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Uncertain future for global sea
turtle populations in face of sea
level rise
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Sea level rise has accelerated during recent decades, exceeding rates recorded during the previous
two millennia, and as a result many coastal habitats and species around the globe are being impacted.
This situation is expected to worsen due to anthropogenically induced climate change. However,

the magnitude and relevance of expected increase in sea level rise (SLR) is uncertain for marine and
terrestrial species that are reliant on coastal habitat for foraging, resting or breeding. To address

this, we showcase the use of a low-cost approach to assess the impacts of SLR on sea turtles under
various Intergovernmental Panel on Climate Change (IPCC) SLR scenarios on different sea turtle
nesting rookeries worldwide. The study considers seven sea turtle rookeries with five nesting species,
categorized from vulnerable to critically endangered including leatherback turtles (Dermochelys
coriacea), loggerhead turtles (Caretta caretta), hawksbill turtles (Eretmochelys imbricata), olive ridley
turtles (Lepidochelys olivacea) and green turtles (Chelonia mydas). Our approach combines freely
available digital elevation models for continental and remote island beaches across different ocean
basins with projections of field data and SLR. Our case study focuses on five of the seven living sea
turtle species. Under moderate climate change scenarios, by 2050 it is predicted that at some sea
turtle nesting habitats 100% will be flooded, and under an extreme scenario many sea turtle rookeries
could vanish. Overall, nesting beaches with low slope and those species nesting at open beaches such
as leatherback and loggerheads sea turtles might be the most vulnerable by future SLR scenarios.

Climate change has accelerated sea level rise (SLR) since the 1970s and is now more rapid than the mean SLR
rate recorded during the previous two millennia'~. By the end of this century it is projected that SLR will reach
82 cm? and—in extreme scenarios—could exceed 2 m® with the early onset of Antarctic ice sheet instability*.
Regional variation in predictions in SLR show that tropical regions and small islands are among the most
vulnerable®, threatening species that depend on these coastal habitats, such as sea turtles®. Sea turtle species
exhibit natal philopatry, returning to the beach where they were born® with exceptionally high precision for
returns to island rookeries!’. However, climate changes might be too rapid for sea turtles to respond through
their ability to disperse or colonize new habitats'!. These biological traits and their reliance on sandy beaches
make them particularly vulnerable to changes in coastal areas, like those resulting from SLR.

As a result, concern exists on the potential impacts of SLR on sea turtles, however only a dozen studies to
date have projected how SLR will impact them!?. These previous studies have been mainly regionally-focused,
including assessments from only one or two species”*"'¢. This regional focus is likely a result from the challenges
inherent in successfully assessing shoreline response to SLR'”*%, Although most sea turtle assessments have been
obtained from field survey methods, such studies of estimations of stream reach water surface slopes often have
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low accuracy®. Other approaches which couple LiDAR with biological data?*?! have higher accuracy, but are also
more costly?2. However, new methodologies, such as the use of open Digital Elevation Models (DEMs) might be
a good proxy broadly applicable to assess SLR by satellite images™.

Considering that most sea turtle rookeries across the globe are located in remote areas in low and middle-
income countries, less costly approaches for field surveys are often preferred and can provide baseline data to
identify areas at most risk. Indeed, the few studies assessing the impacts of SLR on sea turtles to date discuss the
challenges inherent in successfully predicting shoreline response to SLR and storm activities'”'® and the inability
to couple projections with biological information such as sex ratios and reproductive success'% Here we present
an assessment of the potential impact of SLR on sea turtle rookeries by applying a low-cost methodology to
estimate the probability of flooding of nest locations under multiple IPCC SLR scenarios. This approach combines
turtle nest locations, freely available DEMs and Climate Central maps under Coastal DEM predictions?. The
study considers seven sea turtle rookeries with five nesting species, categorized from vulnerable to critically
endangered” including leatherback turtles (Dermochelys coriacea), loggerhead turtles (Caretta caretta), hawksbill
turtles (Eretmochelys imbricata), olive ridley turtles (Lepidochelys olivacea) and green turtles (Chelonia mydas)
(Fig. 1; Extended Data Table 1). Our study sites encompass some important nesting sites for sea turtles globally
(e.g., Raine Island, Australia, the largest green turtle rookery worldwide*) and have different characteristics (i.e.,
beach width, slope, size), which will allow us to estimate SLR effects on a wide range of nesting rookeries and
highlights the broad applicability of our approach.

Vulnerability of sea turtle nests to SLR

From GPS locations of 2835 marine turtle nests belonging to five different species from seven study areas across
the globe, we estimated the vulnerability of nests to flooding considering available projections of SLR caused by
climate change from 2010 to 2100 (Fig. 1). Firstly, we used data from GPS nest locations + available DEMs+IPCC
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Figure 1. Vulnerability of sea turtle nests under sea level rise at IPCC’s RCP 4.5. Seven study sites at sea

turtle rookeries spanning countries in the Caribbean Sea, Gulf of Mexico and Pacific Ocean, with five species
represented. In the Caribbean and Gulf of Mexico: Mondonguillo beach, Costa Rica; Guanahacabibes peninsula,
Cuba; Saona Island, Dominican Republic; Zeelandia, Turtle, Kay bay, Tumbledowndick, Crooks and Oranjebaai
beaches, St Eustatius; and St George Island, Florida, USA. In the Pacific Ocean: Coast of Ecuador; and Raine
Island, Australia. Map Data: Google Earth and free images.
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projections for the seven studied populations across the globe to assess and compare the suitability of the different
DEMs to make flooding predictions. The comparison of freely available elevation data shows that the mean
estimated elevation for nest sites (and consequently mean proportion of flooded nests) differed substantially
between DEM sources for each rookery (Extended Data Fig. 2). It was expected that the highest resolution (30 m)
DEMs would be most accurate (compared with lower resolutions of 90-100 m) but there were similarities in
accuracy amongst DEM:s for each study site (Fig. 2; Extended Data Figs. 3 and 4). In addition, Cohen’s kappa
results showed weak relationships between DEM model predictions and the in situ data (Fig. 3; Supplementary
Table 3).

Then, we estimated the probability of flooding from GPS nest locations georeferenced on CoastalDEM
maps (e.g., Extended Data Fig. 5) for five of the seven study areas, since CoastalDEM did not provide reliable
estimates in Costa Rica and Ecuador (e.g., Extended Data Fig. 6). For the other five study areas, predictions
from Coastal DEM maps (Fig. 4) and from basic in situ data (Supplementary Tables 8-15) were reliable to
predicting nest flooding under SLR. Raine Island (Australia) and Saona Island (Dominican Republic) are
the most vulnerable populations with 100% nest flooding predicted under moderate emissions scenarios for
2050 (Fig. 1; Supplementary Table 4). For Florida, flooding probability greatly increases after 2050 (Fig. 2a;
Supplementary Table 5). Cuba, probably thanks to their elevated beaches, showed the lowest vulnerability to
flooding throughout the twenty-first century (Fig. 2b; Supplementary Table 6). For St. Eustatius, main differences
in flooding vulnerability arise from differences between turtle species (see Fig. 4c and next section).

Overall, our results suggested that flat islands and cays may be highly vulnerable to sea level rise under
the moderate IPCC scenario (Fig. 1; Supplementary Table 4)”?¢ predominantly those in the Caribbean and
Pacific?”%. Some of these locations are important rookeries** for species which return every 1-4 years to nest
at the beach where they were born®. Furthermore, some of them host nestings for more than one species and
present several nesting environments and beach characteristics such as different slopes, width, or sand grain
size, among others®*-32,

A number of rookeries subjected to beach erosion have already been assessed as vulnerable due to loss of
beaches used for nesting®*?, nest loss*"** and changes in nesting behaviour's. The philopatry of leatherbacks**
and loggerheads is not quite strict® and they can move great distances and nest further up the beach in response
to SLR depending on future beach availability. However, it has already been reported that 20% of Costa Rican
leatherbacks nest in flooded areas when scarp barriers were present®. The expected habitat loss rates found in the
study areas could have important effects on nesting success since philopatry could lead many individuals to nest
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Figure 2. Summary of model predictions. Predictions of the models for different DEMs and empirical data (in
situ) indicate the best fit of probability of nest flooding for (a) Costa Rica and (b) Ecuador turtle nests. IPCC sea
level rise predictions are included for RCP 4.5 (blue) and RCP 8.5 (red). For Ecuador, the RCP climate change
scenario did not influence the probability of nest flooding. Cohen’s kappa (k) values for prediction (or not) of
flooding for each nest compared in situ data with respective DEM datasets. Bold values correspond to a small
but significant relationship between the in situ and DEM data.
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Figure 3. Summary of actual vs. estimates of slope and elevation by DEM. Comparison of the relationship
between slope (radians) and elevation (m) using empirical data (in situ measurements) and DEMs for turtle
nesting beaches in Costa Rica.

on inundated beaches. An unknown variable is the potential for sea turtles to adapt to new scenarios. Therefore,
their survivorship will depend on their resilience and adaptability to rapid changes within their nesting habitats®.

Vulnerability of nests across species

To determine differences between modelled nest flooding probabilities by species we assessed rookeries
containing multiple species (i.e., St Eustatius, Dominican Republic and Ecuador rookeries; Fig. 1). Overall,
we identified that leatherback turtle nests may be at a higher risk from flooding compared to the rest of the
studied species because they tend to nest in open areas near to the high tide line (Fig. 4c). In St Eustatius,
significant variation exists between nest flooding probability by species (Supplementary Table 7): leatherback
turtle nests are at the highest risk from flooding compared with green turtles (8 =1.892, p <0.001; Fig. 4c), and
there was no significant difference between flooding risk for hawksbill and green turtle nests (8=0.388, p=0.339;
Supplementary Table 3). The model predicted that, on average, 50.0% leatherback, 18.2% hawksbill and 13.1%
of green turtle nest locations would be flooded by 2050 (Fig. 1; Supplementary Table 4). The predicted model
accuracy for estimation of likelihood of nest flooding was 79.4%. Leatherback turtle nests in open areas of beaches
have been found to already been subject to occasional flooding®®, whilst hawksbill and green turtles tend to nest
at higher elevations closer to dunes and steep cliffs along the coastline’” and olive ridleys nest at open beaches
with low slopes®. This difference in nesting location might explain those differences in nest location flooding
potential between species. In consequence, leatherback turtle populations as well as other turtles nesting at open
beaches (e.g., loggerhead turtles) may be at greater risk from SLR than other species.

In Ecuador, no differences in modelled nest flooding severity were found between olive ridley, greens and
hawksbill species, potentially due to beaches at this location being steeper®? (Supplementary Table 15). Similarly,
no difference in nest flooding was predicted between nests of different species in the Dominican Republic,
although only because all locations were estimated to be inundated by 2050 (Fig. 1; Supplementary Table 3;
Supplementary Table 4). It is likely that the potential effect of SLR will vary between species, potentially linked
to variables such as nesting beach characteristics (e.g., slope, aspect®®), nesting habitat preferences and suitable
nesting areas®.
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Figure 4. Predictions of sea turtle nest flooding in a subset of rookeries. Sites include (a) Florida (USA) (2050
and 2100), (b) Cuba (2050), and (c) St Eustatius (three species, 2050). Column 1: Proportion of nests likely to
be flooded at each location. Column 2: Heatmap of nests predicted to be free from flooding by 2050. Column
3: Heatmap of nests predicted to be flooded by 2050, identifying the areas at highest risk. Probability values

of 1 (yellow), 0.5 (blue) and 0 (purple) represent the density of unflooded or flooded nests within respective
heatmaps. A Climate Central moderate scenario was adopted for these scenarios (Kopp et al. 2017).

Conclusions—conservation concerns

Our models of nest flooding validated by field data considered that even a moderate increase in greenhouse
emissions (RCP 4.5)* might impact the reproductive output of sea turtles at the rookeries included in our study.
Recent predictions of accelerating global SLR due to rapid melting of ice in Greenland*® and the Antarctic*' in
combination with ocean currents*? indicate that pessimistic scenarios could be more accurate than conservative
scenarios®. Such scenarios support our projections by indicating that sea turtle nesting populations could be
vulnerable to flooding under even moderate scenarios over the next decades.

Relatively recent methods of remote sensing and modeling including DEMs****4, drones, photogrammetry
and GPS have been adopted to assess impacts of SLR on sea turtle populations'?. However, most highly accurate
methodologies entail high costs (e.g., 1500-15,000€ per satellite image) limiting their use to more localised
studies. Considering that most sea turtle nesting populations around the world are located in low and middle-
income countries, local conservation projects cannot afford the costs of these intensive methodologies to assess
the vulnerability of nesting beaches. We have demonstrated that a methodology based on low-cost technological
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models can be a useful tool for predicting possible future SLR scenarios in important sea turtle nesting areas.
We highlighted the utility of global open DEM data with high accuracies for remote areas that could assist with
estimation of the vulnerability of sea turtle nesting populations worldwide.

Scientific assessments are essential for prediction of the impacts of future climate scenarios and to assist
stakeholders and managers in anticipating extreme scenarios of coastal erosion or flooding, and to predict areas
at higher risk of flooding®. Such assessments will help identify conservation refugia and nesting beaches that
have greater resilience to climate change®. Although sea turtles have been around for millions of years and
would be present in several climate change events, we do not know how their populations might be affected by
these projected rapid changes of high loss of nesting sites in the study areas by 2050. Thus, this demonstrates the
urgency of developing a multi-species assessment at a global scale in order to develop conservation plans for the
most vulnerable populations while there is still time. Conservation management strategies are already in place to
enhance resilience to SLR at some nesting beaches, including sand refilling of nesting beaches*® such as in Raine
Island, relocation of nests to safe places*” or the protection of hatcheries for rookeries with extreme erosion and
flooding®'. In addition, we highlighted the need for climate change adaptation measurements to be implemented
in management plans considering estimated projections under moderate SLR scenarios.

However, if the world maintains current carbon dioxide emission rates, worst-case scenarios might be vastly
underestimated by 3-4 times*® and existing management strategies may then be insufficient to protect the
future of many sea turtle populations worldwide. In summary, our study predicts massive flooding at important
rookeries in Australia, Dominican Republic, Costa Rica and the USA. These critical areas will face the effects of
SLR in the next few decades, meaning that it is now urgent to reduce anthropogenic emissions to safeguard the
future of sea turtle populations against climate change and associated sea level rise.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on
reasonable request.
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