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a b s t r a c t 

Background and Objectives: Prediction of patient deterioration is essential in medical care, and its au- 

tomation may reduce the risk of patient death. The precise monitoring of a patient’s medical state re- 

quires devices placed on the body, which may cause discomfort. Our approach is based on the processing 

of long-term ballistocardiography data, which were measured using a sensory pad placed under the pa- 

tient’s mattress. 

Methods: The investigated dataset was obtained via long-term measurements in retirement homes and 

intensive care units (ICU). Data were measured unobtrusively using a measuring pad equipped with 

piezoceramic sensors. The proposed approach focused on the processing methods of the measured bal- 

listocardiographic signals, Cartan curvature (CC), and Euclidean arc length (EAL). 

Results: For analysis, 218,979 normal and 216,259 aberrant 2-second samples were collected and classi- 

fied using a convolutional neural network. Experiments using cross-validation with expert threshold and 

data length revealed the accuracy, sensitivity, and specificity of the proposed method to be 86.51 

Conclusions: The proposed method provides a unique approach for an early detection of health concerns 

in an unobtrusive manner. In addition, the suitability of EAL over the CC was determined. 

© 2023 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Patient deterioration is the significant degradation of the phys- 

cal state of a hospitalized patient, which can often result in mor- 

idity and/or mortality [23] . The symptoms of deterioration may 

ary. Some patients may experience a decreased cardiac index fol- 

owed by decreased blood pressure, tachycardia, and reduced blood 

ow [8] . As mentioned in [28] , before the loss of the electrocar-

iogram (ECG) signal of dying elderly patients, the P-wave was 

ndetectable in the majority of the observed cases. Prolongation 

f the corrected time interval between the Q and T peaks of the 

CG (QTc) is associated with an increased risk of sudden cardiac 

eath (SCD) [34] . Here the QTc interval is a number calculated via 

ifferent formulae using heart rate or RR intervals, i.e. time in- 

ervals between two successive R peaks in an ECG [14] . Addition- 
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lly, phenomena associated with breathing such as apnea periods, 

heynne–Stokes breathing, and respiration with mandibular move- 

ent are also observed [21,24,28] . Moreover, article [21] states that 

he death rattle and pulselessness of the radial artery are other 

hysical signs that signal impending death. 

Recently, various methods have been developed to predict 

hether a patient’s critical condition will worsen. A reliable ap- 

roach can prevent patient deterioration. This requirement is 

ot only related to the elderly population [28] , but also adults 

18,29,32] and pediatric patients [7,22] . The predictive methods for 

his phenomenon differ in terms of input data and processing. Sev- 

ral studies have investigated the changes in ECG of patients. ECG 

s a non-invasive method for monitoring heart activity over a pe- 

iod. In recent years, the number of portable ECG-measuring de- 

ices has increased significantly. Therefore, focusing on process- 

ng data of this type is desirable [20] . Acharya et al. [2] first

xtracted nonlinear features from second-level discrete wavelet 

ransform decomposed ECG signals and subsequently ranked them 
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sing their t-value. Subsequently, the authors formulated and em- 

loyed an integrated SCD index using highly ranked features to ef- 

ectively predict SCD four minutes before onset. This research was 

xpanded by Fujita et al [16] , who introduced a novel methodol- 

gy to automatically classify the heart rate variability (HRV) sig- 

als of normal and SCD-risk patients. In a study by Acharya et al., 

CG signals were used [1] . Herein, the authors used an eleven- 

ayer convolutional neural network model to process 2-second ECG 

egments to distinguish shockable and non-shockable ventricular 

rrhythmias. This phenomenon is crucial for increasing the effi- 

acy of defibrillation via automated external defibrillators. Another 

tudy by Ebrahimzadeh et al. [15] extracted HRV parameters from 

CG to predict SCD. Both nonlinear and time-frequency HRV fea- 

ures were determined. Subsequently, the dimension of the fea- 

ure space was reduced using feature selection with healthy and 

CD-risk patient classification using a multilayer perceptron and 

-nearest neighbor neural network. Brufau et al. [6] employed ma- 

hine learning to create a model to predict patient deterioration. 

his study aimed to process the laboratory test results, nursing as- 

essments, vital signs, and demographics of patients hospitalized 

n general care beds, resulting in the development of a specific 

arly warning score (EWS) that accurately predicts acute deterio- 

ation. Kirkland et al. [25] investigated the values of the Braden 

cale, oxygen saturation, respiratory rate, and shock index using a 

ultivariate regression analysis to determine the clinical variables 

tatistically associated with patient deterioration. 

A review of EWSs by Gerry et al. [19] stated that EWSs are 

idely used as prediction models for patient deterioration. This re- 

iew noted that many EWSs have methodological weaknesses that 

ay have detrimental effects on patient care. Another review by 

ann et al. [27] focused on tools for predicting patient deteri- 

ration. It included results from 46 publications, concluding that 

he literature has not shown that the implementation of the re- 

iewed tools is reproducibly associated with improvements in pa- 

ient outcomes. Finally, Blackwell [5] studied statistical models for 

he early detection of patient deterioration in patients hospitalized 

n cardiac and cardiac surgery wards. This study concluded that no 

odel could be relied upon in all situations. 

In branch of deep learning-based disease diagnosis, 

uezzinoglu et al. [31] discussed the use of convolutional neural 

etworks (CNNs) for automated brain tumor classification. The 

uthors propose a patch-based deep feature engineering model 

alled PatchResNet to improve classification performance. The 

odel uses three types of patches of different sizes and two layers 

f a pretrained ResNet50 as feature extractors. Three selectors 

ere used to obtain 18 final feature vectors, and k nearest neigh- 

ors and iterative hard majority voting were used for classification. 

n other brain problematics, Baygin et al. [4] describes a hand- 

rafted model for accurately detecting schizophrenia using EEG 

ignals. The model generates features using a carbon chain pattern 

CCP) and an iterative decomposition model, and extracts sub- 

ands of the EEG signal using an iterative tunable q-factor wavelet 

ransform (ITQWT) technique. The clinically significant features are 

elected using iterative neighborhood component analysis (INCA) 

nd classified using k nearest neighbor (kNN) with a 10-fold cross- 

alidation strategy. The iterative weighted majority method is used 

o obtain the results in multiple channels. Moreover, Kuluozturk 

t al. [26] presented a study on cough-based disease detection 

sing machine learning. The authors collected a large cough sound 

ataset comprising four diagnostic categories (Covid-19, heart 

ailure, acute asthma, and healthy), and trained, validated, and 

ested a novel model for automatic detection. The model includes 

our components: feature generation using a specifically directed 

night pattern (DKP), signal decomposition using four pooling 

ethods, feature selection using iterative neighborhood analysis 

INCA), and classification using the k-nearest neighbor (kNN) 
2 
lassifier with ten-fold cross-validation. The study resulted in the 

election of ten best feature vectors and elimination of redundant 

eature vectors using misclassification rates, followed by feature 

election using INCA and input to a kNN classifier. 

The proposed approach is based on processing the ballisto- 

ardiographic (BCG) data obtained from long-term measurements 

sing a sensory pad equipped with piezoceramic sensors placed 

nder the patient’s mattress. BCG is an unobtrusive method for 

tudying the vital functions of a subject by recording the recoil 

ovement of the subject’s body. The measured movement appears 

ue to the mechanical activity of the heart and large arteries en- 

uring blood circulation, and in the case of this study, the mechan- 

cal activity of the respiratory system. Both phenomena cause the 

uman body to vibrate slightly. These micro-vibrations then reach 

he sensors placed directly under/on the body of the subject or 

ropagate through the mattress and bed to reach the sensors. BCG 

nvestigations may be used to assess the state of the cardiovascu- 

ar system of a subject. Starr and Wood [33] conducted a study on 

 group of 211 healthy persons. Investigation of their ballistocar- 

iograms (BCGm) showed considerable variation in amplitude. The 

uthors interpreted this to be due to the differences in the force 

xerted by the heart during contraction. Subjects with lower ex- 

rted heart force later suffered significantly more from cardiac dis- 

bility, chiefly coronary heart disease and death, than those with 

igher exerted heart force. Cimr et al. [13] examined the ability 

f BCG data to detect various breathing disorders using a 9-layer 

eep convolutional neural network (CNN) with an ECG R-peak as a 

rigger. This model achieved an accuracy, sensitivity, and specificity 

f 96.21%, 88.31%, and 98.69%, respectively, highlighting the possi- 

ility of it being used as an early warning system for long-term 

mpending problems. In [3] , Baker et al. reported a study focusing 

n their BCGm examination of coronary heart disease. This study 

ound that abnormalities in BCGm appeared more often in subjects 

ith coronary heart disease. Theorell and Rahe [35] examined the 

edical and psychological data of 36 people who either experi- 

nced myocardial infarction and survived or died from it. These 

ata included their ultralow-frequency BCGm. Here, the mean I–J 

mplitude served as a rough estimate of the maximal force exerted 

y the heart during contraction. In the case of subjects dying from 

yocardial infarction, a significant increase in the mean I–J ampli- 

ude appeared approximately six months before their death. How- 

ver, it is imperative to emphasize that the existing literature does 

ot encompass any research that specifically addresses the man- 

gement of BCG records for terminally ill individuals. Therefore, 

his article serves to contribute novel insights to this field of study. 

y delving into previously unexplored territory, it sheds light on an 

mportant aspect that has thus far been overlooked by researchers. 

Existing literature prior to [11,13] focused on processing dif- 

erential geometric invariants. The preprocessing of the examined 

CG input in terms of calculating its (first) Cartan curvature (CC) 

receded the classification. The dataset can be investigated as a 

et of 12-dimensional discrete time-parameterized curves in Eu- 

lidean space (the BCGm were obtained by deploying four triaxial 

ensometers) using the Frenet–Serret theory [17] . CCs are uniform 

unctions describing the local properties of curves derived from the 

erivatives of the vectors of the Frenet frame, that is, a group of n

rthogonal normalized vectors in the case of a n -dimensional curve 

in the case of n = 3 , the vectors are tangent, normal, and binor-

al) [17] . The main reason for processing CC is its invariance to 

sometric transformations (translations, rotations, and reflections) 

f the Euclidean group E (n ) , where CC is independent of the posi-

ion of the person on the bed. In [12] , another differential invariant 

n BCG data examination, the Euclidean arc length (EAL), was also 

ncluded in the data processing. The EAL of a time series in a win- 

ow of a given length is computed as the sum of the lengths of 

ll segments connecting two successive points in that window of 
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oncrete length [17] . It was first used as a trigger for the unobtru-

ive detection of respiratory disorders. However, subsequent data 

rocessing showed that EAL is not only a useful trigger but also a 

aluable source of information on the vital state of the measured 

ubject. This led us to include both invariants in this study. 

Each method of detection or prediction of patient deteriora- 

ion listed previously has its own weaknesses. Most research on 

his topic is based on the processing of ECG data. Precise ECG 

ecording requires the attachment of electrodes to specific loca- 

ions on the patient’s body. Usually, these electrodes are connected 

o the recording device by a wire, making the measurement ob- 

rusive and difficult to perform in the long term, despite wireless 

CG recording devices being available. Otherwise, the processing of 

linical or demographic data may be burdened by the late provi- 

ion of information, resulting in a late warning. A literature review 

hows that there has been no published research examining BCG 

ata a few hours before death, impending patient deterioration, 

r during death. Therefore, the outcomes of the current study are 

nprecedented. In continuation of this article, we also present the 

istinctive BCG dataset that we have collected and analyzed. This 

ataset comprises death records of 16 subjects, providing valuable 

nd specific information for further investigation. By sharing this 

ataset, we aim to facilitate future research in this domain, en- 

bling researchers to delve deeper into the implications and in- 

ights derived from these records. The inclusion of this dataset 

ontributes to the overall comprehensiveness and reliability of the 

ndings. 

In this study, a novel approach for achieving mechanical trig- 

ers of patient deterioration is proposed. The core hypothesis is 

hat deterioration causes significant changes in a BCG signal. Death 

ecords of the elderly were collected during long-term BCG data 

ollection using measuring pads equipped with piezoceramic sen- 

ors. When these data were examined using expert estimates, de- 

erioration was discovered several hours prior to death. While an- 

otating the trigger in the processed dataset, the expert considered 

he changes in hemodynamics and respiration effort. The literature 

hows that these phenomena change before death. BCG cannot be 

escribed as easily as ECG because BCG does not have a standard- 

zed measurement and strongly depends on the position of the pa- 

ient or the sensor on the bed. Accordingly, the experts used dif- 

erential geometric invariants (CC and EAL) to annotate the signif- 

cant changes. These invariants have proven to be robust tools for 

earching for changes in BCG data. Obtaining CC and EAL while 

easuring BCG is completely unobtrusive and may be performed 

n the long term, even in home care. The calculations of CC and 

AL and their further processing are described in the following 

ections. 

. Methods 

In the present study, data measurement and preprocessing were 

ermane. The processed dataset was obtained using measuring 

ads equipped with piezoceramic sensors placed under the pa- 

ient’s mattress, as shown in Fig. 1 . 

In the case of a 4-sensor pad, the sensors were placed as fol- 

ows: (i) approximately under the heart, (ii) under the right lunge, 

n the same level as sensor (i), (iii) under the left hip approxi- 

ately, at the level of the patient’s centroid, and (iv) on the same 

evel under the right hip. By contrast, in 2-sensor pads, only sen- 

ors (i) and (iii) were deployed. The person lying on the bed was 

ot connected to any device, and both sensors were placed directly 

n the measuring pad, making the measurement unobtrusive. The 

ody recoil movement propagated through the mattress, and the 

easuring pad reached the piezoceramic sensor. The number of 

ensors used depended on the type of institution. The beds in re- 

irement homes were equipped with only two sensors because the 
3 
im of their data processing was to focus on bed presence and 

lient positioning. In contrast, in the ICU, pads with four sensors 

ere installed to record the vital state of the patient more accu- 

ately. In the presented approach, the output signals were consid- 

red as 2-dimensional discrete curves parameterized by time, in 

erms of the timestamp of the recorded data, and 4-dimensional 

iscrete curves in the case of the ICU. This perspective allows for 

he calculation of the differential invariants of the obtained data. 

.1. Data description 

The BCG data, whose processing results are presented in this 

tudy, consisted of 16 death records. Data were obtained from 

he piezoceramic sensors used for body microvibration data col- 

ection. The sensor sampling frequency was 330 Hz. The lengths 

f the records differed owing to the different time intervals from 

he onset of deterioration to death; a detailed explanation is pro- 

ided in the next section. The patients’ sex, age, height, weight, 

nd other descriptors were unknown; however, none significantly 

ffected the differential invariants used for our purposes. 

.2. Classifier input preparation 

After an expert qualitative examination of data from several 

ases, the deterioration of the patient was found to be readable in 

he measured data by observing a linear decreasing trend in am- 

litude and irregularities in vital signs. First, the sliding mean of 

he Euclidean arc length (SEAL) difference with a window length 

f 1 h was derived to automate the identification of amplitude 

rop occurrence. SEAL then served as input data for the sliding 

east square method (SLSM) with a window length of 30 min and 

n overlap between adjoining segments of 10 min to examine the 

rend of the signals’ amplitude. In contrast, continuous wavelet 

ransform (CWT) was used to evaluate the data in terms of anoma- 

ies in vital signs. The expert subsequently examined sections of 

he measured data, characterized by a negative trend of SLSM ap- 

roximation lines, a low difference in the slopes of these lines, a 

elatively low error of SLSM, and less readable frequencies of vital 

unctions in the output of CWT to annotate the start of deterio- 

ation. The SEAL and SLSM lines of a recorded death are shown in 

ig. 2 a. The parameters examined by annotating the start of the de- 

erioration with respect to the decrease in amplitude correspond- 

ng to this particular case are presented in Fig. 2 b–d. In these fig- 

res, death is observed the moment after which our data no longer 

ecorded a legible trace of heart activity. The outputs of the CWT 

efore and after deterioration are shown in Fig. 3 a and b. 

However, there is a concern that expert annotations are subjec- 

ive. To address this issue, expert annotation was evaluated using 

 CNN by analyzing the required trainable parameters to decrease 

he computational complexity of the system for future applications 

10] . The core hypothesis is that the machine-learning model can 

lassify before and after the threshold with high accuracy. For this 

urpose, the signal is split into training and testing data, as shown 

n Fig. 4 , where the parts near the threshold are used as testing 

ata, and those before (normal) and after (deterioration) are used 

s training data. This split was created to achieve the same class 

alance. 

Regarding the threshold, 20% of the shorter vectors represented 

he testing dataset, and the remaining 80% represented the training 

ataset. An exact-length dataset was created for the second class. 

ubsequently, the data were separated into vectors of 660 values, 

hich corresponded to a 2-second sample of 330 Hz frequency. 
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Fig. 1. System architecture. 

Fig. 2. Expert treshoding. 
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.3. Preprocessing 

The Euclidean differential invariants are preserved under the 

ctions of the Euclidean group E (n ) , rendering them invariant to 

he position of the person lying on the bed. This is because the 

ardiovascular system of the person does not change significantly 

n different positions while lying. Let C be a matrix whose columns 

orrespond to the signals measured by individual sensors, C i be the 

 th row of C , that is, the vector of measured data corresponding to

imestamp t = t i , and C i, j be the element of C in the i th row and

jth column. The n th difference of C i can be defined as 

 

n C i = 

n ∑ 

k =0 

( −1 ) 
k 

(
n 

n − k 

)
C i +(n −k ) . (1) 

oreover, the first difference of the element C i, j is given by 

 C i, j = C i +1 , j − C i, j . (2) 
4 
he EAL of an n-dimensional discrete curve parameterized by time 

s calculated using the following equation 

 m 

= 

m ∑ 

i =1 

√ 

n ∑ 

j=1 

(
d C i, j 

)2 
. (3) 

In (3) , s m 

represents the EAL of the polyline connecting succes- 

ive points, starting at the point corresponding to the initial times- 

amp t = t 1 and ending at the point corresponding to the times- 

amp t = t m +1 . The elements s m 

are stored in the vector s , and the

ifference d s is used for further data processing. However, when 

alculating the CCs of the processed n -dimensional discrete signal 

t a given time corresponding to timestamp t = t i , the n orthonor-

al vectors e q and q ∈ { 1 , 2 , . . . , n } of the relevant Frenet frame 

ust be determined first. This can be achieved using the Gram–

chmidt process [30] . Let the q th vector of the Frenet frame corre- 

ponding to the i th row of C be denoted by e 
q 
i 
. Using this notation,
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Fig. 3. CWT. 

Fig. 4. Data split. 
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Table 1 

The details of the CNN structure with n classes depend on the used dataset. 

Layers Type No. of output neurons Kernel size Stride 

0–1 convolution 642 x 30 19 1 

1–2 max-pooling 321 x 30 2 2 

2–3 convolution 303 x 30 19 1 

3–4 max-pooling 151 x 30 2 2 

4–5 convolution 141 x 30 11 1 

5–6 max-pooling 70 x 30 2 2 

6–7 fully connected 30 - - 

6–7 fully connected 20 - - 

7–8 fully connected 2 - - 
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ll Frenet frame vectors can be determined as follows: 

 

1 
i = 

d C i 

|| d C i || , (4) 

 

k 
i = 

d 

k C i −
∑ k −1 

j=1 〈 d 

k C i , e 
j 
i 
〉 e j 

i 

‖ d 

k C i −
∑ k −1 

j=1 〈 d 

k C i , e 
j 
i 
〉 e j 

i 
‖ 

, for k = 2 , 3 , . . . , n − 1 , (5)

 

n 
i = e 1 i × e 2 i × · · · × e n −1 

i 
. (6) 

Here | | v | | stands for the Euclidean norm of a vector v , < u , v >

or the dot product of vectors u and v , and u × v for the cross

roduct of vectors u and v . Let 

 e q 
i 

= e q 
i +1 

− e q 
i 
, for q = 1 , 2 , . . . , n, (7)

hen, the first CC of the n -dimensional discrete curve at the time 

orresponding to timestamp t = t i is given by 

i = 

〈 d e 1 
i 
, e 2 

i 
〉 

‖ d C i ‖ 

. (8) 

This prescription clearly indicates that an n -dimensional dis- 

rete curve may include points for which the first CC cannot be 

efined owing to division by zero. In our case, this situation occurs 

hen none of the n signals change their values for two consec- 

tive timestamps. From the differential geometry theory perspec- 

ive, this curve is not regular . However, if all sensor values change 

inimally for two consecutive timestamps, the software used to 

alculate the CC values may return infinity. In both cases, CC was 
5 
ssigned a value of zero. Two additional facts regarding the intro- 

uced invariants must be stated for further processing. First, the 

enominator in the final prescription of the first CC equals the i th 

lement of difference in the EAL. Second, EAL is more sensitive to 

ignal segments with larger differences and CC, compared to those 

here the signal locally deviates from the signal’s tangents at the 

revious points. This relates the invariants in a form similar to in- 

erse proportion. 

.4. Model architecture 

A unique CNN architecture was developed for classification. The 

rchitecture comprised layer blocks formed by convolutional and 

ax-pooling layers. Both block layers slid the input of the previ- 

us layer through a window filter defined by the kernel size and 

tride. Three blocks were provided in the proposed model to ob- 

ain the required features from the input data. In all the max- 

ooling layers, the kernel size for the sliding data was determined 

y throwing two values with a stride step of two. The first two 

locks of the convolutional layers contained a kernel filter com- 

rising 19 vector values, followed by a layer with a filter size of 11. 

hirty filters were used in the convolutional layers to determine 

he patterns with a stride step of one. The design was completed 

sing three successive fully connected layers with 30, 20, and two 

eurons representing the normal and abnormal classes, as shown 

n Table 1 . The entire architecture contained 91,352 trainable pa- 

ameters, indicating that an unnecessarily complex model was not 

equired, even for such a large dataset. To avoid overfitting, rec- 

ifier linear unit layers were added after each convolutional layer, 
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Table 2 

Optimization hyperparameters used for training the model. 

Input Optimizer LR Patience Factor Mini batch Epochs 

660x1 Adam 1 · 10 −3 1 · 10 −5 2 · 10 −1 32 100 

Table 3 

Confusion matrix description. 

O/P Normal Abnormal Acc (%) Sen (%) Spec (%) 

Normal TP FN 

TP + TN 
TP + TN + FP + FN 

TP 
TP + FN 

TN 
TN + FP 

Ubnormal FP TN 

TP + TN 
TP + TN + FP + FN 

TN 
TN + FP 

TP 
TP + FN 

Table 4 

Overall classification of EAL. 

Person Single input Voting 

ID Acc (%) Sen (%) Spec (%) Acc (%) Sen (%) Spec (%) 

0 96.56 94.73 98.55 98.91 97.89 100 

1 95.77 97.27 94.36 97.02 100 94.31 

2 63.36 70.47 59.91 65.03 80.85 58.62 

3 76.80 73.33 81.48 85.71 80.88 92.41 

4 80.08 79.76 80.40 90.20 92.55 87.94 

5 72.55 94.39 50.71 75 95.18 53.79 

6 98.10 96.98 99.28 100 100 100 

7 61.44 58.56 67.26 67.31 58.66 90.90 

8 95.55 93.80 97.44 99.36 99.69 99.03 

9 96.56 94.70 98.59 98.92 97.91 100 

10 81.65 91.57 75.55 83.73 95.60 76.66 

11 78.39 59.92 96.85 83.21 69.12 97.67 

12 72.69 70.17 75.93 87.12 80.00 97.56 

13 67.32 65.26 70.03 77.33 75.95 79.09 

14 86.20 88.34 84.28 92.00 98.23 86.86 

15 74.88 70.16 82.46 83.33 76.74 94.23 

Total 81.12 81.21 82.06 86.51 87.45 88.06 

s

a

n  

i

o

e

d

c

t

t

s

r

F

3

s

t

t
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c
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r

nd a dropout layer was added between the first and second fully 

onnected layers, all with a value of 0.3. Toward the end of the ar- 

hitecture, a softmax exponential function was used to normalize 

he findings. 

.5. Limitations and benefits of the approach 

Utilizing the 4-sensor BCG pads enables us to acquire long- 

erm measurements for subsequent processing. The data collec- 

ion procedure itself is non-invasive and non-disruptive to the 

atients. Simultaneously, the employed measurement method is 

usceptible to bed movements unrelated to the patient’s cardiac 

ctivity. Numerous beds in retirement homes are equipped with 

nti-decubitus mattresses, which induce periodic bed frame move- 

ents. However, this signal noise can be easily extracted due to 

ts predictable periodicity. Conversely, movements originating from 

he patient’s skeletal muscles are indistinguishable from the mea- 

ured data and can introduce inaccuracies in the data classifica- 

ion. Each human body constitutes a unique biological system, and 

he manifestations of health deterioration may exhibit variations. 

n this study, a total of 16 death records have been analyzed, which 

epresents a relatively small sample size necessitating expansion 

or future research endeavors. 

The utilization of geometric invariants as an approach in this 

tudy is exemplary and builds upon the previous works conducted 

y the authors. By aggregating the four measured BCG signals into 

 single time series, we are able to employ the aforementioned 

onvolutional Neural Network (CNN) described earlier. This tech- 

ique allows for a comprehensive analysis of the combined data, 

aking advantage of the rich information encoded in the merged 

ignals. The integration of the geometric invariants and the CNN 

odel enhances the robustness and effectiveness of the analysis, 

nabling us to extract meaningful insights from the BCG measure- 

ents. 

.6. Data availability 

The raw BCG data supporting the findings of this study are 

vailable in from Mendeley–doi:10.17632/4wrk4fr69w.2. [9] . 

.7. Ethics and informed consent 

This research was approved by the Committee for Research 

thics of the University of Hradec Králové. The experimental pro- 

edure was conducted in accordance with the Ethical Research 

ramework of the Ministry of Education, Youth, and Sports of the 

zech Republic and the ethical requirements of the research. All 

he participants provided written informed consent to participate 

n this study. 

. Results 

.1. Experimental setup 

As described in Fig. 4 , 20% of the shorter vectors around thresh- 

ld were used as the testing dataset, while the remaining 80% rep- 

esented the training dataset. The data were separated into vec- 

ors of 660 values, which corresponded to a 2-second sample of 

30 Hz frequency. An exact-length dataset was created for the sec- 

nd class. The training dataset was then divided into training and 

alidation data by a split of 70% and 30%, respectively. During the 

raining process, 100 epochs were repeated with an early stopping 

allback when the validation accuracy stopped improving. 

Adam optimizer were used to adapt the model attributes. More- 

ver, the learning rate (LR) value, which represents the size of a 
6

tep towards minimizing the cost function of a model, was vari- 

bly reduced for the training process with a patience of five for 

o decrease in validation loss by a factor of 2 · 10 −1 until the min-

mum value of 1 · 10 −5 . Table 2 summarizes the hyperparameters 

f the proposed CNN model. 

At the end, each individual were analyzed on testing dataset to 

valuate expert annotations and model performance in detoriation 

etection. Classification results are evaluated using a tool called a 

onfusion matrix. This matrix tabulates the number of true posi- 

ives (TP), true negatives (TN), false positives (FP), and false nega- 

ives (FN), tabulized in Table 3 with equations for accuracy (Acc), 

ensitivity (Sen), and specificity (Spec). TP and TN indicate cor- 

ectly classified normal and abnormal signals, respectively, whereas 

P and FN represent the incorrect decisions made by the model. 

.2. Results of the experiments 

Table 4 presents the EAL classification results for the proposed 

ystem in terms of accuracy, sensitivity, and specificity. The frac- 

ion of correct outcomes and all predictions in a testing popula- 

ion is defined as accuracy. It evaluates the dependability of a diag- 

ostic test under given conditions. The proportion of true positives 

orrectly predicted by the classifier is referred to as the sensitivity. 

t represents the ability of a test to detect a disease. Specificity is 

efined as the proportion of true negatives correctly predicted by 

 classifier. This demonstrates the accuracy of a test for predicting 

ormal data. 

Each data point around the expert-defined threshold was eval- 

ated separately. Furthermore, sample sequence voting was sup- 

lied to improve the system performance, and it succeeded in most 

ases, except for that of the person with ID 11. Example details 

or a person with ID 0 are shown in Fig. 5 . The green dots rep-

esent voting results that result in true-positive or true-negative 
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Fig. 5. Testing example for individual patient with ID 0. 

Fig. 6. Testing example for individual patient with ID 12. 
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Table 5 

Overall classification of CC. 

Person Single input Voting 

ID Acc (%) Sen (%) Spec (%) Acc (%) Sen (%) Spec (%) 

0 97.09 99.54 94.63 97.55 99.72 95.36 

1 95.46 93.65 97.62 97.02 95.81 98.22 

2 59.86 53.67 66.05 61.57 55.37 67.76 

3 78.81 89.37 68.24 85.72 93.16 77.64 

4 82.52 80.01 85.04 89.97 88.45 91.46 

5 69.16 95.55 42.77 66.35 94.91 39.52 

6 97.78 99.08 96.49 100 100 100 

7 57.23 17.68 96.78 53.81 15.94 95.96 

8 97.89 97.95 97.82 99.21 99.21 99.21 

9 98.03 99.77 96.28 98.98 99.88 98.07 

10 78.52 72.24 84.80 79.63 73.54 85.68 

11 79.86 64.93 94.78 85.81 73.92 96.45 

12 75.82 83.99 67.65 82.18 88.46 75.51 

13 67.45 77.63 57.27 74.73 83.25 65.61 

14 86.18 83.09 89.26 92.2 90.24 94.09 

15 76.34 86.14 66.53 82.67 90.21 74.62 

Total 81.15 80.89 81.37 84.21 83.87 84.69 

fi

i

r

ecisions, whereas the red dots represent false-positive or false- 

egative categories. An important aspect of the observation is that 

ost errors are close to the threshold where the patient’s condi- 

ion worsens, without early or late false positives or false nega- 

ives. The overall accuracy, sensitivity, and specificity of the pro- 

osed technique were 86.51%, 87.45%, and 88.06%, respectively. 

Table 5 presents the CC classification results. The differences 

etween individual results with EAL were negligible in terms accu- 

acy, sensitivity, and specificity. However, the sensitivity and speci- 

city for individuals were not balanced. A possible reason is that 

ome CCs were infinite or undefined; these were subsequently re- 

laced with zero. Moreover, the threshold from Section 2.2 was 

omputed from EAL; thus, computing both approaches was not 

ecessary. 

. Discussion 

The results presented in Tables 4 and 5 are similar owing to 

he nature of EAL and CC, which was described at the end of 

ection 2.3 . The results of the expert estimation for IDs 0, 1, 6, 

, 9, and 10 indicated immediate health deterioration with high 

ccuracy. This suggests that the system can accurately detect criti- 

al patient conditions. However, in case 10, there was a short-term 

tate deterioration in the pre-threshold region, causing the classi- 
7 
cation accuracy to be lower than that of the other cases with an 

nstantaneous state change. 

The condition of patients with IDs 3, 4, and 14 worsened 

apidly, although not immediately, within 10 min. This caused 
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ore frequent mispredictions in the near-threshold region, indi- 

ating that the system is particularly vulnerable to errors in this 

rea. Therefore, these cases must be focused upon to improve the 

verall accuracy and reliability of the system. In addition, case 3 

as found to have random false positives, which reduced the sen- 

itivity of the system. This is a serious concern because false pos- 

tives can lead to unnecessary interventions. Such issues must be 

dentified and addressed to optimize the system and minimize the 

ccurrence of false positives while maintaining high sensitivity and 

ccuracy. 

Certain findings, however, appeared dubious for persons with 

Ds 12, 13, and 15, where the model appeared to be ineffective in 

tep threshold cases. Specifically, for ID 12, a detailed qualitative 

tudy of the associated RAW data using SEAL, SLSM, and CWT, re- 

ealed that the patient’s deterioration progressed over a period of 

 h, with accelerated deterioration during the last 2 h. However, an 

dditional examination indicates that a specific trend results in an 

mprovement in the distance from the threshold decision. It may 

e seen in Fig. 6 , the Y-axis shows the number of voting results,

ndicating that the condition is not acceptable, and the X-axis rep- 

esents the number of testing samples. This leads to the conclusion 

hat status changes should be gradual rather than stepwise and ex- 

lains why voting post-processing improved the final prediction. 

urthermore, accuracies of 56.45% and 53.48% for the single-input 

valuation were unsatisfactory for the situations of IDs 5 and 11, 

espectively. Examination of the findings revealed a tendency for 

radual condition change in distinct timesteps, requiring a double- 

heck of expert design thresholds and performance improvement. 

oreover, the individuals with IDs 2 and 7 showed unsatisfactory 

esults. However, after these patients first experienced health-state 

eteriorations, their SEAL, SLSM, and CWT results improved. After 

n hour-long increasing trend for SEAL and gradually readable vi- 

al function signs in the CWT results, the patients’ condition de- 

eriorated again, which culminated in their deaths within approxi- 

ately 1 h. 

Overall, these findings suggest that the system has the poten- 

ial to accurately detect critical conditions in patients; however, its 

erformance and reliability may be improved. 

. Conclusion 

This paper presents a classification model for health deteriora- 

ion based on geometric invariants. The system operated via BCG 

ensors placed unobtrusively by measuring pads placed under the 

atient’s mattress. The proposed solution was classified based on 

C and EAL preprocessing mechanisms, with data labeling as nor- 

al or abnormal based on the SLSM algorithm and CWT. The clas- 

ifier was designed as an 8-layer deep CNN model for predict- 

ng health deterioration. A voting post-processing technique was 

eployed to improve model performance. Experiments employing 

ross-validation with an expert threshold and data length demon- 

trated that the accuracy, sensitivity, and specificity were 86.51%, 

7.45%, and 88.06%, respectively. 

In future work, the plan is to persist in the collection of long- 

erm BCG data primarily from retirement homes situated in the 

zech Republic. The objective is to gather a larger number of 

eath cases for subsequent analysis. Differential geometry provides 

dditional geometric invariants that hold promise for the classi- 

cation of the measured data, such as affine differential invari- 

nts (such as affine arc length and affine curvatures). Furthermore, 

here is a plan to develop a more resilient algorithm for detect- 

ng the threshold of health deterioration. By enhancing the algo- 

ithm’s robustness, we can improve the accuracy and reliability 

f identifying critical health changes. These proposed future di- 

ections aim to further enhance the understanding and applica- 
8 
ion of BCG measurements in monitoring and predicting health 

utcomes. 
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