𝑀) ∶= dim𝐻1(𝑀; 𝐙2) is finite,
and that the limit

𝛽 ∶= lim
𝑡→𝑎, 𝑡>𝑎

|(𝜕𝑀) ∩ 𝐹−1(𝑡)|
exists and is finite. Then

𝖭(𝐹|𝑀) + 𝑠𝜕(𝐹) = 1
2
𝛽 + |𝑄| − 𝜒(𝑀),

and therefore

𝖭(𝐹|𝑀) ⩽ 1
2
𝛽 + |𝑄| − 𝜒(𝑀) − |𝐴|.

Theorem 4 is a special case of Corollary 31, by virtue of Theorem 8, Remarks 9 and 10), and (for
the inequality involving |𝐴|) Proposition 25.
Another useful fact about 𝖭(𝐹|𝑀) is that it depends lower semicontinuously on 𝐹 and on 𝑀

(even without assuming properness); see Theorem 40.
The paper is organized as follows. We define a class of functions on surfaces that we call Radó

functions. Roughly speaking, they are continuous functions whose level sets are locally either iso-
lated points or (qualitatively) like the level sets of harmonic functions. (The isolated points occur
at strict local minima and at strict local maxima.) We show that if 𝑀 is a minimal surface in a
smooth Riemannian manifold 𝑁 and if 𝐹 ∶ 𝑁 → 𝐑 is a continuous function satisfying hypothe-
ses (1), (2), and (3) of Theorem 1, then 𝐹 is a Radó function on the interior of 𝑀. Under mild
hypotheses, it follows that 𝐹 is a Radó function on all of𝑀; see Theorem 46. We then prove the
various theorems bounding numbers of critical points for arbitrary Radó functions.

2 RADÓ FUNCTIONS

Definition 5. A continuous, real-valued function on a 2-manifold𝑀 is called a Radó function
provided each point 𝑝 ∈ 𝑀 has a neighborhood 𝑈 such that

(1) 𝑈 ∩ {𝐹 = 𝐹(𝑝)} consists of a finite collection 𝐶1, … , 𝐶𝑣 of embedded arcs;
(2) each 𝐶𝑖 joins the point 𝑝 to a point in 𝜕𝑈;
(3) 𝐶𝑖 ∩ 𝐶𝑗 = {𝑝} for 𝑖 ≠ 𝑗;
(4) each 𝐶𝑖 is in the closure of {𝐹 > 𝐹(𝑝)} and in the closure of {𝐹 < 𝐹(𝑝)};
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MORSE–RADÓ THEORY FOR MINIMAL SURFACES 5

F IGURE 1 From left to right: an interior critical point, a local maximum of 𝐹|𝜕𝑀, a local minimum of
𝐹|𝜕𝑀, and a point which is neither a local maximum nor a local minimum of 𝐹|𝜕𝑀. “+” indicates that 𝐹 > 𝐹(𝑝)
in that region and “−” indicates that 𝐹 < 𝐹(𝑝) in that region.

(5) if 𝑝 ∈ 𝜕𝑀, we also require that each 𝐶𝑖 ⧵ {𝑝} is contained in the interior of𝑀.

The number 𝑣 = 𝑣(𝐹, 𝑝) is called the valence of 𝑝.

We call these functions Radó functions because Radó observed [13, III.6] that some impor-
tant properties of harmonic functions on surfaces are shared by functions similar to those in
Definition 5 (provided there are no points of valence 0.)
Note that for a Radó function 𝐹 ∶ 𝑀 → 𝐑,

(1) the points of valence 0 are the local minima and local maxima of 𝐹;
(2) each local maximum (local minimum) of a Radó function is a strict local maximum (local

minimum);
(3) for each 𝑡, the set (𝜕𝑀) ∩ 𝐹−1(𝑡) is discrete. Indeed, if 𝑝 and 𝑈 are as in Definition 5 and if
𝑝 ∈ 𝜕𝑀, then (𝜕𝑀) ∩ 𝑈 ∩ {𝐹 = 𝐹(𝑝)} consists only of the point 𝑝.

The following lemma is an immediate consequence of Definition 5; see Figure 1.

Lemma 6. Suppose that 𝐹 ∶ 𝑀 → 𝐑 is a Radó function. If 𝑝 is an interior point, then 𝑣(𝐹, 𝑝) is
even. If 𝑝 is a boundary point, then 𝑣(𝐹, 𝑝) is even if and only if 𝐹|𝜕𝑀 has a local maximum or a
local minimum at 𝑝.

Definition 7. Suppose that 𝐹 ∶ 𝑀 → 𝐑 is a Radó function. A Radó critical point (or critical
point, for short) of 𝐹 is an interior point 𝑝 such that 𝑣(𝐹, 𝑝) ≠ 2 or a boundary point 𝑝 such
that 𝑣(𝐹, 𝑝) ≠ 1. If 𝑝 is an interior point of valence 𝑣(𝐹, 𝑝) ⩾ 4, we say that that 𝑝 is a saddle of
multiplicity 𝑤(𝐹, 𝑝), where

𝑤(𝐹, 𝑝) ∶=
1

2
𝑣(𝐹, 𝑝) − 1.

Interior points of valence 2 and boundary points of valence 1 are calledRadó noncritical points
or Radó regular points.

Twowarnings aboutDefinition 7 are in order. First, in case𝐹 is smooth, the notion of Radó criti-
cal point is not equivalent to the usual definition of critical point (i.e., a point where𝐷𝐹 vanishes).
For example, for the Radó function 𝐹(𝑥, 𝑦) = 𝑦3, every point is Radó noncritical, but the points
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6 HOFFMAN et al.

with 𝑦 = 0 are critical in the usual sense. Second, for a general Radó function, the set of Radó crit-
ical points need not be closed. Fortunately, under mild hypotheses, the set of Radó critical points
will be locally finite and therefore closed. See Theorem 46. (See also Theorem 33.)
For the rest of the paper, “critical point,” “noncritical point,” and “regular point” will always

mean “Radó critical point,” “Radó noncritical point,” and “Radó regular point”.
The following theorem shows how Radó functions arise naturally in minimal surface theory.

Theorem 8. Suppose𝑀 is an embedded minimal surface in a smooth Riemannian 3-manifold 𝑁.
Suppose 𝐹 ∶ 𝑁 → 𝐑 is a continuous function such that

(1) the level sets of 𝐹 are smooth minimal surfaces;
(2) each level set𝑀[𝑡] ∶= 𝐹−1(𝑡) is in the closure of {𝐹 > 𝑡} and of {𝐹 < 𝑡}.

Suppose also that 𝐹 is not constant on any connected component of𝑀. Then the restriction of 𝐹 to
the interior of𝑀 is a Radó function without any interior local maxima or interior local minima. The
interior saddles of multiplicity 𝑛 are the points where𝑀 makes contact of order 𝑛 with the level set
{𝐹 = 𝐹(𝑝)}.

(Condition (2) rules out examples such as 𝐹(𝑥1, 𝑥2, 𝑥3) = |𝑥1|.)
Theorem 8 follows from the well-known way in which two minimal surfaces in a 3-manifold

intersect each other. See, for example, [1, Theorem 7.3] and its proof.

Remark 9. Theorem 8 is also true for branched minimal surfaces, and for minimal surfaces in
manifolds of arbitrary dimension. (When dim𝑁 > 3, the hypothesis that the level sets of 𝐹 are
minimal is replaced by the hypothesis that the level sets are totally geodesic.) See Section 9.

Remark 10. Note that Theorem 8 only asserts that 𝐹 is Radó on the interior of𝑀. For applications,
we generally need to know that 𝐹 is Radó on all of 𝑀. Fortunately, under mild hypotheses, a
continuous function that is Radó on the interior of𝑀will indeed beRadó on all of𝑀. In particular,
the 𝐹|𝑀 in Theorem 8 is Radó on all of𝑀 provided 𝐹|𝑀 is proper, (𝜕𝑀) ∩ 𝐹−1(𝑡) is a finite set for
each 𝑡, and 𝑑1(𝑀) ∶= dim𝐻1(𝑀; 𝐙2) < ∞. See Theorem 46. Although Theorem 46 appears near
the end of the paper, its proof does not depend on the intervening sections.

By definition, the level sets of a Radó function consist of isolated points together with curves
joining them. For a general Radó function, those curves are merely continuous. But for the func-
tions𝐹|𝑀 in Theorem8, the level sets are nicer: the curves are smooth (because they are transverse
intersections of the smooth surface𝑀 and the smooth hypersurface 𝐹−1(𝑡)). Furthermore:

Theorem 11. Suppose that 𝐹 and𝑀 are as in Theorem 8. Then

(1) the set of interior noncritical points of 𝐹|𝑀 is an open set;
(2) at each interior noncritical point 𝑝, the level set𝑀 ∩ {𝐹 = 𝐹(𝑝)} has a tangent line Tan(𝐹|𝑀,𝑝),

and Tan(𝐹|𝑀,𝑝) depends continuously on 𝑝.
Furthermore, suppose 𝐹𝑛 and 𝑀𝑛 are a sequence of such examples with 𝐹𝑛 converging uniformly
to 𝐹 and𝑀𝑛 converging smoothly to𝑀. If 𝑝 is a noncritical point of 𝐹|𝑀 and if 𝑝𝑛 ∈ 𝑀𝑛 converges
to 𝑝, then 𝑝𝑛 is noncritical for 𝐹|𝑀𝑛 for all sufficiently large 𝑛, and Tan(𝐹𝑛|𝑀,𝑝𝑛) converges to
Tan(𝐹|𝑀,𝑝).
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MORSE–RADÓ THEORY FOR MINIMAL SURFACES 7

We omit the proof, as it follows easily from standard facts about transversality. For example, the
last sentence of the statement of Theorem 11 can be reworded as follows: If𝑀 intersects {𝐹 = 𝐹(𝑝)}
transversely at 𝑝, then𝑀𝑛 intersects {𝐹𝑛 = 𝐹𝑛(𝑝𝑛)} transversely at 𝑝𝑛 for all sufficiently large 𝑛,
and the tangent line to

𝑀𝑛 ∩ {𝐹𝑛 = 𝐹𝑛(𝑝𝑛)}

at 𝑝𝑛 converges to the tangent line to

𝑀 ∩ {𝐹 = 𝐹(𝑝)}

at 𝑝.
Theorem 11 is also true for branched minimal surfaces. See Corollary 51.
Radó functions with properties (1) and (2) in Theorem 11 are called tame. (See Definition 32.)

Tameness implies a number of other nice properties. See Section 7. In particular, we prove an
important lower semicontinuity property (Corollary 40). In the context of Theorem 11, it says that
the number of interior critical points (i.e., saddles) of 𝐹|𝑀 (counting multiplicity) is less than or
equal to the liminf of the number of interior critical points of 𝐹𝑛|𝑀𝑛 (counting multiplicity).
Remark 12. In Theorem 11, Tan(𝐹|𝑀,𝑝) is not merely continuous, it is actually locally Lipschitz.
(Sketch of proof: let 𝑇(𝑝) be tangent plane to {𝐹 = 𝐹(𝑝)} at 𝑝. It is not hard to show using the Har-
nack inequality that 𝑇(⋅) is locally Lipschitz. It follows easily that Tan(𝐹|𝑀, ⋅) is locally Lipschitz.)
The local Lipschitz property does not play a role in this paper.

Remark 13. Suppose in Theorem 11 that 𝐹 is smooth with nowhere vanishing gradient. Then the
function𝐹|𝑀 is particularly nice. First, it is smooth. Second, the interior Radó critical points coin-
cide with the usual critical points (i.e., the points where𝐷(𝐹|𝑀) vanishes). Third, themultiplicity
of an interior saddle point 𝑝 is equal to the order of vanishing of 𝐹|𝑀 − (𝐹|𝑀)(𝑝). These facts are
easy to prove, but play no role in this paper.

3 SURFACESWITHOUT BOUNDARY

Lemma 14. Let 𝑋 be a finite network. Then

𝜒(𝑋) =
∑
𝑝∈𝑉

1

2
(2 − 𝑣(𝑝)),

where 𝑉 is the set of vertices and 𝑣(𝑝) is the valence of 𝑝. Equivalently,

𝜒(𝑋) =
∑
𝑛

1

2
(2 − 𝑛) |𝑉𝑛|, (1)

where 𝑉𝑛 is the set of vertices of valence 𝑛.

Here (and throughout the paper), if 𝑆 is a set, then |𝑆| denotes the number of elements of 𝑆.
Proof. A component without vertices is a loop, and both assertions are trivially true for such
components. Thus, we can assume that every component contains one or more vertices. Let 𝑉 be
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8 HOFFMAN et al.

the set of vertices and 𝐸 be the set of edges. Note that∑
𝑝∈𝑉

𝑣(𝑝) = 2|𝐸|,
Thus,

𝜒 = |𝑉| − |𝐸| = ∑
𝑝∈𝑉

1 −
1

2

∑
𝑝∈𝑉

𝑣(𝑝) =
∑
𝑝∈𝑉

1

2
(2 − 𝑣(𝑝)).

□

Lemma 15. Let𝑀 be a 2-manifold without boundary and of finite topology, and let 𝑋 be a finite
network in𝑀 Then𝑀 ⧵ 𝑋 has finite topology, and

𝜒(𝑀) = 𝜒(𝑀 ⧵ 𝑋) + 𝜒(𝑋).

Proof. First remove all the vertices of 𝑋 from 𝑀 to get an open 2-manifold 𝑀′ with 𝜒(𝑀′) =
𝜒(𝑀) − |𝑉|, where |𝑉| is the set of vertices of 𝑋. Note that removing a properly embed-
ded open arc from a 2-manifold of finite topology increases the Euler characteristic by 1.
Thus, removing the components of 𝑋 ⧵ 𝑉 one at a time from 𝑀′ produces a 2-manifold 𝑀′′
with

𝜒(𝑀′′) = 𝜒(𝑀′) + |𝐸| = 𝜒(𝑀) − |𝑉| + |𝐸| = 𝜒(𝑀) − 𝜒(𝑋). □

Definition 16. If 𝐹 ∶ 𝑀 → 𝐑 and 𝑠 ∈ 𝐑, we let

𝑀[𝑠] = 𝑀 ∩ 𝐹−1(𝑠).

If 𝐼 ⊂ 𝐑 is an interval, we let𝑀𝐼 ∶= 𝑀 ∩ 𝐹−1(𝐼). Thus, for example,

𝑀[𝑠, 𝑡] = 𝑀 ∩ {𝑠 ⩽ 𝐹 ⩽ 𝑡},

𝑀(𝑠, 𝑡) = 𝑀 ∩ {𝑠<𝐹<𝑡}.

Lemma 17. Suppose that 𝐹 ∶ 𝑀 → 𝐑 is a Radó function and that

(1) there are no critical points in𝑀(𝑎, 𝑏), and
(2) 𝑀[𝑎′, 𝑏′] is compact for 𝑎 < 𝑎′ < 𝑏′ < 𝑏.

If 𝐼 is an interval in (𝑎, 𝑏) and if 𝑡 ∈ 𝐼, then𝑀 ∩ 𝐹−1(𝐼) is homeomorphic to𝑀(𝑡) × 𝐼.

Proof. If 𝑀 has no boundary, this is Corollary A4 in the Appendix. The general case follows by
doubling𝑀. □

Lemma 18. Suppose that𝑀 is a compact 2-manifold without boundary, that 𝐹 ∶ 𝑀 → 𝐑 is a Radó
function, and that the set 𝑄 of local maxima and local minima of 𝐹 is finite. Let  ⊂ 𝐑 be a finite
set that includes 𝐹(𝑄). Let 𝑋 = ∪𝑡∈𝑀[𝑡]. Then
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MORSE–RADÓ THEORY FOR MINIMAL SURFACES 9

𝜒(𝑀) ⩽ 𝜒(𝑋) =
∑
𝑝∈𝑋

1

2
(2 − 𝑣(𝐹, 𝑝))

= |𝑄| + ∑
𝑝∈𝑋, 𝑣(𝐹,𝑝)>2

1

2
(2 − 𝑣(𝐹, 𝑝)),

(2)

with equality if and only if each component of𝑀 ⧵ 𝑋 is an annulus. In particular, if 𝑋 contains all
the critical points of 𝐹, then

𝜒(𝑀) =
∑
𝑝∈𝑀

1

2
(2 − 𝑣(𝐹, 𝑝)). (3)

Furthermore, if𝑀(𝑎, 𝑏) contains no critical points, then𝑀(𝑎, 𝑏) is homeomorphic to𝑀[𝑡] × (𝑎, 𝑏)
for each 𝑡 ∈ (𝑎, 𝑏).

Proof. By Lemma 15,

𝜒(𝑀) = 𝜒(𝑋) + 𝜒(𝑀 ⧵ 𝑋). (4)

Let𝑊 be a component of𝑀 ⧵ 𝑋. Then𝑊 is a component of𝑀(𝑎, 𝑏) for two successive elements
𝑎, 𝑏 in  .
By Lemma 15,𝑊 is an open manifold of finite topology. Thus, it is homeomorphic to a closed

surface with finitely many points removed. As𝑊 has no local maxima,

sup
𝑊
𝐹 = 𝑏.

As𝑊 has no local minima,

inf
𝑊
𝐹 = 𝑎.

Thus,𝑊 is homeomorphic to closed surface with at least two points removed. It follows that

𝜒(𝑊) ⩽ 0,

with equality if and only if𝑊 is an annulus. Hence, (by (4)) the inequality (2) holds, with equality
if and only if each𝑊 is an annulus.
The last assertion is a special case of Lemma 17. □

Theorem 19. Suppose that𝑀 is a compact 2-manifold without boundary and that 𝐹 ∶ 𝑀 → 𝐑 is
a Radó function with a finite set 𝑄 of local maxima and local minima. Then there are only finitely
many points 𝑝 with 𝑣(𝐹, 𝑝) ≠ 2, and

𝜒(𝑀) =
∑
𝑝∈𝑀

1

2
(2 − 𝑣(𝐹, 𝑝)). (5)
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10 HOFFMAN et al.

Equivalently,

𝜒(𝑀) =
∑
𝑘

(1 − 𝑘) |𝑉2𝑘|,
where 𝑉𝑛 is the set of points 𝑝 such that 𝑣(𝐹, 𝑝) = 𝑛.

Proof. Note that 𝑄 is the set of points of valence 0. Let  ⊂ 𝐑 be a finite set that includes 𝐹(𝑄).
Let 𝑋 = ∪𝑡∈𝑀[𝑡]. By Lemma 18,

𝜒(𝑀) ⩽ |𝑄| + ∑
𝑝∈𝑋, 𝑣(𝐹,𝑝)>2

1

2
(2 − 𝑣(𝐹, 𝑝))

⩽ |𝑄| − |{𝑝 ∈ 𝑋 ∶ 𝑣(𝐹, 𝑝) > 2}|
= 2|𝑄| − |{𝑝 ∈ 𝑋 ∶ 𝑣(𝐹, 𝑝) ≠ 2}|
= 2|𝑄| − |𝐶|,

where 𝐶 is the set of critical points of 𝐹 in 𝑋. Thus, 𝑋 has at most

2|𝑄| − 𝜒(𝑀)
critical points. As this bound holds for every such  , we see that 𝑀 has at most 2|𝑄| − 𝜒(𝑀)
critical points. Equation (5) now follows from (3) in Lemma 18 by letting

 = {𝐹(𝑝) ∶ 𝑣(𝐹, 𝑝) ≠ 2}. □

Corollary 20. The number of saddle points, counting multiplicity, is equal to the number of local
maxima and local minima minus the Euler characteristic:∑

𝑤(𝐹,𝑝)>0

𝑤(𝐹, 𝑝) = |𝑄| − 𝜒(𝑀).
Proof. Each point of valence 0 (i.e., each point of 𝑄) contributes 1 to the sum in (5), each point of
valence 2 contributes 0, and there are no points of odd valence. Thus, (5) becomes

𝜒(𝑀) = |𝑄| + ∑
𝑣(𝐹,𝑝)⩾4

1

2
(2 − 𝑣(𝐹, 𝑝))

= |𝑄| − ∑
𝑤(𝐹,𝑝)>0

𝑤(𝐹, 𝑝).
□

A version of Corollary 20 in the case of the 2-sphere occurs in an 1870 paper [9] by the physicist
Maxwell. In particular, Maxwell does allow saddles with multiplicity.
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MORSE–RADÓ THEORY FOR MINIMAL SURFACES 11

4 SURFACESWITH BOUNDARY

Theorem 21. Suppose that𝑀 is a compact 2-manifold with boundary, that 𝐹 ∶ 𝑀 → 𝐑 is a Radó
function, and that there are only finitely many points of valence 0. Then

𝜒(𝑀) =
∑

𝑝∈𝑀⧵𝜕𝑀

1

2
(2 − 𝑣(𝐹, 𝑝)) +

∑
𝑝∈𝜕𝑀

1

2
(1 − 𝑣(𝐹, 𝑝)).

Equivalently,

𝜒(𝑀) =

∞∑
𝑘=0

(
(1 − 𝑘)|𝑉int

2𝑘
| + 1
2
(1 − 𝑘)|𝑉𝜕

𝑘
|),

where 𝑉int𝑛 is the set of interior points 𝑝 ∈ 𝑀 ⧵ 𝜕𝑀 with 𝑣(𝐹, 𝑝) = 𝑛, and 𝑉𝜕𝑛 is the set of boundary
points 𝑝 ∈ 𝜕𝑀 with 𝑣(𝐹, 𝑝) = 𝑛.

Proof. Let �̃� be the closed manifold obtained by doubling 𝑀. That is, we take two copies of 𝑀
and attach them along their boundary. Let �̃� be the obvious extension of 𝐹 to �̃�. As 𝐹 ∶ 𝑀 → 𝐑
is Radó, it follows easily that �̃� ∶ �̃� → 𝐑 is also Radó. Let �̃�𝑛 be the set of points 𝑝 ∈ �̃� with
𝑣(�̃�, 𝑝) = 𝑛. Then

|�̃�2𝑘| = 2|𝑉int2𝑘 | + |𝑉𝜕
𝑘
|.

Applying Theorem 19 to �̃� gives

𝜒(𝑀) =
1

2
𝜒(�̃�)

=
1

2

∑
𝑘

(1 − 𝑘) |�̃�2𝑘|
=
1

2

∑
𝑘

(1 − 𝑘)(2|𝑉int
2𝑘
| + |𝑉𝜕

𝑘
|)

=
∑
𝑘

(
(1 − 𝑘)|𝑉int

2𝑘
| + 1
2
(1 − 𝑘)|𝑉𝜕

𝑘
|).

□

The statement of Theorem 21 is fairly simple. However, the theorem can be rewritten in a way
that makes it easier to use.

Theorem22. Suppose that𝐹 ∶ 𝑀 → 𝐑 is a Radó function on a compact 2-manifoldwith boundary.
Let 𝑄 be

(i) the set of interior local maxima and interior local minima of 𝐹, together with
(ii) the set of localminima of 𝐹|𝜕𝑀.
Suppose that 𝑄 is a finite set. Then∑

𝑛⩾2

(𝑛 − 1) |𝑉int2𝑛 | +∑
𝑛⩾1

𝑛
(|𝑉𝜕2𝑛| + |𝑉𝜕2𝑛+1|) = |𝑄| − 𝜒(𝑀). (6)
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12 HOFFMAN et al.

This way of rewriting Theorem 21 is very useful for the following reason. Think of𝑀 and 𝐹|𝜕𝑀
as given, and the function 𝐹 as unknown. In many situations (such as for minimal surfaces in
Theorem 8), we know that there are no interior local maxima or minima. In that case, 𝑄 is the set
of local minima of 𝐹|𝜕𝑀, which we regard as known. Thus, the right-hand side is known, and the
terms on the left are all positive.
Recall that interior points of valence 𝑣 > 2 are called interior saddle points of multiplicity

𝑤(𝐹, 𝑝) ∶= (𝑣∕2) − 1.

Definition 23. A boundary saddle point of a Radó function 𝐹 is a boundary point of valence
> 1. Themultiplicity of a boundary saddle point is

𝑤(𝐹, 𝑝) ∶=

{
𝑣∕2 if 𝑣 is even,
(𝑣 − 1)∕2 if 𝑣 is odd.

Using this definition, Theorem 22 can be restated as follows:

Theorem 24. Under the hypotheses of Theorem 22,∑
𝑤>0

𝑤(𝐹, 𝑝) = |𝑄| − 𝜒(𝑀). (7)

Note that the left-hand side is the total number of saddles, interior and boundary, countingmul-
tiplicity.

Proof of Theorem 22. Write

𝑄 = 𝑄int + 𝑄𝜕,

where 𝑄int ∶= 𝑄 ⧵ 𝜕𝑀 is the set of interior local maxima and interior local minima of 𝐹, and
where 𝑄𝜕 ∶= 𝑄 ∩ 𝜕𝑀 is the set of local minima of 𝐹|𝜕𝑀.
Note that the points of valence 0 are the points of 𝑄 together with the local maxima of 𝐹|𝜕𝑀.

As the number of local maxima of 𝐹|𝜕𝑀 is equal to the number |𝑄𝜕| of local minima of 𝐹|𝜕𝑀, we
see that there are only finitely many points of valence 0.
Recall from Theorem 21 that

𝜒(𝑀) =
∑
𝑘

(1 − 𝑘)|𝑉int
2𝑘
| + 1
2

∑
𝑘

(1 − 𝑘)|𝑉𝜕
𝑘
|. (8)

Now ∑
𝑘

(1 − 𝑘)|𝑉int
2𝑘
| = |𝑄int| + 0 −∑

𝑘⩾2

(𝑘 − 1) |𝑉int
2𝑘
|. (9)

Also ∑
𝑘

(1 − 𝑘)|𝑉𝜕
𝑘
| =∑

𝑛

((1 − 2𝑛)|𝑉2𝑛| + (−2𝑛)|𝑉2𝑛+1|)
=
∑
𝑛

|𝑉𝜕2𝑛| −∑
𝑛

(2𝑛)(|𝑉2𝑛| + |𝑉2𝑛+1|). (10)
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MORSE–RADÓ THEORY FOR MINIMAL SURFACES 13

By Lemma 6, ∑
𝑛

|𝑉𝜕2𝑛|
is the number of local minima and local maxima of 𝐹|𝜕𝑀. The number of local maxima of 𝐹|𝜕𝑀
is equal to the number of local minima of 𝐹|𝜕𝑀 (namely |𝑄𝜕|), so∑

𝑛

|𝑉𝜕2𝑛| = 2|𝑄𝜕|.
Thus, we can rewrite (10) as

1

2

∑
𝑘

(1 − 𝑘)|𝑉𝜕
𝑘
| = |𝑄𝜕| −∑

𝑛

𝑛 (|𝑉2𝑛| + |𝑉2𝑛+1|). (11)

Combining (8), (9), and (11) gives (6). □

5 A REMARK ABOUT INEQUALITIES

Various theorems in this paper, such as Theorem 24, give formulae for the total number of sad-
dles, interior and boundary, in some region, countingmultiplicity. Formany applications, simpler
inequalities suffice.
The following proposition describes how the exact formulae imply the simpler inequalities.

Proposition 25. Suppose that 𝐹 ∶ 𝑀 → 𝐑 is a Radó function and that𝐾 is a region in𝑀. Suppose
also that ∑

𝐾∩{𝑤>0}

𝑤(𝐹, 𝑝) = .

Then ∑
(𝐾⧵𝜕𝑀)∩{𝑤>0}

𝑤(𝐹, 𝑝) ⩽ − |𝐴|, (12)

where𝐴 is the set of points 𝑝 in 𝐾 ∩ 𝜕𝑀 such that 𝑝 is a local minimum or local maximum of 𝐹|𝜕𝑀
but is not a local minimum or local maximum of 𝐹.
Furthermore, equality holds if and only if 𝐾 ∩ 𝜕𝑀 contains no point 𝑝 with valence 𝑣(𝐹, 𝑝) > 2.

In particular, if 𝐹 is 𝐶2, if 𝐹|𝑀 is a Morse function, and if 𝐷𝐹 does not vanish at any point of 𝜕𝑀,
then equality holds in (12).

Proof. Note that ∑
𝐾∩{𝑤>0}

𝑤(𝐹, 𝑝) =
∑

(𝐾⧵𝜕𝑀)∩{𝑤>0}

𝑤(𝐹, 𝑝) +
∑

(𝐾∩𝜕𝑀)∩{𝑤>0}

𝑤(𝐹, 𝑝),
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14 HOFFMAN et al.

and that ∑
(𝐾∩𝜕𝑀)∩{𝑤>0}

𝑤(𝐹, 𝑝) =
∑

(𝐾∩𝜕𝑀)∩{𝑣⩾2}

𝑤(𝐹, 𝑝)

⩾
∑

(𝐾∩𝜕𝑀)∩{𝑣⩾2, 𝑣 even}
𝑤(𝐹, 𝑝)

=
∑

(𝐾∩𝜕𝑀)∩{𝑣⩾2, 𝑣 even}

1

2
𝑣(𝐹, 𝑝)

⩾
∑

(𝐾∩𝜕𝑀)∩{𝑣⩾2, 𝑣 even}
1

= |𝐴|
with equality if and only 𝐾 ∩ 𝜕𝑀 has no points of valence > 2.
This proves the proposition, except for the assertion about the case when 𝐹 is 𝐶2. Note that if

𝐹 is 𝐶2 and if 𝐹|𝜕𝑀 is a Morse function, then at each point of 𝜕𝑀 that is not a critical point of
𝐹|𝜕𝑀, the valence is 1, and at each critical point of 𝐹|𝜕𝑀, the valence is either 0 or 2. □

Thus, for example, from Theorem 24, we get the following inequality:

Theorem26. Suppose that𝐹 ∶ 𝑀 → 𝐑 is a Radó function on a compact 2-manifoldwith boundary.
Let 𝑄 be the set of interior local maxima and interior local minima of 𝐹, together with the local
minima of 𝐹|𝜕𝑀. Suppose that 𝑄 is a finite set. Then∑

(𝑀⧵𝜕𝑀)∩{𝑤>0}

𝑤(𝐹, 𝑝) ⩽ |𝑄| − 𝜒(𝑀) − |𝐴|, (13)

where 𝐴 is the set of local maxima and local minima of 𝐹|𝜕𝑀 that are not local maxima or local
minima of 𝐹. Equality holds if and only if there are no boundary points 𝑝 of valence 𝑣(𝐹, 𝑝) > 2.
In particular, if 𝐹 is 𝐶2, if 𝐹|𝜕𝑀 is a Morse function, and if 𝐷𝐹 does not vanish at any point of

𝐹|𝜕𝑀, then equality holds.
6 PORTIONS OF SURFACESWITH BOUNDARY

Theorem 27. Suppose that 𝐹 ∶ 𝑀 → 𝐑 is a Radó function, that 𝑎 < 𝑏 are regular values of 𝐹, and
that𝑀[𝑎, 𝑏] is compact. Then

∑
𝑀(𝑎,𝑏)∩{𝑤>0}

𝑤(𝐹, 𝑝) = |𝑄(𝑎, 𝑏)| + 1
2
𝛽(𝑎) − 𝜒(𝑀(𝑎, 𝑏)), (14)

provided |𝑄(𝑎, 𝑏)| is finite, where
(1) 𝑄 is the set consisting of the interior local maxima and the interior local minima of 𝐹, together

with the local minima of 𝐹|𝜕𝑀,
(2) 𝑄(𝑎, 𝑏) = 𝑄 ∩𝑀(𝑎, 𝑏), and
(3) 𝛽(𝑎) is the number of points in (𝜕𝑀) ∩ {𝐹 = 𝑎}.
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MORSE–RADÓ THEORY FOR MINIMAL SURFACES 15

Proof. Let �̃� be obtained from𝑀[𝑎, 𝑏] by identifying each connected component of𝑀[𝑎] to a a
point and each connected component of𝑀[𝑏] to a point. Let �̃� be the function on �̃� corresponding
to 𝐹 on𝑀[𝑎, 𝑏].
Thus, each closed curve component of 𝑀[𝑎] becomes an interior point of �̃�, and each non-

closed curve component of𝑀[𝑎] becomes a single boundary point of �̃�. In both cases, the point
is a global minimum of �̃�.
Likewise, each closed curve component of𝑀[𝑏] becomes an interior point of �̃�, and each non-

closed curve component of𝑀[𝑏] becomes a single boundary point of �̃�. In both cases, the point
is a global maximum of �̃�.
Let �̃� be the set of all interior local maxima and interior local minima of �̃�, together will all

local minimal of �̃�|𝜕�̃�.
Let 𝑛 be the number of nonclosed-curve components of𝑀[𝑎], and let 𝑐 be the number of closed

curved components of𝑀[𝑎] ∪ 𝑀[𝑏].
Note that

𝜒(�̃�) = 𝜒(𝑀(𝑎, 𝑏)) + 𝑐,

|�̃�| = |𝑄(𝑎, 𝑏)| + 𝑛 + 𝑐, and
𝑛 =

1

2
𝛽(𝑎).

Thus,

|�̃�| − 𝜒(�̃�) = |𝑄(𝑎, 𝑏)| − 𝜒(𝑀(𝑎, 𝑏)) + 1
2
𝛽(𝑎).

Consequently, by Theorem 24,∑
�̃�∩{𝑤>0}

𝑤(�̃�, 𝑝) = |�̃�| − 𝜒(�̃�)
= |𝑄(𝑎, 𝑏)| + 1

2
𝛽(𝑎) − 𝜒(𝑀(𝑎, 𝑏)).

(15)

The points in �̃� with �̃� = 𝑎 or �̃� = 𝑏 all have valence 0, so∑
�̃�∩{𝑤>0}

𝑤(�̃�, 𝑝) =
∑

𝑀(𝑎,𝑏)∩{𝑤>0}

𝑤(𝐹, 𝑝). (16)

Combining (15) and (16) gives (14). □

We now relax the requirement in Theorem 27 that 𝑎 and 𝑏 are finite, noncritical values of 𝐹.
We begin with a lemma.

Lemma 28. Suppose that 𝑀 is a surface and that 𝐹 ∶ 𝑀 → 𝐑 is a continuous function. Suppose
also that 𝐹 has no interior local minima with 𝐹 < 𝑎, and no interior local maxima with 𝐹 > 𝑏. Then
the inclusion of𝑀[𝑎, 𝑏] into𝑀 induces a monomorphism on𝐻1(−; 𝐙2).
Likewise, if 𝐹 has no interior local minima with 𝐹 ⩽ 𝑎, and no interior local maxima with 𝐹 ⩾ 𝑏,

then inclusion of𝑀(𝑎, 𝑏) into𝑀 induces a monomorphism on𝐻1(−; 𝐙2).
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16 HOFFMAN et al.

Proof. We prove the first statement. Let 𝐶 be a 1-cycle in𝑀[𝑎, 𝑏] that is homologically trivial in
𝐻1(𝑀; 𝐙2). Then 𝐶 bounds a region 𝐾 in𝑀. Let 𝑝 be a point where 𝐹|𝐾 attains its maximum. If
𝑝 ∈ 𝐶, then 𝐹(𝑝) ⩽ 𝑏 because 𝐶 ⊂ 𝑀[𝑎, 𝑏]. If 𝑝 ∈ 𝐾 ⧵ 𝐶, then 𝑝 is an interior local maximum of
𝐹 and hence 𝐹(𝑝) ⩽ 𝑏. Either way, max𝐾 𝐹 ⩽ 𝑏. Likewise, min𝐾 𝐹 ⩾ 𝑎. Hence, 𝐾 lies in𝑀[𝑎, 𝑏],
so 𝐶 is homologically trivial in𝐻1(𝑀[𝑎, 𝑏]; 𝐙2). □

For the next two theorems, we make the following hypotheses.

(h1) 𝐹 ∶ 𝑀 → 𝐑 is a Radó function and −∞ ⩽ 𝑎 < 𝑏 ⩽ ∞.
(h2) 𝑑1(𝑀) ∶= dim𝐻1(𝑀; 𝐙2) is finite.
(h3) The set 𝑄 is finite, where 𝑄 consists of the interior local minima and maxima of 𝐹 together

with the local minima of 𝐹|𝜕𝑀.
Theorem 29. Under the hypotheses (h1)–(h3), if𝑀[𝑎, 𝑡] is compact for all 𝑎 ⩽ 𝑡 < 𝑏 and if 𝑎 is a
regular value of 𝐹, then

∑
𝑀(𝑎,𝑏)∩{𝑤>0}

𝑤(𝐹, 𝑝) = |𝑄(𝑎, 𝑏)| + 1
2
𝛽(𝑎) − 𝜒(𝑀(𝑎, 𝑏)),

where 𝛽(𝑡) is the number of points in (𝜕𝑀) ∩ {𝐹 = 𝑡}.

Proof. Let 𝑍 be the set of interior local maxima and minima of 𝐹 and let 𝑍∗(𝑎, 𝑏) = 𝑍 ∩ {𝐹 ∉
(𝑎, 𝑏)}. Note that 𝑍 ⊂ 𝑄 and that

𝑀(𝑠, 𝑡) ⊂ 𝑀 ⧵ 𝑍∗(𝑠, 𝑡)

induces a monomorphism of first homology (see Lemma 28), so

𝑑1(𝑀(𝑠, 𝑡)) ⩽ 𝑑1(𝑀 ⧵ 𝑍
∗(𝑠, 𝑡))

= 𝑑1(𝑀) + |𝑍∗(𝑠, 𝑡)|,
⩽ 𝑑1(𝑀) + |𝑄|.

Therefore,

−𝜒(𝑀(𝑠, 𝑡)) ⩽ 𝑑1(𝑀(𝑠, 𝑡)) ⩽ 𝑑1(𝑀) + |𝑄|.
If 𝑡 ∈ (𝑎, 𝑏) is a regular value of 𝐹, then by Theorem 27,∑

𝑝∈𝑀(𝑎,𝑡), 𝑤>0

𝑤(𝐹, 𝑝) = |𝑄(𝑎, 𝑡)| + 1
2
𝛽(𝑎) − 𝜒(𝑀(𝑎, 𝑡))

⩽
1

2
𝛽(𝑎) + 𝑑1(𝑀) + |𝑄|.

Note that this final expression is indepent of 𝑡. By elementary topology (see Corollary A6), there
are atmost countablymany critical points andhence atmost countablymany critical values. Thus,
(letting 𝑡 → 𝑏 among regular values 𝑡),

∑
𝑝∈𝑀(𝑎,𝑏), 𝑤>0

𝑤(𝐹, 𝑝) ⩽
1

2
𝛽(𝑎) + 𝑑1(𝑀) + |𝑄| < ∞.
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MORSE–RADÓ THEORY FOR MINIMAL SURFACES 17

Hence, the set 𝑆 ∶= {𝑝 ∈ 𝑀(𝑎, 𝑏) ∶ 𝑤(𝐹, 𝑝) > 0} is finite. The set 𝑄(𝑎, 𝑏) is also finite, so we can
choose a regular value 𝑏′ of 𝐹 in (𝑎, 𝑏) such that

𝑆 ∪ 𝑄(𝑎, 𝑏) ⊂ 𝑀(𝑎, 𝑏′).

Now 𝑆 ∪ 𝑄(𝑎, 𝑏) contains all the critical points of 𝐹|𝑀(𝑎, 𝑏). Thus, there are no critical points in
𝑀[𝑏′, 𝑏). Consequently,𝑀(𝑎, 𝑏) is homotopy equivalent to𝑀(𝑎, 𝑏′) (see Lemma 17), so

𝜒(𝑀(𝑎, 𝑏′)) = 𝜒(𝑀(𝑎, 𝑏)).

By Theorem 27, ∑
𝑝∈𝑀(𝑎,𝑏), 𝑤>0

𝑤(𝐹, 𝑝) =
∑

𝑝∈𝑀(𝑎,𝑏′), 𝑤>0

𝑤(𝐹, 𝑝)

= |𝑄(𝑎, 𝑏′)| + 1
2
𝛽(𝑎) − 𝜒(𝑀(𝑎, 𝑏′))

= |𝑄(𝑎, 𝑏)| + 1
2
𝛽(𝑎) − 𝜒(𝑀(𝑎, 𝑏)). □

Theorem 30. Under the hypotheses (h1)–(h3), if𝑀[𝑠, 𝑡] is compact for all 𝑎 < 𝑠 < 𝑡 < 𝑏, and if the
limit

𝛽(𝑎+) = lim
𝑡→𝑎, 𝑡>𝑎

𝛽(𝑡)

exists and is finite, then ∑
𝑀(𝑎,𝑏)∩{𝑤>0}

𝑤(𝐹, 𝑝) = |𝑄(𝑎, 𝑏)| + 1
2
𝛽(𝑎+) − 𝜒(𝑀(𝑎, 𝑏)).

Proof of Theorem 30. As 𝛽(𝑡) is integer-valued, there is an 𝑎′ ∈ (𝑎, 𝑏) such that

𝛽(𝑡) = 𝛽(𝑎+) for 𝑎 < 𝑡 ⩽ 𝑎′.

Now let 𝑠 ∈ (𝑎, 𝑎′] be a regular value of 𝐹. Then (by Theorem 29)

∑
𝑀(𝑠,𝑏)∩{𝑤>0}

𝑤(𝐹, 𝑝) = |𝑄(𝑠, 𝑏)| + 1
2
𝛽(𝑡) − 𝜒(𝑀)

⩽ |𝑄(𝑎, 𝑏)| + 1
2
𝛽(𝑎+) − 𝑑1(𝑀).

As this last expression is finite and independent of 𝑠, letting 𝑠 → 𝑎 (among regular values 𝑠) gives∑
𝑝∈𝑀(𝑎,𝑏), 𝑤>0

𝑤(𝐹, 𝑝) < ∞.

Thus, the set 𝑆 of points in𝑀(𝑎, 𝑏)where𝑤 > 0 is finite. The set𝑄(𝑎, 𝑏) is also finite. By replacing
𝑎′ by smaller noncritical value in (𝑎, 𝑏), we can assume that

𝑆 ∪ 𝑄(𝑎, 𝑏) ⊂ 𝑀(𝑎′, 𝑏).
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18 HOFFMAN et al.

Now 𝑆 ∪ 𝑄(𝑎, 𝑏) contains all the critical points of 𝐹 in𝑀(𝑎, 𝑏). Thus, there are no critical points
in𝑀(𝑎, 𝑎′], so𝑀(𝑎, 𝑏) is homotopy equivalent to𝑀(𝑎′, 𝑏) (by Lemma 17). Consequently,

𝜒(𝑀(𝑎, 𝑏)) = 𝜒(𝑀(𝑎′, 𝑏)).

Thus, ∑
𝑝∈𝑀(𝑎,𝑏), 𝑤>0

𝑤(𝐹, 𝑝) =
∑

𝑝∈𝑀(𝑎′,𝑏), 𝑤>0

𝑤(𝐹, 𝑝)

= |𝑄(𝑎′, 𝑏)| + 1
2
𝛽(𝑎′) − 𝜒(𝑀(𝑎′, 𝑏))

= |𝑄(𝑎, 𝑏)| + 1
2
𝛽(𝑎+) − 𝜒(𝑀(𝑎, 𝑏)). □

Corollary 31. In Theorem 30, if 𝐹 ∶ 𝑀 → (𝑎, 𝑏) is proper, then∑
𝑀∩{𝑤>0}

𝑤(𝐹, 𝑝) = |𝑄| + 1
2
𝛽(𝑎+) − 𝜒(𝑀).

7 TAME RADÓ FUNCTIONS

Definition 32. Suppose that 𝐹 ∶ 𝑀 → 𝐑 is a Radó function. If 𝑝 is an interior regular point of 𝐹,
we let Tan(𝐹, 𝑝) be the tangent line to {𝐹 = 𝐹(𝑝)} at 𝑝, if the tangent line exists. We say that 𝐹 is
tame provided:

(1) the set of interior regular points (i.e., the set of interior points of valence 2) is open,
(2) Tan(𝐹, 𝑝) exists at each interior regular point, and Tan(𝐹, ⋅) is a continuous function on the

set of interior regular points.

By Theorem 11, the Radó functions that arise in minimal surface theory are tame.

Theorem 33. Suppose that 𝐹 ∶ 𝑀 → 𝐑 is a tame Radó function such that the set 𝑄int of interior
local minima and interior local maxima is closed and discrete. Then the set of interior critical points
is closed and discrete. In other words, each interior point 𝑝 has a neighborhood𝑈 such that𝑈 ⧵ {𝑝}
contains no critical points.

Proof. Let 𝑝 be an interior critical point. Thus, 𝑣(𝐹, 𝑝) is an even number ≠ 2.

Case 1. 𝑣(𝐹, 𝑝) = 0. Then 𝑝 is a local maximum or local minimum. We may assume that it is a
local minimum. Let𝐾 be a compact set such that 𝑝 is the interior of𝐾, such thatmin𝜕𝐾 𝐹 > 𝐹(𝑝),
and such that 𝐾 ⧵ {𝑝} contains no local minima or local maxima of 𝐹. Choose 𝑡 with

𝐹(𝑝) < 𝑡 < min
𝜕𝐾
𝐹.

Let 𝐷 ∶= 𝐾 ∩ {𝐹 ⩽ 𝑡}. Then 𝐷 is a disk, so if we identify 𝜕𝐷 to a point, we get a topological sphere
Σ on which 𝐹 is a well-defined Radó function. Note that 𝐹|Σ has exactly one local maximum and
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MORSE–RADÓ THEORY FOR MINIMAL SURFACES 19

F IGURE 2 As Case 2 is local, we can assume that𝑀 is a disk, that𝑀 has no interior local maxima or local
minima, and that {𝐹 = 0}) ⧵ {𝑝} consists of 2𝑘 disjoint, embedded 𝐶1 curves, each joining 𝑝 to a point in 𝜕𝑀.

one local minimum. Thus, by Corollary 20, 𝐹|Σ has no saddle points. Therefore, 𝐹 has no critical
points on 𝐷 ⧵ {𝑝}. This completes the proof in Case 1.

Case 2. 𝑣(𝐹, 𝑝) = 2𝑘 > 0.
We may assume that 𝐹(𝑝) = 0. As the result is local, we can assume that 𝑀 is a disk, that 𝑀

has no interior local maxima or local minima, and that

{𝐹 = 0}) ⧵ {𝑝}

consists of 2𝑘 disjoint, embedded 𝐶1 curves, each joining 𝑝 to a point in 𝜕𝑀 (see Figure 2.)

By applying a homeomorphism from𝑀 into 𝐑2 that is 𝐶1 in𝑀 ⧵ {𝑝}, we can assume that

𝑀 =
{
𝑞 ∈ 𝐑2 ∶ |𝑞| < 2},
𝑝 = 0,

and that

𝐹(𝑟 cos 𝜃, 𝑟 sin 𝜃) = 0 ⟺ 𝜃 is an integral multiple of 𝜋∕𝑘.

Let Δ be the region given in polar coordinates by 0 < 𝑟 ⩽ 1 and 0 < 𝜃 < 𝜋∕𝑘. Note that Δ is one
of the components of

𝐁(0, 1) ⧵ {𝐹 = 0}.

We may assume that 𝐹 > 0 on Δ. By tameness, the unit circle is transverse to Tan(𝐹, ⋅) near the
points (cos(𝑗𝜋∕𝑘), sin(𝑗𝜋∕𝑘)).
In particular, we can choose 𝜖 > 0 so that the unit circle is transverse toTan(𝐹, ⋅) at (cos 𝜃, sin 𝜃)

for 𝜃 ∈ [0, 𝜖] and for 𝜃 ∈ [(𝜋∕𝑘) − 𝜖, (𝜋∕𝑘)]. Thus,𝐹(cos 𝜃, sin 𝜃) is strictly increasing for 0 ⩽ 𝜃 ⩽ 𝜖
and is strictly decreasing for (𝜋∕𝑘) − 𝜖 ⩽ 𝜃 ⩽ 𝜋∕𝑘.
Let

𝜂 = min{𝐹(cos 𝜃, sin 𝜃) ∶ 𝜖 ⩽ 𝜃 ⩽ (𝜋∕𝑘) − 𝜖}.

Hence, for 0 < 𝑡 < 𝜂, there are exactly two points 𝑞 and 𝑞′ in 𝜕𝐷 at which 𝐹 = 𝑡.
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20 HOFFMAN et al.

Claim 34. Γ(𝑡) ∶= Δ ∩ {𝐹 = 𝑡} consists of a curve of noncritical points joining 𝑞 to 𝑞′.

Proof of Claim 34. This is the well-known argument of Radó. (See Theorem 41 for a very general
form of Claim 34.) We know that Γ(𝑡) is a network. As it is contained in a compact subset of the
interior of𝑀, it is a finite network. It cannot contain a closed curve, as if it did, that closed curve
would bound a disk in 𝑀 (as 𝑀 is simply connected), and 𝐹 on that disk would its minimum
and/or its maximum at an interior point, which is impossible because we are assuming that there
are no interior local maxima or minima. Thus, Γ(𝑡) is a tree. As the tree has at most two points of
valence ⩽ 1 (namely 𝑞 and 𝑞′), it is a curve joining 𝑞 to 𝑞′. □

We have shown: for small enough 𝜂, there are no critical points in 𝐷 with 𝐹 < 𝜂. The same
argument in the other components of𝑀 ⧵ {𝐹 = 0} shows that there is an 𝜂′ > 0 such there are no
critical points in 𝐷 with 0 < |𝐹| < 𝜂′. Also, all the points on {𝐹 = 0} ⧵ {𝑝} are regular. □

Remark 35. Without the hypothesis of tameness, Theorem 33 is false. Consider the harmonic
function ℎ(𝑥, 𝑦) = 𝑦 − (cosh 𝑥)(sin 𝑦), and let

𝐹(𝑥, 𝑦) =

{
ℎ(𝑥, 𝑦−1)−1 if 𝑦 ≠ 0, and
0 if 𝑦 = 0.

Note that the class of Radó functions is closed under composition with homeomorphisms of the
domain and of𝐑. Asℎ is harmonic, it is Radó, and thus𝐹 is Radó on𝐑2 ⧵ {𝑦 = 0}.We leave it to the
reader to check that 𝐹 is Radó on all of𝐑2. Thus, 𝐹 is a proper, Radó function on [−1, 1] × 𝐑. The
interior critical points of 𝐹 are the points (0, (2𝜋𝑛)−1)where 𝑛 is an integer. Thus, the noncritical
point (0,0) is a limit of critical points.

Theorem 36. Suppose that 𝐹 ∶ 𝑀 → 𝐑 is a tame Radó function and that 𝑝 is an interior point.
Then

Hopf(𝐹, 𝑝) =

(
1 −
𝑣(𝐹, 𝑝)

2

)
= −𝑤(𝐹, 𝑝),

whereHopf(𝐹, 𝑝) is the Hopf index of Tan(𝐹, ⋅) at 𝑝.

Proof. We use the notation in the proof of Theorem 33. In that proof, we can modify 𝐹 near the
unit circle 𝜕𝐁 so that the level sets of 𝐹 cross the circle orthogonally when |𝐹| ⩽ 𝛿 for some small
𝛿 > 0. By the proof of Theorem 33, we can choose 𝛿 small enough so that

𝑁 ∶= {𝑞 ∈ 𝐁(0, 1) ∶ |𝐹(𝑞)| ⩽ 𝛿}
contains no critical points other than 0. Note that 𝑁 is bounded by 4𝑘 arcs, 2𝑘 in the circle 𝜕𝐷
and the other 2𝑘 in the interior of the unit disk. Now we can invert 𝑁 in the unit circle to get a
2-manifold with boundary �̃� in𝐑2 ∪ {∞}. We extend 𝐹 and Tan(𝐹, ⋅) to �̃� by inversion. Note that
Tan(𝐹, ⋅) is tangent to 𝜕�̃�, so by the Poincare–Hopf Index Theorem,

𝜒(�̃�) = Hopf(𝐹, 0) + Hopf(𝐹,∞) = 2 Hopf(𝐹, 0).

Now �̃� is 2 with 2𝑘 disjoint open disks removed, so 𝜒(�̃�) = 2 − 2𝑘. Thus,

2 − 2𝑘 = 2 Hopf(𝐹, 0). □
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MORSE–RADÓ THEORY FOR MINIMAL SURFACES 21

Suppose that𝑀 is a locally compact space, that𝑈𝑛 and𝑈 are open subsets of𝑀, and that 𝜙𝑛 ∶
𝑈𝑛 → 𝑉 and 𝜙 ∶ 𝑈 → 𝑉 are continuous maps to a metrizable space 𝑉. We say that 𝜙𝑛 converges
locally uniformly to 𝜙 provided the following holds: if 𝑝 ∈ domain(𝜙) and if 𝑝𝑛 → 𝑝, then 𝑝𝑛 ∈
domain(𝜙𝑛) for all sufficiently large 𝑛 and 𝜙𝑛(𝑝𝑛) → 𝜙(𝑝). It follows that if 𝜙𝑛 converges locally
uniformly to 𝜙 and if𝐾 is a compact subset of domain(𝜙), then𝐾 ⊂ domain(𝜙𝑛) for all sufficiently
large 𝑛, and 𝜙𝑛|𝐾 converges uniformly to 𝜙|𝐾.
Theorem 37. Suppose 𝐹𝑛 ∶ 𝑀𝑛 → 𝐑 and 𝐹 ∶ 𝑀 → 𝐑 are tame Radó functions, where 𝑀𝑛 is an
exhaustion of𝑀, such that Tan(𝐹𝑛, ⋅) converges locally uniformly to Tan(𝐹, ⋅). Suppose that 𝐾 is a
compact region of𝑀 ⧵ 𝜕𝑀 such that 𝜕𝐾 is contained in the regular set of 𝐹. Then for all sufficiently
large 𝑛,

∑
𝑝∈𝐾

(
1 −
𝑣(𝐹𝑛, 𝑝)

2

)
=

∑
𝑝∈𝐾

(
1 −
𝑣(𝐹𝑛, 𝑝)

2

)
. (17)

Equivalently, ∑
𝑝∈𝐾

𝑤(𝐹𝑛, 𝑝) =
∑
𝑝∈𝐾

𝑤(𝐹, 𝑝).

Proof. First, consider the casewhen𝐾 is topologically a disk. Thenwe can choose local coordinates
so that𝐾 is a disk in𝐑2. By the Poincare–Hopf Theorem, the right-hand side of (17) is equal to the
degree of the map

𝑞 ∈ 𝜕𝐾 ↦ Tan(𝐹, 𝑞) ∈ 𝐑𝐏1,

and the left side is equal to the degree of

𝑞 ∈ 𝜕𝐾 ↦ Tan(𝐹𝑛, 𝑞) ∈ 𝐑𝐏
1,

By hypothesis, the two maps are homotopic for all sufficiently large 𝑛, and thus the two degrees
are equal.
In the general case, let 𝐷 be a finite union of disjoint closed disks in the interior of 𝐾 such that

the interior𝑈 of 𝐷 contains all the critical points of 𝐹 in 𝐾. Now 𝐾 ⧵ 𝑈 is contained in Reg(𝐹), so
it is contained in Reg(𝐹𝑛) for all sufficiently large 𝑛. Thus, by the simply connected case,

∑
𝑝∈𝐾

(
1 −
𝑣(𝐹𝑛, 𝑝)

2

)
=

∑
𝑝∈𝐷

(
1 −
𝑣(𝐹𝑛, 𝑝)

2

)

=
∑
𝑝∈𝐷

(
1 −
𝑣(𝐹, 𝑝)

2

)

=
∑
𝑝∈𝐾

(
1 −
𝑣(𝐹, 𝑝)

2

)
,

for all sufficiently large 𝑛. □

 14697750, 0, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12791 by U

niversidad D
e G

ranada, W
iley O

nline L
ibrary on [04/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



22 HOFFMAN et al.

Definition 38. Suppose that 𝐹 ∶ 𝑀 → 𝐑 is a Radó function. We say that 𝐹 is aminimal Radó
function provided 𝐹 has no interior local minima and no interior local maxima.

We call these functions minimal Radó functions because the Radó functions that arise from
minimal surfaces as in Theorem 8 have no interior local minima or interior local maxima.

Theorem 39 (Lower Semicontinuity Theorem). Suppose that 𝐹𝑛 ∶ 𝑀𝑛 → 𝐑 and 𝐹 ∶ 𝑀 → 𝐑 are
tame minimal Radó functions, where 𝑀𝑛 is an exhaustion of 𝑀. Suppose also that Tan(𝐹𝑛, ⋅)
converges locally uniformly to Tan(𝐹, ⋅). Then∑

𝑝∈𝑀⧵𝜕𝑀

𝑤(𝐹, 𝑝) ⩽ lim inf
∑

𝑝∈𝑀𝑛⧵𝜕𝑀𝑛

𝑤(𝐹𝑛, 𝑝).

Proof. It suffices to prove it for 𝑀 without boundary. (Otherwise replace 𝑀 by 𝑀 ⧵ 𝜕𝑀 in the
following proof.)
Note that as there are no local maxima or minima, 𝑤(𝐹, 𝑝) and 𝑤(𝐹𝑛, 𝑝) are both nonnegative

for every 𝑝.
Let 𝐾 be any compact subset of𝑀. Let 𝐾′ be a compact subset of𝑀 such that 𝐾 ⊂ 𝐾′ and such

that 𝜕𝐾′ lies in the regular set of 𝐹. For all sufficiently large 𝑛,∑
𝑝∈𝑀𝑛

𝑤(𝐹𝑛, 𝑝) ⩾
∑
𝑝∈𝐾′

𝑤(𝐹𝑛, 𝑝) =
∑
𝑝∈𝐾′

𝑤(𝐹, 𝑝) ⩾
∑
𝑝∈𝐾

𝑤(𝐹, 𝑝),

by Theorem 37. Thus,

lim inf
𝑛

∑
𝑝∈𝑀

𝑤(𝐹𝑛, 𝑝) ⩾
∑
𝑝∈𝐾

𝑤(𝐹, 𝑝).

Now take the supremum over all 𝐾 ⊂⊂ 𝑀. □

Corollary 40. Suppose that

(1) g𝑛 are smooth Riemannian metrics on a 3-manifold𝑁 that converge smoothly to a metric g ;
(2) 𝑛 are g𝑛-minimal foliations of𝑁 that converge to a g-minimal foliation  ;
(3) 𝑀𝑛 are g𝑛-minimal surfaces that converge smoothly to a g-minimal surface𝑀;
(4) no connected component of𝑀 lies in a leaf of  ;

then

𝖭( ,𝑀) ⩽ lim inf 𝖭(𝑛,𝑀𝑛), (18)

where 𝖭( ,𝑀) is the number of interior points of tangency of  and𝑀, counting multiplicity.

In other words, 𝖭( ,𝑀) is the sum over the interior points 𝑝 ∈ 𝑀 of the order of contact at 𝑝
of𝑀 and the leaf of  through 𝑝.

Proof. Suppose first that 𝑛 and  are given as the level sets of functions 𝐹𝑛 and 𝐹 on𝑁 as in The-
orem 8. Then 𝐹𝑛|𝑀𝑛 and 𝐹|𝑀 are tame Radó functions by Theorems 8 and 11, and Tan(𝐹𝑛|𝑀𝑛, ⋅)
converges locally uniformly to Tan(𝐹|𝑀, ⋅) by Theorem 11. Thus, (18) holds by Theorem 39.

 14697750, 0, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12791 by U

niversidad D
e G

ranada, W
iley O

nline L
ibrary on [04/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



MORSE–RADÓ THEORY FOR MINIMAL SURFACES 23

In general, 𝑛 and/or  might not be expressible as the level sets of functions 𝐹𝑛 and 𝐹.
However, locally that is always possible. Furthermore, even if 𝐹𝑛 and 𝐹 are only defined locally,
Tan(𝐹𝑛, ⋅) and Tan(𝐹, ⋅) make sense globally, and the proof of Theorem 39 only really depends
on those line fields, and not on the functions themselves. Thus, Corollary 40 holds for arbitrary
minimal foliations. □

8 SLICES

A classical result of Radó states that if a plane in 𝐑3 intersects the boundary of a minimal disk
in fewer than four points, then it intersects the disk transversely. In this section, we prove a very
general form of Radó’s principle.
(When we apply the following theorem to minimal surfaces, the set 𝑆 and the set of interior

local maxima and minima will typically be empty.)

Theorem 41 (Slice Theorem). Let 𝑀 be a 2-manifold and 𝐹 ∶ 𝑀 → 𝐑 be a continuous function
with only finitely many interior local minima and maxima. Suppose that there is a finite set 𝑆 of
interior points such that 𝐹 is a Radó function on𝑀 ⧵ (𝜕𝑀 ∪ 𝑆). Let 𝑋 = 𝐹−1(𝑡) be a level set of𝑀.
Suppose that

(1) 𝑋 is compact;
(2) 𝑋 ∩ 𝜕𝑀 is finite;
(3) 𝑑1(𝑀) ∶= dim𝐻1(𝑀; 𝐙2) < ∞.

Then 𝑋 is a finite network.
Now suppose that 𝐹 is a Radó function on all of𝑀 ⧵ 𝜕𝑀 (i.e., that the set 𝑆 is empty.) Let

𝑉𝑛 = {𝑝 ∈ 𝑋 ∶ 𝑣(𝐹, 𝑝) = 𝑛}

be the set of nodes of valence 𝑛 in 𝑋. Then

1

2

∑
𝑛⩾3

(𝑛 − 2)|𝑉𝑛| + 𝑑0(𝑋 ⧵ 𝑉0) ⩽ 12 |𝑉1| + 𝑑1(𝑀) + |𝑆∗|
⩽
1

2
|𝐽| + 𝑑1(𝑀) + |𝑆∗|,

⩽
1

2
𝑘 + 𝑑1(𝑀) + |𝑆∗|,

(19)

where 𝐽 is the set of points in𝑋 ∩ 𝜕𝑀 that are neither local maxima nor local minima of 𝐹|𝜕𝑀, 𝑆∗ is
the set of interior local maxima and local minima of 𝐹 in𝑀 ∩ {𝐹 ≠ 𝑡}, and 𝑘 is the number of points
𝑝 in 𝜕𝑀 where 𝐹(𝑝) = 𝑡.

Note that 𝑑0(𝑋 ⧵ 𝑉0) is the number of components of 𝑋 that are not isolated points.
In the examples that arise in minimal surface theory, 𝑆∗ is empty:

Corollary 42. If 𝑆∗ = ∅, then

1

2

∑
𝑛⩾3

(𝑛 − 2) |𝑉𝑛| + 𝑑0(𝑋 ⧵ 𝑉0) ⩽ 12 |𝐽| + 𝑑1(𝑀) ⩽ 12𝑘 + 𝑑1(𝑀),
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24 HOFFMAN et al.

Proof of Theorem 41. By Lemma 28, the inclusion of 𝑋 into𝑀 ⧵ 𝑆∗ induces a monomorphism of
𝐻1(−; 𝐙2), so

𝑑1(𝑋) ⩽ 𝑑1(𝑀 ⧵ 𝑆
∗) = 𝑑1(𝑀) + |𝑆∗| < ∞.

Thus, by a general theorem about networks (Theorem 44), 𝑋 is a finite network. (One lets the
set 𝐵 in Theorem 44 be the union of the following three sets: the set of interior local minima and
interior local maxima of 𝐹 in 𝑋, the set 𝑆, and the set 𝑋 ∩ 𝜕𝑀.) By a general counting theorem
(Theorem 45) for finite graphs,

∑
𝑛⩾3

1

2
(𝑛 − 2)|𝑉𝑛| + 𝑑0(𝑋 ⧵ 𝑉0) = 12 |𝑉1| + 𝑑1(𝑋)

⩽
1

2
|𝑉1| + 𝑑1(𝑀) + |𝑆∗|. (20)

Now suppose that 𝑆 is empty. Recall that for every interior point 𝑝, 𝑣(𝐹, 𝑝) is even. For a bound-
ary point 𝑝,𝑉(𝐹, 𝑝) is even if and only if 𝑝 is a local maximum or local minimum of 𝐹|𝜕𝑀. Hence,
𝑉1 ⊂ 𝐽. Thus, (19) follows from (20). □

Remark 43. In the bound (19), we could let 𝑆∗ be the set consisting of interior local minima of 𝐹
in {𝐹 < 𝑡} and of interior local maxima of 𝐹 in {𝐹 > 𝑡}. No changes are required in the proof. In
the case of minimal Radó functions, there are no interior local maxima or minima.

We now prove the finiteness theorem for general networks that was used in the proof of
Theorem 41 (the Slice Theorem).
Let 𝑝 be a point in a topological space 𝑋 and 𝑘 be a nonnegative integer. Suppose 𝑝 has a

neighborhood𝑈 such that 𝑋 ∩ 𝑈 is the union of 𝑘 embedded curves, where each curve joins 𝑝 to
a point in 𝜕𝑈 andwhere the curves intersect each other only at 𝑝. Thenwe say that𝑋 has valence
𝑘 at 𝑝 and write 𝑣(𝑝) = 𝑉(𝑋, 𝑝) = 𝑘. If there is no such 𝑘 and 𝑈, then 𝑣(𝑋, 𝑝) is undefined.

Theorem 44 (Finiteness Theorem). Let 𝑋 be a compact Hausdorff space. Suppose that 𝐵 ⊂ 𝑋 is a
finite set with the following properties.

(1) Each point 𝑝 in 𝑋 ⧵ 𝐵 has a well-defined valence 𝑣(𝑝) that is ⩾ 2.
(2) 𝑑1(𝑋) ∶= dim𝐻1(𝑋; 𝐙2) is finite.

Then 𝑋 is a finite network.

Proof. Define the set 𝑉 = 𝑉(𝑋, 𝐵) of vertices by

𝑉 ∶= 𝐵 ∪ {𝑝 ∈ 𝑋 ⧵ 𝐵 ∶ 𝑣(𝑝) ≠ 2},

and let  = (𝑋, 𝑄) be the set of connected components of 𝑋 ⧵ 𝑉. Note that each element 𝐸 of 
is an embedded curve and that 𝐸 ⧵ 𝐸 ⊂ 𝑉. Elements of  are called edges. The assertion of the
theorem is that 𝑉 and  are finite sets. We prove the theorem by induction on 𝑑1(𝑋).
Suppose first that 𝑑1(𝑋) = 0. Let 𝑇 be a connected component of 𝑋 ⧵ 𝐵. Then 𝑇 is a connected

network with no closed loops. Thus, 𝑇 is a tree. As 𝑑1(𝑋) = 0, 𝑑1(𝑇) = 0, and thus no two ends of
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MORSE–RADÓ THEORY FOR MINIMAL SURFACES 25

𝑇 can limit to the same point in 𝐵. Thus, 𝑇 has at most |𝐵| ends. It follows that 𝑇 is a finite tree.
Now 𝑇 ⧵ 𝑇 is a subset of the finite set 𝐵. Thus, if 𝑋 ⧵ 𝐵 had infinitely many components, then it
would have two components 𝑇 and 𝑇′ with

𝑇 ⧵ 𝑇 = 𝑇′ ⧵ 𝑇′.

But then 𝑇 ∪ 𝑇′ would contain a loop, which is impossible because 𝑑1(𝑋) = 0. This completes the
proof in the case 𝑑1(𝑋) = 0.
Now suppose that 𝑑1(𝑋) > 0. Then 𝑋 contains a closed loop. Let 𝐸 ∈  be an edge in that loop.

Then

𝑑1(𝑋 ⧵ 𝐸) < 𝑑1(𝑋).

Let

𝐵′ = 𝐵 ∪ 𝜕𝐸,

𝑋′ = 𝑋 ⧵ 𝐸.

Then 𝑋′ and 𝐵′ satisfy the hypotheses of the theorem and 𝑑1(𝑋′) < 𝑑1(𝑋), so (by induction),
𝑉(𝑋′, 𝐵′) and (𝑋′, 𝐵′) are finite. Consequently, 𝑉(𝑋, 𝐵) and (𝑋, 𝐵) are also finite. □

The following counting theorem for arbitrary finite networks was used in the proof of
Theorem 41 (the Slice Theorem).

Theorem 45 (Counting Theorem). Let𝑋 be a finite network, and𝑉𝑛 be the set of vertices of valence
𝑛. Then ∑

𝑛⩾3

1

2
(𝑛 − 2)|𝑉𝑛| = 12 |𝑉1| + 𝑑1(𝑋) − 𝑑0(𝑋 ⧵ 𝑉0),

where 𝑑𝑖(⋅) ∶= dim𝐻𝑖(⋅; 𝐙2).

(Note that 𝑑0(𝑋 ⧵ 𝑉0) is the number of connected components of𝑋 that are not isolated points.)

Proof. Note that

𝜒(𝑋) =
∑
𝑛

1

2
(2 − 𝑛) |𝑉𝑛| = |𝑉0| + 12 |𝑉1| + 12∑

𝑛⩾3

(2 − 𝑛) |𝑉𝑛|
(by Lemma 14) and

𝜒(𝑋) = 𝑑0(𝑋) − 𝑑1(𝑋) = 𝑑0(𝑋 ⧵ 𝑉0) + |𝑉0| − 𝑑1(𝑋).
The assertion follows immediately. □

The Slice Theorem (Theorem 41) has the following important consequence:

Theorem 46. Suppose that 𝐼 ⊂ 𝐑 is an open interval (possibly all of 𝐑) and that 𝐹 ∶ 𝑀 → 𝐼 is a
proper continuous function such that 𝐹 is Radó on the interior of𝑀. Suppose also that
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26 HOFFMAN et al.

(1) 𝑑1(𝑀) < ∞,
(2) for each 𝑡, (𝜕𝑀) ∩ {𝐹 = 𝑡} is finite,
(3) the set of interior local maxima and interior local minima of 𝐹 is finite.

Then 𝐹 is a Radó function on all of𝑀.

The Slice Theorem also implies an interesting removal-of-singularities theorem:

Theorem 47. Suppose that 𝐼 ⊂ 𝐑 is an open interval (possibly all of𝐑), that 𝐹 ∶ 𝑀 → 𝐼 is a proper
continuous function, and that 𝑆 ⊂ 𝑀 ⧵ 𝜕𝑀 is a finite set such that 𝐹 is Radó on 𝑀 ⧵ (𝑆 ∪ 𝜕𝑀).
Suppose also that

(1) 𝑑1(𝑀) < ∞,
(2) for each 𝑡, (𝜕𝑀) ∩ {𝐹 = 𝑡} is finite,
(3) the set of interior local maxima and interior local minima of 𝐹 is finite.

Then 𝐹 is a Radó function on all of𝑀.

In minimal surface theory, one sometimes encounters functions that are Radó on the interior
of the surface, but that are constant on some arcs and/or some connected components of the
boundary. No such function can be Radó on the whole surface. The following theorem lets one
get around that difficulty in many situations.

Theorem 48. Suppose that 𝐼 ⊂ 𝐑 is an open interval (possibly all of 𝐑) and that 𝐹 ∶ 𝑀 → 𝐑 is a
proper function that is Radó on the interior of𝑀. Suppose also that

(1) 𝑑1(𝑀) < ∞;
(2) the set of interior local minima and interior local maxima of 𝐹 is finite;
(3) there are only finitely many connected components of 𝜕𝑀 on which 𝐹 is constant;
(4) for each 𝑡, (𝜕𝑀) ∩ 𝐹−1(𝑡) is the union of finitely many connected components.

Define an equivalent relation ∼ on𝑀 as follows: 𝑝 ∼ 𝑞 if and only if 𝑝 = 𝑞 or 𝑝 and 𝑞 belong to a
connected subset of 𝜕𝑀 on which 𝐹 is constant. Let �̃� be the quotient𝑀∕ ∼ and let �̃� be the function
on �̃� corresponding to 𝐹.
Then �̃� ∶ �̃� → 𝐑 is a proper Radó function.

Proof. Let Γ be a connected component of (𝜕𝑀) ∩ 𝐹−1(𝑡). If Γ is a closed curve, then Γ becomes
an interior point 𝑝 of �̃�. If Γ is not a closed curve, then Γ becomes a boundary point 𝑝 of �̃�. In
either case, �̃�(𝑝) = 𝑡.
Now let 𝑆 be the set of interior points in �̃� that correspond to closed curves in 𝜕𝑀 along which

𝐹 is constant.
Then �̃� ∶ �̃� → 𝐼 and 𝑆 satisfy the hypotheses of Theorem 47, so �̃� is a Radó function. □

9 BRANCHEDMINIMAL SURFACES

Theorem 49. Suppose that 𝑁 is a smooth Riemannian manifold and that 𝐹 ∶ 𝑀 → 𝐑 is a
continuous function such that

(1) each level set is a smooth minimal surface if dim𝑁 = 3;
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MORSE–RADÓ THEORY FOR MINIMAL SURFACES 27

(2) each level set is totally geodesic if dim𝑁 > 3;
(3) for each 𝑡, the level set 𝐹−1(𝑡) is in the closure of {𝐹 > 𝑡} and of {𝐹 < 𝑡}.

Suppose that𝑀 is a connected surface without boundary, that 𝑢 ∶ 𝑀 → 𝑁 is a branched minimal
immersion, and that 𝐹 ◦𝑢 is not constant. Then 𝐹 ◦𝑢 is a Radó function without local minima or
local maxima.

Of course if𝑀 is minimal surface with boundary in 𝑁, then we can apply Theorem 49 to con-
clude that 𝐹 is Radó on the interior of𝑀, and then we can conclude from Theorem 46 that 𝐹 ◦𝑢
is Radó on all of𝑀, provided the hypotheses of Theorem 46 are satisfied.

Proof for 𝑛 = 3. As the result is local, it suffices to consider the case

𝑢 ∶ 𝐁 ⊂ 𝐂 → 𝐑3,

𝑢(0) = 0,

where 𝐑3 is endowed with a Riemannian metric g such that g𝑖𝑗(0) = 𝛿𝑖𝑗 and 𝐷g𝑖𝑗(0) = 0. By
rotating, we can assume that, after a nonconformal reparameterization,

𝑢(𝑧) = (𝑧𝑄, 𝑓(𝑧)) ∈ 𝐂 × 𝐑 ≅ 𝐑3, (21)

for some positive integer 𝑄, where 𝑓(𝑧) = 𝑂(|𝑧|𝑄+1). See [10, Theorem 1.4].
Now let Σ be the level set of 𝐹 passing through the point 0 = 𝑢(0). If Tan(Σ, 0) is not the hor-

izontal plane 𝐑2 × {0}, then the desired behavior follows easily from (21). Indeed, in this case,
minimality of Σ is not even needed. Note that in this case the valence of the point is 𝑣(𝐹 ◦𝑢, 0) =
2𝑄 and thus 𝑤(𝐹 ◦𝑢, 0) = 𝑄 − 1.
Now suppose that Tan(Σ, 0) is the horizontal plane 𝐑2 × {0}. Then, near the origin, Σ is the

graph of a function 𝜙 ∶ Ω ⊂ 𝐑2 → 𝐑 with 𝜙(0) = 0 and 𝐷𝜙(0) = 0.
Note that

𝑧 ↦ (𝑧𝑄, 𝜙(𝑧𝑄))

is a nonconformal reparameterization of a branched minimal immersion. (If 𝑄 > 1, then 0 is a
false branch point of order 𝑄 − 1).
Now consider the map

𝑧 ∈ 𝐷 ↦ 𝑓(𝑧) − 𝜙(𝑧𝑄). (22)

If this were identically 0, then 𝐹 ◦𝑢 would be constant on a neighborhood of 0 and thus on all
of𝑀 by unique continuation, contrary to the hypotheses of the theorem. Thus, the function (22)
is not constant. By [10, 1.6], there is a nonzero homogeneous polynomal ℎ of degree 𝑑 ⩾ 𝑄 such
that

𝑓(𝑧) − 𝜙(𝑧𝑄) = ℎ(𝑧) + 𝑜(|𝑧|𝑑),
𝐷(𝑓(𝑧) − 𝜙(𝑧𝑄)) = 𝐷ℎ(𝑧) + 𝑜(|𝑧|𝑑−1).

The desired behavior near 0 of the level set of 𝐹 ◦𝑢 through 0 follows immediately. Note that in
this case, 𝑣(𝐹 ◦𝑢, 0) = 2𝑑 ⩾ 2𝑄 and hence 𝑤(𝐹 ◦𝑢, 0) ⩾ 𝑄 − 1. □
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28 HOFFMAN et al.

Proof for 𝑛 > 3. The result is local, so we may assume that the branched immersion is

𝑢 ∶ 𝐷 ⊂ 𝐑2 → 𝑁.

We wish to prove that the level set of 𝐹 ◦𝑢 through the origin has the behavior specified in the
definition of Radó function. Let Σ be the level set of 𝐹 through 𝑝 = 𝑢(0). Choose Fermi-type local
coordinates on 𝑁 as follows. First, let (𝑦1, … , 𝑦𝑛−1) be normal coordinates on Σ at 𝑝. For 𝑞 in 𝑁
near 𝑝, let 𝑦𝑛(𝑞) be the signed distance from 𝑞 to Σ, and for 𝑖 < 𝑛, let 𝑦𝑖(𝑞) = 𝑦𝑖(𝑞′) where 𝑞′ is
the point in Σ closest to 𝑞.
Thus,

g𝑛𝑖 = 𝛿𝑛𝑖 (𝑖 ⩽ 𝑛),

g𝑖𝑗(0) = 𝛿𝑖𝑗,

𝐷g𝑖𝑗(0) = 0.

Now 𝑢 is a conformal harmonic map. Harmonicity means that

𝜕

𝜕𝑥𝑘

(
g𝑖𝛼(𝑢(𝑥))

𝜕𝑢𝑖

𝜕𝑥𝑘

)
− (𝐷𝛼g𝑖𝑗(𝑢(𝑥))

𝜕𝑢𝑖

𝜕𝑥𝑘
𝜕𝑢𝑗

𝜕𝑥𝑘
= 0

for each 𝛼 = 1,… , 𝑛. Here, 𝑘 is summed from 1 to 2 and the other repeated indices from 1 to 𝑛. In
particular, this holds for 𝛼 = 𝑛:

0 =
𝜕

𝜕𝑥𝑘

(
g𝑖𝑛(𝑢(𝑥))

𝜕𝑢𝑖

𝜕𝑥𝑘

)
− (𝐷𝑛g𝑖𝑗(𝑢(𝑥))

𝜕𝑢𝑖

𝜕𝑥𝑘
𝜕𝑢𝑗

𝜕𝑥𝑘

= Δ𝑢𝑛 + (𝐷𝑛g𝑖𝑗(𝑢(𝑥))
𝜕𝑢𝑖

𝜕𝑥𝑘
𝜕𝑢𝑗

𝜕𝑥𝑘
,

(23)

as g𝑛𝑖 ≡ 𝛿𝑛𝑖 .
If 𝑖 and/or 𝑗 is 𝑛, then g𝑖𝑗 is constant, so 𝐷𝑛g𝑖𝑗 ≡ 0. On the other hand, if 𝑖 and 𝑗 are less than

𝑛, then

𝐷𝑛g𝑖𝑗(𝑦) = 0 when 𝑦𝑛 = 0

as Σ is totally geodesic, and therefore

|𝐷𝑛g𝑖𝑗(𝑦)| ⩽ 𝑐 |𝑦𝑛|
for |𝑦| ⩽ 𝑟 and for some constant 𝑐 = 𝑐𝑟. Thus, from (23), we see that

|Δ𝑢𝑛| ⩽ 𝐾|𝑢𝑛|. (24)

By hypothesis, 𝐹 ◦𝑢 is not constant. Thus, by (24) and the Hartman–Wintner Theorem (as for-
mulated in [10, Theorem 1.1]), there is a nonzero homogeneous harmonic polynomial ℎ of degree
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MORSE–RADÓ THEORY FOR MINIMAL SURFACES 29

𝑑 ⩾ 1 such that

𝑢𝑛(𝑧) = ℎ(𝑧) + 𝑜(|𝑧|𝑑),
𝐷𝑢𝑛(𝑧) = 𝐷ℎ(𝑧) + 𝑜(|𝑧|𝑑−1).

The assertion follows immediately.
Note that the valence 𝑣(𝐹 ◦𝑢, 0) is 2𝑑 and thus 𝑤(𝐹 ◦𝑢, 0) = 𝑑 − 1. We remark that if 𝑢 has

branch point of order 𝑄 − 1 at the origin, then

lim
𝑧→0

|𝑢(𝑧)||𝑧|𝑄
exists and is nonzero. Thus, 𝑑 ⩽ 𝑄. Note that 𝑑 > 𝑄 if only if 𝑢𝑛 = 0(|𝑢|) = 𝑜(|𝑧|𝑄), that is, if and
only if the tangent plane to 𝑢(𝐷) at 0 is contained in Tan(Σ, 𝑢(0)). □

Here we summarize the facts about saddle-multiplicity and branch point order that were
established in proving Theorem 49:

Theorem 50. Suppose that 𝑢 ∶ 𝑀 → 𝑁 and 𝐹 ∶ 𝑁 → 𝐑 are as in Theorem 49. If 𝑝 is not a branch
point, then𝑤(𝐹 ◦𝑢, 𝑝) is the order of contact of 𝑢(𝑀) and {𝐹 = 𝐹(𝑝)} at 𝑢(𝑝)Now suppose that 𝑝 is
a branch point of order𝑚. Then

𝑤(𝐹 ◦𝑢, 𝑝) ⩾ 𝑚. (25)

Equality holds if the tangent plane to 𝑢(𝑀) at 𝑢(𝑝) and the tangent plane to {𝐹 = 𝐹(𝑢(𝑝))} at 𝑢(𝑝)
are transverse.
In case the level sets of 𝐹 are totally geodesic (as they are if 𝑛 > 3), equality holds in (25) if and

only if the tangent planes are transverse.

Corollary 51. The function 𝐹 ◦𝑢 is a tame Radó function.

Proof. Tameness is a local property of the regular points of a Radó function. As all branch points
are critical points, tameness of 𝐹 ◦𝑢 follows from the embedded case (Theorem 8). □

APPENDIX A: SOME BASIC TOPOLOGICAL FACTS

LemmaA1. Suppose that𝐶𝑖 , 𝑖 = 1, … , 𝑘 are disjoint simple closed curves in an open annulus𝑈 and
that each 𝐶𝑖 is homotopically nontrivial in𝑈. Then each component of𝑈 ⧵ (∪𝑖𝐶𝑖) is an annulus.

The proof is a simple induction.
Recall that if 𝐹 ∶ Σ → 𝐑 and if 𝑠 < 𝑡, we let Σ[𝑠] = 𝐹−1(𝑠) and Σ[𝑠, 𝑡] = 𝐹−1([𝑠, 𝑡]).

Proposition A2. Let Σ be a compact, connected 2-manifold with boundary and let

𝐹 ∶ Σ → [𝑎, 𝑏]
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30 HOFFMAN et al.

be a continuous function such that

(1) each level set Σ[𝑡] is a finite union of disjoint simple closed curves,
(2) 𝐹 has no interior local maxima or minima,
(3) 𝜕Σ = Σ[𝑎] ∪ Σ[𝑏].

Then Σ is an annulus.

Proof. Note that

No collection of curves in Σ[𝑡] can bound a region in Σ. (*)

For if there were such a region 𝐷, then 𝐹|𝐷 would attain its maximum and/or its minimum at an
interior point of 𝐷, violating [2].

Claim A3. Let 𝑎 ⩽ 𝑠 < 𝑡 ⩽ 𝑏. Let 𝐾 be a connected component of Σ[𝑠, 𝑡]. If 𝐾 lies in an annular
region 𝑈 of Σ, then 𝐾 is an annulus, with one boundary component in Σ[𝑠] and one in Σ[𝑡].

Proof. Note that 𝜕𝐾 is contained in Σ[𝑠] ∪ Σ[𝑡]. By (*), it must have at least one component in
Σ[𝑠] and at least one component in Σ[𝑡]. If 𝐶 is a component of 𝜕𝐾, it cannot bound a region in Σ
by (*). In particular, it does not bound a disk in𝑈. Thus, each component of 𝜕𝐾 is homotopically
nontrivial in 𝑈. By Lemma A1, 𝐾 is an annulus. Thus, we have proved Claim A3. □

Note for each 𝑇 ∈ [𝑎, 𝑏], there is a relatively open subset 𝑈𝑇 of Σ containing Σ[𝑇] such that
𝑈 contains Σ[𝑇] and such that each component of 𝑈 is an annulus. Now 𝐹(Σ ⧵ 𝑈) is a compact
subset of [𝑎, 𝑏] that does not contain 𝑇. Thus, there is an open interval 𝐼𝑇 ⊂ 𝐑 containing 𝑇 and
disjoint from 𝐹(Σ ⧵ 𝑈𝑇).
As the {𝐼𝑇 ∶ 𝑇 ∈ [𝑎, 𝑏]} form an open cover of 𝐼, there exists 𝑎0 = 𝑎 < 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑛 = 𝑏

such that each [𝑎𝑖−1, 𝑎𝑖] belongs to some 𝐼𝑇 .
By Claim A3, each component of Σ[𝑎𝑖−1, 𝑎𝑖] is an annulus with one component in Σ[𝑎𝑖−1] and

one component in Σ[𝑎𝑖]. Proposition A2 follows immediately. □

Corollary A4. Suppose that

(1) Σ is an open surface;
(2) 𝐹 ∶ Σ → (𝑎, 𝑏) is a continuous function with no local maxima or local minima;
(3) for each 𝑡 ∈ (𝑎, 𝑏), Σ[𝑡] is a union of finitely many disjoint simple closed curves;
(4) if 𝑎 < 𝑠 < 𝑡 < 𝑏, then Σ[𝑠, 𝑡] is compact and

𝜕Σ[𝑠, 𝑡] = Σ[𝑠] ∪ Σ[𝑡].

Then each connected component of Σ is an annulus.

Proof. Let 𝑎𝑖, 𝑖 ∈ 𝐙 be a strictly increasing sequence with lim𝑖→−∞ 𝑎𝑖 = 𝑎 and lim𝑖→∞ 𝑎𝑖 = 𝑏. By
Proposition A2, each component of Σ[𝑎𝑖−1, 𝑎𝑖] is an annulus with one component in Σ[𝑎𝑖−1] and
one component in Σ[𝑎𝑖]. Corollary A4 follows immediately. □
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MORSE–RADÓ THEORY FOR MINIMAL SURFACES 31

Let 𝑛 ⩾ 3. We define an 𝑛-ad 𝐾 to be a closed set consisting of (𝑛 + 1) points 𝑝0, 𝑝1, … , 𝑝𝑛,
together with 𝑛 embedded arcs 𝛾1, … , 𝛾𝑛, where each 𝛾𝑖 joins 𝑝0 to 𝑝𝑖 , and where 𝛾𝑖 ∩ 𝛾𝑗 = {𝑝0}
for 𝑖 ≠ 𝑗. We say that 𝑝0 is the center of the 𝑛-ad, and that the points 𝑝1, … , 𝑝𝑛 are the boundary
𝜕𝐾 of the 𝑛-ad.

Lemma A5. Let𝑀 be a 2-manifold and let 𝑛 ⩾ 3. Suppose 𝐶 is a collection of disjoint subsets of𝑀,
each of which contains an 𝑛-ad. Then 𝐶 is countable.

Proof. Suppose to the contrary that there is an uncountable collection 𝐶. We can assume that
each set in 𝐶 is an 𝑛-ad. (Otherwise, replace each set in 𝐶 by an 𝑛-ad that it contains.) Consider a
countable collection of open disks𝐷 ⊂ 𝑀 such that𝐷 is a closed disk and such that is a basis
for the topology of𝑀. For 𝐷 ∈ , let 𝐶𝐷 be the collection of 𝐾 ∈ 𝐶 such that the center of 𝐾 is in
𝐷 and such that the boundary points of 𝐾 are not in 𝐷. Note that there is a 𝐷 ∈  for which 𝐶𝐷
is uncountable. For each 𝐾 ∈ 𝐶𝐷 , let 𝐾′ be the closure of 𝐾 ∩ 𝐷. Then 𝐾′ is an 𝑛-ad with center
in 𝐷 and with boundary in 𝜕𝐷. Let

𝐶′𝐷 = {𝐾
′ ∶ 𝐾 ∈ 𝐶𝐷}.

Then 𝐶′
𝐷
is uncountable. Define Φ ∶ 𝐶′

𝐷
→ (𝜕𝐷)𝑛 by

Φ(𝐾) = (𝑝1, … , 𝑝𝑛),

where 𝑝1, … , 𝑝𝑛 are the boundary points of 𝐾. (We choose an ordering of the endpoints.) As 𝐶′𝐷 is
uncountable and as (𝜕𝐷)𝑛 is separable, there exist𝐾𝑖 (𝑖 ∈ 𝑁) and𝐾 in𝐶′𝐷 such thatΦ(𝐾𝑖) → Φ(𝐾).
But that is impossible because each 𝐾𝑖 lies in one of the connected components of 𝐷 ⧵ 𝐾.
(If the last sentence is not clear, note that 𝜕𝐾𝑖 must lie in an arc 𝐴 of (𝜕𝐷) ⧵ 𝜕𝐾. As 𝜕𝐾 has

𝑛 ⩾ 3 points, it has a point 𝑝 that is not in 𝐴. As 𝜕𝐾𝑖 ⊂ 𝐴, the points of 𝜕𝐾𝑖 are bounded away
from 𝑝.) □

CorollaryA6. Suppose𝐹 ∶ 𝑀 → 𝐑 is a Rado function. Then there are only countablymany critical
points, and hence only countably many critical values.

Proof. By doubling, it suffices to prove it for 𝑀 without boundary. The points of valence 0 are
strict local maxima or minima, and hence there are only countably many of them. The other
critical points are points of valence ⩾ 4. By Lemma A5, for each 𝑣 ⩾ 4, there are only countably
many points of valence 𝑣. □
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