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1. Introduction

The collective behavior of species and how dynamic patterns emerge (defense, inva-

sion, resilience, . . .) is one of the most important topics in this research that requires

a multidisciplinary approach to be addressed. In addition to the intrinsic value of

studying the dynamics of a population of birds, fish, ants or sheep, these models

could provide foundations for understanding other, more microscopic problems such

as morphogen-cell interaction or the evolution of tumors. However, the impressive

evolution in microscopy and in antibody concentration morphogenesis cell signaling

allowed the study of collective behavior at the subcellular and cellular level to be

analyzed and modeled directly.1 This provides a new impetus in which the models

initially developed by Keller and Segel (KS)39, 40, 45 for chemotaxis processes (the

movement of biological entities in response to chemical gradients) take on a new

dimension. In addition, in recent years, various applications have been developed in

exotic contexts11 beyond cell signaling mechanisms that have provided more flexible

and diverse variants of KS-type models.

The classical KS model consists in a reaction–diffusion system of two coupled

parabolic equations

∂tU = divx(DU∇xU − χU∇xQ) +H(U,Q), x ∈ RN , t > 0,

τ∂tQ = DQ∆Q+K(U,Q), x ∈ RN , t > 0.
(1.1)

In the biological context of cell dynamics, U represents the cell-density and Q the

chemoattractant concentration. The positive definite terms DQ and DU are, respec-

tively, the diffusivity of the chemoattractant and of the cells, χ ≥ 0 is the chemotac-

tic sensitivity and the functions H(U,Q) and K(U,Q) in (1.1) model the interaction

(production and degradation) between the cell density and the chemical substance.

In most simplified models and in the original KS system, these terms are modeled

as K(U,Q) = U −Q and H(U,Q) = 0. The hyperbolic limit (high-field limit) and

some special parabolic limit (low-field limit) have been derived from kinetic equa-

tions describing the run and tumble process for bacterial motion.7–11, 28, 29, 38, 44

The parameter τ ≥ 0 is introduced to distinguish if there is an adjustment of the

chemo-attacker during the evolution of the process, it is standard that it only takes

values only 0 or 1 giving rise to different models that may not be dynamically

equivalents.

In this paper, we will consider two variants of the flux-saturated Keller–Segel

(FSKS) model:

∂U

∂t
=

∂

∂x

(
UmΦ

(
U−1 ∂U

∂x

)
− aU ∂Q

∂x

)
,

T (Q) = U,

(1.2)

where T = T (Q) is one of the following linear differential operators:

T (Q) =
∂2Q

∂t∂x
− ν ∂

2Q

∂x2
, (1.3)
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or

T (Q) = τ
∂Q

∂t
+ α

∂Q

∂x
− ν ∂

2Q

∂x2
. (1.4)

The parameters α ≥ 0 and ν ≥ 0 stand for the transport and diffusion coefficients,

respectively. The flux function Φ = Φ(s) is a bounded, regular, increasing and odd

function. The value c > 0 is defined as

c = lim
s→∞

Φ(s),

and it is finite. Also Φ ∈ C1(R) in order to have uniqueness of the initial value

problems. The value µ = Φ′(0) is the kinematic viscosity for small velocities and

near ux = 0 the flow means

UmΦ

(
U−1 ∂U

∂x

)
∼ µUm−1Ux,

being m ≥ 1 a parameter that measures the porosity of the medium. In some

sense, we have a flux-saturated combined with a porous media operator.16 Different

proposals to ours to use flux-saturated operators as an alternative to linear diffu-

sion for the KS model use hyperbolic, fractional diffusion or porous medium type

approximations, see, for example, Refs. 15, 27 and 30 and the references therein.

One of the main objectives of our study is to consider the so-called relativistic

heat case

Φ(s) = µ
s√

1 + µ2

c2 s
2

that leads to

∂U

∂t
= µ

∂

∂x

 Um∂U
∂x√

U2 + µ2

c2

∣∣∂U
∂x

∣∣2 − aU ∂Q∂x
.

Other examples of great interest are Φ(s) = µ s
1+µ

c |s|
usually referred as Wilson

operator,43 the Larson operator16 Φ(s) = µ s
p
√

1+µp

cp s
p

that include the relativistic

case, and Φ(s) = c tanh(µsc ) usually referred as the hyperbolic tangent operator,

see, for instance, Ref. 42.

If m = 1, which is the case of the relativistic heat equation, then c is the speed

at which the solution support moves.3 In the general choice of Φ, c represents

the maximum speed at which the solution support can move.16 Therefore, c is a

parameter that can be taken from the biological experimental data.47 Note that for

any flux-saturated Φ, if c tends to infinity the heat equation or the porous media

equation are recovered for the different values of m ≥ 1.26

The aim of this paper is to find, in the context of KS models, soliton-type

patterns with compact support, which represent collective models of cell invasion,

propagation or behavior in which the interface with the medium is singular. This

type of patterns usually appears with diverse geometry in the experimental data,
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(a) (b)

Fig. 1. (Color online) Pattern prototypes with compact support associated with flux-saturated

operators. Pattern prototypes with compact support associated with saturated-flux operators. In
blue we represent the cell concentration and in black the profile of the chemoattractant.

and cannot be captured with linear diffusion terms in the classical KS model. In

Fig. 1, we provide various configurations of some of the results that we obtain here,

coming from the analysis of the nonlinear variants of the KS models that we will

study throughout the paper.

Experimental data show that the movement of cells affected by a chemoat-

tractant occurs through a pulse or soliton-type solution.33, 47 Moreover, from the

point of view of modeling, the KS model combines a system of partial differential

equations that represents the evolution of the cell density and the chemoattrac-

tant concentration. However, the classical KS system, although it admits regular

traveling waves with a birth term of either a Fisher–KPP term-type, does not

seem to admit soliton-type solutions. The modification of the transport terms,

especially preventing free diffusion, allows to build solutions that better reflect

the experimental results. This fact was rigorously proved in the case of a flux-

saturated as an alternative to linear diffusion in cell density in Ref. 6. A great

effort has been devoted in recent years to study the properties of the evolution by

flux-saturated mechanisms, in particular the existence of traveling waves, see, for

instance, Refs. 3, 4, 12, 13, 17–25, 31, 32, 36, 41 and 46 and the references therein.

In the case where the time evolution of the chemoattractant is negligible, the

resulting model produces a self-generated potential in terms of cell density. This

has been the most studied approach in the context of the KS models.14, 34, 35, 37, 38

The main reason to modify the linear diffusion by a nonlinear one is that it

reproduces more faithfully the experimental data. In this context, the FSKS is a

macroscopic model describing cell motion by chemotaxis, in which saturation of the

velocity is taken into account. The FSKS model also has the advantage that trav-

eling pulse or soliton-type solutions with compact support emerging as a prototype

of pattern under this system.6 The existence of this type of solutions is relevant for

biological applications since, from a modeling perspective, the compactly supported

property is well suited.

The paper is structured as follows. Section 2 is devoted to defining the solution

concept and the soliton-type geometric structure of the solutions we seek. In this

sense, we define the block-type solution, which will be the object of study in this

paper. Section 3 deals with the case in which the chemoattractant gradient is

transported without diffusion, proving that any maximal solution of the associated
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dynamic system is a block-type solution. Section 4 deals with the case where

transport and diffusion terms are combined in the chemoattractant. Conditions are

given for the existence and non-existence of block-type solutions. In the case of dif-

fusion without transport of the chemoattractant, a complete analysis of all types of

traveling waves is carried out (particularly those cases in which there are block-type

solutions), classifying all types of solutions according to the system parameters.

2. Block Solitons Moving at a Constant Speed

Let us consider the general system of cell evolution U together with the chemoat-

tractant Q

∂U

∂t
=

∂

∂x

(
UmΦ

(
U−1 ∂U

∂x

)
− aU ∂Q

∂x

)
τ1
∂Q

∂t
+ τ2

∂

∂t

(
∂Q

∂x

)
+ α

∂Q

∂x
− ν ∂

2Q

∂x2
= U.

(2.1)

In this model, the coefficient ν ≥ 0 is the viscosity of the chemoattractant. Addi-

tionally, we assume that a > 0, α > 0 and m ≥ 1. The parameters τ1 and τ2 are

taken greater than or equal to zero, in fact in the models considered τ1 and τ2 take

values {0, 1}.
We are going to study the existence of biological blocks that move at a constant

speed. Mathematically, the concept of block solutions is associated to that of trav-

eling waves type solutions of the previous problem (2.1) for cell dynamics whose

mass is concentrated in a bounded region. If σ > 0 denotes a speed of propagation,

we look for solutions of the kind U(t, x) = u(x − σt), Q(t, x) = q(x − σt), where

u, q : R → R are scalar functions and u has the mass concentrated in a compact

interval. Formally, the resulting system for u, q verifies

− σu′(ξ) =

(
um(ξ)Φ

(
u′(ξ)

u(z)

)
− au(ξ)q′(ξ)

)′
,

(α− στ1)q′(ξ)− (στ2 + ν)q′′(ξ) = u(ξ),

(2.2)

where ξ := x− σt.
A first question to consider is the concept of solution for (2.1). The appropri-

ate framework for our analysis is that of solutions of bounded variation. However,

the theory of existence in the context of bounded variation solutions for KS-type

systems is not sufficiently fully established, and this is not the aim of our paper.

To avoid entering the theory of bounded variation functions of several variables, we

are going to focus on our study on Eq. (2.2) directly.

The cell structure that gives rise to the u component is going to be assumed to

be much larger and heavier than the molecular structure of the chemoattractant

given by the q component, therefore a singularization of the component u can be

expected. This appreciation is supported by the presence of a flux-saturated as the

basis of the movement of u in the first equation. On the other hand, we expect a
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milder behavior of the chemoattractant q. The formation of discontinuities in q is

not expected if

στ2 + ν > 0. (2.3)

Even in the degenerate case τ2 = 0 = ν the existence of fronts is not apparent

because in q, even in that case, we have a linear transport equation. These reasons

make us assume that q is of class 1 in R while u is only going to be a bounded

variation function. We are in a position to consider distributional solutions imposing

that∫
R

(
um(ξ)Φ

(
u′(ξ)

u(ξ)

)
− au(ξ)q′(ξ) + σu(ξ)

)
ψ′(ξ)dξ = 0,

(α− στ1)

∫
R
q(ξ)ψ′(ξ)dξ − (στ2 + ν)

∫
R
q′(ξ)ψ′(ξ)dξ = −

∫
R
u(ξ)ψ(ξ)dξ,

(2.4)

holds, for each ψ ∈ D(R). In this expression, the role of u′(ξ) has to be clarified.

When a function u ∈ BV (R) its derivative in the sense of the distributions Du

decomposes as an absolutely continuous part u′(ξ) and a singular part Dsu that is

orthogonal to the Lebesgue measure. The singular part of the measure is not easy

to absorb, see Ref. 2. The set S = supp{Dsu} is called the set of singularities of u.

It is common in this type of operators that S is a finite set and also u ∈ C1(R\S).

A block structure is going to be requested on u. This concept of block solution

materializes in the existence of a compact interval [ξ1, ξ2], not reduced to a point,

such that u(ξ) > 0, for a.e. ξ ∈ [ξ1, ξ2], and u(ξ) = 0, otherwise. For q no restrictions

will be imposed on its support. One last assumption is that the singularities of u

have been formed by the saturation of the cell flux. If ξ̄ ∈ S is a singular point,

then the lateral limit values are always defined. The point ξ̄ is said of saturation to

the left if

lim
ξ→ξ̄

u′(ξ) = −∞, lim
ξ→ξ̄−

u(ξ) ≥ lim
ξ→ξ̄+

u(ξ),

while it will be saturation to the right if

lim
ξ→ξ̄

u′(ξ) = +∞, lim
ξ→ξ̄−

u(ξ) ≤ lim
ξ→ξ̄+

u(ξ).

If ξ̄ is a boundary point of the support, then the saturation condition is only

one-sided, that is, if ξ̄ = ξ1, then u(ξ) = 0, for ξ < ξ1, which means

lim
ξ→ξ+1

u′(ξ) =∞,

and a symmetric condition on ξ2.

Lemma 2.1. Assume that (2.3) holds, then there are no saturation points inside

the support.

Proof. It follows from (2.4) that the function um(ξ)Φ
(u′(ξ)
u(ξ)

)
− au(ξ)q′(ξ) + σu(ξ)

has zero weak derivative. By Stampacchia’s Lemma um(ξ)Φ
(u′(ξ)
u(ξ)

)
− au(ξ)q′(ξ) +

σu(ξ) = K, for some constant K. We can assume that this constant is going to be
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zero when considering ξ outside the support of u. Therefore, we have

um−1(ξ)Φ

(
u′(ξ)

u(ξ)

)
− aq′(ξ) + σ = 0, a.e. ξ ∈ [ξ1, ξ2]. (2.5)

Whence, both values

lim
ξ→ξ̄±

u(ξ) = u±,

verify

um−1
± c− aq′(ξ̄) + σ = 0,

where it has been used that we have a saturation on the left. Then, both one-sided

limits are equal. That implies the continuity of u in ξ̄. Using the regularity and

the (2.3) condition in the second equation of (2.4) we get that q′′ is defined in ξ̄.

In particular, the function

ξ → cum−1(ξ)− q′(ξ) + σ,

has infinite derivative at ξ̄, and it is an increasing function in a neighborhood of

that point. This would give us ξ values such that ξ → cum−1(ξ) − q′(ξ) + σ < 0,

which is contradictory to (2.5) since Φ(s) < c, for all s ∈ R.

In conclusion, assuming (2.3) we can define a block-type solution as follows.

Definition 2.1. Given an interval [ξ1, ξ2], we will say that a pair of functions

u ∈ C0[ξ1, ξ2] ∩ C1(ξ1, ξ2) and q ∈ C0[ξ1, ξ2] ∩ C2(ξ1, ξ2)

constitute a block-type solution as long as

• u(ξ) > 0, for each ξ ∈ [ξ1, ξ2] and both verify

um−1(ξ)Φ

(
u′(ξ)

u(ξ)

)
− aq′(ξ) + σ = 0

(α− στ1)q′(ξ)− (στ2 + ν)q′′(ξ) = u(ξ).

(2.6)

• The singular points are S = {ξ1, ξ2}, and both are lateral saturation points for

u, that is

lim
ξ→ξ+1

u′(ξ) =∞, lim
ξ→ξ−2

u′(ξ) = −∞.

Under these conditions, we will discuss throughout the paper the existence of

a cell block moving at speed σ, and this will be obtained by extending by zero the

cell density u outside the interval [ξ1, ξ2], q extends to a function from class 1 to R
through two straight lines.

Taking g = Φ−1, in the sense of the composition of applications, then g :

(−c, c)→ R is a C1 function defined as

g(y) = s↔ y = Φ(s).
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If, in addition, we define r(ξ) = g′(ξ), we get

u′ = ug

(
ar − σ
um−1

)
.

Finally, we can rebuild from (2.6) the following system:

u′ = ug

(
ar − σ
um−1

)
,

r′ =
(α− σδ1)r − u

σδ2 + ν
.

(2.7)

Note that under the hypothesis on g in the previous section, this system is defined

only for values of (u, r) belonging to the domain Γ defined by

Γ := {(u, r) : u > 0, |(ar − σ)u1−m| < c}. (2.8)

such that Γ = Γ− ∪ Γ0 ∪ Γ+, where

Γ0 =
{

(u, r) ∈ Γ : u > 0, r =
σ

a

}
, Γ− =

{
(u, r) ∈ Γ : r >

σ

a

}
and

Γ+ =
{

(u, r) ∈ Γ : r <
σ

a

}
.

We denote by γ = ∂Γ = γ+ ∪ γ− ∪
{(

0, σa
)}

, where

γ± :=

{
(u, r) ∈ (0,∞)× R :

ar − σ
um−1

= ∓c
}
. (2.9)

A block-type solution corresponds to a maximal solution of (2.7) such that

lim
ξ→ξ̄±

u(ξ) = u±,

lim
ξ→ξ̄±

r(ξ) = r±,
(2.10)

where (ξ−, ξ+) is the maximum interval of definition and (u±, r±) ∈ γ±, see Fig. 2.

(a) (b)

Fig. 2. (a) Representation of the field of tangent vectors of (2.7) and (b) representation of a

block-type solution.
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Proposition 2.1. Under these conditions, the spatial support of the solution is

necessarily bounded.

Proof. Let us prove it by reductio ad absurdum. Assume that ξ+ = +∞. Then,

there exists a sequence ξn → +∞ such that

u′(ξn)→ 0.

This implies

ar(ξn)− σ
um−1(ξn)

→ 0.

Since u+ is bounded, this implies that r(ξn) → σ
a , but this is not possible since

r+ ∈ γ+. Therefore ξ+ < +∞. The reasoning for ξ− is analogous.

3. Transport in the Gradient of Q

This section is devoted to analyze the case where the gradient of the chemoattrac-

tant (∂xQ) is solution of the non-homogeneous linear transport equation:

∂U

∂t
=

∂

∂x

(
UmΦ

(
U−1 ∂U

∂x

)
− aU ∂Q

∂x

)
,

∂

∂t

(
∂Q

∂x

)
− ν ∂

∂x

(
∂Q

∂x

)
= U.

(3.1)

In this model, we assume that ν > 0 so we are in a non-degenerate situation

(remember that a > 0). The case m = 1 can be analyzed following the guidelines

of the case m > 1, therefore we also assume that m > 1. As we will see, this model

can be seen as a particular case of the one analyzed in the following section where

the values would have another expression, but we have considered studying this

case first for clarity in the exposition.

Hence, we will focus on study the existence of block solutions, defined in the pre-

vious section, which correspond with the search of orbits of the differential equation

u′ = ug

(
ar − σ
um−1

)
,

r′ = − u

σ + ν
.

(3.2)

This orbits connect γ− with γ+, where γ± were defined in (2.9). Therefore, for any

initial condition in Γ defined in (2.8), we will be able to find a block solution, see

Fig. 3.

Theorem 3.1. Every maximal solution of (3.2) is a block solution.

A key ingredient to prove this theorem are the following results, in which we will

show that there exist an orbit connecting γ− with γ+, for every initial condition in

the line s = σ
a .
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(a) 1 < m < 2 (b) m = 2 (c) m ≥ 2

Fig. 3. Representation of the tangent vector field associated to (3.2).

Proposition 3.1. Consider the initial conditions r(0) = σ
a and u(0) = u0 > 0

associated to (3.2). Then, there exists a block solution (u, r) corresponding to these

initial data.

Proof. Let us prove that the maximal solution of the previous problem gives rise

to a block solution, by seeing that it connect a point in γ− with a point in γ+,

according to the definition of the previous section.

We can check that u(ξ) has uni-modal shape with a unique maximum at ξ = 0,

and r(ξ) is a strictly decreasing function. Therefore, we can prove the existence of

the finite limits

lim
ξ→ξ±

(u(ξ), r(ξ)) =: (u±, r±). (3.3)

Due to the decrease of r we obtain r+ < σ
a < r−, and taking limits in the

inequality ∣∣∣∣ar − σum−1

∣∣∣∣ < c,

we deduce that u± are necessarily strictly positive.

Let us see that

r+ =
σ − cum−1

+

a
.

If r+ 6=
σ−cum−1

+

a , then (u+, r+) is not in the boundary of Γ, and by a prolongation

argument we get ξ+ = +∞. Therefore (u+, r+) will be a critical point. However,

there are no critical points in the problem, so ξ+ < +∞. Using again a prolonga-

bility argument we obtain that (u+, r+) is in the boundary of Γ.

Also, we can prove that

r− =
σ + cum−1

−
a

,

by using similar arguments.

Once demonstrated the existence of solutions for initial conditions in the vertical

isocline, we will proceed to prove that for every initial condition in Γ, the associated

solutions always reach the vertical isocline.
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Lemma 3.1. Every maximal solution of (3.2) intersects the curve Γ0.

Proof. Let u, r : (ξ−, ξ+)→ R a solution of (3.2), and assume that for some value

ξ0 ∈ (ξ−, ξ+) we have (u0, r0) := (u(ξ0), r(ξ0)) ∈ Γ. Let us prove that if r0 >
σ
a ,

then there exits a ξ1 ∈ (ξ−, ξ+), such that r(ξ1) = σ
a . Similarly, if r0 <

σ
a , we can

find a value ξ2 such that r(ξ2) = σ
a , which will conclude the proof.

Assume that r0 >
σ
a and r(ξ) > σ

a , for all ξ ∈ (ξ−, ξ+) and hence, u′(ξ) > 0 and

there exist the limξ→ξ+ u(ξ). If this limit is finite, then ξ+ = +∞ and we will have

a critical point, but this is not possible. Therefore, we have

lim
ξ→ξ+

u(ξ) = +∞. (3.4)

Since u(ξ) ≥ u0 and r(ξ) ≤ r0, then we obtain

g

(
ar(ξ)− σ
um−1(ξ)

)
≤ g
(
ar0 − σ
um−1

0

)
,

for ξ ∈ (ξ0, ξ
+). Using that r → ar−σ

um−1 is increasing in r, then we deduce that

u → ar−σ
um−1 is decreasing in u and y → g(y) is decreasing. Defining M as the value

obtained above, we have that

u′(ξ) ≤Mu(ξ).

Then, combining the Gronwall Lemma together with (3.4) we deduce ξ+ = +∞.

However, this cannot be possible, because r′(ξ) = − 1
σ+µu(ξ) and u(ξ) ≥ u0, for

ξ ∈ (ξ0, ξ
+), and we obtain

r′(ξ) ≤ − 1

σ + µ
u0 < 0, ∀ ξ ∈ (ξ0, ξ

+),

which is a contradiction.

Therefore, thanks to these two results and the fact that the solutions are invari-

ant under time translation, the proof of Proposition 3.1 follows.

4. Transport and Diffusion in the Chemoattractant

In this section, we consider that the chemoattractant concentration is solution of a

linear transport-diffusion equation.

∂U

∂t
=

∂

∂x

(
UmΦ

(
U−1 ∂U

∂x

)
− aU ∂Q

∂x

)
,

∂Q

∂t
+ α

∂Q

∂x
− ν ∂

2Q

∂x2
= U,

(4.1)

where α is the transport speed coefficient of the chemoattractant density and ν

stands for its diffusion coefficient. Our goal is to study the existence of orbits that
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connect γ− with γ+, defined in (2.9), of the differential equation:

u′ = ug

(
ar − σ
um−1

)
,

r′ =
1

ν
((α− σ)r − u).

(4.2)

The analysis of the existence of such orbits will be studied in terms of the

parameter m and the relation between α and σ.

Remark 4.1. If σ = α, the differential equation (4.2) is similar to (3.2). Therefore,

we will have existence of block solutions for σ > 0, thanks to Theorem 3.1.

The main result describing the existence of block solution in this context is the

following one.

Theorem 4.1. Block solutions exist if one of the following conditions holds true:

• If 1 < m < 2 and σ > 0.

• If m ≥ 2, σ > 0 and α ≤ α∗, for α∗ > 0, where

α∗ =

(
a

m− 1

) m−1
2m−3 1

c3−2m
(m− 2)

m−2
2m−3 . (4.3)

• If m ≥ 2, σ > σ∗(α) > 0 and α > α∗ > 0, where

σ∗(α) = α− a

m− 1
c

1
1−m

(
m− 2

α

)m−2
m−1

. (4.4)

Remark 4.2. In the case m = 2, we have that σ∗(α) = α − a
c , which is the limit

when m→ 2 of (4.4), and therefore solving σ∗(α) = 0, we obtain the value α∗ = a
c .

In Figure 4 we can see a qualitative representation, for m ≥ 2, of the region of σ

values for which a solution exists as a function of the parameter α.

To carry out the proof of Theorem 4.1, we are going to introduce a series of

previous results.

Let us denote by η the horizontal isocline, whose equation is r = 1
α−σu and

represents the points (u, r) ∈ Γ, where r′ = 0. First, we will analyze the case in

which η has positive slope, and we will focus on finding some initial values (ū, r̄)

from which we can construct the solution.

Fig. 4. Representation of the region of existence obtained in Theorem 4.1 for m ≥ 2.
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Fig. 5. Scheme of the proof of Lemma 4.1.

Lemma 4.1. Let 1 < m ≤ 2. If η has positive slope and cuts γ−, then there exist

(ū, r̄) ∈ Γ− such as

r′ < 0, u′ > 0, ∀(u, r) ∈ B,

where B := B(ū,r̄) = {(u, r) ∈ Γ− : u ≤ ū, r ≥ r̄}.

Proof. Since 1 < m ≤ 2, then γ− is the graph of a concave function or a straight

line. It is easy to see that an increasing line below u = 0 will intersect γ− at a

single point. u∗, see Fig. 5. Therefore, it allows us to find a curved triangular region,

denoted by B, just build taking as vertex of B any points (ū, r̄) ∈ Γ− such that

ū > u∗ and r̄ > γ−(u∗).

The points (ū, r̄), defined in Lemma 4.1, will allow us to construct the desired

orbits of (4.2) when these are taken as initial data.

Proposition 4.1. If η has positive slope and cuts γ−, then there exists a block

solution of (4.2).

Proof. In the case 1 < m ≤ 2 (see Fig. 6), let us take the points (ū, r̄), previously

defined in Lemma 4.1, as the initial condition of the problem (4.2). The solution of

the initial value problem (ū, r̄) remains in B as long as it is defined. Bendixson’s

theorem assures us that this solution has to touch γ−, as ξ → ξ−, since there is no

equilibrium points in the set B. Moreover, this solution will always intersect the

line r = σ
a , for some ξ1 ∈ (ξ−, ξ+). This is because r′ < 0 and u′ > 0, for r > σ

a .

An argument similar to that used in Lemma 3.1 allows us to prove the existence of

a value ξ1 at which the solution intersects the straight line r = σ
a .

We cannot know how the solutions (u1, r1), connecting γ− with r = σ
a , will

behave once they go through the line r = σ
a .

Let us define u∗ = u1(ξ1). Observe that the solution of (4.2), with initial con-

dition u(0) = ũ, r(0) = σ
a , will touch γ− when ξ → ξ−, for any value ũ ≥ u∗. This

is due to the fact that the orbits of the autonomous systems cannot intersect.

Therefore, to finish the proof it remains to find a value ũ such that the solution

of the initial value problem (ũ, σa ) reaches γ+.
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(a) m < 2 (b) m = 2

(c) m > 2

Fig. 6. Representation of the phase diagram as a function of m, when η intersects γ+.

Let (û, r̂) be the intersection of the straight line η with the curve γ+. Then, the

solution of the initial value problem (r̂, u∗) touches γ+ as ξ → ξ+, due to the fact

that r′ < 0 for r ≤ r̂. In addition, this solution will intersect the straight line r = σ
a

at a point (ũ, σa ), by a symmetric argument to the one made in Lemma 3.1.

In the case m > 2, the proof is carried out in a similar way. Indeed, if η intersects

γ−, this intersection can be made at two points or at one tangent point (see Fig. 6).

In both cases, we can define

u = max

{
u ∈ (0,+∞) :

1

α− σ
u = γ−(u)

}
.

Therefore, the set

A = {(u, r) ∈ Γ− : u > u, r ≥ η(u)}

is negatively invariant, since u′ > 0 and r′ ≥ 0, for all (u, r) ∈ A. Therefore,

following the same ideas as in the previous case, we can show that the solution

connects γ− to r = σ
a , reaching the line r = σ

a , for some ξ1 ∈ (ξ−, ξ+). So, as in the

previous case, we are able to find an initial condition (ũ, σa ) whose solution connects

γ− with γ+.

Let us now study the case in which η has negative slope.
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(a) 1 < m < 2 (b) m = 2 (c) m > 2

Fig. 7. Representation of the phase diagram as a function of m, when η is decreasing.

Proposition 4.2. If η has negative slope, then there exists a block solution of (4.2).

Proof. The directions of the vector field, represented in Fig. 7, show that the

solution with initial data (û, σa ) will touch γ− and γ+, for any point (û, σa ) in the

straight line r = σ
a which is to the left of the intersection point of the straight

line η with γ+. The proof argument is similar to the one made in the proof of

Proposition 2.1.

These results inform us under which conditions we can find block solutions. To

finish the proof of Theorem 4.1, it is necessary to see what relationships between

the parameters allow us to obtain these solutions.

Proof of Theorem 4.1. The equation of the line η is 1
α−σu. If σ > α, η has

negative slope, and by Proposition 4.2 we have existence of a block solution. If

σ = α, we have also existence of solution by arguing as in Remark 4.1.

On the other hand, if σ < α, we have to study the relative position between γ−

and η. Proposition 4.1 establishes the existence of solution when η has positive slope.

Therefore, we have to analyze the possibilities of intersection between η and γ−.

If 1 < m < 2, η will always intersect γ−, when 0 < σ < α.

If m = 2, the slope of η must be greater than the slope of γ−, which is a line in

this case. This is fulfilled when c
a <

1
α−σ , i.e.

σ > α− a

c
. (4.5)

Finally, for m > 2, the intersection points are given by the roots of the following

equation:

cum−1

a
+
σ

a
− u

α− σ
= 0.

The existence of roots of this equation is equivalent to prove that the minimum

takes negative values, this holds true for

σ > α− a

m− 1
c

1
1−m

(
m− 2

α

)m−2
m−1

= f(α).

Note that if m = 2 this equation coincides with (4.5), as m→ 2.
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It can be seen that f(α) ≤ 0, if α ≤ α∗, where

α∗ =

(
a

m− 1

) m−1
2m−3 1

c3−2m
(m− 2)

m−2
2m−3 .

If α > α∗, then the expression σ > f(α) is equivalent to σ > σ∗(α) which is

given by (4.4).

4.1. Non-existence of block solution

Once we have analyzed the existence of solution in the previous section, let us see

under what conditions we can prove the non-existence of block solutions.

For this purpose, we will consider the function θ : (−c, c)→ R defined as

θ(y) =
(α− σ)y

ν
− (m− 1)yg(y).

Observe that the function satisfies that θ(−c) = θ(c) = −∞, therefore there exists

the value θ0 = maxy∈(−c,c) θ(y).

On the other hand, let us consider the function ω : (0,+∞)→ R defined as

ω(u) =
au− σ(α− σ)

νum−1
.

Arguing as before, let us consider the value ω0 = maxu∈(0,+∞) ω(u), whose expres-

sion is

ω0 =
1

v

(
σ(α− σ)

m− 2

)2−m(
a

(m− 1)

)m−1

.

With these two constants we obtain the following non-existence result.

Theorem 4.2. If θ0 > ω0, then there is no block-type solution.

Proof. Let us take y(ξ) = ar(ξ)−σ
um−1(ξ) , which satisfies the differential equation

u′ = ug(y), y′ =
a
v [(α− σ)[u

m−1y+σ
a ]− u]− (m− 1)um−1yg(y)

um−1
. (4.6)

Observe that a block-type solution is now a connection between y = c and y = −c.
Taking ȳ such that θ(ȳ) > maxu∈(0,+∞) ω(u) then the expression of the second

equation of (4.6) provides y′ > 0, for all u ∈ (0,+∞). Therefore, it would not be

possible to connect y = c with y = −c.

Remark 4.3. For example, in the Wilson operator g(u) is defined by g(u) =
1
µ

u

1− |u|c
. Then, we can calculate explicitly the values of θ0 and ω0. Those values are

θ0 = c

(√(
α− σ
ν

+ (m− 1)
c

µ

)
−
√

(m− 1)
c

µ

)2

,

ω0 =
1

ν

(
σ(α− σ)

m− 2

)2−m(
a

m− 1

)m−1

.
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(a) m = 2 (b) m = 3

Fig. 8. Representation of the region of existence (gray region) and non-existence (pattern region)
of solution in Wilson’s model, for c = µ = a = ν = 1.

Combining and approximating them we obtain the following inequality:

σ
m
2 −1(α− σ)

m
2 ≥ Θ

(√(
α

ν
+ (m− 1)

c

µ

)
+

√
(m− 1)

c

µ

)
, (4.7)

where

Θ =

√
ν

c

(
a

m− 1

)m−1
2 1

(m− 2)
2−m

2

.

Using Theorems 4.1 and 4.2, we can establish the region of existence and non-

existence of solution for a given parametric configuration, (see Fig. 8).

Observe that the left-hand side of the inequality (4.7) has uni-modal shape and,

therefore, we obtain an interval of σ-values for which there is no solution, with all

parameters fixed. We can see this behavior in Fig. 8. Note that in the limit case

m = 2, the region of non-existence is bounded by a straight line.

Moreover, it has been numerically observed, it is possible to find a block-type

solution under certain parameter settings for m > 2 in the region between the

non-existence zone and σ = 0.

4.2. Case m = 1

In the previous sections, we have always considered the case m > 1, for which we

have shown the existence and non-existence of solution under certain configurations

of the parameters. But what happens in the case m = 1?

Taking m = 1, the system can be written as follows:

u′ = ug(ar − σ),

r′ =
1

ν
((α− σ)r − u).

(4.8)

Here, γ+ and γ− are horizontal straight lines and it is possible that the point

(u, r) = (0, 0) belongs to Γ. If we remove the σ = α and σ = c cases, an isocline

analysis reveals the situations given by Fig. 9. In this case, due to the shape of
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Fig. 9. Representation of the phase diagram of (4.8), as a function of σ, m and α.

the curves γ+ and γ−, we have more difficulties in finding block solutions of the

equation, i.e. solutions that touch these curves. This fact is due to the behavior of

the function g(u) as u → ±c. In fact, we can show that we may not find a block

solution, for a certain behavior of the function g, as the following result shows.

Proposition 4.3. Assume that

1

g(u)
= O(c− u), as u→ c,

then there is no block-type solution.

Remark 4.4. A type of flux-saturated function that satisfies this condition is the

Wilson operator.

Proof. We are going to use a reductio ad absurdum argument to prove the lemma.

Suppose that there is a block solution, then there would be a connection between γ+

and γ−. This means we can find a solution branch (ū, r̄) in the interval (ξ−, ξ−+ ε]

that starts over points of γ−.

On the other hand, we can consider the problem

r′(u) =
1

ν

(α− σ)r − u
ug(ar − σ)

, r(u0) = r0, (4.9)
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where (u0, r0) ∈ γ−. The Picard–Lindelof theorem can be applied to (4.9) extended

by zero, prove uniqueness of solution that takes the form r(u) = σ+c
a .

However, we had assumed that there was a solution branch (ū, r̄) that in the

form r̄(ū) would be the solution of the problem (4.9), which is not possible due to

the previous uniqueness argument.

On the other hand, we can also establish conditions for the existence of solution.

Proposition 4.4. Assume that

1

g(u)
= O((c− u)1/p), as u→ c,

then there exists a block-type solution.

Remark 4.5. We can find some flux-saturated functions satisfying these conditions

on g, such as the hyperbolic tangent operator, or the Larson operator to which it

is associated g(u) = 1
µ

u
p
√

1−(
|u|
c )p

.

The non-uniqueness of the problem (4.9), under the hypothesis of Proposi-

tion 4.4, will allow us to prove the existence of a solution for this model. To do this,

we will consider the following result.

Lemma 4.2. Consider the equation

x′ = x
1
p a(t, x), x > 0, p > 1, (4.10)

where the function a admits a continuous extension in a neighborhood of (0, 0) and

a(0, 0) > 0. Then, the initial value problem (4.10) with x(0) = 0 has a solution

x(t) > 0 in a neighborhood of the right-hand side of t = 0.

Proof. Let us make the change of variable y = x
p−1
p . We have the following initial

value problem:

y′ =
p− 1

p
a
(
t, y

p
p−1

)
, y(0) = 0.

By using the Picard theorem, the problem has a solution y(t) with y′(0) =
p−1
p a(0, 0) > 0. Therefore, we have that y(t) > 0 on positive values in the neigh-

borhood of t = 0.

Remark 4.6. If a(0, 0) < 0, then the neighborhood is on the left-hand side of

t = 0.

We can now proceed to prove Proposition 4.4.

Proof. We will use the same constructive scheme developed in the proof of

Proposition 4.1.
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First, we will consider ũ sufficiently large, such that r′ < 0 and u′ has an uni-

modal shape, under the conditions u > ũ and r ∈
(
σ+c
a , σ−ca

)
.

Using Lemma 4.2 and system (4.9), we are be able to launch solutions from the

curves γ+ and γ−. Taking the initial conditions such that u0 > ũ, these solutions

will always touch the curve r = σ
a (see the proof of Lemma 3.1).

Let us denote by (u−, r−) one of the solution launched from γ− and (u+, r+)

one of the solution launched from γ+. Those solutions touch the curve r = σ
a at

some value u−1 and u+
1 , respectively. Assume u−1 < u+

1 , the opposite case can be

treated similarly. Then, we have that the solution (u+, r+), once it crosses the

line r = σ
a , it will always touch the curve γ′, since u′ > 0, and it cannot touch

the orbit of the solution (u−, r−). Therefore, the solution (u+, r+) connects γ−

with γ+.

4.3. Diffusion without transport

Formally, letting α = 0 in the model (4.1) leads to the following system:

∂U

∂t
=

∂

∂x

(
UmΦ

(
U−1 ∂U

∂x

)
− aU ∂Q

∂x

)
,

∂Q

∂t
− ν ∂

2Q

∂x2
= U,

(4.11)

corresponding to a process where diffusion of the chemoattractant dominates the

dynamics. As we discussed in the previous section, using the jump condition we can

derive a differential system for the description of entropy solutions. In this case, the

equations can be obtained by letting α = 0 in Eq. (4.2)

u′ = ug

(
ar − σ
um−1

)
,

r′ = −1

ν
(u+ σr).

(4.12)

Therefore, we can analyze the existence of block-type solutions of this problem

as a particular case of (4.2). From Theorem 4.1, we have the following result.

Corollary 4.1. There is a block-type solution of (4.12), for all σ > 0.

4.4. Transport without diffusion in Q

In this last section, we consider that the chemoattractant concentration is solution

of a linear transport-diffusion equation, which corresponds to the case τ1 = 1 and

τ2 = 0 = ν in Eq. (2.1), namely

∂U

∂t
=

∂

∂x

(
UmΦ

(
U−1 ∂U

∂x

)
− aU ∂Q

∂x

)
,

∂Q

∂t
+ α

∂Q

∂x
= U.

(4.13)
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With a similar argument to the one in Sec. 2, we would obtain (2.4). However,

in this case, the expression obtained for q′ does not need to be regular since (2.3)

is not satisfied. However, if σ 6= α we can expect that q ∈ H1
loc(R) and

(α− σ)q′(ξ) = u(ξ), a.e. ξ ∈ R.

Using this in the first expression of (2.4), as in Sec. 2, we obtain the existence of a

value K such as

um(ξ)Φ

(
u′(ξ)

u(ξ)

)
− a

α− σ
u2(ξ) + σu(ξ) = K, a.e. ξ ∈ R,

where u′ is the Radon–Nikodym derivative. Since um(ξ)Φ
(u′(ξ)
u(ξ)

)
is assumed to be

0 if u(ξ) = 0, it follows that if u has compact support, then outside this support

u = 0, and thus K = 0. Therefore, solutions of (4.13) will satisfy the equation

u′ = ug

( a
α−σu− σ
um−1

)
,

q′ =
u

α− σ
,

(4.14)

at the points of its support.

Remark 4.7. Since condition (2.3) is not verified, there is no clear description of

the block-type solutions. Therefore, we will describe the maximal branches solutions

of (4.16) in order to describe a possible connection between them.

Because of the large casuistry, the description of the chemoattractant will not

be discussed here. In this section, it will be assumed that σ 6= α, since the solution

u = cte is obtained for σ = α.

Setting

H(u) =
a

α−σu− σ
um−1

(4.15)

the first equation of (4.14) can be written as

u′ = ug(H(u)), (4.16)

and the expression of the chemoattractant follows after integrate the second equa-

tion of (4.14).

Since the function g is only defined in (−c, c), it is important to know the values

of u for which H(u) ∈ (−c, c). We will distinguish several cases based on the values

of α, σ, m.

Case 1. If σ > α, H is always negative because H(0) = −∞ and there is no root

of H.

Case 1.1. If m > 2, H is increasing and H(∞) = 0.

Solutions live in the interval (u+,∞) and are decreasing. It can be extended to

−∞, and u(−∞) = +∞. For a finite value u(ξ+) = u+ and u′(ξ+) = −∞. This

can be observed in Fig. 10.
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Fig. 10. Behavior of H in Case 1.1 and the profile of the solution.

Fig. 11. Behavior of H in Case 1.2 and the profile of the solution. Note that for 2○ there is no

solution because the differential equation is not defined.

Case 1.2. When m = 2, H is again increasing, negative but H(+∞) = − a
σ−α < 0.

This case opens two possibilities see Fig. 11.

1.2. 1○ The first alternative is σ > α+ a
c , which is similar to Case 1.1, see Fig. 11.

1.2. 2○ The second case corresponds with σ ≤ α+ a
c . In this situation there are no

solutions because there are no points in which the differential equation is

defined.

Case 1.3. In the case 1 < m < 2 the function H satisfies H(∞) = −∞ and there

is only a critical point at u∗ with a maximum value H∗, which are given by

H∗ := H(u∗) < 0, u∗ =
σ(α− σ)(1−m)

a(2−m)
. (4.17)

According to the relative position of H∗ with respect to c, we can distinguish the

following cases, see Fig. 12:

1.3. 1○ If H∗ ≤ −c, there are no solutions since there are no points for which the

differential equation is defined.

1.3. 2○ If −c < H∗, the differential equation is only defined for u ∈ (u+, u−).

Therefore, the solutions are defined in a bounded interval (ξ−, ξ+), where

u(ξ−) = u−, u(ξ+) = u+, and u′(ξ−) = u′(ξ+) = −∞.

Case 2. If 0 < σ < α, then H(0) = −∞, but H changes sign in û, which is given

by

û =
σ(α− σ)

a
. (4.18)
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Fig. 12. Behavior of H in Case 1.3 and the profile of the solution. Note that for 1○ there is no
solution because the differential equation is not defined.

Fig. 13. Behavior of H in the case 1 < m < 2 and 0 < σ < α. Note that both traveling waves
are continued by zero.

Case 2.1. In the case 1 < m < 2, H has no critical points and H(+∞) = +∞.

Therefore, there are two types of traveling waves, one increasing and one decreasing

that are represented in Fig. 13.

Case 2.2. If m = 2 and 0 < α < σ, H has no critical points, but there is a finite

asymptotic value H(+∞) =
a

α− σ
> 0. The position of this asymptotic value with

respect to c gives us three different situations:

2.2. 1○ If a
α−σ > c. This is a scenario similar to Case 2.1, see the graph in Fig. 14.

Fig. 14. Behavior of H in the case m = 2 and 0 < α < σ. In this case, the traveling waves that
have a finite height are continued by zero. The traveling wave of type 2○ and 3○ are not bounded,

and, therefore, is conditioned by a more general theory of the initial value problem.
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Fig. 15. Behavior of H in the case m > 2 and 0 < α < σ.

2.2. 2○ If a
α−σ = c. The modification in this case is the non-existence of a point r+

that cuts the graph of H to the c level (see Fig. 14), and now the solutions

end at infinity. They can reach infinity in finite or infinite time depending

on the properties of Φ.

2.2. 3○ If 0 < a
α−σ < c. This is a situation similar to the previous one, but infinite

is reached in infinite time, see Fig. 14.

Case 2.3. In the case m > 2, H(+∞) = 0, and the function H reaches a maximum

level H∗ > 0. Then, it is necessary to compare this number with c and we can

define three different scenarios and the values of σ for which the different traveling

waves are defined, see Fig. 15.

4.4.1. Conclusion and summary

The idea of this last section is to determine under which conditions we can find

block-type solutions. To do this we have analyzed all the different solution profiles

satisfying Eq. (4.14).

We have basically found two types of profiles that we can denominate, according

to their character, as increasing or decreasing profiles. Both are separated by the

level u∗, defined in (4.18), which defines the point of possible sign change of the H

function.

However, the only type of compact support solution we have found has a

decreasing profile, see Fig. 16. This compact support solution exists for σ > α,

Fig. 16. Representation of the only block solution of (4.13).
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1 < m < 2 and H∗ > −c. The last condition can be expressed, after several

standard calculations, as

σ(2−m)

(σ − α)m−1
>

c

2−m

(
m− 1

a(2−m)

)m−1

.
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