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Abstract
In this paper we consider continuous-time hidden Markov processes (CTHMM). The model
considered is a two-dimensional stochastic process (Xt , Yt ), with Xt an unobserved (hidden)
Markov chain defined by its generating matrix and Yt an observed process whose distribution
law depends on Xt and is called the emission function. In general, we allow the process Yt
to take values in a subset of the q-dimensional real space, for some q . The coupled pro-
cess (Xt , Yt ) is a continuous-time Markov chain whose generator is constructed from the
generating matrix of X and the emission distribution. We study the theoretical properties of
this two-dimensional process using a formulation based on semi-Markov processes. Obser-
vations of the CTHMM are obtained by discretization considering two different scenarii. In
the first case we consider that observations of the process Y are registered regularly in time,
while in the second one, observations arrive at random. Maximum-likelihood estimators of
the characteristics of the coupled process are obtained in both scenarii and the asymptotic
properties of these estimators are shown, such as consistency and normality. To illustrate the
model a real-data example and a simulation study are considered.
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1 Introduction

Hidden Markov Models (HMM) appear in a large number of real-world estimation problems
where a process with unobservable states produce observable outputs normally referred as
signals.Mor et al. (2021) conduct a review of the publishedwork onHMMduring the last few
decades, and the different application areas of these models, e.g., Pattern recognition, Bioin-
formatics, Economy and Finance, Network security, Meteorology, Reliability engineering,
etc.

The problem is presented as follows. Consider a coupled process, (X , Y ), in discrete or
continuous time, where X is an unobserved process, a hidden process, and Y is the observed
process. Based on the observations, the law of the coupled process has to be estimated. In
general, the hidden process X is a Markov chain, and Y is a process whose distribution
depends on the value of Xt , i.e., P(Yt ∈ B|Ys, Xs; s ≤ t) = P(Yt ∈ B|Xt ), or P(Yt ∈
B|Ys, Xs; s ≤ t) = P(Yt ∈ B|Yt , Xt ). In the first case we have an M1-M0 model and in the
second an M1-M1 model, where M means Markov order 1 or 0. These are the most used
orders, but in general we can consider more general orders.

In the literature, the consideredMarkov chain is a finite-state space process with transition
probability Pi j being a function of a parameter θ (in general a vector). It is written as Pi j (θ).
Therefore, the estimation of the parameter vector θ , i.e., ̂θ , gives us a plug-in estimator of
the transition probability, i.e., ̂Pi j := Pi j (̂θ).

Basic theoretical results concerning HMM in discrete time are given in Baum and Petrie
(1966), and Leroux (1992) where consistency of estimators is proven, as well as in Bickel
et al. (1998) that prove asymptotic normality of the estimator for a stationary process. These
results concerning discrete-time hidden Markov models (DTHMM) case are used in our
CTHMM in order to provide asymptotic results for our estimators.

Here, a continuous-time HMM (CTHMM) is considered, where X is defined by its gen-
erating matrix A and Y by its probability law, with conditional distribution G(i, B) given
{Xt = i}, and B a measurable set inRq , i.e., P(Yt ∈ B|Xt = i) = G(i, B), so the considered
model is an M1-M0.

Our results concern the consistency and asymptotic normality of the estimator of the
parameter θ and applications to a real data set and simulated data.

It is assumed that the generator A of X is a matrix depending on the parameter θ , i.e.,
A = A(θ) as well as the probability distribution of Y , i.e., G = Gθ . Let us denote gθ the
density of Gθ with respect to some dominating measure μ.

The methodology to tackle the problem is based on results in DTHMM, as Bickel et al.
(1998), Baum and Petrie (1966), Leroux (1992) and also on our results in Gamiz et al. (2023).
In the present paper the CTHMM is approached by discretization, so that previous results
can be applied here, and the parameter θ can be estimated by the EM-algorithm. From the
estimator ̂θ we obtain an estimator of the generating matrix ̂A and prove the asymptotic
properties of this estimator such as normality and consistency.

We consider two different scenarii.

1.1 Scenario 1: Regular inspections in time

The true state of the system at time t, Xt is non-observable. However, at regular intervals of
length h, 0 < h < T , certain information related to the system is observed.

Let us show an example of the type of problems that can be treated with this approach. Let
us consider a continuous-time Markov chain (CTMC) {Xt , t > 0} with generating matrix
given by
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A =
⎛

⎝

−2λ 2λ 0
μ −(λ + μ) λ

0 2μ −2μ

⎞

⎠ .

This model is a typical description of the functioning of a system with two units identical
and independent. The units fail at a constant rate equal to λ. Once a unit fails is sent for
repair. The repair system has capacity for the two units and the repair rate is also constant
and equal to μ. The state of the system is expressed as the number of units functioning, then
the state space is E = {0, 1, 2}. For assessing the system performance, we focus on certain
functionals φ(A, t), such as the reliability of the system (the probability that the system has
not suffered from failure before a given time), the availability function (the probability that
the system is operative at a given time) or the expected hitting times (the expected time a
particular class of states is reached by the system), among others. The usual procedure is to
take a sample of identical systems that work under similar conditions and to estimate the
unknown parameters λ and μ from the data. The main problem here is that we consider
that the system is not directly observable and then we are not able to register information
regarding the number of units that are functioning in the system at any given time. In contrast,
at some regular times, t0 = 0, t1 = h, t2 = 2h, . . ., tn = nh, . . ., we have access to certain
indicators that provide useful, though partial, information about the state of the system. Let
us denote by Yn the accessible information about the system that we can observe at time tn ,
for n > 0. We assume that {Y0, Y1, . . . , Yn} are (conditionally) independent and that for each
n the distribution of the random variable Yn is determined by a parameter that depends on
the current state of the system, that is, at time tn = nh.

Let us define Qh(i, j) = P(Xh = j |X0 = i), for i, j ∈ E , and denote Qh the corre-
sponding matrix. Using basic properties of CTMC we have that Qh = I + Ah + o(h), with
I the identity matrix and o(h)/h → 0 for h → 0, then we can approximate Qh , for a fixed
small enough h, by the following

Qh =
⎛

⎝

1 − 2λh 2λh 0
μh 1 − (λ + μ)h λh
0 2μh 1 − 2μh

⎞

⎠ .

In this situation, {Y0, Y1, . . . , Yn} can be seen as a sample from a DTHMMwhose parameters
can be written as a vector θ that includes λ, μ and some other parameters that determine the
distribution of Yn given X̂n = Xnh = i , for i ∈ E .

In general, we defineAh = h−1(Qh − I). As h → 0,Ah → A, uniformly. AsQ = Q(θ),
then A = A(θ). We estimate ̂θn from observations of the hidden Markov model at times
{tn = nh, n ≥ 0}. Leroux (1992) showed the strong consistency of this estimator, that is
̂θn → θ , and in Bickel et al. (1998) the weak convergence of the estimator to a Normal law
is proven, that is,

√
n(̂θn − θ) → N (0, �0), in the case of HMM.

Subsequently, for the plug-in estimator of the transitionmatrixQh , that iŝQh,n = Qh(̂θn),
the strong consistency and asymptotic normality are proven. At the same time the strong
consistency and the asymptotic normality of the plug-in estimator of Ah , that is ̂Ah,n =
A(̂Qh,n), is also demonstrated in this paper.

And as a consequence, for any functional within the following class H(t) = �(A, t),
Hh(t) = �(Ah, t) is defined. Then the plug-in estimator for Hh(t), ̂Hh,n , is shown to be
strongly consistent and asymptotically normal. As an application of this result, the transition
matrix function, H(t) = P(t) = eAt , can be considered, as well as other functions such as
reliability, availability, etc.
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1.2 Scenario 2: Random inspections in time

For a given interval length T , the true state of the system at time t, Xt is non-observable.
Observations related to the underlying state are received at random times following an
Homogenous Poisson Process (HPP), N (t), with intensity λ, unknown and estimated from
the data. We consider the embedded Markov chain obtained from the visited states of X at
the successive arrival times of the HPP. We denote Q its transition probability matrix and
A the generating matrix of the CTMC. We assume that λ ≥ max{ai , i ∈ E}. Using the
uniformization method, see, e.g., Kulkarni (2011), we define Q = (1/λ)A + I. Using the
HMM, an estimator ̂Q, ofQ is obtained, and subsequently the corresponding estimator of the
generating matrix A is obtained as ̂A = ̂λ

(

̂Q − I
)

. It is demonstrated that these estimators
̂Q and ̂A are strongly consistent and asymptotically normal.

The model discussed in this scenario should not be confused with the so called Markov-
modulated Poisson process, which consists of a Poisson process whose rate is controlled by a
non-observable continuous-time Markov chain. In Freed and Shepp (1982) it is considered a
switched Poisson process, i.e., with only two states for the hidden chain. The authors assume
that the rate of one of the states is zero and derive a simple formula for the asymptotic
likelihood ratio that allows to estimate the state at any time from a stream of past events. In
our case, a Poisson process is assumed to deal with the number of signals registered by an
external observer but it is not responsible for the number of signals emitted by the hidden
source nor for the nature of such signals, as it is the case of the Poisson process involved in
a Markov-modulated Poisson process.

The results summarized here can be utilized in different areas, such as system reliabil-
ity, biology, etc., e.g., in Wei et al. (2002) a CTHMM is proposed for evaluating network
performance considering discrete time observations. Zhou et al. (2020) proposed as well
a CTHMM where the observations can be collected regularly, irregularly or continuously.
The number of states is unknown. They apply this model to bladder cancer data. In Verma
et al. (2018) the authors develop a CTHMM under a generalized linear modeling frame-
work to model the evolution of chronic obstructive pulmonary disease (COPD), again, the
model considers discrete-time observations although they are irregularly-spaced observa-
tions. Similarly Hulme et al. (2021) proposed a CTHMM to estimate health conditions of
patients that are monitored by wearable and mobile technology, the observations are as well
irregularly-spaced. Finally, Liu et al. (2016) considers the use of CTHMM for modeling
disease progression as well.

This paper is organized as follows. In Sect. 2 the model and its main characteristics are
defined. The generator of the two-dimensional process is defined and obtained in terms of
the generating matrix A and the emission distribution G. The basic properties of the model
are obtained using a formulation based on semi-Markov processes. In Sect. 3, maximum-
likelihood estimators for the parameters of the model are obtained based on data observed
under two different time discretization schemes. That is, scenario 1, where observations
arrive at times regularly pre-specified; and, scenario 2, where observations arrive randomly
according to a homogeneous Poisson process. Some applications and particular cases of the
model are described in Sect. 3.6.1. Some numerical examples are presented in Sect. 5 and the
conclusions are given in Sect. 6.
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2 Themodel

We follow the formulation of Bickel et al. (1998) and consider the “usual parametrization”
of the model. Specifically, let {Xt ; t ≥ 0} be a continuous-time Markov chain with finite
state space E = {1, . . . , d} and generating matrix A = (ai j , ; i, j ∈ E). Let {Yt ; t ≥ 0}
an Y-valued sequence such that given Xt = i , Yt is conditionally distributed with density
g(i, y) with respect to some σ -finite measure μ on Y , and fixed i ∈ E .

All processes are defined on a complete probability space (�,F,P), are right continuous
and then progressively measurable. This will imply also a family of probabilities {Pi ; i ∈ E},
where Pi (·) = P(·|X0 = i), and expectations {E(i,y); i ∈ E, y ∈ Y}, where E(i,y)[·] =
E[·|X0 = i, Y0 = y], which are defined with respect to a family of probabilities {P(i,y); i ∈
E, y ∈ Y}, where P(i,y)(·) = P(·|X0 = i, Y0 = y).

Both, the generating matrix A as well as the family of densities {g(i, ·); i ∈ E}, depend
on a vector of parameters θ , that is A(i, j) = ai j (θ) and g(i, ·) = gθ (i, ·), for all i, j ∈ E .
The set of possible values of the vector θ is denoted 	 ⊂ R

k , and θ has to be estimated from
a set of observations of the process {Yt }.

The vector θ usually includes the transition rates and also some parameters characteriz-
ing the densities g. As a particular case, it can be assumed that g(i, y) denotes a concrete
parametric family of distributions with parameters β = (β1, β2, . . . , βs), then we can write
θ = (A∗,β), with A∗ the matrix A without its principal diagonal, since the diagonal entries
are functions of the off diagonal entries. In our previous example of a 3-state MC, if we
have that g(i, ·) is the Normal distribution N (κi , σ

2
i ), i ∈ E ; the parameter vector θ will be:

θ = (λ, μ, κ1, σ
2
1 , κ2, σ

2
2 , κ3, σ

2
3 ).

In general Y can be seen as a subset in R
q for some q . If Yt has density function g(i, ·),

given that Xt = i , then P(Yt ∈ B|Xt = i) = ∫

B g(i, y)μ(dy), for B ⊂ Y , is the probability
that the process Yt takes values in a subset B given Xt = i , for i ∈ E . We also denote
G(i, B) = P(Yt ∈ B|Xt = i).

At some points of the paper we will discuss the simpler case that Yt takes values in a finite
set, that is Y = {y1, . . . , ys} and then the emission function will be a d × s-dimensional
matrixG, with elements G(i, y) = G(i, {y}) = P(Yt = y|Xt = i), for all i ∈ E and y ∈ Y ,
and all t > 0 (see Gamiz et al. 2023).

For the rest of the paper we will consider the process (X , Y ) defined as follows.

Definition 1 Let X = {Xt ; t ≥ 0} be an irreducible homogeneous Markov process in a finite
set E and with generating matrix A = (ai j )i, j∈E , and Y = {Yt ; t ≥ 0} is a homogeneous
process in a general set Y ⊂ R

q , with q ≥ 1 such that, for t > 0, the distribution of Yt is
determined G(i, ·), over the event Xt = i , for i ∈ E . Then we say that (X , Y ) is a two-
dimensional process with dependence structure M1-M0. That is, if BY denotes the set of
Borel subsets of Y , then for any i, j ∈ E , y ∈ Y and B ∈ BY , and for all s, t > 0,

P(Xt+s = j, Yt+s ∈ B|Xu, Yu, 0 ≤ u ≤ s)

= P(Xt+s = j, Yt+s ∈ B|Xs) (1)

= P(Xt = j, Yt ∈ B|X0),

where we also use homogeneity of the processes X and Y . Moreover, for t > 0,

P(Xt = j, Yt ∈ B|X0 = i, Y0 = y) = Pi j (t)G( j, B),

and, for t = 0, P(Xt = j, Yt ∈ B|X0 = i, Y0 = y) = 1 if i = j and y ∈ B; and, 0
otherwise.
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2.1 Generators

Let us focus on the two-dimensional process {(Xt , Yt ); t ≥ 0}, where, as above, X is a
continuous-time Markov chain taking values in the set E = {1, 2, . . . , d}, with generating
matrixA and initial law α; and Y is a stochastic process taking values in a set Y ⊂ R

q whose
distribution depends on Xt .

First we recall the concept of generator operator for a two-dimensional process with a
general state space.

Definition 2 (Generator of two-dimensional process with general state space) Let (X , Y ) =
{(Xt , Yt ); t > 0} a two-dimensional process, with X taking values in a set E ⊂ R

d and Y
taking values in a set Y ⊂ R

q and let f ∈ C(E × Y), where C(E × Y) denotes the set of
all continuous bounded functions defined on E ×Y . We define the generator ˜A of (X , Y ) as
follows

˜A f (x, y) = lim
t→0

1

t
Ex,y [ f (Xt , Yt ) − f (x, y)] ,

for (x, y) ∈ E × Y .

We consider that X is a MC with finite state space E , while Y is a process taking values
in a subset Y ⊂ R

q , for q ≥ 1. Since X is a CTMC then its generator is a matrix A =
(ai j ; i, j ∈ E), where ai j ≥ 0, i 	= j and aii = −∑

j 	=i ai j for all i ∈ E . On the other hand,
{Yt } is a sequence conditionally independent, where the law of Yt depends on the value of
Xt .

Proposition 1 Let (X , Y ) be a stochastic process where X is a CTMC with finite state space
E and generating matrix A = (ai j ; i, j ∈ E), and let the transition probabilities of the
process (X , Y ) be given by (1). The generator of the two-dimensional MC (Xt , Yt ) can be
written as

˜A f (i, y) =
∑

j∈E\{i}
ai j

∫

Y
G( j, du) [ f ( j, u) − f (i, y)]

for all i ∈ E and y ∈ Y .

Proof From definition 2 we have, for i ∈ E and y ∈ Y ,

˜A f (i, y) = lim
t→0

1

t

∑

j∈E

∫

Y
[ f ( j, u) − f (i, y)]P(Xt = j, Yt ∈ du|X0 = i, Y0 = y)

From the expression in (1) we get

˜A f (i, y) = lim
t→0

1

t

∑

j∈E

∫

Y
( f ( j, u) − f (i, y))Pi j (t)G( j, du)

=
∑

j∈E

∫

Y
f ( j, u)G( j, du)

(

lim
t→0

Pi j (t) − δi jδyu

t

)

= aii f (i, y) +
∑

j 	=i

ai j

∫

Y
f ( j, u)G( j, du)


�
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In particular, when Y is a finite set, the generator is given by a matrix ˜A as we show next.
The general expression in definition 2 becomes

˜A f =
∑

i∈E

∑

y2∈Y
f ( j, y2)

(

lim
t→0

P(Xt = j, Yt = y2|X0 = i, Y0 = y1) − δi jδy1y2

t

)

We have that P(Xt = j, Yt = y2|X0 = i, Y0 = y1) = Pi j (t)G( j, y2), and we assume that
P(Xt = j, Yt = y2|X0 = i, Y0 = y1) → 0 as t → 0 when y1 	= y2. We consider the
following cases:

• If i = j , y1 = y2, (1/t)
[

Pi j (t)G( j, y2) − 1
] → aii ;

• If i = j , y1 	= y2, (1/t)
[

Pi j (t)G( j, y2)
] → 0; and,

• If i 	= j , (1/t)
[

Pi j (t)G( j, y2)
] → ai jG( j, y2)

Then the generator can be written as a matrix whose elements are

ã((i, y1), ( j, y2)) =
⎧

⎨

⎩

aii , i = j, y1 = y2
0, i = j, y1 	= y2
ai jG( j, y2), i 	= j

(2)

Moreover, we have
∑

j∈E

∑

y2∈Y
ã((i, y1), ( j, y2)) = aii +

∑

j 	=i

∑

y2∈Y
ai jG( j, y2)

= aii +
∑

j 	=i

ai j = 0

Example 1 For illustrative purposes, let us construct the 2-dimensional generator for a simple
case where E = {1, 2} and Y = {y1, y2, y3}. Then, the state space of the coupled process
is ˜E = {(1, y1), (1, y2), (1, y3), (2, y1), (2, y2), (2, y3)}, and the corresponding generating
matrix is

˜A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

a11 0 0 a12G(2, y1) a12G(2, y2) a12G(2, y3)
0 a11 0 a12G(2, y1) a12G(2, y2) a12G(2, y3)
0 0 a11 a12G(2, y1) a12G(2, y2) a12G(2, y3)

a21G(1, y1) a21G(1, y2) a21G(1, y3) a22 0 0
a21G(1, y1) a21G(1, y2) a21G(1, y3) 0 a22 0
a21G(1, y1) a21G(1, y2) a21G(1, y3) 0 0 a22

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

where a·· denote the elements of the generatingmatrixA of X , andG(·, ·) denote the emission
probabilities.

From the generator in Proposition 1 we obtain the semigroup

P(t) = exp(˜At). (3)

2.2 Markov renewal equation for Markov processes

The above semigroup is difficult to handle numerically. For this reason we will consider
another equivalent formulation via semi-Markov processes (see for example Limnios and
Oprisan 2001). In fact, Markov processes are particular cases of semi-Markov processes and
we may use the Markov renewal equation in order to obtain the above formulation (3) in a
much easier numerical scheme.
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Let us define the semi-Markov kernel of the Markov process Xt in the following way.
Let the process (X , Y ) defined as in Definition 1.
For i, j ∈ E and B ∈ BY , we define the following functions

• M(i, j, B, t) = G(i, B)e−ai tδi j ,
• L(i, j, t) = (ai j/ai )(1 − e−ai t ), and,
• ˜P(i, j, B, t) = Pi (Xt = j, Yt ∈ B),

where Pi (Xt = j, Yt ∈ B) = P(Xt = j, Yt ∈ B|X0 = i), and δi j denotes the Kronecker
delta and ai = −aii .

Note that the function L(i, j, t) is the semi-Markov kernel of the Markov process {Xt }.
In particular, when Yt takes values in a finite set of size s, we can define the matrix of

transition functions of the process (X , Y ),˜Pt with dimension (d · s) × (d · s) and elements

˜Pt ((i, y
′), ( j, y)) = Pi j (t)G( j, y), i, j ∈ E, y′, y ∈ Y, and t ≥ 0. (4)

In the same way we can construct matricesMt and Lt whose elements are given above.
Given φ a measurable function defined on E × R+ we define its convolution by L as

follows

(L ∗ φ)(i, t) =
∑

j∈E

∫ t

0
L(i, j, ds)φ( j, t − s), i ∈ E, t ≥ 0. (5)

Proposition 2 (Markov renewal equation) The function ˜P(i, j, B, t) verifies the following
Markov renewal equation

˜P(i, j, B, t) = M(i, j, B, t) +
∑

k∈E

∫ t

0
L(i, k, ds)˜P(k, j, B, t − s), (6)

where i, j ∈ E, B ∈ BY , and t ≥ 0.

Proof We have that

Pi (Xt = j, Yt ∈ B) = G(i, B)e−ai tδi j

+
∑

k∈E

∫ t

0
Pi (Xt = j, Yt ∈ B, J1 = k, T1 ∈ ds)

where (J1, T1) describes the first jump of the Markov renewal process {(Jn, Tn), n > 0}
associated to the process X , that is J1 = XT1 .

Then

Pi (Xt = j, Yt ∈ B) = G(i, B)e−ai tδi j

+
∑

k∈E

∫ t

0
Pi (Xt = j, Yt ∈ B|J1 = k, T1 = s)Pi (J1 = k, T1 ∈ ds)

= G(i, B)e−ai tδi j

+
∑

k∈E

∫ t

0
Pi (Xt−s = j, Yt−s ∈ B)aike

−ai sds

= M(i, j, B, t) +
∑

k∈E

∫ t

0
L(i, k, ds)˜P(k, j, B, t − s)

= M(i, j, B, t) + (L ∗ ˜P)(i, j, B, t)


�
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It has been proven that ˜P(i, j, B, t) = M(i, j, B, t)+(L∗ ˜P)(i, j, B, t), where ∗ denotes
the convolution operation defined in (5).

For the case that Yt takes values in a finite set we can write Eq. (6) in matrix notation as
follows

˜Pt = Mt + Lt ∗ ˜Pt

Let us define� the Markov renewal function of the process X , that is�(t) = ∑

n≥0 L
(n)
t ,

where L(n)
t denotes the nth fold-convolution of Lt , that is, the (i, j)-element given by

L(n)(i, j, t) =
∑

k∈E

∫ t

0
L(i, k, ds)L(n−1)(k, j, t − s), i, j ∈ E, t > 0,

being L(0)(i, j, t) = δi j1R+(t), and L(1)(i, j, t) = L(i, j, t).
Then the solution of Eq. (6) is given by ˜P(i, j, B, t) = (� ∗ M)(i, j, B, t), see for

example Limnios (2012).
Using the Markov renewal theorem (MRE), see Shurenkov (1984), the stationary

distribution of the process (X , Y ) can be obtained in the following proposition.

Proposition 3 (Stationarity) Under the conditions above and if X is irreducible, we have

lim
t→∞

˜P(i, j, B, t) = π j G( j, B), j ∈ E, B ∈ BY .

So we have that the probability distribution π̃ whose elements are π̃( j, B) = π j G( j, B),
for j ∈ E, and B ∈ BY is the limit distribution of the process (X , Y ).

Moreover, π̃(i, B) is the stationary distribution of the process (X , Y ), that is, it verifies
that

π̃ ˜A f = 0, f ∈ C(E × Y).

Proof For the first part of the proposition, let ρ denote the stationary distribution of the
embedded Markov chain Jn associated to the MC Xt , with transition probabilities pi j =
ai j (1 − δi j )/ai .

Let π be the row vector of stationary probabilities of the CTMC Xt , that is, verifying that
πA = 0. It is satisfied that πi = miρi/m, with mi = 1/ai , the mean sojourn time in state i
and m = ∑

j∈E miρi .

Then, by the irreducibility of X and, as ˜P(i, j, B, t) = (� ∗ M)(i, j, B, t) by MRT, we
have that

lim
t→∞(� ∗ M)(i, j, B, t) = 1

m

∑

k∈E
ρk

∫ ∞

0
M(k, j, B, t)dt

= 1

m

∑

k∈E
ρk

∫ ∞

0
G(k, B)e−ak tδk j dt

= 1

m
ρ j G( j, B)

1

a j
= π j G( j, B)

Then we define π̃( j, B) = π j G( j, B), for j ∈ E and B ∈ BY the stationary distribution of
the coupled process (X , Y ).

For the second part, we can write

π̃˜A f =
∑

j∈E

∫

Y
π̃( j, dy)˜A f ( j, y),
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and, from the definition of the generator ˜A and the definition of π̃ , we get

π̃˜A f =
∑

j∈E

∫

Y
π j G( j, dy)

∑

i∈E
a ji

∫

Y
G(i, du) [ f (i, u) − f ( j, y)]

=
∑

i∈E

∑

j∈E
π j a ji

∫

Y

∫

Y
G( j, dy)G(i, du) [ f (i, u) − f ( j, y)]

= 0

where the last equality is deduced from the fact that πA = 0. 
�
Remark 1 As the component G( j, B) does not depend on the time, we can also use relation
(4) to derive directly the limit in the first part of Proposition 3.

3 Estimation

As described in Sect. 2, the two-dimensional process (X , Y ) is fully specified by the generat-
ing matrix of the continuous-time MC X , A and the emission distribution G. Let us assume
thatA = A(θ), and thatG = Gθ , that is, they both depend on a vector of unknown parameters
θ . The problem here is to obtain estimators of the parameter from data. Let us consider that
the MC X is unobservable while we can register information about the state of the process Y .
In other words, consider that our data come from a continuous-time HMM (Xt , Yt ), where
Xt is the hidden process and we aim at estimating θ from a sample of observations of the
process Yt in an interval of time [0, T ].

3.1 Time discretization

3.2 Scenario 1. Regular inspections in time

In this section, observations emitted by a CTHMM are recorded at regular time points.
Let us consider a stochastic system according to a continuous-timeMarkov chain {Xt ; t ≥

0} with state space E = {1, 2, . . . , d} as above; generating matrix A, that is P(t) = eAt , for
all t > 0.

The true state of the system Xt is non observable at any time t ∈ (0, T ]. However, at n
regular pre-specified times denoted by 0 < h < 2h < · · · < nh = T , observations of a
random process {Yt ; t ≥ 0} are available providing certain information about the true state
of the system. Let us denote Ŷk = Ykh the k-th observed signal, which is recorded at time
kh, for k ∈ {0, 1, . . . , n}.

Associated to (or embedded in) the continuous-time process we can consider the following
discrete time Markov chain X̂k = Xkh , with transition matrix Qh = eAh , whose (i, j)-
element is given by Qh(i, j) = P(Xh = j |X0 = i). The discrete Markov chain X̂k is called
the discrete skeleton (at scale h) of Xt , (see Kingman 1963) for ergodicity properties of
Markov chains based on discrete skeletons).

Consider the sequence of times 0 < h < 2h < · · · < nh, then Ŷ0, Ŷ1, . . ., Ŷn can be
seen as a realization of the embedded discrete hidden Markov model that we denote by
(X̂ , Ŷ ). We can use the results in Bickel et al. (1998) to estimate the transition matrix of
this embedded hidden Markov chain {X̂n}, that is we obtain ̂Qh , as well as the emission
functions G(i, dy) = P(Ŷk ∈ dy|X̂k = i), for i ∈ E .
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For an interval of length h, we have Qh = P(h) = eAh ; where A = (ai j ; i, j ∈ E) is the
generating matrix of the hidden continuous-time Markov chain; P(h) is the corresponding
transition function matrix; and, Qh is the transition matrix of the Markov chain X̂k . Then,
using Taylor expansion, we approximate

ai j = 1

h

(

Qh(i, j) − δi j
) + o(1)

where o(h)/h → 0 as h → 0, and δi j equal to 1 if i = j and 0 otherwise. Then, we define
the estimator of the generating matrix as

̂Ah := 1

h

(

̂Qh − I
)

, (7)

where ̂Qh is the maximum likelihood estimator of the transition matrix corresponding to the
discrete-time chain X̂ , obtained as in Gamiz et al. (2023), and I the identity matrix.

Note that since we write A = A(θ) we also have that Q is a function of the parameter
vector θ , that is, Q = Q(θ).

3.3 Scenario 2. Random inspections in time

In this case, we consider that the observations of the process {Yt } are received at random
times following a Poisson process N (t), independent of Xt and Yt , with intensity λ, which
is unknown and can be estimated from the data.

The number of observations into the interval (0, T ) is finite, random and equal to N (T ),
where N (t), t ≥ 0 is a HPP with intensity λ ≥ max{ai }, and ai = −aii > 0, for all
i = 1, . . . , d .

Let us denote Ŷ0, Ŷ1, . . . , Ŷn the observations registered in an interval (0, T ]. The states
visited by the Markov process X at the successive arrival times of the Poisson process can
be seen as an embedded discrete-time hidden Markov chain Zn with transition probability
matrix denoted by Q. The generating matrix of the hidden process is denoted by A already
given before, then, using the uniformization method (see, e.g., Kulkarni 2011, or Girardin
and Limnios 2018), we have that

Q = 1

λ
A + I

where I is the identity matrix.
Using the HMM model we estimate again the transition matrix of the embedded Markov

chain, ̂Q. So we can define the following estimator

̂A =̂λ
(

̂Q − I
)

, (8)

where λ can be estimated bŷλ = N (T )/T .

3.4 Assumptions

In order to establish consistency and asymptotic normality of the estimators, we need the
following assumptions.

Let us define Gθ (i, dy) := Pθ (Yt ∈ dy|Xt = i) = gθ (i, y)μ(dy), i ∈ E and θ ∈ 	 ⊂
R
k , with 	 an open set, and where μ is some reference measure dominating all Gθ (i, ·).
Denote by ‖·‖ the euclidean norm in R

k , and θ = (θ1, . . . , θk). The true value of the
vector of parameters is denoted as θ0 = (θ01, . . . , θ0k).
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A1: The MP X is irreducible, i.e., ergodic. We consider moreover that X is stationary.
A2: The mixtures of Gθ (i, ·) are identifiable.
A3: The functions θ �→ Pθ (i, j) and θ �→ Gθ (i, ·) belongs to C2(	).
A4: For some δ > 0, and all i ∈ E ,

Eθ0‖ln gθ (i, Y0)‖ < +∞,

Eθ0 [ sup
‖θ−θ0‖<δ

(ln gθ (i, Y0))
+] < +∞.

A5: For some δ > 0

Eθ0

[

sup
‖θ−θ0‖<δ

‖ ∂

∂θi
ln gθ (i, Y0)‖2

]

< +∞

Eθ0

[

sup
‖θ−θ0‖<δ

‖ ∂2

∂θi∂θ j
ln gθ (i, Y0)‖2

]

< +∞
∫

sup
‖θ−θ0‖<δ

‖ ∂k

∂θi1 · · · ∂θik
ln gθ (i, y)‖μ(dy) < +∞.

A6: k(y) := sup‖θ−θ0‖<δ maxi, j∈E gθ (i,y)
gθ ( j,y) for some δ > 0, and Pθ0(k(Y0) = +∞|X0 =

i) < 1, for any i ∈ E .

3.5 Asymptotic properties

Let (X , Y ) be the two-dimensional process as defined in Definition 1 in Sect. 2. LetA = (ai j )
denote the generating matrix of Xt , t ≥ 0, with state space E = {1, 2, . . . , d}.

Consider the related Markov chains:
Scenario 1: X̂n = Xnh , with transition probability matrix Qh = eAh .
Scenario 2: Zn = XTn where Tn , n ≥ 1, are the arrival times of a HPP(λ), with

λ ≥ max{ai , i = 1, . . . , d}, and T0 = 0, where ai := −aii . Its transition probability is
Q = I + λ−1A.

Lemma 1 (i) If the Markov process X is irreducible then the above Markov chains, X̂ and
Z, are irreducible and aperiodic, i.e., ergodic.

(ii) The Markov process X, and the Markov chains X̂ and Z have the same stationary
probability, say π .

(iii) If the Markov process X is stationary, then the Markov chains X̂ and Z are also sta-
tionary, and the sequence Ŷ is stationary with the stationary distribution πG(·) =
∑

j∈E π j G( j, ·) in both scenarii.
(iv) In our case M1 − M0, if {Xn} is ergodic, the Markov chain (Xn, Yn) is ergodic with

stationary probability π̃( j, B) = π j G( j, B), with j ∈ E and B ∈ BY , Borel sets in Y .

Proof (i) By construction the X̂ and Z are irreducible too as X . Moreover they are aperiodic
since Qh(i, i) > 0 and Q(i, i) > 0.

(ii) The stationary probability π of theMP X is given by the solution of the equation πeAh =
π which is the same as for X̂ . Moreover this is the same for Z too (see, e.g., Ross 1996).

(iii) If the MP X is stationary, it means that P(Xt = j) = π j , for all t ≥ 0 and all j ∈ E , and
we have P(Xkh = j) = P(X̂k = j) = π j , so that X̂ is stationary too. The same applies
for Z .
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(iv) The transition probability for the Markov process (Xt , Yt ) is obtained by the limit of
the transition probability. We showed in Sect. 2.2 that the transition probabilities for the
process (Xt , Yt ) are given by P(Xt = j, Yt ∈ B|X0 = i, Y0 = y) = Pi j (t)G( j, B), for
i, j ∈ E , B ∈ BY and y ∈ Y . Also we proved in Sect. 2.2 that π̃( j, B) = π j G( j, B).


�

3.6 Scenario 1. Regular inspections in time

In this section we establish asymptotic properties of the estimators. Let h > 0, and let
Ŷ0, Ŷ1, . . . , Ŷn observations of a HMM as described in Sect. 3.2 for Scenario 1.

We extend the sequence {Yn, n ≥ 0} to the sequence {Yn, n ∈ Z}.

Notation

1. Likelihood:

pθ (Ŷ0, Ŷ1, . . . , Ŷn) =
∑

(i0,...,in)∈En+1

πθ (i0)
n

∏

k=1

Pθ (ik−1, ik)
n

∏

l=0

Gθ (il , Ŷl).

2. Fisher information matrix: In(θ0) = −Eθ0

[

∂2 ln pθ (Ŷ0,Ŷ1,...,Ŷn)
∂θi ∂θ j

∣

∣

∣

∣

θ=θ0

]

i j

.

3. Asymptotic Fisher information matrix; I (θ0) = −Eθ0

[

∂2 lnPθ (Ŷ0|Ŷ−1,Ŷ−2...)
∂θi ∂θ j

∣

∣

∣

∣

θ=θ0

]

i j

. This

matrix is nonsingular provided that there exists an integer n ∈ N such that In(θ0) is
nonsingular.

Under assumptions A1, A2, A3, A4, Leroux (1992) proves that the maximum-likelihood
estimator is strongly consistent in euclidean norm. Given consistency and under assumptions
A1, A3, A5, A6, Bickel et al. (1998) prove asymptotic normality. Specifically they prove the
following theorem.

Theorem 1 (Bickel et al. (1998). Theorem 1.) Assume that A1, A3, A5, A6 hold, that the
maximum-likelihood estimator ̂θn is consistent and that I (θ0) is nonsingular. Then

√
n

(

̂θn − θ0
) d−→ N (0, �0),

as n → +∞, with �0 = I (θ0)−1.

Now for the processes Xt , Yt in continuous time, we get the following results.

Proposition 4 (Consistency) Let h > 0 be fixed. Under assumptions A1–A4, given a sample
of observations {Ŷ0, Ŷ1, . . . , Ŷn}, the estimator given in (7) is uniformly strongly consistent,
that is

max
i, j∈E |̂Ah,n(i, j) − Ah(i, j)| a.s.−→ 0, as n → ∞.

Proof Uniform consistency of̂θn implies uniform consistency of ̂Qh,n , since ̂Qh,n = Q(̂θn)

is a continuous transformation of ̂θn , and so is ̂Ah,n , since we define ̂Ah,n = A(̂θn) =
h−1

(

Q(̂θn) − I
)

, then ̂Ah,n is a uniform consistent estimator of Ah . 
�
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Proposition 5 (Asymptotic normality) Under assumptions A1, A3, A5, A6, given a sample
of observations {Ŷ0, Ŷ1, . . . , Ŷn}, where for each k ≥ 0, Ŷk = Ykh, for h > 0 fixed, the
random matrix

√
n

(

̂Ah,n − Ah
)

is asymptotically Normal, as n → ∞, with mean 0 and
variance-covariance matrix �A = ∇A��0∇A, with ∇A the gradient of function A(θ) = A
evaluated at θ0.

Proof For a fixed h > 0, and T = nh, we have, as T → ∞, n → ∞, and we can use
Therorem 1 of Bickel et al. (1998).

Let A be the generating matrix of {Xt }, with A = A(θ); then for h > 0 fixed, define
Qh = Ah + I, then Qh = Q(θ) = A(θ)h + I, and ∇Q = h∇A. Then

√
n(̂Qh,n − Qh) → N (0, �Qh ),

with �Qh = h2�A = h2∇A��0∇A.
Now, we define Ah = Qh−I

h , for h > 0 fixed. The estimator of the matrix Ah defined in
(7) leads to

√
n(̂Ah,n − Ah) =

√
n

h

(

̂Qh,n − Qh
)

and then, again using the Delta method, we obtain�A = h−2�Qh = ∇A��0∇A, which does
not depend on h. 
�

In this scenario, it is important to check the accuracy, in terms of the value of h, of the
approximation of A by Ah . The following proposition proves that ̂Ah,n converges uniformly
to A, when h goes to 0 and n goes to ∞, for fixed T .

Proposition 6 Under assumptions A1–A4, given a sample of observations {Ŷ0, Ŷ1, . . . , Ŷn},
it is true that:

(a) ̂Ah,n is an estimator of A uniformly strongly consistent. That is:

max
i, j∈E|̂Ah,n(i, j) − A(i, j)| a.s.−→ 0, as n → ∞, h → 0,

(b)
√
n(̂Ah,n − A)

d−→ N (0, �A)

Proof For any h > 0, as Ah = 1
h (Qh − I), strong consistency is deduced because ̂Ah,n is a

continuous transformation of ̂θ , which gives us (a).
For (b) we have

√
n(̂Ah,n − A) = √

n(̂Ah,n − Ah) + √
n(Ah − A). (9)

From Proposition 5,
√
n(̂Ah,n −Ah)

d−→ N (0, �A), for any h as n → +∞ and T → +∞.
We can take hn = (n ln n)−1/2 in order that T = nhn → +∞ as n → +∞ so we can apply
Proposition 5 in the first term of the right hand side of (9). On the other hand, Qh = eAh ,

and, by the definition of Ah , we have that Ahn − A = A2

2 hn + o(hn), then, for the second

term in the right hand side of (9) we have that
√
n(Ahn − A) = A2

2
1√
ln n

+ o(1/
√
ln n), and

the conclusion follows from the uniqueness of the limit. 
�
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3.6.1 Applications

Proposition 6 allows us to prove the almost sure convergence of the plug-in estimators of
functionals of type H(t) = �(A, t). That is, let h > 0, then we can define the Hh(t) =
�(Ah, t) as H but based on Ah . If a sample of size n of the HMM is available, we can
define the plug-in estimator of Hh(t) and deduce the properties of this estimator as above.
Moreover, we have that

̂Hh,n(t)
a.s.−→ H(t), as n → ∞, h → 0

and also

√
n

(

̂Hn − H
) d−→ N (0, �H ), as n → ∞, h → 0.

As an example let us consider the reliability or survival function. Let A0 and α0 the
restrictions of A and α on the up states. Then we can write the reliability formula

R(t) = α0e
A0t1,

and in discrete time, for t = nh,

Rh(t) = α0
(

Qh,0
)n 1,

where Qh,0 is the restriction of Qh on the up states, and 1 is a column-vector of 1 s with the
appropriate dimension.

Proposition 7 For any arbitrary but fixed t > 0, such that t = nh, we have

Rh(t) −→ R(t), as n −→ ∞ (h → 0).

Proof This comes from the well known result
(

Qh,0
)n = (

I + n−1A0 + o(h)
)n −→

n→∞ eA0t .


�

3.7 Scenario 2. Random inspections in time

In this section we establish asymptotic properties for T → +∞.

Proposition 8 (Consistency) Under assumptions A1-A4, given a sample of observations
{N (T ), Ŷ0, Ŷ1, . . . , ŶN (T )}, the estimator given in (8) is strongly consistent, that is ̂AT → A
(a.s.), as T → +∞.

Proof We have that̂λ = N (T )
T −→

T→+∞ λ, a.s. (see for example Ross 1996). Also from the

results in Gamiz et al. (2023) we have that ̂QT −→ Q. Then using Slutsky theorem (Gut
2013), we get

̂AT =̂λT
(

̂QT − I
) −→
T→+∞ λ(Q − I) = A; (a.s.).


�
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Proposition 9 (Asymptotic normality) Under assumptions A1, A3, A5, A6, given a sample of
observations {N (T ), Ŷ0, Ŷ1, . . . , ŶN (T )}, the random matrix

√
T

(

̂A − A
)

is asymptotically
Normal as T → +∞, with mean 0 and variance-covariance matrix �A = �1 + �2,

where �1 = λ∇Q��0∇Q, and �2 = �B�B�
, where B = √

λ (Q − I) and �B is a vector
representation of the matrix B.

Proof We can write
√
T

(

̂A − A
) = √

T̂λ
(

̂QT − Q
) + √

T
(

̂λ − λ
)

(Q − I). (10)

To check the convergence to a Normal distribution we consider the two terms of expression
(10) separately. First, we have

√
T ̂λ

(

̂QT − Q
) =

√

N (T )

T

√

N (T )
(

̂QT − Q
)

, (11)

where we use that̂λ = N (T )/T .
From the results in Bickel et al. (1998) and the fact that N (T ) → ∞ (a.s.) as T → ∞,

we have that
√

N (T )
(

̂QT − Q
) d−→ N (0, �Q), as T → ∞,

with variance-covariance matrix �Q obtained by the Delta method applied to the function
Q(θ) = Q, similar to proposition 5.

Using that N (T )/T → λ, almost surely, as T → +∞, we get that the first term of the
sum converges to a Normal distribution, that is

√
T ̂λ

(

̂QT − Q
) d−→ N (0, λ�1),

with �1 = λ�Q, a matrix of dimension d2 × d2.
On the other hand, N (T ) has Poisson distribution with mean λT , which can be

approximated by a Normal distribution with both mean and variance equal to λT , that is
√
T

(

̂λT − λ
) d−→ N (0, λ).

Then, the second term in the sum is also asymptotically Normal with variance-covariance

matrix �2 = �B�B�
, where B = √

λ (Q − I), that is
√
T (λT − λ) (Q − I)

d−→ N (0, �2).

Specifically �B is a d2-dimensional vector obtained by stacking the columns ofB into a column
vector, then�2 is also a matrix of dimension d2×d2, and then� = �1+�2 is well defined.

�

4 Applications

4.1 Reliability for CTHMMwith discrete state space

In this section we consider that Y takes values in a finite set, that is Y = {y1, . . . , ys}, then
the corresponding two-dimensional process (Xt , Yt ) has a finite number of states.

We can write the set of states for the two-dimensional process as ˜E = E × Y , with
˜E = {(1, y1), . . . , (d, y1), (1, y2), . . . , (d, y2), . . . , (1, ys), (2, ys), . . . , (d, ys)}.

123



Statistical Inference for Stochastic Processes

Then {(Xt , Yt ); t > 0} is a two-dimensional continuous-time Markov chain with state-
space ˜E = E × Y and transition matrix˜P with elements

˜Pt ((i, y
′), ( j, y)) = Pi j (t)G( j, y),

for i, j ∈ E and y′, y ∈ Y . In matrix form, we have

˜P(t) =

⎛

⎜

⎜

⎝

B1(t) B2(t) · · · Bs(t)
B1(t) B2(t) · · · Bs(t)
· · · · · · · · · · · ·

B1(t) B2(t) · · · Bs(t)

⎞

⎟

⎟

⎠

where for each k = 1, . . . , s, the corresponding block is a d × d sub-matrix Bk(t) =
P(t) · diag(Gk), where diag(Gk) is a d-dimensional diagonal matrix with the kth column
of the matrix G. The generator A is a matrix of dimension (d · s) × (d · s) with elements
ã((i, y′)( j, y)) as detailed in (2).

Following similar arguments as in Gamiz et al. (2023), we consider that the state-space
of the process X is split into two subsets U := {1, . . . , r}, the working states, and D :=
{r +1, . . . , d}, the down states. Additionally, the system up states can be defined not only by
U ⊂ E but also by some subset of Y . Then we consider also a partition in the set of possible
observations, that is Y = Y1 ∪ Y2, where in Y1 we consider indicators of good performance
of the system, and in Y2 we consider the indicators warning of some serious problem in the
system.

Let us denote τ the first time the system visits the set of down states D, i.e., the hitting
time of set D. Let us consider ˜U = U × Y1 and ˜D = ˜E \ ˜U , being ˜E = E × Y . Then
τ = inf{t > 0 : ˜X = (Xt , Yt ) ∈ ˜D}. Therefore the reliability of the system can be defined
as ˜R(t) = P(τ > t), for t ≥ 0. Conditioning on the initial state (i, y) ∈ ˜U = U × Y1, we
write

˜R(i,y)(t) = Pi (τ > t) = Pi (Xs ∈ U , Ys ∈ Y1, 0 < s ≤ t)

= Pi ((Xt , Yt ) ∈ ˜U , 0 < s ≤ t), (12)

and then

˜R(t) =
∑

(i,y)∈˜U

˜R(i,y)(t),

for t > 0. Using matrix notation, we can write

˜R(t) = α̃e
˜A

˜U t1
˜U

where ˜A
˜U denotes the sub-matrix of ˜A with all transition rates among states of subset ˜U .

4.2 Reliability for CTHMMwith a general state space

When the Y process takes values in a finite set, the formula in (12) can be applied because the
generatorA

˜U is a matrix, but when Y takes values in a subset ofRq ,A
˜U is an operator and we

can not make use of the formula in (12). In that case we propose to work by Markov renewal
equations (in the semi-Markov way) in this section. Let us define H(i, t) = e−ai tG(i,Y1),
for i ∈ U , and let�U be theMarkov renewal function corresponding to the sub semi-Markov
kernel LU (i, j, t) = ai j

ai
(1−e−ai t ), for i, j ∈ U . The following result can be proved similarly

to Proposition 2.
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Proposition 10 (Reliability)The conditional reliability function ˜R(i,y)(t) satisfies theMarkov
renewal equation (MRE)

˜R(i, t) = H(i, t) +
∑

j∈U

∫ t

0

˜R(k, t − s)L(i, k, ds)

Therefore, the conditional reliability is given by the only solution of the above equation,
i.e.,

˜R(i, t) = (�U ∗ H)(i, t)

5 Numerical examples

In this section we illustrate the two scenarii discussed in the rest of the paper. In the first
example, a real dataset is considered whereas in the second example a simulation study
is carried out. In both cases, we discretize the continous-time problem, and then estimate
using our algorithms in Gamiz et al. (2023), and finally we establish estimator properties in
continuous-time, our initial problem.

5.1 Scenario 1. Regular inspections in time

As a illustration we consider a comparison study of the suicide-rate in the US and Japan
during the period 1985–2015. The data have been taken from the data platform https://www.
kaggle.com/. We focus on the following variables: the Suicide Rate, which is measured
as the number of suicides/100k population, and, the Gross Domestic Product per capita
(GDP_per_capita).

5.1.1 Preliminary

Although the data registry provides information froma total of 94 countrieswe limit ourselves
to the US and Japan. We have chosen two of the most developed countries in the world with
the aim of comparing them with respect to the number of suicides per year.

In Fig. 1 we give a graphical description of the situation. On the top panel we describe the
case of US while on the bottom panel we represent the information from Japan.

Looking at the figure from left to right we have the following. The plots on the left display
the suicide-rate per year for US (top) and Japan (bottom) from 1995 to 2015, respectively.
The suicide-rate has been calculated as the number of suicides registered in the country every
year per 100,000 inhabitants. In each graph it is shown the value calculated every year as well
as a smoothed curve obtained from these values and that helps in visualizing the tendency
of the suicide-rate along the period of observation. As we can see from the curves, not only
suicides occur in Japan at a significantly higher rate than in US, also it is remarkable the
existence of a high variability in the rate of suicides in Japan over the years, which is not
appreciated in the case of US where the tendency is more steady.

On the right-side panels, a scatterplot is given representing the GDP per capita from 1995
until 2015 in US (top) and Japan (bottom). What catches our attention is that again the
situation in US seems to be more stable and suggests an increasing trend, with an almost
constant slope, of the population standard of living in theUS.We can see just one abrupt decay
coinciding with the period of the economical crisis around 2008. However the GDP curve in
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Fig. 1 Overview of the situation in the US (top panel) and Japan (bottom panel) during the period 1995–2015

Japan, although suggests a slightly increasing tendency from 1995 onwards, it shows high
variability at the same period of timewhen the highest suicide rate is seen in the corresponding
plot (on the left panel).

Figure2 shows smooth density estimations of the rate of suicides all along the observation
period for both countries, US on the left panel, and Japan on the right one. As we can see, the
curves in both cases seem to suggest two different “regimes” (hidden or latent) in the country.
These regimes could be the result of the interaction of the country’swealth (measured in terms
of the GDP) and possibly many other intrinsic factors which in conjunction can explain, to
a certain extent, the observed rate of suicides at any particular time.

With this in mind, we propose to study this phenomenon using a CTHMM with the
following specifications.

• {X(t); t > 0} is the CTMC that represents the internal regime that is not directly
observable.
Let us assume that X takes values in E = {1, 2};

• {Y (t), t > 0} is the observable process. We define Y (t) as the rate of suicides at time t .
Considering the plots in Fig. 2, we assume that Y (t) conditioned to the event {X(t) = i}
follows a Normal distribution with mean μi and standard deviation σi , for i ∈ {1, 2};
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Fig. 2 Density curve of suicide rate in the US (left) and in Japan (right)

Wedo not have a continuous-time follow-up of the process.We rather have annual observa-
tions, so we use the methodology presented in this paper and estimate the model considering
Scenario 1where observations arrive regularly in time, specificallywith h = 1. Regarding the
DTHMM for each case study (US and Japan), the following parameters have to be estimated

θ = (Qh(1, 1), Qh(2, 1), μ1, μ2, σ1, σ2) ,

where Qh(i, 1) = P(Xh = 1|X0 = i), for i ∈ {1, 2}. Then an estimator ̂Ah is obtained as
explained in Sect. 3.1.

5.1.2 Results

We use the EM-Algorithm. The function Q(θ |θ(m)) = Eθ(m) [ln f (X̂ , Ŷ|θ)] will give us by
successive iterations an approximation of the estimate of θ , where ln f (X̂ , Ŷ|θ) is the log-
likelihood corresponding to the complete dataset, which would be obtained from the bivariate
process (X̂ , Ŷ ).

Q(θ |θ(m)) =
N−1
∑

n=1

∑

i, j∈E
Pθ(m) (X̂n = i, X̂n+1 = j |Ŷ) ln Pθ (i, j)

+
N

∑

n=1

∑

i∈E
Pθ(m) (X̂n = i |Ŷ)

K
∑

k=1

ln g(Ŷkn;φi ). (13)

• E-Step
For given θ(m), compute the probabilities:

Pθ(m) (X̂n = i, X̂n+1 = j |Ŷ), n ∈ {1, . . . , N − 1}; i, j ∈ E

and

Pθ(m) (X̂n = i |Ŷ), n ∈ {1, . . . , N }; i ∈ E .
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Table 1 Estimated parameters of the hidden model

United States (US) Japan

̂Qh =
(

0.915 0.085
0.052 0.948

)

̂Qh =
(

0.941 0.059
0.072 0.928

)

G(1, ·) → N (μ̂1 = 11.90, σ̂1 = 0.437) G(1, ·) → N (μ̂1 = 19.53, σ̂1 = 2.340)

G(2, ·) → N (μ̂2 = 13.41, σ̂2 = 0.556) G(2, ·) → N (μ̂2 = 24.79, σ̂2 = 1.047)

α̂ = (1, 0) α̂ = (0, 1)

̂A =
( −0.0854 0.0854

0.052 −0.052

)

̂A =
( −0.059 0.059

0.072 −0.072

)

π̂ = (0.3789, 0.6211) π̂ = (0.5514, 0.4486)

To solve this step we use of the forward-backward probabilities defined as in Gamiz et al.
(2023).

• M-Step

Update θ(m) to θ(m+1). The maximization step M is realized directly by

̂P(m+1)(i, j) =
∑N

n=1 Pθ(m) (X̂n = i, X̂n+1 = j |Ŷ)
∑N

n=1 Pθ(m) (X̂n = i |Ŷ)
. (14)

Considering that the emission function follows a Normal law, gθ (i, y) =
(σi

√
2π)−1 exp

(−(y − μi )
2/(2σ 2

i )
)

, for i = 1, 2. The optimal value of the second term
Q2((φi ; i ∈ E)|θ(m)) is obtained for

μ̂i =
∑N

n=1 Pθ(m) (X̂n = i |Ŷ)Ŷn
∑N

n=1 Pθ(m) (X̂n = i |Ŷ)
;

and,

σ̂ 2
i =

∑N
n=1 Pθ(m) (X̂n = i |Ŷ)(Ŷn − μ̂i )

2

∑N
n=1 Pθ(m) (X̂n = i |Ŷ)

,

for i ∈ {1, 2}.
We have estimated the model in both cases, i.e., with data from US as well as Japan.

The estimated values reported in Table 1 are the following: the transition matrix Qh ; the
parameters of the emission law, {G(i, ·) → N (μi , σi ); i = 1, 2}; the initial distribution, α;
the generating matrix A and the stationary distribution of the continuous MC π .

Figure3 represents the transition probability functions between hidden states.

5.2 Scenario 2. Random inspections in time

To illustrate this approach we present a simulation study. In particular, we consider a system
with four possible states, that is E = {1, 2, 3, 4}, with {1, 2} the functioning states whereas
{3, 4} are the down states. The observed output may vary in the set Y = {y1, y2, y3, y4}. The
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Fig. 3 Transition-function matrix of the hidden MC governing the suicide rate observed in Japan (solid red
line) and in US (solid blue line)

true generating and the emission matrices are given by

A =

⎛

⎜

⎜

⎝

−6 4 1 1
3 −5 1 1
1 2 −5 2
0 2 2 −4

⎞

⎟

⎟

⎠

, and, G =

⎛

⎜

⎜

⎝

0.5 0.5 0 0
0.3 0.5 0.2 0
0.1 0.2 0.5 0.2
0 0.2 0.3 0.5

⎞

⎟

⎟

⎠

.

Besides, we assume that the system is inspected at times that follow a Poisson process with
intensity λ. Let us assume that X0 = 1 and Y0 = y1.

We have simulated a total of 500 samples of size N = 100 each according to the following
algorithm.

1. Generate a sample trajectory (X1, T1), . . . , (XN , TN ) of the MC X from the generating
matrix A, where Xn is the nth state visited by the process and Tn the sojourn time of the
system in the n − 1 for n ∈ {1, . . . , N }. Denote Zn = ∑n

k=1 Tn , the successive jump
times of the MC.
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Fig. 4 Scenario 2: Observations
follow a Poisson process
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Table 2 Mean values of sample
sizes for different values of λ

λ 6.5 7 8 9

N̄0 131.1 141.2 161.0 180.8

N̄0 = ∑500
k=1 N

k
0

Nk
0 , total number of observations obtained at the kth repetition of the

experiment

2. Generate a sample Y1, . . . , YN of the process Y , following the rule P(Y = y|X = i) =
Gi,y , with i ∈ {1, 2, 3, 4} and y ∈ Y .

3. Generate a sample trajectory of the PP with rate λ, that is, S1 < S2 < . . . < SN0 . Simulate
arrival times until SN0 ≥ ZN .

4. Put Ŷ0 = Y0. For each r ∈ {1, . . . , N0}, find n > 0 such that Zn ≤ Sr < Zn+1 and define
Ŷr = Yn .

We have considered three cases, λ ∈ {6.5, 8, 9}
Again we use the EM-algorithm, as in Gamiz et al. (2023), to fit the discrete HMM

(X̂ , Ŷ ) and estimate the corresponding parameters ̂Q and ̂G. Also, for each repetition of
the experiment, estimate ̂λ = n0

Sn0
. Then, obtain an estimation of the generating matrix ̂A

as explained in Sect. 3.1. Using the estimation of the emission matrix ̂G we construct the
generating matrix of the 2-dimensional process (X , Y ) and following 4.1 we can obtain the
estimation of the reliability function, which is shown in Fig. 4.

Notice that N0 ≥ N , since we choose λ > max{−aii , i ∈ E}. In our case we have
obtained the statistics displayed in Table 2.
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6 Conclusion

Continuous-time hiddenMarkov processes can be seen as a two-dimensional continuous-time
Markov process (Xt , Yt ) where the first component Xt is an unobservable continuous-time
Markov chain and the second one Yt is an observable process whose distribution law depends
on Xt through a function called the emission function. In this paper, we have defined the
generator function corresponding to the coupled process in terms of the generating matrix
of Xt and the emission function. The theoretical properties of this type of processes have
been obtained using a semi-Markov formulation of the model. To estimate the character-
istics of the process we have considered two different discretization schemes under which
observations can arrive. On the one hand, we assume that observations arrive regularly in
time, and on the other hand, we assume that observations arrive at random. In both cases,
maximum-likelihood estimator of the parameters of the CTHMM have been obtained and
their asymptotic properties have been proven.

To our knowledge, the approach to HMM models considered in this paper, basing on
Markov renewal theory, is completely new and provides a powerful tool to get other insights
in this context of HMMs.

With respect to the estimation problem, as pointed out in Liu et al. (2017), when discretiza-
tion is too coarse, many transitions of the hidden states can occur between two consecutive
observations and the dynamics of the hidden process might be poorly caught by the model.
This situation may happen in our first scenario when the time-span between observations (h)
is not fine enough. Then, more flexible models are required and it is suitable a continuous
follow-up of the process that will be considered in a future work.

In the applications discussed in this paper we have assumed that the set of hidden states
is finite and the number of states is pre-specified. Generalizations of our work can be to
consider selecting the optimal number of hidden states, as in Lin and Song (2022) where the
number of states is unknown and to be determined by the data. Another approach that will
be considered in future works, consists of defining the state space of the hidden chain, in
general as a measurable set. See for example, Dorea and Zhao (2002) where kernel density
estimation is discussed for the observed process in the context of DTHMM.
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