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Abstract: When an epidemic started in the Chinese city of Wuhan in December 2019, coronavirus was
identified as the cause. Infection by the virus occurs through the interaction of viral S protein with the
hosts’ angiotensin-converting enzyme 2. By leveraging resources such as the DrugBank database and
bioinformatics techniques, ligands with potential activity against the SARS-CoV-2 spike protein were
designed and identified in this investigation. The FTMap server and the Molegro software were used
to determine the active site of the Spike-ACE2 protein’s crystal structure. Virtual screening was per-
formed using a pharmacophore model obtained from antiparasitic drugs, obtaining 2000 molecules
from molport®. The ADME/Tox profiles were used to identify the most promising compounds with
desirable drug characteristics. The binding affinity investigation was then conducted with selected
candidates. A molecular docking study showed five structures with better binding affinity than
hydroxychloroquine. Ligand_003 showed a binding affinity of −8.645 kcal·mol−1, which was consid-
ered an optimal value for the study. The values presented by ligand_033, ligand_013, ligand_044, and
ligand_080 meet the profile of novel drugs. To choose compounds with favorable potential for syn-
thesis, synthetic accessibility studies and similarity analyses were carried out. Molecular dynamics
and theoretical IC50 values (ranging from 0.459 to 2.371 µM) demonstrate that these candidates are
promising for further tests. Chemical descriptors showed that the candidates had strong molecule
stability. Theoretical analyses here show that these molecules have potential as SARS-CoV-2 antivirals
and therefore warrant further investigation.

Keywords: COVID-19; new drugs; molecular modeling; antiviral

1. Introduction

The coronavirus, a non-segmented virus that acts on single strands of RNA, is a
member of the family Coronaviridae and the order Nidovirales. It possesses the type
III transmembrane glycoprotein and the envelope protein, which together make up the
S proteins in its membrane [1]. Thirty species have previously been identified as being
involved in the infection of many different animals, including humans. Many diseases
caused by members of this viral family in people are mild, but two beta-type coronaviruses
have worsened and spread epidemics. The first of these was SARS-CoV, which was first
discovered in 2003 and led to an outbreak that killed 436 people across six countries and
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was triggered by the acute respiratory syndrome. The outbreak started in Guangdong
Province, China, and spread due to travel and tourism in the area. The second was caused
by MERS-CoV, the Middle East respiratory syndrome [2], which started in Saudi Arabia in
2012, and by the year 2019, 2468 cases were confirmed with a mortality rate of 35%. Both of
these viruses were recognized as global pathogens and became a priority in study, combat,
and prevention [3].

When an epidemic started in the Chinese city of Wuhan in December 2019, a new virus
belonging to the same family was identified. Initially known as 2019-nCov, later named as
a severe acute respiratory syndrome (SARS-CoV-2), it is compared to SARS and MERS but
with a high transmission rate [4].

According to research, the angiotensin-converting enzyme 2 (ACE2), which is found
in the lung region and primarily controls blood pressure and vasoconstriction, interacts
with the virus S protein to cause infection [5]. People with cardiovascular issues are more
vulnerable since the virus also affects the heart. COVID-19, therefore, can cause myocardial
damage, myocarditis, arrhythmias, and venous thromboembolism, which is why various
health complications emerge during therapy for infected patients [6].

Many hypotheses emerged at the onset of the pandemic as researchers strived to
find a promising antiviral against SARS-CoV-2. However, due to the low availability
of biotechnological resources and limited access to laboratories due to the pandemic,
computers have been the main tools for searching new bioactive molecules. Case in point,
Smith M. and Smith J. (2020) performed simulations with more than 8000 drugs, using a
supercomputer, to evaluate their inhibitory activity against S protein [7].

Virtual screening techniques have been investigated to identify prospective candidates
for the treatment of various ailments since they start with already-known molecules, saving
money and time. It is crucial to employ several databases that serve as a library of chemicals
for this procedure, which are searched using particular criteria such as overlapping chemical
structures and electrostatic similarities [8,9].

The molecular docking method is another technique that has been widely used in the
development of new drugs. It mainly involves the simulation of bioinformatics between
potential drug candidates (the ligands) with the biological receptors of the pathogens
(enzymes or proteins), seeking a conformation with better interaction [10–13].

In this study, the design and identification of ligands with potential activity against
SARS-CoV-2 spike protein were performed using virtual screening based on pharma-
cophores of different structures of antiparasitic drugs to obtain molecules that present
binding affinity and pharmacological and toxicological parameters within the expected
range for new drugs. The general scheme summarizing the methodological steps in this
paper is shown in Figure 1 (refer to Section 3).
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At first, the FTMap server pointed out three probable regions of hot spots that can be 
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presented a more significant number of probe molecules; however, for further 
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Hot spots R2 and R3 were predominant in the region of the ACE2 protein, whereas 
R1 is concentrated between the protein bindings of the spike protein with ACE2. It was 
hypothesized that the active region is more likely to be clustered between the two 
proteins, preventing selectivity for ACE2 alone. Molecular docking supported this 
hypothesis: Hydroxychloroquine was shown to bind to R1 more readily than in other 
regions. Therefore, the coordinates of the active theoretical site for this target were 
determined to be X = −32.770, Y = 24.940, and Z = 6.690. 

To reinforce the hypothesis of the active theoretical site, the Molegro software was 
used to analyze the cavities present in the protein, and the presence of a cavity in the same 
R1 region found in the FTMap was noticed, with a difference of ≈1 Å in its coordinates 
(Figure 3) (X = −33.200, Y = 25.457, Z = 5.543). The active site of enzymes and proteins is 

Figure 1. General scheme summarizing the methodological steps.

2. Results and Discussion
2.1. Determination of Theoretical Activity Site

For this study, the protein crystal structure of the SARS-CoV-2 spike receptor binding
domain bound with ACE2 (Spike-ACE2) (PDB ID: 6M0J) was selected (a design that
represents the binding of the spike protein with the host biological receptor). Finding
novel methods to identify the activity region was important because the target’s active site
has not yet been identified and lacks the complexed ligands required for methods such
as redocking.

At first, the FTMap server pointed out three probable regions of hot spots that can
be investigated as the potential active site of the Spike-ACE2 protein (Figure 2). Region 2
presented a more significant number of probe molecules; however, for further confirmation,
hydroxychloroquine was docked in all regions and the one in which the binding affinity
was the best selected.

Hot spots R2 and R3 were predominant in the region of the ACE2 protein, whereas
R1 is concentrated between the protein bindings of the spike protein with ACE2. It was
hypothesized that the active region is more likely to be clustered between the two pro-
teins, preventing selectivity for ACE2 alone. Molecular docking supported this hypothesis:
Hydroxychloroquine was shown to bind to R1 more readily than in other regions. There-
fore, the coordinates of the active theoretical site for this target were determined to be
X = −32.770, Y = 24.940, and Z = 6.690.

To reinforce the hypothesis of the active theoretical site, the Molegro software was
used to analyze the cavities present in the protein, and the presence of a cavity in the same
R1 region found in the FTMap was noticed, with a difference of ≈1 Å in its coordinates
(Figure 3) (X = −33.200, Y = 25.457, Z = 5.543). The active site of enzymes and proteins is



Int. J. Mol. Sci. 2023, 24, 8814 4 of 35

typically located in the most excellent cavity pocket present, and this relationship between
cavity pockets and their presence has already been examined.
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2.2. Selection and Optimization of Structures

Based on research demonstrating the inhibitory effects of hydroxychloroquine and
chloroquine on SARS-CoV-2 targets, we postulated that compounds with similar structural
features and chemical properties would also be potential inhibitors for this target. In this
manner, antiparasitic drugs that have already received approval from the relevant agencies
were sought to act as the basis for this study.

One hundred antiparasitic drugs were chosen from the DrugBank server and put
through a Tanimoto similarity search, which compares the properties of these antiparasitic
medications to those of hydroxychloroquine and chloroquine. This is one of the best
methods for identifying how similar certain types of molecules are to one another. Only
nine of these had an index above 0.32 (Figure 4), which was sufficient for moving on to
creating pharmacophoric models and carrying out the virtual screening.

https://ftmap.bu.edu
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Chloroquine had a Tanimoto index of 0.96 compared to hydroxychloroquine’s struc-
ture, while quinacrine, piperaquine, amodiaquine, primaquine, pyronaridine, mefloquine,
quinidine, and quinine had Tanimoto indices of 0.78, 0.74, 0.52, 0.47, 0.42, 0.36, 0.35, and
0.35, respectively. Tafenoquine had the lowest Tanimoto indices of 0.33.

Following that, these antiparasitics were put through structure optimization along
with hydroxychloroquine and chloroquine to achieve their optimal conformations and
prevent errors in the in silico models. Based on the technique of Ferreira et al. (2019) [14],
molecular mechanics using MM+ force field through the HyperChem program was used.

2.3. Determination of Pharmacophoric Regions

Following the Tanimoto analysis, the molecules were aligned using the Discovery
Studio program and transmitted to the PharmaGist web server, with the structure of
hydroxychloroquine being used as a pivot. There were three pharmacophoric features
produced by alignment. The coordinates of each pharmacophoric property, two aromatic
(AR) and one hydrogen bond acceptor (HBC), are shown in Table 1.

Table 1. Pharmacophoric model features and their coordinates.

Type
Coordinates

Radius
X Y Z
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The search resulted in a score of 28.062 from the PharmaGist server, the molecules
were aligned, taking into account their Tanimoto values, where the reference has a value
of 1. As a result, a matrix of pharmacophoric characteristics, atoms (ATM), characteristics
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(F), spatial characteristics (SF), aromatics (ARO), hydrophobic (HYD), donors (DONN),
acceptors (ACC), resulting from the alignment of molecules were generated as shown in
Table 2.

Table 2. Pharmacophoric characteristics of the set of molecules.

Drugs ATM F SF ARO HYD DONN ACC TI

Hydroxychloroquine 49 10 9 2 3 2 3 1.000000
Chloroquine 48 9 9 2 4 1 2 0.960265
Quinacrine 58 12 12 3 5 1 3 0.776596
Piperaquine 69 8 8 4 0 0 4 0.739884

Amodiaquine 47 10 9 3 2 2 3 0.513393
Primaquine 40 10 9 2 3 2 3 0.475962

Pyronaridine 69 15 14 4 3 2 6 0.417476
Mefloquine 42 9 7 2 2 2 3 0.359060
Quinidine 48 13 12 2 6 1 4 0.354386
Quinine 48 13 12 2 6 1 4 0.354386

Tafenoquine 61 16 15 3 6 2 5 0.328267

2.4. Hierarchical Cluster Analysis (HCA) and Molecular Overlay

A structure–activity relationship analysis was carried out utilizing Pearson’s correla-
tion using the physicochemical properties received from PharmaGist based on the Tanimoto
index values. Among the observed characteristics, the hydrogen acceptors (ACC) presented
the best correlation with the Tanimoto index with a value of −0.564, thus being an impor-
tant parameter of molecular similarity, followed by the characteristics (F) that present a
value of −0.547. Spatial characteristics (SF) showed −0.406, hydrophobic and donors had
low values of −0.295 and −0.288, respectively (Table 3).

Table 3. Pearson’s correlation of characteristics selected.

Characteristics F SF HYD DONN ACC

Spatial Features 0.973 - - - -
Hydrophobic 0.709 0.713 - - -

Donors 0.288 0.128 0.061 - -
Acceptors 0.766 0.732 0.161 0.106 -

Tanimoto Index −0.547 −0.406 −0.295 −0.288 −0.564

Hierarchical cluster analysis (HCA) was performed with the help of Minitab 15 soft-
ware ( State College, PA, USA). A dendrogram of the pharmacophoric characteristics was
generated (Figure 5), which confirmed the Pearson correlation values, demonstrating a
greater approximation of ACC with the Tanimoto index (TI) and a departure from the HYD
and DONN characteristics.

As may be observed in two different clusters, the molecules were sorted into groups
based on their commonalities (Figure 6). Molecule 1 is hydroxychloroquine, which presents
studies of its activity against the target of SARS-CoV-2. Therefore, the molecules of the
cluster in which it is found have the potential to exhibit the same response. Compared to
hydroxychloroquine, quinidine, quinine, and tafenoquine were in the second cluster and
had the lowest likelihood of acting on the target under study.

According to studies by Da Silva Costa et al. (2018) [15] and Cruz et al. (2018) [16],
steric and electrostatic forces influence the structural conformation of molecules, especially
those with biological functions, so molecular overlap (overlay) was also carried out for the
steric (ste) and electrostatic (ele) fields with the aid of Discovery Studio software (Table 4)
using 100% as a parameter.
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Table 4. Similarity analyses by molecular overlap of drugs with the hydroxychloroquine for 100 steric
and 100 electrostatic.

Drugs
Hydroxychloroquine

100 Steric (ste) 100 Electrostatic (ele)

Chloroquine 0.959699 0.783147
Quinacrine 0.882049 0.435233
Piperaquine 0.743533 0.597135

Amodiaquine 0.80868 0.547123
Primaquine 0.761593 0.459083

Pyronaridine 0.709077 0.350376
Mefloquine 0.772335 0.464507
Quinidine 0.813782 0.227043
Quinine 0.830381 0.449834

Tafenoquine 0.760042 0.549211

As expected from this investigation, chloroquine provided the best 100ste and 100ele
results. For the parameters of 100ste, the three best results of antiparasitics were for
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quinacrine, quinine, and quinidine, obtaining values of above 80%. Piperaquine, tafeno-
quine, and amodiaquine performed better for 100ele, with values exceeding 50%. Figure 7
shows the structural comparison of the reference molecule with the other molecules selected
for the study.
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Figure 7. Structural comparison of the reference molecule with the selected ones.

As a result, molecules 9 and 10 differ somewhat in their hydroxyl stereochemistry. In
contrast, molecule 11 contains bonds not found in the reference and trifluoride attached to
an aromatic ring. These three structures were the ones that significantly differed from the
reference due to their chemical characteristics. The main feature common in all structures is
the presence of quinoline (C9H7N), a scaffold consistent with the pharmacophores obtained.
In addition to having a bonded chlorine atom, molecules 3, 4, and 5 have larger Tanimoto
indices and improved structural closeness, as seen in the HCA cluster. Molecule 3 is the
closest to the chemical structure of hydroxychloroquine (except for chloroquine).

2.5. Virtual Screening

The virtual screening took place on the Pharmit online server using the coordinates
obtained from the pharmacophore. Molecular weight (MW), rotatable bonds (RB), partition
coefficient (LogS), polar surface area (PSA), number of aromatic rings (AR), hydrogen bond
acceptors (HBA), and hydrogen bond donors (HBD) are some of the defined reduction
filters that were used to limit the resulting structures to this range of defined values. These
filters were selected based on the highest and lowest value presented by all drugs (see
Table 5).
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Table 5. Filters used in virtual sorting.

Characteristics Minimum Maximum

MW 259.35 535.5
RB 2.00 9.0

LogS 2.20 6.0
PSA 28.20 78.6
AR 2.00 4.0

HBA 3.00 9.0
HBD 0.00 2.0

The MolPort database was used, and it produced a total of 2000 molecules while
accounting for the lowest values of RMSD. All structures showed an RMSD of 0.17, demon-
strating the model’s effectiveness. Figure 8 illustrates the properties of the pharmacophores
for the five compounds obtained from the screening procedure and accepted in this study
to illustrate the behavior of the pharmacophore regions.
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2.6. Prediction of Toxicological and Pharmacokinetic Properties

The 2000 molecules resulting from the screening process were submitted to evaluate
their absorption properties, distribution, metabolism, excretion, and toxicity (ADMET).
A graph (Figure 9) was obtained based on the 95% and 99% confidence values for the
blood–brain barrier (BBB), human intestinal absorption (HIA), polar surface area (PSA),
and lipid solubility (LogP), which resulted in 1397 molecules for the subsequent phases.
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Figure 9. ADMET graph relating the polar surface area to the calculated ALogP98 values, the
ellipses represent the 95% and 99% confidence limits, and the highlighted star means the drug
hydroxychloroquine.

Hydroxychloroquine, represented as a star in the graph, was used as a control molecule
for pharmacological characteristics. The ellipses show the 95% and 99% confidence-bound
space for promising candidates. Those found in this region have features similar to com-
pounds with a capacity of ≥90% to be absorbed, a value of <140 for PSA, and <5 for
ALogP98. Only candidates within the 99% confidence limit are selected [17].

The results of the ADMET predictions can be seen in Table 6. The 11 compounds
selected together with hydroxychloroquine were evaluated. Ligand_020, ligand_035, lig-
and_063, and ligand_080, as well as the control drug, showed false negative results for
binding to plasma proteins. The others showed false positives and may be highly linked
to PPB. This is related to lipophilicity, whereby the higher the lipophilicity, the stronger
the link with PPB. In this way, inferences on how these molecules can circulate in the
bloodstream can be made. In the same way, PPB properties are related to toxicity that can
cause severe unwanted consequences [18].

All ligands showed false positive values for hepatotoxicity as with the control drug.
This is one of the main drawbacks of synthetic medications, indicating that they can impair
liver function or induce liver disorders when used in large doses over an extended period.
However, biological studies are needed to prove such data. None of the candidates showed
the potential to bind CYP2D6, which is present in 2% of the hepatic CYP content and is
responsible for the metabolism of several drugs. Its binding can affect drug metabolism
and impair the desired effect [19].

All ligands showed poor or very poor solubility, with emphasis on hydroxychloro-
quine and ligand_020. Regarding blood–brain barrier penetration, ligand_020 had low
penetration, the control drug and ligand_003, ligand_005, and ligand_044 exhibited strong
penetration, and the others were just average.

Parameters a, b, and c in Table 6 are classified based on a compound with a high
binding index (≥90%) with a Bayesian score with a value of −2.209, classified as false
positive (true) or false negative (false). The BBB controls the flow of solutes from the blood
to the brain and facilitates molecular communication between the central nervous system
and other tissues. A high penetration for these candidates is ideal as studies indicate that
the SARS-CoV-2 virus can affect brain cells [20].
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All molecules in this study showed good intestinal absorption, parameters responsible
for drug transport and release. The candidates also underwent in silico toxicity testing
using FDA models of male and female rats and mice (see Table 7).

Table 6. Absorption, distribution, metabolism, excretion, and toxicity (ADMET) predictions for 11
selected compounds and the control (hydroxychloroquine).

Molecules PSA * PPB a HepTox b CYP2D6 Binding c Solubility in Water d BBB e HIAf

Hydroxychloroquine 48.239 False True True 3 1 0
Ligand_003 61.365 True True False 2 1 0
Ligand_005 61.625 True True False 2 1 0
Ligand_013 57.788 True True False 2 2 0
Ligand_020 52.629 False True False 3 3 0
Ligand_033 64.977 True True False 2 2 0
Ligand_035 56.047 False True False 3 2 0
Ligand_044 55.985 True True False 2 1 0
Ligand_049 56.047 True True False 2 2 0
Ligand_063 61.303 False True False 2 2 0
Ligand_080 82.678 False True False 2 2 0
Ligand_086 81.353 True True False 2 2 0

* Polar surface area. a Plasma protein binding (PPB). b Hepatotoxicity (HepTox). c Binding to CYP2D6. d Aqueous
solubility (0, good; 1, moderate; 2, poor; 3, very bad). e Blood–brain barrier (BBB) penetration (0, very high
blood–brain barrier penetration; 1, high; 2, medium; 3, low). f Human intestinal absorption, HIA (0, good;
1, moderate; 2, poor; 3, very poor).

None of the candidates showed carcinogenic potential. Hydroxychloroquine had
mutagenic potential in the Ames tests, but the study candidates did not, indicating that the
chosen compounds may have fewer side effects.

Regarding skin irritation, hydroxychloroquine, ligand_005, ligand_013, ligand_044,
and ligand_080 showed no irritation, ligand_003, ligand_020, ligand_033, ligand_035,
ligand_049, and ligand_063 showed mild irritation. Regarding eye irritation, hydroxy-
chloroquine, ligand_005, and ligand_035 showed severe values, ligand_003, ligand_013,
ligand_020, ligand_044, ligand_063, ligand_080, and ligand_086 had moderate values,
while ligand_033 and ligand_049 were mild. Only ligand_020 presented a degradable
parameter for aerobic biodegradability. After these toxicological analyses, 99 candidates
were approved for molecular docking studies.

2.7. Molecular Docking

Twelve compounds were chosen for the molecular docking investigation after the
ADMET evaluation, including hydroxychloroquine, which served as a reference. The
simulation was run on the Dockthor server, utilizing coordinates found while determining
the hypothetical active site (X = −32.770, Y = 24.940, and Z = 6.690). The molecular target in
this study was the structure of the SARS-CoV-2 spike receptor bound with ACE2 (PDB ID:
6M0J). To observe binding affinity values and molecular interactions, see Table 8 vide infra.

Hydroxychloroquine showed a binding affinity of −7.595 kcal·mol−1 to the target and
reacted with two residues through hydrogen bonds. The hydrogens of both amines (NH2)
of the ARG76 residue interact with the ligand’s hydroxyl (-OH). The oxygen atom of ASP73
interacted with the hydroxyl and the amine group of hydroxychloroquine (Figure 10).

The stability of the ligand within the protein and its binding affinity are significantly in-
fluenced by hydrogen bonds, which are of enormous relevance. π-sigma interactions also oc-
cur between the aromatic ring with residue THR306 and π-alkyl with the pyridine fragment
(C5H5N) with residues PRO303 and MET365. Amino acids ALA368, ASN304, GLN307,
GLY172, GLY336, PHE338, TYR173, and VAL171 interact with the ligand hydrophobically.
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Table 7. Computational parameters of toxicity risk for the selected molecules.

Molecule
FDA predictions Ames

Mutagenicity
Skin

Irritation
Eye

Irritation
Aerobic

Biodegradability
Male Mouse Female Mouse Female Rat Male Rat

Hydroxychloroquine Not Carcinogenic Not Carcinogenic Not Carcinogenic Not Carcinogenic Mutagen None Severe Non-degradable

Ligand_003 Not Carcinogenic Not Carcinogenic Not Carcinogenic Not Carcinogenic Non-mutagenic Soft Moderate Non-degradable

Ligand_005 Not Carcinogenic Not Carcinogenic Not Carcinogenic Not Carcinogenic Non-mutagenic None Severe Non-degradable

Ligand_013 Not Carcinogenic Not Carcinogenic Not Carcinogenic Not Carcinogenic Non-mutagenic None Moderate Non-degradable

Ligand_020 Not Carcinogenic Not Carcinogenic Not Carcinogenic Not Carcinogenic Non-mutagenic Soft Moderate Degradable

Ligand_033 Not Carcinogenic Not Carcinogenic Not Carcinogenic Not Carcinogenic Non-mutagenic Soft Soft Non-degradable

Ligand_035 Not Carcinogenic Not Carcinogenic Not Carcinogenic Not Carcinogenic Non-mutagenic Soft Severe Non-degradable

Ligand_044 Not Carcinogenic Not Carcinogenic Not Carcinogenic Not Carcinogenic Non-mutagenic None Moderate Non-degradable

Ligand_049 Not Carcinogenic Not Carcinogenic Not Carcinogenic Not Carcinogenic Non-mutagenic Soft Soft Non-degradable

Ligand_063 Not Carcinogenic Not Carcinogenic Not Carcinogenic Not Carcinogenic Non-mutagenic Soft Moderate Non-degradable

Ligand_080 Not Carcinogenic Not Carcinogenic Not Carcinogenic Not Carcinogenic Non-mutagenic None Moderate Non-degradable

Ligand_086 Not Carcinogenic Not Carcinogenic Not Carcinogenic Not Carcinogenic Non-mutagenic None Moderate Non-degradable
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Table 8. Binding affinity and interactions of promising molecules with the Spike-ACE2 enzyme.

Molecule ∆G
(kcal·mol−1)

Amino Acids That Interact
by Hydrogen Bonding Amino Acids That Perform Hydrophobic Interactions

Hydroxychloroquine −7.595 ARG76, ASP73 ALA368, ASN304, GLN307, GLY172, GLY336, MET365,
PHE338, PRO303, THR306, TYR173, VAL171

Ligand_003 −8.645 ASP12
ARG71, ARG76, ASN15, ASP73, GLN77, GLN78,

GLU74, HIS16, LEU11, LEU123, LYS8, LYS85, PRO371,
VAL75

Ligand_033 −8.303 ASP15
ARG375, ARG71, ARG76, ASP12, ASP73, GLN77,

GLN78, GLU19, GLU74, HIS16, LEU11, LYS8, LYS85,
PHE372, PRO371, TYR173

Ligand_013 −7.862 ARG71 ALA369, ARG76, ASN15, ASP73, GLN370, GLU19,
HIS16, PHE372, PRO371, TYR173

Ligand_044 −7.749 ARG71, LYS85
ALA368, ALA369, ARG375, ARG76, ASN15, ASP73,

GLN370, GLN77, GLU19, GLU74, GLY84, HIS16,
PHE372, PRO371, TYR173

Ligand_080 −7.690 ASP12, GLN77, GLN78 ARG71, ARG76, ASN15, ASP73, GLU74, GLY84, HIS16,
LEU11, LYS8, LYS85, PRO371, THR83, VAL75

Ligand_035 −7.635 ASN15 ARG71, ASP12, GLN77, GLN78, GLU19, GLU74, HIS16,
ILE86, LEU11, LYS8, LYS85, PRO371, VAL75

Ligand_049 −7.632 ALA368, ARG375 ALA369, ARG71, ASN15, ASP73, GLN370, GLU19,
GLY172, GLY336, PHE338, PHE372, PRO371, TYR173

Ligand_020 −7.508 ARG71
ALA369, ARG375, ARG76, ASN15, ASP73, GLN370,

GLN77, GLU19, GLU74, HIS16, LYS85, PHE372,
PRO371, TYR173

Ligand_005 −7.493 ALA368, ARG375
ALA369, ARG71, ASN15, ASP73, GLN370, GLN77,

GLU19, GLU74, GLY172, GLY336, HIS16, LYS85,
MET365, PHE338, PRO371, THR306, TYR173

Ligand_063 −7.394 GLU19 ARG375, ARG71, ASN15, ASP12, HIS16, LEU11, LYS8,
PHE372, PRO371, TYR173

Ligand_086 −7.368 GLN307, VAL171 PHE338, PRO303, THR306, TYR173

The best binding affinity value was observed for ligand_003 with a value of
−8.645 kcal·mol−1. There was only one hydroxyl hydrogen bond for this ligand with
residue ASP12 (Figure 11). Other interactions occurred whereby the residue HIS16 formed
a π-sulfur interaction with the sulfur present in the structure. The piperidine fragment
(C5H11N) forms a π-alkyl-type interaction with the residues LYS8, PRO371, and VAL75.
Additionally, hydrophobic interactions with the residues ARG71, ARG76, ASN15, ASP73,
GLN77, GLN78, GLU74, LEU11, LEU123, and LYS85 were observed.

Ligand_033 indicated a binding affinity of −8.303 kcal·mol−1 when bound to the
SARS-CoV-2 target structure. This interaction resulted in a hydrogen bond between the
amine hydrogen of the ASN15 residue with the pyrimidinone nitrogen (C4H4N2O) present
in the ligand. Interaction of the ligand with ARG71 was through a π-cation-type bond
(Figure 12). This was the monopole type (cation), where a large electrostatic force occurs
due to the abundance of electrons in the system, being a common interaction in nature. The
residue ASP73 formed a carbon–hydrogen interaction with the methyl hydrogens on the
ligand. The other interactions were hydrophobic with residues ARG375, ARG76, ASP12,
ASP73, GLN77, GLN78, GLU19, GLU74, HIS16, LEU11, LYS8, LYS85, PHE372, PRO371,
and TYR173.

For ligand_013, hydrophobic interactions occurred with residues ALA369, ARG76,
ASN15, ASP73, GLN370, GLU19, HIS16, PHE372, PRO371, and TYR173. It also formed
a hydrogen bond between one of the amine hydrogens of the ARG71 residue with the
pyridine nitrogen of the ligand (see Figure 13). A carbon–hydrogen bond occurred between
residue ALA369 and the pyrrolidine fragment (C4H9N) and an π-alkyl type of bond
with pyridine. HIS16 and PRO371 residues also made π-alkyl bonds. These interactions
occur between the electron cloud and an alkyl group. HIS16 also formed a stacked π–π
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interaction. These stacked π–π interactions are of the dipole–dipole type occurring due to
the electrostatic attraction of the electrons of the aromatic ring. They play an important
role in the stability of proteins. GLU19 makes a π-anion-type bond, occurring mainly in
electron-deficient aromatic rings. This interaction is rare in biological systems as amino
acids tend to repel nearby negative charges.
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Ligand_044 showed a binding affinity of−7.749 kcal·mol−1 and formed two hydrogen
bonds between the oxygen of the ligand and hydrogen of the amine present in residue
ARG71 and residue LYS85 (Figure 14). Hydrophobic interactions occurred with 16 amino
acid residues, ALA368, ALA369, ARG375, ARG76, ASN15, ASP73, GLN370, GLN77,
GLU19, GLU74, GLY84, HIS16, LYS85, PHE372, PRO371, and TYR173. The ALA369 and
LYS85 residues also form π-alkyl interactions with the azepane fragment (C6H13N) and the
pyrimidines. The HIS16 residue forms a π–π-type interaction stacked with the aromatic
ring, while the amino acid TYR173 forms a bond of the carbon–hydrogen type. There are
also halogenated interactions of fluorine with the amino acids ASN15 and GLU19. The
homeostasis of various physiological processes is directly influenced by fluorine. Halogens
in the ligands may improve drug binding affinity and selectivity by acting as an electron
acceptor and directly participating in the interaction with biological receptors.

The binding affinity of ligand_080 was −7.690 kcal·mol−1. The ligand generated
14 hydrophobic interactions with the Spike-ACE2 target with residues ARG71, ARG76,
ASN15, ASP73, GLN78, GLU74, GLY84, HIS16, LEU11, LYS8, LYS85, PRO371, THR83, and
VAL75. Three hydrogen bonds were formed between the oxygen atom of ASP12 and the
nitrogen in the ligand structure, the amine nitrogen of GLN77 and ligand oxygen, and one
with residue GLN78 (Figure 15).
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one with residue GLN78 (Figure 15). 

Figure 14. Interaction of ligand_044 with Spike-ACE2, (a) 3D contact surface, (b) 2D interaction diagram.
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By examining the docking results for all 12 ligands and hydroxychloroquine, it was
feasible to confirm that more hydrophobic interactions (34 residues) than hydrogen bonds
(11 residues) were used to make contact between the ligands and the Spike-ACE2 protein
(see Figure 16).
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Interacting residues are predominant between the region of α-helix A and β-sheet A
of ACE2, and the region of β-sheet B of the spike protein (Figure 17). The most frequent
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residue was PRO371, which was present in β-sheet A in 77% of the cases. Next in frequency
were residues HIS16 from the α-helix and TYR173 found in β-sheet A, both of which were
detected in 69% of the instances.
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Figure 17. Predominant regions of amino acid residues that interacted between the ligands and the
Spike-ACE2 protein.

When all interactions of each ligand are taken into account, the residue with the highest
frequency for hydrogen bonds was ARG71 with 31% in β-sheet B, which is favorable to
what is anticipated because this region comes from the spike bond, followed by residues
ALA368 (β-sheet A), ARG375 (β-sheet A), ASN15 (α-helix A), and ASP12 (α-helix A) with
15%. All amino acid residues that established hydrogen bonds also interacted through
hydrophobic interactions.

Arginine, a positively charged guanidinium group with pH 7.0, is a residue responsible
for catalyzing several enzymes. Its main action is found in the synthesis of nitric oxide.
The interaction of the ligand with this residue may favor the inhibition of the spike protein,
as it is responsible for decreasing the bioavailability of nitric oxide, and responsible for
vasodilation and blood pressure control.

2.8. Synthetic Accessibility Prediction and Similarity Analysis

Following the ADMET examination, the 99 compounds were put through the synthetic
accessibility (SA) test, which filtered out the molecules that were not likely to be synthesized.
The AMBIT-AS program was used to predict SA, and its algorithm computes scores ranging
from 0 to 100 based on several criteria relating to the chemical properties of the structures,
where a molecule with great ease of synthesis has a value of 100 [21]. Hydroxychloroquine
was used as a standard and had an SA value of 69.792. Here, we only selected the molecules
that achieved values greater than this reference molecule, indicating that they were highly
likely to be synthesized (see Table 9).

After making accessibility predictions, the Chemmine Tools server was used to conduct
similarity research. The structures were divided into clusters according to their individual
physical–chemical and structural features. They were also divided into clusters, and
five molecular structures—one for each cluster—and hydroxychloroquine was chosen
to proceed with this study. The selection was based on the best binding affinity values,
taking into account that there is a chance that they will have similar biological activity in
in vitro experiments if they are in the same cluster (see Figure 18). Ultimately, 12 interesting
compounds were chosen for further study, and molecular docking studies were run on each.
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Table 9. Synthetic accessibility (SA) prediction for selected compounds.

Molecule SMILEs SA

Ligand_020 C1=CC2=NC=C(C(=O)N3CCCCCCC3)C(=O)N2C(=C1)C 77.661
Ligand_005 N1C(SCCOc2ccccc2)=Nc3c(C1=O)c(cc(n3)C)C 75.599
Ligand_086 OC(=O)c1c2C(=O)N=C(S)N(c2nc(c1Cl)C)CCCC 75.569
Ligand_035 N1C(=Nc2nccc(-c3cscc3)c2C1=O)N4CCCCC4 75.534
Ligand_049 N1C(=Nc2nccc(-c3ccccc3)c2C1=O)N4CCCCC4 75.531
Ligand_063 Oc1c2c(nccc2-c3cccs3)nc(n1)N4CCN(C)CC4 74.658
Ligand_033 N1C(=O)c2c(ccnc2N=C1N3CCCCC3)-c4cc(OC)ccc4 74.018
Ligand_003 Oc1c2C(=S)N(C=Nc2nc(n1)N3CCC(C)CC3)c4ccccc4 73.523
Ligand_013 c1c(nc2nc(nc(N3CCCC3)c2c1C)C(=O)N4CCCCC4)C 73.432
Ligand_044 N(c1ccc(F)cc1)c2c3ccc(nc3ncc2C(=O)N4CCCCCC4)C 71.787
Ligand_080 N(C(=O)CSc1c2C(=O)N(C(=O)N(c2ncc1C(C)C)C)C)c3ccc(F)cc3 70.207

Hydroxychloroquine OCCN(CC)CCCC(Nc1ccnc2cc(Cl)ccc12)C 69.792

2.9. Lipophilicity and Water Solubility

The SwissADME server was employed to ascertain the selected molecules’ lipophilicity
and water solubility characteristics. These properties have an impact on the kinetics of how
drug candidates act, making them crucial in the process of identifying novel medications.
The octanol–water partition coefficient (LogPo/w), which results from the concentration of
a molecule in its neutral form in the organic and aqueous phase, is used as a benchmark
for lipophilicity [18]. Lipophilicity affects the solubility and permeability properties of
membranes in a way that can change the molecules’ ADMET profiles and directly reflect
the molecular forces active between the two phases. For novel compounds, LogP < 5 is a
desirable number [18].
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The SwissADME server allows the investigation of five distinct values, XLOGP3
which uses a database of molecules as a basis for identifying LogP values, using 87 different
types of atoms and two groups of correction factors, WLOGP that uses a fragmented
method proposed by Wildman and Crippe through atomic contributions, MLOGP that uses
13 descriptors of hydrophobic, hydrophilic, unsaturated bond, and other atoms based on
the linear relationship to determine their values, SILICOS-IT which uses seven descriptors
in its approach in a hybrid system based on the FILTER-IT software source code, and
iLOGP that uses the energies of free water and n-octanol solvations using a generalized
Born equation and solvent accessible surface area (GB/AS) approach.

The five selected structures and hydroxychloroquine were passed through the Swis-
sADME server to obtain their lipophilicity values and an average of the results (Table 10
and Figure 19). As suggested by Lipinski for compounds with optimal lipophilicity, all
molecules displayed values below 5, making them desirable. Ligand_044 presented a
higher average than the control drug, which could be associated with the presence of the
halogen (F) in its structure. Hydroxychloroquine, the standard, also has a halogen (Cl)
registered as the second highest value. The third highest result was ligand_003, possibly
due to the double bond with sulfur (S). The values obtained in these studies ranged from
2.58 to 4.22, characterizing them as highly lipophilic, meeting the criteria required for
drug candidates.

Water solubility (LogS) is a crucial investigational factor since it relates to the route
of delivery of drug candidates, particularly when addressing oral and parenteral routes,
due to the concentration required for the candidate’s circulation in the distribution system.
The usage of molecules with low solubility has proven problematic since their insoluble
classification affects how they behave in the circulatory system. Many non-polar alkene
and alkyne bonds in the structures affect the compounds’ solubility since they prevent the
compounds from dissolving in water.

Table 10. Lipophilicity prediction (LogPo/w) using SwissADME server.

Molecule iLOGP XLOGP WLOGP MLOGP SILICOS-IT Average

Ligand_003 3.01 3.38 3.11 2.73 2.99 3.16
Ligand_033 2.72 2.41 2.60 2.29 3.57 2.58
Ligand_013 3.53 3.15 2.11 2.52 3.08 2.93
Ligand_044 3.08 4.71 4.88 3.34 4.23 4.22
Ligand_080 2.44 2.72 2.85 3.17 3.22 2.67

Hydroxychloroquine 3.58 3.58 3.59 2.35 3.73 3.58
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The molecules are more soluble in water when a hydroxyl group is present, and a ke-
tone functional group has a similar effect because of the potential for molecular interactions.
With the help of SwissADME, three methods—the ESOL method, the Ali method, and the
SILICOS-IT technique—were designed for this study to determine water solubility [22].

In terms of solubility, ligand_044 and hydroxychloroquine produced the best results.
According to the SILICOS-IT parameter, ligand_044 (−7.46) and hydroxychloroquine
(−6.35) have low solubility. A moderate solubility displays a LogS between −4 and
−6, while a high solubility displays a LogS from −2 to −4. Except for ligand_013 and
ligand_044, all others showed moderate water solubility. However, they are still potential
candidates for oral or parenteral administration (Table 11 and Figure 20).

Table 11. Water solubility prediction (LogS) using SwissADME server.

Molecule ESOL Ali SILICOS-IT Average

Ligand_003 −4.50 −5.14 −4.65 −4.76
Ligand_033 −3.72 −3.55 −6.20 −4.49
Ligand_013 −4.03 −4.13 −4.82 −4.32
Ligand_044 −5.31 −5.66 −7,46 −6.14
Ligand_080 −4.15 −4.71 −5.94 −4.93

Hydroxychloroquine −3.91 −4.28 −6.35 −4.84
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2.10. Molecular Dynamics Studies

To understand the stability and binding affinity of ligands complexed in the spike
protein binding site, we performed an MD simulation. Protein conformational changes
disclosed its function, and MD is crucial to comprehending biological activity. After MD
simulation, trajectory data were analyzed in terms of RMSD, RMSF, radius of gyration,
VMD, and R-code. RMSD based on Cα of spike protein with its complexes is plotted in
Figure 21.
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complex based on Cα in complex with spike protein.

The RMSD plot shows very stable curves that indicate the system’s stability dur-
ing the trajectory. The average RMSD of all ligands has similar curves compared with
the control compound (hydroxychloroquine) and ranges from 2–4 Å. The effect of con-
formational change is more (2–4 Å) in the control compound, ligand_003–Spike-ACE2
complex, and ligand_080–Spike-ACE2 complex. Ligand_033–Spike-ACE2 complex was
moderate (2–3.5 Å) and ligand_013–Spike-ACE2 complex and ligand_044–Spike-ACE2
complex (2–3 Å) were lowest. Low variation indicates that ligands are still interacting
within the binding cavity of the spike protein during the simulation period, despite minor
conformational changes.

The Cα-based RMSF was observed, as shown in Figure 22. The overall RMSF curve of
all the complexes is stable from the central region, especially the binding site region, while
fluctuating at the loop region, including residues from 600 to 800. The loop region shows
more flexibility due to the high degree of freedom. The average fluctuation is from 1–2 Å
at the central residues, while the loop region shows fluctuation up to 5 Å that shows the
system’s overall stability. Ligand_033–Spike-ACE2 complex shows a little fluctuation at
residual position 400 during simulation, but that residue does not share a binding cavity
region, so its variation does not affect binding strength of the complex.



Int. J. Mol. Sci. 2023, 24, 8814 23 of 35Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 24 of 37 
 

 

 
Figure 22. Root mean square fluctuation (RMSF) plot of control and selected screened compounds 
in complex based on Cα in complex with spike protein. 

The compactness of the protein is shown by the radius of gyration, as indicated in 
Figure 23. Based on mean values that range from 49.3 to 49.6 Å, it can be concluded that 
the protein is still compact and that no significant modifications are seen when spike 
protein is in the presence of its ligands. The constant mean value shows that protein is 
stable and there are no major conformational changes in spike protein. According to 
RMSD, RMSF, and gyration radius, the ligands could stabilize the spike protein binding 
site during the MD trajectories. 

Figure 22. Root mean square fluctuation (RMSF) plot of control and selected screened compounds in
complex based on Cα in complex with spike protein.

The compactness of the protein is shown by the radius of gyration, as indicated in
Figure 23. Based on mean values that range from 49.3 to 49.6 Å, it can be concluded that the
protein is still compact and that no significant modifications are seen when spike protein is
in the presence of its ligands. The constant mean value shows that protein is stable and
there are no major conformational changes in spike protein. According to RMSD, RMSF,
and gyration radius, the ligands could stabilize the spike protein binding site during the
MD trajectories.

Binding Free Energy Calculation

The binding energy of ligand_003, 013, 033, 044, and 080 in the spike protein bind-
ing site was calculated by MMPBSA methods, and obtained results are summarized in
Table 12. The ∆Gtotal indicated that all the complexes had excellent simulation-based bind-
ing energy values that were near to those of the control compound. The MMPBSA result
ranks the compounds ligand_44 < ligand_33 < hydroxychloroquine (control) < ligand_03,
ligand_80 < ligand_013.

Moreover, different components of the energies, vdW, electrostatics, polar solvation
energy (EPB), and non-polar solvation energy (ENPOLAR), all show good binding strength.
In control, compound electrostatics is a major energy contribution, whereas in other com-
pounds, vdW is dominant over other energy terms.

The fact that the polar solvation energy (EPB) remained notably unfavorable also
indicates that vdW plays a key role in the binding of ligands to spike protein. Ligand_044
shows a stronger and more significant free energy value than other complexes and has the
highest vdW, electrostatic, and EPB values. While all compounds had positive binding
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interactions and significant binding energy values in the protein binding site, ligand_013
had the lowest ∆Gtotal due to the lowest electrostatic contribution.
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Table 12. Binding free energy (kcal/mol).

S. No Compound ID Free
Energy Value vdW Electrostatics EPB ENPOLAR

1 Hydroxychloroquine −28.8249 −37.3748 −314.6821 328.4395 −5.2075

2 Ligand_003–spike
protein complex −26.9130 −35.2501 −1.3260 13.8309 −4.1678

3 Ligand_013–spike
protein complex −24.2420 −32.5448 −0.0613 12.3647 −4.0007

4 Ligand_033–spike
protein complex −29.94.65 −36.2508 −7.1062 17.3198 −3.9093

5 Ligand_044–spike
protein complex −30.2620 −36.0100 −3.9378 13.8663 −4.1805

6 Ligand_080–spike
protein complex −26.3248 −32.5836 −2.5741 12.5057 −3.6727
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2.11. Determination of the Theoretical Mean Inhibitory Concentration (IC50)

The mean inhibitory concentration (IC50) is a measure used to assess the ability of
a compound to inhibit half of the biological activity in a specific target from an initial
amount [23,24]. The IC50 measurement value has always been one of the limitations
of theoretical and in silico approaches. In this work, we used a mathematical equation
proposed by Hopkins et al. (2014) [25], in which the initial formula was deduced and
rearranged to estimate the pIC50 value (Table 13).

Table 13. pIC50 and IC50 values theoretically obtained for Spike-ACE2 targets.

Molecule pIC50
a IC50

b

Ligand_003 5.625 2.371
Ligand_013 6.232 0.586
Ligand_033 6.179 0.663
Ligand_044 5.980 1.047
Ligand_080 6.339 0.459

Hydroxychloroquine 5.139 7.268
a pIC50 = −log(IC50), b IC50 in µM.

As is already known for pIC50 values, the higher the value obtained, the more active
the compound studied, while the IC50 value is the opposite, i.e., the lower its value, the
better the activity. With a predicted IC50 value of 0.459 µM, ligand_080 has the potential
to be the most active. The values discovered were 0.586 µM and 0.663 µM for ligand_013
and ligand_033, respectively. For ligand_003, the highest value was 2.371 µM. The value of
hydroxychloroquine was inferior to all the predicted values for the ligands.

2.12. Quantum Chemical Calculations

Chemical descriptors play a crucial role in the chemistry and pharmacology of the
interaction between the ligand and the macromolecule. The HOMO and LUMO energies
and their gap show the charge transfer potential that affects the molecule’s bioactivation
and the electrostatic potential connected to the binding of ligands to the surface of the
macromolecule [26].

The five candidate compounds were subjected to chemical molecular optimization
calculations using the Gaussian 09 program. As a result, the highest occupied molecular
orbitals (HOMOs) and lowest unoccupied molecular orbitals (LUMOs) of each structure,
as well as their gap values, were determined for each compound (Figure 24). The HOMOs
and LUMOs are of great importance in the study of the reactivity and stability of molecules,
where the HOMO energy demonstrates the ability of a molecule to donate its electrons and
the LUMO energy to accept electrons.

The HOMOs are predominant mainly over the pyridine and pyrimidine fragments of
the structures, except ligand_080 where this fragment did not present a molecular orbital, a
functional group known to perform hydrophobic interactions in its aromatic rings, which
was observed in molecular docking studies. The presence of these orbitals explains the
π-anion bond present in the aromatic ring of ligand_013. For ligands that contain sulfur, it
is possible to see the orbital density on this atom favoring the π-sulfur bond as observed in
docking studies, as well as the fluorine atoms that formed the halogen bonds with the spike
target. The oxygen atoms also presented HOMOs except for the hydroxyl in ligand_003
and the ketone in ligand_080. The eigenvalues were all very similar, showing that their
electron-donating potential is similar.

The HOMOs and LUMOs are localized on the pyridine and pyrimidine fragments
with the exception of some fragments that mainly have rings linked to fluorine. For the
LUMO values, it is possible to see a difference where ligand_033 had the lowest value of
−1.638 eV and ligand_080 the highest of −2.699 eV. The orbitals on ligand_033 favored the
π-cation bond, which is explained by the density of the orbital on the aromatic ring next to
the oxygen of the ether.
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These orbitals are of great importance in biological interactions, mainly influencing the
binding affinity of ligands with targets through interactions, as seen in molecular docking.
The HOMO and LUMO data were also important in the calculation of the descriptors gap
energy (∆E), ionization potential (IP), electron affinity (EA), electronegativity (χ), chemical
potential (µ), chemical hardness (η), softness (σ), and electrophilicity (ω), see Table 14.

The values of ∆E are related to the chemical reactivity of the compound and are
obtained from the difference in the energy of HOMO and LUMO, where a smaller gap
indicates the low stability of the structure. According to the data collected, ligand_013
has the best stability among the potential ligands, attaining a value of 4.380 ev. The others
presented values that vary between 3.449 eV and 4.434 eV and this demonstrates that all
candidates have excellent chemical stability, favoring the stability of the ligands within the
spike target substrate.

The IP is related to the ability of the structures studied to donate electrons. Since it
relates to the transfer of electrons present in the structure, it is a parameter that may be
used to determine the antioxidant potential of the candidates evaluated. All compounds
had close values, with the highest value of 6.334 for ligand_013 and the lowest value of
6.071 for ligand_033. This demonstrates that all compounds have an antioxidant power
and are great candidates for anti-SARS-CoV-2 action.

Table 14. Chemical reactivity descriptors.

Properties Ligand_003 Ligand_013 Ligand_033 Ligand_044 Ligand_080

HOMO (ev) −6.140 −6.334 −6.071 −6.119 −6.148
LUMO (ev) −1.993 −1.954 −1.638 −1.939 −2.699

∆E 4.147 4.380 4.434 4.179 3.449
IP 6.140 6.334 6.071 6.119 6.148
EA 1.993 1.954 1.638 1.939 2.699
χ 4.066 4.144 3.855 4.029 4.423
µ −4.066 −4.144 −3.855 −4.029 −4.423
η 2.074 2.190 2.217 2.090 1.725
σ 0.482 0.457 0.451 0.479 0.580
ω 3.987 3.920 3.351 3.884 5.673

EA is related to the ability of the ligands to accept electrons. Its relationship to
antioxidant activity is unknown. However, it has a characteristic that is the opposite of IP.
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Its connection to the potential for reduction and its capacity to neutralize free radicals is
apparent. All candidates had a low value of EA, as expected. The lowest value observed
was for ligand_033 of 1.638 eV and the highest for ligand_080 (2.699 eV), demonstrating
the low potential for accepting electrons and confirming its antioxidant power.

The µ is related to the energetic change of the system through the electronic trend
influencing the molecule’s electron density with the target substrate. The highest observed
value was −4.423 eV for ligand_080, and the lowest was −3.855 eV for ligand_033. The
values were approximate for all ligands showing a nucleophilic (electron donor) and
electrophilic (electron acceptor) character indicating their charge transfer capacity.

The η is related to the molecular stability of compounds following the maximum
hardness principle (MHP), which indicates that hard molecules will be less reactive than
soft molecules due to resistance in charge transfer. All compounds showed similar values
indicating that the molecules have low hardness and are reactive. The acceptance of loads
and measures of the degree of molecular activity characterize the parameter σ. The studied
ligands showed a high smoothness.

The value of ω relates to the direction in which the charge transfer occurs and its
electrophilic potential, that is, the molecule’s stability when acquiring an extra electron
density. The molecules studied can thus be classified as strong electrophiles.

The values of χ are related to the attraction of electrons in the molecule. Another piece
of information that can be observed is the molecule’s electrostatic potential, which can be
observed in Figure 25. The ligands were shown to be electronegative, which provides the
exchange of electrons with the substrate, favoring electrostatic attraction and increasing the
force of interaction.
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Figure 25. Electrostatic potential map of the 5 candidate structures, (a) ligand_003, (b) ligand_013,
(c) ligand_033, (d) ligand_044, and (e) ligand_080.

The electrophilic and nucleophilic areas of each ligand’s structure can be observed
using the molecular electrostatic potential, with the most electronegative region being
represented by red and the least electronegative part by blue. These areas are connected to
the area where the majority of a compound’s molecular interactions occur. In ligand_003,
the most electronegative region is close to oxygen and sulfur, the same region that presented
the hydrogen bond with the spike protein. The least electronegative region was at the
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ends of the molecule in the aromatic ring and pyridine. For ligand_013, there was also a
higher electronegative concentration of oxygen; as observed in the molecular docking in
this region, hydrogen bonds to the spike protein occurred.

Along with the other ligands, ligand_033 displayed the electronegative region on
the structure’s two oxygens and the opposite region on the pyridine and pyrimidine
nitrogens, the region in which the hydrogen bonds took place. While ligand_044 displayed
an electronegative density in the nitrogen and oxygen regions, both sites for hydrogen
bonding, fluorine did not exhibit a high electronegativity for this ligand. For ligand_080,
the most electronegative region is found on the oxygens and fluorine, as expected, the
regions where hydrogen bonds occurred in molecular docking.

3. Materials and Methods
3.1. Determination of Theoretical Active Site

With the use of the FTMap server, identifying the potential region of biological activity
was investigated (https://ftmap.bu.edu/, accessed on 1 January 2022) [27], whereby re-
gions with significant contributions to the energy of the ligand interaction with hot spots in
the macromolecule were identified. Small organic compounds are used to map the target
protein by acting as probes on its surface and locating critical regions of interest.

Hot spots have already been studied as one of the ways to identify active sites, espe-
cially in structures that do not have co-crystalized ligands. These regions act as indicators
of where a drug is likely to bind. The protein structure’s cavities were further examined
using Molegro software [28–30], bearing in mind that studies suggest that the cavities are
situated near active sites.

3.2. Selection of Antiparasitics and Similarity of Tanimoto

Nine antiparasitic drugs were selected from the DrugBank server (https://go.drugbank.
com/, accessed on 1 March 2022) [31], evaluated for their structural similarity with hy-
droxychloroquine, and their inhibition of SARS-CoV-2 spike protein was determined. The
BindingDB server platform (http://bindingdb.org/bind/index.jsp, accessed on 5 March
2022) [32] was used to calculate the Tanimoto index as per the equation vide infra. The
software utilizes merged similarity scoring, where the numbers of bits in x and y are set to 1.

M(x) = maxi∈AS(x, xi)

The outcome rates a molecule’s similarity to another that exhibits similar properties.
Therefore, the likelihood that this molecule will be active increases as M(x) increases.

3.3. Determination of Characteristics and Pharmacophorics

The molecules were aligned based on their Tanimoto index values using the Discovery
Studio program and sent to the PharmaGist Web Server 15 (http://bioinfo3d.cs.tau.ac.il/
pharma/index.html, accessed on 7 April 2022) [33,34] to determine their characteristics:
Atoms (ATM), characteristics (F), spatial characteristics (SF), aromatics (ARO), hydrophobic
(HYD), donors (DONN), acceptors (ACC), negatives (NEG), and positives (POS). The set
used had 11 molecules based on the reference molecule (hydroxychloroquine).

3.4. Hierarchical Cluster Analysis (HCA) and Molecular Overlay

The pharmacophoric descriptors were employed in the adopted methodology [35]
to assess their link to the Tanimoto index values, observing the significance of each factor
for similarity through the Euclidean distance correlation with Minitab 19 software. The
Euclidean distance, one of the most used models, is used to carry out clustering through
models to identify commonalities between two points. Since dab is the coordinate of the

https://ftmap.bu.edu/
https://go.drugbank.com/
https://go.drugbank.com/
http://bindingdb.org/bind/index.jsp
http://bioinfo3d.cs.tau.ac.il/pharma/index.html
http://bioinfo3d.cs.tau.ac.il/pharma/index.html
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point in the r dimension, the Euclidean distance between points a and b can be calculated
by the formula:

dab =

[
p

∑
j=1

(
Xaj − Xbj

)2
] 1

2

where p denotes how many dimensions there are in space. The distance between points
a and b in the coordinate system can therefore be calculated by applying the equation
mentioned above. Here, the hierarchical cluster analysis (HCA) was used to verify the
degree of similarity between the molecules studied.

3.5. Virtual Screening and Selection of Inhibitory Compounds

The 2000 molecules closest to the adopted models were chosen using the pharma-
cophoric characteristics generated, which included molecular weight (MW), rotatable
bonds (RB), water solubility (LogS), polar surface area (PSA), number of aromatic rings
(AR), hydrogen bond acceptors (HBA), and hydrogen bond donors (HBD). This vir-
tual screening was carried out in the MolPort database using the Pharmit server (http:
//pharmit.csb.pitt.edu/, accessed on 7 May 2022) [36].

3.6. Prediction of Toxicological and Pharmacokinetic Properties

The structures obtained from the virtual screening were subjected to in silico predic-
tions of pharmacokinetic and toxicological features, or absorption, distribution, metabolism,
excretion, and toxicity (ADMET). The computations utilize physicochemical factors, drug
similarity, and pharmacokinetic profiles to calculate prediction values [37–39]. The drugs
hydroxychloroquine and chloroquine were used as a benchmark.

The following pharmacokinetic and toxicological characteristics were evaluated: Hep-
atotoxicity, plasma protein binding (PPB), binding to CYP2D6, aqueous solubility, polar
surface area (PSA), blood–brain barrier (BBB) penetration, human intestinal absorption
(HIA), Ames mutagenicity, skin irritation, eye irritation, and aerobic biodegradability.

3.7. Molecular Docking

This study utilized the protein structure of the SARS-CoV-2 spike receptor binding
domain co-crystalized with ACE2 (Spike-ACE2) (PDB ID: 6M0J) [40] obtained from the
Protein Data Bank database (https://www.rcsb.org/, accessed on 25 May 2022). The UCSF
Chimera software [41] was used to remove water molecules and other residues resulting
from crystallography that could interfere with the ligand–macromolecule interaction. The
molecules with the best pharmacokinetic and toxicological parameters were selected for
molecular docking, and hydroxychloroquine and chloroquine were used as controls.

The protein was prepared in APBS-PDB2PQR (https://server.poissonboltzmann.org/,
accessed on 25 May 2022) [42], maintaining neutral pH and hence simulating the pH of
the organism. The PARSE force field was used to correct the amino acid chains and adjust
the conformation. Molecular docking simulations were performed through the DockThor
server (https://www.dockthor.lncc.br/v2/, accessed on 26 May 2022) [43]. The grid was
selected based on the x, y, and z coordinates of the active site obtained by determining
the hot spots. A 20 × 20 × 20 cm cubic box was used, and the other standard parameters
(number of evaluations 500,000, population size 750, and 12 runs) were used to analyze the
conformations, interaction of molecules with protein amino acids, and binding energy.

3.8. Synthetic Accessibility Prediction and Similarity Analysis

Synthetic accessibility (SA) prediction was performed for the molecules predicted
to have the best pharmacokinetic and toxicological properties through the AMBIT-AS
software (http://ambit.sourceforge.net/reactor.html, accessed on 7 June 2022). This server
analyzes the structural and topological characteristics of the molecules studied based on
stereochemistry. The algorithm works with a score ranging from 0 to 100, where 100
symbolizes a molecule that is easily synthesized.

http://pharmit.csb.pitt.edu/
http://pharmit.csb.pitt.edu/
https://www.rcsb.org/
https://server.poissonboltzmann.org/
https://www.dockthor.lncc.br/v2/
http://ambit.sourceforge.net/reactor.html
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The similarity analysis of the molecules was evaluated with the Chemmine Tools
server (https://chemminetools.ucr.edu/, accessed on 7 June 2022) through hierarchical
clustering [44]. The Tanimoto index was used to calculate the similarity through the atomic
descriptors through a matrix of the unique characteristics of each structure [45,46].

3.9. Lipophilicity and Water Solubility

The lipophilicity and solubility values were determined using the SwissADME server
(http://www.swissadme.ch/, accessed on 8 June 2022) analyzing the iLOGP, XLOGP,
WLOGP, MLOGP, and SILICOS-IT methods for lipophilicity and ESOL, ALI, and SILICOS-
IT for water solubility, according to the methodology proposed by Sepay et al. (2020) [47].

3.10. Molecular Dynamics

Molecular dynamic (MD) simulation was performed for 100ns using NAMD soft-
ware [48,49] in order to study the stability and binding energy of the spike protein model
complexed with ligand_4, ligand_33, ligand_03, ligand_80, ligand_013. The input files
were prepared using antechamber and t-leap modules of Amber 14 tools [50] and then, a
50ns MD simulation was run for five complexes along with the control compound. The
LEAP program of Amber 14 [51] was employed to produce the force field, coordinate, and
topology information of the complexes. Generalized Amber Force Field (GAFF) [52] was
used to generate the ligand parameters, while ff14SB force field [53] was employed for
protein parameters. The system was solvated by the TIP3P water model and neutralized by
adding Na+ ions. The final system comprises water, ligand, and protein complexes.

To maintain the protein’s constraint at its mean position, the systems were minimized
using the steepest descent minimization methodology. After that, the system’s temperature
gradually increased by 300K under ensemble conditions (NPT). In the equilibrium phase,
electrostatic interactions were enumerated using the particle-mesh Ewald algorithm [54]
with 12 Å cutoff distance and periodic boundary conditions employed to calculate the forces
of atoms, whereas all bonded interactions, such as hydrogen bonds, were constrained by
the SHAKE algorithm [55]. Langevin [56] coupling was employed at constant temperature.
The trajectories data were computed, and a snapshot taken at each 20ps time step.

MD trajectory was analyzed using molecular dynamic software (VMD), R-program,
and Pymol. The stability and binding energy of the complexes were calculated by RMSD,
RMSF, and radius of gyration. RMSD data provide average motion between coordinates.

Binding Free Energy Calculation

The free energy calculations were performed using the molecular mechanics energies
combined with Poisson–Boltzmann (MM-PBSA) [57–59]. The free energy was calculated
as follows:

∆Gbind = ∆H − T∆S ≈ ∆EMM + ∆Gsolv − T∆S (1)

where ∆Gbind is the free energy of the complex, resulting from the sum of the molecular
mechanics’ energy (∆EMM), desolvation free energy (∆Gsolv), and entropy (−T∆S).

∆EMM = ∆Einternal + ∆Eelectrostatic + ∆EvdW (2)

The energy of molecular gas phase mechanics (∆EMM) can be described by the sum of
the internal energy contributions (∆Einternal); the sum of the connection, angle, and dihedral
energies; electrostatic contributions (∆Eelectrostatic); and van der Waals terms (∆EvdW).

∆Gsolv = ∆GGB + ∆Gnonpol (3)

The desolvation free energy (∆Gsolv) is the sum of the polar (∆GGB) and non-polar
(∆Gnonpol) contributions. The polar desolvation term was calculated using the implicit
generalized Born (GB) approach.

https://chemminetools.ucr.edu/
http://www.swissadme.ch/
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g_mmpbsa was employed to investigate the binding free energy of the selected com-
plex at the binding site of the spike protein. The binding free energy was decomposed into
relative free energy of solvated complex (protein and ligand) and discrete receptor and
ligand components given by the equation:

∆GMMPBSA = (Gcomplex − Gprotein − Gligand)

For each free energy, it is a summarization of different molecular mechanics energy
including polar and non-polar solvation energy, electrostatic, and van der Waal’s contributions.

3.11. Determination of Theoretical Mean Inhibitory Concentration (IC50)

After the binding affinity values were determined, they were utilized to calculate
the ligand efficiency (LE) value [23,24], where hydroxychloroquine was employed as the
study’s point of reference, acting as a filter in the assessment of energies. This procedure
was applied to the selected molecules; the efficiency was evaluated using the equation:

LE = −∆G/N

where ∆G is the energy obtained from molecular docking and N is the number of non-
hydrogen atoms.

To determine the average inhibitory concentration (IC50) for each molecule, the ligand
efficiency equation vide infra was used:

LE = 1.4× pIC50/N

where N is the number of non-hydrogen atoms, and pIC50 is the negative logarithm of IC50.
Knowing the theoretical LE value through previous calculations and the molecular docking
∆G values, the formula was adjusted to obtain the pIC50 value and later the IC50 value by
the following equation:

pIC50 = LE × N/1.4 (4)

3.12. Quantum Chemical Calculations

Quantum chemical calculations were performed using the Gaussian 09 software [60].
The method adopted was the density functional theory (DFT), a functional hybrid B3LYP
with the base set 6-311++g(d,p) [61–63]. The highest occupied molecular orbital (HOMO),
lowest unoccupied molecular orbital (LUMO), and chemical descriptors of gap energy (∆E),
ionization potential (PI), electron affinity (EA), and electronegativity (χ) were obtained:
Chemical potential (µ), chemical hardness (η), softness (σ), and electrophilicity (ω) based
on the equations below:

∆E = ELUMO − EHOMO

PI = −EHOMO

EA = −ELUMO

χ = −1
2
× (EHOMO + ELUMO)

µ = −χ

η = −1
2
× (EHOMO − ELUMO)

σ =
1
η

ω =
χ2

2η
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4. Conclusions

With this study, the probable region of the active theoretical site of the crystal structure
of Spike-ACE2 was determined. Using hydroxychloroquine as a standard, we obtained the
pharmacophoric model from antiparasitics. Tanimoto analysis and hierarchical analysis
studies raised the hypothesis that structures with the same chemical characteristics would
be great candidates for SARS-CoV-2 inhibitors.

The pharmacophores generated a list of chemical structures obtained by virtual screening
that were evaluated. The molecules approved in the ADME/Tox tests showed excellent
synthetic viability values, concluding that they are easy to obtain through synthesis. The phar-
macokinetic and pharmacological properties showed better parameters than the control drug,
and none showed carcinogenic potential, performing even better than hydroxychloroquine.

All studied molecules showed better results than hydroxychloroquine in molecular
docking tests, with ligand_003 having a strong binding affinity of −8.645 kcal·mol−1. The
lipophilicity and solubility data showed favorable values for oral administration. The
theoretical IC50 values showed that these molecules are promising for in vitro studies and
the chemical descriptors demonstrate great stability for the molecules.
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