
Citation: Galli, T.; Chiclana, F.; Siewe,

F. Practical Consequences of Quality

Views in Assessing Software Quality.

Axioms 2023, 12, 529. https://

doi.org/10.3390/axioms12060529

Academic Editors: Oscar Humberto

Montiel Ross and Oscar Castillo

Received: 31 January 2023

Revised: 21 April 2023

Accepted: 25 May 2023

Published: 28 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Practical Consequences of Quality Views in Assessing
Software Quality
Tamas Galli 1,* , Francisco Chiclana 1,2 and Francois Siewe 3

1 Institute of Artificial Intelligence (IAI), Faculty of Computing, Engineering and Media,
De Montfort University, Leicester LE1 9BH, UK; chiclana@dmu.ac.uk

2 Andalusian Research Institute on Data Science and Computational Intelligence (DaSCI),
University of Granada, 18071 Granada, Spain

3 Software Technology Research Laboratory (STRL), Faculty of Computing, Engineering and Media,
De Montfort University, Leicester LE1 9BH, UK; fsiewe@dmu.ac.uk

* Correspondence: tamas.galli@bcs.org or tamas.galli@my365.dmu.ac.uk

Abstract: The authors’ previously published research delved into the theory of software product
quality modelling, model views, concepts, and terminologies. They also analysed this specific field
from the point of view of uncertainty, and possible descriptions based on fuzzy set theory and fuzzy
logic. Laying a theoretical foundation was necessary; however, software professionals need a more
tangible and practical approach for their everyday work. Consequently, the authors devote this paper
to filling in this gap; it aims to illustrate how to interpret and utilise the previous findings, including
the established taxonomy of the software product quality models. The developed fuzzy model’s
simplification is also presented with a Generalized Additive Model approximation. The paper does
not require any formal knowledge of uncertainty computations and reasoning under uncertainty,
nor does it need a deep understanding of quality modelling in terms of terminology, concepts, and
meta-models, which were necessary to prepare the taxonomy and relevance ranking. The paper
investigates how to determine the validity of statements based on a given software product quality
model; moreover, it considers how to tailor and adjust quality models to the particular project’s needs.
The paper also describes how to apply different software product quality models for different quality
views to take advantage of the automation potential offered for the measurement and assessment of
source code quality. Furthermore, frequent pitfalls are illustrated with their corresponding resolutions,
including an unmeasured quality property that is found to be important and needs to be included in
the measurement and assessment process.

Keywords: software product quality model; quality assessment; quality view; tailoring quality
models; SQALE; ISO25010; Generalized Additive Model; GAM

1. Introduction

Software quality has gained more influence in recent years, as evidenced by the
exponential growth of the identified publications in this field by a mapping study [1].
Software quality assessment encompasses two major approaches: (1) the measurement and
assessment of the processes that result in a software product, and (2) the measurement
and assessment of a software product directly [2,3]. The former relies on the assumption
that controlling the processes of software development will contribute to the final software
quality [4]. In our previous article [2], we identified and analysed, from the perspectives
academic and industrial relevance, the software product quality models published since
2000. Covering approximately a 20-year period (2000–2019), Table 1 shows the identified
models with their relevance scores and corresponding publications ranges. These data can
help to determine whether research interest and industrial activity is associated with the
listed software product quality models.

Axioms 2023, 12, 529. https://doi.org/10.3390/axioms12060529 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms12060529
https://doi.org/10.3390/axioms12060529
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0002-8297-3513
https://orcid.org/0000-0002-3952-4210
https://orcid.org/0000-0002-3741-3074
https://doi.org/10.3390/axioms12060529
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms12060529?type=check_update&version=3

Axioms 2023, 12, 529 2 of 17

Table 1. Ranking of the quality model classes by relevance score, including manual and automatic
searches. Source: [2].

Ranking Model Class
Relevance
Score

Quality
Score Average

Publication
Range after 2000

Google Relative Search
Index, Average for
12 Months

1 ISO25010 [5–13] 130 16.25 [2011; 2018] 30.02
2 ISO9126 [14–22] 120 13.33 [2000; 2017] 53.06
3 SQALE [23–30] 107 13.38 [2009; 2016] 18.33
4 Quamoco [31–34] 90 22.5 [2012; 2015] 0
5 EMISQ [35–37] 38 12.67 [2008; 2011] 0
6 SQUALE [38–41] 36 9 [2012; 2015] n.a.
7 ADEQUATE [42,43] 18 9 [2005; 2009] n.a.
8 COQUALMO [44,45] 15 7.5 [2008; 2008] 0.21
=9 FURPS [46–48] 10 3.33 [2005; 2005] 20.56
=9 SQAE and ISO9126 combination [49] 10 10 [2004; 2004] 0
=9 Ulan et al. [13] 10 10 [2018; 2018] n.a.
10 Kim and Lee [50] 9 9 [2009; 2009] n.a.
11 GEQUAMO [51] 5 5 [2003; 2003] 0
12 McCall et al. [52,53] 1 0.5 [2002; 2002] n.a.
=13 2D Model [54] 0 0 n.a. n.a.
=13 Boehm et al. [55] 0 0 n.a. n.a.
=13 Dromey [56] 0 0 n.a. n.a.
=13 GQM [57] 0 0 n.a. 40.73
=13 IEEE Metrics Framework Reaffirmed in

2009 [58]
0 0 n.a. 0

=13 Metrics Framework for Mobile Apps [59] 0 0 n.a. 0
=13 SATC [60] 0 0 n.a. n.a.
=13 SQAE [61] 0 0 n.a. n.a.
=13 SQUID [62] 0 0 n.a. n.a.

The recorded automatic searches, as described in [2], were subsequently repeated for
a 2-year period (2020–2022) using the IEEE and ACM databases and the obtained results
published in [3]. The identified publications in the additional 2-year period, related to
software product quality models [63,64], corroborated the previous trends, and no new
software product quality models were identified.

Since the extent of quality that the individual software product quality models are
able to address deviates from model to model significantly, further investigation was
necessary to help with model selection in practice [65]. To this end, the notion of quality
views was used to determine the theoretical maximum extent of quality that each model
could capture [65]. Following the ISO/IEC 9126 [19] and ISO/IEC 25010 [10] standards,
which defined three distinct quality views (see below definition), the quality models were
classified based on their abilities to address and capture software product quality, so that
fair software product quality measurement and assessment could be performed, which
ultimately could help with model selection in practice.

The definition of the three quality views is as follows [10,19,62,65].

Internal quality view: Set of quality properties of the source code and documentation that
are deemed to influence the behaviour and use of the software.

External quality view: Set of quality properties that determine how the software product
behaves while it operates. These properties are usually measured
when the software product is operational and is being tested.

Quality in use view: Set of quality properties that determine how the user perceives
software product quality, and how far the goals for which the
software is used can be achieved.

Table 2 summarises the abovementioned classification reported in [65]. The abbrevi-
ations “I”, “E”, and “U” stand for internal, external, and quality in use views. The letter
“D” is provided for quality models, the views of which depend on tailoring. Moreover,

Axioms 2023, 12, 529 3 of 17

the term “undefined” in Table 2 is assigned to quality modelling approaches that do not
define a quality model, do not demonstrate use through case studies, or do not define
sample metrics or sample quality properties, and the published guidelines are unable to
define a quality model based on the given approach. In addition, the column “Relevance
Rank” shows the model’s relevance in the scientific and industrial community as explained
in [2]. Table 2 evidences the significant differences in the identified software product quality
models. There are many models unable to assess the external quality view and the quality
in use view, which means that they cannot describe how the software behaves while it is
used, nor how the end user perceives its quality.

Table 2. Taxonomy: software product quality model families and their quality views. Source: [65].

ID
Relevance
Rank Name

Quality Views
Considered

Predefined Quality
Properties or

Metrics Available

Also Process-Related
Properties

1 1 ISO25010 [5–12] I, E, U Yes No
2 2 ISO9126 [14–22] I, E, U Yes No
3 3 SQALE [23–30] I Yes No
4 4 Quamoco [31–34] I, E, U Yes No
5 5 EMISQ [35–37] I Yes No
6 6 SQUALE [38–41] I, E Yes Yes
7 7 ADEQUATE [42,43] I, E, U Yes Yes
8 8 COQUALMO [44,45] I, E Yes Yes
9 9 FURPS [46–48] I, E, (U) Yes Yes
10 9 SQAE and ISO9126 combination [49] I, E Yes No
11 9 Ulan et al. [13] I Yes No
12 10 Kim and Lee [50] I Yes No
13 11 GEQUAMO [51] I, E, U Yes Yes
14 12 McCall et al. [52,53] I, E, (U) Yes Yes
15 13 2D Model [54] Undefined No Undefined
16 13 Boehm et al. [55] I, E, (U) Yes No
17 13 Dromey [56] I Yes No
18 13 GQM [57] D No D
19 13 IEEE Metrics Framework Reaffirmed in

2009 [58]
Undefined No Undefined

20 13 Metrics Framework for Mobile Apps [59] Undefined Yes Undefined
21 13 SATC [60] I, E Yes Yes
22 13 SQAE [61] I Yes No
23 13 SQUID [62] D D D

In the software product quality modelling domain, it is of extreme importance to
understand that Table 2 presents the theoretical maximum quality in terms of the views that
a given model is able to address. Thus, model implementations, such as SonarQube [66],
that rely on the underlying SQALE model [30] are able to measure and assess the inter-
nal quality view only. To ensure a fair demonstration of the quality measurement and
assessment results, the quality models and the quality views applied in the course of the
measurement and assessment always need to be presented [65].

Both Tables 1 and 2 assist software professionals to make optimal decisions while
selecting and tailoring software product quality models. This process is highlighted in
Section 3.2 in detail with case studies. Section 2 briefly summarises the research methods
used in the herein reported study, Section 3 shows the obtained results and Section 4 revisits
some important points raised in the case studies, while Section 5 presents our concluding
remarks. Appendix A includes the annotated R code applied to prepare the Generalized
Additive Model (GAM) model in Section 3.1.

2. Materials and Methods

The abstract notion of software product quality and the complex mathematical com-
putations applied in [67] for reasoning under uncertainty might obscure the practical use

Axioms 2023, 12, 529 4 of 17

of the findings documented in [2,65,67] and discourage potential practitioners. Thus, from
the point of view of research methods, the current study contributes to the body of research
with (1) a model simplification by approximating the quality model published in [67] with a
Generalized Additive Model (GAM) [68], and (2) a practical demonstration of the findings
of the authors’ previous publications [2,65,67].

Two fictional, but practical and realistic, case studies are detailed to show how to
interpret and utilise the taxonomy of Table 2. The case studies aim to lead the reader through
complex situations full of pitfalls, which might not necessarily appear in each setting. The
presentation does not require any familiarity with the uncertainty computations applied
in [67], nor a deep understanding of quality modelling in terms of terminology, concepts,
and meta-models, which were necessary to prepare the taxonomy and relevance ranking as
reported in [2,65].

3. Results

This section presents (1) an investigation of how execution tracing quality can be described
by a GAM model [68], which will be referred to as model simplification; and (2) fictional but
realistic case studies that show how software product quality can be modelled, measured,
and assessed, and how quality models can be tailored to specific needs. The below model
simplification is only useful to offer more insight into the extent to which a quality property
impacts the execution tracing quality. This information is placed in context, as reported in
Section 3.2, while tailoring the quality models for the considered case studies. Nevertheless,
the computations in Section 3.1 are not strictly necessary to apply quality modelling.

3.1. Model Simplification

The GAM [68] modelling approach is used to approximate the fuzzy model describing
the quality of execution tracing developed in [67]. Beyond constructing a simplified model,
a further goal of the modelling approach is to understand the roles of the input variables
from a different perspective.

The reason for choosing GAM lies in its capacity to capture non-linear relationships
without the need to specify the assumed degrees of polynomials. Indeed, GAM assumes the
below additive relationship between the functions of the input variables, which explicitly
shows the impact of each variable on the output:

y = β0 + s1(x1) + s2(x2) + · · ·+ sn(xn) + ε (1)

where y is the output variable; x1, . . . , xn are the input variables; β0 is the intersect value;
s1, . . . , sn are smooth functions; and ε is the error term. Within the scope of the learning
algorithm, ε is minimised while β0, s1, . . . , sn are identified, and the smooth functions are
constructed from basis functions [68,69].

3.1.1. Modelling Steps

The modelling steps are as follows: (1) generating data from the fuzzy model, which
was reported in [67]; (2) building a simplified model with GAM; and (3) checking the
performance of the constructed new model.

The fuzzy model has Accuracy, Legibility, Implementation and Security as input variables,
and Execution Tracing Quality as its output variable, which also constitute the variables of
the simplified model. All variables are assumed to take values in the [0, 100] domain range.
While generating the data, the values of the input variables were increased by 5, starting from
a value of 0 until the whole domain was covered, while the output variable was recorded
for each combination of values of the input variables. Thus, each input variable took the
21 selected values {0, 5, 10, . . . , 100}, which means that each possible combination of the 4
input variable values with its corresponding output variable value generated 214 = 194,481
points in a 5-dimensional space. The generated data were published in [70] and the GAM
model was trained using this data set. The annotated R code to construct the GAM model is
given in Appendix A. Figure 1 shows the relationship of each input variable and the output

Axioms 2023, 12, 529 5 of 17

variable assuming that the other input variables are zero. The curves are shifted with the
intercept (β0 = 37.9), so that the y value can depict the real output value (Execution Tracing
Quality). The effective degree of freedom for each input variable is printed on the y axis, and
it highlights a highly non-linear relationship in each case.

Figure 1 illustrates an increasing relationship between the output variable and each
input variable individually, and the rate of increase in the output variable is higher for the
input variables Accuracy and Implementation; the rate of increase in the output variable
with respect to the input variable Legibility is positive but approaches zero in the subrange
[40; 60]; meanwhile, the rate of increase in the output variable is lowest for the input variable
Security. These results corroborate the findings of the fuzzy model obtained in [67].

Figure 1. Impact of the inputs.

3.1.2. Checking the Constructed Model

This sections aims to answer questions such as the following: To what extent can the
newly created GAM model capture the variance of the data set produced by the fuzzy
model? Are the contributions of the smooth functions to the output variable significant?
Is the number of basis functions, which make up the smooth functions, large enough to
describe the patterns in the data set? Do the input variables have parallel curves that result
in a poorly fitting and unstable model?

• Since the R2 value of the simplified model was 0.775, it can be stated that 77.5%
of the variability of the output variable of the fuzzy model was explained by the
variability of the output variable of the GAM model, which can be interpreted as an
acceptable fit for the simplified model. Table 3 presents the smooth terms with their
effective degrees of freedom and the performed F-test statistics with the corresponding
p-values. All smooth terms are statistically significant. Thus, the identified smooth
functions contribute significantly to the output variable.

• Considering the research settings of [67] and the data generation from the fuzzy model
described above, it is unlikely that the inputs have parallel curves, although this was examined.

Linear correlation: Table 4 provides the Pearson correlation between each pair of
variables, and it is obvious that there is a lack of linear correla-
tion between the pairs of input variables. The strongest linear
correlations between the input variables and the output variable
are for the variables Accuracy and Implementation, while the

Axioms 2023, 12, 529 6 of 17

linear correlation of the input variable Security with the output
variable is nearly negligible, which conforms with Figure 1.

Concurvity: GAM concurvity measures the extent up to which a “smooth term
in a model can be approximated by one or more of the other smooth
terms in the model” (concurvity measures: https://stat.ethz.ch/R-
manual/R-devel/library/mgcv/html/concurvity.html, accessed
on 20 April 2023). GAM concurvity is measured in the range
[0, 1], with no problem identified with a 0 value, while total con-
curvity is achieved when value 1 is obtained. Table 5 shows the
concurvity values. Considering the worst case, all values lie in the
vicinity of zero, indicating that the input variables do not have a
non-linear relationship.

• The smooth functions are constructed from basis functions to model the patterns
found in the data set. If the number of basis functions is too low, then some patterns
are missed in the data. The p-values in Table 6 show no significance. (The mgcv R
library offers a function to perform this computation, as demonstrated in Appendix A.
This check resulted in increasing the number of basis functions for the input variable
Security to avoid a significant p-value.) This means that the number of basis functions
is appropriate to cover the existing patterns in the data set.

Table 3. Smooth terms and their significance.

Smooth Term Effective Degree of Freedom F-Statistic p-Value

s(Accuracy) 8.898 33,515.5 <2× 10−16

s(Legibility) 8.815 14,164.6 <2× 10−16

s(Implementation) 8.893 26,134.6 <2× 10−16

s(Security) 9.247 685.9 <2× 10−16

Table 4. Pearson correlation matrix.

Accuracy Legibility Implementation Security Execution Tracing Quality

Accuracy 1 1.402361× 10−5 1.402361× 10−5 1.402361× 10−5 0.57322295
Legibility 1.402361× 10−5 1 1.402361× 10−5 1.402361× 10−5 0.36988615
Implementation 1.402361× 10−5 1.402361× 10−5 1 1.402361× 10−5 0.51562623
Security 1.402361× 10−5 1.402361× 10−5 1.402361× 10−5 1 0.08651949
Execution
Tracing Quality 0.5732230 0.3698862 0.5156262 0.08651949 1

Table 5. Concurvity metrics.

Case s(Accuracy) s(Legibility) s(Implementation) s(Security)

worst 2.557907× 10−8 2.557907× 10−8 2.557907× 10−8 2.746695× 10−8

observed 5.336778× 10−9 4.135488× 10−9 4.515394× 10−9 7.145365× 10−9

estimate 3.516405× 10−9 3.516405× 10−9 3.516405× 10−9 4.230810× 10−9

Table 6. Number of basis functions.

Smooth Function Effective Degree of Freedom p-Value

s(Accuracy) 8.90 0.68
s(Legibility) 8.82 0.82
s(Implementation) 8.89 0.30
s(Security) 9.25 0.60

3.1.3. Conclusions of Model Simplification

The model simplification confirmed that input variables Accuracy and Implementation
have the strongest effect on the output variable Execution Tracing Quality. The input

https://stat.ethz.ch/R-manual/R-devel/library/mgcv/html/concurvity.html
https://stat.ethz.ch/R-manual/R-devel/library/mgcv/html/concurvity.html

Axioms 2023, 12, 529 7 of 17

variable Security only has a marginal effect on the output variable Execution Tracing
Quality, while the input variable Legibility in the range [0; 40] also has a strong impact on
the output variable Execution Tracing Quality. These insights are important if we place
execution tracing quality into context, and the case studies in Section 3.2 illustrate the
application with regard to the overall software product quality.

3.2. Case Studies

The following two projects are used as case studies for demonstration purposes: (1) the
first project, which is already running, applies quality measurements and the stakeholders
would like to know the validity of the statements based on these measurements; (2) the
second project, which has recently been launched, requires a software product quality
model to be selected to satisfy the assessment of non-functional requirements and the
wishes of the stakeholders. In addition, the second project is divided into two parts: (2a) the
first part leads the reader through the quality model selection and tailoring process via the
application of two different software product quality models, one for the internal quality
view to take advantage of automation, and the other for the external and quality in use
views where automation is not possible at present; (2b) the second part demonstrates
how to consider new findings and their implementation as new requirements in the qual-
ity measurement and assessment process. The considered case studies form part of the
corresponding author’s PhD thesis [3].

While the different quality properties are measured and the quality metrics are com-
puted, it is important to consider the measurement scales and data aggregation. If aggre-
gation is needed, then masking, threshold, and compensation effects have to be consid-
ered [23]. For different metric scales, normalisation needs to be performed [71]. In the
considered case studies, quality metrics are all measured in the range [0; 1] and, there-
fore, scale normalisation is not necessary. The quality metrics are assigned to quality
sub-characteristics, which are assigned to quality characteristics constituting a hierarchy,
although the quality sub-characteristics are not aggregated to one individual metric, which
helps to avoid the issues described in [23].

3.2.1. Case Study 1: Validity of Statements Based on a Given Software Product Quality Model

Background: Based on the SQALE model, SonarQube [66] is a widespread tool for quality
measurement and assessment, with easy-to-use integration into the project
life-cycle [2,3,30]. Technical debt is one major element of the SQALE defini-
tion [30], which refers to any non-conformance of coding standards described
in the form of a rule set. Each identified non-conformance is also associ-
ated with a remediation cost in time units to improve the given defect. The
identified defects can also be associated with non-remediation costs, which
describe the impact of the defect on the system as a whole. However, the
estimation of non-remediation costs is vague and error-prone; therefore, the
identified defects are usually classified based on criticality from blocker to
information on an ordinal scale.
Company A decides to introduce measures to apply SonarQube in each
software development project and the company defines its own rule sets to
identify technical debts using the tool. A project team at company A has
already integrated SonarQube [66] into their project but they would like
to know to what extent the tool is able to measure software quality as a
whole and to what extent the team can rely on the measurement results.
This is also an extremely important question when transferring projects for
maintenance to external service providers, where software quality can have
a direct impact on the financial negotiations.

Step 1: Participants in the development project check the documentation of Sonar-
Qube and they find that SQALE is the underlying software product qual-
ity model.

Axioms 2023, 12, 529 8 of 17

Step 2: After successfully identifying the software product quality model, the project
team looks up SQALE in Table 2 and they find that SQALE is able to measure
and assess only one of the three different manifestations of software product
quality, which is a fraction of the whole.

Result: The project team draws the conclusion that SonarQube can measure and
assess how the source code is written; moreover, the measurements are
performed in a consistent and precise manner. However, SonarQube can-
not measure and assess (i) the architecture, (ii) how the software behaves
while it runs, and (iii) whether the end user is satisfied with the product.
Consequently, SonarQube’s results might be valid for source code quality,
depending on the rule set applied during the quality measurement, but these
results cannot be considered valid for software product quality in general.
Measuring and assessing software product quality as a whole requires the
measurement and assessment of all three quality views: internal, external,
and quality in use. Thus, the SonarQube results need to be supplemented
with the measurement and assessment of the operational behaviour of the
software and with the measurement and assessment of the end user feedback
to be able to judge software quality as a whole.

3.2.2. Case Study 2a: Selecting a Quality Model for Measurement and Assessment, and
Tailoring It to Specific Project Needs

Background: This case study shows how a software product quality model can be selected
and the quality requirements refined with regard to a certain project. Eeles’s
checklist [48] can be of assistance to collect non-functional and architectural
requirements. The stakeholders formulate the following quality guidelines:
(1) source code quality must be measured and assessed, (2) the quality of the
operational software must be measured and assessed, and (3) the perception
of the end user regarding the software must also be measured, assessed, and
reported after each defined milestone in the project’s life-cycle.

Step 1: Considering the stakeholders’ guidelines, members of the project team recog-
nise that the selected software product quality model needs the capability to
measure all three distinct quality views: internal, external, and quality in use.
Thus, as per Table 2, the following models are eligible: ISO/IEC 25010 [10],
ISO/IEC 9126 [19], Quamoco [31–34], ADEQUATE [42,43], GEQUAMO [51],
GQM [57], SQUID [62].

Step 2: The project team needs to select a software product quality model for mea-
surement and assessment. The GQM [57] and SQUID [62] approaches
would require the creation of a quality model individually, which the project
team would avoid. The project team wishes to use a widespread quality
model with constant research interest and industrial use cases, which nar-
rows down the set of eligible quality models to ISO/IEC 25010 [10] and
ISO/IEC 9126 [19]. From these two models, the project team selects ISO/IEC
25010 [10] because it supersedes the predecessor standard ISO/IEC 9126 [19].

Step 3: After familiarising themselves with the extensive definition of the ISO/IEC
25010 [10] standard, the project team considers how to measure and assess
software product quality for each distinct quality view. This provides the
project team with an important insight: they need to set up static code analy-
sers individually and interpret their results for the selected high-level quality
properties that they use from the standard. Kim and Lee published a similar
study in [50]. However, the effort required for the whole setup motivates
the team to look for alternatives. They come to the conclusion that they will
use a different quality model for the measurement and assessment of the
internal quality view, which offers automation potential and requires less
effort while integrating into the development pipeline. Consulting Table 2

Axioms 2023, 12, 529 9 of 17

and the study in [2], they decide to use the SQALE model [30], which offers
easy integration into the software life-cycle through tool implementation
including SonarQube [66]; moreover, they make the decision to accept the
default rule set for their target programming language.

Step 4: The project team outlines the measurement and assessment for the external
and quality in use views, based on the ISO/IEC 25010 standard [10], which
makes it possible to investigate the operational software and the feedback
of the end user. As the standard encourages tailoring to specific project
needs, they select the most important high-level quality properties to mea-
sure and assess, in agreement with the stakeholders. The selection can be
performed in many different ways but the simplest one seems to be constant
sum scaling [72], where each stakeholder receives a constant score value to
be distributed among the most important high-level quality properties in
his/her opinion. Where the score values accumulate, those quality proper-
ties represent the most valuable assets for the stakeholders and they need to
be considered while measuring and assessing quality. After the discussion
and selection process, the following high-level quality properties are chosen
for the specific project: (1) for the external quality view, (a) performance
efficiency and (b) reliability; (2) for quality in use, (a) satisfaction.

Step 5: The project team defines new quality metrics to measure the selected high-
level quality properties and has them approved by the stakeholders. Each
metric has a measurement method and a continuous scale in the range [0; 1],
where 1 stands for the best possible value.

Step 6: The project team defines the acceptable metric ranges for each metric in
Table 7. After approval by the stakeholder, the following acceptable ranges
are defined: (1) response time metric over 0.55, (2) crash metric over 0.5,
(3) manual intervention metric over 0.5, and (4) usefulness goal metric over
0.7. Defining a fine-granular ordinal scale for the assessment is also possible,
with many ranges in the acceptable and non-acceptable domain and with a
transient one in between.

Step 7: Quality measurement: The project team measures the following values:
(a) the external interface mean response time is 20 msec, while its maximally
allowed response time amounts to 30 msec; (b) 2 crashes in the timeframe
of the system test, (c) 1 manual intervention during the system test so that
the software’s operational state can be maintained, and (d) three end users
rate the software’s usefulness from the point of view of achieving their work
goals with the scores 6, 9, and 7. These quality metric elements result in
the following quality metrics: (1) response time measure—0.6, (2) crash
measure—0.33, (3) manual intervention measure—0.5, and (4) usefulness
goal measure—0.73.

Step 8: Quality assessment: Not all of the quality metrics achieve the defined quality
targets determined in Step 6, which means that the software cannot be
released without improvements.

Result: The project team successfully defines and carries out the first quality mea-
surement affecting all three quality views. Based on the defined acceptable
ranges, they make a decision regarding whether the software can be re-
leased or not. If they define transient ranges between the acceptable and
non-acceptable metrics’ ranges, and if the measured values fall into those
ranges, then the software release is possible after the stakeholders’ approval.

3.2.3. Case Study 2b: Adjusting the Selected Quality Model to Include a Further Quality Property

Background: After deploying the software, the development team and the stakeholders
regularly evaluate the quality measurements and trends. Moreover, they also
consider the feedback from the end users, and they analyse the error reports.

Axioms 2023, 12, 529 10 of 17

While examining the error reports and their resolution times, they find that
identifying the causes of errors requires far more time than expected. Thus,
the software’s maintainability property—more specifically, analysability—
requires attention.

Step 1: The development team as responsible for the software’s maintenance, in agree-
ment with the stakeholders, includes the maintainability quality property
with its analysability sub-property into the quality measurement and assess-
ment process. They identify different publications [3,67,73] describing the
Execution Tracing Quality, which can exactly be linked to the analysabil-
ity quality property. Thus, the development team adds Execution Tracing
Quality to the metrics that they measure for the external quality view. Fur-
thermore, they make the decision to simplify the computation of this met-
ric and they use weighted averaging to aggregate the quality metric ele-
ments instead of fuzzy logic or GAM. They determine the following weights
(Section 3.1 justifies the weights in general but the weights may differ for
each project and they can be adjusted to the specific context of use): (1) ET-1
(Accuracy)—0.3; (2) ET-2 (Legibility)—0.3; (3) ET-3 (Design and Implementation
of the Trace Mechanism)—0.3; (4) ET-4 (Security)—0.1. Thus, the development
team, in agreement with the stakeholders, measures and assesses maintainabil-
ity as well. Table 8 introduces all measured characteristics, sub-characteristics,
and quality metrics with the corresponding quality metric elements.

Step 2: The project team prepares guidelines on how to measure the quality met-
ric elements for Execution Tracing Quality; moreover, they determine the
acceptable and non-acceptable ranges for the metric in agreement with the
stakeholders. They conclude that the Execution Tracing Quality metric is
acceptable above 0.7 and non-acceptable below 0.5. In addition, they agree
that they will consider only this quality metric for maintainability at present.

Step 3: Quality measurement: The development team determines the quality metric
elements based on their defined guidelines for Execution Tracing Quality:
Accuracy—4, Legibility—5, Design and Implementation—7, and Security—7.
This results in a value of 0.55, computed with the formula defined in Table 8. All
other metrics in Table 8 are computed as illustrated above.

Step 4: Quality assessment: The project team examines whether all quality metrics
fall into the defined acceptable ranges. If there is only one metric that falls
into the non-acceptable range, then the software must not be released. If
transient ranges are also defined, i.e., one or more ranges exist between the
acceptable and non-acceptable ranges, and a metric falls into that range, then
the software might be released if the stakeholders approve it. Execution
Tracing Quality does not fall into the acceptable range, so the defined quality
targets are not met, but it does not fall into the non-acceptable range either.
Consequently, the project team contacts the stakeholders to make a decision
regarding whether the software can be released without improvement. Even
if the software can be released, the quality of execution tracing needs to be
improved before the next release.

Result: The project team finds that the tailored software product quality model in
Section 3.2.2 does not cover a quality characteristic that is important for the
given context of use. Consequently, they add the identified quality characteristic
to the model; moreover, they define a quality metric and couple it to the newly
added quality characteristic. This tailored software product quality model is
used for quality measurement and assessment in the project’s further life-cycle.
If future evaluations uncover any missing but important quality properties,
then they can be incorporated into the quality model and into the quality
measurement and assessment process in a similar manner.

Axioms 2023, 12, 529 11 of 17

Table 7. Case study 2a: tailoring the ISO/IEC 25010 quality model to the needs of the specific project. Source: [3].

View 1 Quality Characteristic Purpose Quality Sub-Characteristic Quality Metric Measurement Method Computation Formula

E Performance efficiency It expresses how well
the software performs

Time behaviour Response time metric Determine the most important business
operations in the system or at exter-
nal interfaces and measure the response
time for them. Compute the metric for
each business operation determined as
defined by the formula.

1

1 + timeresponse
timemaxallowed

E Reliability It expresses how
reliable the software is

Availability Crash metric 2 Count the number of crashes and the
number of “freezes” (when the software
is available but it does not respond) in a
given timeframe, and then compute the
metric as defined by the formula.

1
1 + countcrash + count f reeze

Fault tolerance Manual
intervention metric

Count the number of manual interven-
tions that are necessary to maintain the
operational state of the software in a
given timeframe, and then compute the
metric as defined by the formula.

1
1 + countmanualintervention

U Satisfaction It expresses how sat-
isfied the end user
is when he/she uses
the software

Usefulness Usefulness
goal metric

The end users assess how easily they can
achieve their goals with the use of the
software. The user assessment results in
a score in the range [0, 1]. The higher the
value is, the higher the user’s satisfac-
tion is. Compute the metric as defined
by the formula.

countusers

∑
n=1

assessmentn

10 ∗ countusers

1 I: internal quality view, E: external quality view, U: quality in use view. 2 If the software starts up quickly and automatically, then the up-time ratio does not appropriately mirror the availability.

Axioms 2023, 12, 529 12 of 17

Table 8. Case study 2b: tailoring the ISO/IEC 25010 quality model to the needs of the specific project, including maintainability. Source: [3].

View 1 Quality Characteristic Purpose Quality Sub-Characteristic Quality Measure Measurement Method Computation Formula

E Performance efficiency It expresses
how well the
software performs

Time behaviour Response time metric Determine the most important business op-
erations in the system or at external inter-
faces and measure the response time for
them. Compute the metric for each busi-
ness operation determined as defined by
the formula.

1

1 + timeresponse
timemaxallowed

E Reliability It expresses
how reliable the
software is

Availability Crash metric 2 Count the number of crashes and the num-
ber of “freezes” (when the software is avail-
able but it does not respond) in a given time-
frame, and then compute the metric as de-
fined by the formula.

1
1 + countcrash + count f reeze

Fault tolerance Manual
intervention metric

Count the number of manual interventions
that are necessary to maintain the opera-
tional state of the software in a given time-
frame, and then compute the metric as de-
fined by the formula.

1
1 + countmanualintervention

E Maintainability It expresses how
easy the software
maintenance is

Analysability Execution tracing
quality metric

Determine the following quality metric el-
ements in the range [0, 1]: (1) Accuracy,
(2) Legibility, (3) Design and Implementa-
tion, (4) Security. The higher the value is,
the higher the quality of the defined quality
metric element is. Compute the metric as
defined by the formula.

0.3QA + 0.3QL + 0.3QDAI + 0.1QS
10

U Satisfaction It expresses how
satisfied the end
user is when
he/she uses
the software

Usefulness Usefulness
goal metric

The end users assess how easily they can
achieve their goals with the use of the soft-
ware. The user assessment results in a score
in the range [0, 1]. The higher the value is,
the higher the user’s satisfaction is. Com-
pute the metric as defined by the formula.

countusers

∑
n=1

assessmentn

10 ∗ countusers

1 I: internal quality view, E: external quality view, U: quality in use view. 2 If the software starts up quickly and automatically, then the up-time ratio does not appropriately mirror the availability.

Axioms 2023, 12, 529 13 of 17

4. Discussion

The above two fictional, but practical and realistic, case studies led the reader through
the quality measurement and assessment process, while identifying potential pitfalls and
illustrating how to handle them.

Case study 1 showed how to identify the quality views, i.e., the theoretical maximum
amount of quality on which a software tool for analysis relies. The SQALE model and
its implementations, including SonarQube [66], are unable to handle the external and
quality in use views, which means that, based on SQALE, valid statements cannot be made
regarding the software’s direct runtime behaviour and the quality as perceived by the end
user. Consequently, SQALE and its implementations are useful to measure internal quality
in an objective manner, but statements about software product quality as a whole, based
solely on SQALE assessments, are not valid. Besides the SQALE assessment, the outcomes
of the different testing stages need to be considered and the end user’s feedback on the
software needs to be taken into account before forming any conclusion about software
product quality as a whole. For the above reasons, the statement "non-remediation costs
estimated by SQALE can be claimed", which is based on SQALE indices, made in [27], may
not be considered valid in a general sense but solely for the internal quality view.

Case study 2a and case study 2b explain how to (i) select a software product quality
model for a given project; (ii) tailor the selected model to the project’s needs; and (iii) com-
bine two different quality models to take advantage of automation. In addition, both
case studies show the desired close cooperation between the development team and the
stakeholders. Furthermore, case study 2b shows how an emerging issue in connection with
the tailored software product quality model is found, and how it is resolved in the long
term; thus, it illustrates the adaptive nature of the quality measurement and assessment
process. If the software maintenance is outsourced to personnel who differ from the original
development team, then they also need to be involved in discussions to identify the quality
characteristics to measure and to construct the quality metrics, especially in the above
scenario, where software maintainability needs improvement.

5. Conclusions

This paper demonstrates the practical importance of the notion of quality views and
the taxonomy established in [65]. Applying the taxonomy [65] and selecting quality models
for projects does not require in-depth knowledge of software product quality modelling,
meta-models, and reasoning under uncertainty [67]. The paper thoroughly explains how
to select a software product quality model, how to tailor it to specific project needs, and
how to adjust it if it is challenged; thus, the adaptive nature of software product quality
measurement and assessment is exemplified.

Furthermore, it is shown how to validate a statement based on a software product
quality model and how to decide whether the statement holds in general for software
product quality or only for one of its specific views. It is of extreme importance that
no valid statements are made on software product quality as a whole based on quality
models that are able to address only the internal view of quality, i.e., the source code and
documentation quality. Only such models allow for full automation at present, and human
intervention is necessary to measure and assess the external and quality in use views.

In conclusion, software product quality measurements and assessments must always
be presented with the applied quality models and their quality views to be able to interpret
the results in a fair manner.

Author Contributions: Conceptualization, T.G.; methodology, T.G.; validation, F.C. and F.S.; formal
analysis, T.G.; investigation, T.G.; resources, T.G.; data curation, T.G.; writing—original draft preparation,
T.G.; writing—review and editing, F.C. and F.S.; visualization, T.G.; supervision, F.C. and F.S.; project
administration, T.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Axioms 2023, 12, 529 14 of 17

Data Availability Statement: The data used for model simplification were made available at Zenodo,
see reference [70] for further information.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Annotated R Code for Model Construction

library(readxl)
library(mgcv)

data file is published: Galli, Tamas; Chiclana, Francisco; Siewe, Francois. (2023). Data Set
Generated by the Fuzzy Model Constructed to Describe Execution Tracing Quality [Data set].
Zenodo. https://doi.org/10.5281/zenodo.7841041
INPUT_FILE5 <- "./input/derived_data_from_gafis_model_stepsize5.csv"

the output of the fuzzy model was collected while the inputs were increased by a step
size 5 in the range [0; 100], i.e., 21 steps from 0 to 100
we have 4 inputs, which result in 194481 rows (21^4 = 194481 rows)
df_input5 <- read.csv(INPUT_FILE5, sep = ",")
colnames(df_input5) <- c("Accuracy", "Legibility", "Implementation", "Security", "Quality")

checking the data structure and variable types for the data frame
str(df_input5)

fitting GAM, number of basis functions for the predictor Security was increased to k=15
so that we could get appropriate effective degree of freedom (EDF) with gam.check()
model_gam5 <- gam(Quality ~ s(Accuracy) + s(Legibility) + s(Implementation) + s(Security, k=15),
data=df_input5, method="REML")

plotting GAM
shifting the standard errors and the curve with the intercept
to get directly interpretable results with regard to the outcome
plot(model_gam5, all.terms = TRUE, pages = 1, se=TRUE,

seWithMean = TRUE, shift = coef(model_gam5)[1])

printing model summary, including R-squared
summary(model_gam5)

looking at model parameters
coef(model_gam5)

GAM check, whether we have enough number of basis functions for each predictor
gam.check(model_gam5)

checking whether we have concurvity among the predictors
concurvity(model_gam5, full=TRUE)

checking Pearson correlation among the predictors and outcome;
scale of the predictors and outcome: [0; 100]
cor(df_input5)

Axioms 2023, 12, 529 15 of 17

References
1. Kokol, P. Software Quality: How Much Does It Matter? Electronics 2022, 11, 2485. [CrossRef]
2. Galli, T.; Chiclana, F.; Siewe, F. Software Product Quality Models, Developments, Trends and Evaluation. SN Comput. Sci. 2020, 1, 154.

[CrossRef]
3. Galli, T. Data Science Techniques for Modelling Execution Tracing Quality. Ph.D. Thesis, Institute of Artificial Intelligence,

Faculty of Computing, Engineering and Media, De Montfort University, Leicester, UK, May 2022.
4. Kitchenham, B.; Pfleeger, S. Software Quality: The Elusive Target. IEEE Softw. 1996, 13, 12–21. [CrossRef]
5. Ouhbi, S.; Idri, A.; Fernández-Alemán, J.L.; Toval, A.; Benjelloun, H. Applying ISO/IEC 25010 on mobile personal health records.

In Proceedings of the HEALTHINF 2015—8th International Conference on Health Informatics, Proceedings; Part of 8th International Joint
Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2015; SciTePress: Setubal, Portugal, 2015; pp. 405–412.

6. Idri, A.; Bachiri, M.; Fernández-Alemán, J.L. A Framework for Evaluating the Software Product Quality of Pregnancy Monitoring
Mobile Personal Health Records. J. Med Syst. 2016, 40, 50. [CrossRef] [PubMed]

7. Forouzani, S.; Chiam, Y.K.; Forouzani, S. Method for assessing software quality using source code analysis. In Proceedings of the
ACM International Conference Proceeding Series; Association for Computing Machinery: New York, NY, USA, 2016; pp. 166–170.
[CrossRef]

8. Domínguez-Mayo, F.J.; Escalona, M.J.; Mejías, M.; Ross, M.; Staples, G. Quality evaluation for Model-Driven Web Engineering
methodologies. Inf. Softw. Technol. 2012, 54, 1265–1282. [CrossRef]

9. Idri, A.; Bachiri, M.; Fernandez-Aleman, J.L.; Toval, A. Experiment Design of Free Pregnancy Monitoring Mobile Personal Health
Records Quality Evaluation; IEEE: Piscataway, NJ, USA, 2016; pp. 1–6. [CrossRef]

10. ISO/IEC 25010:2011; Systems and Software Engineering—Systems and Software Quality Requirements and Evaluation (SQuaRE)—
System and Software Quality Models. International Organization for Standardization: Geneva, Switzerland, 2011.

11. Shen, P.; Ding, X.; Ren, W.; Yang, C. Research on Software Quality Assurance Based on Software Quality Standards and
Technology Management. In Proceedings of the 2018 19th IEEE/ACIS International Conference on Software Engineering,
Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), Busan, Republic of Korea, 27–29 June 2018;
pp. 385–390. [CrossRef]

12. Liu, X.; Zhang, Y.; Yu, X.; Liu, Z. A Software Quality Quantifying Method Based on Preference and Benchmark Data. In
Proceedings of the 2018 19th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking
and Parallel/Distributed Computing (SNPD), Busan, Republic of Korea, 27–29 June 2018; pp. 375–379. [CrossRef]

13. Ulan, M.; Hönel, S.; Martins, R.M.; Ericsson, M.; Löwe, W.; Wingkvist, A.; Kerren, A. Quality Models Inside Out: Interactive
Visualization of Software Metrics by Means of Joint Probabilities. In Proceedings of the 2018 IEEE Working Conference on
Software Visualization (VISSOFT), Madrid, Spain, 24–25 September 2018; pp. 65–75. [CrossRef]

14. Kanellopoulos, Y.; Tjortjis, C.; Heitlager, I.; Visser, J. Interpretation of source code clusters in terms of the ISO/IEC-9126
maintainability characteristics. In Proceedings of the European Conference on Software Maintenance and Reengineering, CSMR,
Athens, Greece, 1–4 April 2008; pp. 63–72. [CrossRef]

15. Vetro, A.; Zazworka, N.; Seaman, C.; Shull, F. Using the ISO/IEC 9126 product quality model to classify defects: A controlled
experiment. In Proceedings of the 16th International Conference on Evaluation Assessment in Software Engineering (EASE 2012),
Ciudad Real, Spain, 14–15 May 2012; pp. 187–196. [CrossRef]

16. Parthasarathy, S.; Sharma, S. Impact of customization over software quality in ERP projects: An empirical study. Softw. Qual. J.
2017, 25, 581–598. [CrossRef]

17. Li, Y.; Man, Z. A Fuzzy Comprehensive Quality Evaluation for the Digitizing Software of Ethnic Antiquarian Resources. In
Proceedings of the 2008 International Conference on Computer Science and Software Engineering, Wuhan, China, 12–14 December
2008; Volume 5, pp. 1271–1274. [CrossRef]

18. Hu, W.; Loeffler, T.; Wegener, J. Quality model based on ISO/IEC 9126 for internal quality of MATLAB/Simulink/Stateflow
models. In Proceedings of the 2012 IEEE International Conference on Industrial Technology, Athens, Greece, 19–21 March 2012;
pp. 325–330. [CrossRef]

19. ISO/IEC 9126-1:2001; Software Engineering—Product Quality—Part 1: Quality Model. International Organization for Standard-
ization: Geneva, Switzerland, 2001.

20. Liang, S.K.; Lien, C.T. Selecting the Optimal ERP Software by Combining the ISO 9126 Standard and Fuzzy AHP Approach.
Contemp. Manag. Res. 2006, 3, 23. [CrossRef]

21. Correia, J.; Visser, J. Certification of Technical Quality of Software Products. In Proceedings of the International Workshop on
Foundations and Techniques for Open Source Software Certification, Madrid, Spain, 23 September 2008; pp. 35–51.

22. Andreou, A.S.; Tziakouris, M. A quality framework for developing and evaluating original software components. Inf. Softw.
Technol. 2007, 49, 122–141. [CrossRef]

23. Letouzey, J.L.; Coq, T. The SQALE Analysis Model: An Analysis Model Compliant with the Representation Condition for
Assessing the Quality of Software Source Code. In Proceedings of the 2010 Second International Conference on Advances in
System Testing and Validation Lifecycle, Nice, France, 22–27 August 2010; pp. 43–48.

24. Letouzey, J.L. Managing Large Application Portfolio with Technical Debt Related Measures. In Proceedings of the Joint
Conference of the International Workshop on Software Measurement and the International Conference on Software Process and
Product Measurement (IWSM-MENSURA), Rome, Italy, 14–15 September 2016; p. 181. [CrossRef]

http://doi.org/10.3390/electronics11162485
http://dx.doi.org/10.1007/s42979-020-00140-z
http://dx.doi.org/10.1109/52.476281
http://dx.doi.org/10.1007/s10916-015-0415-z
http://www.ncbi.nlm.nih.gov/pubmed/26643080
http://dx.doi.org/10.1145/3033288.3033316
http://dx.doi.org/10.1016/j.infsof.2012.06.007
http://dx.doi.org/10.1109/HealthCom.2016.7749501
http://dx.doi.org/10.1109/SNPD.2018.8441142
http://dx.doi.org/10.1109/SNPD.2018.8441145
http://dx.doi.org/10.1109/VISSOFT.2018.00015
http://dx.doi.org/10.1109/CSMR.2008.4493301
http://dx.doi.org/10.1049/ic.2012.0025
http://dx.doi.org/10.1007/s11219-016-9314-x
http://dx.doi.org/10.1109/CSSE.2008.304
http://dx.doi.org/10.1109/ICIT.2012.6209958
http://dx.doi.org/10.7903/cmr.10
http://dx.doi.org/10.1016/j.infsof.2006.03.007
http://dx.doi.org/10.1109/IWSM-Mensura.2016.035

Axioms 2023, 12, 529 16 of 17

25. Letouzey, J.L. The SQALE method for evaluating Technical Debt. In Proceedings of the Third International Workshop on
Managing Technical Debt (MTD), Zurich, Switzerland, 5 June 2012; pp. 31–36. [CrossRef]

26. Letouzey, J.; Coq, T. The SQALE Models for Assessing the Quality of Real Time Source Code. 2010. Available online:
https://pdfs.semanticscholar.org/4dd3/a72d79eb2f62fe04410106dc9fcc27835ce5.pdf?ga=2.24224186.1861301954.1500303973-1
157276278.1497961025 (accessed on 17 July 2017).

27. Letouzey, J.L.; Ilkiewicz, M. Managing Technical Debt with the SQALE Method. IEEE Softw. 2012, 29, 44–51. [CrossRef]
28. Letouzey, J.L.; Coq, T. The SQALE Quality and Analysis Models for Assessing the Quality of Ada Source Code. 2009. Available

online: http://www.adalog.fr/publicat/sqale.pdf (accessed on 17 July 2017).
29. Hegeman, J.H. On the Quality of Quality Models. Master’s Thesis, University Twente, Enschede, The Netherlands, 2011.
30. Letouzey, J.L. The SQALE Method for Managing Technical Debt, Definition Document V1.1. 2016. Available online: http:

//www.sqale.org/wp-content/uploads//08/SQALE-Method-EN-V1-1.pdf (accessed on 2 August 2017).
31. Gleirscher, M.; Golubitskiy, D.; Irlbeck, M.; Wagner, S. Introduction of static quality analysis in small- and medium-sized software

enterprises: Experiences from technology transfer. Softw. Qual. J. 2014, 22, 499–542. [CrossRef]
32. Wagner, S.; Lochmann, K.; Heinemann, L.; as, M.K.; Trendowicz, A.; Plösch, R.; Seidl, A.; Goeb, A.; Streit, J. The Quamoco Product

Quality Modelling and Assessment Approach. In Proceedings of the 34th International Conference on Software Engineering,
ICSE ’12, Zurich, Switzerland, 2–9 June 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1133–1142.

33. Wagner, S.; Lochmann, K.; Winter, S.; Deissenboeck, F.; Juergens, E.; Herrmannsdoerfer, M.; Heinemann, L.; Kläs, M.; Trendowicz,
A.; Heidrich, J.; et al. The Quamoco Quality Meta-Model. October, 2012. Available online: https://mediatum.ub.tum.de/attfile/
1110600/hd2/incoming/2012-Jul/517198.pdf (accessed on 18 November 2017).

34. Wagner, S.; Goeb, A.; Heinemann, L.; Kläs, M.; Lampasona, C.; Lochmann, K.; Mayr, A.; Plösch, R.; Seidl, A.; Streit, J.; et al.
Operationalised product quality models and assessment: The Quamoco approach. Inf. Softw. Technol. 2015, 62, 101–123.
[CrossRef]

35. Kothapalli, C.; Ganesh, S.G.; Singh, H.K.; Radhika, D.V.; Rajaram, T.; Ravikanth, K.; Gupta, S.; Rao, K. Continual monitoring of
Code Quality. In Proceedings of the 4th India Software Engineering Conference 2011, ISEC’11, Kerala, India, 24–27 February
2011; pp. 175–184. [CrossRef]

36. Plösch, R.; Gruber, H.; Hentschel, A.; Körner, C.; Pomberger, G.; Schiffer, S.; Saft, M.; Storck, S. The EMISQ method and its tool
support-expert-based evaluation of internal software quality. Innov. Syst. Softw. Eng. 2008, 4, 3–15. [CrossRef]

37. Plösch, R.; Gruber, H.; Körner, C.; Saft, M. A Method for Continuous Code Quality Management Using Static Analysis. In
Proceedings of the 2010 Seventh International Conference on the Quality of Information and Communications Technology, Porto,
Portugal, 29 September–2 October 2010; pp. 370–375. [CrossRef]

38. Mordal-Manet, K.; Balmas, F.; Denier, S.; Ducasse, S.; Wertz, H.; Laval, J.; Bellingard, F.; Vaillergues, P. The Squale Model—A
Practice-based Industrial Quality Model. Available online: https://hal.inria.fr/inria-00637364 (accessed on 6 March 2018).

39. Laval, J.; Bergel, A.; Ducasse, S. Assessing the Quality of your Software with MoQam. Available online: https://hal.inria.fr/inria-
00498482 (accessed on 6 March 2018).

40. Balmas, F.; Bellingard, F.; Denier, S.; Ducasse, S.; Franchet, B.; Laval, J.; Mordal-Manet, K.; Vaillergues, P. Practices in the Squale
Quality Model (Squale Deliverable 1.3). October, 2010. Available online: http://www.squale.org/quality-models-site/research-
deliverables/WP1.3Practices-in-the-Squale-Quality-Modelv2.pdf (accessed on 16 Novenber 2017).

41. INRIA RMoD, Paris 8, Qualixo. Technical Model for Remediation (Workpackage 2.2). 2010. Available online: http://www.squale.
org/quality-models-site/research-deliverables/WP2.2Technical-Model-for-Remediationv1.pdf (accessed on 16 November 2017).

42. Khaddaj, S.; Horgan, G. A Proposed Adaptable Quality Model for Software Quality Assurance. J. Comput. Sci. 2005, 1, 482–487.
[CrossRef]

43. Horgan, G.; Khaddaj, S. Use of an adaptable quality model approach in a production support environment. J. Syst. Softw. 2009,
82, 730–738. [CrossRef]

44. Boehm, B.; Chulani, S. Modeling Software Defect Introduction and Removal—COQUALMO (Constructive QUALity Model); Technical
Report, USC-CSE Technical Report; University of Southern California, Center for Software Engineering: Los Angeles, CA, USA, 1999.

45. Madachy, R.; Boehm, B. Assessing Quality Processes with ODC COQUALMO. In Making Globally Distributed Software Development
a Success Story; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5007, pp. 198–209. [CrossRef]

46. Grady, R.B.; Caswell, D.L. Software Metrics: Establishing a Company-Wide Program; Prentice-Hall, Inc.: Upper Saddle River, NJ,
USA, 1987.

47. Grady, R.B. Practical Software Metrics for Project Management and Process Improvement; Prentice Hall: Upper Saddle River, NJ, USA, 1992.
48. Eeles, P. Capturing Architectural Requirements. 2005. Available online: https://www.ibm.com/developerworks/rational/

library/4706-pdf.pdf (accessed on 19 April 2018).
49. Côté, M.A.; Suryn, W.; Martin, R.A.; Laporte, C.Y. Evolving a Corporate Software Quality Assessment Exercise: A Migration Path

to ISO/IEC 9126. Softw. Qual. Prof. 2004, 6, 4–17.
50. Kim, C.; Lee, K. Software Quality Model for Consumer Electronics Product. In Proceedings of the 9th International Conference

on Quality Software, Jeju, Republic of Korea, 24–25 August 2008; pp. 390–395.
51. Georgiadou, E. GEQUAMO—A Generic, Multilayered, Customisable, Software Quality Model. Softw. Qual. J. 2003, 11, 313–323.

[CrossRef]

http://dx.doi.org/10.1109/MTD.2012.6225997
https://pdfs.semanticscholar.org/4dd3/a72d79eb2f62fe04410106dc9fcc27835ce5.pdf?ga=2.24224186.1861301954.1500303973-1157276278.1497961025
https://pdfs.semanticscholar.org/4dd3/a72d79eb2f62fe04410106dc9fcc27835ce5.pdf?ga=2.24224186.1861301954.1500303973-1157276278.1497961025
http://dx.doi.org/10.1109/MS.2012.129
http://www.adalog.fr/publicat/sqale.pdf
http://www.sqale.org/wp-content/uploads//08/SQALE-Method-EN-V1-1.pdf
http://www.sqale.org/wp-content/uploads//08/SQALE-Method-EN-V1-1.pdf
http://dx.doi.org/10.1007/s11219-013-9217-z
https://mediatum.ub.tum.de/attfile/1110600/hd2/incoming/2012-Jul/517198.pdf
https://mediatum.ub.tum.de/attfile/1110600/hd2/incoming/2012-Jul/517198.pdf
http://dx.doi.org/10.1016/j.infsof.2015.02.009
http://dx.doi.org/10.1145/1953355.1953379
http://dx.doi.org/10.1007/s11334-007-0039-7
http://dx.doi.org/10.1109/QUATIC.2010.68
https://hal.inria.fr/inria-00637364
https://hal.inria.fr/inria-00498482
https://hal.inria.fr/inria-00498482
http://www.squale.org/quality-models-site/research-deliverables/WP1.3Practices-in-the-Squale-Quality-Modelv2.pdf
http://www.squale.org/quality-models-site/research-deliverables/WP1.3Practices-in-the-Squale-Quality-Modelv2.pdf
http://www.squale.org/quality-models-site/research-deliverables/WP2.2Technical-Model-for-Remediationv1.pdf
http://www.squale.org/quality-models-site/research-deliverables/WP2.2Technical-Model-for-Remediationv1.pdf
http://dx.doi.org/10.3844/jcssp.2005.482.487
http://dx.doi.org/10.1016/j.jss.2008.10.009
http://dx.doi.org/10.1007/978-3-540-79588-918
https://www.ibm.com/developerworks/rational/library/4706-pdf.pdf
https://www.ibm.com/developerworks/rational/library/4706-pdf.pdf
http://dx.doi.org/10.1023/A:1025817312035

Axioms 2023, 12, 529 17 of 17

52. Benedicenti, L.; Wang, V.W.; Paranjape, R. A quality assessment model for Java code. In Proceedings of the Canadian Conference
on Electrical and Computer Engineering, Winnipeg, MB, Canada, 12–15 May 2002; Volume 2, pp. 687–690.

53. McCall, J.A.; Richards, P.K.; Walters, G.F. Factors in Software Quality, Concept and Definitions of Software Quality. 1977. Available
online: http://www.dtic.mil/dtic/tr/fulltext/u2/a049014.pdf (accessed on 6 March 2018).

54. Zhang, L.; Li, L.; Gao, H. 2-D Software Quality Model and Case Study in Software Flexibility Research. In Proceedings of the
2008 International Conference on Computational Intelligence for Modelling Control and Automation, CIMCA ’08, Washington,
DC, USA, 10–12 December 2008; pp. 1147–1152. [CrossRef]

55. Boehm, B.W.; Brown, J.R.; Lipow, M. Quantitative Evaluation of Software Quality. In Proceedings of the 2nd International
Conference on Software Engineering, San Francisco, CA, USA, 13–15 October 1976.

56. Dromey, R. A Model for Software Product Quality. IEEE Trans. Softw. Eng. 1995, 21, 146–162. [CrossRef]
57. van Solingen, R.; Berghout, E. The Goal/Question/Metric Method a Practical Guide for Quality Improvement of Software Development;

McGraw Hill Publishing: London, UK, 1999.
58. IEEE Stdandard 1061-1998; IEEE Standard for a Software Quality Metrics Methodology; IEEE: Piscataway, NJ, USA, 1998.
59. Franke, D.; Weise, C. Providing a software quality framework for testing of mobile applications. In Proceedings of the 4th

IEEE International Conference on Software Testing, Verification, and Validation (ICST 2011), Berlin, Germany, 21–25 March 2011;
pp. 431–434. [CrossRef]

60. Hyatt, L.E.; Rosenberg, L.H. A Software Quality Model and Metrics for Identifying Project Risks and Assessing Software
Quality. In Proceedings of the Product Assurance Symposium and Software Product Assurance Workshop, 19–21 March 1996; EAS SP-377;
European Space Agency: Paris, France, 1996.

61. Martin, R.A.; Shafer, L.H. Providing a Framework for effective software quality assessment—a first step in automating assessments.
In Proceedings of the First Annual Software Engineering and Economics Conference, Chicago, IL, USA, 23–27 May 1996.

62. Kitchenham, B.; Linkman, S.; Pasquini, A.; Nanni, V. The SQUID approach to defining a quality model. Softw. Qual. J. 1997,
6, 211–233. [CrossRef]

63. Han, S.; Sinha, R.; Lowe, A. Assessing Support for Industry Standards in Reference Medical Software Architectures. In
Proceedings of the IECON 2020 the 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 18–21 October
2020; pp. 3403–3407. [CrossRef]

64. Bernardes Boarim, J.; Cavalcanti da Rocha, A.R. CRM Systems Quality Evaluation. In Proceedings of the XX Brazilian Symposium
on Software Quality, SBQS ’21, New York, NY, USA, 8–11 November 2021. [CrossRef]

65. Galli, T.; Chiclana, F.; Siewe, F. On the Use of Quality Models to Address Distinct Quality Views. Appl. Syst. Innov. 2021, 4, 41.
[CrossRef]

66. SonarSource. SonarQube. 2017. Available online: https://www.sonarqube.org (accessed on 16 February 2018).
67. Galli, T.; Chiclana, F.; Siewe, F. Genetic Algorithm-Based Fuzzy Inference System for Describing Execution Tracing Quality.

Mathematics 2021, 9, 2822. [CrossRef]
68. Hastie, T.; Tibshirani, R. Generalized Additive Models. Stat. Sci. 1986, 1, 297–310. [CrossRef]
69. Larsen, K. GAM: The Predictive Modeling Silver Bullet. 2015. Available online: Multithreadedstitchfix.com (accessed on 3 April 2023).
70. Galli, T.; Chiclana, F.; Siewe, F. Data Set Generated by the Fuzzy Model Constructed to Describe Execution Tracing Quality [Data Set];

Zenodo: Geneva, Switzerland, 2023. [CrossRef]
71. Poryazov, S.A.; Saranova, E.T.; Andonov, V.S. Overall Model Normalization towards Adequate Prediction and Presentation of

QoE in Overall Telecommunication Systems. In Proceedings of the 2019 14th International Conference on Advanced Technologies,
Systems and Services in Telecommunications (TELSIKS), Nis, Serbia, 23–25 October 2019; pp. 360–363. [CrossRef]

72. Malhotra, N.H. Marketingkutatas (Translated Title: Marketing Research); Akademia Kiado: Budapest, Hungary, 2009.
73. Galli, T.; Chiclana, F.; Siewe, F. Quality Properties of Execution Tracing, an Empirical Study. Appl. Syst. Innov. 2021, 4, 20.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://www.dtic.mil/dtic/tr/fulltext/u2/a049014.pdf
http://dx.doi.org/10.1109/CIMCA.2008.70
http://dx.doi.org/10.1109/32.345830
http://dx.doi.org/10.1109/ICST.2011.18
http://dx.doi.org/10.1023/A:1018516103435
http://dx.doi.org/10.1109/IECON43393.2020.9255309
http://dx.doi.org/10.1145/3493244.3493273
http://dx.doi.org/10.3390/asi4030041
https://www.sonarqube.org
http://dx.doi.org/10.3390/math9212822
http://dx.doi.org/10.1214/ss/1177013604
Multithreadedstitchfix.com
http://dx.doi.org/10.5281/zenodo.7841041
http://dx.doi.org/10.1109/TELSIKS46999.2019.9002295
http://dx.doi.org/10.3390/asi4010020

	Introduction
	Materials and Methods
	Results
	Model Simplification
	Modelling Steps
	Checking the Constructed Model
	Conclusions of Model Simplification

	Case Studies
	Case Study 1: Validity of Statements Based on a Given Software Product Quality Model
	Case Study 2a: Selecting a Quality Model for Measurement and Assessment, and Tailoring It to Specific Project Needs
	Case Study 2b: Adjusting the Selected Quality Model to Include a Further Quality Property

	Discussion
	Conclusions
	Annotated R Code for Model Construction
	References

