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1. Introduction

Univariate spline quasi-interpolants (abbr. QIs) are a very important tool in data approximation, and numerical solution
of ordinary and partial differential equations and integral equations [13-15]. The most popular techniques to construct
quasi-interpolating splines are blossoming (polar forms and Marsden identities). In [11], a general version of Marsden’s
identity based on the blossoming technique is presented. Univariate polynomial spline QIs on uniform partitions of bounded
intervals have been extensively studied (see, for instance, [10,12,18-21] and the references therein). In [17], some general
Marsden identities for trigonometric splines are established and then formulae for the coefficients of QIs are established via
blossoming. Another study of quasi-interpolation (also QI for short) has been done in [23], where the authors introduced
some new results concerning the symmetric function of the difference of two finite sets. These results have been well
used to construct explicitly discrete and differential QIs. In [6,7,9], the authors present new results then used to construct
uniform algebraic trigonometric and hyperbolic B-spline QIs. Recently, in [16] it has been established the Marsden’s identity
related to uniform generalized (UE-) B-splines from which QI schemes reproducing the spaces of generalized functions are
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derived. For non-uniform partitions also Marsden’s identities are derived and used to define non-uniform QIs (see, e.g.,
[5,8]). Moreover, the performance of this numerical schemes is tested.

The purpose of the first part of this work is to develop a Marsden’s identity related the UE-splines [24]. It is then used to
construct explicitly new non-uniform Qls depending of a parameter w. The main feature is that they combine polynomial,
trigonometric and hyperbolic QIs in a single formulation. More precisely, if w=0, we get non-uniform polynomial spline QIs.
On the other hand, if w is a real number, then non-uniform trigonometric spline QIs are obtained. Finally, if w is a pure
imaginary complex number, then non-uniform hyperbolic spline QIs result. The advantage of this QI is that it reproduces
functions cos(nx), cosh(nx), sin(nx), sinh(nx), exp(nx), exp(—nx), with n > 0.

Many studies have shown the effectiveness of QI operators in several areas. They are used to solve integral equations
numerically, in particular Hammerstein’s and Fredholm’s integral equations (see, e.g., [1,2,5,16]). In [1], an efficient iteration
algorithm for Fredholm integral equations of the second kind based on spline QIs is presented. The same authors propose
in [2] a discrete spline QI defined on a bounded interval for the numerical solution of linear Fredholm integral equations
of the second kind with a smooth kernel by collocation and a modified Kulkarni's method together with its Sloan’s iterated
version. In [16], the authors deal with Fredholm integral equations using general quadratic and cubic QIs for solving. In [5],
Hammerstein integral equations are solved numerically via Nystrém method and quadrature rules based on non-uniform
polynomial QI, showing that these QIs are efficient compared with the uniform case since this latter produces increasing
errors near the boundary of the interval.

In the second part of this paper, we are going to use the non-uniform UE-spline QIs developed in the first part to
construct an efficient quadrature rule, to be used afterward for solving Fredholm and Hammerstein integral equations via
Nystrédm method.

They are defined over non-uniform partitions, which gives the possibility and reproduce a large set of functions. These
easy and low cost QIs give good results for the approximation of the solution of integral equations as shown by the nu-
merical results. The parameter w can be adjusted by the user according to the type of problem considered, so that a single
programme can handle different cases.

The rest of this work is organized as follows. In Section 2, we briefly recall some results on the construction of UE-splines
and we give their properties. The main goal in Section 3 is to establish the Marsden’s identity related to the UE-spline basis,
which will be extremely important for the construction of the QI schemes in Section 4. We also study the error estimates
associated to the QIs and some of their derivatives. In Section 5, the quadrature rules associated with the above QIs are
derived. In section 6, the numerical solution of Hammerstein and Fredholm equations is dealt by using the approximation
methods obtained, and numerical results are also given. The paper ends with some conclusions.

2. UE-spline bases

Let us briefly recall the definition and the construction of UE-splines (see [24] for more details).

Definition 1. Let E be a given knot sequence {¢;};_, with £; <¢j41 and @ :={w;};_, be a sequence of non-zero real or
pure imaginary frequency parameters. The basis functions N;; defined as

sin.wj(;(jﬂ,cj;, §i < ¢ <&jyt,

N2(§) = 1 Snwilliya =) < .

2 sinwi (¢iy2—giv1)’ Ci+1 S ¢ < {j42,
0, otherwise,

are said to be UE-B-splines of order 2. For k > 3, functions defined recursively by

¢
Nji(¢) = / (8jk=1Njk=1(5) = 8j41.k—1Nj11,k-1(5)) ds,

—00

-1
with 8j 1 := (fj;f Nj,k_l(;)d{) , j € Z, are called UE-B-splines of order k.

Remark 2. If wj =0, we set 0/0=0, and §;N;(¢) =0 if Nj(¢) =0. Otherwise, we compute it by the I'Hopital rule.
Additionally, we set §; N; k(¢) to satisfy

¢
1’ —_— j bl
/ 8jkNjr(0)ds = :0 i: i?-&-k
) js

—00

if Nj,(¢)=0.
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Fig. 1. UE-B-splines of order 3 with ¢ ={0,0,0.1,0.2, 0.5} and non-uniform parameters @ = {1, 7i, 3, 2i}.
UE-spline bases inherit all those nice properties of common B-splines and NURBS.

Proposition 3. The following properties hold.

Partition of unity: ZjeZ Nj(@)=1k>3.

Positivity: Nj x(¢) > 0 for ¢ € (¢}, ¢j+k) and Ljp > ;.

Local support: Nj ¢ (¢) =0 for ¢ & [¢j, ¢jik]-

Linear independence: Functions N; x, j € Z, are linearly independent on the real line if the multiplicity of each knot of E is less
thank + 1.

Regularity: Nj  is ck=re=1 continuous at knot ¢, with ry the number of times ¢, appears in the knot sequence.

e Derivative: N’ , (£) = 8jk—1Njk—1(¢) = 8j11.k—1Nj1,k-1(2).

For a given set {Pf}l<j<n  R? of control points, n > k — 1, the UE-spline curve of order k corresponding to the knot
vector E is defined on [&_1, ¢ne1] as

n
P@)=) Njx()P;.
j=1
Among other, UE-spline curves have the following properties: differentiation, shape local control, convex hull property,
and geometric invariance. In addition, UE-spline bases and curves have also some other superior properties suitable for
modelling and computation, especially polynomial-like computation of derivatives and integral, strong representation ability
of analytical curves and surfaces, and subdivision property.
The explicit expression of UE-B-splines or order 3 is easily calculated, obtaining that

(A} (. 0)~1)B} (@)
P> @)+CJP, (@)
—A}§0)B] L (@)+C) (@)~ —C}+11 T AL @wpn DB @)

N;j3(8) = O (@p+CIP (@) B CO2 @)+ (@j1) G+t SE <Gy

sin? (%ijrl (¢ —¢j33)) CSC(%ij(CjH —¢j+1)) A?ﬂ (&jt2, wj+1)39f2(wj+1), Cjt2 <& <jy3,

, §i<E <&,

0, otherwise,

where A%(¢,2) := cos(az(¢ — ¢)), B}(2) := csc(az(gj1 — &), C§(2) :=tan (az(¢j — ¢j3+1)). a being a positive real number.
Fig. 1 shows the plots of UE-B-splines of order 3 on the interval [gj, §j+3] with @ = {1, 7i, 3, 2i}.
When w; =w for all j € Z, those UE-B-splines become

(Aj(©)-DB]

W, {iS ¢ <jts
_A}+2(§)B}+1+C?'5_C+ (Al,,(¢)—1)B!
Nj3(0) = Y i eve L1 <& < Ejaa,
i3 Cj +C]+1 C;+1+C1+2
sin® (30 — ¢j43)) es¢ (30543 — §j+1)) A2 (€542)B9D,, Ljva <C < G,
0, otherwise,
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Fig. 2. UE-B-splines of order 3 with ¢ ={0,0.1,0.2,0.5,0.6,0.8, 1} and uniform parameters @ = 1.

where A%(¢) = cos@w (¢ — ¢j)), BS :=csc(@w(§j+1 —¢5)) and C§ :=tan (aw(Zj — Lj41)).
Fig. 2 shows trigonometric splines with w =1 of UE-spline basis of order 3, supported on [}, ¢j4+3]. Any reference to w
is omitted when w =1.

In the rest of this paper, we will focus on the case UE-B-splines of order k = 3 and parameters equal to « to define the
UE-quasi-interpolant.

3. Marsden’s identity

In this section, we give the main results of the paper. We will look for a suitable UE-spline representation of the elements
of the space, i.e. a Marsden’s Identity.

Theorem 4. For all ¢, the following identities hold:

1. 1= ) Nj3(0);
JjeZ
2. cos(w¢) = 3 v{’Nj3(¢);
JEZ

3. sin(@¢) = 3 8¢Nj3(0),

jez
where
cos (30(5j+1 — £j42)) cos (30(Lj+1 — £j4+2))
Proof.

1. See Proposition 3.

2. For ¢ € R there exists p € Z such that ¢ € [{p, {p+1]. Therefore, only Np3(¢), Np—1,3(¢) and Np_53(¢) are non zero.
Then,

Y VENj3@) =Y aNp-23(0) + V1 Np-1.3(0) + ¥ Np.3(0)
(fp 1+ Cp)

JjeZ
1
( ))csc(—w( - ,))AOS( )B°5>
Gy —2p) ( ( ¢ —8p+1 2 Cp+1 — Ep—1 1(&p

)
)

(cp +¢p+1>) Ay ©By + % =2 (ale) - 1)BY
)

0.5 0.5 B 0.5 4 05
= &p+1) 21+ 6 Cp” + G

cos (

1o
2
1
cos (5

cos

I\)I»—* I\JI'—‘

+
cos
+

(
(e
cos (3
(
(

1
2
1
cos (5

0(Cp+1 +Ept2)) ((Ap(Q) — 1B},
@(Cps1 — {pt2)) C05~I—Cp+1 '
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Gp:=

Let
By = 25000 (§p1+§"))< o (5006 — pen) ) ese(0epin — 6o ) 4321 6B8?).
P cos (3 (Lp—1 — &p)) Pt PO e
1

o sty + &) Ap (OB + % — & (Al ) — 1B}
D COS(%w(é‘p—Cp-H)) C051+C05 Cg.5+cg£]

1

(3

(l

[m)
o
72}

@(pt1 + Lp+2)) ((Al »(&)—1)B] )

w(§p+1 §p+2)) c9s + co>

p+1
By converting Ep, Fp and G, into exponential forms, we get

. _ XP(it0) (exp(igw) — exp(itp®))° (—1+ exp(iw(¢ps1 + £p12)))
g 2 (exp(igpw) — exp(itp+10)) (exp(igpw) — exp(itp+20))

Fo— (—2exp(iw(gp—1+& + &p)) +exp(io(§p—1 +28)) + exp(w(Cp—1 +2¢p+1)))
)=

2 (exp(itp—1®) — exp(ifp+1@)) (exp(Ri¢p11w) — expiLpw))
x exp(—i¢w) (1 + exp(iw(¢p + {p+1)))

N exp(—i¢w) (14 exp(iw(Zp + {p11))) (eXp(w (27 + £p)) — 2exp(iw(C + 28p11)) + expiw(Zp + 28p41)))
2 (exp(i¢p—1w) — exp(ifp11w)) (exp(2i¢p11w) — expisyw))
(1 +exp@( = )’ exp(—io(E — gy 1)) (14 exp(@(&p + £p11)) (1 + XP@(Epi1 — £p12))
2 (exp(£pw) + exp(¢p1®)) (—1 4 exp(@(Ept1 — &p))) (EXP(@(Ept1 — &p)) — EXP(O(Cps1 — Lps2)))
G,— exp(—icw) (1+ exp(iw(Zp—1 + ¢p)) (eXP(w) — exp(iLps10))°

2 (exp(i¢p+10) — exp(itp—1)) (exp(ifp+1®) — exp(ifp®))
After calculation and simplification we find

Ep+Fp+Gp= exp(—la);)z—i- exp(iw¢) — cos(w).

and the proof is complete.
3. The proof is similar to the one presented in 2. O

Corollary 5. For any non-negative integer m, we have

exp(+ilw(&j1+¢it2)
L exp(+iw¢) =} jez ¥7°Nj3(Z), where 97 := M
J , J COS( o(Cjr1— §‘]+2))

(m-2)/2
1 1(m my\ _m-2po | .
(B30 8 () o
2. cos™(wt) = Y -
T (Z( > ( p)yf’" 2‘”“’) Nj,a(C)) . m odd.
JEZ p=0

(m=2)/2

g 1 m m— w
(;n}z]z (Z (5 (mn;z ) (=12 + Z (rg) (—1)”)/].( 2p) ) ij({)) , meven,
3. sin™(w¢) = jez p=0

(m—-1)/2
m _
S S ol X (p>(—1)"5§.""‘ 20\ Ni3(e) | . modd.
JEZ p=0

1. By using Theorem 4 we have

Proof.

exp(fiw¢) = cos(w¢) L isin(w)

=3 (v +167) Njs(©)

JjezZ
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=y (COS (390@j+1 +¢j+2) LS (3041 +¢j+2)) ) Nj3(%)

S \cos (0 = ix2))  cos (3051 — §jv2))

_ Z exp (ii%w(é“jﬂ +¢j32))

N;3(8).
jez COS(%G)({jH —j32)) I3

2. For a positive number m, it is satisfied that

cos™(w¢) = (

exp(iw¢) + exp(—iw;“))m
2

m

)3 (’;’) exp(ipw¢) exp(—i(m — p)wt)

p=0

= om
m

m .
> (p) exp(—i(m — 2p)w¢)

p=0

Zm
exp(imw¢) + - - - + exp(—imw¢)
2m '

Then, for m even, by using Euler’s formula, we obtain

1 1 (m=2)/2
m m m

p=0

From Theorem 4, we get

(m-2)/2
1 (1 v
o0 = 55 5 () ZMa@+ 2 () AN a0 |
JjeZ p=0 JjEZ

and the claim holds. By using a similar technique, we get the result for m odd.
3. The proof of this result is similar to the previous one. 0O

4. Non-uniform UE-spline quasi-interpolants

In this section we describe how the Marsden’s Identity introduced in Section 3 is useful for the construction of UE QIs
that reproduce the space 'Y spanned by 1, cos (w¢) and sin (w¢). We also give the error estimates associated with these
QI operators.

4.1. Constructing non-uniform UE-spline QIs

Let E:= {g“j, j=0,..., n} be a set of knots that produces in general a non-uniform partition of the interval I := [a, b].
The unified extended space of order 3 associated with this partition is defined by

Q) :={seC' ()., €75, 7=0.....n—1}.

By adding to € multiple nodes at the extremities, namely, {_» = ¢{_1 = ¢o and {p42 = {ny1 = &ny A basis {Nj3, j =

—2,...,n—1} is defined for Q3(I) with B-splines N;, j=0,...,n — 3, given in Section 2. For the remaining ones, see [16].
Definition 6. Let A“,,..., A% | be a set of linear functionals and f be a function defined on I. Then, the operator Q¢
defined as
n—1
Q@)=Y A (/INj3(0) (1)
j=—2

is called UE quasi-interpolation operator of order 3.
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We are interested in linear functionals A; such that A; (f) is a linear combination of values of f at knots lying in the
support of Nj, or in a neighbourhood of it. For j=0,...,n — 3, they can be written in the form

W) = a® F @) + 0, f(Cjan) + 03 f Cje2), (2)

where the coefficients in oz;f’ = (“?@)1 s are determined so that Q“ be exact on I'{, i.e. Q“p = p, for all p € I'}. Using
=t
the fact that each element of 'Y can be expressed in terms of N;3(¢) (see Theorem 4), the exactness of Q is equivalent

to the following conditions:

3 3 sin (3041 + £j42)) > cos (30(Zj11 + ¢j12))
a?, =1, Y a?,sin(wi_1)= 22 ! afy cos (wg 2] p——
Z It ; Jesin (@) cos (30(Zjy1 — ¢j12)) ; x 1) = cos (301 — ¢j12))

This system has the unique solution {a‘f’l} given by
I8 1<e<3

o _ 1 —cos(w(&jr1 — &j+2))
I cos( (g — §jt1)) + cos(@(¢j — Ljg2)) — COS(@(Ljga — Ej1)) — 1
_ cos (305 +&ji1 — 2¢j42)) — €0s (30(5 — ¢j41)
cos (J0(5j + ¢j+1 — 2¢j42)) — cos (R (¢ — 3¢j41 +2¢542))
1 . 1 1 1
afy = 5 sin (Ew(fj - Cj+1)) csc <§w(§j - Cj+2)) sec <§w(fj+1 — Cj+z)) .

For the boundary B-splines, see [16]. Therefore, expression (1) becomes

n—1

QUF@) = Y (o0 F @)+ fEin) + a3 F (642 ) Ny ), (4)

j=—2
with values of a;{’g, j=0,...,n—3, given in (3) (for the remaining ones, see [16]).
When the knots are uniformly distributed, say ¢j+1 — ¢;j =h, then it generalizes the QI of order 3 introduced in [16]. For
example for ¢; = jh and ¢j = % (ih + (i + 1)h), the QI in (4) becomes the QI operators Q;'“’ and Q;"” defined in [16] and
given by

n—1 . _ .
aierr- 3 (L2 s .
j=-2

n—1

QUf @)=Y ((1=2¢9) f (¢iw1) + 5 (F (5) + f (¢i42))) Nj3(0).

j=—2
with ¢ := —§ sec (“ﬁ“) sec <“j1“)
4.2. Error estimates
Let £ be the linear differential operator defined by L}’ := D¥—2(D? 4 w?), whose null space is Iy, and
L’;,(I) = {f : Dk_1f is absolutely continuous on I and Dk_]f € Lp(I)}

where Lyla,b]={f: f is measurable on [a,b] and || f], < oo}, with
1/p

b
1Ly = 1 fllp = / IfeoPdx | ., 1<p<oo.
a
Now, for k > 3 consider the Green’s function G’ corresponding to £} and given by

_4
k4 20+1
w2 c(@X—y)y)
(=1) 7z 5 sin(@wx—y)4) + (— 1)2—2( D CEE
G, y) = i ©

7 _ 20+1
D' G s =y + D' i 3 I forkodd.
P |

, for k even,
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Proposition 7. It holds

1. g,i"(x,x)zo
2. (DY), G(x, 1) =G ,(x, ), £=0,....k—2.
3 Dsz (X, Y)lx=y =8¢ k-1, £ =0, l<—1

4. LPGE(X.y)=0,x#y.
Proof. See the proof of Proposition 1 in [16]. O

Theorem 8. Let f € L3(I), then

f) =sr(x) + / Gg(x, )L f(y)dy,

where s is the unique element in T'{ such that
D' f(@)=D""ss(a), £=1,2,3.
Proof. See the proof of Theorem 4 in [16]. O

Lemma 9. There exists a positive constant C such that

1 =1 .
h2(h)| = C3TRT NSl gy S = =20 on = 1,

forall1 < p,q<oo,withh:=minhjand hj:=¢j1 —¢j.
j

Proof. From equation (2), coefficients A‘”(f) are defined by Zz ]a] i (Cj.[,1). By using the Holder’s inequality, we get

3 1o 1 3 1
’A’f(f)‘s(Z’aj-?g‘q)q(Zlf(g,z1)|">psH ol z(z (1) )
=1 =1 =1

where Ha}“ H ‘= Mmaxi<(<3 ‘a;"ll. On the other hand, we have
o ,

1

3 N
(Z §]z1 p) SHTHJ(”LP[;}-,;]-H]-

Hence, inequality (4.15) follows. O

Theorem 10 (Markov inequality [22]). There exists a constant M, depending only on Ny, such that for any interval | C I of length
h<(®b-a)/2

1D ullr, (jy < MR~ 50 ull, ) (7)
forallue Npand1 <p, q <oo.
Lemma 11. There exists a constant depending only on I'§ such that

ID'Njxl<Cih™, ¢=1,2. (8)
Proof. By applying Theorem 10 to Nj 3 for each interval [{p, {p4+1], it holds

4 —L
ID"Nj3llLacley,cpiil = MUTING 3l p411-

Since each Nj 3 is a positive and compactly supported function, we deduce that its uniform norm is bounded and, conse-
quently the inequality (8) follows. O
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Theorem 12. Let 1 < p < q < oo, and suppose f € L%(I). Then, for all £ =0, 1, 2, we have
14 1) Czﬁ“%h_é_%?»% 1)
IDC(f = Q“HH DLy < Z—F— | £5 f||Lp(,), 9)
where h ;= max;h;.

Proof. Assume that ¢ € I;, = [¢y, £y 41[. Let sy be the unique function in I'{’ such that D‘sf(;“) =Df(¢), £=0,1,2. As
I'Y C Q3(I), we have Q”sy =sy. By Lemma 11, we obtain

Dt (£ - 2”f) ©)| =|p‘Q” (ss - F) @)

z =)o

w
1
34 Z Isf = fllLpiccieal
j=n—
11 a
<CCi37h "7 Z Isp = fllLple;.cjps-
J=pn—2

It remains to estimate sy — f. Applying the Holder inequality to the Taylor expansion described in Theorem 8, we get
Isf — fI< 1G5 (x, ~)||Lp, e 125 FllL, e
where % + % =1. Now we will estimate the norm of G by using (6) and Minkowski inequality.
Indeed, we have

M
G2 (x. -)||Lp/ cx] < 5

Therefore,

M

Iss = fllptgj sl < IR FllLp e 545D

Thus, we deduce that

1.1 1 13
CCMh3+Qh ~P373P°
IDECf = Q5 YO iglty.tpan < “20 > LS Fllyapcsian
j=pn-2

11 13
P37
< > LS Fllypjan-

where C; = CCy1. M. Finally, by summing over © =0,...,n— 1, and applying Jensen inequality (see Remark 6.2, [22]), the
claim follows. O

5. Quadrature formula

In this section we calculate and estimate the convergence order of quadrature formula associated with the non-uniform
UE-spline quasi-interpolant described in this paper.

For any continuous function f, the quadrature formula associated with the spline QI on a non-uniform partition is
obtained by integrating the QI in (4), i.e.

Tou(f) = / Qv s = 3 100, (10)

j==2
b
where 90;‘) = / Nj 3(s)ds, which can be written as

a
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@ =AY +BY +Cf, —2<j=n-1, (11)
with
©._ @ (¢ — L) esc (@ (L — ¢j) +1
T o(tan (3o (¢ — ¢4) + tan (o (11 — ¢j42)))
1—w(¢j+1—€j+2)(ta“(%w(€j+1—fj))+'30t(w(€j+1—€j+z)))+ (¢j41—Cj42) esc(@(¢j41—Ej42))—1
1 . . 1 . . 1 . . 1 . .
o = tn($o(c31-¢;))—tan($o(¢51-¢12)) _ an(J(¢41-¢512))+an(3 (52 -543)) |
co - % (sm (0 (51:)2 —&j+3)) Cra §j+3> cos (%w(;m _ §j+1)>

1 1
x €sc (50) (a3 — §j+1)) csc (560 (Sjas = §j+2)> ;
for j=0,...,n—3. The values of ¢*,, ¢*;, ¢~ , and ¢ ; can be calculated as in [16, subs. 5.1] and specific expressions
for A7, BY and CY.
In order to estimate the convergence order of the quadrature formula associated with the non-uniform UE-spline quasi-
interpolant described in this paper, the QI given in (4) is rewritten in quasi-Lagrange form to get

n
QUf(&):=) Nj3@)f (), (12)
j=0
where Nj_g({) = aj’)_mNj,z,g({) +ozj-"_l’2Nj,1,3({) +a§’f1 N;3(¢), with coefficients {ai}l}]q@ given in (3).

-

From (2) it follows that for any non-uniform partition E of I, the infinity norm of Q% is bounded by = max Ha;" v
—2<j<n-1

where ||v||; stands for the £;-norm of the vector v € R3.
By integrating (12), the quadrature formula associated with the proposed QI Q% f given in (10) can be written as

n—1
Too(f)= Y @7 f(&), (13)
j=-2
b $j43
where ¢¢ :=/1§Ij,3= / Njs.
a $j-2

To estimate the convergence order of the quadrature formula associated with the proposed QI, we recall the Lebesgue’s
Lemma (see e.g. [8] Proposition 4.1).

Proposition 13. If I/ is a projection of X onto Y, and if £(f) is the error of approximation of f by ), then
If=Ufll <A+ UDECS).
Finally, Theorem 10 and Proposition 13 lead to the following result.
Theorem 14. There exists a constant C3 such that for all f € Lf (I) and for all partitions of I it holds

[£= Q% F ey = CsH* |£5F |-

Proof. Let t be in a neighbourhood of x, and f:=g+ ftx G (x, y) LS f(y)dy. Then,

X
1F - gl =< |29 f], /g;’(x, vy,
t

where g is the unique element in I'§ such that

D) =D"1g(r),=1,2,3.

Using a Taylor expansion of order three, we get
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h3

X
Msh
/ G (x, y)dy| < 2
t

’

2!
and the proof is complete. O
From Theorem 14, we immediately deduce that

Theorem 15. There exists a constant C4 such that for all f € L? (I) and for all partitions & of I it holds

Eqo(f. DI < C4h* LY f| .

where g is the error associated with the quadrature formula based on Q.

Analyzing the stability of the previous quadrature formula is a very complex task, but it is addressed next in the uniform
case. From (12), each function N; 3 involved in the quasi-Lagrange representation of Q® f can be expressed as

a5 3Nj-23(), {j—2<¢ <&j-1,
a5 3Nj—23(0) + i ,Nj13(0), ljim1 ¢ <¢j,
Rys(0) = af 5 3Nj23(0) +af ,Nj13Q) +afNjs(), §j=<t <,
’ a4 oNj—13(0) + e Nj3(0), {41 < ¢ <jya,
o N;j3(0), (jr2 <S¢ <3,
0, otherwise.
Therefore, the value gz');” in equation (13) is determined by integrating Nj’?, over each interval [gp, §p+1], p=j—-2,...,j+
2. For knots uniformly spaced with step length h, by using equation (5) we have
bt _ h cot (%‘”)
N;3(s)ds= h,
/ 33() cos(thw) — 1 + w +
$j—2
i 1 t(hw)
_ cotthw
/ Njs(s)ds= = (h csc? (hw) — ) ,
’ 2 w
Cj—1
o hw)(ho csc(hw) — 1
_ csc(hw)(hw csc(hw) —
/wawz (ho) (heocscha) — 1)
4w
gj
Civ2
_ csc(hw)(— cos(hw) + hw(2 cot(hw) + csc(hw)) — 2)
Nj3(s)ds= )
’ 2w
Cjv1
o hw)(ho csc(hw) — 1
_ cscthw)(hw csc(hw) —
/waﬁz_ (ho) hoocse(ho) = 1)
4w
Cjy2
with csc(¢) := #@) After some calculations, it follows that gb;” = fjf Nj,3(s)ds = h. The remaining weights are also posi-
tive (see [16]). Therefore, as the quasi-interpolation operator Q® is exact on I'Y, it holds Z?;lz ’g[);‘" = Z']’.;lz @;" =1 and

the quadrature formula is stable.
6. Numerical solution of integral equations

This section deals with the performance of the quadrature rules presented in Section 5 in solving Fredholm and Ham-
merstein integral equations in combination with Nystrém method.
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6.1. Application to Hammerstein integral equations

In this subsection we consider Hammerstein integral equations of the form

u(x)—/k(x,;“)g(z,u({))dz =fx), xel, (14)
1

where the kernel k(x, ¢) and the function f(x) are given, and g(¢, u(¢)) is a non-linear function of then unknown solution
u(¢) of the integral equation. The existence and the uniqueness of solution to this type of integral equations have been
investigated in the literature by many authors (see, e.g., [25]). For g € C(I), the integral operator can be approximated as

/ k(x,£)g (¢, u(¢))dg ~Z<p k (%, ) 8 (¢, un (1)) -

k=

Thus, we approximate (14) by

Un (%) — Zqo k(x40 g (¢, un (@) = f (0, xel (15)

We solve this equation by collocation to yield to the system of non-linear equations

un (&) = > @Yk (). k) & (G tn ()= f (¢j). j=0.....n+1,

k=0
with unknowns u;, (&), k=0,...,n, and then obtain the approximate solution as
n
un () = )+ Gk (%, &) & G tn (8)) - (16)

k=0

Theorem 16. Let u € C3(I), g € C3 (I X R) andk € C3 (12) such that g is p-Lipschitz continuous with respect to the second variable.
Let M be the matrix with entries M j := }gb}”k (gj, ;k) , and suppose that |M| s, < 1. Then for n sufficiently large, the error between
the solution u of the integral equation (14) and the solution u, of the approximate integral equation (15) satisfies

T4
lu — tpllo,1 < Csh™,

where Cs is a finite constant independent of f and h.

Proof. Let
b n
en(X) :=u(x) =y (x) = / k(x, )8, u@))ds — Y Gk (X, 8) & Gies Un (8)) -
a k=0
Then,
b n n
en(x) = / k(x, )&, u(@)de =Y Gk (X, 6) & G 1 (G)) + Y Gk (X, 8 [€ (G (8)) — & (G Un (20))].
p k=0 k=0

According to Theorem 15, and by using that g(¢, u) is p-Lipschitz continuous with respect to u, we get

len(®)| < Cah® | L9k, )8 Cu() | o + 0 D |Gk (. 60| len (@)1
k=0

Setting ey j :=ey (¢j) and R :={R;} with R;:= |L$k (¢;.-) gC.u()| . then
lenj| < Cah™Rj+ Mj [en .

which is equivalent to
(T — M) len| < C4h*R.
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Table 1
Three test datasets for the Hammerstein integral equations.
i ki 0) gic.u)  ujx fi)
1 cos(rrx) sin(mw¢) u? sin(rx) sin(rx) — % cos(mrx)
2 —x e X e*
3 76"’2[ u3 X ex+1

Table 2
Results for examples 1, 2 and 3 shown in Table 1.
n w=T1 w=1 w=i
lur —unaf,  NCO lus —unaf,  NCO Jur —una],  NCO
8 0 — 5.26(-6) — 6.37(-6) —
16 0 — 3.77(-7) 3.80 4.47(-7) 3.83
32 0 — 2.54(-8) 3.89 2.93(-8) 3.93
64 0 — 1.65(-9) 3.94 1.89(-9) 3.95
128 0 — 1.04(-10) 3.98 1.18(-10) 4.0
n w=3 w=1 w=i
Juz —un2l,,, NCO Juz —un2|y, NCO [uz —unz2],,, NCO

8 1.34(-7) — 2.35(-6) — 3.05(-6) —
16 1.22(-8) 4.02 1.66(-7) 3.82 2.08(-7) 3.87
32 7.16(—10) 4.03 1.12(-8) 3.88 1.35(-8) 3.94
64 4.33(—11) 4.02 7.34(-10) 3.93 8.55(-10) 3.98
128 2.92(-12) 4.03 4.65(-11) 3.98 5.38(-11) 3.99

n w=i w=1

Jus —uns), NCO Jus —unsf, NCO

8 0 — 1.06(—6) —

16 0 - 7.24(—8) 3.87

32 0 — 4.81(-9) 391

64 0 — 3.09(—10) 3.96

128 0 — 1.94(—11) 3.99

From [4, Thm. 2.3.1], we deduce that |e;| < C4h*(Z — M)~ 'R. Therefore

IRlloo 74
1= Moo

which concludes the proof. O

lenlloo =< C

s

Numerical tests

To illustrate the results established in the above result, we consider three integral equations whose kernels and inde-
pendent terms are given in Table 1, as well as the corresponding solutions. Since the use of uniform partitions produces
increasing errors near the boundary of the interval, we choose extrema of Chebyshev polynomials of the first kind in order
to have more knots near a and b.

Let us consider the partition E of I given by the extrema of Chebyshev polynomials of the first kind of degree n on the
interval I, namely

§l<=a+¥<cos<w>+l),k:O,...,n. (17)

The solutions to the nonlinear systems provided by the proposed method have been approximated by using Mathematica.
For different values of n, we present in Table 2 the maximum errors Huk — Upk HOO ; of the approximate solution obtained
by using our method with chosen values of w. The numerical convergence orders N'CO are easily computed by the formula

Juk = unkl o

NCO :=log (18)

2 AT T
Huk - u2n,k”oo’1

In order to give a comparison with other methods, for the last example in Table 3 the numerical results provided by the
proposed method are shown and compared with those obtained in [3] from the iterated versions of the superconvergent
degenerate kernel and Nystrém methods, and having the same order of convergence. We also included the N'CO associated
with each method, also calculated by using (18).
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Table 3
Comparison of results of last example in Table 1 obtained by the method presented here, the Superconvergent
degenerate kernel (SDK for short) method and Nystrém method [3].

N New method (@ =1) NCO SDK method [3] NCO Nystréom method [3] NCO
38 0 - 1.01(-6) - 4.76(-7) -
16 0 — 6.30(-8) 4.00 2.97(-8) 4.00
32 0 3.83(-9) 4.04 1.83(-9) 4.02
64 0 - 2.40(-10) 4.00 1.14(-10) 4.01
128 0 - - - - -
Table 4
Seven test datasets for the Fredholm integral equations.
i oI kj(x,¢) uj(x) fi(x)
100 oo et ¥ — SIS coson)
2 [01]  eX e e — 7!
300,11 In(0+x4¢) 1—x+x2—23 x(}lx3+§x2+3x+4)1n(§’;—;)

+5Inx+1)-§Inx+2)

3,3 47 .2 1 385
It Xt Xty

4 [0,1] ext e Xcosx e *cosx — —((Xfl)605(1;Sinlex)7e(X71>
s e(x*—2x+2

5 [0,7] cos({+X) cos(50x) cos(50x) — 555 sinx

6 [0,7] % x2 cos(50x) - m (—2x(—7500 +x?)

+e™ (2x(~7500 4 22) + 2% (2500 + ¥2)°)
+27e™* (6250000 — x*))
+x2 cos(50x)

_ e~ 7 (2499—25017 —2501x+e” (—2499+2501x))

7 [0, 7] C+x e % cos(50x) 5255001

+e7* cos(50x)

6.2. The case of linear Fredholm integral equations of the second kind

Consider the linear Fredholm integral equation of the second kind

Au(x) —/k(x,;“)u(z)dt =f®, xel,

I

where k(x, ¢) is a enough regular kernel. It is a particular case of Hammerstein equation, so that (16) leads to

1 L
() = | FO)+ Y@k 0 o (o) )

k=0

where the values uy (¢) are computed by solving a system of linear equations.
Numerical tests

The performance of the proposed method is also tested for linear Fredholm integral equations. Table 4 shows the kernels
and independent terms of seven examples, as well as their intervals and solutions.

Let us consider the partition & of I given by (17). The solutions to the systems provided by the proposed method
have been approximated by using Mathematica. For different values of n, for each text equation we present in Table 5
the maximum errors ||uk — un,k”ool of the approximate solution obtained by using the proposed method with the chosen
values of w. The numerical convergénce orders are computed by (18).

7. Conclusions

In this paper, we have constructed new non-uniform quasi-interpolation schemes that reproduce polynomials, trigono-
metric and hyperbolic functions. The main tool for this construction is the Marsden’s identity, established and proved in
Section 3. As an application of the introduced quasi-interpolants, we have built a quadrature rule that has been applied for
solving Fredholm linear integral equations of the second kind and non-linear Hammerstein integral equations via Nystrém
method. According to these numerical tests, this rule method has excellent performance and provides a high degree of
accuracy.
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Table 5
Estimated infinity norms for the numerical approximations to the solutions of the tested integral equations.
n w=-i w=1 w=i
lur —unaf,  NCO lur —una]y,  NCO lur —una|,  NCO
8 0 - 6.54(-6) - 2.41(-5) -
16 0 - 4.50(-7) 3.86 1.71(-6) 3.81
32 0 - 3.01(-8) 3.90 117(-7) 3.86
64 0 - 1.93(-9) 3.96 7.72(-9) 3.92
128 0 - 1.22(-10) 3.98 4.92(-10) 3.97
n w=i w=1
luz —un2|,  NCO luz —una|,  NCO
8 0 - 2.07(-6) -
16 0 - 1.41(-7) 3.87
32 0 - 9.51(-9) 3.89
64 0 - 6.19(-10) 3.94
128 0 — 3.92(-11) 3.98
n w=3i w=1 w=i
lus —uns|,  NCO lus —uns|, NCO lus —uns|, NCO
8 2.44(—6) - 1.05(-5) - 7.04(-6) -
16 1.42(-7) 4.08 7.18(-7) 3.87 4.74(-7) 3.89
32 8.89(—9) 4.01 4.77(-8) 3.91 3.10(-8) 3.93
64 5.55(—10) 4.02 3.04(-9) 3.97 1.96(-9) 3.98
128 3.42(—11) 4.03 1.91(-10) 3.99 1.23(-10) 3.99
n w=4 w=1 w=1i
us—wnal,, NCO s —wnaly, NCO Jus—wnal,, NCO
8 2.44(—6) - 7.09(-6) - 5.21(-5) -
16 1.32(=7) 4.02 5.05(-7) 3.81 3.68(-6) 3.82
32 8.79(-9) 4.03 3.47(-8) 3.86 2.53(-7) 3.86
64 5.45(—10) 4.02 2.34(-9) 3.89 3.40(-9) 3.93
128 3.22(—11) 4.03 1.49(-10) 3.97 3.77(-10) 3.98
n =50 w=1 w=i
lus —uns|,  NCO lus —uns|, NCO lus —uns|oe,  NCO
8 0 - 6.63(-5) 4.05(-5)
16 0 — 3.75(-5) 3.75 3.01(-6) 3.75
32 0 - 2.82(-6) 3.80 2.13(-7) 3.82
64 0 - 5.49(-8) 3.88 1.42(-8) 3.90
128 0 - 3.57(-10) 3.94 9.12(-10) 3.96
n w=2 w= w=i
lus —unsl o, NCO lus —unely, NCO lus —unel o, NCO
8 3.01(=7) — 2.23(-6) - 5.61(-6) —
16 1.82(—8) 3.97 1.48(-7) 3.91 3.86(-7) 3.86
32 1.10(-9) 4.00 9.64(-9) 3.94 2.60(-8) 3.89
64 7.38(—11) 4.00 6.15(-10) 3.97 1.67(-9) 3.96
128 4.27(-12) 4.00 3.84(-11) 4.0 1.05(-10) 3.98
n ® =5i 0= w=i
”u7_u”v7”oo.l NCO Hu7—u,,,7\|oo_, NCO HLI7—Un_,7“mJ NCO
8 3.01(=7) - 1.29(-6) - 2.16 (-6) -
16 1.35(—8) 3.97 9.13(-7) 3.82 1.55(-7) 3.80
32 1.10(-9) 4.00 6.28(-8) 3.86 1.06(-8) 3.87
64 7.28(—11) 4.00 417(-9) 3.91 6.95(-10) 3.93
128 4.35(—-12) 4.00 2.66(-10) 3.97 4.37(-11) 3.99
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