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Abstract: Understanding how drought propagates from meteorological to agricultural drought
requires further research into the combined effects of soil moisture, evapotranspiration, and precipi-
tation, especially through the analysis of long-term data. To this end, the present study examined
a multi-year reanalysis dataset (ERA5-Land) that included numerous drought events across the
Iberian Peninsula, with a specific emphasis on the 2005 episode. Through this analysis, the mech-
anisms underlying the transition from meteorological to agricultural drought and its features for
the selected region were investigated. To identify drought episodes, various non-parametric stan-
dardized drought indices were utilized. For meteorological droughts, the Standardized Precipitation-
Evapotranspiration Index (SPEI) was employed, while the Standardized Soil Moisture Index (SSI),
Multivariate Standardized Drought Index (MSDI), and Standard Precipitation, Evapotranspiration
and Soil Moisture Index (SPESMI) were utilized for agricultural droughts, while their ability to iden-
tify relative vegetation stress in areas affected by severe droughts was investigated using the Fraction
of Absorbed Photosynthetically Active Radiation (FAPAR) Anomaly provided by the Copernicus
European Drought Observatory (EDO). A statistical approach based on run theory was employed
to analyze several characteristics of drought propagation, such as response time scale, propagation
probability, and lag time at monthly, seasonal, and six-month time scales. The retrieved response
time scale was fast, about 1–2 months, and the probability of occurrence increased with the severity
of the originating meteorological drought. The duration of agricultural drought was shorter than
that of meteorological drought, with a delayed onset but the same term. The results obtained by
multi-variate indices showed a more rapid propagation process and a tendency to identify more
severe events than uni-variate indices. In general terms, agricultural indices were found to be effective
in assessing vegetation stress in the Iberian Peninsula. A newly developed combined agricultural
drought index was found to balance the characteristics of the other adopted indices and may be
useful for future studies.

Keywords: drought propagation; agricultural drought; meteorological drought; Iberian Peninsula;
non-parametric drought index

1. Introduction

Droughts are complex and spatially heterogeneous phenomena, with high variability
of conditions between adjacent locations, making it easy to find an area subject to drought
while neighbouring regions feature normal or even wet conditions. These spatial character-
istics are mainly detectable in climatic transition areas where atmospheric influences are
heterogeneous. The Iberian Peninsula (IP) is a notable example of such an area (Figure 1),
a Mediterranean region located between temperate and subtropical climates, and is subject
to diversified atmospheric patterns that cause a large variability of precipitation [1–3], that
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has presented recurrent droughts and a significant tendency towards more arid conditions
in the last decades [4]. Drought is a multi-scalar phenomenon, as the effects of precipita-
tion deficits occur across different systems and at various time scales. This is described
by [5] and is due to the involvement of mechanisms at multiple scales. The drought signal
is propagated through a water and energy cycle that involves a multitude of processes.
The first transition in the propagation of drought generally occurs from meteorological
to agricultural drought, which is driven by the response of soil moisture or crop yield to
various meteorological variables such as precipitation and evapotranspiration. The com-
bined effect of water shortage due to a lack of precipitation and the enhanced atmospheric
evaporative demand can lead to a significant depletion of soil moisture, which in turn can
trigger agricultural drought events.
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Figure 1. Location of the Iberian Peninsula within the Mediterranean sector. It includes the continental
areas of Spain, Portugal, and Andorra.

The propagation from meteorological drought to agricultural drought is an under-
studied area, requiring further investigation to understand its complex characteristics.
According to a recent review by [6], the co-occurrence of multiple driving factors in drought
generation is a critical aspect that requires further attention. Currently, most studies
only take into account soil moisture [7] or soil water deficit [8] and agricultural reservoir
levels [9], and the combined contribution of soil moisture, evapotranspiration, and pre-
cipitation to agricultural droughts is not yet fully understood. Accordingly, as suggested
in previous studies, the development and application of new multi-variate indices [10]
could be helpful in shedding light on the complex relationships between meteorological
and agricultural drought. Additionally, for the analysis of propagation from meteorolog-
ical to agricultural drought, it is appropriate to employ high resolution and long-term
data, as highlighted by [11], in particular concerning soil moisture, which can be obtained
through three major sources: in-situ observations, remote sensing, and hydrological models.
The majority of studies based on in-situ observations involve measuring soil moisture levels
at different depths across the globe using various soil moisture networks, but this approach
has limitations as the observations are relatively short [12] and unevenly distributed [13],
or may be unavailable in some isolated areas. Remote sensing products have been pre-
ferred in some studies [14] since they provide better spatial coverage, but they appeared
insufficient because they only cover a few centimeters of soil, while soil moisture from
hydrological simulations has been found to be possibly affected by discrepancies compared
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to in-situ data [15]. Therefore, more studies that combine and evaluate different datasets
are needed. Note that variations in vegetation health and/or cover may be due not only
to rainfall or soil moisture deficits, but also to other stress factors, such as plant diseases.
In this sense, indicators of vegetation stress and information on the deficit of precipitation
and soil moisture must be considered together.

Given the existing research gaps, this study aimed to contribute to our understanding
of agricultural drought over the IP, whose land cover is composed by a large extension of
cropland along with other vegetation systems such as tree cover and grassland, specifically
in relation to its propagation from meteorological droughts. To achieve this, a long-term
dataset containing several drought events was analyzed, providing a comprehensive charac-
terization of both meteorological and agricultural droughts. Various standardized drought
indices were used, ranging from uni-variate to multi-variate indices that considered differ-
ent physical quantities. In addition, a new combined index was proposed to account for the
different factors that contribute to drought propagation. Overall, this study significantly
advances our knowledge of meteorological and agricultural drought and their propagation
process by leveraging a comprehensive set of tools, including meteorological, agricultural,
multivariate, and combined drought indices. It offers a comprehensive perspective on
the complex dynamics of drought, providing valuable insights for future research and
informing effective drought management strategies.

2. Materials and Methods
2.1. Dataset

With the development of data assimilation technology, reanalysis data have become
more representative of observed conditions and less limited than in-situ and remote sensing
data. Reanalysis data offer global coverage, long time series, no gaps in space and time,
and contain subsurface data, making them ideal for assessing agricultural drought. Several
reanalysis datasets have been developed, and this study was conducted by employing
the state-of-the-art reanalysis dataset for land applications, ERA5-Land [16], provided by
the European Centre for Medium-Range Weather Forecasts (ECMWF) and included in
the Copernicus Climate Change Service (C3S) of the European Commission. The ERA5-
Land dataset was chosen as recommended in [17] due to its demonstrated relatively high
accuracy compared to other remote sensing and reanalysis datasets [18] and hydrological
models [19]. ERA5-Land offers a detailed record of hourly land surface evolution from
several decades ago to the present, providing a vast array of key variables that represent the
water and energy cycles. This dataset was chosen due to its superior ability to characterize
the water cycle compared to ERA5 [20]. The original spatial resolution of the ERA5-Land
dataset is 9 km on a reduced Gaussian grid, but C3S provides re-gridded data on a regular
latitude-longitude grid of 0.1◦ × 0.1◦, which corresponds to approximately 11 km at mid-
latitudes. This study focused on the IP, covering a 72-year period from 1950 to 2021, using
monthly-mean averages pre-calculated by C3S since sub-monthly fields were not necessary
for our analysis.

To better explain the variables used in this study, we employed three key variables
that are essential for computing drought indices:

• Total Precipitation [m]—This variable represents the total amount of rain and snow
that has fallen on the Earth’s surface between the beginning of the forecast time and
the end of the forecast step. The units of precipitation are measured in depth in meters,
which represents the extent of water that would be spread uniformly over the grid box;

• Soil Moisture [m3m−3]—This variable represents the volume of water in different soil
layers defined by the ECMWF Integrated Forecasting System. Specifically, for this
study, we considered the first two ERA5-Land layers, which range from 0 to 28 cm
in depth. Although the depth required for the most adequate representation of soil
moisture content for agricultural droughts is still under exploration [21,22], we chose
to follow the indication of [23], which suggests removing the lower layers to better
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represent the soil moisture conditions due to ancillary sources such as local rainfall or
irrigation, so only the first two ERA5-Land layers were used (0–28 cm);

• Potential Evapotranspiration [m]—This variable is usually considered to be the
amount of evaporation, under existing atmospheric conditions, from a surface of
water having the temperature of the lowest layer of the atmosphere. The ECMWF
Integrated Forecasting System computes it for an agricultural surface assuming it
is well-irrigated, presuming that it does not significantly impact the atmospheric
conditions in the region, such as humidity or cloud formation. This simplification
allows for a standardized approach to estimating potential evaporation in agricultural
contexts, which can introduce some uncertainties. In this respect, we compared the
potential evapotranspiration derived from ERA5-Land with that calculated using the
Penman-Monteith [24] equation, which takes into account various meteorological vari-
ables and thus eliminates the assumption of zero atmospheric impact, and we found
that there were no significant differences in the results between the two methods.

2.2. Drought Indices

To identify meteorological droughts, we used the Standardized Precipitation and
Evapotranspiration Index (SPEI) [10], which is based on the water balance of precipitation
minus evapotranspiration and was chosen because it has been shown to be suitable for
drought detection in Spain [3]. To capture agricultural droughts, we adopted several stan-
dardized indices to analyze the different outcomes generated by their distinct formulations.
The first agricultural drought index was the Standardized Soil Moisture Index (SSI) [25],
which was chosen for its simplicity and well documented capability to detect agricultural
drought events [26], besides its reliability at a global scale for studying the propagation
from meteorological drought detected by SPEI [13]. In addition, we adopted two indices to
evaluate composite drought anomalies (agricultural and meteorological). We computed
a multivariate index, the Multivariate Standardized Drought Index (MSDI) [27], which is
based on the joint probability of precipitation and soil moisture, considering the effect of
different variables in the characterization of agricultural droughts. We also included the
Standard Precipitation, Evapotranspiration and Soil Moisture Index (SPESMI), a newly
developed index that entirely accounts for the different variables involved in agricultural
drought generation, introduced by [28] and formulated depending on both precipitation
minus evapotranspiration balance and soil moisture. All indices used in this study were
calculated using the non-parametric approach suggested by [25]. This method removes as-
sumptions about the distribution of the variables and avoids the computationally expensive
fitting of parametric distributions.

For example, MSDI was computed by treating precipitation and soil moisture at a se-
lected time scale (e.g., 3 months) as random variables X and Y, respectively, and considering
their joint distribution,

P(X ≤ x, Y ≤ y) = p. (1)

The empirical joint probability p was estimated with the Gringorten plotting position
formula [29] as in [25],

P(xk, yk) =
mk − 0.44
n + 0.12

, (2)

where n was the number of the total input data and mk was the number of occurrences of
the pair (xi, yi) with xi ≤ xk and yi ≤ yk for i = 1, 2, . . . , n. Similarly, for univariate indices
such as SSI the empirical marginal probability was calculated by using the univariate form
of the Gringorten plotting position formula,

P(xi) =
i− 0.44
n + 0.12

, (3)

where n was again the number of total input data and i was the rank of the observed values
from the smallest. After obtaining the joint or marginal probability p shown in Equation (1),
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to compute the drought index, it was only needed to retrieve the inverse of the standard
normal distribution function φ as in [25], namely,

MSDI = φ−1(P). (4)

By applying this methodology, we were able to calculate all the drought indices
using the same approach, simply by modifying the variables used in the calculations.
For example, in SPESMI, the joint probability p of precipitation minus evapotranspiration
and soil moisture was calculated (see Table 1 for all the details).

Table 1. Characteristics of the standardized drought indices constructed with the non-parametric
technique. P stands for Precipitation, SM for Soil Moisture, and E for Evapotranspiration.

Drought Index Structure Variables Type of Drought

SPEI Multivariate P–E Meteorological
SSI Univariate SM Agricultural

MSDI Multivariate P, SM Agro-Meteorological
SPESMI Multivariate P–E, SM Agro-Meteorological

This not only made the calculations more straightforward but also ensured that the
analysis was consistent across all the different indices. We used time scales of 1-, 3-,
and 6-months to capture the immediate to seasonal/semi-annual impacts of precipitation,
evapotranspiration, and soil moisture on drought characterization. To classify the drought
categories, we followed the system described in [30] for the IP. Extreme drought was
defined as indices with values below −2, severe drought as values between −2 and −1.5,
and drought as values below −1 but above −1.5. Normal/wet conditions were associated
with index values above 0, while dry conditions were indicated by an index value of −0.5.
See Table 2 for a summary of the categories.

Table 2. Drought categories for the uni-variate and the multi-variate standardized drought indices.

Drought Index Value Drought Category Conditions

Index ≤ −2 −2 Extreme Drought
−2 < Index ≤ −1.5 −1.5 Severe Drought
−1.5 < Index ≤ −1 −1 (Moderate) Drought
−1 < Index ≤ 0 −0.5 Dry

Index > 0 1 Normal/wet

Besides the described uni-variate and multi-variate indices, owing to the complex
nature of drought events, another new index was proposed. In order to avoid relying on the
information provided by a single index only, which might omit important characteristics
of drought phenomena, a Combined Agricultural Drought Index (COMB) was developed
adapting the Combined Drought Indicator described by [31]. In detail, COMB was based
on the composition of the three agricultural drought indices SSI, MSDI, and SPESMI, and it
was structured to favor the predominance of drought conditions over the other possible
classes, namely when more than one indicator showed values below −1. To construct
COMB, the drought categories reported for individual drought indices were taken into
account, following the approach proposed by [32]. The index was not a simple average
of the three indices, but rather a value was assigned to it based on the combination of
drought categories. The severe drought condition (−1.5) was a refinement with respect
to [32], to provide information with higher detail and consistency with [30]. When the three
indices belonged to different categories, the arithmetic average was calculated and COMB
was assigned to the resulting category. The focus of the combined index is on identifying
drought conditions, while normal and wet conditions are only important for detecting the
end of drought events. Please refer to Table 3 for details on the COMB classification.
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Table 3. Methodology for the calculation of Combined Agricultural Drought Index (COMB).

Drought Indices Values (SSI, MSDI, SPESMI) COMB Conditions

2 + indices ∈ (−∞,−2] −2 Extreme Drought
2 + indices ∈ (−2,−1.5] −1.5 Severe Drought
2 + indices ∈ (−1.5,−1] −1 (Moderate) Drought

2 + indices ∈ (−1, 0] −0.5 Dry
2 + indices ∈ (0,+∞) 1 Normal/wet

2.3. Methods of Analysis

In this study, we investigated various aspects of drought phenomena, with a primary
focus on the propagation from meteorological to agricultural drought. To this end, we
employed different approaches to capture the distinct behaviors of the drought indices used.
The first part of our analysis involved characterizing the two types of drought separately,
with particular attention paid to agricultural drought events. We began by qualitatively
examining the temporal evolution of the different drought indices at the three time scales,
spanning the entire time window of the dataset (1950–2021). This involved observing the
trends over the years and identifying possible similarities or differences between SPEI and
the agricultural indices, as well as among the agricultural indices themselves.

In addition to characterizing meteorological and agricultural drought separately, we
compared the agricultural drought indices to observations of vegetation health. To do
so, we employed the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR)
Anomaly [33], which has been demonstrated to be effective in monitoring and assessing
agricultural drought impacts [34]. Specifically, we used the FAPAR Anomaly indicator
provided by the Copernicus European Drought Observatory EDO [35], which is com-
puted as deviations from the long-term mean of biophysical FAPAR derived from surface
reflectances measured by the MODIS-Terra satellite over a 21-year period (2001–2021).
The EDO FAPAR anomalies are available at a spatial resolution of 1 km and are calculated
for 10-day intervals. To compare these data to the monthly drought indices obtained
from the ERA5-Land dataset, we calculated them on an 11 km grid and computed the
mean for every 30-day period. Furthermore, following the recommendation of [36], a re-
standardization step was performed on the monthly-averaged FAPAR anomalies obtained.
This involved computing a new index, Fs, used to better compare and analyze the data and
described by

Fs =
Fi − F

σ
, (5)

where for each specific year, Fi represents the monthly averaged FAPAR anomaly for month
i, while the mean and standard deviation of the monthly averaged FAPAR anomaly across
all months i during the entire time period from 2001 to 2021 are represented by F and σ,
respectively.

The aim of the analysis using FAPAR anomalies was to assess the ability of agricultural
indices to identify vegetation stress in areas affected by severe droughts. The analysis was
based on verification metrics adapted from [37]. To compare the performance of the drought
indices SSI, MSDI, SPESMI, and COMB with FAPAR anomalies, we used the following
verification metrics: Probability Of Detection (POD), False Alarm Ratio (FAR), Critical
Success Index (CSI), and Effect Of Drought (EOD). The drought categories presented in
Tables 2 and 3 were considered, and the metrics were formulated as follows:

POD = H/(H + M)
FAR = F/(H + F)

CSI = H/(H + M + F)
EOD = (H + HN)/(M + F + H + HN),

where H (Hit) denoted the number of grids where the agricultural drought index showed
categories −1, −1.5, or −2 and the FAPAR anomaly showed values belonging to the
same range of categories; M (Miss) designated the number of grids where the FAPAR
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anomaly was subjected to categories −1, −1.5, or −2 and the agricultural drought index
was subjected to categories higher than −1; F (false alarm) stood for the number of grids
where the FAPAR anomaly belonged to categories higher than −1, but the agricultural
drought index indicated categories −1, −1.5, or−2; HN (Hit Null) expressed the amount of
grids where the drought indices and FAPAR anomaly revealed categories 0.5 or 1. The total
quantity of grids considered was given by the sum of H, M, F, and HN , and the values
of all four verification metrics ranged between 0 and 1, with a perfect fit characterized by
POD = 1, FAR = 0, CSI = 1, and EOD = 1.

The subsequent step involved examining the relationship between the characteristics
of droughts identified using different indices. To extract drought characteristics, we utilized
the widely used run theory [38] to identify drought events. According to this method,
a drought event begins when a drought index falls below a fixed threshold and continues
until the index values remain continuously below that threshold (negative run), ending
only when the index exceeds the threshold level (positive run). For this study, a threshold
value of −1 was adopted for drought indices, as is customary. However, special attention
was given to severe and extreme drought events, which are generally the most significant
in terms of impacts and consequences.

After identifying the drought events, the next step involved calculating the average
values of the agricultural drought indices on each gridpoint over the entire study period
for the identified drought events. This was carried out to examine the relationship between
the different types of indices and the properties of droughts. Specifically,

- Percentage: spatial fraction of IP affected by severe/extreme droughts;
- Duration: number of months with drought index values below the −1.5 threshold;
- Frequency: number of drought events per year;
- Severity: lowest value of the drought index during the drought periods;
- Intensity: ratio of drought severity to the drought duration;
- Magnitude: sum of absolute values of the drought index during the drought period.

After examining the characteristics of agricultural drought events using various in-
dices, the second part of this study focused on analyzing the propagation of drought
from meteorological to agricultural domains. To do this, the response time scale (RT) was
calculated, following the approach of [39]. The RT reflects the time it takes for the accu-
mulated deficit in meteorological drought to correspond to agricultural drought, and it is
based on a correlation analysis between agricultural and meteorological drought indices at
different time scales. Specifically, for each location, the Pearson correlation was calculated
between the time series of SSI, MSDI, SPESMI, and COMB at a 1-month time scale and
SPEI at time scales of 1-, 2-, 3-, . . . , and 48-months. The response time scale for a given
agricultural drought index was then determined as the time scale of SPEI with the highest
correlation coefficient with the index values. This analysis covered the entire time period of
the ERA5-Land dataset.

To analyze specific parameters of drought propagation, this study focused on a signifi-
cant case study, the 2005 drought event in the IP, which had severe impacts on the entire
European continent, reducing cereal yields by 10% [40]. This event is well documented
and reported in various databases, including the European Drought Observatory and
Emergency Events Database EM-DAT [41], making it a suitable reference for the analysis.
The period including the 2005 drought was empirically investigated by examining the se-
quential spatial extent of drought coverage according to different drought indices at various
time scales [42]. This approach allowed for the observation of spatial drought propagation
across different systems over the IP, and some locations were selected for further analysis
involving the lag time (LT) between the onset of meteorological and agricultural droughts.
According to [43], the lag time for two different types of drought event was expressed as

LT = TM − TA, (6)
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where TM and TA represented the initial time (in months) of meteorological and agricultural
drought, respectively. Therefore, LT was used to characterize drought propagation by
measuring the difference in onset timing between the two drought episodes.

3. Results
3.1. Characterization of Agricultural Drought over the IP

The analysis began with a qualitative inspection of the indices computed over the time
period from 1950 to 2021. Figure 2 displays the temporal evolution of the meteorological
index (SPEI) and agricultural drought (AD) indices (MSDI, SPESMI, SSI, and COMB) at
1-, 3-, and 6-month time scales, which allowed for the distinction of the main features of
meteorological and agricultural drought events. The evolution of the indices appeared
smoother for larger time scales than for the 1-month time scale, and there was a slight trend
towards increased dryness in the last two decades for both SPEI and AD indices, extending
the assessment of droughts from meteorological to agricultural droughts. The analysis of
Figure 2 revealed that the frequency and severity of meteorological drought episodes have
increased since the 1990s, and the recurrence of severe droughts has notably developed
in the last ten years. While the similarities of the indices suggested a good correlation
between the contributions of precipitation deficit, water balance, and soil moisture, some
differences emerged among the AD indices. SSI reached the highest values, while the two
multi-variate indices reported the lowest values, with COMB being a compromise between
the two types of indices. The multi-variate indices, which include the effect of precipitation,
seemed to better reproduce the variations of SPEI, suggesting only a limited impact of soil
moisture in their computation.

Figure 3 presents the skill score metric indices for the four AD indices at different time
scales (1-, 3-, and 6-month) in comparison to FAPAR anomalies. The metrics include H
(hit) and M (miss), which represent the ability of the AD indices to detect drought-affected
areas where there were also dry vegetation conditions identified by FAPAR anomalies.
A high value of POD = (H + M)/M > 0.8 indicates that the AD indices were successful
in identifying gridpoints dominated by agricultural droughts characterized by stressed
land vegetation, especially for semi-annual droughts (6-month time scale) detected through
MSDI and SPESMI. On the other hand, F (false alarm) represents the number of grids
where SSI, MSDI, SPESMI, or COMB detected drought conditions but with disagreement
compared to the FAPAR anomalies. The non-zero results for FAR = F/(H + F) indicate
that there were some areas with dehydrated plants that could not be accurately monitored
by AD indices, with almost negligible variations among the time scales and indices. The
values of CSI = H/(H + M + F) suggest that the regions classified with a desiccated
flora by FAPAR anomalies were not only those where the AD indices identified drought
conditions, while the opposite was, almost everywhere, true. The ratio of drought-affected
areas detected by AD indices corresponding to high vegetation stress with respect to
the total zones of high vegetation stress recognized by FAPAR anomalies was approx-
imately 0.5, with slightly increasing CSI for semi-annual droughts. This suggests that
FAPAR could monitor arid areas which could not be successfully captured by SSI, MSDI,
SPESMI, or COMB, maybe due to the fact that FAPAR anomalies reveal variations in
the vegetation health which can derive not only from rainfall or soil moisture deficits,
but also from other stress factors such as plant diseases. Considering HN (hit null) as the
amount of gridpoints that were free of droughts and with healthy foliage, the values of
EOD = (H + HN)/(M + F + H + HN) lower than 1 implied some areas in mixed con-
ditions, namely affected by drought, which had no relevant impacts on vegetation or
unhealthy vegetated regions caused by factors other than droughts. In conclusion, SSI,
MSDI, SPESMI, and COMB were efficient in assessing the vegetation stress of IP during
drought events, but they were not sufficient to distinguish all the areas identified by FAPAR
anomalies, whose stress could be due to different factors other than drought occurrence.
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(a) (b)

(c)

Figure 2. Temporal evolution of Iberian Peninsula averaged SPEI and agricultural drought (AD)
indices (SSI, COMB, MSDI and SPESMI) at 1-month (a), 3-month (b) and 6-month (c) time scales for
the entire period considered. The linear trend is also represented for each index. The orange dashed
line indicates the −1.5 threshold for severe drought events.
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To investigate the diverse responses of the AD indices in the IP region during the stud-
ied period, various drought characteristics were analyzed. Firstly, the average percentage
of the IP region affected by drought events was computed. The results are illustrated in
Figure 4, which displays the percentage of the IP region experiencing severe to extreme
droughts (i.e., AD indices ≤ −1.5) at 1-, 3-, and 6-month time scales. One key finding
was the marked disparity between SSI and other indices, especially the two multi-variate
indices. Specifically, while MSDI and SPESMI revealed more than 75% of the IP region
suffering from droughts, SSI only covered less than 40%. The integration of precipitation
(or water balance) and soil moisture deficits generated drought events in a wider area
of the IP region compared to the case of soil moisture deficit alone, with a difference of
approximately 40% for each time scale, a logical consequence of the MSDI’s capability to
detect both meteorological and agricultural events. COMB exhibited a percentage value of
around 60%, a trade-off between uni-variate and multi-variate indices. The variations in
the values of the same AD index depending on the time scale were small, and the highest
percentage was generally observed for 1-month droughts.
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Figure 3. Skill score metrics regarding FAPAR anomalies for AD indices at the 1-, 3-, 6-month
time scales.

Figure 4. Percentage of the IP affected on average by severe/extreme droughts according to agricul-
tural indices at the 1-, 3-, 6-month time scales.
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To gain further insights into the agricultural droughts identified by the AD indices
at different time scales, we investigated several other characteristics. One of these is the
frequency of severe/extreme droughts per year, which is closely related to their duration,
as well as their severity, which is typically used to assess the significance of drought events.
Figure 5 displays these two characteristics for each index and time scale. The frequency of
severe/extreme drought events per year (Figure 5a,c,e for 1-, 3- and 6-month time scales,
respectively) confirmed that multi-variate indices were more sensitive than uni-variate
ones in detecting drought events in a larger area. Specifically, SSI identified less than one
drought event per year, on average, across all the IP at the 1-month time scale, while SPESMI
and MSDI detected multiple drought episodes in several areas, with values ranging from
around 1 event/year to 1.2 events/year on average. This is in agreement with the fact that
precipitation, evapotranspiration, and soil moisture variables are vital factors to adequately
represent agricultural drought conditions [28] and, especially in large areas with different
climate characteristics, their combination by using multi-variate indices could better detect
the occurrence of drought events. The patterns of COMB showed a balance between SSI
and MSDI/SPESMI. The north-west and the Pyrenees were the most affected zones for all
indices, indicating that both soil moisture and precipitation/water balance deficits were
recurrent. Similar patterns were found at 3- and 6-month time scales, although the frequency
values were naturally lower due to the longer duration of the considered events. The
average drought severity showed a more complex behavior among the AD indices. SSI
exhibited a large area of non-severe droughts (severity smaller than 1.5) at the 1-month time
scale (Figure 5b), while COMB, SPESMI, and MSDI showed gradually increasing regions
affected by severe drought conditions. However, the distribution of severity values differed
among the indices. For instance, a small fraction of the centre-east of the IP was one of the
most affected zones according to SSI but was not equivalently accounted for by the other
indices, especially by MSDI, which retrieved its lowest severity values in the same area. This
suggested a balance between the contribution of water balance variables in multi-variate
indices, which could significantly impact the effect of soil moisture. Severity also showed a
wider range of values for longer time scales. Bi-annual deficits in water balance and soil
moisture resulted in large areas affected by severe droughts, with peaks close to extreme
droughts in certain regions. On the other hand, even if the 6-month scale showed severity
values similar to shorter time scales on average, severity appeared more pronounced or not
depending on the region and the index. For example, in the south of Portugal, COMB-6,
MSDI-6, and especially SPESMI described a higher severity than at 1- and 3-month time
scales. Other areas, such as the mountain region in the southern part of the IP and the
northern peninsular zone, reported the opposite behavior, revealing lower severity values
at longer time scales.

(a) (b)

Figure 5. Cont.
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(c) (d)

(e) (f)

Figure 5. Patterns of the average characteristics of drought events on the Iberian Peninsula according
to 1-, 3- and 6-month time scales for the different AD indices: frequency of severe/extreme droughts
per year (a,c,e), and absolute value of drought severity (b,d,f).

3.2. Propagation from Meteorological to Agricultural Drought

This study investigated the response time scale (RT) as a key parameter in drought
propagation, which represents the accumulated precipitation deficiency in the antecedent
RT months that causes agricultural drought. A shorter RT indicates a faster response to
meteorological drought. Figure 6a shows the maximum Pearson correlation between 1-month
agricultural drought indices and SPEI computed from 1- to 48-month time scales for the
entire 72-year period over the IP. Figure 6b indicates the corresponding RT in months for
each gridpoint.

The analysis revealed a high correlation between agricultural and meteorological
droughts at small time scales, consistent with previous studies [44]. The RT for SSI
was 2 months for most of the IP, except for the Pyrenees where RT was 1 month and
3–4 months in some isolated regions, particularly in the southern coastal areas. MSDI,
SPESMI, and COMB had an RT of 1 month, indicating that the contribution of other vari-
ables accelerated the response compared to soil moisture alone. In particular, SPESMI,
which includes evapotranspiration, presented the highest correlation with meteorological
droughts detected by SPEI, which is also based on water balance.

For a detailed analysis of the propagation from meteorological to agricultural drought,
we focused on the 2005 drought episode in the IP region. To investigate the spatial evolution
of the drought phenomenon, we analyzed the monthly patterns of drought index values
during the reference period from October 2004 to December 2005. Specifically, we examined
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the variations of the AD indices at the 1-month time scale and compared them to the
progression of the SPEI at 1-month and 3-month time scales to understand the propagation
from the current month and from the seasonal meteorological water balance deficit to
the development of agricultural drought. Figure 7 illustrates the temporal evolution of
the meteorological drought identified by the SPEI at 1- and 3-month time scales from
October 2004 to December 2005 over the entire IP region.

(a) (b)

Figure 6. (a) Maximum Pearson correlation retrieved between the SPEI at the 1-, 2-,. . . , 48-month time
scales and the 1-month time scale AD indices. (b) Corresponding RT in months for each gridpoint.

As shown in Figure 7a, the SPEI calculated at monthly intervals indicated a moderate
drought condition in December 2004 over the majority of the IP. February 2005 was identi-
fied as the driest month, with a significant area experiencing extreme drought conditions.
This pattern was followed by two wetter months, after which the severe/extreme drought
episode reoccurred in May 2005, initially affecting only the south and eastern coasts of
the IP. This condition lasted until the end of summer 2005 (September), with a modified
pattern, which was more concentrated in the centre and northern IP. This event had severe
impacts on Spain and Portugal, as reported by the European Drought Observatory, with a
relaxation during the winter of 2005. The evolution of seasonal meteorological drought,
shown in Figure 7b, was similar to the SPEI at monthly intervals, with the initial peak in
February 2005. However, the SPEI-3 patterns were more continuous, essentially reporting
prolonged drought conditions over the reference period, with a delayed conclusion (ex-
treme drought conditions were observed even in October 2005). The driest region was the
southern IP at the beginning, with varying features extending to the central and northern IP.

To examine the progression of agricultural drought during the meteorological drought
episodes, the spatial patterns of the four different agricultural drought indices at monthly
time scale were analyzed. Figure 8 illustrates the spatial distribution of these indices across
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the IP during the reference period (October 2004–December 2005). All four AD indices
captured the onset of agricultural drought in February 2005. However, there were some
differences in their assessment of the drought conditions leading up to that point. While
COMB, MSDI, and SPESMI indicated moderately dry conditions over the IP even from
December 2004 except for the eastern coastal region, SSI showed normal or wet patterns
during that period, suggesting that the incorporation of variables other than soil moisture
may have allowed for a more accurate detection of drought impacts. Furthermore, SSI
generally indicated less severe drought conditions than the other indices, and its patterns
were less uniform and homogeneous compared to MSDI and SPESMI, particularly during
the initial month of the drought event.

(a) (b)

Figure 7. Temporal evolution of meteorological drought pattern over the IP according to SPEI at
(a) 1- and (b) 3-month time scales, from October 2004 to December 2005.

MSDI and SPESMI showed a high degree of similarity in their behaviors, indicating
that the inclusion of evapotranspiration had only a marginal impact on the results. COMB
exhibited features that were balanced between the other three indices, but its similarity
to the two multivariate indices appeared to have a greater influence on its performance
than SSI. Overall, the patterns of agricultural drought identified by the AD indices were
consistent with those identified by SPEI, particularly SPEI-3, which presented a higher
spatial correlation with seasonal meteorological drought than with monthly water balance
deficits. However, the severity values of the four AD indices were generally higher than
those of SPEI-1 and SPEI-3, indicating that the agricultural drought impacts were more
severe and extensive than the meteorological drought.

To understand the propagation of drought from meteorological to agricultural systems,
Figures 7 and 8 were useful in providing a qualitative overview of the spatial details of
the 2005 drought evolution. However, to derive more quantitative information, a further
investigation was conducted. Drawing inspiration from [13], we analyzed the probability
of drought propagation from meteorological to agricultural systems under different levels
of severity. Specifically, the fraction of the IP experiencing agricultural drought conditioned
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on the occurrence of meteorological drought was calculated for each month between
October 2004 and December 2005. This fraction was defined as the propagation probability
(PP) and was computed separately for the four AD indices at the 1-month time scale,
distinguishing between three severity thresholds, namely moderate, severe, and extreme
drought. To provide a comprehensive understanding of the results, Figure 9 represents
the temporal evolution of PP for each AD index. The panels in each row exhibit the PP
values of agricultural droughts with gradually increasing severity from left to right, while
the different colors refer to the severity threshold of meteorological drought, based on
SPEI-1. For instance, the red line in the first panel of row one shows the time evolution of
PP for the occurrence of moderate agricultural drought (based on SSI-1) conditioned on
the occurrence of severe meteorological drought (based on SPEI-1).

(a) (b)

(c) (d)

Figure 8. Temporal evolution of drought pattern over the IP according to the four AD indices:
(a) COMB, (b) SSI, (c) MSDI, and (d) SPESMI at 1-month time scale from October 2004 to Decem-
ber 2005.
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Figure 9. Propagation probability (PP) from meteorological drought detected with SPEI-1 to agri-
cultural drought of different severity levels according to 1-month time scale AD indices. The col-
ors distinguish the severity of generating meteorological drought (blue for SPEI-1 ≤ −1, red for
SPEI-1 ≤ −1.5, green for SPEI-1 ≤ −2).

The results of the analysis showed that all four AD indices displayed a significant
increase in propagation probability (PP) as the severity levels of meteorological drought
increased from moderate to extreme, with PP values approaching 1, indicating that the
likelihood of agricultural drought was higher under drier meteorological conditions. For in-
stance, in the first row of Figure 9, SSI indicated that areas affected by extreme meteorologi-
cal drought from February 2005 were highly susceptible to various levels of agricultural
drought, with the highest PP values observed for moderate severity propagation. MSDI
and SPESMI consistently showed nearly constant PP = 1 values in the left panels, implying
that these two multi-variate indices were highly sensitive to moderate agricultural drought
propagation and less prone to severe and extreme propagation. On the other hand, SSI
generally displayed lower PP values for all three severity levels compared to the multi-
variate indices, while COMB demonstrated a balance between the two typologies of indices.
Except for the deflection observed in March and April 2005, where the meteorological
drought did not propagate in all the affected regions, all indices showed overall high PP
values during the identified drought event, with PP > 0.5 for moderate SPEI-1 severity and
PP > 0.75 for severe/extreme SPEI-1 severity. Although the PP values of MSDI, SPESMI,
and COMB remained above 0.5 during this period, SSI demonstrated a more significant
reduction, with PP < 0.25.
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To investigate the propagation of drought from seasonal meteorological drought, we
applied the same procedure as before. Figure 10 presents the behavior of PP for agricultural
drought conditioned on SPEI-3 values.

Figure 10. Propagation probability PP from meteorological drought detected with SPEI-3 to agri-
cultural drought of different severity levels according to 1-month time scale AD indices. The col-
ors distinguish the severity of generating meteorological drought (blue for SPEI-3 ≤ −1, red for
SPEI-3 ≤ −1.5, green for SPEI-3 ≤ −2).

Similar to the analysis with monthly droughts, we observed a significant increase in
PP as the severity levels of meteorological drought enhanced from moderate to extreme.
The maximum PP values were found for moderate agricultural droughts, indicating that the
propagation to more severe droughts was less likely to occur. Compared to the outcomes
reported in Figure 9, the propagation from seasonal meteorological droughts revealed
a more homogeneous behavior among the AD indices, with common features in the
maxima/minima of PP and the evolution of the PP signal. Similar to the previous case,
the lowest value of PP was reached in March–April 2005, suggesting that, during this period,
the meteorological drought was present but did not propagate into agricultural drought.
Additionally, the panel regarding severe and extreme agricultural drought displayed
smaller PP values than the SPEI-1 example, indicating that seasonal drought was, in general,
less efficient in propagation compared to drought caused by monthly water balance deficits.

To further investigate the 2005 drought event, two areas of the Iberian Peninsula that
showed significant variations during the event were selected: the centre and the south.
In order to monitor changes in drought indices and evaluate the lag time (LT), one city
was chosen to represent each region. Following the approach of [45], Madrid was chosen
as the representative location for the IP centre and Granada was selected for the IP South.
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Figure 11 shows the 3-month time scale drought indices for these cities from January 2004
to January 2006. The seasonal drought was considered, as it is characterized by smoother
and slower variations than the 1-month drought and provides more significant information
for the calculation of LT.

(a) (b)

Figure 11. Local temporal evolution of different drought indices at 3-month time scale in Madrid
(a) and Granada (b) from January 2004 to January 2006.

To calculate the LT, we compared the onset times of drought as measured by SPEI and
the AD indices. In Madrid, the multivariate indices showed LT ∼ 0, indicating that they
captured agricultural drought onset at the same time as SPEI. However, SSI had a lag time
of about 2 months, since agricultural drought in that city began in February 2005, while me-
teorological drought began in December 2004. Compared to SPEI, the AD indices showed
low variability, and changes in meteorological drought conditions did not necessarily result
in modifications of agricultural droughts. The propagation of meteorological drought
evolution had prolonged and almost constant effects on agricultural drought, especially ac-
cording to COMB. The situation in Granada was slightly different. Meteorological drought
onset preceded that in Madrid by 2 months (October 2004) and was simultaneous for all
AD indices, resulting in LT ∼ 0. However, MSDI showed the onset of agricultural drought
even 1 month before SPEI, indicating that the detected event was not solely associated with
drought propagation. Although the onset lag time between meteorological and agricultural
droughts was approximately zero, we noted that the duration of the two phenomena was
not equivalent. While SPEI indicated dry meteorological conditions without the presence
of drought in August 2005, SSI and COMB estimated the end of agricultural drought in
October 2005, and MSDI and SPESMI required even more time.

4. Discussion

This study examined various types and temporal aspects of drought, with a specific
focus on the transition from meteorological to agricultural drought, which marks the
initial phase of drought propagation. In the first phase of the study, the aim was to
characterize drought events across the IP over various time scales, including monthly,
seasonal, and six-month periods, for the entire duration of the study period (1950–2021).
The findings indicated a slight trend towards increased aridity during the last two decades.
This was supported by both the SPEI, which aligns with the results obtained by [46] using
parametric indices to identify meteorological droughts, as well as the AD indices. When
comparing the values of the FAPAR anomaly, the AD indices were found to be effective
in assessing vegetation stress during drought events in the IP. However, they were not
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always able to accurately detect all the dehydrated areas identified by FAPAR anomalies.
In terms of the average characteristics of agricultural drought events, the SSI captured a
noticeably smaller area affected by severe/extreme droughts (40%) compared to other AD
indices (75%). The frequency of severe/extreme drought events per year also revealed
that multi-variate AD indices were more sensitive than SSI, albeit with lower severity.
Additionally, when considering long time scales, the severity of drought events showed
a wider range of values than on the monthly time scale, ranging from the most to the
least severe values. In the second phase of the study, we analyzed the mechanisms of
propagation from meteorological to agricultural drought. The response time scale (RT)
for the AD indices was calculated obtaining small values, consistent with findings from
other studies [44]. Specifically, the results showed that the SSI had an RT of 2 months in
most parts of the IP, while the MSDI, the SPESMI, and the COMB had an RT of 1 month,
suggesting that the contribution of water balance accelerated the response compared to soil
moisture alone. We analyzed the 2005 drought episode to study the temporal and spatial
features of drought propagation in detail. The time evolution of seasonal agricultural
drought, as revealed by the SSI, had a 2-month delayed onset compared to other AD indices
(February 2005 vs. December 2004), while the end of the drought was almost coincident
(October 2005). Furthermore, the severity values obtained by SSI were lower than those
obtained by other AD indices. The agricultural drought patterns determined by the AD
indices were consistent with those identified by SPEI, particularly showing a higher spatial
correlation with seasonal rather than monthly meteorological drought. We evaluated
the propagation probability (PP) from monthly meteorological drought and found that
PP values were high during the identified drought event period. Monthly agricultural
drought was also found to be more likely to occur when meteorological conditions were
increasingly dry. However, smaller PP values were obtained from seasonal meteorological
to monthly agricultural drought, indicating a reduced propagation efficiency compared
to meteorological drought caused by monthly water balance deficits. The computation of
lag time (LT) for SSI revealed different outcomes depending on the location, with values
ranging from LT ∼ 0 to LT ∼ 2 months, while the multi-variate indices consistently showed
LT ∼ 0, regardless of the location. These values close to 0 suggested interest for a future
analysis concerning sub-monthly features of LT.

There are currently several issues for analyzing drought propagation, such as the
difficulty of comparing studies that use different indices and approaches, and the challenge
of isolating single factors for analysis. Future studies on agricultural drought propaga-
tion should address these challenges by integrating techniques beyond statistical analysis
based on run theory, such as extending the probabilistic approach of [47]. Considering the
phenomenon of global warming, it is important to conduct studies that account for non-
stationary conditions in future changing environments. In this regard, future work could
expand upon the investigation by including the newly developed COMB index and incor-
porating an ensemble analysis with other meteorological and agricultural drought indices
from existing literature. Additionally, future studies could explore the lead time between
meteorological drought onset and agricultural drought onset, considering location and
crop type. This would contribute to a more comprehensive understanding of agricultural
drought propagation and enhance drought monitoring and early warning systems.

5. Conclusions

In conclusion, this study provided valuable information on the propagation of drought
phenomena from meteorological to agricultural droughts on the IP. The investigation
utilized a long record of data and distinct standardized indices, considering variables
beyond just soil moisture such as precipitation and evapotranspiration. Some relevant
outcomes were retrieved, in particular:

• Results showed a slight trend towards increased dryness over the last two decades
and identified multi-variate AD indices as more effective in identifying severe drought
events compared to the uni-variate SSI index.
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• The severity values of the four AD indices were generally higher than those of SPEI-1
and SPEI-3, indicating that the agricultural drought impacts were more severe and
extensive than the meteorological drought.

• This study introduced a novel combined agricultural drought index that balances the
characteristics of other adopted indices and could be a valuable resource for future
investigations.

• The response time scale was calculated for the AD indices and small values were ob-
tained, also suggesting that the contribution of water balance accelerated the response
compared to the effect of soil moisture alone.

• The analysis of the 2005 episode revealed a 2-month delayed onset compared to other
AD indices in the analysis of seasonal agricultural drought, with a higher probability
of propagation depending on the severity of the originating meteorological drought.
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