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a b s t r a c t 

The neural mechanisms of how frontal and parietal brain regions support flexible adaptation of behavior remain 

poorly understood. Here, we used functional magnetic resonance imaging (fMRI) and representational similarity 

analysis (RSA) to investigate frontoparietal representations of stimulus information during visual classification 

under varying task demands. Based on prior research, we predicted that increasing perceptual task difficulty 

should lead to adaptive changes in stimulus coding: task-relevant category information should be stronger, while 

task-irrelevant exemplar-level stimulus information should become weaker, reflecting a focus on the behaviorally 

relevant category information. Counter to our expectations, however, we found no evidence for adaptive changes 

in category coding. We did find weakened coding at the exemplar-level within categories however, demonstrating 

that task-irrelevant information is de-emphasized in frontoparietal cortex. These findings reveal adaptive coding 

of stimulus information at the exemplar-level, highlighting how frontoparietal regions might support behavior 

even under challenging conditions. 

1

 

a  

a  

g  

F  

i  

r  

i  

r  

i  

i  

g  

s  

(  

2  

e  

2  

(  

fl  

t  

g  

r  

s  

a  

2  

t  

c  

a  

2  

p  

a  

r  

u  

t  

W

 

a  

c  

h

R

A

1

. Introduction 

Regardless of the context we might find ourselves in, we can often

djust our behavior to current demands ( Fuster, 2000 ; Miller, 2000 ),

n ability that is supported by a set of frontal and parietal brain re-

ions often called the multiple demand (MD) network ( Duncan, 2010 ;

edorenko et al., 2013 ). Past research using multivariate decod-

ng ( Haynes, 2015 ; Kamitani and Tong, 2006 ) revealed that MD

egions encode a wide range of task-related information, includ-

ng stimuli ( Ashby and Zeithamova, 2022 ), responses, and task-

ules ( Woolgar et al., 2016 ). Such representations can be described

n terms of their coding strength (operationalized via e.g. decod-

ng accuracies) and their coding format (i.e. their representational

eometry, Kriegeskorte and Kievit 2013 ). Coding in MD regions is

tronger for behaviorally relevant information that is explicitly attended

 Jackson et al., 2017 ; Jackson and Woolgar, 2018 ; Woolgar et al.,

015b ), when performance is rewarded ( Etzel et al., 2016 ), or when-

ver tasks are particularly difficult ( Jackson et al., 2021 ; Woolgar et al.,

011a , 2015a ). This has been taken as evidence for adaptive coding

 Duncan, 2010 ), i.e. the existence of multi-modal neurons rapidly and
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exibly changing their coding properties to meet current demands. In

urn these neurons are thought to bias coding in sensory and motor re-

ions ( Desimone and Duncan, 1995 ; Duncan, 2013 ). However, other

esearch demonstrated that, at least under some conditions, coding

trength and formats of task-related information in MD cortex does not

dapt to changing demands ( Loose et al., 2017 ; Wisniewski et al., 2016 ,

019 ), and instead the same representations are re-used regardless of

he current context. Perceptual difficulty is a particularly interesting

ase here, since some researchers have suggested that MD cortex is un-

ble to adapt to changes in the quality of perceptual input ( Wen et al.,

018 ), while others have demonstrated adaptive coding under varying

erceptual difficulties ( Woolgar et al., 2011a , 2015a ). Thus, it remains

n open question whether adaptive coding is a general property of these

egions, or whether frontoparietal cortex only adapts its representations

nder specific circumstances, and instead re-uses the same representa-

ions when necessary ( Badre et al., 2021 ; Botvinick and Cohen, 2014 ;

isniewski, 2018 ). 

Previous research focused primarily on investigating whether coding

dapts to different demands, for instance by testing whether information

oding is stronger on hard than on easy trials ( Woolgar et al., 2011a ), or
ity, Henri Dunantlaan 2, Ghent, Belgium. 
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tronger in freely chosen than in externally cued tasks ( Wisniewski et al.,

016 ; Zhang et al., 2013 ). These studies have been optimized to de-

ect the presence or absence of differences in coding strength across

onditions, often using multivariate decoding methods ( Kamitani and

ong, 2006 ), but make no explicit predictions about the representational

ormats used in each condition. Yet, changes to coding strength do not

ecessarily imply changes in coding format as well, and it remains dif-

cult to draw strong conclusions about how representational formats

hange across conditions (e.g. more or less categorical coding). A com-

lete explanation of how adaptive changes in neural coding are related

o behavior requires both a description of changes to coding strength

nd format. We argue that understanding adaptive coding at the level

f representational formats remains key to understanding the neural ba-

is of goal-directed behavior. 

Here, we used a visual classification task ( Li et al., 2007 ) and assessed

oding formats, to directly tackle this issue. In the past, visual classi-

cation was used successfully to study the representational format of

ask-related stimulus information in non-human primates ( Brincat et al.,

018 ; Freedman et al., 2003 ), dissociating exemplar-level and category-

evel stimulus coding. One of the key findings was that sensory and

rontoparietal brain regions emphasize different aspects of the stim-

lus information ( Freedman et al., 2003 ). Sensory regions preserved

xemplar-level stimulus information, even if this was not task-relevant

ince classification is possible without differentiating individual exem-

lars within the same category ( Eger et al., 2008 ). Frontoparietal brain

egions more strongly represented task-relevant category information

 Heekeren et al., 2004 ), with much less exemplar-level information. This

s usually interpreted as evidence for more abstract, behaviorally opti-

ized stimulus coding in frontoparietal cortex ( Brincat et al., 2018 ).

ere, we tested whether these results also obtained in population-level

nformation coding in humans, and asked how these coding properties

hange when the perceptual difficulty of the task changed. Given the

revious findings, we had three main hypotheses. 

First, we expected that visual regions would encode category-level

timulus information on perceptually easy trials. Increasing perceptual

ifficulty by adding noise to the stimuli was expected to weaken cat-

gory coding in visual regions (Hypothesis 1). Second, we expected

o find category coding in MD regions ( Jackson et al., 2017 , 2021 ;

ackson and Woolgar, 2018 , Woolgar et al., 2011b ), but also expected

 different effect of perceptual difficulty. Since coding of task-related

nformation in MD regions is stronger on difficult trials ( Woolgar et al.,

011a , 2015a ), category coding should be relatively weak on perceptu-

lly easy trials (Hypothesis 2), and stronger on perceptually difficult tri-

ls here as well. Third, we expected representational formats to become

ore clustered, i.e. the differences between individual exemplars within

 category should grow smaller with increasing difficulty (Hypothesis

). De-emphasizing the task-irrelevant exemplar-level information can

e seen as a means to optimize stimulus representations to support be-

avior in this classification task. Note that previously reported increase

n decoding accuracy might be driven by both, stronger category sepa-

ation and/or more clustered exemplar representations. Using RSA, we

an assess both, helping us to better understand the neural mechanisms

f how MD regions support adaptive behavior, especially under difficult

onditions. 

. Methods 

.1. Participants 

Forty-nine volunteers (38 female, 11 male, mean age: 24.1 years,

ange: 18–36 years) with normal or corrected-to-normal vision partic-

pated in the study. We obtained written informed consent from each

articipant prior to participation, and the Ethics Committee of the Ghent

niversity Hospital approved this experiment (project identifier BC-

7446). Each volunteer received 43 € for their participation. We first

alculated the average error rate for each participant in the easiest pos-
2 
ible condition in this experiment (clean template images, see below for

ore details). Five participants had excessive error rates (above 1.5 ∗ IQR

f the group mean,): 10.4%, 10.4%, 12.5%, 16.7%, and 22.9% respec-

ively, group average = 3.1%. These participants were excluded from

he sample. Four participants showed excessive head movement during

canning ( > 5 mm), and were also removed. Two additional subjects

ere removed due to technical difficulties. The final sample consisted

f thirty-eight participants (29 female, 9 male, mean age = 24.4 years,

ange: 19–36 years). 

.2. Task: stimuli and design 

Stimuli consisted of gradually morphed, greyscale images, created

sing 3 cat templates to 3 dog templates ( Fig. 1 A), two of which were

andomly chosen for each participant. Stimuli were created by linearly

ombining one cat and one dog template, with changing contributions

morph level, e.g. 93.4% cat, 6.6% dog, with steps of 6.6). These stimuli

ave been used before in non-human primate research, and for more de-

ail on their generation see ( McKee et al., 2014 ). For each combination

f cat and dog templates, 16 stimuli were created (8 dog + 8 cat stimuli).

ach stimulus was categorized as either cat or dog depending on which

ategory contributed more to the image ( > 50%). This yielded 32 cat and

2 dog stimuli, which differed in their distance to the category bound-

ry (choice difficulty). We then added random Gaussian noise to these

mages, making classification more difficult (noise level). The amount of

dded noise was adapted to each participant using a staircase procedure

see below). This resulted in a 2 (categories) x 8 (choice difficulties) x 2

noise levels) x 4 (template combinations) design with 128 unique stim-

li. In order to increase the signal-to-noise ratio and have more trials

n each cell of the design matrix, we then collapsed across all template

ombinations, and collapsed data from eight to four choice difficulty

evels for all analyses. 

.3. Procedure 

The experiment was programmed using PsychoPy3 (v.2020.1.3,

eirce 2007 ). Participants started by performing a short training session

utside the MR scanner, where they received trial-by-trial feedback on

heir responses. They first learned to classify template images, followed

y classifying clean morphed images. They then entered the MR scan-

er, where they completed a staircase procedure to calibrate the noise

evel in the scanning environment. For this purpose, we presented tem-

late stimuli with varying levels of random Gaussian noise added. After

ach correct response, noise increased. After each wrong response, noise

ecreased. After seven reversals of noise change direction (up → down,

own → up), the staircase procedure stopped and we applied the final

oise level to all noisy stimuli used in the experiment. 

After that, participants performed 6 runs of 128 trials of the experi-

ental task. In each trial, a stimulus was presented on screen for 1.8 s

 Fig. 1 B), which was followed by a variable, pseudo-exponentially dis-

ributed inter-trial-interval (ITI, mean duration = 2.7 s, range between

.8 s and 10.4 s). Participants were instructed to respond while the

timulus was presented on screen, as quickly and accurately as possi-

le. As an additional incentive, participants that were among the top

0% fastest and top 20% most accurate received a 10 € bonus payment.

articipants responded using the left and right index fingers, using MR-

ompatible response boxes. Category-button-mappings were counter-

alanced across runs for each participant (dog: right, cat: left in half

f the runs, dog: left, cat: right in the other half). Participants received

eedback at the end of each run (mean error rate + mean reaction time).

In each run, each unique stimulus was presented once, resulting in

 repetitions of each combination of category (2), choice difficulty (4),

nd noise level (2). Category, choice difficulty, and template combi-

ation were pseudo-randomized and changed on a trial-by-trial basis.

oise level was blocked, and each run consisted of 4 blocks of 32 trials

ach. Two blocks were noisy, two blocks were clean, and half of the
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Fig. 1. Experimental design . A. Stimuli . On the left, all template images used here are depicted. All stimuli above the decision boundary are cats, all below are dogs. 

Each participant was presented 2 out of 3 cat/dog templates (randomly selected for each participant). In the middle, example morphed stimuli are depicted for 2 dog 

and 2 cat template images. On the right, a schematic representation of clustered and equidistant coding is depicted. When stimulus representations are clustered, 

representational distances between exemplars of the same category (e.g. dog) are small, i.e. representations are highly similar. Distances between categories are 

large. When stimulus representations are equidistant, distances from the perceptual space (middle) are preserved in the neural space, including differences between 

exemplars within the same category. B. Trial timing . Each block started with an instruction screen. Then, stimuli were presented for 1.8 s, interleaved with a variable 

inter-trial-interval (mean duration 2.7 s, range 0.8 – 10.4 s). 
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uns started with a noisy block, while the other half started with a clean

lock. Each block started with an instruction screen presented for 5 s

‘Easy block starting’, ’Hard block starting’). We then ensured that none

f the design variables was correlated, and that there were no sequen-

ial dependencies between trials, using a mutual information criterion

using permutation tests, p > 0.005). 

Due to a coding error, for the first 29 participants, designs contained

ifferent numbers of cat and dog stimuli in each run, for each combi-

ation of choice difficulty and noise level. This introduced additional

oise to the data, and made signal estimation in some conditions and

ome runs more difficult. However, due to the mutual information test-

ng we employed before accepting designs, we ensured that this did not

ntroduce any systematic biases even within participants. 

.4. Image acquisition 

Functional imaging was performed on a 3T Siemens Prisma MRI

canner (Siemens Medical Systems, Erlangen, Germany), using a 64-

hannel head coil. For each of the six functional scanning runs,
3 
e acquired 350 T2 ∗ -weighted whole-brain echo-planar images (EPI,

R = 1730 ms, TE = 30 ms, image matrix = 84 × 84, FOV = 210 mm, flip

ngle = 66°, slice thickness = 2.5 mm, voxel size = 2.5 × 2.5 × 2.5 mm,

istance factor = 0%, 50 slices with slice acceleration factor 2). Slices

ere oriented along the AC-PC line for each participant. A T1-

eighted structural scan was acquired prior to the functional scans

MPRAGE, TR = 2250 ms, TE = 4.18 ms, TI = 900 ms, acquisi-

ion matrix = 256 × 256, FOV = 256 mm, flip angle = 9°, voxel

ize = 1 × 1 × 1 mm). We further acquired 2 field maps (phase

nd magnitude) to correct for inhomogeneities in the magnetic field

TR = 520 ms, TE1 = 4.92 ms, TE2 = 7.38 ms, image matrix = 70 × 70,

OV = 210 mm, flip angle = 60°, slice thickness = 3 mm, voxel

ize = 3 × 3 × 2.5 mm, distance factor = 0%, 50 slices). 

.5. Analysis: behavior 

Behavioral data were analyzed using RStudio (version 1.2.1335, R

ersion 4.0.3). We first removed all trials on which the participant failed

o respond. On average, we removed 1.66% (SD = 0.64%) of all trials
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Fig. 2. ROIs. ROIs were derived from the HCP atlas ( Glasser et al., 2016 ) and 

included the multiple demand regions identified in Assem et al. (2020) . The 

ventral visual cortex ROI was defined using the Harvard-Oxford atlas. 
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or each participant this way. Additionally, we removed trials with RTs

 150 ms, removing 1.68% of trials on average (SD = 0.64%). To assess

ask performance, we extracted mean RTs and error rates for each com-

ination of noise level and choice difficulty. For the RT analysis, we only

sed correct responses. RTs were then entered into a Bayesian ANOVA

 BayesFactor::anovaBF , using the default scaled inverse chi-square prior

n main effects and interactions, scaling factor fixed effects = 0.5, scal-

ng factor random effects = 1), testing for evidence for or against both

ain effects and their interaction. Participants were entered as a random

ffect into this model. We interpreted the resulting Bayes Factors (BF10)

ccording to Wagenmakers (2007) . The same procedure was then ap-

lied to error rates. 

We additionally fitted psychometric functions to the choice data,

eparately for each participant (Weibull function, using quickpsy ,

inares and López-Moliner 2016 ). Specifically, we computed the prob-

bility of choosing the dog response separately for each combination

f morph level and noise level, and then fitted psychometric functions

eparately for both noise levels. This allowed us to extract several key

arameters from the choice data: k, guess rate, and threshold. k deter-

ines the slope of the psychometric function and describes how sharply

oth categories are distinguished. The guess rate quantifies how often

articipants guess, and we expected k to be lower and the guess rate

o be higher on noisy, as compared to clean, trials. To test this hy-

othesis, we entered estimates into a Bayesian paired t-test ( BayesFac-

or::ttestBF , Cauchy prior, scaling factor = 0.707), comparing parameter

alues across noise levels. The threshold quantifies at which point on

he scale of morphed images, ranging from 100% cat to 100% dog, par-

icipants were equally likely to choose cat or dog. We expected this to

all in the middle of the scale, i.e. where stimuli are close to 50% cat

 50% dog, and tested this hypothesis using a Bayesian t-test (Cauchy

rior, scaling factor = 0.707). 

.6. Analysis: fMRI 

fMRI analyses were performed using Matlab

R2018b, version 9.5.0.944444, The Mathworks), SPM12

 https://www.fil.ion.ucl.ac.uk/spm/ ), The Decoding Toolbox (v 3.99,

ebart et al. 2014 ), and RStudio (version 1.2.1335, R version 4.0.3).

aw data were first unwarped, realigned, and slice-time corrected

code: https://github.com/CCN- github/fMRI- preprocessing- SPM12 ).

e then estimated normalization fields for each participant, which

ere used to project mask files from normalized to native space.

o spatial smoothing or normalization was applied to BOLD data to

reserve fine-grained voxel activation patterns. 

.6.1. First-level GLM analysis 

Preprocessed data were used to estimate a voxel-wise general lin-

ar model (GLM, Friston et al. 1994 ). Sixteen regressors of interest

ere used, one for each combination of category (cat, dog), noise level

clean, noisy), and choice difficulty (1, 2, 3, 4). We then added a vari-

ble number of nuisance regressors for each participant. First, we added

ondition-specific error regressors, modelling error trials separately for

ach condition. This led to a variable number of nuisance regressors,

ince not every run had errors in each condition. We chose condition-

pecific error regressors over a single error regressor, since we expected

rrors in very easy trials to derive from different psychological processes

han in very difficult trials (e.g. momentary lapse in attentional pro-

esses vs guessing). Second, we added six movement regressors. Regres-

ors were time-locked to the onset of the stimulus presentation. We used

he finite impulse response function as a basis function (FIR, 5 time bins

ith a duration of 1.73 s each). This makes fewer assumptions about the

hape of the haemodynamic response, compared to a canonical haemo-

ynamic response function, making it better suited to model responses

o short events in a heterogeneous set of brain regions from visual to

refrontal cortex (see Wisniewski et al. 2015 for a similar approach). 
4 
.5.2. Feature selection 

ROI selection : Similar to Assem et al. (2020) , we defined a num-

er of a-priori volumetric multiple demand (MD) regions-of-interest

ROIs), based on the Human Connectome Project atlas. The following

egions were included in this experiment: SCEF, 8BM, 8C, IFJp, p9_46v,

9_46v, i68, AVI, IP1, IP2, PFm (see Fig. 2 , code: https://github.com/

avidwisniewski/fmri- extract- HCP- mask ). As an additional region of in-

erest, we used the ventral visual cortex, as defined using the Harvard-

xford atlas. Data from the chosen ROIs was extracted in native space

or each subject, by projecting the ROI masks from MNI to native space

eparately for each participant, using the inverse normalization fields

stimated during pre-processing. 

Time-bin selection : Given that we use the FIR basis function, each

egressor is modelled at five different time points. To select a time

indow of interest, we first estimated the haemodynamic lag to be

TRs (3.46 s), based on previous research using MVPA methods to

xtract task-related information from frontoparietal cortex ( Bode and

aynes, 2009 ; Momennejad and Haynes, 2013 ; Wisniewski et al., 2015 ).

e then corrected for haemodynamic lag by using data from time

ins 3 and 4, which started 3.46 s and 5.19 s after stimulus onset,

espectively, for all multivariate pattern analyses. Again, this follows

ast research on time-resolved pattern analysis of task-related informa-

ion ( Momennejad and Haynes, 2012 ). We expected haemodynamic re-

ponses to be short, given that the trial duration / stimulus processing

as short, and this procedure strikes a balance between accounting for

he expected short duration, and still allowing for the peak response to

ccur within a variable time window (between 3.46 s and 6.92 s after

timulus onset). 

.5.3. Representational similarity analysis 

For each ROI, we first extracted the beta weights for the 16 re-

ressors of interest in each run. We then used The Decoding Toolbox

 Hebart et al., 2014 ) to perform a representational similarity analysis

RSA, Kriegeskorte et al. 2008 , Nili et al. 2014 ), using run-wise cross-

alidated Euclidean distance measures and applying multivariate noise

ormalization ( Walther et al., 2016 ). Using cross-validated distances en-

ures that estimates are unbiased and average to zero if there is no sys-

ematic relation between activation patterns ( Arbuckle et al., 2019 ). All

omputed distances were then converted to a 16 × 16 representational

https://www.fil.ion.ucl.ac.uk/spm/
https://github.com/CCN-github/fMRI-preprocessing-SPM12
https://github.com/davidwisniewski/fmri-extract-HCP-mask
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Fig. 3. Schematic of our analysis approach . For each ROI, we computed a 16 × 16 representational distance matrix, using cross-validated Euclidean distances. From 

this matrix, we computed the centroids of the stimuli in each category separately, finding the center of all e.g. dog stimuli in the neural state space. The distance 

between both centroids was used to measure category separation. Then, we computed the distances of each exemplar to their respective centroid, which served as a 

measure of clustering within categories. We expected increased perceptual difficulty to lead to stronger category separation (lower right), and to stronger clustering 

(lower left) in MD regions. 
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istance matrix (RDM), representing pairwise distances between all con-

itions. This procedure was performed separately for each ROI, and for

ach of the two time bins of interest. For each ROI, we then averaged

he RDMs across both time bins. 

The main goal of this experiment was to identify whether and how

timulus information was encoded in the MD network at the category

nd exemplar level. For this purpose, we leveraged the fact that each

DM constitutes a high-dimensional Euclidean space, allowing us to

easure distances between exemplars within that space (using usedist ).

ased in these distance measures, we computed measures to separately

ssess stimulus coding at the category and exemplar level in each ROI

nd in both perceptual difficulty conditions ( Fig. 3 ). 

In order to determine the strength of the category-level signal, we

rst computed the centroid of all cat stimuli, and the centroid of all dog

timuli. This is similar to computing centroids in e.g. k-means cluster-

ng algorithms, and measures the center of the distribution of all cat/dog

timuli in representational space. After computing the cat and dog cen-

roids, we computed the Euclidean distance between these two points,

ielding a direct measure of the representational distance between cats

nd dogs in this experiment. If this measure was larger than zero (across

ll participants), this would indicate the presence of category-level stim-

lus coding. This “centroid distance ” analysis was performed separately

or clean and noisy trials. 

In order to determine the strength of the exemplar-level signal, we

gain computed the centroid location for both categories, and then com-

uted the distance of each exemplar to its respective centroid (i.e. cat1

o cat centroid, dog1 to dog centroid, etc). These exemplar-to-centroid
5 
istances were then averaged to generate an index of how much in-

ividual exemplars spread around the category centroids. High values

ndicated less clustering and higher distances between individual exem-

lar, low values indicated more clustering and lower distances between

ndividual exemplars. Again, this analysis was performed separately for

lean and noisy trials. We refer to this measure as “clustering index ”. 

.5.5. Hypothesis 1: visual cortex encodes category-level stimulus 

nformation 

To test this hypothesis, we first tested whether the centroid distance

n ventral visual cortex was larger than zero, using a Bayesian one-sided

-test ( BayesFactor::ttestBF , Cauchy prior, scaling factor = 0.707). Then,

e tested whether the clustering index was larger than zero, again us-

ng a Bayesian one-sided t-test. We expected to find evidence for the

lternative hypothesis in both tests. Furthermore, we expected to see

eaker category-level stimulus coding on noisy, as compared to clean

rials. This was tested by comparing the centroid distance across per-

eptual difficulty levels using a one-sided paired Bayesian t-test. 

.5.6. Hypothesis 2: stronger category signals on noisy trials in MD regions 

On both clean and noisy trials, we expected MD regions to encode

ategory-level stimulus information. To test this hypothesis, we assessed

hether centroid distances were larger than zero in each ROI and each

erceptual difficulty condition, using one-sided Bayesian t-tests. We fur-

her expected category signals to be stronger on noisy than on clean

rials. This was tested using one-sided paired Bayesian t-tests. 
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Fig. 4. Behavioral Results . A. Error rates and reaction times . Plots show error rates (left) and reaction times (right) as a function of choice difficulty (1 = easy / far 

away from decision boundary, 4 = hard / close to decision boundary). Raincloud plots include boxplots centered around the median (black lines), probability density 

estimates (right half), and raw data (left half), jittered for illustration purposes. B. Psychometric functions . Group-average choice data is shown on the left. Each 

dot represents the probability of choosing ‘dog’ (p(dog)), as a function of morph level (expressed in% dog included in the morphed image). Lines represent fitted 

psychometric functions. Estimated slope (k) and guess rate parameters from the psychometric curve are shown on the right, as a function of noise level (clean, noisy). 

blue = clean trials, green = noisy trials. 
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.5.7. Hypothesis 3: more clustering on noisy trials in MD regions 

Lastly, we hypothesized that the representational format would shift

owards more clustered stimulus representations on noisy trials. To test

his hypothesis, we performed a one-sided paired Bayesian t-test, com-

aring the clustering index across clean and noisy trials. Taking Hy-

otheses 2 and 3 together, we essentially hypothesized that MD regions

ould adapt to increased difficulty by emphasizing task-relevant cate-

ory information (Hypothesis 2) while simultaneously de-emphasizing

ask-irrelevant exemplar information (Hypothesis 3). 

. Results 

.1. Behavioral results 

We first characterized behavioral performance by collapsing data

cross both categories, and then computing a 2 (noise level) x 4 (choice

ifficulty) Bayesian ANOVA on the error rates ( Fig. 4 A, left panel). We

ound performance to range from 2.33% errors to 44.25% errors, and

ound very strong evidence for main effects of both noise level and

hoice difficulty, BF10s > 150, with noisy trials and high choice diffi-

ulty trials having higher error rates. The effect of noise level decreased

ith increasing choice difficulty (interaction effect, BF10 > 150), likely

eflecting a floor effect in performance, with classification on stimuli

ery close to the decision boundary being so difficult that adding noise

ad a negligible effect on performance. We found similar results for re-

ction times ( Fig. 4 A, right panel), with very strong evidence for both
6 
ain effects, BF10 > 150, and strong evidence for an interaction effect,

F10 = 80.51. Only correct trials were used in RT analyses. 

Next, we assessed performance by fitting psychometric functions to

he choice data of each participant ( Fig. 4 B). We first tested whether

he slope of the function was higher on clean than on noisy trials,

hich would indicate a sharper category separation. We found very

trong evidence for this effect, BF10 > 150 (mean slope clean = 3.48,

ean slope noisy = 1.81). We then tested whether choices were biased

owards either cats or dogs by analyzing the threshold parameter of

he psychometric function, and found no evidence for biased choices

n either clean or noisy trials (Supplementary Analysis 1). Lastly, we

nvestigated whether the guess rate (proportion of trials in which par-

icipants guessed) was higher on noisy than on clean trials. We found

ery strong evidence for this effect, BF10 > 150 (mean guess clean = 0.01,

ean guess noisy = 0.13), showing that overall, adding noise led to sub-

tantially more guessing, and a weaker separation of both categories. 

.2. Hypothesis 1: visual cortex encodes category-level stimulus 

nformation 

We first tested whether the visual cortex encoded category-level

timulus information, separately for clean and noisy trials. We found

trong evidence for an effect on both clean and noisy trials, BF10s >

50 ( Fig. 5 ). We then hypothesized that category information would

e weaker on noisy than on clean trials in visual cortex, since stimuli

ere severely degraded. Unexpectedly, we found evidence against a
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Fig. 5. Category-level stimulus coding . For each ROI, the distance between both category centroids in plotted, separately for clean and noisy trials. Each plot shows the 

median (black dot), estimated distribution (violin plot), and the raw data (dots), slighltly scattered for presentation purposes. Values above the black line indicate 

the presence of category signals. 
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eduction in category-level stimulus coding on noisy trials (BF10 = 0.1).

herefore, ventral visual cortex retained the same degree of category

eparation even under challenging perceptual conditions. 

.3. Hypothesis 2: stronger category signals on noisy trials in MD regions 

We first tested whether MD regions encoded stimulus categories. As

xpected, we found strong evidence for category-level stimulus coding

n all MD regions, both on clean and noisy trials (all BF10s > 150, Fig. 5 ).

n a next step, we assessed whether category coding increased on noisy

rials. Counter to our expectations, we found no increase in category

oding in any MD region, all BF10s < 1.34. For some ROIs (SCEF, 8C,

P2, IP1, PFm), we even found evidence against any differences in cat-

gory signals between clean and noisy trials, all BF10s < 0.24 ( Fig. 5 ).

verall, we found no evidence for an adaptive strengthening of task-

elevant category information under perceptually difficult conditions. 

We then performed a post-hoc control analysis, in which we better

ontrolled for potential behavioral effects of choice difficulty on these

esults. We first split the dataset into two sub-sets, one containing only

rials from choice difficulty levels 1 and 2, the other only containing

rials from choice difficulty levels 3 and 4. The main analysis was then
7 
epeated separately for each subset, and computed distances were then

veraged. This analysis keeps choice difficulty effects smaller, and still

llows us to compute category-level and stimulus-level distance mea-

ures. Results largely confirmed our original findings. We found strong

vidence for category-level stimulus coding in all MD regions, both on

lean and noisy trials (all BF10s > 150). Furthermore, we found no ev-

dence for an increase in category coding in any ROI, all BF10s < 1.38.

vidence for an effect was marginally stronger in IFJp, BF10 = 2.94, but

till too weak to interpret in the context of a post-hoc analysis. 

We also repeated the main analysis in a different set MD ROIs, ex-

racted from Fedorenko et al. (2013) . Again, we found category-level

timulus coding in all MD regions on both clean an noisy trials (all BF10s

 150), and no evidence for an increase in category coding in any MD

egion (all BF10s < 1.07), confirming our original results. 

.4. Hypothesis 3: more clustering on noisy trials in MD regions 

We also hypothesized that MD regions would de-emphasize task-

rrelevant exemplar-level stimulus information in response to increased

ifficulty. We found stimulus representations to be more strongly clus-

ered on noisy trials in PFC (IFJp, a946v), parietal cortex (IP1, IP2), and
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Fig. 6. Exemplar-level stimulus clustering . For each ROI, the average distance of each exemplar to their respective category centroid is plotted, separately for clean 

and noisy trials. Each plot shows the median (black dot), estimated distribution (violin plot), and the raw data (dots), slightly scattered for presentation purposes. 
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urprisingly ventral visual cortex (all BF10s > 3.42, Fig. 6 ). Evidence

gainst any differences was found in PFC (i68 and p946v, all BF10s <

.26). 

Again, we performed a post-hoc control analysis, in which we ana-

yzed choice difficulty levels 1 and 2 separately from levels 3 and 4 (see

bove). We found no evidence for stronger clustering in any ROI, includ-

ng MD and ventral visual cortex (all BF10s < 1.41). This finding might

eem somewhat surprising, but we believe it to mainly reflect a lack of

tatistical power. By splitting the whole data set into two subsets, the

umber of available data points was reduced by half, which significantly

educed statistical power. Somewhat weaker results would therefore be

xpected even if the true effect remained the same. Although we can-

ot fully exclude a potential effect of choice difficulty on these results,

e believe that ultimately the lack of statistical power makes a clear

nterpretation difficult. 

As before, we also repeated the main analysis using MD ROIs ex-

racted from Fedorenko et al. (2013) , confirming results in parietal cor-

ex (IPS, BF10 = 95.18), but not in PFC (all BF10s < 0.31). 

Overall, these results demonstrate that although category separa-

ion remained unaffected by the perceptual difficulty manipulation,

xemplar-level stimulus information changed adaptively according to

urrent perceptual difficulty conditions. Prefrontal, parietal, and visual
8 
rain regions showed more strongly clustered exemplar representations

nder perceptually difficult conditions, with parietal results being the

ost robust. While this has been expected in MD regions, finding this

ffect in ventral visual cortex has been surprising. 

. Discussion 

In summary, we found evidence for adaptive stimulus coding in a vi-

ual classification task in parietal cortex (IP1, IP2), dlPFC (IFJp, a946v),

nd surprisingly ventral visual cortex. Initially, we hypothesized that

D regions would show stronger task-relevant category signals under

erceptually difficult conditions, as a means to compensate for increased

ifficulty. Yet, we found no evidence for such an effect. We did find ev-

dence for a change in task-irrelevant exemplar-level stimulus coding

owever. Increasing perceptual difficulty altered representational for-

ats towards more clustered representations in parietal, prefrontal and

isual brain regions. 

Past research on perceptual decision-making and visual classifi-

ation demonstrated that both visual and prefrontal brain regions

ncode stimulus information ( Freedman et al., 2003 ; Jackson et al.,

017 ; Jackson and Woolgar, 2018 ), and we replicate these results

ere. While ventral visual cortex represents the full stimulus space, i.e.
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o  
nformation about both categories and individual exemplars ( Eger et al.,

008 ; Kriegeskorte et al., 2008 ), higher-level brain regions such as

he prefrontal cortex have been reported to carry little information

bout individual exemplars in both humans ( Mok and Love, 2021 )

nd non-human primates ( Freedman et al., 2003 ; Freedman and

ssad, 2006 ). These findings demonstrate a tuning of “perceptual ”

epresentations towards the task goal, successful categorization. Such

bstract, “behavioral ” representations emphasize task-relevant informa-

ion (categories) and remove task-irrelevant information (exemplars).

he design of our experiment allowed us to assess those two aspects of

timulus coding under changing perceptual difficulty conditions. First,

e were able to determine the representational distance between the

wo categories used here (task-relevant category information). Second,

e were able to determine to which degree individual exemplars within

he same category were spread around the centroid of each category

task-irrelevant exemplar information). A larger spread indicates more

issimilar exemplar-level stimulus representations, a smaller spread

ndicates more similar and clustered representations. 

In MD cortex, we expected to see increased category coding and more

imilar/clustered exemplar-level representations. In addition to previ-

us findings, this hypothesis was informed by recent theories on adap-

ive coding ( Badre et al., 2021 ; Fusi et al., 2016 ). The transformation of

erceptual into behavioral stimulus representations makes coding more

ategorical ( Brincat et al., 2018 ), and this essentially reflects a dimen-

ionality reduction in neural representations. High-dimensional percep-

ual representations that carry information about the whole stimulus

pace are transformed into low-dimensional, behavioral representations

hat merely carry information about the task-relevant stimulus dimen-

ion. Recent theories suggest that high-dimensional representations are

ore easily separable, but also more susceptible to noise ( Badre et al.,

021 ; Fusi et al., 2016 ). Low-dimensional representations are more ro-

ust to noise, suggesting they would be especially useful on noisy, per-

eptually difficult trials, where stimulus information is degraded. 

We found evidence for category signals in MD and visual brain re-

ions, but no evidence for an increase on noisy, as compared to clean,

rials. In parietal cortex (IP1, IP2) we even found evidence against any

ifferences, indicating that category coding was equally strong across

erceptual difficulty levels. We can only speculate as to why we did

ot observe the expected effects here. One potential explanation might

e that the overall effect size of category signals was low. Comparing

igs. 5 and 6 demonstrates that the distance between the category cen-

roids was much smaller than the spread of individual exemplars around

hat centroid. Therefore, we cannot fully rule out that despite the large

ample size, a modulation of such small effects remained too hard to de-

ect. Recently it has been suggested that different types of difficulty ma-

ipulations engage the MD regions differently ( Wen et al., 2018 ). Specif-

cally, difficulty manipulations that limit or degrade incoming stimulus

nformation (e.g. increased noise) might not recruit MD regions as much

s manipulations that make stimulus processing harder (e.g. mental ro-

ation, Han and Marois 2013 ). This would make sense if MD regions

ecruit additional attentional resources to compensate for increased pro-

essing demands ( Duncan et al., 2020 ), but are not involved in refining

timulus representations themselves. From this perspective, degrading

timulus information might not have led to the strongest adaptive effects

n MD regions, and it might be that using a more “cognitive ” difficulty

anipulation would lead to the expected enhancement of category sig-

als. Clearly, this remains speculative at this point, and future research

ill be necessary to address these issues. 

More interestingly, we did find evidence for adaptive changes to

ask-irrelevant exemplar-level stimulus coding in some MD regions (IP1,

P2, IFJp, a946v). Exemplars were clustered together more strongly un-

er perceptually difficult conditions in these parietal and prefrontal

egions. A post-hoc control analysis revealed that these effects might

t least partially reflect choice difficulty effects, but the analysis was

ot statistically powerful enough to draw strong conclusions. Future re-

earch with optimized designs and even higher sample sizes will be nec-
9 
ssary to resolve this issue. One might further argue that the stronger

lustering was simply due to the perceptual difficulty manipulation,

oisy stimuli were likely perceived as more similar to each other due

o the visual degradation. If this were the case, we would expect to see

n unspecific collapse of all representational distances, including the dis-

ance between category centroids though. Especially in parietal cortex

IP1, IP2), this was not the case. While we found evidence for stronger

lustering of exemplars within a category, we found evidence against

ny differences in the distance between category centroids. Such a spe-

ific effect cannot be easily explained with a global signal reduction.

ather, it seems more likely that this is an adaptive response by MD

egions to the increased perceptual difficulty of the task. Interestingly,

he ventral visual cortex exhibited largely the same adaptive response

o perceptual difficulty as the parietal cortex. There are some previous

ndings showing that visual brain regions carry information about e.g.

ehavior in perceptual decision-making tasks ( Hebart et al., 2012 ), ques-

ioning its role as a purely “perceptual ” brain region. Our findings add

o this evidence by showing that ventral visual cortex exhibits adaptive

esponses that are highly similar to those of higher-level frontoparietal

rain regions. It will be interesting to see whether a similar effect would

e observed in a modified task in which difficulty is not manipulated by

egrading stimuli visually, but rather by making their cognitive pro-

essing more demanding. If increased clustering is a general adaptive

echanism, we would expect to observe it in MD regions under differ-

nt types of difficulty manipulations, but effects in visual regions might

e specific to perceptual difficulty manipulations. 

Overall, although our findings did not demonstrate an adaptive

esponse in task-relevant category information in MD regions, they

id demonstrate an adaptive response in task-irrelevant exemplar-level

timulus information. Interestingly, ventral visual cortex showed a re-

ponse that was highly similar to some parietal and prefrontal brain re-

ions. These results reveal how specific representational formats do and

o not change under varying task demands, and thus provide evidence

f how neural coding adapts to changing demands. 
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