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ABSTRACT

Aims. One of the most reliable means of studying the stellar interior is through the apsidal motion in double line eclipsing binary
systems since these systems present errors in masses, radii, and effective temperatures of only a few per cent. On the other hand, the
theoretical values of the apsidal motion to be compared with the observed values depend on the stellar masses of the components and
more strongly on their radii (fifth power). The main objective of this work is to make available grids of evolutionary stellar models that,
in addition to the traditional parameters (e.g. age, mass, log g, Teff), also contain the necessary parameters for the theoretical study of
apsidal motion and tidal evolution. This information is useful for the study of the apsidal motion in eclipsing binaries and their tidal
evolution, and can also be used for the same purpose in exoplanetary systems.
Methods. All models were computed using the MESA package. We consider core overshooting for models with masses ≥1.2 M⊙. For
the amount of core overshooting we adopted a recent relationship for mass × core overshooting. We adopted for the mixing-length
parameter αMLT the value 1.84 (the solar-calibrated value). Mass loss was taken into account in two evolutionary phases. The models
were followed from the pre-main sequence phase to the white dwarf (WD) stage.
Results. The evolutionary models containing age, luminosity, log g, and Teff , as well as the first three harmonics of the internal stellar
structure (k2, k3, and k4), the radius of gyration βy, and the dimensionless variable α, related to gravitational potential energy, are
presented in 69 tables covering three chemical compositions: [Fe/H] = –0.50, 0.00, and 0.50. Additional models with different input
physics are available.

Key words. binaries: close – binaries: eclipsing – stars: evolution – stars: interiors

1. Introduction

Double line eclipsing binary systems (DLEBS) are the best
sources for obtaining absolute stellar parameters with great pre-
cision. In addition, because of their proximity, some effects may
appear due to the interaction of the two components, such as
mutual irradiation, tidal distortion, and mass exchange. DLEBS
are very important in astrophysics because the perturbations due
to the proximity of the two components act as probes and make it
possible to investigate in detail the evolution and in some particu-
lar cases their internal structure. In this sense, such perturbations
play a very similar role to that of the usual techniques of physics
labs in which objects are perturbed applying for example a mag-
netic and/or electric field and studying its behaviour under the
action of the applied perturbations.

In the case of DLEBS the presence of the companion changes
the gravitational field of both, which affects the equilibrium con-
figuration of both components (effect of tides). This alteration
is responsible for the loss of spherical symmetry of the binary
components and it depends on the internal structure of the com-
ponents. The two stars can also be distorted by the effect of the
⋆ Tables 1–69 are only available at the CDS via anonymous ftp

to cdsarc.cds.unistra.fr (130.79.128.5) or via https://
cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/674/A67

rotation that tends to flatten them on the poles. From the theoret-
ical point of view, it is possible to describe such distortions as a
function of the internal structure of both stars. The orbit of this
pair of stars will not be Keplerian because the orbital elements
will be functions of time, in particular the argument of perias-
tron ω. In general, there are three physical phenomena that can
give rise to apsidal motion: the loss of the spherical symmetry by
distortions; the presence of a third body; and a relativistic effect,
the best known example being the advance of perihelion of the
planet Mercury.

On the other hand, earlier comparisons between the internal
structure constants derived from the observed apsidal motions
were reported a long time ago; they indicate that stellar struc-
ture is more centrally concentrated in mass than those extracted
from the stellar evolutionary models (see e.g. Introduction
in Claret & Giménez 1993). Such discrepancies were par-
tially resolved later by (Claret & Giménez 1993, 2010) con-
sidering new times of minima, new opacity tables, and core
overshooting.

For several years the apsidal motion of DI Her was a
serious problem since the comparison between the theoretical
calculations and the observed value of ω̇ differed by almost
500%. Various mechanisms were invoked to explain such a dis-
crepancy, including alternative theories of gravitation. For the
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confrontation of theory and observational data, Claret (1998)
analysed some aspects of the apsidal motion of DI Her. The
main conclusion of that paper was that an alternative theory
of gravitation was not necessary to explain the observational
value of the apsidal motion. Finally the case of DI Her was
solved observationally through the Rossiter-McLaughlin effect
by Albrecht et al. (2009). Later Claret et al. (2010) using the data
obtained by Albrecht et al. (2009), mainly those related to the
Rossiter-McLaughlin effect, found a good agreement between
the theoretical value of k2 and its observational counterpart.
More recently, Lang et al. (2022), using TESS data combined
with previous observations, obtained a significant result since
the three-dimensional spin directions of the two components of
DI Her could be determined. With these data these authors have
found good agreement between k2theo, provided by Claret et al.
(2021), and its observational counterpart.

To the best of our knowledge, the last systematic comparison
between theoretical and observed values of apsidal motion rates
was carried out by Claret et al. (2021) who used an observa-
tional sample of 27 selected DLEBS to compare the theoretical
values of k2 with their observational counterparts. These authors
have used minimum times extracted from the light curves pro-
vided by the Transiting Exoplanet Survey Satellite (TESS). Very
good agreement has been found between the theoretically pre-
dicted values and their observational counterparts, including the
troublesome case of DI Her.

Another very important contribution to the study of apsi-
dal motion came from a group from the Astronomical Institute
at Charles University. Zasche & Wolf (2019) investigated 21
eccentric eclipsing binaries (early-type) located in the Small
Magellanic Cloud and determined their apsidal motions and
analysed their respective light curves. More recently Zasche et al.
(2021) present an extensive sample of 162 early-type binary sys-
tems showing apsidal motion located in the Large Magellanic
Cloud. This point is particularly important given that light curves
and apsidal motion modelling were carried out for the first time
for several systems simultaneously and in an environment with
a chemical composition different from solar (for a more recent
reference on apsidal motion measurements, see Zasche et al.
2023).

The comments in the previous paragraphs refer mainly
to DLEBS that are still on the main sequence or close to
it. Burdge et al. (2019) studied the orbital decay of com-
pact stars in a hydrogen-poor low-mass white dwarf (WD),
FJ053332.05+020911.6. One of the components of this sys-
tem exhibits ellipsoidal variations due to tidal distortions. The
estimated mass for this component (PTF J0533+0209B) is
of the order of 0.20 M⊙. We note that the gravity-darkening
effect must also be taken into account for compact stars dis-
torted by tides and/or rotation (Claret 2021). Until then we
computed our evolutionary stellar models containing internal
structure constants only up to the giant phases. For the case of
PTFJ053332.05+020911.6 and other similar systems, where at
least one WD has been detected, we decided to extend our grids
from the pre-main sequence (PMS) to the WD phase. This is the
main objective of the present paper.

2. Stellar evolutionary models: Apsidal motion
internal constants, momentum of inertia, and
gravitational potential energy

The evolutionary tracks were computed using the Modules
for Experiments in Stellar Astrophysics package (MESA; see

Paxton et al. 2011, 2013, 2015; v7385). We introduced a sub-
routine to compute the apsidal motion constants (k2, k3, k4),
the moment of inertia, and the gravitational potential energy.
In this paper we do not consider directly the effects of rota-
tion. The adopted mixing-length parameter αMLT was 1.84 (the
solar-calibrated value; Torres et al. 2015). However, the αMLT
parameter seems to depend on the evolutionary status and/or
metallicity, as shown by Magic et al. (2015) using 3D simula-
tions. As commented in Claret (2019), it is not easy to compare
these results with those coming from MESA, due to the different
input physics, for example the equation of state and opacities. For
the opacities we adopted the element mixture given by Asplund
et al. (2009). The helium content follows the enrichment law
Y = Yp + 1.67Z, where Yp is the primordial helium content (Ade
et al. 2016).

The mass range covers the interval from 0.2 to 8.0 M⊙ for
three chemical compositions: [Fe/H] –0.5, 0.00, and +0.50. The
grids for the two extra chemical compositions, [Fe/H ] = –0.50
and 0.50, were computed to take into account observational
errors in [Fe/H] for systems located in the solar environment.

As commented in the Introduction, the evolutionary tracks
were computed from the PMS up to the WD stage. We adopted
the following scheme for mass loss: for the interval 0.2–1.8 M⊙
we followed the recipe by Reimers (1977) with ηR = 0.1 and
for the AGB scheme we adopted the formalism by Blocker
(1995) with ηB = 10.0. For models more massive than 1.8 M⊙
we assumed ηR = 0.1 and ηB = 30.0. The adopted wind switch
RGB-AGB was 1.0×10−4.

Convective core overshooting was considered for models
with stellar mass higher than or equal to 1.2 M⊙. In this paper
we adopt the diffusive approximation, represented by the free
parameter fov (Freytag et al. 1996; Herwig et al. 1997). The
diffusion coefficient in the overshooting region is given by the
expression Dov = Doexp

(
−2z
Hν

)
, where Do is the diffusion coeffi-

cient at the convective boundary, z is the geometric distance from
the edge of the convective zone, Hν is the velocity scale-height
at the convective boundary expressed as Hν = fov Hp, and the
coefficient fov is a free parameter that governs the width of the
overshooting layer. It is known that models computed adopting
core overshooting are more centrally concentrated in mass than
their standard counterparts following Claret & Giménez (1991).
For the amount of core overshooting we adopted the relation-
ship between the stellar mass and fov derived by Claret & Torres
(2019), instead of adopting a single value of core overshooting
for the entire range of masses, as was done in the past.

2.1. Apsidal motion constants: k2, k3, and k4

The theoretical apsidal motion constants k2, k3, and k4 were
derived simultaneously by integrating the Radau equation using
a fifth-order Runge-Kutta method, with a tolerance level of 10−7:

adη j

da
+

6ρ(a)
ρ(a)

(η j+1) + η j(η j−1) = j( j + 1), j = 2, 3, 4. (1)

Here the auxiliary parameter η j is given by

η j ≡
a
ϵ j

dϵ j

da
. (2)

In Eq. (1), a denotes the mean radius of the stellar configuration,
ϵ j is a measure of the deviation from sphericity, ρ(a) is the mass
density at the distance a from the centre of the configuration, and
ρ(a) is the mean mass density within a sphere of radius a.
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Fig. 1. Hertzprung–Russell diagram for some models from the PMS to
cooling WD stage. The masses of the models are (from right to left)
0.7 (black), 1.0 (red), 1.4 (green), 3.0 (blue), and 8.0 (magenta) in solar
units. αMLT = 1.84, [Fe/H] = 0.00.

The apsidal motion constant of order j is given by

k j =
j + 1 − η j(R)

2
(

j + η j(R)
) , (3)

where η j(R) indicates the values of η j at the surface of the star.
We note that these equations were derived in the framework
of static tides. For the case of dynamic tides, we need to treat
with more elaborated equations because the rate of static tides is
derived assuming that the orbital period is larger than the peri-
ods of the free oscillation modes. However, dynamic tides can
significantly change this scenario due to the effects of the com-
pressibility of the stellar fluid. This is important in systems that
are nearly synchronized. In this case, for higher rotational angu-
lar velocities, additional deviations due to resonances appear if
the forcing frequencies of the dynamic tides come into the range
of the free oscillation modes of the component stars. The role
of dynamical tides was evaluated for some DLEBS by Claret &
Willems (2002), Willems & Claret (2003), Claret & Giménez
(2010), and more recently in Claret et al. (2021).

As mentioned in the Introduction, our stellar evolutionary
tracks were computed without taking rotation into account. In
order to evaluate the effects of rotation on the apsidal motion
constants, a correction on the internal structure constants was
proposed by Claret (1999). This correction is given by the
equation

∆log k2 ≡ log k2,standard − λ. (4)

Here λ = 2V2/(3gR), where g is the surface gravity and V is the
equatorial rotational velocity.

Figure 1 shows the Hertzprung–Russell diagram (HR) for
some selected models: 0.70, 1.00, 1.40, 3.00, and 8.00 M⊙. In
Figs. 2 and 3 we show the evolution of log k2 as a function of
log g for models with initial masses of 8.00 and 1.00 M⊙, respec-
tively. The behaviour of the two models is similar when they
reach the WD stage (log k2 is of the order of –1.00). This implies
that, using simple models based on polytropes, the equivalent n
would be of the order of 2.1, where n is the polytropic index. This
data confirm the earlier calculations for WD using polytropes as

Fig. 2. Behaviour of logk2 as a function of log g. [Fe/H]=0.00, initial
mass of 8.00 M⊙.

Fig. 3. Same as Fig. 2, but for an initial mass of 1.00 M⊙.

input physics. We recall that for the case of non-relativistic elec-
trons n ≈ 1.5 and for the case of relativistic electrons n = 3.0 this
index would be ≈2.0 (see Kopal 1959, p. 35).

The parameter k2 is applied in the studies of apsidal motion
of DLEBS and/or exoplanets, and is also useful for computing
tidal evolution. For example, the differential equations that gov-
ern the tidal evolution depend not only on this parameter, but also
on the radius of gyration (see Hut 1981, 1982). We can write the
corresponding differential equations as

de
dt
= −

27k21

tF1
q(q + 1)

(R1

A

)8 e
(1 − e2)13/2(

f3 − 11/18(1 − e2)3/2 f4
Ω1

ω

)
, (5)

dA
dt
= −

6k21

tF1
q(q + 1)

(R1

A

)8 A
(1 − e2)15/2(

f1 − (1 − e2)3/2 f2
Ω1

ω

)
, (6)

dΩ1

dt
=

3k21

tF1β
2
1

q2
(R1

A

)6 ω

(1 − e2)6

(
f2 − (1 − e2)3/2 f5

Ω1

ω

)
, (7)

dΩ2

dt
=

3k22

tF2β
2
2

q2
2

(R2

A

)6 ω

(1 − e2)6

(
f2 − (1 − e2)3/2 f5

Ω2

ω

)
. (8)

A67, page 3 of 7



A&A 674, A67 (2023)

In the above equations e represents the orbital eccentricity, A
is the semi-major axis, Mi is the mass of component i, Ωi is
the angular velocity of the component i, ω is the mean orbital
angular velocity, Ri is the radius of the component i, q = M2/M1,
q2 = M1/M2, and tFi is an estimation of the timescale of tidal
friction for each component.

2.2. Calculation of gravitational potential energy Ω and
moment of inertia I

As indicated by Claret (2019) the effects of General Relativity
on the calculation of the moment of inertia and gravitational
potential energy can be neglected for stars during the PMS, main
sequence, and even for WD. However, for consistency with our
previous papers on compact stars, here we adopt the relativistic
formalism throughout. Therefore, the moment of inertia can be
computed using the equations

J =
8π
3

∫ R

0
Λ(r)r4

[
ρ′(r) + P(r)/c2

]
dr,

I ≈
J(

1 + 2GJ
R3c2

) ≡ (βR)2M, (9)

where β is the radius of gyration.
The gravitational energy of a spherically symmetric star can

be written as

Ω = −4π
∫ R

0
r2ρ′(r)

[
Λ1/2(r) − 1

]
dr ≡ −α

GM2

R
. (10)

In the above equation P(r) is the pressure, ρ′(r) the energy
density, and the function Λ(r) is given by

[
1 − 2Gm(r)

rc2

]−1
. The

parameter α is a dimensionless number that measures the rel-
ative mass concentration. In the case of less elaborated stellar
models (e.g. polytropes), we have α = 3/(5 − n), where n is the
polytropic index. Equations (9) and (10) were integrated simulta-
neously adopting the same numerical scheme and tolerance level
as in Eq. (1).

2.3. Some interesting properties of the moment of inertia and
the gravitational potential energy: The Γ function

The factors α and β are connected through the function Γ intro-
duced by Claret (2012) and improved by Claret & Hempel (2013),
which is defined as

Γ(mass,EOS) ≡
[
αβ

]
Λ(R)0.8 , (11)

where EOS is the equation of state.
One of the most striking properties of this function is that

the final products of stellar evolution (white dwarfs, neutron-
quark hybrids, and proto-neutron stars at the onset of formation
of black holes) recover the value calculated for the PMS stage
(i.e. Γ(mass, EOS)) ≈ 0.40. We note for the last four mentioned
systems that the effects of General Relativity are strong. This
invariance was also extended to models of gaseous planets with
masses between 0.1 and 50.0 MJupiter, following from the gravi-
tational contraction up to an age of ≈20 Myr. As a consequence
of this invariance a macroscopic stability criterion for neutron,
hybrid, and quark star models was established. More detailed
information on this function, the ‘memory effect’, and the sta-
bility criterion can be found in Claret (2012, 2014), Claret &
Hempel (2013).

Fig. 4. Time evolution of the function Γ(mass, EOS) for a model
with initial mass of 7.00 M⊙ evolving from the PMS to the WD stage,
αMLT=1.84, fov = 0.016, [Fe/H]=0.00. The red line represents Γ(mass,
EOS), while the black line indicates the total thermal power from PP
and CNO (excluding neutrinos) and the blue line indicates the total ther-
mal power from triple-α (also excluding neutrinos). The nuclear power
ϵN is in logarithmic scale.

Fig. 5. Same as Fig. 4, but for a model with initial mass of 0.40 M⊙ and
fov = 0.000.

As examples of the behaviour of Γ(mass, EOS), Figs. 4
and 5 show the invariance of such a function for the PMS-WD
stages for two different models, 7.00 and 0.40 M⊙, respectively,
adopting the solar composition. In both figures Γ(mass, EOS)
increases by about three orders of magnitude with respect to its
value at PMS (this increase is not shown fully in Figs. 4 and 5
due to the chosen scale).

On the other hand, it is clear from both figures that there is
a connection between the values of Γ(mass, EOS) and the total
thermal power from PP, CNO, and triple-α: the larger the ther-
monuclear contributions, the larger the value of Γ(mass, EOS).
During the PMS phase, when the chemical composition is homo-
geneous, Γ(mass, EOS) ≈ 0.40 and ϵN ≈ 0.0. However, in the
WD phase, although the initial chemical composition has been
altered by thermonuclear reactions, the value 0.40 is recovered,
given that these reactions cease. In summary, the property of
Γ(mass, EOS) presents the same value (≈0.40) in the initial and
final stages of stellar evolution. We confirmed this behaviour
for all the models of our grids. This behaviour is also valid for
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gaseous planets, neutron-quark-hybrid stars, and proto-neutron
stars at the onset of formation of black holes.

3. Final remarks and table organization

We computed three evolutionary grids covering three metallici-
ties: [Fe/H) = –0.50, 0.00, and +0.50 from PMS to the WD stage.
The covered mass range was 0.20–8.00 M⊙. For such models, in
addition to the characteristic parameters (age, luminosity, log g,
effective temperatures), the internal structure constants (k2, k3,
k4), the moment of inertia, and the gravitational potential energy
have also been computed. The resulting tables have been pre-
pared mainly for studies of DLEBS and/or exoplanetary systems.
Tables I–III summarize the input physics for each series of mod-
els, while Tables 1–69 contain the necessary theoretical inputs
for the comparison with the absolute dimensions of the DLEBS
as well as the necessary parameters for the apsidal motion and
tidal evolution studies.
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Appendix A: Brief description of Tables A1, A2,
and A3

Tables A1, A2, and A3 summarize the type of data available (for
more details, see the ReadMe file on the CDS).

Table A.1: Mass and initial chemical composition

Name Initial mass (M⊙) [Fe/H]
Table1 0.20 0.00
Table2 0.30 0.00
Table3 0.40 0.00
Table4 0.50 0.00
Table5 0.60 0.00
Table6 0.70 0.00
Table7 0.80 0.00
Table8 0.90 0.00
Table9 1.00 0.00
Table10 1.10 0.00
Table11 1.20 0.00
Table12 1.40 0.00
Table13 1.60 0.00
Table14 1.80 0.00
Table15 2.00 0.00
Table16 2.50 0.00
Table17 3.00 0.00
Table18 4.00 0.00
Table19 5.00 0.00
Table20 6.00 0.00
Table21 7.00 0.00
Table22 7.50 0.00
Table23 8.00 0.00

Table A.2: Mass and initial chemical composition

Name Initial mass (M⊙) [Fe/H]
Table24 0.20 -0.50
Table25 0.30 -0.50
Table26 0.40 -0.50
Table27 0.50 -0.50
Table28 0.60 -0.50
Table29 0.70 -0.50
Table30 0.80 -0.50
Table31 0.90 -0.50
Table32 1.00 -0.50
Table33 1.10 -0.50
Table34 1.20 -0.50
Table35 1.40 -0.50
Table36 1.60 -0.50
Table37 1.80 -0.50
Table38 2.00 -0.50
Table39 2.50 -0.50
Table40 3.00 -0.50
Table41 4.00 -0.50
Table42 5.00 -0.50
Table43 6.00 -0.50
Table44 7.00 -0.50
Table45 7.50 -0.50
Table46 8.00 -0.50
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Table A.3: Mass and initial chemical composition

Name Initial mass (M⊙) [Fe/H]
Table47 0.20 +0.50
Table48 0.30 +0.50
Table49 0.40 +0.50
Table50 0.50 +0.50
Table51 0.60 +0.50
Table52 0.70 +0.50
Table53 0.80 +0.50
Table54 0.90 +0.50
Table55 1.00 +0.50
Table56 1.10 +0.50
Table57 1.20 +0.50
Table58 1.40 +0.50
Table59 1.60 +0.50
Table60 1.80 +0.50
Table61 2.00 +0.50
Table62 2.50 +0.50
Table63 3.00 +0.50
Table64 4.00 +0.50
Table65 5.00 +0.50
Table66 6.00 +0.50
Table67 7.00 +0.50
Table68 7.50 +0.50
Table69 7.50 +0.50
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