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Abstract

In this thesis, we employ the principles of statistical physics to investigate the ecology
and evolution of bacterial communities. By studying the collective behavior of large en-
sembles of molecules or components, statistical physics uncovers new phenomena and
transitions between different phases . This approach, originally applied to physical sys-
tems, has been extended to complex systems like biology and social systems, leading to
the emergence of the discipline of complex systems. Ecosystems, exemplifying complex
systems, consist of numerous interacting species that generate emergent properties such
as diversity, stability, and functionality. Given the continuous evolution of species, con-
structing a statistical physics framework for ecological systems is a challenging task. To
tackle this, the thesis focuses on bacterial populations as a relatively accessible system.
Recent technological advancements allow for easy sampling, analysis, and sequencing of
bacterial communities, making them ideal for studying emergent phenomena. The the-
sis is divided into three parts, corresponding to ecology, evolution and non-equilibrium
physics.
In Chapter 1, we provide an overview of the motivations and content of this thesis, along
with a general introduction to complex systems and the ecology and evolution of bacte-
ria. Part I centers on microbial macroecology, with Chapter 2 specifically investigating
interactions within bacterial ecosystems. Through extensive data analysis, we discover a
universal macroecological law that relates pairwise correlations between species to their
phylogenetic distance. Utilizing a statistical physics approach, we develop a stochas-
tic model that reproduces this empirical pattern, attributing it to coupled environmental
fluctuations, also known as environmental filtering.
Part II focuses on bacterial eco-evolution, particularly the formulation of a new theoret-
ical framework and its application to antibiotic tolerance evolution. In Chapter 3, we
establish a general framework for trait distributions using statistical physics tools, inves-
tigating various evolutionary phenomena such as evolutionary branching.
In Chapter 4, we employ this framework to study the evolution of antibiotic tolerance in
bacteria through lag-time adaptation. By presenting a stochastic individual-based model
that replicates experimental results, we derive analytical predictions using our frame-
work. Finally, in Part III, we delve into the concept of irreversibility in non-equilibrium
statistical physics.
Chapter 5 examines the geometric properties of non-equilibrium currents in stochastic
thermodynamics, extracting theoretical insights. This geometric information is then uti-
lized to comprehend the relationship between irreversibility, dissipation, and current
symmetry breaking in non-equilibrium stationary states.
In Chapter 6, we analyze the irreversible properties of evolution using the general frame-
work introduced in Chapter 3. Evolution is found to be constantly out of equilibrium due
to the simultaneous presence of selection and mutations, and we explore its irreversibil-
ity in various examples, including evolutionary branching. Ultimately, in Chapter 7, we
present general conclusions drawn from our findings and suggest potential avenues for
future research. Also, in appendix E we include a resume and the concluions of the thesis
in english.
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La física estadística proporciona un marco teórico para estudiar las propiedades colec-
tivas de sistemas compuestos por muchos componentes que interactúan entre sí. Aunque
inicialmente se aplicó a sistemas físicos, se ha extendido a otros sistemas complejos como
la biología y los sistemas sociales. En esta tesis,empleamos la física estadística para inves-
tigar la ecología y evolución de comunidades bacterianas, las cuales son sistemas ecológi-
cos ideales debido a la enorme cantidad de datos disponibles.
La tesis se divide en tres partes, correspondientes a los argumentos investigados: ecología,
evolución y física estadística fuera del equilibrio. En el Capítulo 1, ofrecemos una visión
general de las motivaciones y el contenido de esta tesis, junto con una introducción gen-
eral a los sistemas complejos y la ecología y evolución de las bacterias.
En la Parte I, nos enfocamos en la macroecología microbiana y exploramos las interac-
ciones dentro de los ecosistemas bacterianos. A través del análisis de datos, descubrimos
una ley macroecológica universal que relaciona la correlación entre especies con su dis-
tancia filogenética. Mediante el desarrollo de un modelo estocástico basado en la física es-
tadística, atribuimos este patrón a fluctuaciones ambientales acopladas, conocidas como
filtro ambiental.
La parte II se adentra en la eco-evolución bacteriana. En el Capítulo 3 establecemos un
nuevo marco teórico utilizando herramientas de física estadística para estudiar la dis-
tribución de fenotipos y diversos fenómenos evolutivos, como la especiación simpátrica.
Además, en el Capítulo 4 empleamos este marco para investigar la evolución de la tol-
erancia a los antibióticos en bacterias mediante la adaptación del tiempo de lag. Presen-
tamos un modelo estocástico que reproduce los resultados experimentales y obtenemos
predicciones analíticas utilizando nuestro marco teórico.
En la Parte III, examinamos el concepto de irreversibilidad en la física estadística de sis-
temas fuera de equilibrio. El Capítulo 5 se centra en las propiedades geométricas de
las corrientes en termodinámica estocástica y sus implicaciones. Analizamos la relación
entre irreversibilidad, disipación y rupturas de simetría de las corrientes en estados esta-
cionarios fuera de equilibrio. En particular, conseguimos generalizar el principio de Pri-
gogine utilizando el exceso de entropía.
En el Capítulo 6, exploramos las propiedades irreversibles de la evolución Darwiniana
utilizando el marco teórico general presentado anteriormente. Descubrimos que la evolu-
ción se mantiene constantemente fuera de equilibrio debido a la presencia de selección y
mutaciones, y estudiamos la irreversibilidad en ejemplos como la especiación.
Finalmente, en el Capítulo 7, presentamos conclusiones generales y sugerimos posibles
direcciones para futuras investigaciones. Al emplear la física estadística, esta tesis con-
tribuye a la comprensión de los sistemas complejos, proporcionando conocimientos sobre
el comportamiento colectivo, la ecología y la evolución de las comunidades bacterianas.
Un resumen y las conclusiones de la tesis en castellano están incluidos en la apéndice E.
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Chapter 1

Introduction

1.1 Prelude: life out of equilibrium

Depending on the scale at which it is observed, life manifests itself in totally different
phenomena and characteristics. Nevertheless, a common aspect pervades it: it is out of
equilbrium, at physical, chemical or purely dynamical level.
Inside the cell, chemical reactions work at an unstoppable pace in transforming molecules
or in producing energy. Yet, the cell persists. In multi-cellular organisms, single cells are
constantly destroyed and created to maintain the individual alive. Energy flows from
one being to another in the act of eating. Species are persistently reshaped by evolution
and adaptation, creating a temporal lineage that goes beyond the survival of the individ-
ual. Ecosystems are an entangled web of relations emerging from species interactions.
Independently of the scale at which life is observed, the apparent stasis is just the result
of a hidden movement. This dynamic motion relates all the individuals with others, and
is the common nature of all life on earth. As the philosopher Emanuele Coccia points
out, life is is always an inheritance from somebody else, a Metamorphoses where the form
changes but the substance persists [1].
Ecology, is the study of how populations, species and ecosystems are subjected to this
flow of matter, biomass and energy. The process by which individuals and their relations
change in time is evolution.
Along its history, ecology has been an attractive subject for physicists. The American
physical chemist Alfred J. Lotka, in his classic book "Elements of physical biology" [2],
proposed an interpretation of ecology in terms of flow of biological matter (biomass) and
energy through organisms [3]. Lotka was probably one of the first physicists interested
in ecology, and, in his book, he distinguished between biophysics, the study of morpho-
logical and physical phenomena at the organism level, and his physical biology, whose
aim is to apply physical principles to biological systems. Being very influenced by his
education, he proposed to study aggregates of individuals, i.e. populations, in the same
way a chemist analyzes aggregates of molecules.
Following his physical inclination, Lotka proposed the idea that ecological relations could
derive from energetic principles, and introduced words as "system", "dynamics" and "ki-
netics" together with differential equations in the field of theoretical ecology. In his view,
individuals are just a metastable accumulation of biomass in constant exchange of energy
with the environment.
It is inspiring to contemplate the distribution of biomass on earth by agreeing momentar-
ily with Lotka’s view. Life is divided into five kingdoms, each of them with characteristic
metabolic and ecological properties. How much biomass does each kingdom store?
The biomass composition of the entire biosphere consists of a census of 550 (approx) giga-
tons of carbon (Gt C) distributed among all of the kingdoms of life [4]. Plants accumulate
≈450 Gt C and are the dominant kingdom, primarily present in terrestrial areas. Bacteria
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(≈70 Gt C) and archaea (≈7 Gt C) are the second and third dominant kingdom and are pre-
dominantly located in deep subsurface environments. Finally, fungal biomass consists of
≈ 15 Gt C while animals one is ≈ 2 Gt C ( mainly in marine environments.) [4]. Figure
1.1 illustrates graphically the biomass distribution across kingdoms, and in particular in
the animal one. Indeed, organisms can be divided into two classes depending on their
energetic strategy.
As an inspiring exercise let us assume this purely energetic perspective and imagine the
flow of biomass in the whole earth. Consider a sphere in an empty space: the inside is
organic matter, while the outside is inorganic matter. On the surface of the sphere lie the
autotroph, like plants algae and many bacteria, that are organism able to grow by absorb-
ing energy from inorganic matter. Photosyntesis, i.e. that capacity of using light, water
and carbon dioxide to produce oxygen and energy in form of sugar, is a typical behav-
ior of this class of organisms. Hence, they create a net change by converting inorganic
matter into organic one. On the other hand, the interior of the sphere is the residence
of heterotroph, organisms that need to draw energy from other life forms, like animals,
fungi and some bacteria. Many of this organisms sustain themselves by predating on
other individuals, being them autotroph or heterotroph, and hence transforming inor-
ganic matter into new forms.
These two classes of organisms constitute the basis of a food web, i.e. a graphical repre-
sentation of what-its-what in a ecosystem and a central tool in theoretical ecology.
The continuous flux of energy through the food web produces several universal laws
relating the biomass of its different components [5], such as predator-prey [6], plant en-
ergetics [7] and mammals body-mass [8].
Even if this thesis is not about ecosystems energetics, we consider the Lotka’s view very
inspiring and motivating.
The next section is devoted to present the contents of this thesis.

1.2 Motivations and contents of this thesis

Statistical physics studies the macroscopic properties of aggregates of many molecules,
or components, ranging from gases to ferromagnetic systems. Instead of following the
single trajectory of each components, statistical physics takes the ensamble approach, and
studies the probability of a certain collective configuration. By moving to the macroscopic
level, new collective and cooperative phenomena are revealed, such as different "phases"
and particular transition between them [9]. By applying this paradigm to non-physical
systems, like biological or social one, physicists contributed to create the discipline of
complex system, which aim is to study natural collective phenomena.
Ecosystems are a paradigmatic example of complex systems, given that they are com-
posed by a large number of species, which interactions generate collective emergent
properties, such as diversity, stability and functions. Nevertheless, ecological commu-
nities are far more complex than gases, because in the first one, individual differences
have an effect, while in the latter they are averaged away by the enormous size of 1023

molecules per mole. Furthermore, while in statistical physics the system is in thermo-
dynamic equilibrium, ecological communities are away from equilibrium, due the non-
trivial species interactions and the constant fluctuations of the environment. Finally,
species are always in a process of evolution, that, even if on long timescales, causes a con-
tinuous transformation of the system components and interactions. Hence, constructing
a statistical physics of ecological systems is far more difficult objective than the one faced
by Boltzmann and Gibbs.
To make the venture smoother, we will try to construct such an ambitious theory in one
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of the easiest available system: bacterial populations. Indeed, thanks to recent techno-
logical advances, bacterial (or more in general microbial) communities, such as the one
human gut microbiome, can be easily sampled, analyzed and sequenced, obtaining the
abundances of typically 103 species for a total order of 1013 individuals ! By looking at
the number, it is not as big as Avogadro’s number, but it is more than the total number
of trees on the planet. Hence, microbial communities are the ideal ecological system to
study emergent phenomena.
Furthermore, thanks to their typical short division time and their large mutation rate (for
E.Coli in the lab the first is of 20 mins, while the second is circa 10−10 per base per gen-
eration), bacterial populations are suitable to study evolutionary phenomena, like the
emergence of tolerance to antibiotics [10], or rise of different species [11]. Hence, the
development of a predictive physics of microbial communities would have deep conse-
quences in medicine, given the highly non trivial rate of the gut microbiome in chronic
diseases, and the rapid rise of resistance to antibiotics.
Hence, we claim that non-equilibrium statistical physics is an important tool to under-
stand biological phenomena.
Part I of this thesis , and in particular Chapter 2, is devoted to the study of collective inter-
actions in microbial communities. Using a macroecological approach, we reveal the pres-
ence of a universal mocroecological law relating species correlations and phylogenetic
similarity. Using the tools of statistical physics, we formulate a model able to reproduce
such a empirical pattern. In particular, shared environmental flctuations, also known as
environmental filtering, are individuated as the cause of the macrecological law.
Part II of this thesis is devoted to the bacterial phenotypic evolution. In Chapter 3 we
formulate an a original eco-evolutionary framework for bacterial population, using the
tools of non-equilibrium statistical physics such as stochastic processes and kinetic theory
such as stochastic processes and kinetic theory. Thanks to this framework, we are able
to generalize the existent theory of Adaptive Dynamics (AD) to bacterial populations. In
Chapter 4 we use the aforementioned framework to study a relevant example of bacterial
evolution: the emergence of tolerance to antibiotics. In particular, we consider a recent
experiments where bacteria extend their lag phase to survive to antibiotic exposition and
formulate a compuational model able to reproduce the empirical results. Furthermor,
our eco-evolutionary framework is used to derive an analytical form of the model and to
make quantitative predictions.
In part III we delve deep into the non-equilibrium statistical physics of irreversible phe-
nomena. In particular, Chapter 5 is dedicate to study the general problems of non-
equilibrium systems using the tools of stochastic thermodynamics, and in particular to
study the relation between dissipation, irreversibility and the geometrical properties of
currents. We show that non-equilibrium conditions induce a chiral symmetry breaking
in the currents and derive from it important thermodynamics consequences. In particu-
lar, when approaching a non-equilibrium steady state the systems tends to minimize the
entropy production but to minimize the housekeeping heat emerging from the aforemen-
tioned symmetry breaking.
To conclude this part, in Chapter 6 we study the eco-evolutionary framework introduced
in 3 under the lens of non-equilibrium statistical physics. In particular, we derive the
entropy production, i.e. a measure of irreversibilty , of adaptive evolution, concluding
that the contemporary presence of selection and mutations drives the population away
from equilibrium. The entropy production is studied in many different cases, included
the diversification phenomenon of evolutionary branching.
To close this thesis, in Chapter 7 we derive some general conclusion across and in each of
three parts and sketch the way to future research.



4 Chapter 1. Introduction

FIGURE 1.1: Distribution of biomass on earth
. Figure from Ref. [4]. (A) Graphical representation of the biomass distribution across

principle taxa (colors): animals, protists, fungi, plants, bacteria, archea and viruses. The
are of the polygons is proportional to the taxa biomass. Clearly, the majority of earth
biomass is accumulated in plants. (B) Zoom in in the biomass distribution in animals.

The major contribution of biomass are from arthropods and fishes.

To complement the results exposed in the thesis, we present also four appendices, con-
taining the more technical material of data analysis, numerical methods and analytic
derivations.
In this introduction, we both present the biological system of interest, i.e. the ecology and
evolution of microbial world, and the physical tools we use to describe it.
In Section 1.3, we introduce briefly both microbial evolution and ecology. We begin by
giving an overview of bacterial evolution and by showing how its peculiar characteristics
hinder the univocal definition of species. The following section 1.3.2 is devoted to micro-
bial ecology, illustrating briefly the nature and the interaction of microbial communities.
In particular in Sec.1.3.2, Macroecology is introduced as the framework to study emergent
and general statistical patterns in ecosystems.
In Sec.1.4 we discuss how theoretical physics can describe and study biological collective
processes as complex systems. In particular, Section 1.5 is devoted to the presentation of
the key aspects of non-equilibrium statistical physics, such as stochastic dynamics and
multiplicative fluctuations.
After having discussed the basic concepts and formalism, Sections 1.6, 1.7 and 1.8 are
devoted to a detailed introductions to the investigations reported in the three parts of the
thesis. Section 1.3.2, is and introduction to part I where we discuss some recent results
on microbial macroecology, that are the basis of the research reported in this thesis.
On the other hand, in section 1.7 we discuss evolutionary dynamics and the theory of
Adaptive dynamics. These theories are the basis of part II, were will generalize and apply
them to bacterial populations. Finally, section 1.8 is a brief introduction to irreversibility
and dissipation in non-equilibrium statistical physics and complex systems.



1.3. A tour in the microbial world 5

A B

C D

E F

FIGURE 1.2: The history of the evolutionary tree metaphor A) Darwin’s tree. (Top) In his travel
diary, Darwin drew a tree like shape together with the words "I think" [12]. This is the first
proof the intuition of representing evolution in diagram with the form of a tree. (Bottom )A more
detailed representation of the evolutionary tree appeared in the Origins[13]. B) the graphically
interpretation of Darwin’s divergence diagram as a tree by E. Haeckel C) Using the 16s rRNA
method, Carl Woese constructed a phylogenetic tree that included also bacteria, and eukaryotes,
as life’s domain. The research results revealed the existence of the third domain of archea (figure
from [14]). D) After the discoveries of lateral genetic transfer and endosymbiosis, W. Ford Doolit-
tle defined the new notion of "reticulated tree" to represent natural evolution ( figure from [15]).
E) William Martin realized a graphical illustration of the reticulated tree that included clearly the
effect of LGT, the first symbiosis producing eukaryotes and further symbiotic events (figure from
[16]). F) The tree of life obtained by J. Banfield and collaborators obtained sequencing thousands
of wild microbes with a new method involving sixteen ribosomial proteins.
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1.3 A tour in the microbial world

1.3.1 The species problem and bacterial evolution

Ecology and Evolution are sciences based on the concept of species. The utility of this
concept comes from establishing a criterion to determine when two individuals are simi-
lar enough in their genomic and phenotypic properties to give them the same name. Yet,
its definition is far from obvious and it underpin our conception of natural history. Even
Darwin was not giving a clear definition:
"No one definition (of species) has as yet satisfied all naturalists; yet every naturalist knows
vaguely what he means when he speaks of a species. Generally the term includes the unknown
element of a distinct act of creation. The term "variety" is almost equally difficult to define; but
here community of descent is almost universally implied, though it can rarely be proved."
In this section we briefly give an overview of bacterial evolution and show how it hinders
univocal definition of species.
Historically, species were defined way before the formulation of evolutionary theory as
a consequence of the empirical observation that species, when reproducing, produce al-
ways an individual of the same species [17]. Linneus formalized the classification of
species on the bases of morphological characteristics, such as shape, size, colour and inter-
nal structure like organs organization, skeleton etc. In this view, species are immutable
entities.
In the Origins of species, Darwin, criticized these conceptions by claiming that species
were, instead, the result of an evolutionary process. The central idea beyond Darwin’s
revolution is that species are not static entities, but the results of a transformation in time,
that will continue to mutate them in the future [13]. The evolutionary tree, or diagram
of divergence, is a graphical tool invented by Darwin to represent evolution in time. In
metaphor, the top "leafs" represent species in the present, while the root is a common
ancestor in the deep past. In Fig. 1.2 A we report the first sketch of the evolutionary
tree in Darwin’s diary, together with the illustration appeared in the Origins [13]. In Fig.
1.2 B we report also one of the earliest images representing Darwin’s diagram as tree by
E. Haeckel. As a consequence of Darwin’s intuition, all the species have a phylogenetic
relation, given that they share a common ancestor. In the present, that ancestor is called
LUCA: latest universal common ancestor.
Notwithstanding Darwin’s revolution, the modern concept of species was defined almost
a century after him by Ernest Mayr, on the basis of breeding possibilities [18]:
"Species are groups of actually or potentially interbreeding natural populations, which are repro-
ductively isolated from other such groups" [19].
Even if this definition is far more clear than a comparison of morphological traits, it
presents some problems. For example, how can researchers understand if individuals
are capable of interbreeding? Does it refer to a wild or captivity condition? How can
this definition be used to compare species that lived in different epochs? Furthermore,
many ecologists remarked that even if the number of species is an important measure
of the diversity of an ecosystem, it is not the whole story. Biological diversity is about
the variety of living organisms at all levels, from individual genomic variants, to species,
families and up to ecosystems.
The most important criticisism to the species concept come from bacteria. Indeed, prokary-
otes are the most abundant form of life on earth, but they refuse to respect any species
definition. First of all, bacteria reproduce asexually by duplication, while the majority of
macroscopic organism reproduce sexually.
An early attempt of bacterial classification by morphological characteristics was put for-
ward by the German biologist F. Cohn in 1868. He divided bacteria in four groups based



1.3. A tour in the microbial world 7

on the cell’s shape: sphericals, short rods, threads, and spirals. Notwithstanding Cohn’s
proposal, cell’s shape turned out to be a not reliable guide to classify bacteria. Shape is
an adaptive feature, but as all results of adaptation it can be ancestral as convergent. For
example, an elongated shape seems to be good for swimming, while the round one can
be a good strategy against desiccation [17].
The smartest intent to identify bacterial species and to construct a universal evolutionary
tree came from the molecular biologist Carl Woese in 1977 [20].
In 1965, Pauling and Zuckerkandl had the idea to use "molecules as documents of evo-
lutionary history" to construct a general philogeny able to scanner the deep evolutionary
past [21]. Woese had the intuition that a universal phylogentic tree could be constructed
by comparing the sequences of Rna that compose the ribosome in different organisms.
This claim comes from the idea of Pauling and Zuckerkandl to use "Molecules as doc-
uments of evolutionary history"[21] a simply but extremely deep observation: all life
forms share the fact of using ribosomes to translate genetic information into proteins.
Woese found out that the most conserved part of the ribosome, and hence the best in-
dicator for phylogenetic relations, is the 16s unit. From this observation,the 16s rRNA
method, the most used phylogenetic tool in microbiology, takes his name.
By sequencing thousands of microbes, Woese made an incredible discovery: apart from
prokaryotes and eukaryotes, there is a third domain of life that he called archea. The
names come from the fact that first individuals sequenced by Woese and Fox where
methanogens (microorgansims that produce methanon as by-produc), and they assumed
that their metabolism reflected the earth primordial environment. Until then, archea were
classified as extremophile, bacteria that can live in environment with extreme levels of
temperature, salinity, pH or radioactivity. Nevertheless, bacteria are, approximately, as
different from us as they are from archea. The reason lays in arhcea genes and metabolic
pathways, that are much more similar to the eukaryotic ones. Hence, a new evolutionary
tree with three domains, prokaryotes, eukaryotes and archea, was proposed by Woese,
see in Fig. 1.2 C a contemporary version of the illustration proposed by Woese in 1990
[22].
Nevertheless, the dream of drawing a universal tree of life and hence attaining a clear
definition of bacterial species crashed due to bacteria’s singular evolutionary history.
In animals, evolutionary novelties emerge as mutants in the population and can spread
thanks to sex and recombination. Using Mayr’s classification, different species cannot
interbreed and hence they are "genetic island". Even if bacteria have long been though
to reproduction asexually without recombination, the discovery of lateral genetic tansfer
(LGT) revolutionized this conception [23]. Indeed, bacterial cells can exchange genetic
material using various mechanisms without reproduction but "horizontally" [24]. For
example, a bacterial cell can uptake and incorporate exogenous genetic material in the
environment, for example a plasmid released by another dead bacterial cell (transforma-
tion). The equivalent of sex in bacterial cell is called conjugation, that consist of two cells
building bridge-like structures between them through witch they can exchange genetic
material (conjugation). Finally, bacteria can also receive new genetic material by injection
by a virus (transduction). For example, bacteria can become pathogens by transformation,
or acquire antibiotic resistance by conjugation [24, 23]. As an additional example, note
that part of the enormous genetic diversity in strains of the cyanobacterium Prochloro-
coccus is due to gene acquisition by transduction [25].
Lateral genetic transfer has demolished the metaphor of the evolutionary tree, given that
evolutionary branches can collide, something that is not possible in a natural tree. Nev-
ertheless, the image was replace by the new metaphor of the " reticulated tree" [15], see
Fig. 1.2 D.
Another reason for which bacteria defy the species classification is the phenomenon
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Phylum Class Order Family Genus Species Strain

Taxonomic  scale

Taxonomic  resolution (16s rRNA)

100%97%94.5%75% 86.6%82%78.5%

 Cyanobacteria Cyanophyceae Synechococcales Prochloraceae   Prochlorococcus P. marinus MIT9202

ASVOTUs

FIGURE 1.3: Graphical representation of bacterial taxonomy. Ranks in bacterial taxonomy goes
from phylum ( a large scale/small resolution), to strain (small scale/large resolution). OTUs con-
structed with the 16s rRNA method at 97% similarity correspond roughly to the rank of species,
while higher ranks can be constructed with smaller similarity thresholds ( values taken from
Ref.[28]). Depending on the single case, OTUs can also be defined up to 99% similarity. To ex-
plore the finer scale of strains, ASV or metagenomics methods are instead needed. To give an
example, we also represent the taxonomy of Prochlorococcus p. marinus, the most abundant
photosynthetic organism, including also an example of strain sequence, "MIT9202" [29].

of endosymbiosis, i.e. the process of living in a mutualistic relations inside the body
of another organisms [26, 17]. This relation can be more or less tight and irreversible.
For example, eukaryotes probably originated by a symbiosis between an archea and a
bacterium. Indeed, the mithocondria are the residuals of a proteobacteria entered in
endosymbiosis with his host; similarly, chloroplasts in plants originated by ancestral
cyanobacteria. To represent these concrete symbiotic events, spectacular images of the
reticulated tree have been constructed, as the tree depicted in Fig. 1.2 E by W. Martin.
Finally, while Woese and collaborators used just the 16s unit of cultivated microbes, in
2016 J. Banfield and collaborators have constructed a new tree of life sequencing thou-
sands of wild microbes with a new shotgun method involving sixteen ribosomial proteins
[27]. The result is depicted in Fig. 1.2 F and expanded dramatically our perception of life
diversity by discovering hundreds of new species. In summary, species are a scientific
concept with many limits and a given region of validity. Nevertheless, an operational
definition is possible, and microbial ecology is temporarily safe.

Bacterial taxonomy

Thanks to the 16s rRNA method, bacterial taxonomy started a path towards scientific
categorization.
To identify bacteria, ribosomial sequences are amplified with the method PCR, and the
compared one with the other. In contemporary research, the 16s method is usually used
as a comparative classification, i.e. each researcher compares his particular sequences
with genetic references stored in a bioinformatic database. OTUs (Operational Taxo-
nomic Units) are created by clustering sequences with at least a minimum similarity (
generally at 97 % ) with the reference one. This approach is computationally economic
but is not able to identify unknown sequences.
Even if not in a unique way, it is possible to construct a taxonomy with this method.
Generally, 97% similarity OTUs correspond to bacterial species, and by lowering the sim-
ilarity threshold, one can group OTUS and define more coarsened ranks, as phyla. For



1.3. A tour in the microbial world 9

example, bacterial phyla can be defined at 75% similarity, obtaining a total of 89 of them,
such as firmicutes, bacteriotides, proteobacteria [28].
On the other hand, to explore finer scales of diversity, OTUs can be defined up to the
99% similarity threshold. For even smaller scales, i.e. strains or exact sequence variant
at 100% similarity, reference free method are necessary. By using only ribosomial RNA,
the Amplicon Sequence Variant (ASV) is a method to obtain exact sequences using de-
noising algorithms. In general, this classification is far more reliable than OTUs, and sci-
entific community is shifting to it [30]. Alternatively, shotgun metagenomics procedures
that use the whole bacterial genome are the most secure methods of identification, and
by using them, also the species metabolic functions can be determined. In Fig. 1.3, we
graphically represent bacterial taxonomy and ranks classification in terms of 16s rRNA
similarity. As an example, we describe the taxonomy of the marine Prochlorococcus p.
marinus, that is the most abundant photosynthetic organism on the planet, and presents
also an incredible diversity at the strain level [29, 31, 32]. In this thesis, we will use im-
properly the word bacterial "species" when referring to OTUs at 97% similarity.

1.3.2 Microbial ecology

Microbes are microscopic organisms, both uni and multi-cellular, like bacteria, archea,
protists and some species algae and fungi. Even if microbes have been used by humans
in the preparation of food since ancient times, they were discovered for the first time by
dutch biologist Leeuwenhoek in 1677 [33].
Bacteria are the most abundant organisms on earth (circa 1030 cells [34], total biomass of
70Gt of carbon), and they are found all across the biosphere, from human guts to glaciers,
from soil to activated sludge. bacteria are a single (prokaryotic) organism, similar to an
open system able to harvest energy from the environment and capable of converting it
into biomass and residuals. Bacteria grow by asexual division; the duplication time can
vary from 20 minutes for E Coli in laboratory conditions to two years for microbes living
in deep sea sediments. Their metabolism is highly diverse, given that they can perform
molecular respiration, fermentation and some species are capable even of photosynthe-
sis.
Microbial ecology studies how microbial communities grow, interact, and how species di-
versity is maintained. This question is particularly relevant for bacteria, because a huge
diversity is observed at the thin taxonomic scale of strains [35]. For example, in marine
populations of the cyanobacteria prochlorococcus (genus), hundreds of different strains
are observed [31]. How can so many strain coexist ?
Many possible ecological processes, or ecological forces, can arise in diverse communities,
but in general they are a consequence of individuals metabolic properties.
The ecological force that is generally thought as the dominant one is competition. It can
arise between two individuals when they share a common resource of limited supply
[36]. When competition is present, the growth of a species implies a reduction in number
of the competing one, possibly leading to extinctions.
In general terms, competition is associated to the "Principle of Competitive Exclusion",
stating that "two species or populations cannot inhabit the same niche: one will consis-
tently out-compete the other" [37]. The species niche is an abstract ecological concept con-
sisting of its interactions with its community and the environmental conditions needed
for it to stay alive. Hence, if competitive exclusion is in action, there can be just a number
of species equal or minor the number of available niches.
Also mutualistic interactions between species can arise in bacteria thanks to the by-products
of cells metabolism. Indeed, it happens often that two competing species can coexist if
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one is able to metabolize the by-product of the other. This phenomenon is called cross-
feding and is found in many bacterial communities [38, 39, 40]. For example, a couple of
strains of the families Pseudomonadaceae and Enterobacteriaceae can survive together
because the first is able to growth on acetate, that is a by-product of the second [39].
The metabolic by-products of a species can also inhibit the presence of another one, i.e. a
behavior called antagonism. For example, the bacterium Streptomyces coelicolor is able
to produce antibiotics, that are used then to neutralize other species, like E. coli [41].
Predation is also present in prokaryotes, even if it is generally considered rare (just fifteen
predatory species have identified ) [42, 43]. The highly motile bacterium B. bacteriovorus
has been reported to enter in the periplasmic space of other bacteria and to consume on
their cytoplasmic contents [44].
Ecological interactions can produce also collective effects such as community functions.
Indeed, ecological functions are not just properties of individuals, but more generally
they are a collective properties of communities emerging from a complex web of molec-
ular, physiological, and organismal interactions [45], like carbon cycle in closed ecosys-
tems [46], nutrient cycle in soil [47], nitrogen cycle in the ocean [48]. Finally, micro-
bial ecosystems display functional redundancy: even if species presence and abundance
varies across communities the number and the type of functions performed is conserved
[38, 49]. Even if bacterial communities exhibit an astronomical taxonomic diversity, many
bacterial species share the same metabolic functions, suggesting that selection does not
act only at the species level.
An additional collective effects arising in bacterial communities are biofilms, i.e. commu-
nities of bacteria that collectively adhere to surfaces creating a physical medium adapt to
interact through signaling and nutrient exchange.
Finally, ecological forces are not just "internal" interactions between species, but also
"external" factors like environmental and demographic fluctuations, migrations, spatial
structure etc. For example, spatial chaos in meta-populations models is known to enlarge
enormously the number of coexisting species with respect to competitive exclusion [50,
51, 52].
Hence, one could ask : Is it possible to disentangle the effects of these different forces?
Which one is the main responsible of the existence of biodiversity ? An endless debate
over the relative importance of deterministic forces, such as competitive exclusion, or of
stochastic ones, such as environmental and demographic fluctuations, in determining the
maintenance of biodiversity does exist in the community. In very diverse communities,
like the prochlorococcus or the marine plankton [53], the existence of an astronomical
number of niches is hipotetic and not completely reasonable . Hence, the relative impor-
tance of competitive exclusion can be questioned.
cross-feding seems to have the ability of sustaining diversity, since communities grown
on just one carbon source can support up to 40 taxa thanks to metabolites recycle.
Furthermore, bacterial communities have different "diversities" depending on the taxo-
nomic level are which they are considered. How can one choose the correct taxonomic
scale ?
Even if the majority of our knowledge of microbial ecology has emerged from simple and
controlled laboratory environments, the answer to these fundamental questions can be
obtained by interrogating natural communities. In recent years, the human microbiome
projects, and similar ambitious programs, have sampled and characterized an astronomi-
cal number of communities [54, 55]. Understanding the general patterns emerging in this
communities is useful both at fundamental level, but also have important consequences
for general health in the case of the human gut microbiome [56]. In the next section we
introduce macroecology as tool for tackling this ambitious goal.
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Macroecology

Ecological theory has developed a mathematical and universal flavour thanks to the con-
tributions of Robert MacArthur. In the 60s, ecology was dominated by historical expla-
nations, that are surely concrete but also limiting, as the same MacArthur claimed: "Will
the explanation of these facts degenerate into a tedious set of case histories, or is there some com-
mon pattern running through them all ?"[37]. The coronation of this research program is
macroecology.
Macroecology, is a branch of ecology that studies large scale statistical patterns of species
abundance, diversity and interaction across communities [57]. In particular, by compar-
ing statistical patters across very rich communities, macroecology tries to identify univer-
sal ecological patterns, also called macroecological laws. By connecting universal pattern to
mechanistic models, macroecology is also able to disentangle the main ecological forces
underpinning the maintenance of diversity. By using just a couple of words, macroecol-
ogy can be summarized as "studying ecological communities as statistical ensambles".
Practically, macroecology works with the following three methodological steps:

1. Find a universal statistical pattern conserved across communities and eventually
across environments.

2. Propose the simplest mechanistic model able to reproduce the pattern

3. Validate the model with other patterns and identify its limits of application.

Necessarily, the macroecological approach takes the hypothesis that in natural communi-
ties there exists a hierarchy of patterns that is reflected in statistical significance. A typical
macroecological pattern that has been studied in many different communities, from trop-
ical forest to microbes, is the Specees Abundance Distribution (SAD). The SAD measures
how common or rare is a species relatively to other species in a community, and has been
found to have some universal qualities [58].
On purely theoretical level, it is not possible to measure all the possible interactions
present in a community, and hence a simplification is needed. There are two general
class of models that study large communities: neutral theory [59], and random interac-
tion models [60, 61, 62, 63].
Neutral theory is an ecological model that neglects differences in trophically similar
species and consider just stochastic demographic processes, such as reproduction, death
and migration, as the ecological forces present in the community [59]. It was developed
by Hubbell ad collaborators by combining ideas from Kimura’s neutral theory of evolu-
tion [64], MacArthur and Wilson theory of island biogeography [65] and Gould’s ideas
on null-model [66].
Even if its assumptions are very strong, Neutral theory is able to reproduce some macroe-
cological indicators in tropical forests, such as the Species Abundance Distribution [67]
and the community dynamics [68].
On the other hand, random interaction models consider that species interact randomly
by treating the ecological network as "quenched disorder". This class of models are was
born with May’s approach in the resolution of stability-complexity debate [69], and was
later generalized thanks to the physics of disordered systems [70, 63, 71] and random
matrix theory [72, 61, 62].
Among ecologists, both neutral theory and random models, had polarizing effects: some
ecologists were enthusiastic, while a large number firmly opposed it. On the other hand,
these theories have attracted the interest of many statistical physicist for their general,
macroscopic and stochastic approach [73, 74, 75, 76, 63].
In this thesis we will use principally models that combine the characteristics of the two
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classes, i.e. models where disordered interactions amplify or are coupled with stochastic
fluctuations [77, 63, 78]. Interestingly, in this class of models different possible ecological
"phases" emerge, dominated either by neutrality or by niche competition [78, 79, 80]. In
the next Section we introduce the basic mathematical tools to describe macroecology, and
complex systems in general, while in Sec.1.6 we finally approach some recent results in
microbial macroecology.

1.4 Complex systems

Physics reveals the hidden parts of nature. Strange instruments like microscopes, tele-
scopes, spectrometers and thermometers are needed to extend human experience to the
inaccessible scales where laws can be revealed.
Nevertheless, beyond all the technological apparatus, the fundamental instrument of
physics is mathematics, both at a conceptual ad quantitative level. Without mathematics,
physical laws are still hidden. As D.C. Krakauer [81] points out, laws can be hidden in
space, time, or in both dimensions. The molecular structure of matter is hidden in space,
given that it is detectable at small physical inaccessible scale. On the other hand, electric-
ity and light are hidden in time, given that they travel at a speed not perceptible by our
senses. Fundamental particles, and also stars, are hidden both in time and space. The
first interacts with each other at a special time span not percetible by humans, while the
second are confined enormously far away from us in space-time.
Yet, there are phenomena that are hidden in plain sight: complex systems, that are " the
convoluted exhibitions of the adaptive world- from cells to societies" [81]. The economic growth
of a city, the fractal structure of metabolic networks or the human microbiome are some-
thing that we perceive, directly or not, every day. Nevertheless, to make these phenom-
ena intelligibile, a technological shift is not sufficient and a conceptual one is needed.
Its objects of study are systems composed by a large number of individual, or elements,
from which collective properties can emerge. Philip Anderson, resumed this approach
with the iconic sentence "More is different"[82], remarking that a complex system is more
than the sum of its parts. Complex systems physics developed by applying concepts of con-
densed matter and statistical physics, like emergence, phase transitions and irreversibil-
ity, chaos, bifurcations, complex networks and stochastic fluctuations, to "non-physical"
systems. In particular, non-equilibrium statistical physics is a field that studies stochastic
and irreversible phenomena, being them at the level of molecules, fluids or biological
systems. Complex systems, beyond being composed by many components, are generally
open, i.e. interacting with an environment. The individual interactions, together with
the environmental coupling, can drive the system away from equilibrium. In this thesis,
we will mainly use the perspective of non-equilibrium statistical physics to describe and
study the restless ecology and evolution of biological populations, in particular of bacte-
rial one. Hence, let us gently introduce the main concepts of non-equilibrium statistical
physics of complex systems.

1.5 Non-equilibrium dynamics of complex systems

Non-equilibrium statistical physics is a wide and idiosyncratic subject that crosses cen-
turies, different theories and fields of application. This introduction is by no mean com-
plete and general, and we indicate to the reader numerous books and references along
the thesis. In general, with non-equilibrium we mean the state of system where currents
between different states are present, being them of matter, energy, biomass, or simply
probability. A first class of non-equilibria is the one of mascroscopic thermodynamic
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systems driven out of equilibrium by boundary conditions, like fluids in contact with
two particle reservoirs at different densities of coupled to many thermal baths [83, 84].
An other class of macroscopic non-equilibrium systems are the one characterized by the
spreading of some quantity in space, like directed percolation, growing interfaces and the
contact process [85] A third class is the one of mesoscopic phenomena, i.e. small systems
characterized by energy differences of the order of kBT. Examples are colloidal particles,
macromolecules, molecular motors and chemical reactions at low density. Finally, com-
plex systems, are out of equilibrium when probability currents between different states
emerge. Examples range from ecological populations, to flock of birds and the human
brain. For a general introduction see the recent books by Live and Politi [86], Gaspard
[87] and the classic by Zwanzig [88]. For non-equilibrium phase transition and percola-
tion see the book by Henkel, Hinrichsen and Lubeck [85] The book by Peliti and Pigolotti
is the reference in stochastic thermodynamics [89] and see the book by Gallavotti for
mathematical and conceptual foundations [90]. In this thesis we will encounter mainly
examples of mesoscopic and complex systems. Luckily enough, the formalism of stochas-
tic processes of finite degrees of freedom describes both groups. In Chapter 5 we will dive
deeper into fundamental aspects of non-equilibrium statistical physics of mesoscopic sys-
tems, while here we will outline pragmatically the formalism of stochastic processes that
will be used during the entire thesis.

1.5.1 Langevin and Fokker-Planck equations

As a general mathematical class of processes, we consider stochastic Markovian ones,
i.e. processes without memory [91]. Consider the Markovian stochastic evolution of
the N-dimensional vector x⃗ representing the state of a system, being it the position of a
Brownian particle, the abundance of an ecological species or the density of a chemical
compound. Its evolution is stochastic due to internal (activity, reproduction) or external
fluctuations (interaction with a thermal bath or with an environment). Let’s assume that
the system evolves in time due to the contribution of a deterministic force F⃗(c⃗) together
with a stochastic Gaussian noise ξi:

ẋi = Fi(x⃗)+Gi(x⃗)ξi(t) (1.1)

where

⟨ξi(t)⟩ = 0 (1.2)
⟨ξi(t)ξ j(t′)⟩ = 2δ(t − t′)Cij, (1.3)

being Cij the noise correlation matrix, where the symbols ⟨..⟩ denotes the expectation
value over the noise. The coefficient Gi(x⃗) represents the dependence of the fluctuations
on the state of the system; when it is equal to one, the noise is called "additive", while it is
"multiplicative" or state dependent in another case. Eq.(1.1) is called "Langevin equation"
and was derived in the context of the physics of Brownian motion, and then generalized
to general stochastic processes. In that original context, the noise modeled the interaction
with a thermal bath, composed by smaller particles like water, while in complex systems
it can represent demographic fluctuations in population, environmental noise in ecology
or intrinsic fluctuations in stock market. For the moment, let us consider the noise as
additive, i.e. Gi = 1 for all i in [1, N], and let us rename C as D̂, i.e. the diffusion matrix:

ẋi = Fi + ξi(t). (1.4)
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Note that in this simple additive case, by taking the average of Eq.(1.4) the deterministic
behavior is obtained directly.
Due to the presence of the stochastic noise, the state of the system is not evolving de-
terministically, but stochastically, i.e. described by a cloud of probability P(x⃗, t) [92].
Equivalently to the Langevin equation, the system under consideration can be described
by the motion of its probability distribution using the Fokker-Planck equation [93]:

∂P(x⃗, t)
∂t

= −∇⃗ ⋅ J⃗(x⃗, t) (1.5)

J⃗(x⃗, t) = F⃗(x⃗)P(x⃗, t)− ∇⃗D̂P(x⃗, t), (1.6)

From Eq.(1.5) it is clear that the probability of a state xi increases when the current is in-
flowing (∇⃗ ⋅ J⃗ < 0) and decreases when it is out-flowing (∇⃗ ⋅ J⃗ > 0).
If the deterministic dynamics presents a fixed point x⃗∗, i.e. a point where the force is zero
F⃗(x⃗∗) = 0, the system will converge to a stationary state, i.e. a state where the probability
does not depend on time

∂tP∗(x⃗, t) = 0. (1.7)

From Eq.(1.5) , it is clear that the stationary condition imposes:

∇⃗ ⋅ J⃗∗ = 0 (1.8)

The condition in Eq.(1.8) leave some freedom to the stationary current but imposes a
geometrical constraint. In particular, one distinguish between the case J⃗∗ = 0 and J⃗∗ ≠ 0.
The zero current condition is called detailed balance and it implies that the force derives
from a potential V :

J⃗∗ = F⃗(x⃗)P∗(x⃗)− ∇⃗D̂P∗(x⃗) = 0 (1.9)
F⃗ = −∇⃗D̂ log P∗ = −∇⃗V. (1.10)

By consequence, the stationary state is an equilibrium one P∗ = Peq (ESS). Note that a
necessary and sufficient condition for detailed balance can be derived from Eq.(1.9) :

∂k∂i log P∗ = ∂i∂k log P∗ (1.11)

∂k

N
∑
j=1

D−1
ij Fj = ∂i

N
∑
j=1

D−1
kj Fj, (1.12)

that is a generalized potential condition involving D̂ and F⃗. Finally, note that in the sim-
ple case of a diagonal diffusion matrix the equilibrium distribution is easily determined
by the the force potential:

Fi = −∂iV, Peq ∼ exp(−∫ dx⃗
N
∑

i
D−1

ii Fi) = exp(
N
∑

i
D−1

ii ∂iV). (1.13)

In appendix A, Sec.A.2 we discuss as an example the dynamics of a Browinin particle.
On the other hand, if the detailed balance condition, Eq.(1.9) or Eq. (1.11), is broken, the
system will approach a stationary non-equilibrium state (NESS). While the equilibrium
state is determined just by its stationary distribution Peq, the NESS is described necessary
by the couple formed by the stationary distribution and the stationary current (P∗, J∗)
[94]. Differently from equilibrium ones, for non-equilibrium stationary state there is not
a general derivation method and very few exact solutions exist.
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In Chapter 6 we will investigate in deep the general characteristics of NESS and the geo-
metric properties of their current

1.5.2 Multiplicative fluctuations

In complex systems, fluctuations are often multiplicative, i.e. modulated directly by the
system state, Gi = Gi(x⃗). These type of fluctuations are caused both by intrinsic factors,
or external ones, such as interactions with an environment, and are known to create very
non trivial and purely stochastic effects.
A particular case, is when Gi = xi, i.e. the so called environmental noise, or simply multi-
plicative noise:

ẋi = Fi + xiξi(t), (1.14)

A typical physical example is the motion of a particle in a temperature gradient (see
Chapter 5, Sec.5.4)[95, 96]. When multiplicative fluctuations affect a system with a deter-
ministic fixed points, the stationary distribution of P∗(x) presents long tails and exotic
scaling laws, like Taylor law (see appendix B, Sec.A.3) [97, 98, 99]. Some examples of this
phenomenon are environmental and demographic fluctuations in species abundance in
ecosystems [100, 101, 73, 102], demographic fluctuations in social and urban phenomena
[103, 104] and protein concentration fluctuations in cells [105].
Furthermore, multiplicative fluctuations can induce the presence of an absorbing state.
In general, the stochastic evolution of system with multiplicative noise will tend to ac-
cumulate probability in regions experiencing low stochastic fluctuations. An examples
is thermophoresis, i.e. a particle moving in temperature gradient tends to be localized
in region with the lowest temperature [95, 96]. In systems modeling the creation and
the elimination of individuals/particles, like chemical reactions and population models,
multiplicative fluctuations can be either demographic, i.e. G ∼

√
x modelling the intrinsic

fluctuations of growth and death in a finite populations, or environmental, G ≈ x model-
ing, as said above, external fluctuations on growth. In both these situations the dynamics
can get trapped in the state x = 0. This state is inescapable and fluctuation-free and hence
called an absorbing state [85, 106, 107].
In the stochastic dynamics of spatial explicit processes, multiplicative fluctuations can
cause totally new phenomenon as novel symmetry breaking phase transitions [108, 109,
110, 111], absorbing phase transitions [85, 112], spatio-temporal order [113], synchroniza-
tion [114, 115] and even self-organization to a critical state [116, 117, 118]. Some exam-
ples are auto-catalytic reactions [119], percolation processes [120, 85], epidemic spreading
[121], forest fires [122] and spatial ecology [73].
Multiplicative fluctuations are so intimately part of complex systems that they will ap-
pear in each Chapter of this thesis.

1.6 Macroecological laws of variation in microbial communities

Why are ecological communities so diverse in both species abundance and composition?
Is variation due to the effect of deterministic forces like competition for ecological niches,
or is it the results of stochastic environmental fluctuations? This is one of the most con-
troversial issues in microbial ecology.
Recently, a macroecological approach has been put forward to answer to this fundamen-
tal question [101, 100, 123, 124, 80, 102]. A common result of these studies is the iden-
tifications of universal patterns of species abundance fluctuations across communities,
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FIGURE 1.4: Macroecological laws of variation in microbial communities , figure adapted from
[100]. A pictorial illustration of data collection and manipulation in microbial macroecology.
Species abundances are sample by different communities (gut in the image) and organized in
a table. Data are also manipulated to remove the effect of sampling. B, a row of the table repre-
sent the fluctuations of one species abundance across communities. By constructing an histogram
of species abundances, rescaled by the mean, and averaging over species, one obtains the Abun-
dance Fluctuation Distribution (gray points single species abundance, orange points average).
The distribution is well fitted by a Gamma (solid black line), but not by a Lognormal (dashed
line). C If one repeats this procedure across different biomes like, soil, lake, river etc (color leg-
end), the Gamma AFD pattern is conserved. Finally, by comparing the species mean relative
abundance and its variance, a robust scaling low emerges, known as Taylor law with exponent 2.
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hence suggesting that similar ecological processes are present in different biomes. Fur-
thermore, a common feature of these pattern is their remarkable multiplicative nature. In
this section, we introduce two of these universal pattern in macroecological laws of vari-
ation in microbial communities and show how they can be reproduced by the Stochastic
Logistic Model.
Consider the dataset depicted in Fig. 1.4 A, consisting of species (OTU) abundances in
different communities organized in a table, where each row represent the abundances of
different species, while the column stands for communities in consideration. For exam-
ple, let us consider that the different communities are various samples of the gut com-
position of different persons. To understand how much the abundance of each species
fluctuates across communities, we can select one row (a species), and plot its abundance
histogram across communities (the value of the entire row). This distribution is called
the species Abundance Fluctuation Distribution (AFD). In Ref.[100] it is shown that if
in this procedures one removes the sampling effects from the datasets, and averages the
AFD across species, a clear Gamma distribution emerges. In Fig. 1.4 B we show that the
AFD in the gut biome is clearly a Gamma distribution, where the gray lines stand for
the single species AFD, the orange points are the species average and the dashed and
solid black line a fit with a Lognormal and Gamma distributions respectively [100]. Even
more surprisingly, when this operation is repeated across different biomes, the Gamma
AFD patterns is conserved (see colored points in Fig. 1.4] C).Finally, when the average
and variance of species relative abundances are compared, as second Macroecological
law emerges, see Fig. 1.4 D. In particular, the variance of species relative abundances is
proportional to the square of the average, following a very omnipresent scaling law in
complex system known as Taylor law with exponent two [97].
The fact that the AFD is a Gamma distribution has the non-trivial consequence that ab-
sent species have been just not sampled, and have not been eliminated by competitive
exclusions. Indeed, Grilli shows that, by assuming the Gamma distribution with finite
sample as AFD, the species occupancies are reproduced perfectly. In addition, thanks to
the properties of the Gamma distribution and relation between average and variance, to
describe each species it is necessary just one parameter, its mean abundance.
Finally, the two macroecological laws, with the addition of third universal regularity
on the species mean abundance that is not relevant for this discussion, predicts other
macroecological indicators, like the species abundance distribution (SAD). Hence, these
two macroecological law suggest that the taxonomic scale of OTUs competitive exclu-
sion is not fundamental and that environmental fluctuations are the dominant ecological
force.
To prove this claim, Grilli introduced the Stochastic Logistic Model (SLM) for the dynam-
ics of species abundance xi:

ẋi =
1
τi
(1− xi

Ki
)+
√

σi

τi
ξixi (1.15)

where ξi is a Gaussian white noise:

⟨ξi(t)⟩ = 0, ⟨ξi(t)ξ j(t′)⟩ = δijδ(t − t′); (1.16)

and τi is the species growth timescale, Ki its carrying capacity and σi the strength of en-
vironmental fluctuations (cfr 1.5.2).
The model is composed by a deterministic part that consist of the classic logistic growth,
and by a stochastic part in the form of environmental noise (see Sec.1.5.2). The logistic
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equation is a classic equation of population growth in demography, economics and ecol-
ogy (where it was introduced in 1920 by Pearl and Reed, independently of the work of
Verlhust [37]). It is an effective model describing how populations reach a stable equilib-
rium due to the effect of competition. In ecological terms, τi represents the typical growth
rate timescale of the species, given that its reciprocal is the actual growth rate, λi = τi

i , and
it is the typical time interval in which the population reaches the equilibrium. On the
other hand, Ki represents the maximum number of individuals that the environment can
support, given a finite number or resources. Therefore, Ki measures also the strength of
intraspecific competition, and, effectively, encodes all the factors limiting the population,
such as space, quantity of resources, effects of abiotic factors etc [3].
The stochastic part has the role of modelling the stochastic fluctuations affecting the pop-
ulation’s growth, that can be induced by fluctuations in the concentrations of resources
(biotic factors), or rapid change in the value of temperatures, pH etc (abiotic factors).
The deterministic logistic model admits a stable equilibrium population x∗i = Ki, but
when stochastic fluctuations are present, the population reaches a stationary state with
abundance probability given by a Gamma:

P∗(xi) = Γ (x∣ 2
σi
− 1,

σiKi

2
) = 1

Γ( 2
σi
− 1)
( 2

Kiσi
)

2
σi
−α

x
2
σi
−2e−

2x
σiKi , (1.17)

where we have used the Itô discretization (see appendix A Sec.A.3 for the complete
derivation). Therefore, the SLM is able to reproduce the first macroecological law. Fur-
thermore, note τi has no influence on the stationary distribution and hence it depends
just on two parameters (K and σ).
Consider the stationary mean and variance of the Gamma

⟨x⟩ = γθ = ( 2
σi
− 1) Kiσi

2
, Var∗ = γθ2 = ( 2

σi
− 1)

K2
i σ2

i
4

, (1.18)

where we indicate with γ = ( 2
σi
− 1), θ = Kiσi

2 distribution shape and scale parameter.
It is trivial to see that for each species the variance is proportional to the square of the
mean:

Σ∗ = ( 2
σi
− 1)

−1
⟨x⟩∗2 (1.19)

and hence, if σi = σ for all species, the second macroecological law, i.e. Taylor law, is
reproduced.
Furthermore, in Ref. [100] it is shown that the macroecological laws are also valid in lon-
gitudinal time series of biome, as for example, the gut of one single person sampled each
day for a year. This "ergodic" equivalence between averaging over different communities
and over time is an additional clue on the dominant effect of environmental fluctuations
in determining the communities variability.
Finally, let us comment that other studies have confirmed the validity of the SLM in var-
ious context such as gut microbiome time series [125, 123], strain dynamics [126] and in
taxonomic coarse grained communities[124].
Nevertheless, the SLM, being a model without interactions, fails in reproducing the ob-
served correlation between species abundances. Indeed, the Chapter 2 of this thesis is
devoted to study microbial species correlations with a macroecological approach, com-
bining abundances data with phylogenetic analysis (see Sec. 1.3.1), resulting in the dis-
covery of a new macroecological law. Furthermore, we propose a new model able to
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reproduce the observed empirical pattern, suggesting that coupled environmental fluc-
tuations are the dominant force at the OTUs scale.

1.7 Bacterial eco-evolutionary dynamics

Darwinian evolution relies on the fundamental principles of reproduction, mutation and
selection, and describes how populations change over time and how new forms can
branch out from existing ones [13, 127]. The theory of evolutionary dynamics —whose
aim is that of formalizing the ideas of Darwinian evolution from a conceptual and quan-
titative perspective— has become a wide and mature discipline at the crossroad between
biology, mathematics and statistical physics (see e.g. [128, 129, 130, 131, 132, 133] and
refs. therein). A central problem in evolutionary dynamics is the one of speciation. His-
torically, the dominant mechanism has been the one of allopatric speciation, suggesting
that species are generated when a population is divided geographically in two different
groups. Notwithstanding its importance, there are some speciation events, like Darwin’s
Finches in Galapagos island, where geographic population could not have happened
[134].
Another evolutionary mechanism is sympatric speciation, i.e. the production of two
species in the same space region caused by ecological interactions.
In general, ecological and evolutionary dynamics have been historically regarded as un-
folding at broadly separated timescales. However, these two types of processes are nowa-
days well-documented to intersperse much more tightly than traditionally assumed, es-
pecially in communities of microorganisms.
One of the most successful theory in evolutionary dynamics is Adaptive dyanmics (AD)
and was formulated to unify evolutionary dynamics with realistic ecological scenarios
[135]. Adaptive dynamics is based on the following assumptions:

• Individuals reproduce clonally.

• Mutations are infrequent, and natural selection acts quickly. The population can be
assumed to be at equilibrium when a new mutant arises.

• The number of individuals with the mutant trait is initially negligible in the large,
established resident population.

• Phenotypic mutations occur in small but not infinitesimal steps.

Thanks to these assumptions, Adaptive dynamics consider ecological population at equi-
librium, in which a single mutant can arise and eventually take over the entire popula-
tion. Hence, in this theory, even if both evolution and ecology act on the population, they
have very different timescales, and hence happen separately.
Importantly, AD allows for the possibility of “evolutionary branching” –i.e. the split of
an initially monomorphic population in two diverse sub-populations— shedding light
on how sympatric speciation could happen [136, 137, 135, 138, 139, 140, 141].
Similarly, phenomena such as the evolution of dispersal strategies [142], pathogenicity
[143], metabolic preferences [144, 145] and multi-cellularity [146], to name but a few, have
been successfully addressed within the context of AD. Moreover, extensions of AD have
been developed to include ingredients such as finite-sized populations [147, 148], species
interactions [149], sexual populations [139], multi-dimensional phenotypic spaces [150,
151, 152, 153, 154], variable environmental conditions [155], or variability in the evolu-
tionary outcomes [rcl], to name but a few.
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A B

FIGURE 1.5: Evolutionary stable state and evolutionary branching in adaptive dynamics. A)
Top If the invasion fitness has a single maximum, in the model when σα > σK, the population
climbs the fitness to reach it. This case is called "Evolutionary stable state" (ESS).Bottom: stochastic
simulation of the model in the case of ESS, see B.3.5, Sec.C.5. (B) Top On the other hand, when the
fitness presents a minimum, the population can get trapped there. To escape from it, evolutionary
branching happens and the the population divides into two sub-populations. Bottom: stochastic
simulation of the model in the case of ESS, see B.3.5, Sec.C.5.

In the next section we will present a paradigmatic model of evolutionary branching and
derive the condition for evolutionary branching to happen [156, 157].

1.7.1 Evolutionary branching in adaptive dynamics

One of the most interesting predictions of AD is “Evolutionary Branching”: a divergent
event that gives rise to two phenotypical different sub populations[156, 158]. Here, we
give an introduction to adaptive dynamics by showing how sympatric diversification
can happen due to the interplay of growth and competition in a particular mode (see Ref.
[156] for the complete derivation).
Let us consider a population characterized by a one dimensional trait x that determines
the population capacity of exploiting the environment. This is modeled by the fact that a
the population carrying capacity is a Gaussian peaked in a particular trait x0 with a std.
σK:

K(x) = K0 exp(−(x − x0)2

2σ2
K
) (1.20)

(1.21)

Furthermore, the population is monomorphic, i.e. all the individual have the same trait,
and grows logistically :

dN(x)
dt

= N(x)(1− N(x)
K(x)

) (1.22)
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where x is the phenotypic trait, N(x) the population distribution in phenotypic space
and K(x) the carrying capacity distribution. We assume that the population equilibrium
N∗(x) = K(x) is reached very rapidly.
Now consider that due to a small mutation rate µ a mutant with trait y will arise and
compete with the resident with a kernel α(x − y):

α(x − y) = exp(−
(x − y)2

2σ2
α

) . (1.23)

Given that the mutants rise in very small numbers and the population is considered at
equilibrium, N(x) = K(x), w the dynamics of the mutants is given by:

dN(y)
dt

= N(y)(1−
α(x − y)K(x)

K(y)
) (1.24)

In Eq.(1.24) one can identify the per capita fitness of the mutants, with respect to the
resident, as the invasion fitness:

dN(y)
dt

= N(y) f (x, y), f (x, y) ∶= 1−
α(x − y)K(x)

K(y)
(1.25)

Now, of we consider the mutations to be small, we can expand the invasion fitness
around x ≈ y :

f (x, y) ∶= (1− α(0))+
∂ f (x, y)

∂y
∣x=y (x − y)+ 1

2
∂2 f (x, y)

∂2y
∣x=y (x − y)2 +O((x − y)3), (1.26)

and identify the selection gradient D f (x):

D(x) f ∶=
∂ f (x, y)

∂y
∣x=y= α′(0)+ α(0)K′(x)

K(x)
(1.27)

∂2 f (x, y)
∂2y

∣x=y= −α′′(0)+ α(0)K′′(x)
K(x)

− 2(α′(0)K(x)+ α(0)K′(x))K′(x)
K2(x)

(1.28)

It can be shown that the change in population trait is given by the canonical equation [147,
159]:

dx
dt
∶= µD f (x), (1.29)

indicating that the population tends to follow the fitness gradient. In the concrete case
of the competition kernel and the carrying capacity given by Eqs.(1.20,1.23, where we set
x0 = 0) we have:

D f (x) =
K′(x)
K(x)

. (1.30)

Now, one can search for the fixed point x∗ of the canonical Equation (1.29):

D f (x∗) = 0→ K′(x∗) = 0 (1.31)

that hence are extreme points of the invasion fitness, in this case the maximum of the
carrying capacity x∗ = 0. Furthermore, one has to check the linear dynamical stability of
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the fixed point as:

dD(x)
dx

∣x=x∗=
K′′(x∗)
K(x∗)

< 0, (1.32)

and the so-called evolutionary stability, i.e. that the stationary trait is a fitness maximum
such that mutants cannot invade any more:

∂2 f (x, y)
∂2y

∣x=y=x∗= −α”(0)+ K′′(x∗)
K(x∗)

= 1
σ2

α

− 1
σ2

K
< 0. (1.33)

These results imply that the population converges always to the carrying capacity maxi-
mum, x∗ = 0, given that it is an extreme point of the fitness. Once there, if the amplitude
of competition is larger than the size of the niche, σα ≥ σK, it is an invasion fitness maxi-
mum and will be both dynamical and invasion stable (dxD f (x∗) < 0, partial2

y f (x, y) < 0),
leading to an evolutionary stable state (ESS), see Fig. 1.5 A for illustration.
Nevertheless, if σα < σK, x0 it is an invasion fitness minimum, dynamically stable, dxD f (x∗) <
0, but not evolutionary stable partial2

y f (x, y) > 0. Hence, once that the population has
reached the point x = 0, given that it is a fitness minimum, mutants can invade and
the population. To escape from the minimum, the population splits into two diverging
sub-populations. This the phenomenon called evolutionary branching, see Fig. 1.5 B for
illustration. In the figure, we also present an individual based simulation of the model,
more details will be given in Chapter 3. In resume, adaptive dynamics follows the fitness
gradient, in this case reaching the maximum of the carrying capacity. When this attractor
is a fitness minimum the population splits in two branches (disruptive selection). This
can happen only when the competition kernel is more narrow than the carrying capacity
distribution.

1.7.2 Extending adaptive dynamics to bacterial evolution

As discussed in the precedent section, AD has some restrictive assumptions that can be
resumed in the timescale separation of evolution and ecology, and hence there is space to
generalize AD to full eco-evolutionary scenario, allowing for example for frequent mu-
tations at ecological timescales. Indeed, problems in which ecological and evolutionary
changes occur at similar timescales and feedback into each other are ubiquitous in micro-
biology. Example range from from the emergence of antibiotic resistance and tolerance,
to emergence of metabolic strategies.
A possible obstacle relies in fact that microbial evolution has been studied using popu-
lation genetics, thanks to technological advances enabling the design of high-precision
and long-term evolutionary experiments providing access to genetic information and
global-fitness measurements of whole populations [11]. In this context, recent efforts
have allowed to generalize classic population genetics models to rapid evolution, using
e.g. the formalism of fitness travelling waves as well as concepts from statistical physics
[160]. On the other hand, microbial phenotypic eco-evolution —that was traditionally
left aside owing to the difficulties in measuring single-cell traits [161, 162]— has received
reinvigorated attention [163, 145, 164, 165, 166, 167], as a result of technological advances
in determining single-cell traits [168, 169, 170] and metabolic functions [171, 172, 45, 173].
A particularly relevant problem is that of the emergence of tolerance to antibiotics by
lag, that has been recently shown to emerge very fast in bacterial populations under con-
trolled laboratory conditions [10]. Hence, advancing in the development of mathematical
and computational approaches to shed novel light onto eco-evolutionary problems is a
challenge of utmost relevance.
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The ecological and evolutionary dynamics of large sets of individuals can be naturally
addressed from a theoretical perspective using ideas and tools from statistical mechan-
ics. Following this tradition, in Chapter 3 we construct a eco-evolutionary framework for
bacterial evolution allowing us to derive "macroscopic" evolutionary equations from a
rather general "microscopic" stochastic dynamics representing the processes of reproduc-
tion, mutation and selection in a large community of individuals, each one characterized
by its phenotypic features.
Furthermore, in Chapter 4 we apply this framework to the relevant problem of the evo-
lution of antibiotic tolerance in bacterial populations.

1.8 Irreversibility in complex systems

The fundamental characteristic of non-equilibrium systems is the breaking of time re-
versal symmetry, and hence the emergence of irreversibility. Indeed, using statistical
physics, irreversibility can be defined as a measure of how much a system breaks the
time-reversal symmetry and connected to dissipation in thermodynamic systems. Here
we give a very brief introduction of the argument and refer to part III an reference for
more details.
Phenomenological non-equilibrium thermodynamics can analyze irreversible phenom-
ena, such as thermo-electric effects, by studying the local change in entropy with the
so-called balance entropy equation [174, 175]. In this scenarios, the entropy of a volume
element can change due to two contributions. First, there could be a flux of thermody-
namic entropy across its boundary, being it positive or negative. On the other hand, the
entropy can increase due to the presence of an irreversible phenomena in its interiors that
"produce" entropy. This balance equation can be generally represented as:

Ṡ = Ṡprod + Ṡ f lux, Ṡprod ≥ 0, (1.34)

where Ṡ is the change in entropy, while Ṡprod and Ṡ f lux are the entropy production and
flux. The entropy production is always non-negative due that irreversible phenomena
always increase the entropy for the second law of thermodynamics.
Nevertheless, statistical mechanics is needed to related thermodynamic dissipation with
irreversibility by constructing a bridge between microscopic mechanical motion and macro-
scopic thermodynamics.
In classical macroscopic systems, like a molecular gas or a fluid, the microscopic equa-
tion of motion are time-reversible, while irreversibility emerge at the macroscopic scale,
for example with the appearance of viscosity in the Navier-Stokes equations [90, 176].
Onsager determined that thermodynamic process need to obey some "reciprocal" rela-
tions, that emerge at the macroscopic scale as a consequence of the microscopic time-
invariance. More generally, Gallavotti and Cohen formulated the celebrated fluctuation
theorem, that established a quantitative and parameter free symmetry relation between
the stationary state probability of observing a value of the average entropy production
rate and its opposite. Hence, the fluctuation theorem provides a direct relation between
entropy production an irreversibility in ergodic systems.
In recent years, the theory of stochastic thermodynamics has emerged as non-equilibrium
thermodynamic framework for mesoscopic systems that unifies the thermodynamic of
irreversible phenomena and non-equilibrium statistical physics [89]. Indeed, stochastic
thermodynamics shows that the entropy production appearing in balance Eq. (1.34) de-
rives from the breaking of time symmetry.
This can be easily seen by considering a system described by the Fokker- Planck Eq.(1.5)
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in one dimension. One of the main assumptions of Stochastic thermodynamics is the va-
lidity of the Shannon information entropy as a thermodynamic quantity that indicate the
uncertainty of the system:

S = −∫ dxP(x) log P(x). (1.35)

Here we will accept pragmatically this assumption, see Ref. [177] for a detailed criticism.
By using the Fokker-Planck equation, one can study the entropy dynamics:

Ṡ = −∫ dx∂tP log P = ∫ dx∂x J log P, (1.36)

and by integrating by parts and assuming the surface term to vanish, one obtains:

Ṡ = −∫ dxJ∂x log P. (1.37)

Then, by inverting the current definition Eq. (1.5) , one obtains the following relation:

∂x log P = F
D
− J

DP
, (1.38)

that inserted in Eq. (1.37) gives a decomposition in two terms:

Ṡ = ∫ dx
J2

DP
−∫ dx

JF
D
= Ṡprod − Ṡ f lux. (1.39)

The first term can be identified with the entropy production,

Ṡprod = ∫ dx
J2

DP
≥ 0, (1.40)

while the second is the the entropy flux:

Ṡ f lux = ∫ dx
JF
D

. (1.41)

It is clear that Ṡprod ≥ 0, being it is zero just when detailed balance is respected J = 0.
Furthermore, note that at the stationary state Ṡ∗ = 0, and hence the entropy production
and flux coincide Ṡ∗prod = Ṡ∗f lux. Similarly to what is done in non-equilibrium statistical
mechanics, he entropy production can be estimated directly as measure of irreversibility
by using the path-integral method (or in a Master-equation formalism) by uncovering a
fluctuation theorem for stochastic dynamics [178, 89]. Even if we do not enter in math-
ematical details here (see Sec. 5.1 for a brief derivation in stochastic thermodynamics)
let us mention the essence of the relation between entropy production and irreversibility.
Consider the log of the ration between the probability of a trajectory Γ, and the the prob-
ability of the time-reversed one ΓT, together with the probabilities of the respective initial
state. When the average over trajectory and space, one obtains the entropy production:

⟨ log(P(x0)
P(x1)P(Γ)

P(ΓT)
) ⟩

Γ,x,x0
= Ṡprod (1.42)

For this reason, the entropy production represents the irreversibility of the system, and
hence it has been identified with the second law of thermodynamics.
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It is known that thermodynamic systems approach equilibrium by maximizing the En-
tropy [179]. Is it possible to derive a similar principal for non-equilibrium conditions ?
Prigogine’s has been one of the most important, and at the same time controversial, re-
searcher in non-equilibrium thermodynamics. In particular, he formulated the disputed
Minimum entropy production principle, stating that non-equilibrium systems tend to
minimize the entropy production at the NESS. While the assertion is true near equi-
librium, its validity far away from equilibrium it is false [180] . In Chapter 5 we will
introduce a geometric framework for stochastic thermodynamics enabling us to inter-
pret a particular thermodynamic quantity called the excess entropy as a generalization of
Prigogine’s principle . In particular, we will explore how dissipation induces a chiral
symmetry breaking phenomenon in thermodynamics currents during the approach of a
NESS.
In stochastic thermodynamics, the entropy production is related to the total dissipation,
while Ṡ to the work performed on the system and Ṡ f lux to the dissipation into the thermal
environment, see Sec. 5.1 for more details . In a general complex system, Ṡprod represents
irreversibility, but it is not directly related with any thermodynamics quantity, and it just
quantifies how away from equilibrium is the system. By inverting Eq.(1.39), we interpret
also the entropy flux in terms of irreversibility:

Ṡprod = Ṡ + Ṡ f lux, (1.43)

From these expressions, one can interpret Ṡ as the part of irreversibility generated by
the system dynamics, while Ṡ f lux is a "structural" irreversibility due to the presence of
currents and forces in the system. This interpretation can be made more clear when the
dynamics of the system has been derived by a microscopic Master equation [89, 181].
In recent years, there is a growing interest in this topic and irreversibility have been stud-
ied in many complex systems, like the human brain [182, 183], adaptive evolution [184,
185], active systems[186, 187] and flocks of birds [188, 189].
In Chapter 6 we will follow this ideas and estimate the irreversibility of adaptive evolu-
tion in a general way.
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Part I

Microbial ecology
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Chapter 2

A macroecological law of species
interactions in microbial
communities

2.1 Introduction

Microbial communities are ubiquitous on earth, from human microbiota, to ocean, soil,
and glacial environments [34]. Their widespread presence is paralleled by their com-
plex and highly variable composition, both across time and space [32]. Understanding
what are the main drivers, or "ecological forces", shaping the coexistence and stability of
microbial communities under changing environmental conditions and perturbations is a
fundamental challenge of utmost relevance for, e.g., environmental and health sciences.

Ecological forces can emerge from the interactions between species or between species
and the environment, including both biotic and abiotic factors. Experiments in simple
and controlled laboratory environments have made it possible to trace the effects of var-
ious ecological forces on community composition, often reshaping classical ideas on eco-
logical interactions [190, 191, 192, 193, 194, 195]. For instance, cross-feeding has emerged
as a central player in determining community assembly and species coexistence [38, 40].
However, the precise role of different ecological forces in determining composition and
variation in more complex natural communities remains mostly unknown. While de-
tailed information about environmental [196, 55, 197] and genetic [198, 199, 200] factors
shaping interactions and responses to environmental conditions is sometimes available,
we still lack frameworks to infer their quantitative strength and to disentangle the rela-
tive relevance of each of the acting ecological forces from available data [201, 202, 203].
Macroecology —i.e. the study of ecological communities through the analysis of global
patterns of abundance, diversity, and distribution [57]— stands as a prominent approach
to link quantitative ecological models with empirical data of complex and diverse com-
munities [205, 101], see Sec.1.3.2. In particular, in the context of microbial communities,
a growing body of evidence reveals that the abundance dynamics observed in micro-
bial communities is characterized by distinctive and reproducible statistical patterns, also
known as macroecological laws [101, 206, 207, 208, 123]. As we have discussed in Sec.1.6,
further evidence shows that, despite the complexity of the underlying "microscopic" dy-
namics, most of such patterns can be reproduced by relatively simple models —such as
e.g. the stochastic logistic model (SLM)— capturing salient features of the underlying
ecological forces [206, 207, 208, 123, 209]. However, such simplified models often neglect
interactions between species, treating their abundance fluctuations as independent from
each other, so that they cannot account for species-correlation patterns. Nevertheless, it
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FIGURE 2.1: (a) Pictorial illustration of the data organization and statistical analyses. Abun-
dances of different species (i.e. OTU at 97% similarity [204]), for different communities of the
same biome (e.g gut of different hosts) are collected, respectively in rows and columns of the left
table. The grey scale in the matrix entries stands for the level of abundance with darker shades
corresponding to more abundant species. The (symmetric) species-abundance correlation ma-
trix (color coded) is obtained by calculating for each pair of existing species the correlation of
abundance fluctuations across communities. Finally, the phylogenetic distance is computed for
all possible pairs of species by reconstructing the phylogenetic tree; and than associated with the
couple correlation. The abundances, correlation, and phylogenetic distance of two given species
are emphasized in red color. (b) Macroecological law for pairwise correlations as a function of
the phylogenetic distance for different biomes. The correlation of abundance fluctuation aver-
aged over all couples within a given discretized distance bin (colored symbols) decays with the
phylogenetic distance (log scale) for all the considered microbiomes (see legend). In particular,
each bin in the x-axis includes all couples with a phylogenetic distance within such a discrete bin
(each one including at least 103 couples for each of the 8 considered biomes; as shown in the ap-
pendix B Fig. B.1, the pairs are not uniformly distributed across phylogenetic distances: the vast
majority of couples lie in the rightmost bins, with large distances and small pairwise correlation
values). The black line represents a stretched-exponential decay, Eq.(B.14) with λ ≈ 3.5. To em-
phasize the functional dependence, the inset shows the same data but for the negative log of the
correlations represented in double logarithmic scale (i.e., a plot in which stretched exponential
functions become straight lines; in this case with slope 1/3).

is noteworthy that including species interactions in models such as the SLM does not sig-
nificantly affect the shape of single-species macroecological patterns. For instance, gener-
alized Lotka-Volterra equations with environmental stochasticity —which reduce to the
SLM in the absence of interactions— predict time-series statistics and patterns similar to
those of the SLM [208, 207, 123].

On the other hand, it seems clear that the ecological forces shaping community com-
position and variability can only be unveiled within a macroecological approach by ex-
plicitly studying multispecies abundance patterns. For instance, empirically-determined
pairwise correlations between species abundances can be partially explained by consumer-
resource models with resource fluctuations [209].

One challenge in connecting empirical macroecological patterns with simple yet biologically-
grounded models is that not all statistical patterns are equally informative. For instance,
it is well known that, in many ecological systems, the empirical shape of the species abun-
dance distribution (SAD) —i.e. one of the most prominent macroecological patterns—
can be reproduced by models with very different underlying biological assumptions
(such as, e.g. neutral and niche theories [210, 211]). Similarly, multiple mechanisms are
expected to determine the observed correlations between species abundance fluctuations.
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Pairwise correlations are in fact the result of multiple ecological forces, such as competi-
tion, cooperation, cross-feeding, but also of indirect effects through a network of interac-
tions [212]. Analyzing the phylogenetic structure of community composition [213, 214]
is a standard approach to disentangling the effects of these alternative assembly mech-
anisms. This type of approach is generally applied to analyze species (co-)occurrence.
For example, shared environmental fluctuations (called "environmental filtering" hereon)
produce phylogenetic clustering (i.e., similar species share a tendency to be simultane-
ously present or absent [215]), while exclusion by limiting similarity determines phylo-
genetic overdispersion (i.e., similar species tend not to be simultaneously present). This
type of phylogenetic approaches has been widely applied in plant communities as well
as in other systems [216, 217, 218] including, in particular, microbial communities [219].
More generally, phyloecology, which combines phylogenetic relationships with commu-
nity ecology, has the potential to reveal the processes determining community composi-
tion [220, 221]. However, with few notable exceptions focusing on testing neutral mod-
els [222, 223], a connection between empirical observations of community ecology based
on phylogeny and quantitative predictions of theoretical models is still missing.

Here, our goal is to develop such a connection under the lens of macroecology. In
particular, we first elucidate the existence of a new empirical macroecological law that
associates pairwise abundance correlations with species phylogenetic similarity. To ra-
tionalize such a finding, we formulate three alternative theoretical models —each relying
on different ecological forces— all of which reproduce previously studied single-species
macroecological patterns [207, 208, 123], but lead to radically different predictions for
phylogenetic-dependent correlation patterns. These analyses allow us to conclude that
only environmental filtering (and not, e.g., species competition) explains the empirically-
observed pattern of decaying correlations with phylogenetic distance. Last but not least,
we analyze temporal data for a fixed community, showing that the macroecological law
also holds quantitatively in this context and that delayed temporal correlations are natu-
rally reproduced by our model with environmental filtering.

2.2 Universal pattern of correlation versus phylogenetic distance

We consider the phylogenetic (or cophenetic) distance, dG,ij (where the subindex G stands
for "genetic") for each pair of operational taxonomic units (OTUs) (i, j), by using publicly-
available results from 16S ribosomic RNA analyses [224, 204], see Sec.1.3.1 for a brief
introduction. This genetic distance exhibits a broad variability across OTU pairs (see
appendix B Fig. B.1). For each pair of OTUs, we measure the correlation between the
corresponding abundance fluctuations ηij across samples (see Fig. 2.1(a) and Methods).
Fig. 2.1(b) illustrates the value of the pairwise correlation η, averaged over the pairs of
OTUs at a given phylogenetic distance (where distances are grouped into discrete inter-
vals or bins) for diverse biomes. Remarkably, the resulting averaged correlation is found
to decay with the phylogenetic distance, dG, in a robust way across environments and
datasets. In particular, phylogenetically close OTUs (small values of dG) display a sig-
nificant positive correlation while, for distant OTUs, the average correlation decreases
to zero. We compare this observation with randomized data, obtained by shuffling the
position of OTUs on the phylogenetic tree. Such a randomization tree preserves both the
statistical properties of the abundances and the property of the tree while removing the
relation between the two. The comparison with the randomizations allows us to show
that the positive correlations at low phylogenetic distances are significantly higher than
what expected by change. We confirmed the robustness of this empirical observation by
changing the metric to quantify abundance pairwise correlations, obtaining in all cases
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FIGURE 2.2: Taxonomic Analyses. a: Correlation between abundance fluctuations versus phylo-
genetic distance for intra-phylum (red points) and inter (green points) phyla. In total, 29 phyla
are considered and each point represents the correlation of one of them, within a certain phy-
logenetic distance, in a particular biome (shapes). Black lines are averages over both taxas and
biomes, weighted by abundances in each considered bin. (b) Same data as in (a) above but plotted
separately for each biome.

similar decaying correlation patterns (see Appendix B, Fig. B.2,B.3). At a more quantita-
tive level, the reported decay of the correlation function is well captured on average by a
stretched-exponential function [225]:

η(dG) = e−λdχ
G , (2.1)

where χ ∼ 1/3, as shown in Fig. 2.1(b), so that the decay of the correlation function is
slower than exponential. The value of χ and the goodness of fit of the functional form
of Eq.(B.14) have both a small degree of variation across biomes. In particular, the best
fits of the exponent χ across all the considered biomes —always in the range 0.2 − 0.4—
are reported in sec.B.3.2 of appendix B; the explanation of this variability goes beyond
to goals of this manuscript. Let us mention that, we also explored alternative functional
forms (e.g. exponential and power-law) for the decay curves (see Tables B3 and B4 in
appendix) and observed that, overall, the stretched exponential is the one providing the
best description of the patterns. Neverthelesss, note that this is only a phenomenological
fit, as we lack a mechanistic understanding of the functional form of the decay. Let us
finally remark that the value of λ ≈ 3.5, corresponds to a typical distance for the de-
correlation of abundance fluctuations of dG ≈ 0.3. To give an approximate taxonomic
point of reference, this distance roughly relates the typical distance of species within the
same class or order. In order to scrutinize whether the observed pattern is consistent
across the phylogenetic tree, we repeated the same type of analyses at the coarser level
of taxa, comparing correlations within and between taxonomic orders. Fig. 2.2shows
that species from different phyla (i.e. at large phylogenetic distances, see Sec.1.3.1) tend
to have, on average, vanishing correlations, while the averaged correlations within the
same taxa decay from positive to zero with phylogenetic distance, recovering the pattern
in Fig. 2.1 in a consistent way in the vast majority of the observed taxa (see Fig. B.8-
B.10). Small deviations to this general pattern appear to be due to specific taxa. In the
appendix B we explore the case of soils where a couple of orders are the main drivers of
the observed departure from the macroecological law (see Fig. B.9).

These results suggest that the observed correlation pattern showing a stretched-exponential
decay with phylogenetic distance is a universal one, not depending on the considered
ecological context nor on a particular taxa. Whatever ecological forces are at the origin
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of such species-abundance correlations, they manifest themselves regularly and consis-
tently across taxa and environments.

2.3 Models of ecological forces in preference space

Which ecological forces are responsible for the described pattern of abundance corre-
lations across communities? In general, ecological interactions in a network of species
could a priori create both positive and negative correlations, stemming from both direct
pairwise interactions and network effects.

To unravel these conflicting mechanisms, we consider a general population-dynamic
model where species grow and may compete for resources in a fluctuating environment.
To be more specific, we consider a set of N species whose growth is coupled with a
set of R population-dependent factors (e.g., resources consumed by the populations) as
well as on M other population-independent factors (such as resources subject to high in-
flux fluctuations, temperature, pH, salinity, etc.). The key difference between these two
sets, is that population-dependent factors are affected by population abundances through
consumption and, thus, resource availability explicitly depends on population densi-
ties. This dependence (which can be derived from consumer-resource models, as shown
in the next section) induces an effective competition. On the other hand, population-
independent factors display fluctuations which are mostly insensitive to population den-
sities. Furthermore, we assume that all these R +M factors, both population-dependent
and population-independent, are characterized by temporal fluctuations. Population-
dependent factors can be interpreted as nutrients, which are depleted by consumption.
Population-independent factors could be abiotic factors or nutrients whose dynamics is
not governed by population densities. In particular, in Section 2.4 , we explicitly consider
a consumer-resource model showing that, with some approximations, resources with
high influx rate but low temporal variability behave as population-dependent factors,
while the ones with relative low influx but high variability are effectively population-
independent.

We consider that the effect of the environment on a given species can be represented
as a vector in an abstract preference space, representing its preferences for the R available
population-dependent resources and growth responses to the M population-independent
factors. Thus, the set of resource preferences characterizing each given species i is repre-
sented by a vector bi in an abstract R-dimensional space of population-dependent factors
and by another vector ai in a M-dimensional space of population-independent factors
(see Fig. 2.3(a) for a pictorial illustration). The precise way in which these vectors are
generated is described Methods, where diverse algorithms are designed for the cases of
high and low-dimensional preference spaces, respectively.

The per-capita growth rate of each species is influenced by population-dependent and
population-independent factors, both weighted by the corresponding preference vector
leading to the following general model

1
xi(t)

dxi

dt
=

R
∑
β=1

bi
βRβ(t)+

M
∑
α=1

ai
α Mα(t)− δ , (2.2)

where xi(t) is the abundance of species i at time t, Rβ(t) is the value of population-
dependent factor β at time t, Mα(t) is the value of the population-independent factor α,
and δ is a constant death rate. This description naturally applies when both population-
dependent and population-independent factors can be interpreted as resources, thereby
affecting additively the growth rate. As already mentioned, Section 2.4 shows explicitly
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how this description emerges from more standard consumer-resource models [226, 227]
and how the distinction between population-dependent and population-independent re-
sources stems from their mean values and the amplitude of the fluctuations of their cor-
responding influxes.

On the other hand, Eq.(2.2) is not adequate to describe the effect of abiotic factors
(such as temperature or pH) which are known to affect the growth rate, but not as ad-
ditive terms; in other words, the growth rate should vanish in the absence of resources,
independently of the effect of such abiotic factors. Indeed, if the factors Mα(t) are inter-
preted as abiotic factors, a more biologically grounded model is

1
xi(t)

dxi

dt
= Mi(t)

R
∑
β=1

bi
βRβ(t)− δ , (2.3)

where the effect of abiotic factors influences multiplicatively the growth rate; i.e. they
modulate the growth. Clearly, mixed models between Eq.(2.2) and Eq.(2.3), with some
population-independent factors affecting additively and other multiplicatively the growth
rate are also possible. In the following, without loss of generality, we consider the model
of Eq.(2.2) as it leads to more tractable equations. In section 2.4, we explicitly consider
Eq.(2.3) and show that all the results obtained in the additive scenario also apply also for
the multiplicative one.

We assume the population-independent factors to be subject to stochastic fluctuations

Mα(t) = M̄ (1+
√

νζα(t)) , (2.4)

where M̄ represents a baseline level, ζα(t) is a (zero-mean unit-variance) Gaussian white
noise and the parameter ν quantifies the strength of fluctuations. Similarly, the abun-
dance Rβ of each population-dependent resource β fluctuates in time and is reduced by
consumption, i.e.,

Rβ(t) = R̄
⎛
⎝

1+
√

ωφβ(t)− γ
N
∑
j=1

bj
βxj
⎞
⎠

, (2.5)

where R̄ is a baseline level, γ the consumption timescale, φβ(t) a (zero-mean unit-variance)
Gaussian white noise, and the parameter ω quantify the amplitude of fluctuations. The
choice of Gaussian fluctuations should not be interpreted as an assumption on the shape
of empirical resource-fluctuation patterns, which are most likely non-Gaussian (e.g., in
the gut microbiome nutrients arrive in batches). It should instead be considered as a
coarse-grained description, emerging over longer timescales (e.g., akin to the diffusion
limit [92]). In any case, it can be retained as a first step towards the design of more de-
tailed microbiome-specific models.

The model defined by Eq.(2.2) can be effectively written as a generalized Lotka-Volterra
model with species competition and fluctuating growth rates:

dxi

dt
= xi
⎛
⎝

r̄i +
√

σξi(t)−
N
∑
j=1

Cijxj
⎞
⎠

, (2.6)

where ri(t) = r̄i +
√

σξi(t) is a time-dependent and fluctuating growth rate with mean
value r̄i; the entries of the competition matrix, Cij, are determined by the overlap in
population-dependent factor preferences of species i and j

Cij = R̄γ bi ⋅ bj, (2.7)



2.3. Models of ecological forces in preference space 35

and, finally, the noise covariances are ⟨ξi(t)ξ j(t′)⟩ = ρijδ(t − t′)with

ρij =
νM̄2ai ⋅ aj +ωR̄2bi ⋅ bj

νM̄2 +ωR̄2 . (2.8)

The explicit expressions of r̄i,s and ξ as function of the original parameters are:

r̄i = R̄∑
β

bi
β + M̄∑

α

ai
α − δ (2.9)

√
σξi(t) =

√
ωR̄∑

β

bi
β φβ +

√
νM̄∑

α

ai
αζα (2.10)

σ = νM̄2 +ωR̄2. (2.11)

Observe that growth-rate correlations depend both on population-dependent and population-
independent factors (b and a) while the effective competition is mediated only by shared
population-dependent ones (b). In all the variants of the model considered here (A, B
and C) only one set of preference vector is needed (either biotic for models A and B, or
abiotic for C). Thus, one can quantify the preference similarity or, simply, the "preference
distance" between species i and j, as the cosine distance between their relevant preference
vectors (for simplicity, in the following, we restrict the notation to model C for which
abiotic preferences are relevant). The preference distance is defined as:

dP,ij ≡
2
π

θ = 2
π

arccos( ai ⋅ aj

∣ai∣∣aj∣
) = 2

π
arccos(ai ⋅ aj

rP
) , (2.12)

where the sub-index P stands either for "preference".
Thus, both types of coupling terms in the effective Lotka-Volterra population dynam-

ics —i.e. the elements of the species competition matrix and those of the growth-rate
fluctuation covariance matrix— crucially depend on the set of species similarities in pref-
erence space. However, depending on the relative strength of both types of couplings, as
well as on the distribution of preferences vectors, one can define three different models,
depending on which are the dominating ecological forces (see Fig. 2.3 a/b/c):

(A) Shared fluctuating population-dependent resources.
If population-independent fluctuations are negligible (i.e. ν = 0), species interac-
tions are determined by a combination of the effect of competition (encoded in the
entries Cij) and resource-abundance fluctuations (encoded in the entries ρij), which
are both proportional to the species resource-preference overlap: bi ⋅ bj.

B) Shared population-dependent resources and non-overlapping fluctuating population-independent
factors.
If resource fluctuations are negligible (i.e., ω = 0) and population-independent fac-
tors preferences are all orthogonal to each other, species experience independent
growth rate fluctuations (ρij = δij) and competition for fixed resources (through the
coupling matrix Cij).

(C) Shared fluctuating population-independent factors with fixed non-overlapping population-
dependent resources.
If population-dependent factor preferences are all orthogonal to each other, there
are, essentially, no shared resources. In this case, species experience correlated
growth rate fluctuations and no inter-specific competition Cij = γ R̄ δij. We refer
to this force as "environmental filtering".
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Observe that more general and complex models involving both correlated population-
independent factors and resource fluctuations, as well as combinations of the previous
limiting cases, could also be constructed, but, for the sake of clarity, here we focus of
these three (simplest) ones.

Using extensive numerical simulations and analytic tools like linear noise expansion
around the fixed point(see Methods Sec.2.8) we investigate the relationship between pair-
wise abundance correlations and preference similarities for the three models. In partic-
ular, one can define a preference distance, dP (where the sub-index P stands for "prefer-
ence") proportional to the angle between preference vectors for each pair of species (with
dP = 0 for coinciding vectors and dP = 1 for orthogonal ones). In model (A) and (B) such
a distance is calculated over the resource preference b, while the vectors of population-
independent factors preferences a need to be considered in model (C).

As illustrated in Figure 2.3(a/b/c) the three models give raise to three qualitatively
distinct patterns of correlation as a function of preference distance dP: (A) Shared fluctu-
ating population-dependent resources induce an effective neutral behavior, with nearly
vanishing correlations across the spectrum of pairwise preference distances. (B) Shared
resources and non-overlapping fluctuating population-independent factors produce neg-
ative correlations at small distances that increase to near-zero values in a monotonic way.
(C) Shared fluctuating population-independent factors with fixed non-overlapping re-
sources lead to correlations that decay from positive to vanishing values with distance.

These three paradigmatic scenarios apply, in exactly the same way, also for the multi-
plicative model defined in Eq.(2.3), as shown in sec.2.4. In the next section we delve a bit
more on how resources and abiotic factors can behave as population-independent ones.
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FIGURE 2.3: (Top) Sketch of the elements of the model. Left: Bacterial species depend upon both
population-dependent factors such as resource abundances (polygons) and population-independent
factors,e.g. abiotic variables like temperature, pH, light intensity, etc., and resources with low
influx but strong fluctuations (shady polygons). The normal arrows stand for species prefer-
ences, while the inhibition arrows symbolize the feedback between population-dependent factors
and populations. Right: Species preferences are represented as radial vectors in a sphere: posi-
tive/negative projections represent positive/negative influence on growth. The (pairwise) pref-
erence distance is quantified by the angle between vectors (multiplied by 2/π, see methods). The
red and blue species are similar to each other while the green one is more different from them.
(Bottom) Schematic illustration for the three considered scenarios (models A, B and C) of: (left)
population-dependent and population-independent factor preferences; (centre) model dynamics,
and (right) stationary correlations as a function of preference distance (with gray dots standing
for simulation results and red lines for averages/theory). (a) Shared fluctuating population-
dependent resources. When species are subjected to the combination of both forces, their effects
cancel out leading to an "effective" neutral situation with no correlations. (b) Shared population-
dependent resources and non-overlapping fluctuating population-independent factors. when
two species sharing some resource preference experience an environmental fluctuation, one out-
competes the other, causing negative correlations, increasing monotonically to zero as similarity
decreases. (c) Shared fluctuating population-independent factors with fixed non-overlapping
resources. If two species share some preference for population-independent factors, but not for
resources, the follow in a similar way environmental fluctuations, causing positive correlations
which decrease with preference distance.
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2.4 What are population-independent factors ?

Population-independent resources

In this section we show that by considering a chemostat-like consumer-resource model
with fluctuations in the resource-entry rates one can produce radically different depen-
dencies of the species abundances correlation on the preference distance. To sustain this
claim, we first sketch how it is possible to derive the general class of models exposed
in Sec.3.5 from a general consumer-resource model by using a time-scale separation.
In particular , we show that if common resources enter at a slow rate and experience
large fluctuations, the species Pearson correlation is positive and decays to zero with the
species preference distance. Hence, we show that resources can behave both as popula-
tion dependent or independent factors, and conclude that the CSLM is a good effective
description of the second case.

Model derivation from consumer resource

Consider N species consuming R fluctuating resources :

ẋi = xi Mi(t)
R
∑
β=1

Rjbi
β − δixi (2.13)

Ṙβ = λβ − µβRβ − γRβ

N
∑
j=1

bj
βxj +

√
ωβ φβ(t), (2.14)

with ⟨φβ(t)⟩ = 0 and ⟨φβ(t)φα(t′)⟩ = δαβ(t− t′), where the species i preference for resource
β is represented by the component of the vector bi, bi

β; δi is the species death rate, λβ and
µβ the resource entrance and exit rate, γ the consumption timescale and ω the fluctuation
amplitude of the resource noise φbeta. The influence of abiotic factors is modeled by the
factor Mi(t) as:

Mi(t) = M̄ +
M
∑
α=1

√
νaiαζα(t), (2.15)

where M̄ represents some baseline level and ζα(t) is a Gaussian white noise. The param-
eter ν quantifies the strength of abiotic factors fluctuations.

If the the dynamics of resources entrance and exit is faster than the consumption one,
it is possible to use a timescales separation technique to remove the explicit dynamic of
resources. These timescale separation is based on the "unified colored noise approxima-
tion" in the theory of stochastic processes [228] as well as on recent developments for
consumer-resource models [227]. Here, we give a sketch of the result , while we will
report the full derivation and more in-deep analyses in a forthcoming publication.

If the species growth time scale is slower than the entrance or exit of resources, one
can assume Ṙ ≈ 0 and remove the dynamics of the resources focusing on steady-state
properties. This leads to the following effective model:

ẋi = xi

⎛
⎜
⎝

Mi(t)
R
∑
β=1

bi
β

λβ +
√

ωβ φβ

µβ + γ∑N
j=1 bj

βxj

− δi

⎞
⎟
⎠

. (2.16)

By considering,γ⋘ µ and Taylor expanding Eq.(2.16) around γ = 0 up to first order in γ
(neglecting also terms of the order γ

√
ω), one obtains a generalized Lotka-Volterra model
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equivalent to the one presented in Sec.3.5:

ẋi = xi Mi(t)
⎛
⎝

R
∑
β=1

bi
β (

λβ

µβ
+
√

ωβ

µβ
φβ)− γ

N
∑

j
Cij(t)xj

⎞
⎠
− δixi, (2.17)

with the competition matrix specified now by:

Cij =
R
∑
β=1

bi
βbj

β

λβ

µ2
β

. (2.18)

Resources as population-dependent or independent factors

Here we show how fluctuating shared resource can become population-independent fac-
tors and give rise to positive species correlations. Consider that N species consume two
different types of resources called R and Q. The first type of resource enters in the system
very rapidly at a rate λ1,β, i.e. it is abundant. On the other hand, the resources in the
second set enter at a very slow rate λ2,α, i.e. they are scarce. Furthermore, both sets of re-
source entry rates fluctuate stochastically in time. Let us consider explicitly the dynamics
of the two types of resources and of the species in the consumer-resource framework:

ẋi = xi

R
∑
β=1

Rβbi
β + xi

Q

∑
α=1

Qαai
β − δixi (2.19)

Ṙβ = λR − µRRβ − γRβ

N
∑
j=1

bj
βxj +

√
ωφβ(t), (2.20)

Q̇α = λQ − µQQα − γQα

N
∑
j=1

aj
αxj +

√
νζα(t) (2.21)

⟨ζα(t)⟩ = 0, ⟨ζα(t)ζβ(t′)⟩ = δαβ(t − t′), (2.22)
⟨φβ(t)⟩ = 0, ⟨φβ(t)φα(t′)⟩ = δαβ(t − t′). (2.23)

By using, as above, the timescale separation and expanding in γ ⋘ µ, we obtain the
following effective generalized Lotka-Volterra equation:

dxi

dt
= xi
⎛
⎝

ri(t)−
N
∑
j=1

Cijxj
⎞
⎠

, (2.24)

where the entries of the competition matrix are determined by the overlap in resource
preferences

Cij =
λR

µ2
R

γbi ⋅ bj +
λQ

µ2
Q

γai ⋅ aj. (2.25)
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The time-dependent growth rate can be written as ri(t) = r̄i +
√

σξi(t), where the explicit
expressions of r̄i,s and ξ on the original parameters are:

r̄i =
λR

µR
∑
β

bi
β +

λQ

µQ
∑
α

ai
α − δ (2.26)

√
σξi(t) =

√
ω

µR
∑
β

bi
β φβ +

√
ν

µQ
∑
α

ai
αζα (2.27)

σ = ν

µ2
Q
+ ω

µ2
R

(2.28)

and, additionally, the noise correlation ⟨ξi(t)ξ j(t′)⟩ = ρijδ(t − t′) is given by

ρij =
ν/µ2

Qai ⋅ aj +ω/µ2
Rbi ⋅ bj

ν/µ2
Q +ω/µ2

R
, (2.29)

Note that at this level, both types of resources can give rise to noise correlations and
species competition. Nevertheless, Eq.(2.25) provides us with an intuition on how the
Q set of resources can become population-independent. While both the noise correlation,
Eq.(2.29), and species interaction matrix, Eq.(2.25), depend on µQ, only the second one
depends upon λQ. Hence, if one considers λQ ≪ λR the Q set of resources should not
give rise to competition but only to positive noise correlations. To support this claim, let
us consider two simplified scenarios, where for simplicity we take N = R = Q :

• Consider that the R resources are not shared between species, i.e. each species eats
exclusively one resource of type R, i.e. bi ⋅ bj = 0, while Q resources are shared, as
depicted in Fig. 2.5 A. In this case the model reduces to:‘

ρij = ai ⋅ aj, Cij = δijγ
λR

µ2
R

γ∣bi∣2 +
λQ

µ2
Q

γai ⋅ aj. (2.30)

In Fig. 2.5B, we report the stationary Pearson correlation coefficients as a function
of the preference distance, as obtained from simulations with λQ = 0.1 ≪ λR = 10.
This confirms that the Q type resources are so scarce that they do not induce com-
petition between species (non-negative correlation). Nevertheless, a regime shift
happens as a function of ν: while for small fluctuations ν = 10−2 the correlations are
null and flat, by increasing ν they assume a pattern of positive correlations decay-
ing to zero. For very strong fluctuations, ν = 5, correlations coincide in magnitude
with the analytic value predicted by model C, Eq.(2.150) for ν = 5 (see black line).
This transition happens because at small ν positive correlations are balanced by the
tiny competition factors, as happens in Model A. However, by increasing ν their
strength overcomes competition and dominate the dynamics. Hence, resources
with low but highly variable influx rate behave as population-independent factors,
and one can describe them using the Model C variant of the CSLM.

• Consider that the Q resources are not shared between species, i.e. each species eats
exclusively one resource Q, hence ai ⋅ aj = 0, while the R resources are shared, as
depicted in Fig. 2.5 C. In this case the model reduces to:

ρij = bi ⋅ bj, Cij = δijγ
λQ

µ2
Q

γ∣ai∣2 + λR

µ2
R

γbi ⋅ bj. (2.31)
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In Fig. 2.5 D we show the associated stationary Pearson correlation coefficients as
a function of the preference distance obtained from simulations with λQ = 10−3 ≪
λR = 1. Observe that the R resources are abundant and induce competition (neg-
ative correlations). Nevertheless, a regime shift happens as a function of ω: for
small fluctuations, ω = 0, 10−2, the correlations are negative and increase to zero
with phylogenetic distance, as predicted by Eq.(2.64) of Model B (black line). By
increasing ω„ shared fluctuations balance out competition, leading to null and flat
correlations, like Model A. Hence, resources with high influx rate are population-
dependent factors, and one can describe them using Model A in the case of strong
fluctuations or Model B, if fluctuations are absent.
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FIGURE 2.4: Fluctuating resources as either population-dependent or population-independent
factors. Consider that species are limited by two types of resources: one type enters at a very slow
rate of influx in the system (light color polygons, Q set) and hence is rapidly diluted; the second
set describes resources entering the system very rapidly (dark color polygons, R set), λQ ≪ λR.
Top : Resources as population-independent factors. A) We consider a scenario where species
share preferences for slow entering resources (light color polygons), but not for very rapidly en-
tering ones (dark color polygons). B) These shared resources can produce diverse correlation
patterns depending on the interplay of their noise amplitude, ν and species interactions. If ν is
low, correlations are flat and almost null. By increasing ν, the correlations reach a positive-to-null
decaying pattern that can be approximated by Model C, Eq.(2.150). This behavior is due to the
different relative weights of competition and fluctuations: while the first is proportional to λQ/µ2

, the is depends on
√

ν/µ see Eq.(2.30). Hence, by changing ν we are modifying the weight of
fluctuations compared with species competition, making the Q resource population-independent.
C) Bottom : Resources as population-dependent factors. Species share preference for rapid enter-
ing resources (dark color polygons), but not for very slow entering ones (light color polygons).
D) These shared resources can produce various correlation pattern depending on the interplay of
their noise, ω, with species interactions. If ω is low correlation are negative and increase to zero
with preference distance, well described by Model B for zero noise (black line, Eq.(2.64)). By in-
creasing the noise, correlation reach a null and flat pattern that can be approximated by Model A.
This happens because the resource entry rate λR is proportional to competition but not to stochas-
tic fluctuations, see Eq.(2.31). Hence, By changing ω we are modifying the weight of fluctuations
compared with species competition, making the R resource population-dependent . Parameters:
N = Q = R = 300, µR = µQ = 1, γ = 0.1, A) λR = 10, λQ = 10−1, ω = 0;B)λR = 1, λQ = 10−3, ν = 0.01.
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Abiotic population-independent factors

To explicit consider population-independent factors as abiotic factors like temperature or
Ph, we propose here a modification of the previous models where such factors affect the
growth rate in a “multiplicative way”. The per-capita growth rate of each species is, as
above, influenced both by population-dependent and population-independent factors,
weighted by the corresponding preference vector

1
xi(t)

dxi

dt
= Mi(t)

R
∑
β=1

bi
βRβ(t)− δ , (2.32)

As above, we assume the population-independent factors to be subject to rapid stochastic
fluctuation

Mi(t) = M̄ +
M
∑
α=1

√
νaiαζα(t), (2.33)

where M̄ represents some baseline level and ζα(t) is a Gaussian white noise and ν quan-
tifies the strength of abiotic factors fluctuations. Similarly, the abundance Rβ of each
resource β fluctuates over time. In this case, fluctuations are determined by a balance
between stochasticity and the consumption by populations:

Rβ(t) = R̄
⎛
⎝

1+
√

ωφβ(t)− γ
M
∑
j=1

bj
βxj
⎞
⎠

, (2.34)

where R̄ is a baseline level, γ the consumption timescale, and φβ(t) a Gaussian white
noise with zero mean and variance 1. Similarly to σ, the parameter ω quantifies the
importance of resources fluctuations. Hence, the model defined in Eq.(2.2) reads

1
xi

dxi(t)
dt

= M̄
R
∑
β=1

bi
β

⎛
⎝

R̄ +
√

ωφβ(t)− γ
N
∑
j=1

bj
βxj
⎞
⎠
+
√

νR̄∑
β

biβaiαζα(t)− δ

+
√

νω∑
α,β

aiαbiβζα(t)φβ(t)−
√

νγ∑
α,β
∑

j
aiαbiβbjβxjζα(t). (2.35)

First let us note that Model A does not involves population-dependent factors and hence
is recovered directly from Eq.(2.32). Second, let us note that if the fluctuation parameters
ν, ω and the consumption timescale γ are small, all the terms on the second line are
sub-leading and the model is equivalent to the general case defined in the first part of
section(3.5). In particular, in this section we will study how considering multiplicative
abiotic factors as population-dependent one modifies the results obtained for model B
and C. Let us start by considering the modification of model C, obtain from Eq.(2.32)
by considering perpendicular population-dependent preferences but shared abiotic ones
and ω = 0:

1
xi

dxi(t)
dt

= (M̄ +
√

ν
M
∑
α=1

aiαζα(t))(r̄i −
xi

Ki
) (2.36)

with

r̄i =
R
∑
β=1

biβ, K−1
i = ∣bi∣2γ. (2.37)
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FIGURE 2.5: Correlation with purely abiotic factors: dependence on the number of abiotic
factors. Study of the model defined by Eq.(2.36) of environmental filtering at the stationary state.
Left: preference distance distribution for differente values of M (number of abiotic factors, color
coded), M = 5, 10, 25 and N = 300. Right: Pearson correlation distribution (log-scale) as function
preference distance for different values of M (color coded), M = 5, 10, 25 and N = 300, obtained by
the numerical integration of Eq.(2.36). The red line stands for Eq.2.150. As expected, by increasing
the number of resources, the correlation distribution variances decreases and the decay is better
approximated by the linear noise approximation. Parameter values: N = 300, q = 0.4, Z = 50N, m =
1, R̄ = M̄ = 1, γ = 0.1, νi = 0.5, and t f in = 104

This model and reduces to model C it for
√

ν
K ⋘

1
K . To realistically model abiotic factors

they need to appear in a number smaller than the number of species, i.e. N ∼ R ⋙ M.
In order to obtain a distance distribution with the desired properties in such a scal-
ing regime, we use the evolutionary algorithm exposed in Sec.2.8. Based on a linear-
noise perturbation we expect the stationary pattern of correlations to not deviate much
from model C. Indeed, Fig. 2.5 shows the numerical solution for the average correla-
tion as function of preference distance still decays in good numerical agreement with the
Eq.(2.150).

To resume the validity of our results also in the case of abiotic factors acting multi-
plicative on the growth rate, in Fig. 2.6 we compare the analytic approximation of the
Pearson correlation coefficient in CSLM, Eq.(2.150), with the simulations of model C (A),
and its multiplicative modification to include abiotic factors in large (B) or small number
(C), Eq.(2.36).
Finally, we also study the modification of Model B to include multiplicative abiotic fac-
tors:

1
xi

dxi(t)
dt

= (M̄ +
√

ν
M
∑
α=1

aiαζα(t))
R
∑
β=1

biβ
⎛
⎝

R̄ − γ
N
∑
j=1

bj
βxj
⎞
⎠

, (2.38)

where the previous equation is obtained from Eq.(2.32) by considering perpendicular
abiotic preferences, shared resources preferences and ν = 0. In Fig. 2.7, we compare the
analytic prediction of correlations for model B with simulations of different versions of
the model. Note that the negative to null correlation pattern is present in all the model
versions, and out analytic prediction is a good approximation across a large variation of
model scenarios.
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FIGURE 2.6: Comparison of analytic and simulations for correlations in model C The red line
represents the analytic expectation for the Pearson correlation coefficient, Eq.(2.150), while the
gray points the stationary Pearson coefficient for each species couple obtained numerically. In A)
we simulated Model C Eq.(2.85), obtaining a very good match between theory and simulations.
In B) and C) we simulated the abiotic non-linear version of model C, Eq.(2.36) for a large number
of abiotic factors (M=300) or small (M=10). Note that Eq.(2.150) is still a very good approximation
in all the cases, but does not capture the fluctuations of the correlation values in the abiotic case
B, C. In particular, while in A, for a given distance, the formula capture both the mean and typical
correlation, in B) and C) the formula represent the typical correlation but not the average one
(that is a bit smaller), as typical of multiplicative processes. Parameter values: N = 300, M =
300(A, B), 10(C), q = 0.1, Z = 50N, m = 1, R̄ = M̄ = 1, γ = 0.1, νi = 0.5, and t f in = 105
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FIGURE 2.7: Comparison of analytic and simulations for correlations in model B. The red line
represents the analytic expectation for the Pearson correlation coefficient, Eq.(2.64), while the gray
points the stationary Pearson coefficient for each species couple obtained numerically. In A) we
simulated model B, Eq.(2.60), obtaining a very good match between theory and simulations. In B)
and C) we simulated the abiotic multiplicative version of model B, Eq.(2.38) for a large number of
abiotic factors (M = 300) or small (M = 10). Note that Eq.(2.64) is still a very good approximation,
but does not capture the fluctuations of correlation values. N = 300, M = 300(A, B), M = 10(C), q =
0.1, Z = 50, N = 1, m = 1, R̄ = M̄ = 1, γ = 0.1, ωi = 0.5, and t f in = 105
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FIGURE 2.8: The model with environmental filtering reproduces the empirical law. Correlation
values are plotted as a function of the phylogenetic distance both for the gut microbiome data
(green triangles for each binarized value) and the simulated computational model (green clouds
of points). The analytical expression, Eq.(B.14) with λ = 3.5 is also plotted (black line). Simula-
tions of the model have been performed, using N = 300 species and considering as an input the
empirical phylogenetic distance matrix of the gut microbiome, randomly sampling from it the
N species. Inset: -log Correlations as a function of phylogenetic distance in double-logarithmic
scale, empirically and from the mode, same data as the main figure. For more simulations details
see Methods

2.5 Environmental filtering reproduces the correlation decay with
distance

In order to make a more quantitative comparison between the previous results and the
empirically-determined universal pattern of decaying correlations, it is necessary to spec-
ify the relation between the preference distances dP,ij —on which the models rely— and
the empirically-determined phylogenetic similarity of actual species, as quantified by
their genetic distance dG,ij. For this purpose, it seems natural to assume that dP and
dG are positively correlated, i.e., that phylogenetically close species typically have more
similar preferences than distant ones. Under this assumption, the overall trend of the
decay in Fig. 2.3 implies that environmental filtering is the process responsible for the
empirically-observed decay of correlations (Fig. 2.1). Competition for constant and/or
shared fluctuating resources can instead be discarded as the leading mechanism on the
basis of the empirically observed pattern. This does not imply that competition is not
present, but rather that it does not generate a signal detectable at a phylogenetic level
within the present level of resolution.

To make further quantitative progress in the connection between the previous mech-
anistic modelling approaches, in particular, model C or “environmental filtering”, and
available phylogenetic data, one needs to define a more precise mapping between pref-
erence similarity in the model and empirically-determined phylogenetic distance, i.e. to
characterize the functional dependence between dP on dG, using information on pairwise
correlations.

The previous task is not straightforward: species are coupled to each other within
a network of interactions, so that pairs of species cannot be simply analyzed one at the
time and, on the other hand, the full set of coupled non-linear equations is intractable.
Fortunately, however, as explicitly shown in the Methods sect., one can make further
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progress by explicitly mapping model C into a correlated stochastic logistic model (CSLM) :

dxi

dt
= xi

τi
(1− xi

Ki
)+
√

σi

τi
xiξi(t), (2.39)

where τ−1
i is the growth rate, Ki an effective carrying capacity, σi the amplitude of en-

vironmental fluctuations, and ξi(t) is a Gaussian white noise, with correlations propor-
tional to the preference distance,

⟨ξi(t)ξ j(t′)⟩ = δ(t − t′) cos(π

2
dP,ij) . (2.40)

For the sake of simplicity, in the derivation (see Methods), we assumed that the prefer-
ence space has a large dimensionality, i.e. M ≫ 1, but this can be shown not to limit the
generality of the forthcoming results (see Methods 2.8 for more details).

This mapping is particularly illuminating as the resulting CSLM extends the standard
stochastic logistic model (SLM) [207], as it includes correlated growth-rate fluctuations
that stem from shared environmental fluctuating resources and that induce non-trivial
species correlations. Moreover, it is important to stress that —if species-abundances
trajectories are observed individually— there are no statistical differences between the
CSLM and the standard SLM. This implies that the CSLM also reproduces (as the SLM
does) the three macroecological patterns put forward in [207, 208, 123] (see Methods,
2.8 ). Thus, the CLSM constitutes an improvement of existing modelling approaches to
microbial macroecological laws.

A crucial advantage of Eq.(2.39) (together with and Eq.(2.40)) with respect to the gen-
eralized Lotka-Volterra equation is that is can be treated analytically to obtain a mathe-
matical expression linking pairwise species-abundance correlations with their preference
distance, dP,ij using a linear approximation around the fixed points:

ηij ≈ cos(π

2
dP,ij) (2.41)

. The resulting analytical relationship can be exploited to estimate the preference
distance matrix from empirical correlation data, thus allowing us to establish the desired
relation between preference distance dP and phylogenetic distance dG for every pair of
species (see Methods ):

dP,ij ≈
2
π

arccos(e−λd1/3
G,ij) , (2.42)

where λ is a constant. Observe, that Eq.(2.42) is highly non-linear, implying that, as the
phylogenetic distance grows, preference distances rapidly saturate to values close to 1;
in other words, even phylogenetically similar species tend to have a large preference
dissimilarity (i.e. their preference vectors tend to be orthogonal to each other).

By implementing the relation given by Eq (2.42) in the definition of noise correla-
tions Eq.(2.40), we obtain a version of the CSLM, directly relating ecological processes
and phylogeny, which allows us to relate the species-abundance pairwise correlations to
their empirically measured genetic similarity, dG,ij. Actually, given that the macroecolog-
ical pattern we intend to reproduce is for the averaged correlation at a given (binarized)
phylogenetic distance, we dropped the sub-index ij in Eq.(2.42) and use it as a relation
between averages (see Methods , Eq (2.146)). In particular, by combining Eq.(2.146) with
Eq.(2.41), one obtains exactly Eq.(B.14), i.e. the empirically observed relation between
correlation and phylogenetic distance (see Methods).
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FIGURE 2.9: (a) Sketch of the time-dependent (longitudinal) correlation data analyses. Typi-
cal time-series for two species (green and brown, respectively) along 10 days. The dashed lines
illustrate how equal-time (red) and 1, 2, 10 days delayed correlations (green, yellow and blue re-
spectively) are computed, see Methods for more details. (b) Macroecological law for temporal
data. Equal time (red), one-day delay (light blue), two-days (yellow) and ten-day delay (blue)
symbols represent correlations as a function of the discretized phylogenetic distance (logarithmic
scale) for the gut microbiomes of two different hosts (labelled with circles (F4) and triangles (M3),
respectively). Solid lines stand for the prediction from the CSLM, Eq.(2.43), averaged over hosts,
with timescale parameter τi = 1, for i = 1, .., N and λ = 4.5.

Fig. 2.8 shows that, for the particular case of the human gut microbiome, a computa-
tional simulation of the final version of the model captures quite well the averaged decay
of pairwise correlations with phylogenetic distance and that the analytical predictions
describe accurately such an averaged behavior.

2.6 Macroecological law for temporal data

One important prediction of Eq.(2.39) is that the decay of abundance correlations with
phylogenetic distance is caused by shared temporal fluctuations. In order to further test
the predictions of Eq.(2.39), we consider longitudinal data from the human microbiome.
In particular, we analyzed three human body sites (gut, oral cavity, and hand palms)
of two hosts [224]. From these data, we calculate the correlation of species abundance
fluctuation ηij as above, but now averaging over time, rather than across individuals (see
Fig. 2.9(a)). In particular, Figure 2.9(b) illustrates —for the specific case of the human
gut— that the macroecological law of decaying correlation holds also for such temporal
data, and that delayed correlations rapidly decay to zero. In particular, the correlations
as a function of phylogenetic distance decay on average as a stretched exponential with
an exponent close to 1/3, as observed in cross-sectional data.

To further test the CSLM model in its ability to reproduce time-dependent features of
species correlations, we also computed delayed pairwise correlations, ηij(∆t) defined as
the correlation between the abundance fluctuations of species i at time t with the abun-
dance fluctuations of species j at time t +∆t:

ηij(∆t) ≈ e(1−
σ
2 )

∆t
τ cos(π

2
dP,ij) ; (2.43)

(see Methods Sec. 2.8 and Fig. 2.9 (a) for a graphical illustration). Let us remark that,
in principle, the value of such a delayed correlation is, in general, not trivially linked
to the correlation computed at the same time, as it depends of the specific properties of
the dynamics giving rise to species inter-dependencies. Remarkably, as shown in Figure
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2.9(b) the CSLM with no additional modification quantitatively reproduces also the tem-
poral delayed correlations for different values of the delay (see appendix B for additional
details and analyses) only by setting the growth time scale τi = 1 for all species.

2.7 Conclusions and discussion

We have considered both cross-sectional (across communities) and longitudinal (across
time) empirical data for the species abundances in microbial communities from many dif-
ferent environments and studied their species-abundance pairwise correlations as a func-
tion of pairwise phylogenetic distance, revealing the emergence of an universal macroe-
cological law. This empirical law states in quantitative terms that the average correlation
function decays from positive to null values as the phylogenetic distance (or dissimilar-
ity) increases, approximately following a stretched-exponential decay function.

We explored the possible ecological forces shaping species correlations from a theo-
retical standpoint. In particular, by scrutinizing different ecological models, each one im-
plementing a diverse set of ecological forces between species, we found that the universal
correlation pattern cannot possibly be reproduced by competition or exclusion principles.
Instead, temporal environmental filtering —i.e. the presence of correlated noise stem-
ming from shared fluctuating factors— as modeled by a correlated stochastic-logistic
model (CSLM), explains quantitatively empirical data. Furthermore, time-dependent
(delayed) correlations in longitudinal data are also well reproduced by the model.

This novel ecological pattern gives a quantification at the level of phylogenetic signals
detectable in taxa-taxa abundance correlation. The pattern, as also shown in Fig. B.5, B.2,
and B.3 in appendix B, does not recapitulate the full range of correlations observed in nat-
ural communities. In this context, our work complements the research aiming at inferring
ecological interactions from correlations, by showing how phylogenetic similarity can be
used to disentangle the effects of environmental fluctuations and interactions (such as,
e.g., competition).

These results are based on multiple assumptions and their limitations give oppor-
tunities for extensions of the current work. First, at a theoretical level, the CSLM re-
produces the average correlation at each discrete phylogenetic distance, but not the full
distribution around such a mean value (see Fig. 2.18 in Methods). This is because, to
be able to connect genetic and preference similarities, we enforced a “mean-field” type
of relationship, Eq.(2.42), neglecting variability across pairs of species in the phenotypic-
distance-to-preference-distance mapping. On the other hand, in Figure B.5 of appendix
B, we show that the variance of the distribution of the empirically-measured pairwise
correlations within each distance bin seems to follow a weak decaying power-law pat-
tern with phylogenetic distance, with a diverse decaying exponent characteristic for each
analyzed biome. Possibly, these patterns could be used to generate the preference vectors
of the model in a more general way, allowing for more variability. Empirical data are not
informative enough at the moment to proceed in this direction, and further analyses are
required.

It is however important to stress that both the empirical analysis and the model as-
sume a certain degree of niche conservatism . One important assumption of our mod-
eling framework is that ecological similarities are fixed in time and environmentally de-
pendent [229, 230]. In the extreme scenario, in which the ecological strategy is strongly
conserved on the phylogenetic tree there would be a 1 ∶ 1 mapping between ecological
similarity and phylogenetic distance. This strong assumption is however not needed for
our analysis, which requires of a much weaker condition: namely, that ecological simi-
larity correlates with phylogenetic similarity. The variability of correlations around the
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expected one from phylogenetic distance (shown in Fig. 2.18 in appendix B) should be
interpreted in this way. Note that two interpretations of our results are possible. On
the most pessimistic side, one could argue that the pattern we discover and the model
we propose serve only to describe the phylogenetic signal observed in the correlations,
leaving the variation un-explained. Instead, on the most optimistic side, one could argue
that the variability observed in the correlations is not a signal of other ecological mecha-
nisms not included in the model, but rather the consequence of the lack of a perfect match
between ecological similarity and phylogenetic similarity.

Recent theoretical works (e.g., in the context of consumer-resource models [231]) ex-
plored the case of dynamic ecological preferences, where species’ preferences are dy-
namically optimized given an environment. One could envision extensions of our model
including dynamical preferences. Nevertheless, these changes in ecological strategies
might contribute to the large variation around the mean phylogenetic trend by they
should be constrained by the robust pattern of mean correlations reported here.

It is also important to stress that the origin of the stretched exponential behavior and,
in particular, its exponent value close to a value 1/3 in the universal pattern of correla-
tions (i.e., Eq.(B.14)) remains unexplained. This type of scaling could be influenced by
the scale-invariant, i.e. fractal, structure of phylogenetic trees [232, 233, 234, 235]; further
investigations, beyond the scope of the present work, are needed to shed light onto this
empirical finding. Furthermore, it is known that a vast class of competitive models can
lead to species clustering in trait space [236, 237]. Even if such models produce an "oscil-
lating" pattern of positive and negative correlation, and hence are not sufficient to explain
the behavior here reported, their possible extension could be relevant for explaining the
phylogenetic distance distribution observed in data (see Fig. B.1in appendix B).

Although environmental filtering has been found to dominate the pattern of species-
abundance correlations, the above-mentioned variability could be the result of the com-
plex interplay of other ecological forces. To identify which further forces are relevant
and to discriminate their effects it will be important to analyze time-dependent data in
a more detailed way as well as to analyze differences in carrying capacities, and correla-
tions between different hosts [123]. Furthermore, an exhaustive analysis of the variations
of the correlation pattern across environments and phyla is also needed. Interestingly,
Fig. B.12-B.10 in appendix B show that some phyla (e.g. bacteroidetes) follow robustly
the pattern, while some others, such as actinobacteria, exhibit wild fluctuations. Indeed,
the non-monotonic deviation in the soil biome around distance 0.1 seems to be caused by
the actinobacteria phylum and, in particular, by the actinomycetales and gaiellales orders
(see Fig. B.9 in appendix B). The fact that the trend of correlation and phylogeny holds
across very different environments strongly suggests that the pattern captures an under-
lying general ecological process, linking phylogeny with ecological similarity and eco-
logical similarity with correlations. Specific environments and specific taxa might have
different behaviors, which is reflected in the deviations from the average patterns and in
the variability of the fitted parameters of the stretched-exponential. We leave for future
work the promising study of deviations across taxa, that could reveal more information
on additional interactions responsible for the observed residual correlations.

Another relevant caveat is that our analyses here are limited to the taxonomic reso-
lution of OTUs, clustering together individuals with more than 97% similarity. Recent
results suggest that ecological dynamics starts to decouple at much finer phylogenetic
resolutions [238]. Moreover, strains seem to still obey the three macroecological laws of
variation and diversity valid at species level [126]. These results leave open the question
of how ecological forces shape the variation of community composition at finer phyloge-
netic scales.
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On the other hand, from a complementary viewpoint, we analyzed the behavior of
correlations at the coarse-grained resolution of phyla. In particular, Fig. 2.2 illustrates
that by considering just inter-phyla correlations one cannot observe the stretched expo-
nential decay, that is determined by intra-phyla OTU pairs. Analogously, by extending
our analyses to finer phylogenetic resolutions it could be possible to reveal the nature of
intra-specific interactions, eventually elucidating the emergence of competition as a key
player in determining correlations. Actually, in our view, one should not fix a character-
istic taxonomic resolution to have a complete description of complex communities, but,
instead, start from individuals (or functional units) and progressively cluster them to-
gether at larger and larger coarse-grained scales (i.e. moving across observational scales
as customarily done in physics using “renormalization group” tools in statistical physics
[239, 240]) as different ecological forces may shape communities at diverse resolution
levels [241].

2.8 Methods: detailed analysis of the ecological models

Evolutionary algorithms to generate a wide distribution of preference distances.

If vectors in the preference space –identifying the characteristic of each given species
in the different models— are generated in a simple random fashion, they have a large
probability to be orthogonal to each other; i.e. vectors with small distances are very
unlikely to be randomly generated. In particular, as a consequence of the central limit
theorem, for sufficiently large numbers of environmental factors, R, the random vectors
bi tend to be orthogonal to each other, i.e., DP,ij ≈ 0 ∀i, j, hindering the observation of
similar species. To paliate this problem and populate all the space of possible pairwise
distances we consider two alternative algorithms.

Algorithm 1: high-dimensional preference space

If the preference space under consideration is high dimensional, i.e. N ∼ R ∼ M ⋙ 1,
one can employ the following algorithm. We generate the set of M preference vectors
b by sampling their component from a Gaussian distribution with mean m/R (m small
and positive) and s.t.d. 1/

√
R, N (m/R, 1/

√
R), such that the radius of the overall vector

is constant and close to 1 for large M: r2
P = ∑β b2

β = 1+ m2

R ≈ 1.

Starting from an initial random distribution of vectors bi0
—and implementing an

evolutionary branching process— generates as an outcome a set of vectors bi which are
distributed across all values of possible cosine distances. The algorithm has the following
steps:

1. Sample at random two species i, j, i reproduces and j dies.

2. Replace the pair of vectors by a new pair, specified by: bi = qbi + (1 − q)ϵi, bj =
qbi + (1 − q)ϵj, where the q ∈ [0, 1] is the “fidelity” and p = 1 − q is the “mutation”,
and ϵi,j vectors sampled from N (m/R, 1/

√
R).

3. Iterate Z times.

Note that the vectors are automatically kept in the sphere. For large enough values of
Z and q = 0.9, the population has a small pool of similar individuals, corresponding to a
long left tail of the distance distribution (see Fig. B.1).
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FIGURE 2.10: Preference distance distribution generated by the algorithm in high-dimensional
space. Left: distribution obtained for different values of q and R = 100. Right: distribution with
q = 0.9 and different values of R. As a consequence of the central limit theorem, the distribution
converges to a Gaussian for small values of q and R → ∞. On the contrary, for high values of
fidelity, q = 0.9, the distribution develops a long left tail, covering all the preference space. As
shown in the right figure for any value of q, the variance shrinks by increasing R. In both figures
we considered N = 100, and iterated the algorithm Z = 50N.

FIGURE 2.11: Preference distance distribution generated by the second algorithm for low-
dimensional preference spaces Left: distribution for different values of q and N = 500, M =
10, Z = 10N. Right: distribution with q = 0.7 and different values of Z.

Algorithm 2: low-dimensional preference space

If the preference space is low dimensional in comparison with the species number, i.e.
N ∼ R ⋙ M ∼ 1, one can employ an alternative algorithm not relying on the cen-
tral limit theorem. Consider N vectors of dimension M each generated with just one
random non-zero entry sampled by taking the absolute value of a normal distribution
N(m/M, 1/

√
(M)), with m > 0. Then, the algorithm proceeds as follows:

1. Sample at random two species i, j, i reproduces and j dies.

2. Replace both vectors with a mutation of the vector bi in one random entry, where
q ∈ [0, 1] is the fidelity and p = 1− q is the mutation. bi = qbi + qϵi, bj = qbi + (1− q)ϵj,
with q ∈ [0, 1] is the fidelity of reproduction and ϵi,j = (0, .., ϵ

i,j
k , 0, .., 0) with k chosen

at random between 1 and M and ϵ
i,j
k sampled by N (m/R, 1/

√
R).

3. Iterate Z times.

If the fidelity is moderate but and Z is large the distance distribution develops a long tail
independently on the dimension of M, see Fig. 2.11
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Model 0: Fluctuating and non overlapping factors.

As a first analysis, we use the Stochastic Logistic model as a null expectation for the corre-
lations. Such a model is easily derived if both the population-dependent and population-
independent factors preference vectors are perpendicular to each other (for simplicity one
component for vector with modulus m)

r̄i = (R̄ + M̄)m − δ, Cij = mR̄γδij, σi = νM̄2 +ωR̄2, ρij = δij. (2.44)

Indeed, such a model describes logistic growth plus environmental fluctuations of N
uncoupled species:

ẋi = xi (r̄ −
xi

K
)+ xi

√
σξi (2.45)

⟨ξi(t)⟩ = 0 (2.46)
⟨ξi(t)ξ j(t′)⟩ = δijδ(t − t′) (2.47)

where the carrying capacity is K = (R̄γ)−1. By considering the following ansatz on the
parameters:

r̄i =
1
τi

, (2.48)

Ki = τiK′i , (2.49)

σi =
σ′i
τi

, (2.50)

one recovers the standard form of the stochastic logistic model:

ẋi =
xi

τi
(1− xi

K′i
)+

¿
ÁÁÀσ′i

τi
ξi(t)xi (2.51)

⟨ξi(t)⟩ = 0 (2.52)
⟨ξi(t)ξ j(t′)⟩ = δijδ(t − t′). (2.53)

Observe that, by definition, the preference distance is always one, and hence this
model gives a symmetric distribution of correlations centered in zero, with spurious vari-
ance due to finite size effects that converges to zero in the infinite species and resources
limit, see Fig. 2.12. See Sec.A.3 in appendix A for the stationary solution of the SLM.

Model A:Shared fluctuating population-dependent factors.

The presence of population-dependent factors (such as, e.g., sugars) in the environment
fluctuates due to seasonality, fluxes with external space etc., inducing both competition
between species and fluctuating growth. Thus, if population-independent factors are
absent, species interactions are determined by a combination of the effect of competition
and resources fluctuations:

ẋi = xi
⎛
⎝

r̄i −∑
j

Cijxj
⎞
⎠
+
√

σξi(t)xi

⟨ξi⟩ = 0,
⟨ξi(t)ξ j(t′)⟩ = δ(t − t′)ρij; (2.54)
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FIGURE 2.12: Correlations for Model 0. (a) Stationary probability distribution (log-scale) of cor-
relations for different values of R (color coded) and fixed N. Parameters: N = 100, Ki = 10.0, r̄i =
1.0, σ′i = 0.1, q = 0.9, Z = 50N, and t f in = 104.

with:
r̄i = R̄∑

β

bi
β + M̄m − δ, Cij = R̄γbi ⋅ bj, σi = ωR̄2, ρij = bi ⋅ bj (2.55)

The population-dependent factors preference vector are generated as described in 2.8,
Importantly, in the limit R ≫ 1, the model does not depend on the preference vector but
just on the angles between them. Indeed, in such a limit the growth rate depends just on
the mean preference

r̄i = R̄R⟨bi⟩+ M̄ − δ = (R̄ + M̄)m − δ. (2.56)

Furthermore, the preference vector modulus, i.e. the hyper-sphere radius converges to 1:

r2
P =∑

β

b2
β = 1+ m2

R
≈ 1, (2.57)

and hence species interactions depend directly on the preference distance:

Cij = R̄γ cos(θij) = R̄γ cos(π

2
dP,ij) (2.58)

ρij = cos(θij) = R̄γ cos(π

2
dP,ij) . (2.59)

Curiously enough, this model leads to a consistent number of extinctions, and the sur-
viving communities are “effectively neutral”, i.e. with species pair at almost all distances
but with average correlation zero, see Fig. 2.13.

Model B: Shared resources and non-overlapping fluctuating
population-independent factors.

We now consider that population-dependent factors do not fluctuate in time, i.e. ω = 0,
and that population-independent factors preferences are all perpendicular to each other.
Hence species experience independent growth rate fluctuations and competition for re-
sources. Such a model results in competition in preference space for N species and R
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FIGURE 2.13: Correlations in Model A. (a) Stationary probability distribution (log-scale) of cor-
relations, and (b) correlations as function of preference distance for different values of R (color
coded) and fixed N. The red line in (b) is the correlation averaged over all the presented realiza-
tions. As a consequence of limiting similarity various extinction events happen before reach-
ing the stationary state, resulting in the majority of species having distance one, and just a
few species in the small distance tail. Note that the correlations do not depend on the species
distance, leading to and effective neutral behavior. Parameters: R = 100, 200, 300. q = 0.1,
Z = 50N,N = 100, m = 0.5R̄ = M̄ = 1, δ = 0.1, γ = 0.3, ω = 1.

resources in the form of stochastic Lotka-Volterra equation:

ẋi = xi
⎛
⎝

ri(t)−
N
∑
j=1

Cijxj
⎞
⎠

= xi
⎛
⎝

r̄i −
N
∑
j=1

Cijxj
⎞
⎠
+
√

σiξi(t)xi, (2.60)

with:
r̄i = R̄∑

β

bi
β + M̄m − δ, Cij = R̄γbi ⋅ bj, σ = νM̄2 ρij = δij. (2.61)

Furthermore, by considering the limit R ≫ 1 we obtain here a simplified version of the
model depending only on the the preference distance matrix dP,ij and not on the vectors
bi. Indeed, the deterministic growth rate reads:

r̄i = R̄R⟨bi⟩+ M̄m − δ = (R̄ + M̄)m − δ, (2.62)

Cij = R̄γ cos(θij) = R̄γ cos(π

2
dP,ij) . (2.63)

In section2.8 we perform an approximate calculation of the stationary Pearson corre-
lation coefficient, leading to:

ηij(dP,ij) ≈ − cos(π

2
dP,ij) . (2.64)

predicting a negative to null correlation pattern.‘
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FIGURE 2.14: Correlations for Model B (a) Stationary probability distribution (log-scale) of cor-
relations, and (b) correlations as function of preference distance for different values of R (color
coded) and fixed N. The red line in (b) is the correlation averaged over all the presented realiza-
tions. As a consequence of limiting similarity various extinction events happen before reaching
the stationary state, resulting in the majority of species having distance one, and just a few species
in the small distance tail. Parameters: q = 0.1, Z = 50N,N = 100, m = 0.5R̄ = M̄ = 1, δ = 0.1, γ =
0.3, ω = 1.

Linear approximation around the fixed point

Here we derive the stationary correlation of a couple of species by employing a linear ex-
pansion around the fixed point. This approximation assumes that stochastic fluctuations
are small and hence the dynamics is localized nearby the deterministic fixed point. We
are interested in the relation between the stationary correlation and the interaction coeffi-
cients, and hence the preference distance. Hence, for sake of simplicity, but without loss
of generality, we consider here the case of gen. LV of two species, interacting through
symmetric competition, symmetric noise fluctuations σ1 = σ2 = σ, carrying capacities
K1 = K2 = 1 and growth rates r1 = r2 = 1:

ẋ1 = x1 (1.− cx2 − x1)+
√

σξ1(t)x1

ẋ2 = x2 (1.− cx1 − x2)+
√

σξ2(t)2,
(2.65)

where c = c12 = c21, cross-diagonal elements of the competition matrix.
By looking at Eq.(2.65), it is clear that there is a deterministic fixed point for each

species at:

x∗1 = x∗2 =
1

1+ c
. (2.66)

Nevertheless, owing to the presence of multiplicative fluctuations it is not possible to
perform the analysis around such point in these variables, but it is necessary to go to log
abundances, recasting the equations into an additive noise form. In these new variables
one can easily perform a linear expansion and, afterward, come back to the original ones.
As a first step, one can apply a logarithmic change of variables to make the noise additive:

ui = log(xi), (2.67)
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by using the Ito formula Eq.(2.65) becomes:

u̇1 = ẋ1

x
= (1− σ

2
− ceu2 − eu1)+

√
σξ1(t) (2.68)

u̇2 = ẋ2

x
= (1− σ

2
− ceu2 − eu1)+

√
σξ1(t) (2.69)

(2.70)

The fixed point in this variable is modified by the Ito term:

u∗1 = u∗2 = u∗ =
1− σ

2

1+ c
. (2.71)

Around it we can perform the linear perturbation analysis:

ui = u∗ + δui (2.72)

leading to the following linear equation:

δ̇u = Jδu + ξ (2.73)

where J is the Jacobian of the deterministic part evaluated at the fixed point:

Ju∗ = −(
1− σ/2

1+ c
)(1 c

c 1
) = −a(c)(1 c

c 1
) (2.74)

and diffusion matrix:

D = (σ 0
0 σ

) . (2.75)

Using standard tools in stochastic processes [93], it is easy to see that Eqs.(2.73) at the
stationary state converge to bivariate Normal distribution with covariance matrix Σ:

P∗(u1, u2) =
1√

2πdet(Σ)
exp(−1

2
uTΣ−1u) (2.76)

Σ = 1
Tr(J)det(J)

(D22 J2
12 −D1 J12 J21 +D11 J22(J11 + J22) D22 J11 J12 +D1 J21 J2

D2 J1 J12 +D1 J21 J2 D1 J2
21 −D2 J12 J21 +D22 J11(J11 + J12)

) =

(2.77)

= σ

a(c)(1− c2)
( 1 −c
−c 1

) ,

. Now, it is necessary to go back to the original variables by applying the determinant of
the transformation:

P∗(x1, x2) = det(
du
dx
)P(u1, u2) (2.78)

= 1

x1x2
√

2πdet(Σ)
exp(−1

2
log2 x1Σ−1

11 −
1
2

log2 x2Σ−1
22 − log x2 log x1Σ−1

12).
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It is immediate to calculate the moments as :

µi = u⋆i (2.79)

⟨xi⟩ = eµi+Σii/2 (2.80)
⟨x1x2⟩ = eµ1+µ2+(Σ11+Σ22)/2+Σ12 (2.81)

Cov(xi, xj) = (eµi+µj+(Σii+Σjj)/2) (eΣij − 1) (2.82)

Var(xi) = (e2µi+Σii) (eΣii − 1) . (2.83)

In particular, the Person correlation coefficient is:

η12 = Cov12√
Var1Varx2

= eΣ12 − 1√
eΣ11 − 1

√
eΣ22 − 1

≈ −c (2.84)
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Model C: Shared fluctuating population-independent factors with fixed non-
overlapping resources.

If resource fluctuations are absent, ω = 0, and population-dependent factors preferences
are all perpendicular to each other, i.e. no common resource preferences, species experi-
ence dependent growth rate fluctuations and no inter-specific competition:

ẋi(t) = xi (r̄i −
xi

Ki
)+
√

σξi(t)xi, (2.85)

where:
r̄i = M̄∑

α

ai
α +mR̄ − δ, Ki = (γR̄)( − 1), ρij = ai ⋅ aj (2.86)

Hence this model implements the force called "Environmental Filtering". By taking the
limit M ≫ 1, we can recast the model just in terms of preference distance dP,ij. The
deterministic growth rate reads:

r̄i = M̄⟨ai⟩+mR̄ − δ = (R̄ + M̄)m − δ; (2.87)

while the noise correlation can be rewritten as:

ρij = ai ⋅ aj = cos(π

2
θij), (2.88)

cause

∣a∣2 = m2

M
+ 1 ≈ 1. (2.89)

Finally, by rescaling the parameter with the growth rate as follow:

r̄i =
1
τi

(2.90)

K′i = Kiτ
−1
i =

(R̄ + M̄)m − δ

γR̄
(2.91)

σi =
σ′i
τi

, (2.92)

one obtains the “correlated stochastic logistic” model (CSLM):

dxi

dt
= xi

τi
(1− xi

Ki
)+
√

σ

τi
ξi(t)xi (2.93)

⟨ξi⟩ = 0 (2.94)

⟨ξi(t)ξ j(t′)⟩ = cos(π

2
dP,ij) , (2.95)

(where the notation has been simplified).
In the following section 2.8, we show that in the linear approximation around the

fixed point, the stationary Pearson’s correlation reads:

ηij(dP,ij) =
exp (cos(π

2 dP,ij) σ
2−σ
)− 1

exp ( σ
2−σ
)− 1

≈ cos(π

2
dP,ij) , (2.96)

in the case σi = σj, τi = τj.
The decay of Pearson’s correlation coefficients with preference distance, Eq.(2.96), is
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FIGURE 2.15: Correlation in Model C: dependence on m. Pearson’s correlation distribution
(log-scale) (a) and correlations as function preference distance (b) for different values of m (color
coded), for m = 0.1, 0.5, 1. Parameters: N = M = 100, q = 0.9, S = 50N, R̄ = M̄ = 1, γ = 0.1, νi =
0.5, t f in = 104.

confirmed by numerical simulations, see Fig.(2.15. Note, in particular, that the determin-
istic mean preference m divided by the resource number, sets the average correlation, but
its decrease implies a large number of extinctions. Furthermore, increasing the number
of resources for a constant number of species decreases the mean correlation, its variance
(by decreasing the distance distribution one).

In all the models considered here, the effective carrying capacities are constant across
species. Here we show how to generalize the calculations to include a carrying capac-
ity distribution. To generalize this it is sufficient to consider the consumption parameter
timescale γi, to be species dependent. In the present model case each resource is con-
sumed exclusively by one species (N = R), hence:

Ri(t) = R̄ (1−mγixi) , (2.97)

leading to an effective carrying capacity (rescaled by the growth rate):

Ki =
(R̄ + M̄)m − δ

m2γiR̄
(2.98)

To obtain such a pattern, we fixed that the modulus of all preference vectors to one, i.e.
∣ai∣ = 1 for i = 1, 2 and also fixed preference vector the first species as a1 = (1, 0). In
each simulation (i.e. for each gray point in the figure), we choose the desired preference
distance between the two species and derived the component of the second vector as:

a1
2 = cos(π

2
dP)

a2
2 =

√
1− (a1

2)2. (2.99)

In the next section (2.8) we present a more careful explanation on why the pattern is also
valid only for two species (at tunable distances).

Linear approximation around the fixed point

Here we derive the stationary correlation of a couple of species by employing a linear ex-
pansion around the fixed point. This approximation assumes that stochastic fluctuations
are small and hence the dynamics is localized nearby the deterministic fixed point. By
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M

FIGURE 2.16: Correlation in Model C: dependence on the number of resources. Pearson cor-
relation distribution (log-scale) (a) and correlations as function preference distance (b) for dif-
ferent values of M (color coded), M = 100, 200, 500. The red line in (b) stands for eq.2.96.
As expected, by increasing the number of resources, the correlation distribution variances de-
creases, and the decay is well-approximated by the linear noise approximation. Parameters:
N = 100, q = 0.9, S = 50N, m = 1, R̄ = M̄ = 1, γ = 0.1, νi = 0.5, and t f in = 104.

looking at Eq.(2.93), it is clear that the deterministic fixed point for each species is x∗i = Ki.
Nevertheless, owing to the presence of multiplicative fluctuations it is not possible to
perform the analysis in these variable, but it is necessary to linearize the noise-correlation
matrix and recast the equations into an independent additive noise form. In these new
variables one can easily perform a linear expansion and, afterward, come back to the
original ones. As a first step, one can apply a logarithmic change of variables to make the
noise additive:

ui = log(xi), (2.100)

by using the Ito formula Eq.(2.93) becomes:

u̇i =
ẋi

x
= 1

τi
(1− σ

2
)− eui

τiKi
+
√

σi

τi
ζi(t). (2.101)

As a second step, one needs to find eigenvalues and eigenvectors of the correlation ma-
trix. Given that we are interested in the two-species correlations, we restrict ourselves
here, without loss of generality, to an arbitrary couple of species (i, j). Furthermore, for
sake of notation let us rename the parameters as:

Wi =
√

σi

τi
, (2.102)

ρij = ρ = cos(π

2
dP,ij) , (2.103)

and include these factors in the noise correlation matrix:

Cij = (
W2

i WiWiρij
WiWjρij W2

j
) . (2.104)

Hence, the eigenvalues of the reduced correlation matrix are:

λi,j =
1
2
(W2

i +W2
j ±
√

W4
i + 2(2ρ2 − 1)W2

i W2
j +W4

j ), (2.105)
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and the corresponding eigenvectors

νi,j =
⎛
⎜
⎝
−

W2
j −W2

i ±
√

W4
i + 2(2ρ2 − 1)W2

i W2
j +W4

j

2WiWjρ
, 1
⎞
⎟
⎠

. (2.106)

Note that we have to impose ρ ≠ ±1 in order to avoid having a degenerate transfor-
mation. For the sake of simplicity let us assume the following ansatz on the parameters:

Wi =Wj → τi = τj = τ, σi = σj = σ. (2.107)

In this case, the eigenvalues and eigenvectors reduce to:

λi,j =W2(1± ρ), (2.108)

and

νi,j =
1√
2
(1,±1), (2.109)

where we have also normalized the vectors. Now, it is possible to decompose the noise
as:

ζi =∑
µ

√
λµvµ,iηµ(t), (2.110)

with

⟨ηµ⟩ = 0,
⟨ηµ(t)ηγ(t′)⟩ = δ(t − t′)δµ,γ; (2.111)

and the dynamical variable as

pµ =∑
i

uiνµ,i. (2.112)

In our simple case the variables are:

pi =
ui + uj√

2
,

pj =
ui − uj√

2
. (2.113)

Hence, the new Langevin equations are

ṗi =
√

2
τ
− 1√
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ṗj = −
1√
2τ

⎛
⎜
⎝

e
pi+pj√

2

Ki
− e

pi−pj√
2

Kj

⎞
⎟
⎠
+
√

σ

τ
(1− ρ)ηj(t),

⟨ηi(t)⟩ = 0,
⟨ηi(t)ηj(t′)⟩ = δijδ(t − t′). (2.114)
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Note that the deterministic force admits a scalar potential

V(pi, pj) = −
√

2pi

τ
+ 1
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⎝
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, (2.115)

and the minimum of the potential gives the fixed point of the dynamics, namely:

(p∗i, p∗j ) =
1√
2
(ln [(1− σ

2
)

2
KiKj] , ln(Ki

Kj
)) . (2.116)

Importantly, note that the fixed point, when converted to the original variables, is differ-
ent from the fixed point of the deterministic dynamics in eq.(2.93):

(x∗i , x∗j ) = (Ki(1−
σ

2
), Ki(1−

σ

2
)). (2.117)

If one now considers σ2 ≪ 1 it is interesting to study the linear fluctuations around the
fixed point, like in the small-noise approximation:

pi = p∗i + δpi, (2.118)

the Jacobian evaluated at the fixed point reads:
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Therefore, one ends up with the following linearized dynamics

˙δp = Jδp + η, (2.120)

with the Jacobian above and (rescaled) diffusion matrix:

D = (Di 0
0 Dj

) = W2

2
(1+ ρ 0

0 1− ρ
) , (2.121)

such that

⟨ηµ(t)ηγ(t′)⟩ = 2Dµ,γδ(t − t′). (2.122)

We use the following notation for the Jacobian:

J = −( Ji −Jij
−Jji Jj

) . (2.123)

In this scenario, it is know that the stationary distribution is a bivariate Gaussian with
covariance matrix[242]

Σ = 1
Tr(J)det(J)

(
Dj J2

ij −Di Jij Jji +Di Jj(Ji + Jj) Dj Ji Jij +Di Jji Jj

Dj Ji Jij +Di Jji Jj Di J2
ji −Dj Jij Jji +Dj Ji(Ji + Jij)

) (2.124)

= σ

2− σ
(1+ ρ 0

0 1− ρ
) ,
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P∗(δp1, δp2) =
2− ασ

2πσ
√

1− ρ2
e
−( 1

σ
− α

2 )(
δp2

1
1+ρ
+

δp2
2

1−ρ
)

. (2.125)

Now it is necessary to go back to the original variables xi, taking care of the modulus of
the determinant of the Jacobian of the transformation H:

δp = H(x),

δpi = pi − p∗i = 1√
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,
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) , (2.126)

P(x) = P(δp(x))∣det(dH)∣) = 1
xixj
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Note that, for the implicit assumptions of the approximation, this distribution is a log-
normal one, while we know that the marginal distribution needs to be a Gamma. This
can be appreciated from the moments:

⟨xi⟩ = Ki (1−
σ

2
) e

σ
2(2−σ) (2.128)
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Nevertheless, one can calculate the covariance

Covij = ⟨xixj⟩− ⟨xi⟩⟨xj⟩ = KiKj (1−
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and finally the Pearson correlation coefficient:

ηij =
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2−σ − 1
≃ ρij = cos(π

2
dP,ij). (2.134)



2.8. Methods: detailed analysis of the ecological models 65

FIGURE 2.17: Delayed correlations as function of preference distance. Points represent species
person correlation coefficient at stationary state at equal time (red) and with delay 1 (green), and
10 (blue) for one realization of the model. Solid lines represent the analytically-derived formula
Eq.(2.142). Parameters are equal for all species, the variability is given to the variability in pref-
erences distribution, as plotted in Fig. 2.17. Parameters: N = 100, M = 100, q = 0.9, Z = 50N, m =
0.5, ω = 0.1, r̄ = 1, K = e2, and t f in = 104.

Temporal behavior

Eq.(2.93) can be formally solved exactly, leading to:

xi(t) =
Kiτxi(0)e

(1− σ
2 )

t
τ
+
√

σ
τ

Wi(t)

xi(0)Ii[0, t]+ 1
, (2.135)

Wi(t) = ∫
t

0
dsζi(s), (2.136)

where Ii[0, t] is the integral of the associated “geometric Brownian motion”:

Ii[0, t] = ∫
t

0
ds exp((1− σ

2
) s

τ
+
√

σ

τ
Wi(s)). (2.137)

The exact integral eq.(2.135) can be used to understand the effect of delay in the dynamics.
Namely, assuming that the system is in its stationary state (t → ∞), one can compute
heuristically the relation between the abundance at time t and at a later time t +∆t:

xi(t +∆t) ≈ Kiτe(1−
σ
2 )

t+∆t
τ
+
√

σ
τ

Wi(t+∆t) Ii[0, t +∆t]−1
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κ(t, ∆t) = exp(
√
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τ ∫
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t
ζi(s))(
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Ii[0, t +∆t

]) ; (2.139)

the function κ in the limit t≫ ∆t converges to 1, such that

xi(t +∆t) ≈ e(1−
σ
2 )

∆t
τ xi(t). (2.140)

By inserting it in the Pearson coefficient formula we obtain:

ηij(∆t) ≈ e(1−
σ
2 )

∆t
τ ηij(0), (2.141)
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FIGURE 2.18: CSLM in phylogenetic space for the Gut microbiome Left: Correlations versus the
phylogenetic distance, both for the gut biome data (green triangles), the model simulation (green
cloud of points), and analytic formula eq.(2.150)(black line) λ = 3.5. The model has been simulated
10 times with N = 300 species, using as input the empirical phylogenetic distance matrix of the
gut, randomly sampling from it N species. Inset: -log Correlations vs phylogenetic distance in
log-log scale, empirically and from the model, same data as the main figure. Dark-green points
are the Pearson correlation coefficient at the stationary state. Right: Correlation distribution for
data and model (log-scale). Light green line is the empirical probability density of correlation
for the gut microbiome, while the dark green one corresponds to the correlation distribution of
the CSLM (dark green points in left figure.) Carrying capacities are generated log-normally by
taking the exponential of random variables sampled by a Gaussian N(K̄, σK), τi = τ and σi = σ for
i = 1, .., N. Parameters: τ = 1, K̄ = 16.1, σK = 3.8, σ = 1.42, λ = 3.5, t f = 104.

that combined with the linear approximation, Eq.(2.133), finally leads to:

ηij(∆t) ≈ e(1−
σ
2 )

∆t
τ cos(π

2
dP,ij) (2.142)

which quantifies analytically the time-delayed correlations.

CSLM in phylogenetic space

To compare the CSLM with empirical data it is necessary to connect the preference dis-
tance with the phylogenetic one. Let us dG,ij and dP,ij the phylogenetic and phenotypic
distance of the couple of species ij, and dG = ⟨dG,ij⟩dG,ij∈b, dP = ⟨dP,ij⟩dP,ij∈b the average
genetic and preference distance within a given bin. Note that the empirical relationship
we aim at reproducing is between the average correlation and the averaged phylogenetic
distance in each bin, i.e.:

η(dG) = ⟨ηij⟩dG,ij∈b = exp(−λd1/3
G ), (2.143)

Indeed, we are not interested in the full probability distribution of correlation in one bin,
but just in its mean value. Hence, it is sufficient to find a relation between the average
distance dP and dG, and not between the the full matrices. On the other hand, the CSLM
relates the species correlation with their preference distance:

ηij = cos(π

2
dP,ij); (2.144)

hence, the average preference distance can be calculated by inverting the formula for the
correlation as

dP,ij =
2
π

arcos(ηij), (2.145)
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and by taking averages over the couples in the considered bin:

dP(b) = ⟨dP,ij⟩b = ⟨
2
π

arccos(ηij(dG,ij))⟩
b

(2.146)

To evaluate the last term it would be necessary to know the exact distribution of phylo-
genetic distance in each bin, but such a distribution is highly non-universal and difficult
to quantify. To circumvent the problem, we apply a “mean- field approximation”, i.e. we
neglect the variance in each bin and consider just its mean:

dP(b) = ⟨
2
π

arccos(ηij(dG,ij))⟩
b
≈ 2

π
arccos(⟨ηij(dG,ij)⟩

b
)

= 2
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2
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arccos(e−λd1/3
G ) . (2.147)

To incorporate such a relation in the CSLM let us note once more that we are interested in
average pattern of correlation as function phylogeny, and hence it is sufficient to assume
Eq. (2.147) true also for the full phylogenetic matrix, i.e.:

dP,ij ≈
2
π

arccos(e−λd1/3
G,ij) . (2.148)

Putting together all these ingredients, one finally obtains the CSLM in phylogenetic space:

dxi

dt
= xi

τi
(1− xi

Ki
)+
√

σi

τi
xiξi(t)

⟨ζi(t)⟩ = 0

⟨ζi(t)ζ j(t′)⟩ = e−λd1/3
G,ij . (2.149)

By applying Eq.(2.142) to this specific setting, one finally obtains a theoretical prediction
relating correlation and phylogeny:

ηij = e−λd1/3
G,ij , (2.150)

ηij(∆t) = e−(1−
σ
2 )

∆t
τ e−λd1/3

G,ij . (2.151)

In Fig(2.18) we show that the model correctly predicts the decaying pattern of cor-
relation versus phylogenetic distance. However, it cannot reproduce the full correlation
distribution. The correlations are obtained from 10 realizations with N = 300 species,
the averaged are over 103 abundances sampled during the stationary time series every
δt = 10τ. To generate the noise correlations, in each realization we sampled N species
from the phylogenetic distance matrix of random community of considered biome. Pa-
rameters are set to reproduce also the species marginal properties and delayed correla-
tions, see Figs.(B.15-B.18).

Macroecological laws and marginal properties

The CSLM, in the Ito discretization scheme, has a Gamma stationary marginal distribu-
tion, see Sec.A.3 in appendix A [207, 125]:

P∗(xi) =
1

Γ (βi)
(

βi

x̄i
)

βi

xβi−1
i exp(−βi

x
x̄i
) , (2.152)
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where the average abundance x̄i and the squared inverse coefficient of variation βi read:

x̄i = Ki (1−
σi

2
) , (2.153)

βi ∶=
x̄2

i
Vari

= 2
σi
(1− σi

2
)

2
, (2.154)

respectively, coinciding with the ones obtained for the standard SLM [207]. Hence, the
CSLM is able to reproduce the three macroecological laws for diversity and fluctuation,
namely:

1. The stationary marginal distribution of species abundances is a Gamma distribu-
tion.

2. By fixing σi = σ, for all species the Taylor law relating the mean and variances across
species is recovered.

3. The mean abundances are distributed as a log-normal just by imposing that the Ki’s
are log-normally distributed too.
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Part II

Eco-evolution of bacterial
populations
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Chapter 3

Statistical mechanics of phenotypic
eco-evolution

3.1 Introduction

Darwinian evolution relies on the fundamental principles of reproduction, mutation and
selection, and describes how populations change over time and how new forms can
branch out from existing ones [13, 127]. The theory of evolutionary dynamics —whose
aim is that of formalizing the ideas of Darwinian evolution from a conceptual and quan-
titative perspective— has become a wide and mature discipline at the crossroad between
biology, mathematics and statistical physics (see e.g. [128, 129, 130, 131, 132, 133] and
refs. therein). Diverse theoretical approaches, differing in various aspects, have been
proposed to model and rationalize evolutionary phenomena [159] but, rather generically,
evolutionary dynamics is formulated building on the theories of stochastic processes and
dynamical-systems [243, 244, 64, 245, 246, 247].
Even in such a broad territory common overarching concepts and principles have been
found. For instance, G.R. Price in his seminal paper “Mathematical Theory of Selection”
[248], set the bases for the development of a general and abstract mathematical theory
of selection; the so-called “Price equation”, which is a keystone in evolutionary dynam-
ics —sometimes called termed the "algebra of evolution" [245, 249, 250]— expresses the
rate of abundance change of a given gene or trait as a function of its covariance with
the associated fitness function [251, 248, 249, 252, 250, 253, 254, 255]. Later, Page and
Nowak showed that the different “macroscopic" formulations of evolutionary dynamics
are actually equivalent in some way [159] (see also, [256, 257, 149]); however, specific de-
tails depend on whether the focus is on genes (genotypic evolution) or on phenotypic traits
within a population (phenotypic evolution).
Population genetics, i.e. the study of genetic variations within a population (or between
different populations) together with the evolutionary factors causing such a variation,
was developed starting from classical works of Fisher [258, 154], Wright [259], Price [251],
Kimura [243, 244] and others, including recent exciting developments (e.g. [169, 260, 261,
262, 160]). On the other hand, quantitative approaches to evolutionary dynamics focus-
ing on phenotypes or traits (rather than on "genotypes") have also extensively developed
in the last decades. These include evolutionary game theory [263, 264, 265, 266, 267, 268, 269,
246], which aims to study possible equilibria of different populations with fixed traits (or
"strategies") as well as adaptive dynamics [270, 136, 137, 271, 147, 139, 272, 273], which in-
cludes the possibility of mutations (so that phenotypes are not discrete but can change in
a continuum) as well as some other relevant ecological ingredients (see below).
A common assumption often considered in these theoretical approaches is that mutations
occur at a relatively low pace so that ecological (fast) and evolutionary (slow) timescales
are well separated. This assumption which has been historically retained as a very natu-
ral one is not, however, universally valid, and it fails, e.g., when dealing with populations
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of micro-organisms (see, e.g., [274, 275, 276, 277]).
Microbial populations are the most abundant and diverse ones in the biosphere. Study-
ing their dynamics has become a crucial challenge from many diverse viewpoints in-
cluding, e.g., environmental and health-related perspectives. As a matter of fact, mi-
crobial systems constitute the ultimate frontier and test bench of modern evolutionary
theory. Indeed, often, microbial communities evolve very rapidly, with frequent mu-
tations and fast selection. For instance, in viruses and bacteria the mutation rates are
astonishing high [278, 279, 280, 281]. As a consequence evolutionary effects cannot be
decoupled from ecological ones: they both can occur at similar timescales [282, 283]. As
a result, the communities exhibit a very large fine-scale diversity in the form of multiple
co-occurring phenotypes 1. Moreover, such a diversity is nowadays also accessible to
experiments owing to technological advances in determining single-cell traits [168, 169,
170] and metabolic functions [171, 172, 45, 285].
All this calls for the development of novel eco-evolutionary frameworks, extending ex-
isting ones, to analyze complex microbial communities, distributed in phenotypic space
and evolving on ecological time scales.

Adaptive dynamics and its extensions

The standard theory of phenotypic evolution is adaptive dynamics (AD) [270, 136, 137, 147,
135, 286, 139, 273], see Sec.1.7 for a brief introduction. In adaptive dynamics a population
is assumed to be in a steady state, called “resident type” and small variations of such a
type, i.e. “mutants”, are assumed to emerge at a very slow rate. In the case that the per-
capita growth rate of the mutant within the resident-type population —i.e, its “invasion
fitness”— is positive, the mutant is assumed to invade the population and, eventually,
become fixated as the new resident type [287].
Within the standard AD framework, mutations are considered to be: (i) rare (which im-
plicitly assumes a large separation of timescales between ecological and evolutionary
processes), such that the system has time to re-equilibrate to an equilibrium after each
mutation; (ii) small (as a result of which the stationary phenotypic probability distribu-
tions are typically Gaussians); (iii) independent of the parental traits; and (iv) not subject
themselves to evolution [270, 137, 135, 286, 139].
Since its original formulation, the theory of AD enjoyed a great success. Its main ad-
vance was to unify evolutionary dynamics with realistic ecological scenarios [135]. For
instance, importantly, AD allows for the possibility of “evolutionary branching” –i.e. the
split of an initially monomorphic population in two diverse sub-populations— shedding
light on how speciation [136, 137, 135, 138, 139, 140, 141] and diversification in sympatry
[286] may come about. Similarly, phenomena such as the evolution of dispersal strategies
[142], pathogenicity [143], metabolic preferences [144, 145] and multi-cellularity [146], to
name but a few, have been successfully addressed within the context of AD. Moreover,
extensions of AD have been developed to include ingredients such as finite-sized popu-
lations [147, 148], species interactions [149], sexual populations [139], multi-dimensional
phenotypic spaces [150, 151, 152, 153, 154], variable environmental conditions [155], or
variability in the evolutionary outcomes, to name but a few. Nevertheless, given the
above-mentioned restrictive hypotheses, there is space to generalize AD to describe mi-
crobial populations, allowing, e.g., for frequent mutations at ecological timescales.
From the perspective of statistical mechanics, it would be highly desirable to construct a
general stochastic individual-based ("many-body" or "many-particle") theory for agents
in a community exposed to basic rules of reproduction, mutation, and selection, such

1Actually, the concept of “quasi species” —rather that that of "species"— might be better suited to describe
them [284].
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that it could reproduce the above theories in some "macroscopic" limit. The goal is that,
starting from a "microscopic" description of stochastic processes acting at the level of
interacting individuals (including ecological and evolutionary processes at comparable
timescales), one should be able to derive macroscopic probabilistic equations for the evo-
lution of populations and communities by employing the powerful methods of statistical
mechanics.
Before proceeding toward this goal, let us remark that diverse approaches have already
tackled the previous challenge and that significant advances have already been made in
this direction. In particular, we extensively elaborate and rely upon the following seminal
works:

• Dieckmann and Law were pioneers in deriving the macroscopic equations of AD
using a probabilistic description of the population in phenotypic space. Their ap-
proach allows e.g. for the possibility that potentially-successful mutants become
accidentally extinct owing to demographic fluctuations before achieving fixation
[147].

• Champagnat and colleagues built a rather rigorous mathematical framework, al-
lowing them to derive the "macroscopic" equations of AD starting from "micro-
scopic" underlying birth-and-death stochastic processes [288, 289, 290, 291]. They
also generalized ADs conditions in various ways, including mutation properties,
population sizes, etc.

• Frey and coauthors [292, 293], developed a formalism to derive a macroscopic equa-
tion from the Master equation of an underlying birth-death process in the context
of bacterial populations.

• Wakano and Iwasa [148] were pioneers in studying the effect of finite-size fluctua-
tions in the context of adaptive dynamics (see also [291, 141]).

In a similar spirit to these and related approaches, here we develop a general framework,
deeply rooted in the views and methods of statistical mechanics, able to generalize adap-
tive dynamics to eco-evolutionary scenarios. In particular, we present a probabilistic the-
ory of the evolution of trait distributions [294] including the effect of selection, arbitrary
mutations, and fluctuations stemming from finite population sizes, where ecological and
evolutionary processes occur contemporaneously. 2

The work presented in this chapter contributes to the development of an eco-evolutionary
theory for microbial communities, allowing to shed further light on the empirically-
observed astonishing diversity in traits and interactions of microbial communities. Our
hope is that the present work makes this kind of quantitative approaches to complex
eco-evolutionary communities accessible to a broader audience, including physicists, bi-
ologists, and ecologists.

Structure of the chapter

In Sec.3.2, we introduce the general eco-evolutionary framework. We start defining a
general individual- or agent- based birth-death process involving reproduction, selec-
tion, mutation and drift (Sec.3.2). Next, we derive from such a microscopic description a
macroscopic one in the form of a mean-field equation describing the evolution of a gen-
eral trait distribution in phenotypic space (Sec. C.1.1). Effective equations for the first

2Our approach has the same intention and spirit of the more-mathematical framework of Champagnat
and collaborators [288, 290], but it is an independent one, based on standard approaches and concepts in
physics.
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moments of such a distribution are then obtained (Sec. 3.2) and particularized to the case
of small mutations (Sec.3.2). This allows to recover the standard theory of AD using a
Gaussian approximation for the trait distribution (Sec. 3.3) and, then, to formulate an
extended theory "a la Landau", including higher moments in the expansion, to go beyond
it (Sec. 3.4). For illustration purposes, the general theory is then applied to explain the
behaviour of a specific individual-based evolutionary model, including both a fixed eco-
logical niche and competition between individuals. Finally, in Sec. 3.6 we generalize the
resulting deterministic theory to include stochastic/demographic effects, stemming from
finite-size populations. To close, in Sec.3.7, we discuss our main conclusions as well as
possible future developments.

3.2 General framework

For the sake of simplicity and without loss of generality, let us consider —as customarily
done in evolutionary dynamics [295]— a population of fixed size, composed of N indi-
viduals. As in adaptive dynamics (AD), we choose to focus on a phenotypic description
of individuals or "agents". Thus, each of them (say the i-th one, with i ∈ [1, N]) is charac-
terized by a set of phenotypic traits that, in the simplest possible case, can be encoded in a
single real-valued variable, xi. This represents a coordinate in a one-dimensional pheno-
typic space P . Generalizations to higher-dimensional phenotypic spaces and to popula-
tions of variable size are straightforward and will also be addressed in what follows. The
population as a whole can be represented by a N-dimensional vector x = (x1, x2, x3, .., xN),
that we call a phenotypic configuration. The goal is to describe the dynamics of the probabil-
ity P(x, t) to observe a population with a given phenotypic configuration, x as a function
of time. Note that we changed the vector notation in respect of Sec.1.5 to emphasize that
the components are individual traits and to have a more simply notation, see the next
section.

Birth-and-death eco-evolutionary process.

The dynamics of P(x, t) can be mathematically described by means of a Master equa-
tion, which represents the main stochastic processes occurring at an individual or "micro-
scopic" level [296]. In particular, the stochastic dynamics at the individual level relies on
the three key ingredients of Darwinian evolution [13, 245] (see the sketch of Fig. 3.1):

• Reproduction: Each individual produces (asexually) one offspring at some rate, called
"fitness", fi(x) ≤ 0, that depends on its phenotype, as well as on the overall system
state (i.e. on x). In what follows, we restrict ourselves to the case in which the fit-
ness for individuals with trait xi is composed of (i) an intrinsic growth rate K(xi)
—that is assumed to depend only on the individual trait xi— and defines an exter-
nal "ecological niche", specific of the considered environment/conditions, as well
as (ii) an additional term that comes from pairwise ecological forces (or "interac-
tions"), I(xi, xj) which represent competition, cooperation, and/or more complex
ecological forces with all other individuals (e.g. the j-th one with xj). Thus, finally,
the total fitness function fi(x) of individual i can is given by the intrinsic growth
rate plus the weighted sum of all the pairwise interactions with other individuals
(so that both terms are typically of the same order)

fi(x) = K(xi)+
N
∑

j=1,j≠i

I(xi, xj)
N − 1

(3.1)
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x

xi xj
~xj

FIGURE 3.1: Graphical representation of the transition rates characterizing the eco-
evolutionary dynamics at a "microscopic" level. The probability density ϕ(x, t) describing the
population with phenotypic trait x at a given time t can change as a result of the following stochas-
tic processes: (i) the first one is reproduction with mutation (individual with trait xi (dark red)
generates an offspring with trait xj relatively close —but not identical— to xi (light red); (ii) death
(an individual with trait x̃j (green) is randomly selected to die dies). Mathematically, these pro-
cesses are fully equivalent to an effective Markov process (as represented by black dashed arrows)
in which the individual i performs a local jump to the coordinate xj, while its initial position xi can
be seen as occupied by the removed individual by means of a non-local jump. Hence, the com-
position of the two transitions (birth and death) can be effectively described as a single net jump
from x̃j to xj. These combined processes give rise to an evolving distribution that may eventually
converge to a stationary one.

or, equivalently

fi(x) =
N
∑

j=1,j≠i

f (xi, xj)
N − 1

(3.2)

where f (xi, xj) ≡ K(xi)+ I(xi, xj). Higher-order interactions (which can be relevant
in this context [297]) could also be straightforwardly implemented by including
additional terms in Eq.(C.8)).

• Selection. The fact that individuals with larger fitness values are more likely to re-
produce allows one to implement natural selection in an indirect way just by impos-
ing a constant population size, N. In particular, as illustrated in Fig.3.1, the model
assumes that each time that an individual i produces an offspring, a second indi-
vidual j (different from i) is randomly chosen and removed from the community
3. This second individual is selected with certain death probability dj(x) which, in
general can depend on the full phenotypic state, x, and that, for simplicity, we set
to be the same for all individuals, i.e. d(x̃j) = 1/(N − 1).

• Heredity and variation. When an individual replicates, its offspring inherits the phe-
notypic trait/s of the parent, with some variation or mutation. The probability of a
given variation from the mother value xi to the offspring’s one xj is represented by
a generic probability distribution function, β(xi, xj), called "mutation kernel". This
distribution can be characterized by its mean θ(xi, δ) and variance σ(xi, δ), where
δ = ∣xi − xj∣ and, in some simple cases, β can be assumed to be independent of xi and
depend only on the magnitude of the jump δ.

3In other words, this dynamics is a generalization of the Moran process [295].
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Thus, the master equation defining the general model (see Fig.3.1) can be written as [296]:

∂tP(x, t) =
N
∑
i=1

N
∑

j=1,j≠i
∫
P

dx̃j[Wi(x, x̃j)P(x̃j, t)−Wi(x̃j, x)P(x, t)] (3.3)

where

Wi(x, x̃j) = fi(x̃) dj(x̃) β(xj − xi) (3.4)

is the rate to transition from an initial state x̃j = (x1, .., x̃j, .., xN) to x = (x1, .., xj, .., xN),
where x̃j differs from x only in the value of the coordinate j, i.e. the individual that is
killed and replaced by an offspring of i with mutated trait xj. Reciprocally, Wi(x̃j, x) is
the transition rate for the reverse process.
Let us remark that the described stochastic process generates a neat flux of probability
from the state of the dying individual (i.e. trait x̃j) to that of the newly generated one,
(i.e. xj), which can be visualized as a jump from the first position to the latter (solid line
in Fig.3.1). More precisely, this birth-death process can be further decomposed in two
different jumps (dashed lines in Figure 3.1): a non-local one, from x̃j to xi, and a local
one from the latter to its offspring xj. The first (non-local) jump implements the effect of
selection while the second (local) one describes mutation. This distinction will be useful
for later discussions.

Selection-Mutation mean-field equation

The above Master equation is a very general one but, obviously, difficult to handle ana-
lytically. Thus, in order to gain more insight, in what follows we employ some standard
approximations to reduce it to a simpler deterministic (mean-field like) equation for the
marginal probability to find any individual in a particular state x. The reader who is not
interested in the formal aspects of the following mathematical derivations can go directly
to Eq.(4.3).
As often done in statistical mechanics, one can assume that individuals with identical
traits are, a priori, indistinguishable. This equivalence allows one to derive an equation
for the individual (or "one-particle") probability density distribution ϕ(x, t). More specif-
ically: the density of individuals with phenotype x at time t in a given realization of the
stochastic process can be simply expressed as

ρ(x, t) =
N
∑
i=1

δ(x − xi)
N

, (3.5)

and averaging over possible realizations of the stochastic process one obtains the proba-
bility density distribution

ϕ(x, t) ≡ ⟨
N
∑
i=1

δ(x − xi)
N

⟩ = 1
N

N
∑
i=1
∫
PN

dxδ(x − xi)P(x, t)

= ∫
PN−1

dx2dx3..dxN P(x, x2, x3, .., xN), (3.6)

that is nothing but the marginal probability of the first individual with phenotype x ≡ x1,
given that individuals with the same traits are indistinguishable, i.e. that the probability
distribution is symmetric with respect to the exchange of individual labels [176, 292].
Taking the time derivative of Eq.(3.6) and plugging into it the master equation, Eq.(3.3),
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one readily obtains (see appendix, sec C.1.1):

∂tϕ(x, t) = ∫
PN

dx2 dx3...dxN ∂tP(x, t) = (3.7)

∫
P2

dx̃ dy [ f (x̃, y)β(x − x̃)P(x̃, y)− f (x̃, y)P(x, x̃, y)],

where the death rate d has been fixed to a constant value. Before proceeding, let us re-
mark that there are two main consequences of individual indistinguishability:
(i) The fitness function has been reduced to the pairwise fitness function, f (x, y); i.e. it
depends just on the traits of the reproducing individual and another generic "interacting"
one.
(ii) The resulting simplified master equation, Eq.(3.7), depends only on the two- and
three-particle joint probability (rather than in the whole N-particle one) but is not a closed
equation for ϕ(x, t). In order to obtain a closed equation one needs to do some additional
assumption.
In particular, one can consider a mean-field approximation consisting, as usual, in as-
suming that the joint probability distribution function can be factorized:

P(x, t) =
N
∏
i=1

ϕ(xi, t), (3.8)

which is an exact result in the limit of large-population sizes [176, 292, 293], see appendix
sec.C.1.1 for more details. Corrections accounting for finite population size will be ex-
plicitly discussed in a forthcoming section. This readily leads to:

∂tϕ(x, t) = ∫
P

dx̃β(x − x̃) f (x̃, t)ϕ(x̃, t)− f̄ (t)ϕ(x, t) (3.9)

where we have defined the "marginal fitness" associated with state x̃

f (x̃, t) ≡ ∫
P

dy ϕ(y, t) f (x̃, y) (3.10)

and where the population-averaged marginal fitness is

f̄ (t) = ∫
P
∫
P

dx̃dy ϕ(x̃, t)ϕ(y, t) f (x̃, y) = ∫
P

dx̃ ϕ(x̃, t) f (x̃, t), (3.11)

Importantly, the previous expressions, in particular, Eq.(3.10), encode the idea that the
marginal fitness of a given trait, x̃, is frequency-dependent, i.e. the fitness associated
with a given trait crucially depends of the distribution of other individuals across the
phenotypic space.
Even if the derivation of Eq.(3.9), might look cumbersome, it can be interpreted in a rather
straightforward and intuitive way:

• The first term in the right hand side is a positive probability flow into the x state
stemming from the probability that an individual with any arbitrary coordinate x̃
is chosen for reproduction and produces a mutated offspring with, precisely, trait
x.

• The second term describes the fact that, owing to normalization, reproduction events
leading to an increase of probability density for any given trait x′ ≠ x (which occurs
with an average rate f̄ ) reduce the relative probability of finding individuals in state
x, i.e. diminish ϕ(x, t)
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General moment equations

The mean-field equation Eq. (3.9) rules the dynamic of the probability density ϕ(x). As
usual it is convenient to analyze separately the dynamics of the distribution cumulants,
µi, with i = 1, 2.... The mean (population-averaged) value of any possible function A(x)
of the trait x is

A(t) = ∫
P

dxA(x)ϕ(x, t). (3.12)

For example, the mean value in trait value is x(t) and the mean marginal fitness is f (t).
Similarly, the (standard) covariance Σ between any two functions A(x, t) and B(x, t) at
time t can be expressed as

Σ[A, B](t) ≡ A ⋅ B − A ⋅ B, (3.13)

which reduces to the variance for A = B. From Eq. (3.9) and the previous definitions, the
dynamics of the mean value of an arbitrary function A(x) is

dt A = ∫
P2

dxdx̃ A(x)β(x − x̃) f (x̃, t)ϕ(x̃, t)− A(t) f (t)

(3.14)

which can be written in a very compact form (see below) if one defines the covariance
between two quantities (here A(x) and f (x)) across two consecutive generations:

Σβ[A, f ] ≡ ∫
P2

dxdx̃ A(x)β(x − x̃) f (x̃)ϕ(x̃, t)− A(t) f (t)

(3.15)

Observe that, while the standard covariance Σ[A, f ] quantifies the correlation between
the quantity A and the fitness f at a given time, Σβ[A, f ] is the covariance between the
fitness of the "mother individual" with some trait x̃ and A(x) evaluated for the offspring
with trait x (and the mutation function from x̃ to x is included). Thus, Σβ[x, f ] stands for
the covariance between phenotype and fitness across a generation.
Furthermore, note that, in particular, in the absence of variation, i.e. if the mutation
amplitude vanishes, β(x − x̃) = δ(x − x̃), then Σβ[A, f ] = Σ[A, f ] and both covariances
coincide. Using these definitions, one can finally write down the simple expression

dt A = Σβ[A, f ](t) (3.16)

which is nothing but a generalization to any arbitrary quantity A(x) of the Price equation
[251, 248, 249, 254]:

dtx(t) = Σβ[x, f ] (3.17)

describing the dynamics of the mean trait. It states that if a given trait is positively cor-
related with the fitness function (weighted by the effect of mutation) its mean-value in-
creases (and, as we have shown, the same covariance-dependent type of equation is valid
to describe the dynamics of generic quantities).
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Diffusive or small-mutation approximation

Further analytical progress can be made by assuming (as done in adaptive dynamics) that
the amplitude of mutations, δ = ∣x̃ − x∣ is small, which allows one to perform a (Kramers-
Moyal) expansion of Eq.(3.9) in powers of δ (see appendix, sec.C.1.2 and [296] for details):

∂tϕ(x, t) = ( f (x, t)− f̄ (t))ϕ(x, t)+ (3.18)

− ∂x[θ(x) f (x, t)ϕ(x, t)]+ 1
2

∂2
x[σ2(x) f (x, t)ϕ(x, t)]

where θ(x) and σ2(x) are the first two moments of the mutation kernel

θ(x) = ∫ dδ β(x, δ) δ σ2(x) = ∫ dδ β(x, δ) δ2, (3.19)

where the first one is referred to as "bias", the second in the mutation "amplitude"; higher-
order terms can be neglected within this approximation.
Observe that Eq.(4.3) is a linear superposition of the (upper row) replicator equation
[298], representing selection and (lower row) a Fokker-Planck type of equation describ-
ing mutations as a reaction-diffusion dynamics in phenotypic space. More specifically,
the second part is a sort non-linear Fokker-Planck equations or McKean-Vlasov equation
[299, 300], as the diffusion function depends itself on the probability-distribution ϕ(x, t)
through the marginal fitness function, so that it needs to be solved in a self-consistent
way.
As a matter of fact, Eq.(4.3) is actually a version of the celebrated Crow-Kimura (CK) equa-
tion in population genetics [244, 243]. Thus, we call it generalized Crow Kimura equation
(GCK) as Eq.(4.3) extends the CK equation to phenotypic evolution, clarifies its micro-
scopic foundation, and includes two additional features:

• The fitness function appears in Eq.(4.3) within the partial derivatives, thus coupling
reproduction and mutation.

• Eq.(4.3) includes generic mutation functions θ(x) and σ2(x) that, in general, can be
trait-dependent rather than constant coefficients.

Observe that, within this approximation, given that one can expand the function β in
power series of δ, it is straightforward to recover after some simple algebra the classical
or standard form of the Price equation:

dtx(t) = Σ[x, f ]+ θ f (3.20)

where the contributions of selection and mutation are decoupled; in particular, the first
term encodes selection on the mean trait value; i.e. it increases when it correlates posi-
tively with fitness increment, while the second term represents the action of biased mu-
tations (and it vanishes if variations are symmetric) 4.
A further simplification is obtained in the case of a constant (trait-independent) mutation
rate, for which Eq.(3.20) becomes

dt x̄(t) = Σ[x, f ]+ θ f̄ (t), (3.21)

and the equation for the trait variance Σ(t) ≡ (x − x̄)2(t) reads:

dtΣ(t) = Σ[x2, f ]− 2(x̄ − θ)Σ[x, f ]+ σ2 f̄ (3.22)
4Let us remark that the zero-covariance condition defines a deterministic evolutionary stable state (ESS)

in the framework of evolutionary game theory, where strategies are fixed, i.e. there is no mutation.
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where for simplicity in the notation we have omitted time dependencies.
As described in the context of adaptive dynamics (see below) if the variance of the distri-
bution in phenotypic space Σ(t) decreases during the dynamics there is a "stabilization"
or convergence towards a distribution peaked around the mean-trait value. On the other
hand, if the variance increases there might be a "disruptive-evolution" mechanism in act,
which leads to a broadening in phenotypic space, and possible to non-trivial effects such
as an evolutionary branching (see below).
More in general, the equations for higher-order moments form a hierarchy of coupled
differential equations. Finding a valid justification to close such a hierarchy is an open
general ("moment-closure") problem [301]. In what follows, for the sake of completeness
and to set the notation and formalism, we first discuss the Gaussian approximation to
the closure problem, i.e. adaptive dynamics, and then —in forthcoming sections— we
introduce extensions of it accounting for higher-order moments and a much richer phe-
nomenology.

3.3 Gaussian theory: recovering Adaptive dynamics

In the classical terms of adaptive dynamics individuals around the mean phenotype x̄ are
called "residents" and other possible variations of them are called "mutants". As already
mentioned, within such a theory, the possible mutations are usually assumed to be small,
unbiased, and trait-independent, which greatly simplifies the problem. In particular, un-
der such assumptions, it suffices to study the dynamics of the mean value x̄ —which is
assumed to coincide with the peak of the underlying distribution— as well as perturba-
tions around it, which is equivalent to considering a Gaussian approximation to describe
probabilities in phenotypic space using just the first two cumulants: the mean x̄(t) and
the variance Σ(t).
More specifically, assuming a fitness function with the form of Eq.(3.10), one can expand
f (x, y) in bothn of its arguments around the mean value x̄:

f (x, y) ≈ f (x̄, x̄)+ f x
1 (x̄, x̄)(x − x̄)+ f y

1 (x̄, x̄)(y − x̄)

+
f x
2 (x̄, x̄)

2
(x − x̄)2 +

f y
2 (x̄, x̄)

2
(y − x̄)2 + f xy

11 (x̄, x̄)(x − x̄)(y − x̄)+ ...

where the subindices of f indicate the number of derivatives, the superindices the vari-
ables with respect to which the derivatives are taken:

f xy
ij (x̄, x̄) = ∂i

x∂
j
y f (x, y)∣x=y=x̄, (3.23)

with i, j = 1, 2.... Higher-order terms in the expansion are neglected within the present
approximation.
Averaging over the second variable, one obtains the "marginal fitness" (see Eq.(3.10)):

f (x, t) = ∫
P

dy f (x, y)ϕ(y, t) = f (x̄)+ f x
1 (x̄)(x − x̄)+ f x

2 (x̄)
(x − x̄)2

2
+ f y

2 (x̄)
Σ
2

where f x
2 (x̄) ≡ f x

2 (x̄, x̄), f y
2 (x̄) ≡ f y

2 (x̄, x̄).
Defining f2(x̄) ≡ f x

2 (x̄) + f y
2 (x̄), the average fitness (computed as in Eq.(3.11)) can be

finally be written as:

f̄ (t) = f (x̄)+
f2(x̄)

2
Σ (3.24)
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A

B

FIGURE 3.2: Sketch of typical evolutionary trajectories in adaptive dynamics in the case of
(top) a stable monomorphic population and (bottom) evolutionary branching. The distribution
of phenotypes (light blue) is represented at various steps/times of the dynamics, together with
the fitness function/landscape (red curves) with changes along with the probability distribution.
Green arrows mark the intensity of the selection and the black ones stand for the overall selec-
tion gradient. (A) Evolutionary stable case: the population climbs the fitness landscape and is
attracted to a fitness maximum. (B) Evolutionary branching: the population is first attracted to a
fitness minimum (convergent stable) but then is repelled from it (evolutionarily unstable). Once
the branching occur. Let us remark that, the standard theory of adaptive dynamics is equivalent
to considering a Gaussian approximation for small, unbiased, and trait-independent mutations
in our generalized framework (though it breakdown after, e.g. evolutionary branching, when the
population can not be described as a single mono-modal distribution any more).

where both x̃ and Σ can be time dependent functions. Let us caution that f2(x̄) ≠ ∂x̄ f1(x̄)
but includes also the term f y

2 (x̄), as this distinction will be important in what follows.
The previous two expressions for f (x) and f̄ , respectively, can be plugged into the Price
equation, Eq.(3.21), to obtain

dt x̄(t) = f x
1 (x̄)Σ +

f2(x̄)
2

µ3(t) (3.25)

for the case of vanishing bias, θ = 0. Assuming that the phenotypic distribution ϕ(x, t) is
a Gaussian, the third moment vanishes, i.e. µ3 = 0, and, hence:

dt x̄(t) = f x
1 (x̄)Σ(t). (3.26)

This last equation is known as the "canonical equation" in adaptive dynamics and de-
termines the fate of the mean population trait; f x

1 (x̄) is called "selection gradient" and de-
termines the direction of the flow, while the variance of the trait distribution controls the
"speed" of the evolutionary process.
The possible fixed points x̄∗ of the previous equation need to be extreme point of the
fitness, i.e. f x

1 (x̄
∗) = 0, and are called "convergent stable" if

∂x̄ f x
1 (x̄)∣x̄=x̄∗ < 0, (3.27)

so that the mean trait value, x̄, is locally attracted to fitness maxima and repelled from
fitness minima. In other words, the selection dynamics tends to climb the fitness gradient.



82 Chapter 3. Statistical mechanics of phenotypic eco-evolution

Similarly, for the variance, from Eq.(3.22) one has

dtΣ(t) = f x
1 (x̄)µ3 +

f x
2 (x̄)

2
(µ4 −Σ2)+ σ2 f̄ , (3.28)

which within the Gaussian ansatz becomes

dtΣ(t) = f x
2 (x̄)Σ

2 + σ2 f (x̄)+ σ2

2
f2(x̄)Σ, (3.29)

so that one has a closed set of equations for the evolution of the first two cumulants of
the trait distribution.
From these, we can compute the steady-state solution

Σ∗ =
√
−σ2 f̄ / f x

2 (x̄∗) (3.30)

= − σ2

2 f x
2 (x̄∗)

(
√

σ2 f 2
2 (x̄∗)− 4 f (x∗) f x

2 (x∗)+ f2(x∗)),

which exists as a real solution only if f x
2 (x̄

∗) is negative. Eq. (3.31) also implies that higher
fitness peaks (i.e. larger values of f̄ ) lead to larger steady-state variance; this can be un-
derstood from the fact that larger fitness means faster reproduction and thus a larger
source of mutations and variability. Therefore, the second derivative f x

2 (x̄
∗) determines

whether a convergent stable point x̄∗ is also "evolutionary stable" with respect to the intro-
duction of mutants, i.e. if the variance of the distribution also converges to a stable fixed-
point value; i.e. an evolutionary stable point needs to be (local) fitness maximum. On the
other hand, if f x

2 (x̄
∗) > 0 there is no stationary stable solution for the variance and, within

the present Gaussian approximation, it just grows un-boundedly. More specifically: if x̄∗

is an attractor for the mean (i.e. it is convergence stable), but f x
2 (x̄

∗) > 0 (i.e. it is evolu-
tionary unstable), then x∗ is a fitness minimum. In this case —recalling that the fitness
function is, in general, a dynamic quantity, that changes together with the distribution–
the distribution is repelled from the fitness minimum (as pictorially illustrated in Fig.3.2).
In this latter case, the evolutionary process (with fixed mean and ever-growing variance)
implies that the distribution splits into a bimodal one, with two diverging peaks, giving
rise to the phenomenon of "evolutionary branching" [156, 286, 302].
Tus, summing up, under the simplifying assumptions of adaptive dynamics, it is possi-
ble to explicitly calculate the conditions for the emergence of either evolutionary stable
solutions or evolutionary branching :

• Convergent Stable and evolutionary stable ("non invasible"): x∗ is a fitness maxi-
mum

f x
1 (x̄

∗) = 0, ∂x̄ f x
1 (x̄)∣x̄=x̄∗ < 0, f x

2 (x̄
∗) < 0. (3.31)

• Convergent stable but evolutionary unstable (possible branching point): x̄∗ is a
fitness minimum

f x
1 (x̄

∗) = 0, ∂x̄ f x
1 (x̄)∣x̄=x̄∗ < 0, f x

2 (x̄
∗) > 0. (3.32)

Nevertheless, it is important to emphasize that in order to unveil how the dynamics pro-
ceeds beyond a branching point and, more in general, to explore alternative evolutionary
phases and patterns in phenotypic space [Scheffer, Ramos, 303], it becomes necessary
to extend the theory —going beyond the Gaussian approximation— by including, e.g.,
higher-order terms in the fitness expansion.
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3.4 Extended Landau-like theory: beyond adaptive dynamics

In order to extend the previous Gaussian theory (i.e. adaptive dynamics) to allow for a
description of the evolutionary dynamics even after e.g. a branching event —when the
distribution in phenotypic space can no longer be described as a Gaussian— we now in-
troduce a theory "a la Landau" [9, 304] by incorporating higher-order terms in the fitness
expansion Eq.(3.23) (see [140]).
Let us recall that the Landau theory of phase transitions uses a parsimony principle com-
bined with symmetry considerations to write down a general functional —a free-energy
functional— including only the most important terms in a perturbative expansion of the
relevant field needed to describe key aspects of a phase transition.
For instance, in the classical example of an Ising like phase transition –describing the
spontaneous breaking of an up-down symmetry— one needs to include only up to quar-
tic terms in the "magnetization field" to derive a theory that quantitatively explains the
main features of the transition [9].
Similarly, here we perform an expansion of the "effective fitness" F(x), defined as the
marginal fitness f (x)minus its x-independent (constant) part of it:

F(x) ≡ f (x)− f̃ , (3.33)

which determines the fitness landscape and is the counterpart of the usual free-energy
function.
Expanding F(x) in powers of (x − x̄) around its mean x̄, one obtains (see appendix sec.
C.2.1):

F(x) = ( f x
1 (x̄)+

f xy
12 (x̄)

2
Σ(t)+

f xy
13 (x̄)

3!
µ3(t)) (x − x̄)+ (3.34)

+ (
f x
2 (x̄)

2
+

f xy
22 (x̄)

4
Σ(t)) (x − x̄)2 +

f x
3 (x̄)
3!
(x − x̄)3 +

f x
4 (x̄)
4!
(x − x̄)4 + ...

where terms above the 4-th order have been neglected for now. Let us remark that this
effective fitness determines the fitness landscape but importantly —much as in statistical
mechanics— mutations (which play a role analogous to thermal fluctuations, i.e. tem-
perature) are also needed in order to determine the shape of the resulting steady-state
probability distribution associated with the GCK equation, Eq.(4.3).
In order to keep the presentation as simple as possible, let us consider for now some sim-
plifying assumptions to F(x), as usually done in the Landau approach. For example, the
trait distribution ϕ(x, t) can be assumed to be always symmetric around its mean, which
implies that all odd central moments, in particular µ3(t), vanish. Similarly, one can also
assume the interaction term appearing in the fitness function to be symmetric in its two
indices, implying that all the cross derivative terms of odd order vanish; e.g. f xy

12 (x̄) = 0.
In this way, Eq.(3.35) takes the simpler form:

F(x) = f x
1 (x̄)(x − x̄)+ (

f x
2 (x̄)

2
+

f xy
22 (x̄)

4
Σ(t)) (x − x̄)2

+
f x
3 (x̄)
3!
(x − x̄)3 +

f x
4 (x̄)
4!
(x − x̄)4 + ... (3.35)

Given that the linear term is not changed with respect to its Gaussian counterpart, the
stationary condition for the mean value remains unchanged dt x̄∗ = f x

1 (x̄
∗)Σ∗ = 0 there-

fore, its stationary value, x̄∗, has to coincide with an extreme point of F(x), f x
1 (x̄

∗) = 0.
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Note, however, that if the fitness function is not symmetric, the term f x
3 may contribute

to the dynamics but given that we are assuming a symmetric steady-state distribution it
must vanish at stationarity.
For the sake of simplicity and without loss of generality, we set to zero the stationary
mean x̄∗ = 0 and we omit the dependency on it in the fitness derivatives. This leads a
simpler form of the effective stationary fitness:

F(x) = 1
2
( f x

2 +
f xy
22

2
Σ) x2 +

f x
4

4!
x4 =

g2

2
x2 +

g4

4!
x2, (3.36)

where the functions g2 and g4 have been defined in the last line to group the terms propor-
tional to x2 and x4, respectively. One can now look for the points of vanishing derivative,
corresponding either to fitness maxima or minima, which leads to the trivial solution
x∗0 = 0 together with a couple of additional extrema,

x∗2
1,2 =

−6g2

f4
= − 6

f x
4
( f x

2 +
f xy
22

2
Σ∗) . (3.37)

Let us remark that the location of these two fixed points depends on the steady-state
variance Σ∗, something that does not happen in the Gaussian theory. In order to close
the moment hierarchy one needs to determine the steady-state variance using some ap-
proximation. To do so, one could assume, for instance, a bimodal-Gaussian ansatz for the
steady-state distribution. However, in spite of the simplification, this is still quite cum-
bersome to handle analytically. Thus, we additionally consider the limit of very small
mutation amplitudes in which case the bimodal Gaussian can be approximated as the
sum of two delta functions,

ϕ∗(x)1,2 =
δ(x − x∗)

2
+ δ(x + x∗)

2
. (3.38)

The associated variance of this distribution is Σ∗ = x∗
2

and can be seen as a lower bound
for the actual value in the case of larger mutation amplitudes. Plugging this approxima-
tion in Eq.(3.37)

x∗12 = ±

¿
ÁÁÀ−6

f x
2

f x
4 + 3 f xy

22

. (3.39)

Observe, that the conditions for these two non-trivial solutions to exist are f x
2 > 0 —so

that the origin is a fitness minimum— and ( f x
4 + 6 f xy

22 ) < 0, to have a positive sign under
the square-root. It is easy to see that x∗1,2 are maxima if f x

4 > 3 f xy
22 /2, a condition that is

expected to be always satisfied when the two points exist. Hence, the resulting steady-
state distribution is unimodal with a peak at the origin if f x

2 < 0 while for f x
2 > 0 the origin

becomes unstable and a new bimodal stable distribution emerges. As already stressed,
in this latter phase, the sign of f x

2 does not fully determine the convexity at the origin of
F(x) (i.e. the overall sign of the terms proportional to x2 in Eq.(3.36), i.e. g2), due to the
presence of the additional term f xy

22 Σ(t), which stems from the interaction kernel as f xy
22 =

∂2
x∂2

y I∣x=y=x̄ and has the same sign as the interaction: positive for cooperation, negative
for competition. This dependence may play a non-trivial role during the course of an
evolutionary branching as it will be explicitly illustrated in the next Section. In particular,
observe that if the population reaches a fitness minimum and starts to branch, the mean-
trait value remains fixed in the origin, x̄∗ = 0 while the variance increases until it possibly
reaches a stationary value. This increase in the variance may lead to a progressive change



3.5. Growth-competition model 85

in the coefficient of the quadratic term, g2, and hence of the convexity in the origin.
To be more specifically, let us write down the time derivative of the quadratic coefficient
in Eq.(3.36) is

dtg2(t) = f xy
22 (x̄)dtΣ/2, (3.40)

which implies that, e.g., if the variance grows after a branching event, then the fitness
barrier separating both of the new attractors can change dynamically, either

• becoming higher in the case in which f xy
22 (x̄) > 0 (e.g., for mutualistic dominant

interactions), or

• becoming flatter if f xy
22 < 0 (e.g., for competitive interactions).

In particular, the reduction of the fitness barrier may generate a sort of "neutral bridge" in
between the two coexisting peaks, leaving the population susceptible to transient inva-
sions in between the two branched sub-populations. Observe that the stationary value of
g2 can be calculated (at least in an approximate way) form its definition and the values of
x∗1,2 in Eq.(3.39) and Σ∗ = x∗2,

g∗2 = f x
2 (1−

2 f xy
22

f x
4 + 6 f xy

22

) . (3.41)

This shows that 0 < f ∗2 < g∗2 corresponding to a high barrier for mutualistic interactions
and a 0 < g∗2 < f ∗2 , i.e. a flatter intermediate landscape for competitive interactions. Ob-
serve also, that, within the present approximation, the sign of g2 does not change. How-
ever, this calculation suggests that if higher non-linearities —such as those appearing in
expansions up to 8-th or 10-th order— are included, further corrections to g2 can appear
and they can possibly reverse its overall sign. If this happens and the concavity at the ori-
gin changes, a new ecological niche can be generated and it can possibly be repopulated.
This last scenario can be realized, for instance, when after a first branching event, each
of the two resulting branches converges to a relative fitness minimum, thus leading to
a second round of evolutionary branchings and therefore to a total of 4 coexisting sub-
populations. If the concavity of the origin has changed, then the two central populations
might eventually converge to the origin colliding and repopulating the empty central
niche, resulting in "evolutionary convergence" and a final stationary distribution with 3 co-
existing sub-populations.
A detailed analytical description of the previously described phenomenology is quite in-
tricate as —in order to allow for the possibility of a series of two branching events— it
requires to keep terms up to order x8 or x10 in the perturbative expansion of F(x) and the
calculation becomes quite cumbersome [305] (see appendix C.2.1for more details).
However, in the next section, we present the numerical solution of an explicit example
where the discussed non-trivial effects such as "neutral bridges", "cascades of branching
events" and "evolutionary convergence" —all of them beyond the reach of the standard
approach of adaptive dynamics— are vividly illustrated.

3.5 Growth-competition model

Model definition

Here we study a simple model that combines characteristics of other models previously
studied in the context of adaptive dynamics [156] and in the study of species clustering in
phenotypic space [Scheffer, Ramos, 303], respectively, see also the calculations in Sec.1.7.
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FIGURE 3.3: Dynamics of the phenotypic distribution (blue) and fitness landscape (red) for dif-
ferent times as obtained from a numerical integration of the full "generalized Crow-Kimura"
(GCK) equation, Eq.(4.3) in different cases. (A) with no branching, (B) one branching event,
and a(C) a series of two consecutive branching and a coalescence event. In the first case (A),
the competition kernel (green) is wider than the growth one (black), i.e. σα > σK, producing a
fitness landscape with a single maximum (red). The initially peaked distribution moves to the
right, in the direction of increasing gradient, thus trying to climb the fitness landscape towards
the maximum at x = 0, as predicted by theory (dashed vertical line). Observe that the width of the
distribution changes across time. In the second case (B), the competition kernel (black) is wider
than the growth one, producing a fitness landscape with a two maxima. The population tries to
climb the landscape but is trapped in the minimum. To escape and further increase fitness an evo-
lutionary branching happens and the two sub-populations finally reach the the two maxima, as
predicted by the theory (dashed lines). Finally, if the competition kernel is way smaller than the
growth one (C), after the first evolutionary branching the resulting two sub-populations converge
to fitness minima and each one branches again further creating transiently a population with four
peaks, that then converges toi a 3-mode ones, once the two central ones coalesce at x = 0. Param-
eter values: k = 1, σK = 1 and σ = 10−3 in all cases. σα = 1.2 (A), σα = 0.8 (B), σα = 0.6 (C). The initial
distribution is localized (delta Dirac function) at x0, with x0 = 0.8 (A), 0.4 (B), 0.6 (C), respectively.
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In particular, we consider a one-dimensional phenotypic space, characterized by a single
scalar trait, x. As above, such a trait can also be thought as the individual "niche" coordi-
nate, or as a unidimensional projection of a higher-dimensional phenotypic space.
The trait value x influences the growth rate of individuals, through a growth function
K(x)—that in the simplest case can be chosen as a Gaussian centered at x = 0— that de-
termines which phenotypes are more likely to grow, in a given environment, thus defin-
ing an ecological niche. In addition, individuals with traits x and y compete with each
other with a strength that depends on their trait similarity, i.e., on their distance in pheno-
typic space, ∣x − y∣, as specified by certain kernel function α(x − y), that can also be taken
to be a Gaussian. Therefore, the total fitness of individual x, conditioned to the existence
of individual y is specified by

f (x, y) = K(x)− α(x − y) (3.42)

= k + exp(− x2

2σ2
K
)− exp(−

(x − y)2

2σ2
α

),

where k > 0 is the basal growth rate (warranting the non-negativity of the overall fitness)
and both kernels are Gaussian functions centered at 0 and characterized by standard
deviations σK and σα, respectively.

Adaptive dynamics and beyond

First, we introduce the effective fitness function and identify the possible evolutionary
phases. Then, we resort to numerical integration of the generalized Crow-Kimura equa-
tion, Eq.(4.3), particularized for the present model. This allows us to gain much insight
and visualize the emergent phenomenology. Finally we rationalize the results and quan-
titatively characterize the trait distribution using the framework introduced in the pre-
vious sections. Let us start by calculating the marginal fitness associated width trait x
as given by Eq.(3.11), i.e. by integrating the effects of all other possible individuals, y,
weighted over the trait distribution:

f (x, t) = K(x)−∫
P

dyϕ(y, t)α(x − y). (3.43)

Observe that while K(x) fosters the concentration of the population around the origin
and can be seen as an "attracting force", the competition kernel fosters a kind of "re-
pulsion" between individuals. Moreover, the reach of these two evolutionary "forces" is
controlled by their variances: σK and σα, respectively. The combined effect of these two
forces is illustrated in the leftmost panels of Fig.3.3; the black curves represent the exter-
nal fitness K(x) and have always a maximum at the origin; the green curves stand for
the competitive fitness and exhibit a maximum at the peak of the population distribu-
tion. Subtracting this last fitness component from the first one, leads to the total fitness
function (red curves) which can exhibit a non-trivial shape. To mathematically analyze
the dynamics and possible evolutionary phases, we start by considering the first deriva-
tive of the marginal fitness to determine the direction of the selection gradient and the
location of its maximum, i.e. the attractor for the mean-trait value:

f x
1 (x) = −

x
σ2

K
exp(− x2

2σ2
K
) (3.44)

so that x = 0 is always an extreme point, and the mean value of the distribution converges
to 0 along the evolutionary dynamics.
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To go beyond standard AD while keeping the calculation as parsimonious as possible, let
us expand the relative fitness, F(x) = f (x) − f̄ , around x = 0, including terms up to the
4−th order (as in Eq.(3.36)):

F(x) ≈
2 f x

2 + f xy
2,2Σ(t)

4
x2 +

f x
4

4!
x4 (3.45)

where now

f x
2 = 1

σ2
α

− 1
σ2

K
, (3.46)

f xy
2,2 = − 3

σ4
α

, (3.47)

f x
4 = 3( 1

σ4
K
− 1

σ4
α

) (3.48)

so that f x
2 and f x

4 have always opposite signs, while the cross-derivative term, f xy
2,2, is al-

ways negative. From Eq.(3.46) one readily sees that the relative fitness has a maximum
at the origin x = 0 if σα ≥ σK ( f x

2 < 0), while the origin is a fitness minimum for σα < σK
( f x

2 > 0). At the transition point σα = σK ( f x
2 = 0), x = 0 is still a maximum, given that the

only non-vanishing term, f xy
22 , is negative.

Let us discuss these two cases separately:
(i) No branching: If σα ≥ σK, i.e. the competition kernel has a reach larger than the exter-
nal fitness, then there is a stabilizing evolutionary phase. This is illustrated in the upper
row of Fig.3.3 (obtained from numerical integration of the GCK equation): the leftmost
panel shows that when the competition kernel (green curve) is wider than the external-
fitness (black curve), the resulting total fitness (red curve) is such that the population
climbs the (changing) fitness landscape until the moment in which it stabilizes around
the fitness maximum at the origin.
(ii) Evolutionary branching: In the case in which σα < σK the competition kernel has
a reach smaller than the external niche. This scenario is illustrated in the B series of
panels of Fig.3.3: observe that after an initial transient the population reaches a fitness
minimum, thus leading to a branching event, i.e. to a "disruptive" evolutionary phase
as predicted also by adaptive dynamics. After the branching, the two peaks correspond
to extreme points of the overall fitness function. Note that the fitness landscape changes
its concavity through all the evolution. In particular, after branching its becomes flatter
and flatter, as qualitatively indicated by our theory ( f xy

22 < 0), leading to what we call a
"neutral bridge".
(iii) Multiple branching: Finally, by further decreasing σα —as explicitly illustrated in
the lower row of Fig.3.3— the two peaks can happen to converge to fitness minima, so
that each of them can experience a second-generation of branching events which —at
least, transiently— lead to a distribution with four peaks (the position of the secondary
branching points as illustrated in the lower row of Fig.3.3C. In particular, the lower panel
of Fig.3.3 reveals that the two central peaks (out of the total 4 transient ones) eventu-
ally coalesce together at the origin —repopulating the new niche created after the first
branching, as discussed above— and generating a 3-peak steady-state distribution. By
progressively increasing the value of σK or diminishing σα one can find a cascade of fur-
ther branching and coalescence events leading to steady-state distributions with a pro-
gressively larger number of peaks.
To summarize the previous results Fig.3.4 shows the phase diagram obtained from as a
function of the two parameters (σα and σK) controlling the fitness function. In particular,
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FIGURE 3.4: Phase diagram for growth-competition model as a function of the two control
parameters σα and σK. Different colors represent the possible phases: uni-modal one with no
branching (blue), while the "diversified phase" below the diagonal line (with colors running from
green to reddish and white) corresponds to multi-modal distributions (colors codify the number
of peaks). The points marked by letters A, B and C identify typical working points for the analyses
shown in Fig.3.3, with none, one or two branching events, respectively. The diagram is obtained
by integrating numerically the generalized Crow-Kimura equation, Eq.(4.3). The initial condition,
as illustrated in Fig.(3.3), is a delta-Dirac function at x = 0.1 in all cases. Other parameter values:
k = 0.1, σ = 10−3.

the diversification cascade, consisting in a series of branching events and possible coa-
lescence at the origin may generate steady states with 3, 4, 5, 6, 7 or 8 peaks —as we have
computationally verified— though arbitrarily large number of peaks are expected to be
seen for sufficiently small values of σα and sufficiently large values of σK.
This observation can be easily rationalized: σK determines the overall width of the avail-
able niche space, so the larger σK the larger number of diverse phenotypes that can exist.
On the other hand σα determines the reach of competition, the smaller it is, the closer two
consecutive peaks can be, allowing for a more compact packing of "species".
Finally, it is also noteworthy that by analyzing the time-dependent behavior of the popu-
lation distribution in situations in which many peaks are expected to occur in the steady
state, we observe that in order to reach a final steady state with n peaks —starting from
a uni-modal distribution at the origin— the probability distribution goes through all the
m < n possible intermediate phases by a series of evolutionary branching events —i.e. a
cascade of dynamical phase transitions— possibly with coalescence events in between.

Trait distributions beyond Gaussian theory.

In order to go analytically beyond adaptive dynamics, we use the framework introduced
in the previous sections to characterize the properties of the stationary trait distribution in
the various phases. When the σK ≤ σα the population converges to a Gaussian distribution
with mean x = 0, coinciding with the fitness maximum, and a non-zero variance that can
be approximated (see Eq.(3.31)) as:

Σ∗ = σ
2σ2

K − σ2
α

σ2
K − σ2

α

⎛
⎝

¿
ÁÁÀσ2

4
+ 2k

σ2
Kσ2

α

(σ2
α − σ2

K)−
σ

2
⎞
⎠

. (3.49)
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FIGURE 3.5: Trait variance at stationarity as a function of σα (both rescaled with rescaled by
σK) illustrating the analogy with a phase transition. The plot shows results from numerical inte-
gration of the GCK equation for different values of σK (as color-coded in the legend; parameters
values as in Fig.3.4). Observe that thanks to the rescaling by σK all different cases approximately
collapse onto a single curve. The condition σK = σα universally determines the transition from
monomorphic populations to evolutionary branching. The black line represents the theoretical
prediction obtained from Eq.(3.39) (σα < σK), Eq.(3.49) (σα ≥ σK) or 6-th order theory at σK = σα.
Such a theoretical approximation works relatively well for σα > 0.7σK but deviations are evident
for smaller values of σα, suggesting that higher-order terms are needed in the expansion. Even if
the mutation rate is not zero (σ = 10−3), so that the variance of the monomorphic solution does not
vanish, the analogy of this curve with that of the order parameter in a continuous phase transition
is evident [9].

Note that at transition point, σα = σK this formula ceases to be valid, the variance ex-
plodes, and one needs to consider higher-order terms (up to 6-th order at least, see SI) to
analytically estimate the steady-state variance.
On the other hand, when σK > σα, the population —as already discussed— does, at least,
an evolutionary branching, and to study it one needs to go beyond the quadratic approx-
imation in the fitness expansion. In particular, the 4-th order expansion can be explicitly
worked out in the limit of vanishing mutation amplitudes. In this limit, a double delta-
function ansatz, as specified by Eq.(3.39), is justified. Within such an approximation, one
can compute the location of the two peaks (as given by Eq.(3.39)):

x∗ = ±

¿
ÁÁÀ2

σ2
Kσ2

α(σ2
K − σ2

α)
4σ2

K − σ2
α

, (3.50)

which are real solutions given that, in the present case (σK > σα), x = 0 is a fitness min-
imum, and are also automatically maxima for the same condition (see appendix B.3.5,
Sec.C.2.1).
To increase the precision of the theoretical prediction one can keep terms up to 8-th order
in the expansion together with a bimodal Gaussian approximation (i.e. the addition of
two symmetric Gaussian distributions) for the stationary distribution. Even if no closed
analytical formula is derivable, one can solve numerically equations for the stationary
mean x̄and variance Σ ( dashed vertical lines in Fig. 3.3, see appendix sec.C.2.2for de-
tails).
In Fig. 3.5 we summarize the previous analytical derivations by comparing the station-

ary variance obtained by numerical integration of the GCK equation (color points) and
the theoretical approximations (black lines,8-th order for branching, Gaussian theory for
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no-branching and 6-th exactly at the transition point) for different parameter values. Ob-
serve that —as illustrated in Fig.3.5— by re-scaling both the variance and σα by σK all the
plots collapse to almost the same curve, similarly to what happens for order parameters
in second order phase transition [9]. From Fig.3.5, one learns that the theoretical predic-
tion compares well with the numerics for σα/σK > 0.7 while, below such a limit, further
higher-order terms are necessary. In particular, as already discussed, for smaller values
of σα more peaks appear in the distribution and the bimodal approximation fails.
Notably, the "branching points" for the second generation of evolutionary branching are
predicted from the 4th order solution, Eq.(3.39) (dashed vertical lines in Fig.3.3 C). How-
ever, beyond such a second generation of branchings the theory cannot be studied in a
closed analytical manner in simple terms, as this requires including at least up to the 12-th
order terms in the fitness expansion and it becomes rather cumbersome [305]. However,
we can heuristically determine the transition line to the multiple branching phase using
the numerical evidence. This numerical information can be combined with scaling prop-
erties of the variance in Fig. 3.5.
Indeed, by decreasing σα the variance reaches a maximum at σα = 0.6σK, and then de-
creases. This point coincides with the appearance of the third peak, an the decrease is
due to the appearance of the further peaks in the space between the existing ones. Sum-
ming up, one can conclude that when the width of the growth kernel, K(x), is broader
than the competition one, i.e. when σK > σα, evolutionary branching emerges in a robust
way, without the need of additional requirements, and has intriguing similarities to con-
tinuous phase transitions in statistical physics, where the variance plays the role of an
order parameter.

3.6 Stochastic finite size fluctuations

Demographic effects, stemming from finite-size populations (also known as "genetic drift"
in the context of population genetics) are well-known to have a pivotal role in determin-
ing the fate of ecological and evolutionary communities. As a matter of fact, the con-
sequences of demographic fluctuations have been extensively studied in the context of
population genetics [64, 280], evolutionary game theory [306, 307, 308, 309] and adaptive
dynamics [291, 148, 141]. In particular, it is well established that if the population size
is relatively small, there may not be enough the variability for selection to act upon and
stochastic effects can deterministic selection mechanisms [310, 148, 141].
In addition to introducing fluctuations around the deterministic behavior, demographic
fluctuations have been described to give rise to novel and a priori unexpected phenomenol-
ogy, such as e.g. evolutionary tunneling, population bottlenecks, inversion of the direc-
tion of selection, etc. [311, 312, 308].
In order to account for demographic effects in our framework one needs to move away
from the infinite-population-size limit and include higher-order terms in an 1/N expan-
sion.

Computational evidence of demographic effects

Before doing that, let us start by explicitly illustrating the difference between the pre-
viously derived deterministic theory and the actual outcome of evolutionary dynamics
for finite populations. For this we show results from computer simulations of the pre-
viously defined master equation, Eq.(3.3) —characterizing the actual individual-based
dynamics— for the specific case of the growth-competition model introduced in Sec.3.5.
For this, we implemented an individual-based Gillespie algorithm as described in detail
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FIGURE 3.6: Results of simulations of the individual-based growth-competition model. Typ-
ical realization of the model dynamics as a function of time for parameter values in the
monomorphic/no-branching phase (Upper panels, A) and in the phase with one branching event
(two peaks) (Lower panels, B). Each dot in the left panels corresponds to an individual, thus il-
lustrating the behavior of the population. Instead, the panels to the right show the evolution
of the mean population trait (top) and its variance (bottom). The red dashed lines represent the
theoretical predictions using Gaussian or Landau theory while the blue one (depicted only for
the case in which the Gaussian approximation clearly fails), includes also next-to-leading order
stochastic correction, as specified by Eq.(C.116). Note that in case (A) the variance shows the
typical large and asymmetric fluctuations characteristic of multiplicative processes [106, 313]. On
the other hand, the fluctuations of the mean in (B) increase significantly after the branching event
as suggested by Eqs.(3.52). The model has been simulated using the individual-based Gillespie
algorithm described in detail the SI. Parameter values: N = 103, k = 1., σ = 10−3, σK = 1 and σα = 1.2
(A), 0.8 (B).

in the appendix B.3.5, Sec.C.5.
In particular, Fig.3.6 illustrates the results for the evolution of a finite population of size

N = 103 and a moderate mutation amplitude, σ = 10−3, both in the case (A) in which a
monomorphic population is expected to emerge at the deterministic level (i.e. σα > σK)
and case (B) in which evolutionary branching is deterministically expected to emerge (i.e.
σα < σK).
Observe in the left panels of that the qualitative behavior is in good agreement with the
deterministic theory predictions, but there is variability across time. More specifically,
note that —as illustrated in the right panels— the mean value and the variance exhibit
stochastic fluctuations around their corresponding steady-state averaged values, which
roughly coincide with the deterministic expectations (red dashed lines) in three out of
four reported plots. In the diverging case, i.e. for the variance in case (A), there are large
asymmetric excursions around certain value (blue dashed line) that deviates from the de-
terministic prediction. Observe, finally that the variance in case (B) exhibits fluctuations
whose amplitude grows increase significantly after the population branches out, while
the overall variance converges to a value close to the deterministic one Eq.(3.49).
Moreover, in Fig.3.7 we illustrate the actual dynamics of the system —in case (B) in which
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evolutionary branching is predicted at a deterministic level (σα = 0.8, σK = 1)— for rela-
tively small population sizes (N = 200 and N = 1000, respectively). The figure also illus-
trates how the results depend on the mutation amplitude σ (σ = 10−3, σ = 2 × 10−3 and
σ = 5× 10−3).
The top panels, for N = 200, reveal that for small mutations, σ = 10−3, there is no sta-
ble branching (which means that the population remains trapped in a fitness minimum).
By increasing σ to 2 × 10−3 a tentative but frustrated branching appears; i.e. one of the
branches becomes extinct and the remaining one moves back to the origin. Finally, for
5× 10−3, the population is able to generate two branches in a stable way. Similarly, in the
bottom panels of Fig.3.7, we consider a large population of N = 103 in the case in which 3
peaks are deterministically expected to emerge (σα = 0.6 and σK = 1). For σ = 10−3, much
as in the previous case, fluctuations frustrate the emergence of three sub-populations (i.e.
the second series of branchings is frustated) and there are just two sub-populations (each
of them trapped in a fitness minimum, from where it is not able to escape).
For σ = 2x10−3 a final state with three sub-populations is reached but —on the contrary
of the deterministic predictions (cfr with fig.3.3 C)— branching occurs in an asymmet-
ric way (only in the leftmost part in this specific realization). Finally, for σ = 5 × 10−3,
a complex multi-branching dynamics appears, where the sub-populations branch asym-
metrically and wander in phenotypic space, eventually coalescing or going extinct, but
keeping three populations, most of the time.
Summing up, as anticipated, demographic fluctuations have a profound impact on the
actual evolutionary/adaptive dynamics that can diverge significantly from the expecta-
tions of the deterministic theory.
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FIGURE 3.7: Typical stochastic trajectories for the individual-based growth-competition model
illustrating the finite-size effects and their dependence of the population size N and the mu-
tation amplitude σ. The evolutionary trajectories of single individuals are plotted (dots) both
for (upper panels) the bi-modal phase (σK = 1, σα = 0.8) and (lower panels) the 3-modal phase
(σα = 0.6). In the first case (upper panels), evolutionary branching is not observed (left) for suf-
ficiently small populations (N = 200) and small mutation amplitudes (σ = 10−3). Branching be-
comes stochastic, reversible, or "frustrated" (in the sense that one of the branches becomes extinct
and the surviving one comes back to the central position) for intermediate values of σ = 2 × 10−3

(upper central panel) or, alternatively, by slightly increasing N (not shown). Finally, branching
occurs in a stable and reproducible way (upper right panel) for larger values of the mutation am-
plitude σ = 5 × 10−3 (or larger system sizes). A similar phenomenology can be observed (lower
panels) in the 3-peak phase (population size N = 103 in this example): for small mutations (lower
left panel) the two branches are trapped in their corresponding fitness minima and when addi-
tional branching occur they are reversible or frustrated. Stable branching occurs (lower central
panel) for intermediate values of σ (or larger values of N; not shown), while, finally (lower right
panel) if σ is very high branches happen but have a finite life time are continuously frustrated
and generated.
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Stochastic theory for finite populations

To account for the previously reported deviations from the deterministic behavior, in
what follows, we derive a generalization of the theoretical approach including finite pop-
ulation sizes.
Finite-size corrections to the deterministic theory are derived performing a size expan-
sion, which is a rather standard procedure in the theory of stochastic processes (details
can be found in the appendix sec.C.3).
In what follows, for simplicity in the presentation, we present the resulting equations just
for the case of small, unbiased, and trait-independent mutations (for more general cases
see the appendix sec.C.3.2).
Under these restrictions one can derive the following stochastic version of the GCK equa-
tion for the density in phenotypic space ρ(x, t) (Eq.(3.5):

ρ̇(x, t) = ( f (x)− f̄ ) ρ(x)+ σ2

2
∂2

x f (x)ρ(x)+ (3.51)

+ 1√
N

√
( f (x)+ f̄ ) ρ(x)+ σ2∂2

x f (x)ρ(x)/2 ξ(x, t),

where ξ is a delta-correlated, zero-mean, unit-variance Gaussian noise.
Note first that in the limit of N → ∞, ρ → ϕ and the original GCK equation is recovered
and that the square-root functional form of the correction —stemming from the central
limit theorem— is the usual one describing demographic noise in birth-death processes
and [296]. Let us also emphasize that the stochastic correction consists of two contribu-
tions:

• The first term, ( f (x)+ f̄ )ρ(x) quantifies the fluctuations in reproduction and selec-
tion (i.e. is associated with the replicator-equation part of the GCK equation).

• The second term, ∂2
xσ2 f (x)ρ(x)/2 describes fluctuations in mutation events (i.e. is

associated with the diffusive part of the GCK equation).

From the previous Eq.(3.51) it is straightforward to derive a couple of Langevin equa-
tions for the mean and the variance, which are the finite-population counterparts of the
deterministic equations Eq.(3.26) and Eq.(3.29), respectively:

dt x̄ = f x
1 Σ(t)+ 1√

N

√
f (x̄)(2Σ + σ) ηx̄(t), (3.52)

dtΣ = f x
2 (x̄)Σ

2 + σ2 f (x̄)+ σ2 f2(x̄)
2

Σ + 1√
N

√
6 f (x̄) (Σ2 + σ2Σ) ηΣ(t); (3.53)

where ηx̄, ηΣ are zero-mean Gaussian white noises (see sec.C.3.2 in the appendix for a
detailed derivation).
Observe that the additional noise term in the mean-trait equation, Eq.(3.52), grows with
the trait variance Σ, explaining why —as illustrated in Fig.3.6B— fluctuations largely
increase after a branching event happens. On the other hand, the noise in the equation
for the variance, Eq.(3.53), is proportional to the variance itself, i.e. it is a multiplicative-
noise process [313, 106]. This gives rise to a number of remarkable features. First of all,
it explains the characteristic asymmetric excursions observed in Fig.3.6 (second panel in
the right column). Second, remarkably, this multiplicative type of noise implies that there
is an "absorbing state", meaning that the variance may become "trapped" in values very
close to zero, from which it cannot escape stochastically. Indeed, as we discuss in what
follows this latter effect explains the existence of "frustrated branching" as observed in
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Fig3.7.
Let us assume for argument’s sake that the mean of the trait distribution has already
converged to a given stationary value, x̄∗, which allows one to have a close Langevin
equation for the variance, i.e. Eq.(3.53) with x = x̄∗. From such a Langevin equation one
can readily write its equivalent Fokker-Planck equation, and from it derive the steady-
state probability distribution, which reads

P∗(Σ) ∼ e−NVN(Σ) (3.54)

where the effective potential VN(Σ) is

VN = −
2 f x

2

f (x̄∗)
Σ + (

f x
2 σ2

f (x̄∗)
+ 1

N
+ 2) log (Σ + σ2)− 2

N − 1
N

log ( f (x̄)Σ) (3.55)

(see appendix sec.C.3.3 for a full derivation). The crucial point is that, for finite values of
N, the potential VN(Σ) exhibits a logarithmic singularity at the origin. In particular, in
the limit σ → 0 the potential converges to:

VN = −
2 f x

2

f (x̄∗)
Σ + 2

N
log Σ (3.56)

revealing the presence of a negative singularity at small Σ’s (while if σ ≠ 0 the singularity
is replaced by a well near the origin). This implies that the evolutionary dynamics can
become trapped at the potential well around Σ = 0, inducing possible effects absent in
the deterministic limit. The negative singularity at the origin only exists for σ = 0, while
for small values of σ and/or N, there might be a well near the origin and that as σ and N
grow the relative weight of the potential well near the origin diminishes and eventually
—for sufficiently large sizes and/or mutation amplitudes it disappears.

Is evolutionary branching frustrated?

To be more specific, the potential VN(Σ) is plotted in Fig.3.8 for a relatively small pop-
ulation size N = 200 and different values of the mutation amplitude σ (as color coded)
for the case in which evolutionary branching is expected deterministically. both in linear
and logarithmic scale.
Observe that at large values of Σ, the potential is well approximated by the linear term,
that is proportional to − f x

2 , leading to a divergence in variance values, as in the case of
deterministic branching ( f x

2 > 0). On the other hand, at small values of Σ we see that
the potential can exhibit different behavior depending on the value of σ: a deep well
confining the system’s state near zero, generating a trapping or "absorbing" state" with
very small Σ∗ ≈ 0 (orange curves, for σ ∼ 0), or a local shallow minimum with Σ∗ > 0 for
intermediate values of σ (dark, light blue and yellow curves, σ = 10−2, 10−3), and finally, a
monotonous curve leading the system to a diverging variance, much as in the determin-
istic, N →∞, limit.
To further understand analytically these regimes, we analyzed the number of extreme
points of the potential as a function of e.g. the size N and the mutation amplitude σ. (see
C.3.3 in the appendix for details). The main conclusion is that, there exist three different
regimes depending on the values of N, σ, f (x̄∗) and ∣ f x

2 (x̄
∗)∣, that represent the typical

scales of drift, mutation, fitness and selection. In particular, to find the extreme points
one needs to solve ∂ΣVN(Σ) = 0, which leads to :

Σ∗1,2N = −σ2

4
(γN ±

√
∆N) , (3.57)
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where ∆N = γ2
N − 8νN with

γN = 1−
f (x̄∗)

2 f x
2 σ2N

, νN = σ2 f (x̄∗) (1− 2
N
) . (3.58)

Observe that two new (positive and real-valued) extrema —one minimum and one maximum—
absent in the deterministic limit emerge if ∆N > 0; this condition that can be approxi-
mately written as:

∆N > 0Ð→ N < [N∗ ∼
f (x̄∗)
f x
2 σ
] (3.59)

or, in words, when the N is smaller than a certain threshold value, controlled by the the
mutation rate σ, the fitness f (x̄∗) and the selection force f x

2 (see sec.C.3.3 in the appendix
for details). Therefore, new "non-deterministic" potential minima may appear for suf-
ficiently small sizes. Equivalently, one can also fix a population size and look for new
minima as , e.g. the mutation rate is decreased.
Actually, it is possible to distinguish between three regimes, as graphically recapitulated
in Fig.3.9:

• Deterministic branching.
If N > N∗, there is no additional extreme point and branching occurs as in deter-
ministic limit (dark blue curve in Fig.3.8A). Thus, this phase is dominated by se-
lection and demographic fluctuations are relatively small. Observe that, exactly at
the value N = N∗ the potential shows a marginal point (light blue curve in Fig.3.8A
and blue region in Fig.3.9), corresponding to the condition ∆N = 0.

• Stochastic branching.
If N ≲ N∗, the potential develops a relative minimum at Σ∗1 N together with a local
maximum at Σ∗2 N (yellow curve in Fig.3.8A and yellow region in Fig.3.9). Therefore
a "drift barrier" arises between the low variance minima Σ∗1,N and the large vari-
ance regime (that asymptotically leads to divergence and evolutionary branching).
Therefore, if the variance at the branching point happens to be small, e.g., if the
mutation amplitude is small, the population remains trapped for long times in the
new minimum. However, possibly fluctuations may drive the population to jump
the barrier inducing evolutionary branching stochastically. In this regime finite size
fluctuations, selection and mutation are on similar scales.

• Frustrated branching- trapped state. If N ⋘ N∗, i.e. σx ⋘ N−1the minimum Σ∗1 N
converges to zero 5. In this limit, the potential converges to Eq.(3.56) showing a sin-
gularity at the origin and a the infinitely large drift barrier between the minimum
and the maximum. The origin has become a trapping point, similar to an absorb-
ing state (see orange curves in Fig.3.8 A and orange region in Fig.3.9). Hence, by
decreasing the mutation amplitude σ, the probability of stochastically branch be-
comes as close to zero as desired and the population does not branch. This regime
is thus dominated by drift, and mutations are so small that the population cannot
diversify.

To close the loop, observe that these different regimes explain the computational re-
sults reported in Fig3.7 for N = 200. In particular, in the first plot N ≪ N∗(10( −3)) ∼ 700)

5This can be seen analytically by Taylor expanding the minimum value around σ = 0, leading to Σ1,N ≈
Nσ2 ⋘ 1/N, where in the inequality we have used σ(x̄∗)/N.
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and hence the population is trapped in the low-variance state for long times; in the sec-
ond one NN∗(2×10(−3)) ∼ 100 and the population can branch in a stochastic (reversible)
way. Finally, in the rightmost plot N > N∗(5×10( −3)) ∼ 100 and the population branches
out in a stable way.
Before concluding, let us emphasize that the fact the genetic drift can hinder popula-
tion diversification is already known in the context of adaptive dynamics [148, 272, 141].
However, to the best of our knowledge, the phenomenon has not been analyzed in this
general mathematical detail nor related to the emergence of absorbing states and new
attractors of the evolutionary dynamics [106, 85].
Similarly, if f x

2 < 0, i.e. in the case in which no-branching is deterministically expected,
one can see Fig.3.8B that there is always a single minimum (corresponding to the only
solution Σ∗1,N of Eq.(3.57)), but its associated variance changes as a function of N and σ.
More specifically, for large values of Nσ the system behaves almost as in the deterministic
case but, as this product decreases, the potential well becomes wider and wider, allowing
for larger variability in possible variance values (with smaller mean value, though) i.e.
the population develops large intrinsic diversity and temporal variability (see Fig.3.8B).
In particular, this justifies the findings reported in Fig.3.7 for the individual-based model,
for which the variance was observed to exhibit anomalous large fluctuations, asymmetric
around their mean value.
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FIGURE 3.8: Effective potentials, VN(Σ) for finite-size populations and variable mutation am-
plitudes. The left panels show potentials in linear scale while the right ones show the same
potentials in semi-logarithmic scale; N = 200 and different values of σ are employed (as color-
coded in the legend). The upper panels (A) stand for a case in which branching is expected at a
deterministic level (i.e. for large populations), while the lower ones (B) stand for a case in which
a monomorphic population is expected in such a limit. In (A) there are three different regimes
depending on the value of σ (and N). In particular, by decreasing the mutation amplitude σ, the
population crosses over from a regime where the variance is pushed to infinity (blue curve) —so
that branching occurs in an almost deterministic way— to another where a meta-stable minimum
arises (yellow curve; as can be better appreciated in the semi-logarithmic plot) and branching oc-
curs after a transient in a stochastic way. Finally, when σ ∼ 0 the potential minimum converges to
the origin, generating also an absorbing state (orange curve) in such a limit (and the population
remains trapped in a fitness minimum). Similarly, the lower panels reveal a similar transition,
but in this case between a situation with a narrow minimum —characterizing a monomorphic
population for relatively large values of σ (or N)— and a fluctuation-dominated one, in which the
minimum moves progressively closer to zero and the potential becomes flatter, as corresponds to
populations with small variance and large fluctuations (see main text). Parameter values: k = 1.0,
σK = 1.0, σα = 0.8 (A) and σα = 1.2 (B).
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FIGURE 3.9: Regimes of branching The figure shows the transition lines between the different
regimes of branching: deterministic branching (blue), stochastic branching (yellow) and trapped
state (orange). The colors refer to the same regimes plotted in Fig.3.8 The blue region corresponds
to deterministic branching, the blue continuous line stands for the critical size N∗ that regulates
the number of extreme points in the potential. The blue dashed line represents an approximation
of the critical size as N∗ ≈ f (x̄∗)/( f x

2 σ). By crossing the blue line, the system enters in the stochas-
tic branching regime, where a metastable low-variance state arises. The probability of reaching
the diversified state depend on the size of mutations and the height of the barrier. Finally, when
σ ≈ 0, N∗ → ∞ the population cannot diversify and is trapped in the low variance state with no
escaping probability. Given that the trapping state exist just in the limit σ = 0 we represent this
phase as orange region on the leftmost part of the diagram.
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3.7 Conclusions and discussion

Historically, microbial evolution has been studied using population genetics, thanks to
technological advances enabling the design of high-precision and long-term evolutionary
experiments providing access to genetic information and global-fitness measurements of
whole populations [11]. In this context, recent efforts have allowed to generalize clas-
sic population genetics models to rapid evolution, using e.g. the formalism of fitness
travelling waves as well as concepts from statistical physics [160]. On the other hand,
microbial phenotypic eco-evolution —that was traditionally left aside owing to the dif-
ficulties in measuring single-cell traits [161, 162]— has received reinvigorated attention
[163, 145, 164, 165, 166, 167], as a result of technological advances in determining single-
cell traits [168, 169, 170] and metabolic functions [171, 172, 45, 173]. These novel quan-
titative empirical descriptions of microbial phenotypic diversity —which are crucial for
the rapidly-developing field of microbial ecology [297, 314, 80]— call for the design of
comprehensive eco-evolutionary theoretical frameworks.
In this chapter we started this ambitious goal with the concrete objective of generalizing
adaptive dynamics to eco-evolutionary scenarios. We have performed this generaliza-
tion using the perspective and the tools of statistical physics, in particular its capacity to
connect the miscroscopic scale with the mascroscopic one. As a result, we constructed a
general framework for the dynamics of trait distributions, being them Gaussian or not.
This frameworks is useful to both clarify many aspects of adaptive dynamics and to go
beyond it, for example in studying what happens beyond the branching point. Finally,
we have shown how to add stochastic finite-size fluctuations to our framework and unify
existing approaches and results in an elegant way. In Fig.3.10, we graphically resume the
derivation of the different parts of our evolutionary framework.
Many exciting possibilities open up as follow-ups of the present work. A first purely the-
oretical extension of our work would be to generalize our derivation to individual based
processes with varying population size, like a general birth-death process or a Wright-
Fisher model. These generalization would be mathematically not trivial and would in-
crease notably the present comprehension of many-body stochastic processes.
We believe that it is important to use our theory to analyze biologically more structured
models, such as consumer-resource ones [163, 144] where different ecological interactions
like competition, cross-feeding, environmental fluctuations, etc. maybe simultaneously
at work. In particular, environmental fluctuations seem to be the dominant force shap-
ing the statistics of natural microbial communities [297, 80, 124], and very little is known
on their influence on evolution [315]. To formulate an eco-evolutionary theory able to
predict the evolution of metabolic functions in such complex ecological scenarios is a
long-term ambitious goal. To this aim also the influence of spatial effects is emerging as
extremely important and will need to be studied [316, 317].
Another direction to further explore the similarities between evolutionary theory and
statistical physics is to analyze whether more complex fitness landscapes, such as rugged
ones [318, 130, 131], show similarities with other classes of phase transitions, chaos [52,
154], or replica symmetry breaking phenomena [63]. Finally, another promising future di-
rection for this work would be to study the non-equilibrium properties of evolution with
our framework and to quantify irreversibility both at a microscopic and macroscopic
level, complementing recent studies in the literature [184, 319, 320]. We believe that our
work indicate a deep and fruitful relation between evolution and statistical physics that
can be further explored by both communities.
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FIGURE 3.10: Derivation scheme. The figure represents a scheme that summarized of our frame-
work in its different formulation. Normal arrows represent approximations, while double arrows
stay for equivalence. We divide the possible formulations in three category: microscopic (i.e.
based on individual rates), mesoscopic (i.e. finite-size stochastic population density) and macro-
scopic (infinite size population and trait probability density). Starting from the microscopic level
(bottom), we formulated an individual based master equation (see Eq.(3.3)). By using marginal-
ization, it is possible to formulate an equation for the 1-particle density ϕ(x) that depends on
the two and three body probability (purple arrow, see appendix B.3.5, Sec.C.1.1). By using also
the mean-field approximation (N → ∞, green arrow), we formulated the mean-field selection
mutation equation, that is a macroscpic description of the population, see Eq.(3.9). Finally, by
taking the small mutation approximation, we derived the Generalized Crow-Kimura equation
(GKC see Eq.(4.3), blue arrow). Alternatively, from the microscopic Master equation, we can de-
rive an alternative Maser equation for the trait density ρ (bottom right, black arrow see appendix
B.3.5, Sec.C.3.1). By using a Kramers-Moyal expansion, from the previous description we can
derive a Selection-Mutation Langevin equation (red arrow), that if simplified with the small mu-
tation approximate gives a mesoscopic correction to the GCK equation named the Stochastic gen.
Crow-Kimura equation (blue arrow, see Eq.(3.51)). These two Langevin equations are mesoscopic
because they describe a population density in the large but fined-size limit. Finally, by taking the
N →∞ limit in the SGCK equation, one recovers its deterministic version (orange arrow). If one,
instead of studying the dynamics of the trait distribution with the GCK equation, considers the
dynamic of the population statistical moments, obtains a family of generalized Price equation,
that are equivalent to the GCK Eq (double black arrow, see Eq.(3.2)). Finally, if uses a Gaussian
approximation for the trait distribution ϕ, recovers the formalism of Adaptive Dynamics (light
blue arrows, Sec.3.3).
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Chapter 4

Evolution of tolerance in bacterial
populations

4.1 Introduction

The extraordinary ability of species to adapt and survive in unpredictably-changing and
unfavorable environments is certainly one of the most astonishing features among the
many wonders of the phenomenon that we call life. Such adaptations can occur at ex-
tremely fast temporal scales thus interspersing ecological and evolutionary processes
[321, 322, 323]. A widely spread surviving strategy is latency or dormancy, i.e., the possi-
bility for organisms to enter a period of reduced metabolic activity and non-replication
adopted during adverse environmental conditions [324, 325, 326, 327, 328]. Examples of
dormancy can be found across kingdoms, with examples ranging from microorganisms
such as viruses, bacteria or fungi [329, 330, 331, 332] to plants [333, 334] and animals
[327]. During the latency period the organism is said to be in a latent or dormant state
and the time it takes to wake up is referred to as “lag time” or simply “lag”. Entering
and exiting a dormant state are not cost-free processes, since individuals may require
of a specific metabolic machinery for performing such transitions and/or the develop-
ment of specifically-devised “resting structures” [335, 336, 324, 325, 337]. The exit from
the dormant state can occur either as a response to environmental signals or cues [324,
325, 338, 330] or, alternatively, in a stochastic way [339, 340, 341, 342]. As a matter of
fact, the duration of the lag intervals often varies widely between conspecific individ-
uals and even between genetically identical organisms exposed to the very same envi-
ronmental conditions [343, 330, 344, 339]. Such a variability is retained as an example of
phenotypic diversification or bet-hedging strategy [345, 346] that confers a crucial competitive
advantage in unpredictable and rapidly changing environments, thus compensating the
above-mentioned individual costs and providing important benefits to the community
as a whole [324, 325, 330, 347, 348, 334].

Although, as already stated, latency is a widespread phenomenon, bacterial commu-
nities constitute the most suitable playground for quantitative analysis of latency owing
to their diversity, fast life cycle, and the well-controlled conditions in which they can
grow and proliferate in the laboratory [349, 11, 350, 351]. Actually, latency was first de-
scribed by Müller back in 1895 as an explanation for the observed irregularities in the
growth rate of bacterial cultures in his laboratory [352]. In recent years it has been re-
alized that bacterial latency is a more complex and rich phenomenon than previously
thought. Indeed, paraphrasing a recent review on the subject, the lag phase is “dynamic,
organized, adaptive, and evolvable” [330].

Bacterial latency is at the root of tolerance to antibiotics as, rather often, bactericidal
antibiotics act during the reproduction stage and thus, by entering a dormant state, bac-
teria become transiently insensitive to antibiotics. Let us recall that bacterial tolerance is
not to be confused with bacterial resistance [353]. While resistance refers to the ability of
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organisms to grow within a medium with antibiotics, provided these are not in high con-
centrations, tolerance is the ability to transiently overcome antibiotics, even at very high
concentrations, provided the exposition time is not too large [354, 343, 353]. The strengths
of these two complementary surviving strategies are quantified, respectively, in terms of
quantities: (i) the minimum inhibitory concentration (MIC) of drug that must be supplied to
stop the population growth —a quantity that is significantly increased in resistant strains
[353, 355, 344, 343]— and (ii) the minimum duration to kill 99% of the cells MDK99, which is
increased in tolerant strains [356].

While the importance of bacterial resistance has long been recognized, studies under-
lining the crucial role played by tolerance are less frequent and more recent [353, 355,
344, 343]. An important caveat is that, while resistance is specific to one or a few antibi-
otics, tolerance is generically effective for a large diversity of them, leading to survival
even under intensive multidrug treatment [353, 344, 343]. Moreover, there exists firm
evidence that tolerance is the first response to antibiotic stress [355], facilitating the later
appearance of resistance [344]. Therefore, understanding the emergence of tolerance is
crucial for the development of more effective therapies aimed at dealing with recalcitrant
infections and possibly preventing them. Aimed at shedding light on these issues, here
we present an eco-evolutionary approach to analyze the emergence of tolerance by lag in
bacterial communities under controlled laboratory experiments. In particular, we scruti-
nize the conditions under which modified lag-time distributions evolve as a response to
stressful environments and investigate the origin of the experimentally-observed broad
heavy tails in lag-time distributions (see below).

Beside this specific focus, the present work has a broader breath. The example of rapid
evolution of lag-time distributions is used as a test to prove the theoretical framework
developed in ch.3. Our framework is similar in spirit to existing approaches such as the
theory of “adaptive dynamics” and related models in population genetics [357, 358, 359,
360], but aims at reconciling and generalizing them.

As a historical sidenote, let us recall that adaptive dynamics (AD) was born as a gen-
eralization of evolutionary game theory [361] to allow for a set of strategies that is con-
tinuously varying and, upon which selection acts. AD led to the satisfactory explanation
of intriguing phenomena such as evolutionary branching [357, 358, 362, 363], speciation
[364, 365, 366], diversification [157, 145], the emergence of altruism and cooperation [367,
368], and the evolution of dispersal [369]. Importantly, its foundations are also math-
ematically well-established [288]. However, in spite of its very successful history, AD
in its standard formulation has some limitations that make it not directly applicable to
complex situations such as the one we aim at describing here:

(i) First of all, in its standard formulation, populations are considered as monomor-
phic, i.e. point-like in phenotypic space; thus it does not allow for phenotypically-structured
populations (see however [370, 371]).

(ii) The “macroscopic equations” of AD for the populations are not easily connected
to microscopic birth-death processes in individual-based models [372].

(iii) Variations are assumed to be small, typically Gaussian-distributed and indepen-
dent of the parent’s phenotypic state.

(iv) Variations are considered to be rare: “after every mutational event, the ecological
dynamics has time to equilibrate and reach a new ecological attractor” [373]. In other
words, a separation is assumed between ecological and evolutionary timescales, while in
microbial communities, such processes may occur in concomitance. Such a convergence
of characteristic timescales is the hallmark of eco-evolutionary dynamics [321, 322, 323]
and is at the basis of fascinating phenomena such as eco-evolutionary tunneling [373,
374] and other rapid evolutionary phenomena [375, 376, 350, 377, 378] which are difficult
to account for in the standard formulation of adaptive dynamics.
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A full account of this general theoretical framework is presented the previous chap-
ter3.

The chapter is organized as follows: in the first section we discuss in detail the exper-
imental setup and empirical findings object of our study; then, we introduce a stochas-
tic individual-based model implementing phenotypic variability and inheritability to ac-
count for experimental results. We present an extensive set of both computational and
analytical results for it, discussing in particular the conditions under which the mathe-
matical results deviate from computational ones. Finally, we discuss the implications of
our work both from a biological viewpoint and how it contributes to the understand-
ing of the evolution of heterogeneous phenotypic distributions, as well as from a more
general eco-evolutionary perspective.

Empirical observations: rapid evolution of lag-time distributions

For the sake of concreteness, we focus on recent experimental results on the rapid evolu-
tion of tolerance in populations of Escherichia coli in laboratory batch cultures in Balaban’s
lab [343]. In particular, a bacterial population is periodically exposed to antibiotics (am-
plicillin) in very high concentrations (much larger than the MIC) during a fixed-duration
time interval Ta (e.g., Ta = 3, 5, or 8 hours). After antibiotic exposure the system is washed
and the surviving population is regrown in a fresh medium during a time interval T (with
T = 23h − Ta). The antibiotics/fresh-medium cycle is iterated at least 8 or 10 times. Re-
sults are averaged over 2 experimental realizations for each Ta and the resulting maximal
carrying capacity is about 109 individuals (we refer to [343] for further biological and
experimental details).

Once the cycles are completed, Fridman et al. [343] isolated some individuals from
the surviving community and by regrowing them in a fresh medium they found that
the distribution P(τ) of lag times τ —i.e. the time individual dormant cells take to start
generating a new colony after innoculation into a fresh medium— changes from its an-
cestral shape to a modified one, shifted towards larger τ values. More specifically, the
mean value grew to a value that approximately matches the duration of the antibiotic-
exposure time interval, Ta (see [343]). This modified lag-time distribution entails an-
Moreover, the distribution develops right-skewed heavytails, revealing the presence of
individuals with anomalouslylarge lag times. increase in the survival probability under
exposure to ampicillin but, also, to antibiotics of a different bactericidal class such as
norfloxacin, for the same time period. Furthermore, mutations were identified in diverse
genes, some of them known to be related with regulatory circuits controlling the lag-time
distribution, such as the toxin–antitoxin one [379]. Subsequently, after many cycles, the
population was also observed to develop resistance to ampicillin [343]. Thus, the conclu-
sion is that non-specific tolerance —stemming from lag— emerges in a very rapid way as
a first adaptive change/response to antibiotic stress. More in general, these results reveal
that the adaptive process is so fast that ecological and evolutionary processes occur at
comparable timescales [378, 380, 381, 382, 383].

The experimentally-determined lag-time distributions reveal another intriguing as-
pect that —to the best of our knowledge— has not been extensively analyzed so far:
their variance is also significantly increased as Ta grows and, related to this, the resulting
mean value of the distribution is always larger than its median [384]. This is an indica-
tion that, as a matter of fact, the empirically-obtained lag-time distributions are skewed
and exhibit heavy tails, including phenotypes with anomalously-large lag times —much
larger than Ta—, especially for large Ta’s. This observation is surprising as, under such
controlled lab conditions, one could naively expect to find lag-time distributions sharply
peaked around the optimal time value, Ta, since, ideally, the best possible strategy would
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be to wake-up right after antibiotics are removed and any further delay comes at the
price of a reduction of the overall growth rate or fitness. Fridman et al. proposed that
the increase in the variance might suggest a past selection for a bet-hedging strategy in
natural unpredictable environments; however, anomalously-large lag-time values were
not present in the original wild-type population. The authors also suggested that there
could be constraints at the molecular level imposing the mean and the variance of the
lag-time distribution to increase concomitantly [343, 379], a possibility that inspired us
and that we will carefully scrutinize from a theoretical and computational perspective in
what follows.

4.2 Computational Model

FIGURE 4.1: Sketch of the main ingredients of the individual-based stochastic model. Each
individual bacterium (i) is characterized by its phenotypic state, lag time τi and experiences de-
mographic processes. (A) In the presence of antibiotics, bacteria can stochastically switch between
the dormant and the growing state (at transition rates s and 1/τi, respectively); growing individ-
uals can also attempt reproduction (at a “birth” rate b) and be immediately killed by the action
of antibiotics (as bactericidal antibiotics usually act during duplication attempts). (B) In the fresh
medium, dormant bacteria can wake up at a rate 1/τi, that depends on their intrinsic (phenotypic)
lag time; on the other hand, growing cells can reproduce asexually by duplication; the resulting
offspring inherit the characteristic time scale with some variation, as specified by a function β.
(C) Two possible types of variation functions β: in the additive case (top), the standard deviation
is constant, i.e. independent of the initial state τi, while in the multiplicative case (bottom) the
standard deviation is assumed to grow linearly with the parent’s lag time τi. (D) Sketch of the en-
vironmental variation, alternating periodically between antibiotic exposure (time Ta) and a fresh
medium (Tmax − Ta).

Aimed at shedding light onto these empirical findings, here we propose an individual-
based stochastic model for phenotypic adaptation in which each single individual cell can
be either in an “awake” or in a “dormant” state [10, 342, 385, 386] (see Fig 4.1 for a sketch
of the model). Mimicking the experimental protocol of Fridman et al.— a population of
such individuals is exposed to alternating adverse and favorable conditions with dura-
tions Ta and 23h − Ta, respectively (aMoreover, the distribution develops right-skewed
heavytails, revealing the presence of individuals with anomalouslylarge lag times. func-
tion η(t) labels the environmental state at any given time t: η(t) = −1 in the presence of
antibiotics and η(t) = +1 in the fresh medium).
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The model assumes that each awake cell is able to sense the environment and re-
spond to it by regulating its state: they can sense the presence of antibiotics and enter
the dormant state at rate s, while such a machinery is assumed to be turned off during
dormancy. In appendix D, Sec. D.5, we also consider a generalization of the model in
which awake individuals can also enter the dormant state as a response to other sources
of stress such as starvation [387]. Indeed, the wake-up is assumed to occur as a result of a
Markovian stochastic process; each individual bacteria i is phenotypically characterized by
its intrinsic typical mean lag time τi meaning that, it wakes up stochastically at a constant
transition rate 1/τi. Therefore, the time t at which a dormant cell actually resumes growth
is a random variable distributed as P(t∣τi) = e−t/τi/τi, with mean value τi [388, 91]. In the
last section we discuss recent alternatives to Markovian processes, i.e. including some
form of “memory”, which can give rise to non-exponential residence times, to describe
this type of waking-up phenomena [389, 390].

Awake individuals are exposed to stochastic demographic processes: they attempt
asexual reproduction (i.e., duplication) at a constant birth rate b and die spontaneously at
rate d (that we fix to 0 without loss of generality). Reproduction attempts are successful
in the fresh medium while, in the presence of antibiotics, they just lead to the parent’s
death and its removal from the community. Following this dynamics, the population
can freely grow, until its size reaches a maximal carrying capacity K. Once this limit has
been reached, the population enters a saturated regime, within which each new birth is
immediately compensated by a random killing (much as in the Moran process [295]).

Importantly, in parallel with the above demographic processes, the model imple-
ments an evolutionary/adaptive dynamics. The phenotypic state τi of each successfully
dividing individual is transmitted, with possible variation, to its progeny. In particular,
the two offspring resulting from duplication have phenotypic states τi + ξ1 and τi + ξ2, re-
spectively, where ξ1 and ξ2 are the phenotypic stochastic variations, sampled from some
probability distribution, that we generically call β(ξ; τi) and that, in the more general
case, can be state-dependent, i.e. depend on τi. More specifically, we implemented two
different variants of the model, depending of the standard deviation of the probability
distribution β(ξ; τi):

• The additive model, with a standard deviation, αA, common to all phenotypes.

• The multiplicative model, with a state-dependent standard deviation, αMτi, for indi-
viduals with intrinsic lag time τi, where αM is a constant (see Methods).

Observe that in the multiplicative case, the larger the parent’s lag time the larger the pos-
sible amplitude of variations, in a sort of rich-get-richer or Matthew-effect mechanism,
well-known in the theory of stochastic processes to generate heavy tails [Sornette, 391,
392, 393, 394, 112, 395, 110, 396, 397]. As a motivation for this choice, let us mention that
there is solid evidence that the genetic circuits involved in the regulation of the lag-time
distribution (such as the toxin-antitoxin one), can indirectly produce this type of fluctu-
ations at the phenotypic level [379]. Furthermore, similar phenotypic-variation kernels
have been argued to arise from non-linear effects in the way genotypic changes (muta-
tions) are manifested into phenotypicMoreover, the distribution develops right-skewed
heavytails, revealing the presence of individuals with anomalouslylarge lag times. vari-
ability (see e.g. [398, 399]).
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4.3 Analytical (mean-field) theory

In this section we apply the theoretical framework of Chapter 3 to our problem. Before
delving into computational analyses of the model, let us present a mathematical frame-
work allowing us to obtain theoretical insight. Readers not particularly interested in
analytical approaches can safely skip this section, and just be aware that it is possible to
mathematically understand all the forthcoming computational results.

The previous Markovian stochastic individual-based model is mathematically de-
fined as a “many-particle” Master equation ruling the time evolution of the joint probability-
distribution functions for the whole set of all “particles” ( i.e., cells). The resulting master
equation can be simulated computationally by employing the Gillespie Algorithm (see
below and appendix D, Sec.D.1.2, for details) [388, 91, 400]. However, as it is often the
case for such many-particle Master equations, it is hard to handle analytically in an exact
way. Thus, in order to gain quantitative understanding beyond purely computational
analyses, here we develop an approximation —which becomes exact in the limit of in-
finitely large population sizes [401, 402]— that allows us to derive aMoreover, the dis-
tribution develops right-skewed heavytails, revealing the presence of individuals with
anomalouslylarge lag times. macroscopic (or “mean-field”) description of the stochastic
model in terms of the probability density of finding an individual at any given pheno-
typic state, τ (i.e. the “one-particle” probability density), see chapter3 for details.

A first step toward the derivation of a macroscopic equation relies on a marginalization
of the many-particle probability-distribution function to obtain a one-particle probability
density (see appendix D Sec.D.2). The resulting marginalized distribution function en-
capsulates the probability density ϕ(τ, t) that a randomly sampled individual at time t
has lag time τ. This probability —that needs to be normalized, so that ∫

∞

0 ϕ(τ, t)dτ = 1—
can be decomposed in two contributions ϕ(τ, t) = ϕG(τ, t)+ϕD(τ, t) representing, respec-
tively, the relative fraction of individuals in growing (G) and dormant (D) states. Observe
that these two densities are not probability distributions and thus they are not normal-
ized to unity separately. In the limit of infinitely-large population sizes, the evolution
of the probability density for individuals in the growing state, ϕG(τ, t) is ruled by the
following equation (details of the derivation can be found in appendix D, Sec.D.2):

∂tϕG(τ, t) =
1+ η(t)

2
[−bϕG(τ, t)+ 2b∫

∞

0
dτ̃β(τ − τ̃; τ̃)ϕG(τ̃, t)

− bϕG(τ, t)∫
∞

0
dτ̃ϕG(τ̃, t)]

−
1− η(t)

2
[b(1−∫

∞

0
dτ̃ϕG(τ̃, t))+ s]ϕG(τ, t)+ 1

τ
ϕD(τ, t). (4.1)

Even if this equation might look cumbersome, its different terms have a rather intuitive
interpretation:

• In the fresh medium (terms proportional to 1 + η(t)): (i) the first term represents
the negative probability flow stemmingMoreover, the distribution develops right-
skewed heavytails, revealing the presence of individuals with anomalouslylarge
lag times. from growing individuals with generic phenotypic trait τ that reproduce
(at rate b) and change to any other arbitrary phenotypic state; (ii) the second repre-
sents the positive contribution of reproducing individuals (at rate b) with any arbi-
trary trait τ̃, for which one of the two resulting offspring jumps to τ (controlled by
the function β(τ − τ̃; τ̃)); (iii) the third selection term stems from the normalization of
the overall probability density: if the population size grows because any individual
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with arbitrary trait τ̃ reproduces successfully (at rate b), then the relative probability
to observe phenotype τ decreases to keep the overall probability-density conserved.

• In the presence of antibiotics (terms proportional to 1 − η(t)): (i) the first term rep-
resents the rate at which growing individuals that attempt reproduction (at rate b)
are killed by antibiotics; (ii) the second term is a selection term, fully analogous to
the above-discussed one: when any arbitrary individual dies the overall probability
density increases. (iii) the third term represents the outflow of individuals entering
the dormant state at rate s.

• In both environments (no dependence on η(t)): the only term, proportional to the
rate 1/τ, describes the probability inflow stemming from dormant individuals that
become awake.

Similarly, the equation for the density of individuals in the dormant state is

∂tϕD(τ, t) = −η(t)bϕD(τ, t)∫
∞

0
dτ̃ϕG(τ̃, t)− 1

τ
ϕD(τ, t)+

1− η(t)
2

sϕG(τ, t) (4.2)

where the first (selection) term stems from the overall probability conservation when
the population either grows or shrinks (negative or positive signs, respectively), and the
remaining two terms have the opposite meaning (and signs) of their respective counter-
parts in Eq.(4.1).

In order to make further analytical progress, in the case in which variations are as-
sumed to be small, it is possible to introduce a further (“diffusive” or “Kimura”) ap-
proximation as often done in population genetics as well as in adaptive or evolutionary
mathematical approaches [403]. More specifically, one can perform a standard (Kramers-
Moyal) expansion of the master equation by assuming that jumps in the phenotypic space
are relatively small [388, 91], i.e. expanding the function beta in Taylor series around 0.
After some simple algebra (see appendix D, Sec.3.2) one obtains a particularly simple
expression for the overall probability distribution:

∂tϕ(τ, t) = η(t) [ f (τ, t)− f̄ (t)]ϕ(τ, t)

− (η(t)+ 1) [∂τθ(τ) f (τ, t)ϕ(τ, t)− 1
2

∂2
τσ2(τ) f (τ, t)ϕ(τ, t)] (4.3)

where the “ effective fitness function” f (τ, t) ≡ bϕG(τ, t)/ϕ(τ, t) and its population average
f̄ (t) = ∫

∞

0 dτ f (τ, t)ϕ(τ, t) have been introduced, and where θ(τ) and σ2(τ) are the first
and second cumulants of the variation function β (in first approximation we can assume
θ(τ) = 0, while σ2(τ) = α2

A for the additive case and σ2(τ) = α2
Mτ2 for the multiplicative

case). Observe that, remarkably, this last equation is a generalization of the celebrated
continuous-time Crow-Kimura equation of population genetics [404], also called selection-
mutation equation [405, 406]. In particular, notice that the dynamics of the probability
density is exposed to the combined action of the process of selection (first term in Eq.(4.3),
which is nothing but the replicator equation [361, 246]) and mutation, as specified by the
drifts in the second line. This type of equations, combining replicator dynamics with
Fokker-Planck type of terms —even if with a slightly different interpretation— have been
also studied by Sato & Kaneko and Mora & Walzak [407, 408, 409]. The main —and
crucial— differences between Eq.(4.3) and the standard Crow-Kimura equation are:

• The fitness function appears in the mutation terms —whereas in the standard Crow-
Kimura equation the diffusion term would read ∂2

τϕ(τ)— thus correlating repro-
duction rates and mutation amplitudes. Observe that here variations are always



110 Chapter 4. Evolution of tolerance in bacterial populations

associated with reproduction events, as typically in bacteria and viruses, in such a
way that a higher fitness rate implies a higher mutation rate.

• There is a general dependence on the cumulants of the variation kernel that, in
general, can be trait-dependent and asymmetric.

These generalizations are essential ingredients to capture the essence of our Markovian
model as we will see and, to the best of our knowledge, have not been carefully ana-
lyzed in the past. From here on, we refer to Eq.(4.3) as the generalized Crow-Kimura (GCK)
equation.

4.4 Model results

In order to scrutinize whether the proposed adaptive stochastic model can account for
the key empirical findings of Fridman et al. [343], we perform both (i) extensive compu-
tational simulations and (ii) numerical studies of the mean-field macroscopic equation,
Eq.(4.3).

• Computational simulations rely on the Gillespie algorithm [400], which allows us
to simulate exactly the master equation defining the stochastic model. In all cases,
we consider at least 103 independent realizations to derive statistically-robust re-
sults. Without loss of generality and owing to computational costs, the maximal
population size or carrying capacity is fixed to K = 105.

• On the other hand, for analytical approaches, in spite of the relatively simple form
of Eq.(4.3) owing to its non-linear nature and to the time-variability of environmen-
tal conditions η(t), it is not possible to solve it analytically in a closed way and,
thus, it becomes mandatory to resort to numerical-integration schemes. In partic-
ular, from this equation —or, more precisely, from integration of its two additive
components: Eq.(1) and Eq.(2)— one can derive the time-dependent as well as the
asymptotic lag-time distributions and, from them, monitor the leading moments or
cumulants as a function of time.

Further details of both computational simulations and numerical integration of the macro-
scopic equation can be found in the Methods section as well as in the appendix D. In what
follows we present together both types of analyses, underlining where the mean-field ap-
proach works well and where its predictions deviate from direct simulations.

Transient dynamics: determining variational amplitudes

Parameter values in the model are fixed to agree as much as possible with the empiri-
cal ones measured by Fridman et al. [343] (see Methods). In particular, we used (i) the
same set of environmental-period durations Ta and Tmax − Ta as in the antibiotics/fresh-
medium cycle, (ii) the experimentally measured reproduction rate in the fresh medium,
(iii) the empirical “falling-asleep” rate s, as well as (iv) the same number of antibiotic cy-
cles (ten) as in the experimental setup. Initially all individuals are assumed to have small
intrinsic lag-time values of τ. In particular, we consider a truncated normal distribution
with mean value and variance as in the actual ancestral population in the experiments
(⟨τ⟩exp. = 1.0 ± 0.2 h).

Employing this set of experimentally-constrained parameter values and initial condi-
tions, we ran stochastic simulations in which the whole population expanded and then
shrank following the periodically alternating environments. Along this dynamical cyclic
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process the distribution of τ values across the population varies in time; in particular, we
monitored the histogram of τ values and obtained the corresponding probability distri-
butions right at the end of each antibiotic cycle, just before regrowth, as in the experi-
ments.

Fig 4.2A and 4.2B show the evolution of the mean (i.e. the first cumulant, K1) across
cycles, while Fig 4.3A and 4.3B illustrate the full distribution and higher-order cumu-
lants after 10 cycles. Observe that the value of K1 after 10 cycles depends on the choice
made for the only remaining free parameter, i.e. the variation-amplitude parameter αA
or αM, for the additive or multiplicative versions of the model, respectively. In order to
tune either of these parameters, we imposed that K1(10) reproduces in the closest way
the experimentally determined values, as measured right before the 10th regrowth cy-
cle. This tuning procedure leads to αA = 0.16(1)h and αM = 0.048(1) for the additive
and multiplicative cases, respectively (parentheses indicate uncertainty in the last digit);
these are the values that best reproduce the empirical findings in the sense of least-square
deviation from the available empirical data for different Ta’s (see Fig 4.2C).

Let us remark that both variants of the model are able to reproduce the key experi-
mental feature of generating mean lag times close to Ta (observe, however, that there is al-
ways a small deviation in the case Ta = 8 h, for which even experimentally, K1 ≈ 10 h > Ta).
Nevertheless, as illustrated in Fig 4.3A and 4.3B there are significant differences between
the two variants. In particular, the additive model fails to reproduce the following em-
pirical observations:

• Ta-dependent variances,

• large differences between median and mean values, and

• strongly skewed distributions with large tails.

For instance, in the experiments, for Ta = 8 h, the difference between the mean and the
median is 1.1(1) h while in the additive model is 0.15 h, i.e. about one order of magnitude
smaller. Furthermore, in the experiments, lag times of up to 30 h are observed, while
in the additive model values above ≈ 15 are exponentially cancelled; i.e. they have an
extremely low (negligible) probability to be observed. This is also illustrated in Fig 4.3D
where the second and third cumulants (variance and skewness) of the distribution after
10 cycles are plotted as a function of Ta. Observe that both cumulants remain almost
constant, revealing the absence of heavy tails for large values of Ta.

On the other hand, the multiplicative model is able to reproduce not only the experi-
mental values of the mean but also —with no additional parameter nor fine tuning— (i)
the existence of large lag-time variances that increase with Ta, (ii) the above-mentioned
large differences between the mean and the median (1.3(1) in this case), as well as (iii)
heavily skewed lag-time distributions that strongly resemble the empirically measured
ones (see Fig. 2 in Fridman et al. [343]). In particular, lag times of the order of 30 h have
a non-negligible probability to be observed for Ta = 8 h within the multiplicative version
of the model, after 10 cycles. The resulting probability and the corresponding cumulants
(see Fig 4.3D depend strongly on Ta.

Importantly, the previous results are quite robust against changes in the model. In
particular, if growing cells are allowed to switch to dormancy in response of starvation,
the mean lag time increases, as expected, but the qualitative shape of the lag-time dis-
tribution remains unchanged (see sec.D.5 ). Hence, just by modifying accordingly the
parameter α allows one to recover the same conclusions.

As a word of caution let us emphasize that the distributions in Fig 4.3 are not ob-
tained exactly in the same way as the experimental ones. The first are distributions of
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characteristic times τ (inverse of intrinsic transition rates) while the second are the actual
lag times t measured after regrown in a fresh medium. Actually, the characteristic time
τ, in our model, is just a proxy for the actual time that it takes for the colony formed by
such an individual to be observable or detectable in actual experimental setups. Below
we discuss this issue more extensively as well as the possible limitations it implies and
extensions of the modelling approach to circumvent them.

Let us also underline that Fig 4.3 reports not only the results of direct simulations but
also the theoretical predictions (dashed lines) derived from numerical integration of the
macroscopic equations for the two different cases. The agreement with simulation results
is remarkably accurate; the origin of the existing small discrepancies will be analyzed in
detail in a forthcoming section.

Thus, the main conclusion of these computational and theoretical analyses is that
state-dependent (multiplicative) variability is needed in order to account for the empirically ob-
served key features of the lag-time distributions emerging after a few antibiotic/fresh-medium
cycles. Once this variant of the model is chosen, a good agreement with experimental
findings if obtained by fitting the only free parameter: the amplitude of variations.
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FIGURE 4.2: Tuning the only free parameter to match empirical results.(A-B) Mean of the lag-
time distribution K1, measured right at the end of each antibiotic cycle, as a function of the number
of cycles. Computational results are shown for antibiotic duration Ta = 3h for both the additive
(A) and the multiplicative (B) versions of the model. The different curves (color coded) corre-
spond to different mutation amplitudes αA (in A) and αM (in B), respectively. The dashed vertical
lines indicate the 10th cycle, when experiments stop. Remarkably, the mean lag time strongly de-
pends on the mutational amplitude, both in the transient regime and in the asymptotic state. We
implement an algorithmic search to tune the only free parameter (either αA or αM) to best fit the
experimental mean lag times for all values of Ta together and, in particular, their experimentally-
reported linear dependence on the antibiotic exposure time Ta (see Methods). (C) Mean of the
lag-time distribution as a function of Ta for the model (squares for additive and triangles for
multiplicative versions of the model) tuned to reproduce experimental values (yellow symbols).
While empirical data are available for Ta = 3, 5 and 8h, the model can be analyzed for generic
values of Ta. The solid line indicates the linear dependence between the mean and lag-time dis-
tribution, K1 = Ta, while the horizontal dashed line represents the mean lag time of the ancestral
population. Parameter values: K = 105, αA = 0.16h, αM = 0.048, b = 2.4h−1, d = 3.6 ⋅ 10−5h−1,
s = 0.12 h−1, Tf resh = 23h − Ta, 10 cycles (see Methods).
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FIGURE 4.3: Lag-time probability distributions: theory and simulations. (A-B) Lag-time dis-
tribution after 10 cycles as obtained in the simulation of the individual-based model in both the
additive (A) and the multiplicative (B) case, for different antibiotic-exposure periods, Ta = 3, 5
and 8h (marked with different colours). Solid and dotted vertical lines indicate, respectively, the
median and mean of the corresponding distributions (a large separation between these two indi-
cators reflects asymmetries in the distribution such as the emergence of a heavy tail to the right).
Dashed lines represent results from the numerical integration of the GCK equation, Eq.4.3, using
the same parameters and external conditions. Observe that the multiplicative model generates
much larger tails, reproducing the experimental phenomenology better than the additive one. (C)
Initial lag-time distribution mimicking the experimentally observed one for the ancestral popu-
lation. (D) Variance, K2, and difference between mean and median, K1 −median, of the lag-time
distribution as a function of Ta in the additive (blue squared symbols) and multiplicative (red
triangular symbols) versions of the model. K2 grows with the antibiotic exposure time in the mul-
tiplicative case, while in the additive case it remains nearly constant. The difference between the
mean and the median is very small in the additive case, while it increases with Ta almost mono-
tonically in the multiplicative one. In summary, the multiplicative model generates a distribution
with a variance that grows with the mean, as well as heavy tails, reproducing well the key exper-
imental findings. Parameter values are as in Fig 4.2.
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FIGURE 4.4: Characterization of the asymptotic state in the multiplicative version of the model
. (A) Approach to the dynamic asymptotic state for the multiplicative case, as resulting from the
integration of Eq.(1) and Eq.(2) for Ta = 3h (t indicates overall time as measured in hours). The
different curves correspond to three different values of the variation amplitude (from bottom to
top: αM = 0.0048, 0.01, 0.048). The difference between this plot and Fig 2 is that K1 is measured
at different times within the cycle and not just right at the end of antibiotic exposure (see (B)).
The vertical dashed line marks the 10th cycle at which the experiment stopped. Observe that
the steady-state mean value, the oscillations amplitude, and the relaxation time depend on the
variation amplitude αM. (B) Mean lag time within a single cycle (T ∈ [0, 23]h.) in a asymptotic
state. During the killing phase (antibiotic exposure), i.e. for t < Ta, the mean lag time increases to
maximize the number of dormant individuals; then, in the fresh medium the mean relaxes back
to the initial value. (C) Lag-time probability distribution —as derived from theory (dashed lines)
and computationally (solid lines)— at the start of the cycle (leftmost curve) and when antibiotics
are removed (rightmost curve); in the asymptotic state the system oscillates between these two
limiting probability distributions, both of them exhibiting heavy tails. (D) Evolution of the three
first cumulants K1, K2, K3 (mean, variance, and skewness, respectively) within a asymptotic cycle
(both theoretical and computational results are shown). Observe in (C) and (D) that the theory
correctly predicts the properties of the distribution but there are some small errors due to finite
size effects.



116 Chapter 4. Evolution of tolerance in bacterial populations

Asymptotic state

Even if experimental results are available for a fixed and limited number (10) of antibiotic-
exposition cycles, the already-calibrated model allows us to scrutinize the possible emer-
gence of asymptotic states after a much-larger number of cycles. In other words, it is
possible to go beyond the experimental limits and analyze the fate of the population.
In this sense, the experimental results can be seen as a “transient adaptation” to the en-
vironment, while the evolutionary cycle would be completed only when an asymptotic
(evolutionary stable) state is reached. Let us remark that the asymptotic state is necessar-
ily a periodic one, as the phenotypic distributions vary at different instants of the cycle, i.e.
the asymptotic distributions —measured at arbitrary times within the cycle— exhibit pe-
riodic oscillations in its shape, tracking the perpetual environmental cyclic changes. This
is illustrated in Fig 4.4, showing results obtained by numerically integrating the macro-
scopic equations, Eq.(1) and Eq.(2). First of all, it shows periodic oscillations of the mean
lag time K1; as shown in panel (A) it first increases from its initial value K1 = 1 and then,
eventually, reaches an oscillatory steady state. More specifically, as clearly seen in the
zoomed plot of panel (B), within the steady state, the maximum mean value within each
cycle is reached right before antibiotics removal. This is an expected result as in the first
part of the cycle, i.e. during the “killing phase”, the presence of antibiotics induces a
selective pressure towards increasing the mean lag-time value because delaying the exit
from the lag phase provides protection from the antibiotics. On the other hand, in the
fresh medium (growing phase) the selective pressure quickly reduces the mean lag time
to foster fast growth and increased fitness. Thus, summing up, the periodic alternation of
environmental conditions induces a stable periodic change in the mean lag-time value.

Actually, it is not only the mean that changes periodically, but the whole probabil-
ity distribution that varies cyclically. This is illustrated in Fig 4.4C and 4.4D which shows
computational and theoretical results for the lag-time probability distribution and its first
cumulants, K1, K2 and K3, for the multiplicative case (similar plots for the additive case
are shown in appendix D). Observe, in particular, in panel C, that the distribution os-
cillates between two extreme or limiting cases corresponding to the times of antibiotics
inoculation and antibiotics removal, respectively. This effect can be more vividly seen in
the videos that we have produced, see sec.D.7

Let us also highlight that the probability distributions exhibit non-Gaussian tails and
are right-skewed. In particular, to make these observations more quantitative, Fig 4.4D
shows the variance, K2, and the skewness, K3, along the cycle in the steady state. Notice
also the very-good —though not perfect— agreement between computational results and
theoretical estimates (dashed lines in Fig 4.4C and 4.4D).

Furthermore, let us emphasize that, importantly, the amplitude of the variations —as
controlled by the parameter αM (or, similarly, αA for the additive case)— has a non-trivial
effect on both the transient and the asymptotic behavior. In particular, the value of such
amplitude not only affects the mean value of lag times after 10 cycles —as illustrated by
the plateau of the oscillations in Fig 4.4A and 4.4B— but also (i) its asymptotic value, i.e.
the mean lag time, (ii) the amplitude of the oscillations across a cycle in the steady state,
and (iii) the relaxation time to the asymptotic state (i.e., the speed of evolution). This is
due to the heavy tails of the distribution: increasing the amplitude of variations directly
increments the variance of lag times, but this also enlarges the left-skewness of the dis-
tribution, feeding-back to the mean value. Therefore, the eco-evolutionary attractor is
shaped both by selection and mutation, departing from the classical evolutionary sce-
nario, as e.g. in adaptive-dynamics, in which the amplitude of the variations just affects
the variance of the resulting distribution but not the overall attractor.

Finally, we complement our observations with the population structure dynamics,
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FIGURE 4.5: Population dynamics . Abundances ND and NG of dormant (A) and growing
(B) cells, respectively, along a full cycle in the asymptotic regime (reached after only three cy-
cles) for the multiplicative model (the curves are the result of averaging over many independent
realizations for different Ta as color coded; observe the semi-logarithmic scale). Dormant cells
abundances reach a maximum value after approximately one hour of exposition to antibiotics, al-
most independently of Ta, and then start a slow decrease, while NG exhibits an opposite trend: it
rapidly decreases and reaches a minimum at T = Ta (see inset), after which it grows exponentially
fast until the carrying capacity is reached. (C) The total number of cells N = NG + ND is plotted
along the cycle: for all values of Ta the absolute minimum is reached near Ta (as clearly seen in
the inset). (D) The fraction of dormant cells relative to the total number is maximal nearby Ta and
decreases when antibiotics are removed.

i.e. proportion, minimum and maximum of dormant and awake cell numbers, in Fig
4.5. In particular, panels (A) and (B) show the abundances of dormant and awake cells
as function of time along an asymptotic cycle. Observe that the number of dormant cells
reaches a maximum, ND,max, after one hour, independently of the antibiotic duration time
Ta, while its height is proportional to this parameter. On the other hand, the position of
minimum of growing cells number, NG,min, scales with Ta and its magnitude decreases
correspondently. In Fig 4.5 we also show and discuss the dependence the total number of
cells N = NG +ND (panel C) as well as the relative fraction of dormant individuals along
a full cycle in the stationary state (which is reached after onley a few (three) antibiottic
cycles).

For the sake of completeness, let us also emphasize that both versions of the model
are able to generate MDK99 values that grow as a function of the number of antibotic
cycles, converging to an asymptotic-state value; at the end of the tenth cycle simulations
compare well with empirical observations for different values of Ta (see FigsD.10,D.11 ;
observe that the largest difference appears for Ta = 8, a case for which also K1 deviates
slightly from Ta in the experiments).

Deviations between theory and simulations: finite-size effects

Thus far, we have reported results stemming from computational analyses of the indi-
vidual based model as well as from numerical integration of the associated macroscopic
theory, i.e. the GCK equation. Small but systematic discrepancies between theory and
simulations are evident, see for example Fig 4.4C and 4.4D. Let us here discuss the origin
of such differences.

The theoretical approach relies on two different approximations: (i) on the one hand
it considers the small-variation approximation to include just the first two moments of
the variation function (i.e. a diffusion approximation); (ii) on the other hand, in order to
derive the macroscopic GCK equation, one needs to neglect correlations between individ-
uals, a type of mean-field approximation that, as usual, is expected to be exact only in the
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infinite population-size limit [388, 91]. In appendix D, Sec.D.4, we show computational ev-
idence that the small mutation approximation is not a significant source of errors; hence,
the discrepancies necessarily stem from finite-size effects. Indeed, in the present exper-
imental set up, there is a bottleneck at the end of each antibiotics cycle, when there is a
small number of surviving individuals, thus limiting the validity of the mean-field ap-
proximation in such a regime. As a matter of fact, one can clearly see from Fig 4.4D that
the largest discrepancies appear around the end of the killing phase, when the population
is the smallest. Note also that the main features of the dynamics in phenotypic space are
reproduction and variation: i.e., offspring are similar to their progeny. But reproduction
events occur only within the awake (growing) sub-population; the full population-size,
involving also dormant ones, is not the most relevant quantity to gauge finite-size effects.
Therefore, in order to minimize the discrepancies between theory and simulations it does
not suffice to consider larger population sizes: even for huge values of the carrying ca-
pacity K, we find that the population at the end of the killing phase is always rather small
and, hence, exposed to large demographic fluctuations, i.e. to finite-size effects.

To put these observations on more quantitative bases, we define a parameter δ as
the deviation between theoretical and computational results for the mean lag-time value
after antibiotic exposure and monitor its dependence on the minimal size of the awake
population (i.e. right at the end of the antibiotic phase). Fig 4.6 illustrates that: (A) the
deviation grows with the antibiotic-exposure time Ta, whereas (B) the minimum awake
subpopulation size decreases with Ta. Combining these two pieces of information one
can see (C) that the deviation parameter δ decreases as the minimum subpopulation of
awake individuals increases. Unfortunately, the convergence to zero of this last curve is
very slow, and thus, it is computationally very expensive to remove finite-size effects.

Finally, let us remark that we leave for future work the formulation of an extension
of the mathematical theory accounting for finite-size effects [410, 411, 148], including
corrections to the GCK equation.

FIGURE 4.6: Analysis of the deviations between simulations and theory. The parameter δ is
defined as the difference between the mean lag times (right at the end of the antibiotic cycle)
in the theoretical approach and in computer simulations. (A) Double-logarithmic plot reporting
the dependence of the error parameter δ on the antibiotic time exposure Ta for both the additive
(blue dots) and the multiplicative (red dots) versions of the model; in either case, the larger the
exposure time the larger the error. (B) Minimum number of awake individual during the cycle
in the asymptotic regime, NG,min, as function of Ta in double-logarithmic scale. As expected, the
larger the exposure time the smaller the number of surviving individuals. (C) Combining the
data from (A) and (B) it follows that δ decreases with increasing NG,min, meaning that deviations
between theory (expected to be exact for infinitely large population sizes) and computational
results stem from finite-population-size effects. Notice that errors are smaller in the multiplicative
version of the model.
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4.5 Conclusions and discussion

Summary of results and conclusions. We have presented a mathematical and computa-
tional model to quantitatively analyze the emergence and evolution of tolerance by lag
in bacteria. Our first goal was to reproduce the main results reported in the laboratory
experiments of Fridman et al. [343] in which the authors found a very fast evolution
of tolerance by lag in a community of Escherichia coli bacteria periodically exposed to an
antibiotics/fresh-medium cycle. In particular, after a relatively small number of such cy-
cles, there is a clear change in the individual-cell lag-time distribution with its mean value
evolving to match the duration of antibiotic exposure. This is remarkable, and demon-
strates that tolerance by lag is the first and generic strategy adopted by bacteria to survive
under harsh environmental conditions such as the presence of antibiotics. A second key
empirical finding is that concomitantly with the evolution of the mean lag time, also the
variance of lag times is significantly increased for longer antibiotic-exposure periods: i.e.
the harsher the conditions the more diversified the lag times within the population. More
generally, the full lag-time distribution becomes wider and develops a heavy tail for suf-
ficiently large times. This means that there exist individual phenotypes that are clearly
sub-optimal under the strictly controlled laboratory conditions and most-likely reflects a
bet-hedging strategy, preparing the community to survive under even harsher conditions
(i.e. longer stressful periods).

To shed light onto these observations we developed a stochastic individual-based
model assuming that individuals are characterized by an intrinsic lag time, setting the
“typical” time at which such individual stochastically wakes up after dormancy. This
phenotypic trait is transmitted to the progeny with possible variation. By considering
a protocol analogous to the experimental one (i.e. alternating antibiotic exposure and
fresh medium growth) the model is able to produce a distribution of characteristic lag
times across the population that reproduces quite well the empirical results in all cases by
tuning a single parameter value. In particular, the emerging lag-time distributions have
a mean that matches the period of antibiotic exposure Ta, an increase of the mean and
variance with Ta, as well as a large difference between the mean and the median, which
result from the appearance of heavy tails in the lag-time distributions. Nevertheless, it
is important to underline that the distributions that the model generates are just a proxy
for the empirically-determined ones, where the actual times in which individual bacteria
give rise to new and detectable (i.e. visible with the available technology) colonies are
measured.

Importantly, in order to account for all the above empirical phenomenology, the model
needs to assume multiplicative variations, i.e. that the variability between the parent’s trait
and those of its offspring increases (linearly) with the parent’s lag time: the larger the par-
ent’s lag time the larger the possible variation. This multiplicative process — at the roots
of the emerging heavy tails in the lag-time distribution— resembles the so-called rich-
get-richer mechanism of the Matthew effect [98, 392, 393, 110, 391]. This type of variations
implements an effective dependence between the parent’s trait value and the variation
amplitude, that was hypothesized as a possible mechanism behind the experimental re-
sults and that could stem from a highly non-linear map between genotypic changes and
their phenotypic manifestations [343, 379].

Notably, our analyses reveal that the amplitude of variations affects not just the vari-
ance (K2) of the resulting lag-time distribution, but also its mean (K1) as well as other
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higher-order cumulants such as the skewness (K3). This is in blatant contrast with stan-
dard approaches to evolutionary or adaptive dynamics, in which the “mutational am-
plitude” only influences the “broadness” (K2) of the distribution of traits in phenotypic
space, but does not alter the attractor of the dynamics (e.g. K1). Thus, the introduc-
tion of state-dependent (multiplicative) variability constitutes a step forward into our
understanding of how simple adaptive/evolutionary processes can generate complex
outcomes.

Let us finally mention that our model describes rapid evolution, where ecological and
mutational time scales are comparable. This interplay between ecological and evolution-
ary processes is explicit in the asymptotic state: it is not an “evolutionary stable state”
but a “non-equilibrium evolutionary stable state.” By non-equilibrium we mean that the
detailed-balance condition —a requirement of equilibrium states [412]— is violated and
thus, there are net probability fluxes in phenotypic space. These correspond to adap-
tive oscillations in phenotypic space. Key properties of such a state (oscillation plateaus,
amplitudes, etc.) depend on the mutational amplitude, i.e., the amplitude of variations
determine the eco-evolutionary attractor. In chapter6 we will scrutinize much in depth
non-equilibrium characteristic properties, such as non-vanishing entropy-production of
these type of complex eco-evolutionary processes [184].

Advantages and limitations of the phenotypic-modeling approach. As already un-
derlined, the present model assumes adaptation at a phenotypic level. Is this a biolog-
ically realistic assumption? The answer to this question, in principle, is affirmative but
some caveats are in order.

First of all, let us recall that a large part of the theoretical work on evolutionary dy-
namics and adaptation developed during the last decades focuses on phenotypic adap-
tation. For instance, in the theory of adaptive dynamics, individuals are always charac-
terized by some phenotypic trait or set of traits which is subject to selection and trans-
mission to the progeny with variation [357, 358, 359, 364, 365] (see also e.g. [381, 382]). In
general, this is the most parsimonious way of modeling adaptation as the details of the
genotypic-phenotypic mapping are usually highly non-linear or simply unknown (see
e.g. [399, 413, 414, 415, 416]).

On the one hand, adaptation beyond genetic changes, for example epigenetic adap-
tation, is a well-documented phenomenon in the bacterial world [417] and is the focus of
intense research activity [418, 419, 346, 420, 421]. For instance, recent work explores “the
evolutionary advantage of heritable phenotypic heterogeneity”, which suggests that evo-
lutionary mechanisms at a phenotypic level, such as the ones employed in our approach,
might be biologically favored with respect to more-standard genetic mechanisms, un-
der certain circumstances [422]. In particular, such phenotypic variability can provide a
faster and more flexible type of response than the one associated with traditional genetic
mutations.

Nevertheless, it is important to underline that Fridman et al. found empirical ev-
idence that —in their specific setup— genetic mutations were always present in the
evolved strains. In particular, they found mutations in genes controlling the so-called
toxin-antitoxin circuit, mediating the response to antibiotic stress [343]. This regulatory
circuit is known to lead to “multiplicative fluctuations” in the lag-time distribution at the
phenotypic level [379]. Thus, strictly speaking, our modeling approach constitutes an
effective or phenomenological approximation to the more complex biology of this prob-
lem.

This observation opens promising and exciting avenues for future research to shed
light on how broad probability distributions of lag times —possibly with heavy tails—
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can be actually encoded in phenotypic or genetic models. Actually, scale-free (power-
law) distributions of bacterial lag times have been recently reported in a specifically-
devised experimental setup [423]. Similarly to our conclusions, this work also empha-
sizes that a broad distribution of individual-cell waking-up rates is needed to generate
non-exponential decays of the overall lag-time distribution.

Similarly, another exciting possibility would be to develop computational models
akin to the phenotypic one proposed here but implementing genetic circuitry; i.e. models
where the phenotype is the (possibly stochastic) outcome of an underlying regulated ge-
netic process and where the object of selection are not specific lag times but their whole
distributions as genetically encoded.

Future developments and perspectives. In future research, we would like to further
delve onto several aspects, both biological and theoretical, of the present work. As a first
step, we leave for forthcoming work the analysis of the pertinent question of how sim-
ilar systems respond to randomly fluctuating environments as opposed to periodically
changing ones; do they develop heavier tails to cope with such unpredictable conditions
in a sort of bet-hedging strategy? How do the statistical features of the environmental
variability translate into the emerging lag-time distributions? [349, 390, 424, 347, 425].

From a more theoretical perspective, we leave for an impending work the applica-
tion of the generalized-Crow-Kimura macroscopic equation accounting for demographic
fluctuations, see Sec.3.6. Within this context, treating the variation-amplitude itself as an
evolving trait is also a potentially fruitful route for further studies.

Finally, as a long-term project we plan to develop models and analytical approaches,
similar to the ones explored here, but focusing on genetic evolution, employing explicit
genotypic-phenotypic mappings, rather than just on phenotypic changes. In particular,
by introducing this further layer of complexity it would be possible to generate more
general types of single-cell lag-time distributions, not limited to exponential ones as the
purely Markovian approach considered here. Let us recall that a more general stochastic
non-Markovian framework —i.e., including memory effects (see e.g. [389, 390, 426])—
is a challenging goal that promises to be very pertinent and relevant for many diverse
problems in which the control of time is important.

4.6 Computational Methods

Numerical values of the parameters

In order to fix parameter values we employed the experimental values and measure-
ments in [343] as closely as possible. The number of bacteria involved in the experiment
reaches values of the order of ∼ 109; however this number is prohibitively large for com-
puter simulations and we fixed a maximum carrying capacity of K = 105, verifying that
results do not depend strongly on such a choice (see finite-size effects section). Initially
the number of cells in the growing state is fixed to be equal to the carrying capacity K;
thus no cell is initially in the dormant state). The doubling time of both the ancestral and
the evolved populations is 25 ± 0.3 min; thus on average every single bacteria attempts
reproduction at a rate b = 1/25 min = 2.4 h−1. The death rate for (natural) causes (i.e.
other than antibiotics) is d = 3.6 ⋅ 10−5 h−1. The awakening rate is given by the inverse
of the characteristic time a = 1/τ [10]. The initial condition (ancestral or wild popu-
lation) was randomly sampled from a truncated Gaussian peaked at τ = 0. Since the
empirical ancestral distribution is narrow and close to the origin [343] (mean lag time
⟨τ⟩exp.

0 = 1 ± 0.2 h) we fix the standard deviation of the truncated Gaussian distribution
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to σ = 1 h 16 min in such a way that ⟨τ⟩sim.
0 ∼ 1 h. Neither the exit rate from dormancy s

nor the amplitude of the mutations, αA and αM, can be experimentally measured, but we
can fix them indirectly (the rest of the parameters are kept fixed with the values specified
above). First, s can be chosen using the experimental information that for the ancestral
population MDK99 ∼ 2.55h. Hence, we leave the (simulated) ancestral population in the
antibiotic phase until the 99% becomes extinct; averaging over different initial conditions,
we found that s = 0.12 h−1 is a good approximation. To fix the constants αA and αM we
performed simulations for diverse values of such parameters and looked for those that
best reproduce the experimental tendency after 10 exposure cycles for the different ex-
posure times under consideration (in particular, we performed a least-square deviation
analysis to match the straight-line ⟨τ⟩ = Ta when performing a linear interpolation for
all Ta’s). A systematic sweep of the values of the first two significant digits led us to
αA = 0.16h and αM = 0.048.

Variation Functions

We consider two different variation kernels for lag-time variations δ = τ − τ̃: the addi-
tive one, βA(δ; τ̃) and multiplicative one, βM(δ; τ̃). Both of them are probability density
functions of δ, normalized in [−τ̃,∞] and may depend on the initial phenotype τ̃. In par-

ticular, the additive case reads: βA(δ; τ̃) = e
− δ2

2α2
A /ZA(τ̃) with ZA(τ) = αA

√
π
√

2
Er f c(− τ√

2αA
)

(where Er f c stands for the complementary error function), while in the multiplicative

case, we consider βM(δ; τ̃) = e−
δ2

2αM τ̃ /ZM(τ̃)with ZM(τ) = αMτ
√

π
2 Er f c(− 1√

2αM
).

Measuring lag-time distributions

In order to determine lag-time distributions, we computed histograms in phenotypic
space, as discretized in bins of size ∆τ = 10−2 and averaged over many realizations of
the process. In the asymptotic steady state, similar histograms were computed at differ-
ent times along the antibiotic/fresh-medium cycle (e.g. right after antibiotic inoculation
or after antibiotic removal). To obtain results for the transient state we determined the
histogram after running for 10 cycles. On the other hand, to determine the steady state,
we started measuring after 300 cycles (to make sure that a steady state has been reached)
and then collect statistics up to cycle 1500, at intervals of 10 cycles to avoid correlations.
We repeated the process for 30 realizations and calculated the histogram as well as the
associated cumulants.

Numerical Integration of the macroscopic equation

The parameter set and initial condition for numerical integration of the mean-field equa-
tions are the same as specified above. Numerical integration was carried out using
the finite differences method. In particular ∂t was approximated using first order for-
ward differences, ∂2

τ using second-order centered differences, and integrals were ap-
proximated as Riemann sums [427]. The numerical integration steps used in the figures
are: ht = 10−6 and hτ = 10−2 . Note that, when we calculate the probability distribu-
tions during the simulation, we must use the same bin size to be able to correctly com-
pare with the theoretical distributions later. We used absorbing boundary conditions
ϕ(τ = 0, t) = ϕ(τ = τmax, t) = 0, where τmax is the limit of the phenotype space considered
for the numerical integration, in particular: τmax = 60h.
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Part III

Irreversibility in complex systems
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Chapter 5

Dissipative symmetry breaking

5.1 Stochastic thermodynamics: a geometrical perspective

Stochastic thermodynamics is branch of non-equilibrium statistical physics that studies
the thermodynamcis properties of mesoscopic systems, like colloidal particles, electronic
circuits, macromoleculas and chemical reactions at low densities [89, 428, 178]. In these
systems are characterized by an energy scale comparable with the thermal energy kBT,
where kB is the Boltzmann constant and T the temperature. The system is in contact with
an equilibrium thermal bath, and their interaction must be weak and negligible. The in-
teraction between the bath and the system generates stochasticity in the time evolution,
as in Brownian motion. The non-equilibrium conditions are given by the external force
driving the system, that provides it energy in the form of stochastic work. Also, the sys-
tem dissipate energy into the bath in the form of stochastic heat. Given the stochastic
nature of the system, stochastic thermodynamics is able to define such thermodynamic
observables as fluctuating quantities and along a single trajectory. Notably, the stochastic
heat and work are related to the system irreversibility and entropy production.
Stochastic thermodynamics is the results of the hybridization between different research
line in statistical physics like:the study of Brownian motion founded by Einstein [429],
the discovery of Onsager-reciprocal relations[179, 430] and Fluctuations Theorems by
Gallavotti, Cohen and other authors[431, 432, 433], the Brussels school of thermodynam-
ics and its founder Prigogine[175, 434], early development in NESS by Lebowitz and
Bergman[435], the thermodynamics of Langevin eqs. by Sekimoto [428] and the network
thermodynamics of Schnakenberg[436].
A general aspect of non-equilibirum statistical physics is that a non-equilibrium station-
ary state (NESS) needs to be characterized by the stationary currents flowing in the sys-
tem, in addition to the states probability [94]. It is known that these currents generally
produce a rotational thermodynamics force in the system, in addition to a potential force
typical of equilibrium. Even if many analogies with electromagnetism and gauge theories
have been proposed [437, 438], a general understanding of the geometrical and topologi-
cal order produced by currents is lacking (see this reference for a parallel tentative [130]).
In the next sections we will present an original perspective on stochastic thermodynam-
ics that shed light onto the geometrical and topological properties of stationary currents,
making connection between thermodynamics and symmetry breaking.
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Constant diffusion

Geometrical and topological properties of current velocities

Consider an overdamped driven-diffusive system whose evolution is described by the
following equation (in the covariant formulation):

ẋµ = Fµ + ξµ(t) , (5.1)

where x⃗ = (xµ), µ = 1, . . . , d, is the state of the system, e.g., position in real space, F⃗ a
general force and ξµ a Gaussian white noise with variance ⟨ξµ(t)ξν(t′)⟩ = 2σDµνδ(t − t′),
modelling its interaction with a thermal bath. The dissipation-fluctuation relation is in
general violated, hence the system will eventually reach a non-equilibrium stationary
state (NESS) [439]. Here, σ controls the amplitude of the noise and, in a thermodynamic
context, it can be interpreted as the temperature. For simplicity, we consider the diffusion
matrix to be state-independent. Later on, we will generalize our framework to multiplica-
tive noise. Let us remind to the reader that in the covariant formalism [440] any vector, or
matrix, element is represented with a up greek index, i.e xµ, Dµν or ∂µ = ∂

∂xµ
. Analogously,

the element of the inverse of a matrix is represented with down indices: (D̂−1)µν = Dµν.
Any index repetition , necessarily one up and one down, means a sum over such index;
for example the scalar product between two vectors α⃗ and β⃗ reads:

α⃗ ⋅ β⃗ = αµβµ =
d
∑
µ=1

αµβµ. (5.2)

Note that in this case the matrix for the scalar product is the trivial flat one. The Fokker-
Planck equation (FPE) associated with Eq. (5.94) is:

∂tP = −∂µ (FµP − σDµν∂νP) = −∂µ Jµ . (5.3)

If respected, the steady state is an equilibrium one; alternatively the system is away from
equilibrium. The stationary solution of the system admits a solenoidal stationary current,
i.e.,

∂µ J∗µ = 0 (5.4)

Following the pioneering works of Graham and Tél [441, 442, 443] and recent develop-
ments in Macroscopic Fluctuation Theory [84, 444], the steady-state solution in the weak
noise limit can be written as:

P∗(x⃗) = e−V(x⃗)/σ

Z
, (5.5)

where V(x⃗) is a non-equilibrium potential, or quasi-potential. Despite its analytical
intractability, there are numerous numerical and empirical methods to estimate V(x⃗),
where the potential is exactly defined as the minimum of the action along a trajectory to
create a fluctuation x⃗ [84]:

V(x⃗) = V(x⃗∗)+min(1
2 ∫

0

−∞
dt [1

2
( ˙⃗x − F⃗)D̂−1( ˙⃗x − F⃗)− ∇⃗ ⋅ F⃗])

where x⃗∗ is the minimum of the potential, corresponding to the deterministic fixed point.
Using the introduced relations, it is possible to decompose the thermodynamic force F⃗
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into a conservative contribution given by the gradient of the quasi-potential and a dissi-
pative one proportional to the stationary current:

Jµ∗ = FµP∗ − σDµν∂νP∗ (5.6)
Fµ = Jµ∗P−1 −Dµν∂νV = vµ∗ −Dµν∂νV, (5.7)

where we have defined the current velocity as:

vµ = Jµ

P
. (5.8)

Given that the quasi-potential contributes with a gradient, and the stationary current
is a solenoidal field [445], one would be tempted to assume that also the velocity is
solenoidal, obtaining in this way a complete geometrical decomposition of the force. Such
an assumption is not always true, as it can be seen by recasting the stationary condition,
Eq. (5.4) in terms of the velocity:

∇ ⋅ v∗ = 1
σ

v∗ ⋅ ∇V (5.9)

Hence, the divergence of v⃗∗, i.e. its propensity to be a sink, is just the scalar product be-
tween the velocity and the gradient of the potential. To uncover the geometric properties
of the system, we employ the quasi-potential ansatz, Eq. (5.5), to solve the Fokker-Planck
Equation in perturbative orders of σ [442]:

∂tP∗ = σ−1P∗ (Fµ +Dµν∂νV) ∂µV − (∂µFµ +Dµν∂µ∂νV)P∗ = 0. (5.10)

The first contribution is of order 1/σ:

(Fµ +Dµν∂νV)∂µV = 0 (5.11)

Graham interprets this equation as a Hamilton-Jacobi equation with position qµ = xµ

and moment pµ = ∂µV, and can be ideally solved with the method of characteristics.
Furthermore, inspired by the work of Jona-Lasinio and collaborators [446], we interpret
it as a perpendicularity condition for the stationary current velocity:

v⃗∗ ⋅ ∇⃗V = 0. (5.12)

This relation tells us that the stationary velocity is always perpendicular to the gradient
of the potential, i.e. it is tangent to the potential height lines. As a consequence, as
already observed in [445], the fixed point of the velocity must coincide with the potential
minimum.

Then, the second (and last) contribution is of order σ0:

∂µFµ +Dµν∂µ∂νV = 0, (5.13)

and naturally imposes that the stationary velocity is also a divergence free field, i.e. a
solenoidal field:

∇⃗ ⋅ v⃗∗ = 0, (5.14)
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such that in three dimension it can be written, like the current, as the the curl of a vector
field B⃗:

v⃗∗ = ∇⃗ × B⃗. (5.15)

In particular, note that the vorticity of the stationary velocity can be easily calculated:

w⃗∗ = ∇⃗ × v⃗∗ = ∇⃗ × F⃗ + ∇⃗ × (D∇⃗V), (5.16)

where the second contribution is non-zero for anisotropic diffusion. In the case of a diag-
onal diffusion matrix in two dimension, one obtains:

w⃗∗ = ∇⃗ × F⃗ + (Dxx −Dyy)∂x∂yV, (5.17)

indicating that the vorticity depends on the curl of the force and on the asymmetry of the
diffusion coefficients in the two directions. Finally, decomposing the velocity at any time
in its stationary and relaxation part, we obtain:

vµ(t) = vµ∗ + ṽµ (5.18)

ṽµ = −σDµν∂ν log
P(x, t)

P∗
= −σDµν∂νϕ(x, t) (5.19)

where we defined:

ϕ(x, t) = log
P
P∗
= log P(x, t)+ V(x)

σ
. (5.20)

Hence, the relaxation part ṽ is geometrically a gradient and goes to zero at stationarity.
Finally, let us note that the general thermodynamics force can be decomposed in a scalar
part generated by the quasi-potential, and a curl one, emerging from the stationary non-
equilibrium current:

F⃗ = v⃗∗ + σD̂∇⃗ log P∗ = ∇⃗ × B⃗ − D̂∇⃗V . (5.21)

The result presented here clarifies a long-lasting comparison between the geometrical
properties of non-equilibrium thermodynamics and electromagnetism. Indeed, equi-
librium thermodynamics present only a gradient field, like the electric one, while non-
equilibrium conditions add a solenoidal field, analogous to the the magnetic one. Refer-
ences to this analogy are scattered across the literature: for example see the introduction
to non-equilibrium statistical physics by T.Chou, K.Mallick and R. Zia [94], the works on
non-equilibirum landscape by J. Wang and collaborators [437] and various works in MFT
[447].

Thermodynamics

In this section, we show that various thermodynamic quantities are naturally expressed
in terms of the velocities and have an interesting geometrical meaning. First of all, con-
sider the system entropy, or Shannon entropy:

S(t) = −∫ dxP(x, t) log P(x, t). (5.22)

In stochastic thermodynamics the Shannon entropy has physical meaning, beyond the
probabilistic/informational one. Its thermodynamics value comes from general "ergodic
principle" that quietly lies at the base of stochastic thermodynamics. Formally, the prob-
ability P represents at the same time the probability of the system state, say the position
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of a Brownian particle, and the density of a gas of Brownian non-interacting particles in
the thermodynamic limit. This come from the fact that an average over time of the po-
sition of a single brownian particle is equivalent to the mean position of the particles in
the imaginary brownian gas. Hence, the current in the FP equation, can be interpreted
as a current obtained by the average velocity of the single particle in a particular point of
space. This point is quite controversial and not sufficiently discussed in the literature, but
see [177] and chapter 9 in[89] for a critic of the Shannon entropy and [448] for a possible
solution in the "informational" interpretation of thermodynamics.
The change in the system entropy can be always decomposed into a total non-negative
part and the environmental dissipation:

Ṡ(t) = −∫ dx∂tP(t) log P(t) = ∫ dx∇⃗ ⋅ J⃗ log P = −∫ dxJ⃗ ⋅ ∇⃗ log P

= ∫ dx
JµDµν Jν

P
−∫ dxJµDµνFν = Ṡprod(t)− Ṡ f lux(t), (5.23)

where the total entropy production is

Ṡprod(t) = ∫ dx
JµDµν Jν

σP
= ⟨v⃗ ○ v⃗⟩ ≥ 0, (5.24)

and the entropy flux to the environment is

Ṡ f lux(t) = ⟨v⃗ ○ F⃗⟩, (5.25)

with the diffusive scalar product indicated by the asterisk in which the diffusion matrix
acts as a metric [440], i.e.:

α⃗ ○ β⃗ = αµDµνβν; (5.26)

and

α⃗ ○ α⃗ = ∣α⃗∣2D. (5.27)

The average is performed over the probability:

⟨O⟩ = ∫ O(x)dxP(x, t). (5.28)

While the total entropy production represent the dissipation of the system and the envi-
ronment together, the environmental one quantifies the dissipation into the bath. At the
steady state the change in system entropy is zero and the only dissipation is the environ-
mental one. Alternatively, the total entropy production can can be decomposed in two
non-negative parts (the so-called adiabatic decomposition [434, 449, 450]):

Ṡprod = ⟨v⃗ ○ v⃗⟩ = ⟨(⃗̃v + v⃗st) ○ (⃗̃v + v⃗st)⟩ = ⟨v⃗∗ ○ v⃗∗⟩+ ⟨⃗̃v ○ ⃗̃v⟩+ ⟨v⃗∗ ○ ⃗̃v⟩+ ⟨⃗̃v ○ v⃗∗⟩,
(5.29)



130 Chapter 5. Dissipative symmetry breaking

where the last line is zero because

⟨v⃗∗ ○ ⃗̃v⟩ = −σ

2 ∫
dxP(x, t)vµ∗DµνDνλ∂λϕ(x, t) = −σ

2 ∫
dxP(x, t)vµ∗∂µϕ(x, t)

= −σ

2 ∫
dx

P(t)Jµ∗

P∗
(

∂µP
P
+

∂µV
σ
)

= σ

2
⟨∇⃗ ⋅ v⃗∗⟩− 1

2
⟨v⃗set ⋅ ∇⃗V⟩ = 0, (5.30)

for the perpedicularity conditions (Eq.s5.12 and 5.14). Hence, we obtain the following
expression:

Ṡprod = ⟨v⃗ ○ v⃗⟩ = ⟨∣v⃗∣2D⟩ = ⟨v⃗
∗ ○ v⃗∗⟩+ ⟨⃗̃v ○ ⃗̃v⟩

= ⟨∣v⃗∗∣2D⟩+ ⟨∣ ⃗̃v∣
2
D⟩ = ⟨∣∇⃗ × B⃗∣2D⟩+ σ2⟨∣∇⃗ϕ∣2D⟩. (5.31)

The two contributions corresponds to housekeeping (or adiabatic) and excess (or non-
adiabatic) components [450]

Ṡprod(t) = Ṡhk(t)+ Ṡex(t) (5.32)

Ṡhk(t) = ⟨v⃗ ○ v⃗∗⟩ = ⟨v⃗∗ ○ v⃗∗⟩ = Ṡa(t) = ⟨∣∇⃗ × B⃗∣2D⟩ ≥ 0 (5.33)
Ṡna(t) = ⟨⃗̃v ○ ⃗̃v⟩ = σ2⟨∣∇⃗ϕ(x, t)∣2D⟩ = Ṡex(t) ≥ 0 (5.34)

where in the first line we have used the perpendicularity condition, Eq.5.30. Notice that
the housekeeping part is zero only at equilibrium and corresponds to the stationary en-
tropy production. Conversely, the excess part is zero at any NESS and corresponds to the
definition given by Prigogine (see [434, 449]). Hence, we have derived that the house-
keeping entropy is just given by the non-conservative or curl part of the force, while the
excess one by the time-dependent, scalar contribution.

Finally, let us note that the time derivative of the average potential gives the balance
between the house-keeping entropy production and the entropy flux to the environment,
i.e.,

dt⟨V⟩
σ

= ⟨v⃗(t) ⋅ ∇⃗V⟩ = ⟨v⃗ ○ v⃗∗⟩− ⟨v⃗ ○ F⃗⟩ = Ṡhk − Ṡ f lux, (5.35)

and hence must be zero at stationarity.

Trajectory thermodynamics

In this section we show that in stochastic thermodynamics is possible to use thermody-
namic quantities along single trajectories. Consider again the Langevin description of the
system:

ẋµ = Fµ + ξµ(t), (5.36)
⟨ξµ(t)⟩ = 0, (5.37)

⟨ξµ(t)ξν(t′)⟩ = 2σDµνδ(t − t′). (5.38)

where ξµ is a Gaussian white noise, Fµ the deterministic force and Dµν is the diffusion
matrix (the average is done over the realizations). We define the following generic current
[451, 452]:

Ṙ = c⃗R(x⃗) ○ ˙⃗x, cµ
R(x) =

∂R
∂xν

Dνµ. (5.39)
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where c⃗ = c⃗R(x⃗) is the vector field that determines the current. By substituting the
Langevin dynamics in ˙⃗xusing the Ito formula, we obtain:

Ṙ = c⃗ ○ ˙⃗x = ∂R
∂xν

ẋν + 1
2

∂2R
∂xµ∂xν

Dµν = c⃗ ○ F⃗ +
√

2c⃗ ○ ξ⃗ + ∇⃗ ○ (D̂c⃗) (5.40)

= c⃗ ○ v⃗ + ∇⃗ ○ (D̂c⃗P)
P

+
√

2c⃗ ○ ξ⃗. (5.41)

Thanks to the explicit equation for the dynamics of the current we can take the average
and obtain:

⟨Ṙ⟩ = ∫ dx⃗P(x⃗, t)∫ dξ⃗P(ξ⃗, t)Ṙ = ⟨c⃗ ○ v⃗⟩. (5.42)

We can now consider some concrete thermodynamics observables along a trajectory, like
the total entropy production and the environmental dissipation:

ṡprod = ṡ + ṡ f lux = −∂t log P∣Γ + ˙⃗x ○ v⃗∣Γ (5.43)

ṡ f lux = ˙⃗x ○ F⃗ = ˙⃗x ○ v⃗∗ − ˙⃗x ○ D̂∇⃗V = ṡhk + ṡex, (5.44)

ṡhk = ˙⃗x ○ v⃗∗ (5.45)
ṡex = − ˙⃗x ○D∇⃗V (5.46)

where ṡhk the environmental entropy related to housekeeping and ṡex the excess one re-
lated with the potential part. By taking the averages we obtain that:

Ṡm = ⟨ṡm⟩ = ⟨ ˙⃗x ○ F⃗⟩ = ⟨v ○ F⃗⟩ (5.47)
Ṡhk = ⟨ṡhk⟩ = ⟨ ˙⃗x ○ v⃗∗⟩ = ⟨v ○ v⃗∗⟩ (5.48)
Ṡex = ⟨ṡex⟩ = −⟨ ˙⃗x ○D∇⃗V⟩ = −⟨v ⋅ ∇⃗V⟩ (5.49)

If the Einstein relation σ = kBT is valid, the entropy production in the environment can
be related to the heat flow in the thermal bath:

ṡ f lux =
1

kBT
˙⃗x ○ F⃗ =

q̇
kBT

, (5.50)

where we have rescaled the diffusive scalar product by the temperature. Following
Hatano and Sasa [453] and the seminal work of Sekimoto [428], one can decompose the
heat flow into the excess and housekeeping part:

q̇ = q̇ex + q̇hk = q̇∆ + q̇∗ (5.51)
q̇ex = q̇∆ = − ˙⃗x ○ D̂∇⃗V (5.52)
q̇hk = q̇∗ = ˙⃗x ○ v⃗∗ = ˙⃗x ○ ∇⃗ × B⃗. (5.53)

By taking the averages, we obtain:

Q̇hk = Q̇∗ = ⟨q̇hk⟩ = ⟨v⃗ ○ ∇⃗ × B⃗⟩ (5.54)

Ṡhk = Q̇hk

kBT
(5.55)

Q̇ex = Q̇∆ = −⟨v ⋅ ∇V⟩ (5.56)

Ṡex = Q̇ex

kBT
. (5.57)
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In agreement to what we have found in the precedent section.

Fluctuation relations

Equivalently to the Langevin equation, the dynamics can be represent with the path-
integral representation and the Onsager-Machlup action [179, 430, 432]. Consider a tra-
jectory Γ in a time interval [0, t], its probability in the Stratonovich discretization is [454]:

P(Γ) ∼ e−S[Γ], S[Γ] = 1
2 ∫

t

0
ds [1

2
( ˙⃗x − F⃗)D̂−1( ˙⃗x − F⃗)− ∇⃗ ⋅ F⃗] , (5.58)

where we have not reported the Jacobian of P(Γ) and S[Γ] is Onsager-Machlup action.
Now, we consider the time-reversed trajectory Γ̃, obtain by inverting the time sign s →
t − s. Given that this transformation reverse the sign of the velocity, we can divide the
Onsager action in a time-symmetric and time-asymetric part:

S[Γ] = Ss[Γ]+Sa[Γ], (5.59)

Ss[Γ] =
1
2 ∫

t

0
ds [1

2
˙⃗xD̂−1 ˙⃗x + 1

2
F⃗)D̂−1F⃗ − ∇⃗ ⋅ F⃗] , (5.60)

Sa[Γ] = −
1
2 ∫

t

0
ds ˙⃗xD̂−1F⃗. (5.61)

Hence, when one takes the ration of probability of the time directed and of reversal trajec-
tory just the time-asymmetric part survives, and it corresponds to the change int entropy
flux along the directed trajectory:

log
P(Γ)
P(Γ̃)

= −2Sa[Γ] = ∫
t

0
ds ˙⃗xD̂−1F⃗ = ∆s f lux = ∫

t

0
ds ˙⃗x ○ ∇⃗ × B⃗ −∆V, (5.62)

where in the last equality we have used the geometric decomposition of the force. On the
other hand, if one takes into consideration also the probability of the initial states of the
trajectory, x0 and xt, one obtains the entropy production along the trajectory:

log(P(x0)P(Γ)
P(xt)P(Γ̃)

) = ∆sm +∆s = ∆sprod (5.63)

Hence, the entropy production is a measure of the trajectory irreversibility. From Eq.(5.63)
it is easy to verify that

⟨e−∆sprod⟩ = 1, (5.64)

also known as integral fluctuation relation [178], from which by using the Jensen inequal-
ity, it derives the second law of thermodynamics:

⟨∆sprod⟩ ≥ 0 (5.65)

Note that, for Eq.(5.63), the entropy production as the following symmetry, called an
involution:

∆sprod[Γ] = −∆sprod[Γ̃]. (5.66)
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At the stationary state the entropy production coincides with the entropy flux, and the
following steady-state fluctuation relation emerges from Eq. (5.63):

P(−∆sprod)
P(∆sprod)

= e−∆sprod , (5.67)

where we have used that, for a general probability distribution of the entropy production
it holds that

⟨δ(∆sprod − s)e−∆sprod⟩Γ = ⟨δ(∆sprod − s)⟩Γ̃ = ⟨δ(∆sprod + s)⟩Γ̃, (5.68)

together with Eq.(5.66), see Ref.[89] for more details. Eq. (5.67) is a relation between
the stationary state probability of observing a value of the average entropy production
rate and its opposite, and hence express the same statement of the original fluctuation
theorem by Gallavotti and Cohen.

Multiplicative noise: Geometrical properties of velocities

Consider a general overdamped system where the diffusion coefficient depend on the
variables, i.e. with multiplicative noise:

ẋµ = Fµ(x)+Gµν(x)ξν(t) (5.69)
⟨ξµ(t)⟩ = 0, (5.70)

⟨ξµ(t)ξν(t′)⟩ = 2Cµνδ(t − t′). (5.71)

with Ĝ the matrix ruling the multiplicative fluctuations, that for simplicity we consider
diagonal Ĝ(x⃗) = diag(g1(x⃗), g2(x⃗), . . . , gN(x⃗), and Ĉ the correlation matrix of the Gaus-
sian noise (x⃗-independent). In the following, we employ an α-dependent discretization
of the noise in order to encode all possible prescription. Indeed, α = 0 corresponds to the
Stratonovich case, while α = 1 to the Ito prescription. The corresponding Fokker-Planck
equation reads:

∂tP = −∂µ Jµ (5.72)
Jµ = FµP − α∂νDµν −Dµν∂νP, (5.73)

where the diffusion matrix is constructed as follows:

D̂ = ĜTĈĜ. (5.74)

In this general case, Eq. (5.5) is not valid anymore and the stationary solution in the small
noise limit is:

P∗(x⃗) = η(σ)z(x⃗)e−
V
σ . (5.75)

The stationary velocity is defined now as:

vµ∗ = Fµ +Dµν∂νV − ασ∂νDµν − σDµν∂ν log z

= (v(0))µ∗ + σ(v(1))µ∗. (5.76)
(v(0))µ∗ = Fµ +Dµν∂νV (5.77)
(v(1))µ∗ = −α∂νDµν −Dµν∂ν log z. (5.78)
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As a first comment, note that the non-equilibrium potential V should have its minimum
in the fixed point of the force (because in the deterministic limit the velocity must be
zero), so that v⃗(0)∗ ≈ 0 in the fixed point, and the v1 would be dominant. On the other
hand, if the Ito prescription is used, the maximum of the full probability distribution will
not coincide with the deterministic one, and will be shifted for the presence of the Ito
term. Furthermore, note that one can identify the terms that generate the vorticity in the
current:

w = ∇⃗ × v⃗∗ = w0 +w1 = ∇⃗ × v⃗0 + σ∇⃗ × v⃗1 (5.79)
w0 = ∇⃗ × F⃗ + (∇⃗ ×D)∇⃗V (5.80)
w1 = −∇⃗ × ∇⃗D − ∇⃗ ×D∇⃗ log z (5.81)

It means that in the special case where the diffusion matrix is diagonal (but x dependent)
the first order velocity has no vorticity:

w0 = ∇⃗ × F⃗ (5.82)
w1 = 0. (5.83)

Now, We solve order by order in σ the stationary Fokker-Planck equation. The dominant
σ−1 term does not change with respect to the additive case:

(Fµ +Dµν∂νV) ∂µV = 0, v⃗(0)∗ ⋅ ∇⃗V = 0. (5.84)

This condition, as in the constant case, tells us that the first order velocity is tangent to
the height lines of the non-equilibrium potential. Assuming that the potential has just
one minimum, by using the Gauss’ law, we can show this geometrical property of v⃗(0)

coincides the fact that it also has zero divergence. Consider the volume Ω enclosed by a
single level surface of the potential V. The vector pointing outward in each point of the
boundary is the gradient of the potential. From the Gauss’ law:

∫
Ω
∇⃗ ⋅ v⃗(0)∗dΩ = −∫

Σ=∂Ω
dΣ v⃗(0)∗ ⋅ ∇⃗V

∣∇⃗V∣
= 0. (5.85)

Given that for any point in the phase space there exists a contour line passing through it,
the divergence is always zero, i.e. ∇⃗ ⋅ v⃗(0)∗ = 0.

The σ0 order has two new terms with respect to the additive scenario:

(Fµ +Dµν∂νV)∂µ log z

+ ∂µ (Fµ + Dµν

2
∂νV)+ (Dµν∂ν log z + α∂νDµν) ∂µV = 0 (5.86)

= ∇⃗ ⋅ v⃗(0)∗ + v⃗(0)∗ ⋅ ∇⃗ log z − v⃗(1)∗ ⋅ ∇⃗V = 0 (5.87)

Finally, the order σ reads:

∂µ (α∂νDµν +Dµν∂ν log z)+ (Dµν∂ν log z + α∂νDµν) ∂ν log z

= ∇⃗ ⋅ v⃗(1)∗ + v⃗(1)∗ ⋅ ∇⃗ log z = 0. (5.88)

To go further and investigate the geometric properties of the first order velocity, let’s re-
call that by a simple change of variable it is possible to transform the multiplicative noise
of the Langevin equation into an additive one. If Λ̂ is the Jacobian of the transformation,
i.e., x⃗′ = Λ̂x⃗, this mapping is done by requiring that Λ̂ = Ĝ−1. In these new coordinates,
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all the results obtained before straightforwardly hold:

P′ = e−V(x′)/σ

Z
. (5.89)

Hence, by writing down the transformation of P, we have:

P = P′∣Λ̂∣

P = 1
Z
∣Λ̂∣e−V(x′(x))/σ (5.90)

where ∣ ⋅ ∣ is the determinant. Hence, we identify:

z = ∣Λ̂∣ = ∣Ĝ∣−1. (5.91)

As a consequence, the first order velocity is proportional to the gradient of the transfor-
mation plus a α-dependent term coming from the change of coordinates:

(v(1)∗)µ = −α∂νDµν −Dµν∂ν log ∣Λ∣ (5.92)
= −α∂νDµν +Dµν∂ν log ∣G∣
= α∂νDµν +Dµν∂νψ (5.93)

5.2 Symmetry and irrversibility: an intrduction

How out-of-equilibrium systems self-organize to reach a stable non-equilibrium station-
ary state (NESS) is an unsolved enigma. Classical general results dictating how NESS
should be approached, such as Onsager’s minimum dissipation principle [179, 430] and
the Glansdorff-Prigogine criterium [455], have attracted recent attention in various con-
texts [447, 449, 456]. However, an agreement on a unified and solid physical picture is
still lacking, leaving open the problem of finding first principles valid away from equi-
librium. Nevertheless, the last decades witnessed the discovery of fluctuation theorems
[431, 457, 432, 458, 433], universal relations holding arbitrarily far from equilibrium. The
core message of these results is that non-equilibrium systems break time-reversal sym-
metry, preserving a weaker version of it that quantifies dissipation.

Symmetry breaking mechanisms are also considered at the heart of the emergence of
self-organization away from equilibrium, following the inspiration of Prigogine’s idea of
“dissipative structures" [459, 460, 461]. Although a strict connection was, and is, still de-
bated, recent developments showed that macroscopic systems can spontaneously break
some symmetries due to collective effects [462, 463] or rare large fluctuations [464, 465].
From a broader and more fundamental perspective, how dissipation induces a symmetry
breaking in the trajectory space is a fascinating topic still largely unexplored.

Here, we build a bridge between symmetry breaking and dissipation in mesoscopic
non-equilibrium systems, i.e., ruled by Stochastic Thermodynamics. This framework en-
compasses several well-known experimentally realizable examples, from molecular ma-
chines [178] to chemical reaction networks [466]. In recent years, an increasing wealth
of studies is investigating the non-equilibrium features of these systems, such as entropy
production [450, 451, 181, 467], current fluctuations [468, 469], and dissipation-driven
asymmetries [470, 471, 472]. Starting from a Langevin dynamics with constant diffusion,
we write down a general non-equilibrium functional whose minimization gives the cor-
rect stationary state. We show that this is composed of two terms: the first one is the
total entropy production and quantifies dissipation, while the second one is minus the
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housekeeping dissipation. Most importantly, this second contribution is related to bro-
ken chiral symmetries in the trajectory space and coincides with the dissipation along
cycles (in the simplest case). As a consequence, any stationary state can be understood
as the minimum dissipative state compatible with the existence of fluxes along preferen-
tial directions, which are absent at equilibrium. Remarkably, this statement corresponds
to the minimization of the excess entropy production, which appears to be a more fun-
damental principle than the standard second law for non-equilibrium systems [450, 453,
428, 456, 473, 474, 475]. Finally, we unravel the connection between dissipation and chi-
ral symmetry breaking in systems with multiplicative noise. This allows us to derive
the most general form of the non-equilibrium functional and generalize the principle of
excess entropy production minimization.

5.3 Lyapunov functional

Consider an overdamped driven-diffusive system whose evolution is described by the
following equation:

˙⃗x = F⃗ + ξ⃗(t) , (5.94)

where x⃗ is the state of the system in dimension d, e.g., position in real space, F⃗ a general
force and ξ⃗ a Gaussian white noise with variance ⟨ξi(t)ξ j(t′)⟩ = 2σDijδ(t − t′), with i, j =
1, .., d. The dissipation-fluctuation relation is in general violated, hence the system will
eventually reach a non-equilibrium stationary state (NESS) [439]. Here, σ controls the
amplitude of the noise and, in a thermodynamic context, it can be interpreted as the
temperature. First, we consider the diffusion matrix D̂ (with elements Dij) to be state-
independent. The Fokker-Planck equation (FPE) associated with Eq. (5.94) is:

∂tP = −∇⃗ ⋅ (F⃗P − σD̂∇⃗P) = −∇⃗ ⋅ J⃗ . (5.95)

The stationary solution of the system admits a solenoidal stationary current, i.e., ∇⃗ ⋅ J⃗∗ = 0
(see [445] for a detailed discussion). Following the pioneering works of Graham and Tél
[441, 442, 443] and recent developments in Macroscopic Fluctuation Theory [84, 444], the
steady-state solution in the weak noise limit reads:

P∗(x⃗) = e−V(x⃗)/σ

Z
, (5.96)

where V(x⃗) is a quasi-potential that can be rigorously defined and estimated via path-
integral methods defined as the minimum of the action along a trajectory that generates
a fluctuation x⃗[84]:

V(x⃗) = V(x⃗∗)+min(1
2 ∫

0

−∞
dt [1

2
( ˙⃗x − F⃗)D̂−1( ˙⃗x − F⃗)− ∇⃗ ⋅ F⃗])

Despite its analytical intractability, there are numerous numerical and empirical methods
to estimate V(x⃗). It is worth noting that, in the presence of additive noise, the determin-
istic fixed point of Eq. (5.94) coincides with the minimum of this potential. Noticeably,
Eq. (5.96) is exact for any linearized stochastic system. In the following, we will consider
the current velocity as main thermodynamic object:

vµ = Fµ − σDµν∂ν log P (5.97)

and use their geometrical properties derived in sec.5.1 to understand the properties of the
NESS. In particular, note that the thermodynamic force admits a natural decomposition
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in terms of stationary current and quasi-potential:

Fµ = vµ∗ +Dµν∂νV (5.98)

Hence, by understanding the geometrical properties of v⃗∗ it will be possible to decom-
pose the force into a dissipative and conservative part. As shown in sec.5.1 by plugging
Eq. 5.96 into the FPE, expanding up to the zeroth order in σ, and equating terms of the
same order, we get two consistency equations:

v⃗∗ ⋅ ∇⃗V = 0 ∇⃗ ⋅ v⃗∗ = 0 , (5.99)

The first relation states that the v⃗∗must be tangent to the potential contour lines, while the
second one dictates that it also has to be a solenoidal field. An informative way to express
these geometrical properties of v⃗∗ in the pedagogical case of a 3D system is v⃗∗ = ∇⃗× B⃗, i.e.,
the curl of a field. Most importantly, these features lead to the following decomposition
of the force in a solenoidal (dissipative) and gradient (conservative) part [476]:

F⃗ = ∇⃗ × B⃗ − D̂∇⃗V . (5.100)

We will focus on 3D systems in this manuscript only for clarity of notation, but the find-
ings of this Letter hold true in any dimension. In fact, later on we will also present a
2D Brownian gyrator as an example. For stochastic systems, the Kullback-Leibler diver-
gence between P(x⃗, t) and the stationary distribution P∗(x⃗) is known to be a Lyapunov
function of the dynamics [477], and is defined as:

DKL(t) = ∫ dx⃗ P(x⃗, t) log(P(x⃗, t)
P∗(x⃗)

) . (5.101)

Note that, in thermodynamic context, σ = kBT, so that such a functional is akin to a
dynamic free energy:

F = kBTDKL(t) = ⟨V⟩− kBTS(t). (5.102)

As a consequence, its time-derivative has to be non-positive and vanishes at the steady-
state. Thus, the correct stationary solution of Eq. (5.95) can be found by minimizing the
following functional with respect to P (including also the normalization constraint):

G = −dDKL

dt
= ⟨v⃗ ○ v⃗⟩− ⟨v⃗ ○ v⃗∗⟩ = ⟨v⃗ ○ v⃗⟩− ⟨v⃗ ○ ∇⃗ × B⃗⟩ , (5.103)

that highlights how the geometrical properties of v⃗∗ enters the game. Here, α⃗ ○ γ⃗ =
σ−1α⃗TD̂γ⃗ and ⟨⋅⟩ = ∫ ⋅Pdx⃗. The first interesting observation is that G can be written solely
in terms of the velocity of probability currents, which appears to be the most natural
quantity to characterize out-of-equilibrium dynamics and NESS.

DKL(t) = ∫ dx⃗ P(x⃗, t) log(P(x⃗, t)
P∗(x⃗)

) , (5.104)

We can go further with the computation, noticing that the first contribution on the
r.h.s. of Eq. (5.103) coincides with the total entropy production, while the second one
quantifies the housekeeping heat dissipation [453]:

Ṡtot = ⟨v⃗ ○ v⃗⟩ Ṡhk = ⟨v⃗ ○ ∇⃗ × B⃗⟩ (5.105)
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This equivalence can be obtained starting from the trajectory-dependent formulation. In
sec.5.1 we have shown that the entropy production along a trajectory in the form of heat
is

ṡm = ˙⃗x ○ F⃗ (5.106)

using the Stratonovich prescription [428, 178, 476]. A part of ṡm is due to the housekeep-
ing heat, i.e., the one necessary to maintain the steady-state distribution,

ṡm = ˙⃗x ○ F⃗ = ṡhk + ṡex (5.107)
ṡhk = ˙⃗x ○ v⃗st = ˙⃗x ○ ∇⃗ × B⃗ (5.108)
ṡex = − ˙⃗x ○D∇⃗V (5.109)

Consider now the functional along a single stochastic trajectory Γ:

f [Γ] = − log(P(x⃗, t)
P∗(x⃗)

)
RRRRRRRRRRRΓ

. (5.110)

Its average coincides with the Kullback-Leibler divergence and the time derivative reads:

g [Γ] =
d f [Γ]

dt
= −

d log P
dt
∣
Γ
− ẋµ∂µ log P∣Γ + ẋµ∂µ log P∗∣Γ

. (5.111)

By using the Fokker-Planck equation, we have:

g[Γ] = −
d log P

dt
∣Γ − ẋµDµνvν∣Γ + ẋµDµνv∗ν∣Γ

= −(∇⃗ ⋅ v⃗ − σv⃗ ⋅ ∇⃗ log P)∣Γ + ˙⃗x ○ v⃗∣Γ − ˙⃗x ○ ∇⃗ × B⃗∣Γ. (5.112)

By using Eqs.(5.3) it is immidiate to see that:

g[Γ] = ṡprod(t)− ṡhk(t), (5.113)

where the first term is the entropy production and the second one is the current surviv-
ing at the steady state that depends on the solenoidal part of the force. By using the
average formula for currents Eq.The average of ṡhk over trajectories readily gives the
second term in Eq. 5.103. As a result, the housekeeping dissipation emerges from the
non-conservative part of the force and, as we will show later, is linked to the tendency
of performing cycles in the trajectory space. In summary, the total entropy production
is related to the "modulus" of the velocity, while the housekeeping dissipation emerges
from the non-conservative tendency of performing cycles in the trajectory space. Hence,
in analogy to [450], we have:

G = Ṡtot − Ṡhk = Ṡex ≥ 0 . (5.114)

The correct steady state of a general non-equilibrium dynamics is given by the minimum
excess entropy production. Eqs.5.103 and 5.105 give a geometrical meaning to this prin-
ciple and constitute the first result of this Letter. The first principle providing the correct
stationary state of a general non-equilibrium dynamics is the minimization of the excess
entropy production. This minimum Ṡex criterion resembles the Glandsdorff-Prigogine
principle and trivially corresponds to the minimum entropy production in the equilib-
rium case [175, 475, 449]:
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DKL(t) = ∫ dx⃗ P(x⃗, t) log(P(x⃗, t)
Peq(x⃗)

) , (5.115)

.Geq = −dDKL

dt
= ⟨v⃗ ○ v⃗⟩ = Ṡtot (5.116)

In our framework, we can improve the physical interpretation of this result. The first
term of G in Eq. (5.103) only dictates that the system tends to minimize its total dissipa-
tion, as for equilibrium relaxation phenomena. The second contribution emerges only out
of equilibrium, hence encoding an additional dissipation stemming from the properties
of the steady-state velocity. Indeed, Eq. (5.103) explicitly shows that this extra dissipative
term manifests into a symmetry breaking in the trajectory space, since the velocity tends
to maximize the dissipation along preferential directions. In other words, the NESS is
the least dissipative state compatible with a velocity that is maximally aligned with the
closed force lines of B, thus accounting for a tendency to circulate and a consequent sta-
tionary dissipation into the environment.

To better characterize the connection between dissipation and emergent symmetry
breaking in NESS, we study the probability to observe a closed trajectory. The Onsager-
Machlup action [454] using the Stratonovich prescription for the system in Eq. (5.94) is:

S(Γ) = 1
2 ∫

t

0
dτ [1

2
( ˙⃗x − F⃗)T

D̂−1 ( ˙⃗x − F⃗)− ∇⃗ ⋅ F⃗] , (5.117)

where Γ is a trajectory of duration t, from x⃗0 to x⃗ f along which all quantities have to
be evaluated. The asymmetric part of the action, Sa, is related to the dissipation along
a trajectory, which is also equal to the ratio between the probability of Γ and its time-
reversal, Γ̃ [178]. By considering any closed trajectory Γ○, i.e., where x⃗0 = x⃗ f , the terms
accounting for the initial and final states of the trajectory vanish, thus we have:

Sa = log
P(Γ○)
P̃(Γ̃○)

= ∫
t

0
dτ ˙⃗x ○ F⃗ = ∫

Γ○
dx⃗ ○ ∇⃗ × B⃗ . (5.118)

This establishes a clear connection between the propensity of performing closed trajecto-
ries in a preferential direction and the housekeeping dissipation. Indeed, Ṡhk enters into
the non-equilibrium functional counterbalancing the entropy production minimization,
Eq. (5.114), hence breaking the chiral symmetry (i.e., clockwise or counter-clockwise) that
is present at equilibrium. This finding clarifies the main result of this Letter, providing
also a broader context for recent results about a topological fluctuation theorem [478] and
gauge symmetries in thermodynamics [438, 448, 479].

The proposed framework extends beyond the case of additive noise to multiplica-
tive noise scenarios, where the Glansdorff-Prigogine principle has not been formulated.
Notably, a state-dependent diffusion coefficient emerges in systems affected by thermal
gradients [471, 472] or fluctuating environments [480, 481]. Moreover, finite-size fluctua-
tions are important in fluctuating hydrodynamics [482] and field theories [483, 484].

Consider the following generic Langevin equation :

˙⃗x = F⃗ + Ĝ(x⃗)ξ⃗(t) , (5.119)

with ξ⃗ Gaussian white noises with correlation matrix Ĉ, Ĝ the state-dependent part of
the diffusion matrix that we consider diagonal for simplicity, and hence a total diffusion
matrix D̂ = ĜTĈĜ. For Ĝ = 1̂ (the identity matrix), we go back to Eq. (5.94). This choice
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allows us to write the following stationary solution of Eq. (5.119) in the weak-noise limit:

P∗(x⃗) = z(x⃗)η(σ) e−V(x⃗)/σ

Z
. (5.120)

Here z and η are functions of space and noise amplitude, respectively, whose form de-
pends on the model. The first important observation is that the maximum of the prob-
ability distribution does not coincide with the deterministic fixed point, because of the
presence of a space-dependent noise. Moreover, note that the stationary velocity now
contains the sum of a zeroth and a first order term in the noise amplitude (see sec.5.1):

v⃗∗ = v⃗∗(0) + σv⃗∗(1) (5.121)

By plugging Eq. (5.120) into the corresponding FPE and expanding in orders of the noise
amplitude, we can investigate the topological properties of v⃗∗. In sec.5.1 we have shown
that:

v⃗∗(0) ⋅ ∇⃗V = 0

∇⃗ ⋅ v⃗∗(0) = v⃗∗(0) ⋅ ∇⃗ log z + v⃗∗(1) ⋅ ∇⃗V (5.122)

∇⃗ ⋅ v⃗∗(1) = v⃗∗(1) ⋅ ∇⃗ log z .

In particular, the zeroth order velocity is tangent to the height lines of V, as in the additive
case. In precedent section (Eq. 5.85) we have shown that this condition actually implies
that the v⃗∗(0) is, again, a solenoidal field, i.e.

v⃗∗(0) = ∇⃗ × B⃗. (5.123)

Furthermore, the geometrical properties of the first order velocity can be unveiled by
using a specific change of variables. Here, we consider Stratonovich integration, even
if our result can be derived for any prescription, as we show in sec.5.1. We remind that
a change of variables would allow to map a multiplicative noise into an additive one,
restoring the results we obtained before, but in the transformed space. In particular,
choosing the Jacobian of the transformation x⃗ → x⃗′ as Λ̂ = Ĝ−1, the diffusion matrix of the
transformed dynamics is equal to Ĉ. By deriving how the probability distribution and
the velocity transform under this change of variables, we determine that

z(x⃗) = ∣Λ̂∣ = ∣Ĝ∣−1 (5.124)

, where ∣ ⋅ ∣ indicates the determinant. As a consequence,

v⃗∗(1) = D̂∇⃗ψ (5.125)

, where ψ = log ∣Ĝ∣, i.e., a gradient field that contributes with a new term in the functional
(see sec.5.1):

G = ⟨v⃗ ○ v⃗⟩− ⟨v⃗ ○ v⃗∗⟩ = ⟨v⃗ ○ v⃗⟩− ⟨v⃗ ○ ∇⃗ × B⃗⟩− σ⟨v∇⃗ψ⟩− ασ⟨v⃗ ○ ∇⃗D⟩. (5.126)

In analogy to Eq. (5.103), the first contribution quantifies the total entropy produc-
tion, which tends to be minimized as the system goes toward stationarity. The second
and third terms amount to the dissipated heat to maintain the steady-state and depends
on the symmetries that are broken in the trajectory space. These terms counterbalance the
entropy production minimization and play a role analogous to the housekeeping heat in
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the additive noise case. In particular, the second term accounts for the heat dissipated
along the solenoidal part of the force, while the third contribution is proportional to the
derivative of ∣G∣ and vanishes in the limit of additive noise. An intuitive understand-
ing of this last term might come considering a system subjected to a thermal gradient,
T(x⃗). In this case, it can be readily shown that ∇⃗ψ ∝ T−1∇⃗T, resembling an additional
dissipation arising from thermophoretic effects and due to the necessity of transporting
heat [95]. A general physical interpretation of ψ might be particularly challenging to find,
since the multiplicative noise arises in a wide variety of systems, and might be the topic
of future investigations. Eq.5.126 constitutes the second main result of this section. In
this more complex scenario, the non-equilibrium functional G does not coincide with the
excess entropy production, and its thermodynamic properties are not known a priori.
We find that it can always be interpreted as the sum between the excess entropy produc-
tion and an additional thermophoretic term, named after its meaning in thermally-driven
systems and indicating the accumulation of probability in regions of low noise. This
result generalizes the Glandsdorff-Prigogine principle to generic (linear and non-linear)
stochastic systems away from equilibrium. Let us comment that the thermodynamics
of system with temperature gradients in general setting defies a description in terms of
overdamped dynamics, as Eq.(5.69), and hence the principle, Eq.(5.126), in this scenario is
not fully correct. [96, 485, 95]. Nevertheless, in sec.5.4 we provide an example of a system
with a temperature gradient and study it in the underdamped limit finding an interesting
functional with analogies to Eq.(5.126).

5.4 Examples

Here, we present two pedagogical examples where the chiral symmetry breaking and the
emergence of preferential cyclic trajectories accountable for the housekeeping entropy
production are easy to visualize.

Driven Brownian particle on a torus

Consider a Brownian particle confined in a torus by a quadratic potential, U(x, y), and
driven along the torus itself by a constant driving force, f . Here, f breaks the detailed
balance, and the stationary polar flux will induce a topological symmetry breaking in the
system. Let us start with the description of the Brownian motion:

ẋ = fx(x, y)− ∂xU(x, y, z)+
√

2D ξx(t)
ẏ = fy(x, y)− ∂yU(x, y, z)+

√
2D ξy(t) (5.127)

ż = fz(x, y)− ∂zU(x, y, z)+
√

2D ξz(t)

where fi is the component of the driving force along i and ξi(t) is a Gaussian white noise
with unit variance. These equations can be rewritten in polar coordinates (ρ, ϕ, z), with
ρ =
√

x2 + y2 and ϕ = arctan (y/x). Employing the Ito’s formula for the change of variable,
we obtain:

ρ̇ = −γ(ρ − ρ∗)+ D
ρ
+
√

2D ξρ(t)

ϕ̇ =
f
ρ
+
√

2D
ρ

ξϕ(t) (5.128)

ż = −γz +
√

2D ξz(t)
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with U = (γ/2)(ρ − ρ∗)2 + (γ/2)z2, f only acts along ϕ, and D/ρ is the usual Ito term. The
resulting Fokker-Planck equation is:

∂tP = (Lρ +Lϕ +Lz)P (5.129)

where we defined:

Lρ = ∂ρ (γ(ρ − ρ∗)− D
ρ
)+D ∂ρρ

Lϕ = ∂ϕ (−
f
ρ
)+ D

ρ2 ∂ϕϕ (5.130)

Lz = ∂z (γz)+D ∂zz

The motion along z is decoupled, while the other two equations can be solved imposing
that the flux only flows along ϕ. The steady-state is:

P∗ = Z−1 exp(−
ρ(ρ − 2ρ∗)γ + γz2 − 2D log ρ

2D
) (5.131)

Hence, in the small noise limit, we have:

P∗ ≃ Z−1 exp(−
ρ(ρ − 2ρ∗)γ + γz2

2D
) (5.132)

which is of the form outlined in the main text. The flux only acts along ϕ, and it is equal
to:

J⃗∗ = Z−1 exp(−
ρ(ρ − 2ρ∗)γ + γz2

2D
) f iϕ (5.133)

where iϕ is the versor indicating the coordinate ϕ. Hence, the stationary velocity reads:

v⃗∗ = −
f
ρ

iϕ (5.134)

As expected, v⃗∗ is a solenoidal field and indicates that the housekeeping heat stems from
cyclic trajectories running across the entire torus in a preferential direction. In this ex-
ample, the chiral symmetry breaking is explicitly linked to the symmetry of the non-
conservative driving, making immediate to identify the origin of the term in G that tends
to be maximized in the NESS.

Brownian Gyrator

The second example is a 2D Brownian gyrator, i.e., a diffusive particle in a confining
potential subjected to two reservoirs at different temperatures, Tx and Ty, each one acting
along one direction.
Consider the two dimensional motion in the x − y plane of a particle under the effect of a
parabolic potential U and two baths at temperatures Tx = T and Ty = T(1 + δ), each one
acting along a different direction:

ẋ = −∂xU(x, y)+ ξx(t)
ẏ = −∂yU(x, y)+ ξy(t)

⟨ξi(t)⟩ = 0
⟨ξi(t)ξ j(t′)⟩ = 2Tiδijδ(t − t′), (5.135)
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where the potential is U(x, y) = x2

2 +
y2

2 + uxy, with ∣u∣ < 1 to confine the particle near the
origin. The system approaches the following stationary solution [486]:

P∗(x, y) = Z−1e−
V
Tη (5.136)

V(x, y) = γ1

2
x2 + γ2

2
y2 + uγ3xy, (5.137)

where we introduced ○to ○η = 1+ δ + u2

4 δ2

γ1 = 1+ δ − u2

2 δ

γ2 = 1+ u2

2 δ
γ3 = (2+ δ)(5.138)○ Note that in recover the typical form of the potential Eq.(5.5) it is suf-
ficient to rename σ = Tη. Note that the stationary solution respects the non-equilibrium
potential ansatz, where T is the parameter regulating the noise, while δ and u affect the
detailed balance condition that reads as follows:

Tx∂xFy = Ty∂yFx → uδ = 0. (5.139)

Due to the anisotropy of the temperatures, detailed balance is broken and a current
emerges with a velocity:

vx = ∂xU − η−1∂xV (5.140)
vy = ∂yU − η−1(1+ δ)∂yV. (5.141)

Its divergence reads:

∇⃗ ⋅ v⃗∗ = 1
η
(2η − γ1 − (1+ δ)γ2) = 0, (5.142)

thus the vorticity is:

w∗ = ∂xvyst − ∂yvxst =
uγ3(Ty − Tx)

η
= −uδγ3

η

= 4Txu
4TxTy + (Tx − Ty)2u2 (T

2
x − T2

y) . (5.143)

Interestingly, the chiral symmetry breaking comes from the simultaneous presence of a
temperature difference and an interaction coefficient, u. Since this model can be solved
analytically for all times, in Fig. 5.1a we show the temporal evolution of Ṡtot and Ṡhk, high-
lighting that the steady state coincides with a minimization of the total entropy produc-
tion compatible with the maximum dissipation due to chiral symmetry breaking. While
converging to stationarity, the system selects a region of the space where to concentrate
probability fluxes, resulting in a stationary vorticity (see Fig. 5.1b).
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FIGURE 5.1: Dissipative symmetry-breaking in a Brownian gyrator. (a) A sketch of the model is
presented. As a function of time, we show that the system tends to minimize Ṡtot, while maximiz-
ing Ṡhk, which is the dissipation associated with the symmetry breaking in the trajectory space.
At the NESS, Ṡtot = Ṡhk. (b) The modulus of the vorticity is plotted. The inset show the pdf (in
color-scale) and the velocity vector field (bigger arrows corresponds to a stronger field) as time
increases. Insets clearly indicate that the tendency to rotate in a preferential direction increases
towards the NESS.
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Motion in temperature gradient

Finally, we consider as a third example the motion of a particle in a temperature gradient.
The motion of a particle, here considered free for simplicity, has to be described in the en-
tire phase-space (x, w). Hence, a 1D dynamics turns into a 2D dynamics, when velocities
and positions are considered. In this case, including also the presence of a temperature
gradient, the Langevin equations describing the system are:

ẋ = w (5.144)

ẇ = − γ

m
v − 1

m
∂xU + 1

m

√
2γT(x)ξ(t) (5.145)

where γ represents the friction, m the mass, ∂xU a (confining) potential, and the diffusion
coefficient satisfies the Einstein’s relation D(x) = γT(x) at each point in space. Notice that
the temperature gradient translates into a multiplicative noise. The associated Fokker-
Planck equation is then:

∂tP +w∂xP = 1
τ

∂w (wP + ∂xU
γ

P + T(x)
m

∂wP) (5.146)

where τ = m/γ is the characteristic friction time. When τ → 0, velocities equilibrate
infinitely faster, the system reaches the overdamped limit and can be described only
through its dynamics in the position space. Performing a time-scale separation up to
the first order, as outlined in [95], we obtain the following solution:

Pτst = e−
mw2

2T [Φ0 − τ (w∂xΦ0 + (
mw3

6T2 +
w
T
)Φ0∂xT + w

T
Φ0∂xU)]

where Φ0(x, t) = ϕ0(x, t)
√

2πT(x)/m, with ϕ0 satisfying the following 1D Fokker-Planck:

∂tϕ0(x, t) = −∂x (
∂xU

γ
ϕ0(x, t))+ ∂xx (

T(x)
γ

ϕ0(x, t)) (5.147)

that is usually solved imposing a zero-flux conditions in the x-space. Notice that this so-
lution does not depend on the employed prescription, since the x-dependent multiplica-
tive noise acts only on w. It turns out that the overdamped Langevin equation should be
treated according to the Ito prescription. There are other limits in which a different pre-
scription has to be taken for consistency, see [95, 485]. As an additional remark, Φ0(x, t)
provides the correct solution only in the bulk since boundary terms cannot be consis-
tently computed using a time-scale separation analysis, as we did.

The form of the steady-state of Pτst is similar to the one considered in Eq.(5.5), with
some differences. First of all, we are not in the weak noise limit. Second, to match all the
steps outlined above, we need to perform the computations from scratch since we have
to consider different (physically relevant) small parameters, such as τ and the magnitude
of the thermal gradient.

Close-to-equilibrium regime
To investigate how the multiplicative noise affects the geometric properties of the system,
let us consider the simple setting of a linear gradient, T(x) = T0(1 + αx), with α ≪ 1. To
avoid unnecessary lengthy calculations, we also consider the case U = 0. We already
know all the symmetries holding when α = 0, as the system has a constant diffusion
coefficient.
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Writing the stationary solution as follows:

Pτst = e−V(x,w) ( f0 + τ f1) , (5.148)

the implicit equation resulting from the stationarity condition is:

∇⃗ ⋅ v⃗∗ + v⃗∗ ⋅ ∇⃗ log ( f0 + τ f1) = v⃗∗ ⋅ ∇⃗V (5.149)

where v⃗∗ = J⃗∗/P∗ at stationarity as before.
Analyzing each contribution separately, we find that all of them are O(α), hence the

multiplicative noise affects to the same degree all contributions, thus no symmetry is per-
turbatively preserved - for small enough α - in the presence of thermal gradient. More-
over, even for τ → 0, i.e. in the overdamped limit, the symmetries are broken.

Nonequilibrium functional and entropy production Let us now find the functional
in this particular case. The expression of the dissipated heat for an underdamped sys-
tem in a temperature gradient only depends on the irreversible flux [95, 96]. However,
computing the Lyapunov function of the dynamics, both reversible and irreversible con-
tributions appear in the functional. In full generality,

v⃗rev = {w,− 1
m

∂xU(x, t)} ,

v⃗irr = {0,−1
τ

w − 1
mτ

T(x)∂w log(P(x, w))} (5.150)

We notice is that vrevst = vrev, thus we have:

G = ⟨virr ○ virr⟩− ⟨virr ○ virrst⟩− ⟨vrev ○ (v∗irrst − virr)⟩ (5.151)

The entropy production for underdamped systems with temperature gradients has been
derived in various works, and depends just on the irreversible velocity [96, 487]:

Ṡprod = ⟨virr ○ virr⟩, Ṡhk = ⟨virr ○ virrst⟩ (5.152)

and correspond to the second and third terms. The new extra extra term is:

−⟨vrev ○ (v∗irrst − virr)⟩ = τ∫ dxdv
∂xU(x, t)

T(x)
(Jirr − Jirrst) ≡

Q̇(t)
T(x)

− Q̇∗

T(x)
(5.153)

which relates to the excess of power converted into a change of internal (kinetic) energy
without being dissipated into the environment, i.e., ∫ dxdvFJ. In the case of driven sys-
tems, this quantity is also identified as the instantaneous energy input. Hence, by sum-
ming up the functional is:

G = ⟨virr ○ virr⟩− ⟨virr ○ virrst⟩− ⟨vrev ○ (v∗irrst − virr)⟩

= Ṡprod + Ṡhk +
Q̇(t)
T(x)

− Q̇∗

T(x)
= Ṡex +

Q̇ex

T(x)
(5.154)

If we split v in its reversible and irreversible part, it is easy to pinpoint the geometrical
properties of both components in the case of a free particle, for the sake of simplicity, as
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before. Indeed, we have that all terms scales linearly with α, except for:

∇⃗ ⋅ v⃗rev = 0
v⃗irrst ⋅ ∇⃗ ( f0 + τ f1) ≃ O(α2τ) (5.155)

5.5 Conclusions and discussion

Our approach sheds light on the role of topological aspects in NESS. Indeed, the house-
keeping dissipation is associated with the onset of vortex structures around the zero-
current point that acts as an emerging topological defect (see Fig. 5.1b). Vortices arise
around the deterministic fixed point only in the presence of additive noise, otherwise
complex structures (e.g., dipole currents) might emerge [445]. Moreover, beyond the sim-
ple 2D scenario, zero-current manifolds might appear and act as defects, hence generat-
ing non-trivial vortex structures at NESS and enriching even more the presented picture
[478].

The idea that some kind of selection can naturally take place out-of-equilibrium due
to dissipation-driven processes is gaining momentum in the field of physical chemistry
[471, 472] and evolutionary dynamics [488]. Our framework might provide a useful tool
to tackle this problem. At stationarity, probability fluxes will be focused in determined
regions of the variable space, x⃗. If each xi represents a species in a fictitious space, the
emergent chiral symmetry breaking can reflect the onset of preferential cycles involving
some of them. Additionally, these cycles are intimately connected with the housekeeping
dissipation and could be explored using large-deviation theory [489]. This perspective
intriguingly resembles the idea of hypercycles in the context of the origin of life [490]. In
order to push forward this analogy, we leave for future investigation the extension of
the framework discrete-state dynamics (e.g., master equations), in line with preliminary
works in this direction [456, 474].

Active matter represents another possible field of application of the presented frame-
work. In the simplest case of an active Brownian particle [491], for example, a solution
can be readily found at all times and it closely resembles the one of the 2D Brownian
gyrator. The conceptual leap, in this context, is that emergent dissipative cycles arise in
the space describing the particle and the bath, making the physical interpretation harder
[492]. Future works might also explore this direction of research.

To summarize, we unraveled the connection between dissipation and chiral symme-
try breaking in NESS of stochastic mesoscopic systems. We showed that the housekeep-
ing dissipation is intimately connected to the tendency of performing cycles in the tra-
jectory space. This quantity tends to be maximized in the NESS and counterbalances the
entropy production minimization. In the most general scenario of multiplicative noise,
the non-equilibrium functional shows two dissipative symmetry-breaking contributions.
The first accounts for cycles in a transformed space, while the second can be seen as
a thermophoretic dissipation. This results generalizes the principle of excess entropy
production minimization, extends and clarifies the physical meaning of the Glansdorff-
Prigogine principle, and paves the way to understand selection phenomena in different
contexts as a result of a symmetry breaking process driven by non-equilibrium dissipa-
tion.
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Chapter 6

Irreversibility in adaptive evolution

6.1 Introduction

Evolution is an intrinsically non-equilibrium process: selection, mutations and genetic
drift shape constantly the population composition, causing diversification, extinctions
and, possibly, an increase in complexity [319, 275, 493]. Most importantly, evolution is
characterized by a strong irreversibility and a "weak" direction of time. Evolution of
complex traits is in general considered irreversible for the accumulation of neutral and
beneficial mutations, making the ancestral traits less fit in respect to new ones. Never-
theless, trait reversibility has been observed for complex ones, such as multicellularity,
causing controversy in the field [494]. Historically, the possibility of a direction of time
in evolution has been studied in comparison with the second law of thermodynamics. In
particular, Fisher formulated his celebrated "Fundamental theorem of natural selection",
stating that an evolving population will maximize its fitness [495, 496]. The "theorem"
derives easily from the Price equation, raising some criticisms, it has influenced deeply
the scientific community and has been generalized in a number of ways [497, 245, 498].
One of the main criticisms is the definition of fitness: instead of being considered as an
emerging ecological quantity, in population genetic fitness is generally considered as an
advantage parameter [499]. In this way, relative fitness is a dimensionless quantity, which
is calculated in evolution experiments as the ratio of the growth rate of the derived type
to the one of its ancestral competitor during direct competition. Notably, in many exper-
iments, such as the Lenski long term one, it has been found to increase with time [500].
John Maynard Smith, another father of modern evolutionary theory, had a different per-
spective on the topic. In particular, in his essay " Time in the Evolutionary Process " [263]
he dismissed the fundamental role of Fisher theorem due to the difficulties in defying
and measuring fitness, and concluded:
"Fisher’s theorem cannot help us to put an arrow on evolutionary time. Yet it is in some sense
true that evolution has led from the simple to the complex: prokaryotes precede eukaryotes, single-
celled precede many-celled organisms, taxes and kineses precede complex instinctive or learnt acts.
I do not think that biology has at present anything very profound to say about this. If there is a
"law of increasing complexity", it refers not to single species, as does Fisher’s theorem, but to the
ecosystem as a whole. The complexity of the most complex species may increase, but not all species
become more complex.". This perspective led him to formulate with E. Szathmary the cel-
ebrated theory of the major transitions in evolution [493]. They pointed out that during
the history of life many irreversible transitions happened from a group of independent
individuals to a collective entity, such as the origin of chromosomes and eukaryotes and
the transition from unicellular to multicellular organisms. As he says in the citation, he
did not believed in a rigid law of increasing complexity, but more on a common efficient
evolutionary way of transmitting information and divide labor. At the moment no sim-
ple quantitative theory of major transitions exists.
Going back to the parallelism between between thermodynamics and evolution, in recent
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years many researchers have studied the non-equilibrium and irreversible properties of
adaptation [501, 184, 319, 502]. In particular, first Mustonen and Laessig [184], and re-
cently Rao and Leibler [319] applied key-results of stochastic thermodynamics to adapta-
tion. In the first pioneering work, a non-negative quantity called "Fitness flux" consisting
of the sum of adaptation along the trajectory, is identified as driving irreversibility in the
context of stochastic molecular evolution . In the deterministic limit of an infinite pop-
ulation size, N → ∞, the fitness flux converges to Fisher-theorem. The limitation of this
work lies in the fact that mutations are not considered as a source of stochasticity, and
everything relies on the role of genetic drift. Furthermore, the derivation is intrinsically
macroscopic, i.e. consisting of the non-equilibrium properties of a Langevin/Fokker-
Planck such as system, while in non-equilibrium statistical physics it is fundamental to
study irreversibility at the microscopic individual based level and then apply a "coarse-
graining" procedure [181, 177]. In the second work, Rao and Leibler studied the non-
equilibrium properties of evolution at a microscopic level, and identified the so called
non-conservative evolutionary forces, but do not study the consequences on irreversibil-
ity, and furthermore, their example is not a concrete nor standard scenario.
In this chapter our aim is to study the non-equilibrium and irreversible properties of
evolution using the framework introduced in Sec. 3.2, deriving rigorously the macro-
scopic irreversibility from the microscopic one. Furthermore, we understand the rela-
tion between irreversibility and information [502, 498, 503], and study what happens to
irreversibility during diversification phenomena, or "evolutionary transitions", such as
evolutionary branching. In Sec.6.2 we recall the main characteristic of our evolutionary
framework and use it to derive general evolution equations for quantities of interest.
Sec. 6.3 is dedicated to the study of adaptation with information theory tools, that will
be connected with microscopic irreversibility in the next section 6.4. To have a concrete
understanding of irreversibility in evolution in Sec. 6.5 we study various typical exam-
ples such as stabilizing evolution and evolutionary branching. In Sec. C.4 we report all
the technical details on the mean-field derivation of the entropy production. Finally, in
Sec.6.6 we comment on possible stochastic generalizations and compare our approach to
the work by Mustonen and Laessig. Furthermore, we propose an interpretation of the
stationary entropy production in terms of "population efficiency" and comment on open
questions and possible generalizations.

6.2 Introduction to the framework

In this section we study the irreversibility of adaptive evolution using the framework
introduced sin Sec. 3.2. In particular, we consider the evolution of a population of N in-
dividuals, each represented by a one dimensional trait continuous trait, x. The dynamics
involves reproduction, represented by the fitness function f (xi, x̃j), random death with
rate d = 1/(N − 1) and mutation given by the kernel β(x − x̃). Hence, it is represented by
the following N-body Master Eq.:

∂tP(x, t) =
N
∑
i=1

N
∑

j=1,j≠i
∫
P

dx̃j[Wi(x, x̃j)P(x̃j, t)−Wi(x̃j, x)P(x, t)] (6.1)

where

Wi(x, x̃j) = f (xi, x̃j) β(xj − xi) d(x̃j) f (xi, x̃j) β(xj − xi)/(N − 1) (6.2)
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is the transition rate to go from a state x̃j = (x1, .., xi, .., x̃j, .., xN) (with just one coordinate
differing from those of x) to x = (x1, .., xi, .., xj, ..xn), and Wi(x̃j, x) is the rate for the reverse
process.

As explained in Sec. 3.2, one can derive the evolution probability density of finding
any individual with phenotype x at time t, ϕ(x, t) using a coarse-graining procedures
composed by mean-field and small mutation approximation ( see Eq.(4.3)):

∂tϕ(x, t) = ( f (x, t)− f̄ (t))ϕ(x, t)− ∂xθ(x) f (x, t)ϕ(x, t)+ 1
2

∂2
xσ2(x) f (x, t)ϕ(x, t),

(6.3)

where the first term of the Eq. models selection, while the second and third mutation.
For its similarity with a celebrated equation in population genetics, we named Eq.(6.3)
the Generalized Crow-Kimura equation (GCK).

The second term can be written as the divergence of the "mutational" current:

∂tϕ(x) = ( f (x)− f̄ )ϕ(x)− ∂x j(x), (6.4)

with j(x, t) = θ(x) f (x, t)ϕ(x, t) − 1
2 ∂xσ2(x) f (x, t)ϕ(x, t), suggesting a similarity with the

Fokker-Planck equation. For simplicity, in the following sections we consider θ = 0,
σ2(x) = σ2. We are interested in the dynamics of any average general quantity A(x, t),:

dt A = ∂t A + Ȧ = ∫ dxAϕ̇ +∫ dxȦϕ (6.5)

where the first term is the change in the average value of the observable, and the second
one is it’s the average of dynamic change. Using Eq. (6.3) the time evolution of the
expectation value of any observable, i.e. the first term, is a Price equation [251] with the
following form:

∂t A = ∫ dxAϕ̇ = Σ[ f , A]+ v∂x A, (6.6)

where the first term is the covariance between the quantity A and the fitness:

Σ[ f , A] = ∫ dxϕ(x) f (x)A(x)− f̄ ∫ dxA(x)ϕ(x), (6.7)

while the second one is obtained by integrating by parts (assuming the surface term to
be zero) and by defining the mutation velocity

v =
j
ϕ
= −σ2

2
∂x f − σ2

2
f ∂x log ϕ (6.8)

−∫ dx∂x j(x)A(x) = ∫ dxj(x)∂x A = ∫ dxϕ(x)
j(x)
ϕ(x)

∂x Av∂x A. (6.9)

The formulation of the GCK Eq. in terms of a currents clarifies that, at a stationary state,
selection and mutation balance each other, defining a "mutation-selection balance":

( f ∗ − f̄ ∗)ϕ∗ = ∂x j∗, Σ∗[ f , A] = v∂x A. (6.10)

Using our physical intuition one could claim the mutation-selection balance to be out
of equilibrium, given that there is a non-zero mutational current j∗. Indeed, in the next
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sections we rigorously verify this claim.

6.3 Information entropy dynamics

To study evolution irreversibility we start by considering the dynamics of the Shannon
entropy, as usually done in Stochastic Thermodynamics [89]. The informational entropy
has been proposed by Shannon in the context of signal communication [504]. Its function
is to estimate the information value of a message in a source-channel-receiver system
[505]. Indeed, one can define the surprise or information rate of a certain event x with
probability P(x) as:

s(x, t) = − log P(x), S = −∫ dxP(x) log P(x) = s, (6.11)

obtaining the Shannon entropy is just the mean surprise rate. With this definition, s ≈ 0
and very little information is obtained when the event is very likely. On the other hand,
if the event is very rare, s > 0, information is gained when observed. Apart from commu-
nication theory, Shannon’s entropy has been widely used also in the biological sciences.
In the context of ecology, the Shannon entropy has been used to quantify the diversity or
the complexity of the system [506], while in the context of bet-hedging its play a critical
role in correctly choosing a good evolutionary strategy [247]. Furthermore, it has been
also used in the context of mathematical evolution, where many researchers claim that
information is the natural language of evolution [498, 503, 250, 502].
For its similarity with Gibbs entropy, the informational entropy has been used as a gen-
eralization of the thermodynamic one in stochastic thermodynamics [89], used in ther-
modynamic systems that store information [507]. In addition, the Shannon entropy can
be used as an ingredient to study irreversibility in non-equilibrium statistical physics
[89, 433]. Indeed, in non-equilibrium statistical physics it is known that for a general
Markov process, described either by a master or a Fokker-Planck equation, the change in
Shannon entropy can be always decomposed in a non-negative contribution Ṡprod and a
second component Ṡ f lux:

Ṡ = Ṡprod − Ṡ f lux, Ṡprod ≥ 0, (6.12)

where Ṡprod quantifies how much detailed balance is broken, and hence how irreversible
is the system [433, 89]. As a consequence, the first step to understand irreversibility in
evolution is to study the dynamics of its Shannon entropy.
In the following sections, we will use the Shannon entropy to estimate the effect of selec-
tion, mutation and neutrality in evolution. Selection is the force that tends to shape the
population trait distribution or in a particular way that would increase its fitness. On the
other hand, mutations and drift tend to disorder the population traits, creating diversity
but also lowering the fitness by inserting randomness in the trait distribution. Hence, we
define the population information rate s(x, t) and its average as:

s(x, t) = − log ϕ(x, t) = s(x, t) (6.13)

s = −∫ dxϕ(x, t) log ϕ(x, t) = S(t). (6.14)
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The change in information rate in time, ṡ, has zero average owing to the conservation of
probability:

ṡ = −dt log ϕ = −
ϕ̇

ϕ
, ṡ = −∫ dxϕ(x)

ϕ̇(x)
ϕ(x)

= 0. (6.15)

The time derivative of the Shannon entropy is:

∂t s̄ = Ṡ = Σ( f , s)+ v∂xs, (6.16)

where we have used Eq.(6.6). The first term is the effect of selection on the entropy

Ṡ = Σ( f , s), (6.17)

and tends to concentrate the distribution around the fittest individuals.
On the other hand, the second term can be rewritten as:

v∂xs = −∫ dxϕ(x)v(x)∂x log ϕ(x) = σ2

2 ∫
dx∂x f (x)ϕ(x)∂x log ϕ(x), (6.18)

where we have renamed σ2/2 → σ2 for notation’s sake and without loss of generality. By
inverting Eq.(6.8) we obtain the following relation:

−∂x log ϕ(x) = v
σ2 f (x)ϕ(x)

+ ∂x log f (x); (6.19)

that inserted in Eq.(6.18) gives:

v∂xs = Ṡmut + Ṡtype, (6.20)

Ṡmut =
v2

σ2 f
, Ṡtype = v∂x log f . (6.21)

The first term Ṡmut is non-negative and interestingly corresponds to the typical entropy
production of driven-diffusive systems [89]. It can be interpreted as the production of
variability by mutations, i.e. an "entropic effect" that decreases the strength of selection
but also makes possible the accumulation of information. To interpret the second one,
Ṡtype , consider the time evolution of the average logarithmic fitness by using Eq.(6.6):

∂tlog f = Σ( f , log f )+ v∂x log f , (6.22)

hence, the second term in Eq.(6.20) Ṡtype represents the mutation effect on logarithmic
fitness. In particular, its sign indicates the "type" of mutation, i.e. deleterious (Ṡtype < 0)
or beneficial (Ṡtype > 0).
Rewriting everything together one obtains:

Ṡ = Σ( f , s)+ v2

σ2 f
+ v∂x log f . (6.23)

At the stationary state, Ṡ = 0 hence there is no net change in entropy. The Ṡtype term is
negative, because from Eq.(6.22) it is clear that:

−Σ( f , log f ) = v∂x log f ≤ 0, (6.24)
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meaning that on average mutations reduce the fitness, i.e. they are deleterious. Summing
up, at stationary state Shannon-entropy balance is:

Σ( f , s)+ v∂x log f = −v∂xs = − v2

σ2 f
≤ 0 (6.25)

v∂x log f ≤ −Σ( f , s). (6.26)

Therefore, mutations increase the total entropy and lowers the fitness by introducing new
traits, while selection balances to zero the change in entropy by eliminating some traits
(the less fit ones) and amplifying the presence of others (the fittest ones).
Finally, it is quite interesting to study a last information-theoretic quantity, the Jeffrey’s
divergence, that is an estimation of the distance between two probability distributions
infinitesimally close in time:

J = ∫ dx
ϕ̇2

ϕ
≥ 0. (6.27)

In evolutionary terms it measures how much will the next generation be different from
the present one. It can be written as minus the change of the average time derivative of
the information rate İ using Eq.(6.6)(see Eq.(6.15).):

J = ∫ dx(dt log ϕ)ϕ̇ = −∂t ṡ = −Σ[ f , ṡ]− v ⋅ ∂x ṡ (6.28)

By using the definition of ṡ Eq(6.15) in −Σ[ f , ṡ] one obtains that it equivalent to the change
in mean fitness:

−Σ[ f , ṡ] = −∫ dx f ṡϕ + f̄ ¯̇I = ∫ dx f ϕ̇ = ∂t f̄ (6.29)

By using Eq.(6.6)the change in mean fitness, also know as Fisher theorem of natural selec-
tion, reads:

∂t f = Σ[ f ]+ v∂x f . (6.30)

By joining Eq.(6.29) and Eq(6.28) one obtains that

J = −∂t ṡ = ∂t f̄ − v ⋅ ∂x ṡ ≥ 0 (6.31)
(6.32)

Hence, the Jeffrey’s divergence, Eq.(6.31), measures how fast is the changes in informa-
tion/surprise, showing that it is proportional to the change in mean fitness. In this sec-
tion, we have shown that change in the population Shannon entropy is able to distinguish
between the effects of selection and mutations, and most importantly it has some intrigu-
ing connections with irrversibility. To understand better these connections, in the next
section we calculate the system irreversibility starting from the underlying miscroscopic
process.

6.4 Irreversibility: from micro to macro

By looking directly at the change in the population entropy derived in the precedent
section, Eq.(6.23), one could be tempted to identify the system irreversibility, or entropy
production, as the mutational non-negative contribution Ṡmut. Instead of performing the
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FIGURE 6.1: A)Illustration of the detailed balance Consider a typical process, bold arrows,
where the individual x̃j is sampled to die, while individual xi produces an offspring with trait
xj. The reversed process is depicted in dashed arrows and consist of the death of individual xj,
and the reproduction of xi with an offspring x̃j. Given that x̃j can be any individual in the popula-
tion, its trait can be very different from xi. In this scenario the reversed transition is very unlikely,
unless the mutations are very big. B) Adaptive population as an open system In this figure we
illustrate conceptually that each trait can be considered an "open" system interacting with the
whole population. Interactions can be local as mutations, i.e. each trait produces a mutational
current in neighbor traits, or non-local such as selection, given that the relative fitness involves
the mean population fitness f̄ . The balance of these local and non-local current determines the
population stationary state, that will a non-equilibrium one unless both are zero.

aforementioned arbitrary identification, in this section we rigorously derive the entropy
production from the underlying microscopic process. Let us call N dimensional vector x
representing the state of the population the microstate. Let us start from the miscroscpic
master Eq.(D.2), and rewrite it in terms of probability currents:

∂tP(x, t) =
N
∑
i=1

N
∑

j=1,j≠i
∫
P

dx̃j[Ji(x̃j, x)− Ji(x, x̃j)] (6.33)

with Ji(x̃j, x) is the probability current from the the microstate x̃j and the microstate x
obtained by the reproduction of the i − individual

Ji(x̃j, x) =Wi(x̃j, x)P(x̃j, t)−Wi(x, x̃j, )P(x, t). (6.34)

The dynamics converges to an equilibrium stationary state P∗eq, i.e. a stationary state
without probability currents, if and only if the detailed balance condition is verified:

J∗i (x̃
j, x) = J∗i (x, x̃j) (6.35)

for all i, j ∈ [1, N]. In detailed balance is not fulfilled, the population converges to a non-
equilibrium stationary state (NESS). If one considers the microscopic Shannon entropy
density

Smicro = − 1
N ∫

dxP(x, t) log P(x, t), (6.36)

and computes its change in time using Eq.(D.2) and simple manipulations, it is possible
to identify two contributions (see the appendix Sec. C.4.2 and Ref. [433] for a detailed
derivation):

Ṡmicro = − 1
N ∫

dx∂tP(x, t) log P(x, t) = Ṡmicro
prod − Ṡmicro

f lux (6.37)
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with

Ṡmicro
prod = 1

2N

N
∑

i,j=1,j≠i
∫ dxdx̃j Ji(x̃j, x) log

Ji(x̃j, x)
Ji(x, x̃j)

(6.38)

(6.39)

Ṡmicro
f lux = 1

2N

N
∑
i=1

N
∑

j=1,j≠i
∫ dxdx̃j Ji(x̃j, x)R(x̃j, x),

(6.40)

with Ri(x̃j, x) is the so called, evolutionary force [319]:

Ri(x̃j, x) = log
Wi(x̃j, x)
Wi(x, x̃j)

. (6.41)

Ṡprod is the entropy production while Ṡ f lux is the entropy flux. It is easy to note that
Ṡprod is the Kullback-Leibler divergence of the current between two miscrostates and the
reversed one, and hence it is strictly related to the detailed balance condition. As a con-
sequence it is always non-negative: if Ṡprod = 0 detailed balance is respected, while for
Ṡprod > 0 it is broken. Hence, it represents the measure of the systems irreversibility [433,
89].
On the other hand, the entropy flux, Ṡ f lux, measures the strength of evolutionary force, i.e.
log ratio of forward and backward transition probability between couples microstates. If
Ri ≠ 0, one of the two transitions is probabilistically favored, and hence a current is gen-
erated. In particular, note that the evolutionary force can be decomposed into two terms
:

Ri(x̃j, x) = Ri, f (x̃j, x)+ Ri,β(x̃j, x), (6.42)

Ri, f (x̃j, x) = log
fi(x̃j)
fi(x)

, Ri,β(x̃j, x) = log
β(x̃j − xi)
β(x̃j − xi)

, (6.43)

where Ri, f is the microstates difference in log fitness, while Ri,β is the log ration of the
probability of mutating from one state to the other.
Ṡprod and Ṡ f lux have been extensively studied in the context of non-equilibrium statistical
physics and stochastic thermodynamics . In such a context, the Master equation models
the dynamics of a "thermodynamic system" (i.e. a Brownian particle, a molecular motor
or a chemical reaction network) in contact with an environment, typically a thermal bath
ore many of them [89]. In non-equilibrium regimes, these mathematical quantities have
been interpreted as thermodynamic dissipation and work. In a different context, these
quantities cannot, in principle, be directly and generally linked to thermodynamics, and
need to be interpreted within the context of information theory. This should not be un-
derstood as limitation, but, on the contrary, as a more general structure under which both
thermodynamics and evolution are funded.
To shed light on the evolutionary meaning of irreversibility, in Sec. C.4 we perform a
mean-field/coarse graining calculation of the entropy production in the limit of N →∞.
Note that the mean-field limit of the entropy production is always smaller than the orig-
inal one [181].
As a result, by applying the mean-field approximation in the N → ∞ limit to the mi-
croscopic entropy production we find a macroscopic decomposition in terms of the time
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derivative of the Shannon entropy and the entropy flux :

Ṡmicro
prod ÐÐÐ→N→∞

Ṡprod = Ṡ f lux + Ṡ ≥ 0. (6.44)

The microscopic change in Shannon entropy converges to the macroscopic one obtained
by using GCK Eq, see Eq.(6.20):

Ṡmicro ÐÐÐ→
N→∞

Ṡ = Ṡsel + Ṡmut + Ṡtype (6.45)

where

Ṡsel = Σ( f , s), Ṡmut =
v2

σ2 f
≥ 0, Ṡtype = v∂x log f (6.46)

Ṡsel and Ṡmut represent the effect of selection and mutation on entropy, respectively . On
the other hand, Ṡtype represents the effect of mutation on the log of the fitness function,
and its sign corresponds the average "type" of mutation (Ṡtype > 0 beneficial, Ṡtype < 0
deleterious, see Sec.6.3 for more details ).
In the N →∞ limit the micrscopic entropy flux, Ṡmicro

f lux , is composed just by the mutation
contribution of the evolutionary force Eq.(6.41) (see appendix B.3.5 for more details):

Ṡmicro
f lux ≈ 1

2N

N
∑
i=1

N
∑

j=1,j≠i
∫ dxdx̃j Ji(x̃j, x)Ri,β(x̃j, x)ÐÐÐ→

N→∞
Ṡ f lux, (6.47)

where

Ṡ f lux = Ṡdiv =
1

2σ2 (dtΣ + (Σ − σ2) f̄ ) . (6.48)

Ṡdiv represents the contribution of diversity to irreversibility: the first term in Eq.(6.48)
is proportional to the change in time of trait variance dtΣ, while he second term is pro-
portional to (Σ − σ2), the non-mutational part of the variance. Furthermore, both terms
are directly proportional to the mean fitness f̄ and inversely proportional to the muta-
tion amplitude σ2. Hence, on the contrary of the components of Ṡ, Ṡdiv it is the sum of
the influence of different forces, making its interpretation more involved. To clarify the
nature of Ṡdiv term, let us remark that it derives from microscopic contribution of the evo-
lutionary force accounting for asymmetry in the mutation probabilities. As an example,
consider the typical process depicted in Fig.6.1 with bold arrows: an individual with trait
x̃j dies and is removed from the population, while another individual xi produces an off-
spring with trait xj, obtained from the father trait plus a small variation. To observe the
reverse process represented with dashed arrows, xj has to die, while xi has to produce
an offspring with the trait that was removed by selection, x̃j. Given that x̃j could have
been any individual in the population, if the variance of population distribution is big
or/and the mutation are small, observing such a process is extremely unlikely. Hence,

˙div quantifies the fact that individuals events are irreversible because mutation cannot
always revert the act of selection.
More generally, while Ṡ takes into account the irreversibility generate by the dynamics,
Ṡdiv is not zero even when evolution "stops", and therefore has to do with a kind of "struc-
tural" irreversibility. Indeed, the stationary entropy production

Ṡ∗prod = Ṡ∗div =
(Σ − σ2) f̄

2σ2 ≥ 0, (6.49)
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is directly proportional to the variance, i.e. the population diversity, and to the mean
fitness, i.e. the typical reproduction rate, and inversely proportional to the mutation
amplitude. Therefore, even if the population reaches a stationary distribution, the indi-
vidual reproduction events are irreversible: the stationary state is maintained by a global
balance between selection and mutation ( see Eq.(6.63)). Selection acts as non-local force
favoring the fittest individuals, while the mutation current j∗ produces a kind of diffu-
sion in trait space. Summing up, we can interpret the entropy production as stemming
by two different terms: Ṡprod = Ṡ + Ṡ f lux ≥ 0,

• Ṡ quantifies the irreversibility due to net changes in the population. It is composed
by three terms, accounting for the change in entropy given by selection, mutation
and the interplay of the two:

Ṡ = Ṡsel + Ṡmut + Ṡtype (6.50)

At a stationary state Ṡ = 0, the population converges to a given distribution of fix
traits with no net change in entropy.

• On the other hand, Ṡ f lux quantifies the currents running through the population.
Indeed, at a stationary state, it is the only contribution to the entropy production.
It quantifies that for the presence and balance of selection and mutation, traits are
constantly removed (selection) and introduced( mutation) in the population, sim-
ilarly to what happens in a resetting process [508]). In Fig.6.1 B we conceptually
illustrate the view of population as an "open system": each trait is interacting con-
stantly with the whole population locally with mutation and non-locally through
selection. The balance of these two currents determine the population stationary
state.
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6.5 Examples

Neutral evolution

The simplest example, and yet surprising one, that we consider is neutral evolution. In
this scenario, the fitness function is independent of the trait, f (x) = f = const, and hence
there is no selection , and hence it is useful to disentangle which non-equilibrium effects
are due to mutations and which to selection. The GCK Eq in this case is simply:

∂tϕ(x, t) = f σ2∂2
xϕ(x, t); (6.51)

assuming an initial condition ϕ(x, 0) = δ(x), the exact solution is equivalent to a Wiener
process [91, 92]:

ϕ(x, t) = 1√
2πσ2 f t

e
− x2

2σ2 f t . (6.52)

The moments of the distribution are trivially:

x̄ = 0 (6.53)
Σt = σ2 f t; (6.54)

and the mutational velocity reads:

v(x, t) = −σ2 f ∂x log ϕ(x, t) = x
t

. (6.55)

The population entropy at each time is:

S(t) = 1
2

log(2πΣt)+
1
2

, (6.56)

and hence grows logarithmically in time. During neutral evolution the population entropy
grows making the population explore and occupy all the accesible the trait space.z Given
that the fitness does not depend on the trait, the only non-zero term in the change in
Shannon entropy. Eq.(6.20) is the mutational one:

Ṡ = Ṡmut =
v2

f σ2 ≥ 0, (6.57)

by using the explicit form of the velocity, Eq.(6.55), and of the variance, Eq.(6.53) it reads:

Ṡmut =
Σ(t)
σ2 f t2 =

1
t

. (6.58)

Hence, the change in Shannon entropy decreases with time as 1/t. The the entropy flux,
Eq.(6.48), can also be calculated using the exact solution of the variance, Eq.(6.53) :

Ṡ f lux = Ṡdiv =
dtΣ
2σ2 f̄ + Σ − σ2

2σ2 f̄ =
f
2
+

f ( f t − 1)
2

=
f 2t
2

, (6.59)
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and it grows linearly with time. Hence, the entropy production can calculated by joying
Eq.(6.58) and Eq,(6.59)

Ṡprod = Ṡ + Ṡdiv =
1
t
+

f 2t
2

(6.60)

Given that Ṡ decaying hyperbolically in time, while the entropy flux, grows linearly with
time, here exists a critical time t∗ =

√
t

f where for t < t∗ the first contribution dominates,
while later the second one is leading. Even more interestingly, there is no dependence
on the mutation strength but only on the fitness rate, probably a consequence of the fact
that the dimension of mutation is trait and not time i.e. [σ] = [x]. In Fig. 6.2, we plot the
total entropy production Eq.(6.36) (red line) and its mutational component (orange line),
confirming the analytical results just discussed.

Stabilizing selection

In the following example, we consider a general fitness emerging from pairwise inter-
actions, and expand around its maximum with a Gaussian approximation of the trait
distribution, as done in Sec. 3.3:

f (x) = ∫
P

dy f (x, y)ϕ(y, t) = f (x̄)+ f x
1 (x̄)(x − x̄)

+ f x
2 (x̄)

(x − x̄)2

2
, (6.61)

f̄ = f (x̄)+
f2(x̄)

2
Σ. (6.62)

As shown in Sec. 3.3, if f x
2 < 0 the distribution converges to a Gaussian with mean trait the

fitness maximum x∗ and variance given by Eq. 3.31. At the stationary state, a mutation-
selection balance is established, and hence there is a local mutational current in the sys-
tem, balanced by the non-local selection term:

( f − f̄ ∗)ϕ∗(x) = ∂x j∗(x) (6.63)

j∗(x) = −σ2

∂ x
f (x)ϕ∗(x) (6.64)

= −σ2

2
[ f (x∗)+ f2(x∗)(x − x∗)(1− (x − x∗)2

2Σ∗(x)
)]ϕ∗(x). (6.65)

In Fig. 6.3 A we plot the stationary mutational current, Eq.(6.64) (orange curve), the
stationary relative fitness ( f (x)− f̄ ) (dark blue curve) together with the stationary distri-
bution (black curve) in the concrete scenario of the model introduced in Sec. 3.5. From
Eq.(6.63) it is clear that in the region with positive relative fitness there is an exit of prob-
ability for the mutational current (∂x j∗ > 0, central region of the distribution), while in
the trait with f < f̄ there is an entrance of probability (∂x j∗ < 0, tails of the distribution).
These two regions are separated by traits with the typical population fitness, f = f̄ , that
have zero current ( i.e. the derivative of the current is zero and f = f̄ ).
By using the stationary solution for the trait variance, and assuming for simplicity f2 ≈ f x

2 ,
we can calculate all the components of the stationary entropy production:

Ṡ∗prod = Ṡ∗sel + Ṡ∗mut + Ṡ∗type + Ṡ∗div = Ṡ∗div (6.66)
(6.67)
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Starting from the selection contribution, it easy to see that it is negative

Ṡ∗sel = Σ( f , s) =
f ∗2 (x∗)

2
Σ∗ ≤ 0, (6.68)

implying that stabilizing selection tends to reduce the population entropy. The mutation
contribution is positive, balancing the selection contribution:

Ṡ∗mut =
v2

f σ2 ≥ 0. (6.69)

On the other hand, the contribution of interplay between selection and mutation is neg-
ative, as always

Ṡ∗type = −
σ2

2
f x
2 (x

∗)2∫ dx
(x − x∗)2

f (x)
ϕ(x)+ σ2

2
f2(x∗)

(6.70)

Finally, the entropy flux reads:

Ṡdiv = f̄
Σ∗ − σ2

2σ2 ≈
f (x∗)

σ
≥ 0, (6.71)

In Fig. 6.2 B, we report the dynamics of the total entropy production (red curve), and
of the components of the Shannon entropy change (color lines in the inset plot) in the
specific scenario of the model. Note that the entropy production grows till saturating
to a stationary value corresponding to Ṡ∗div. Similarly to the neutral case, Ṡ∗mut decreases
with time as ≈ 1/t until reaching a tiny positive value. The selection contribution instead
decreases with time to a stationary negative value, similarly to the Ṡ∗type contribution. Note
that Ṡ∗type is negligible with respect to the other contributions and is reported alone in
the inset plot (green line). Its negative value indicates that mutations are in average
deleterious. This can be seen again in Fig. 6.3 A: the dominant central part of the trait
distribution has ( f − f̄ ) > 0, indicating that, to balance this tendency, the mutation current
tends to exit this region, lowering the fitness it average fitness.

Hence, in the case of stabilizing selection, mutation increases the entropy, while selec-
tion tends to decrease it.
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FIGURE 6.2: Entropy production for the neutral (A) and stabilizing selection (B) cases. The red
line represent the total entropy production as a function of time, that is dominated by Ṡdiv. In each
panel, in the inset we represent the components of the Shannon entropy change: Ṡmut (orange),Ṡsel
(blue) and Ṡtype (green). A) Note that the total entropy production increases indefinitely with time
in the neutral case, while the mutational and type contributions decay with time to zero. B) In
the stabilizing selection case we considered as a specific example the model described in Sec.3.5.
In this case, the total entropy production saturates to the stationary positive value given by Ṡdiv.
The mutational contribution behaves similarly to the neutral case, while the type and selection
contributions decay to a negative stationary value. The Ṡtype contribution is shown also in inset,
and is extremely small but negative. Parmeters: A) f = 10−2, σ = 5 ⋅ 10−3; B)σK = 1, σK = 1, σα =
1.2, k = 0.1, σ = 10−2.
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FIGURE 6.3: Mutational current and relative fitness for stabilizing selection and evolutionary
branching In both A) and B) we plot the stationary mutational current Eq.6.64 (orange curve), the
relative fitness ( f (x) − f̄ ) (dark blue curve) together with the stationary trait distribution (light
blue), in the case of the model exposed in Sec.3.5. A) In the stabilizing selection scenario the
population converges to a normal distribution with peak at zero. The mutational current (orange
line) is negative for negative traits and positive for positive ones, with an extreme point in each
region. Its derivative determines the mutational flux in the system and is equal to the opposite of
the weighted relative fitness (dark blue lines). Hence, in the region between the minimum and the
maximum of the current the relative fitness is positive and the mutational current is exiting from
it (∂x j > 0). On the other hand, in the tail of the distribution the relative fitness is negative and
balanced by an influx of probability due to mutations. B) In the case of evolutionary branching a
similar structure of probability fluxes emerges around each of the two peaks. Around the peaks,
relative fitness is positive and mutations out-flowing, while in the tails and in the separation
region the relative fitness is negative and mutations in-flowing. Parameters: A) σK = 1, σK = 1, σα =
1.2, k = 0.1, σ = 10−2 ;B)σK = 1., σα = 0.8, k = 0.1, σ = 10−3.
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Evolutionary branching

In this section, we analyze the entropy production in the scenarios of one or more evolu-
tionary branching. As disxcussed in Sec.3.3 evolutionary branching happens in general
when f x

2 < 0, i.e. the population is attracted by a fitness minimum, and once there it
separates in two sub-populations. Sadly, no general analytic expression of the station-
ary distribution is available (except the vanishing mutation limit). Hence, to study the
irreversibility of this phase we need to rely only on numerical integration of the growth-
competition model (see Sec. 3.5). As a start, in Fig. 6.3 B) we have plotted the mutational
current (orange curve), the relative fitness (blue curve) together with trait distribution
(light blue curve) in this particular case. Clearly, the system is out of equilibrium because
there is a current flowing through it, even if balanced by the non-local action of selection.
Similarly to what happens in the stabilizing selection case (the A panel), around each
peak there is non-vanishing mutation current, that decreases to zero in the separation
space between them.
In Fig. 6.4 we present the numerical results for the total entropy production (A), and the
contributions to the entropy change in two different temporal moments(B,C). Note that
the entropy production saturates very rapidly when the population branches, at t ∼ 750,
to the very high value given by Ṡdiv. On the other hand, the components of the entropy
change present a very interesting non monotonic behavior: at the branching point the se-
lection entropy production increases till reaching a very sharp positive maximum, while
the mutational one decrease to a (positive) minimum (blue and orange curves respec-
tively in Fig.6.4 B). After the branching, the selection contribution decreases to a negative
minimum, to finally increase again to a very small stationary negative value (blue curve
in Fig. 6.4B,C). Interestingly, we deduce that when Ṡsel > 0 selection is disruptive, while
when Ṡsel < 0 it is stabilizing. On the other hand, the mutation entropy presents a max-
imum in correspondence to the selection minimum, decreasing then to a tiny positive
value (orange curve). Finally, in the inset of Fig. 6.4 A, we separately plot the Ṡtype con-
tribution, given that it extremely smaller than the other ones (green line). Before the
branching point Ṡtype is positive and increasing, indicating that the mutations in average
tend to increase the fitness. Nevertheless, after the branching point, it tuns slightly neg-
ative, similarly to the stabilizing selection case. These results reveal that irreversibility
increases after branching, and that the various contributions of the entropy production
clearly correlate with the different evolutionary regimes and transitions.
Thanks to the notable richness of evolutionary phases of the considered model, we can
also study what happens to the entropy production when further branching event oc-
cur. In this scenario a first branching happens, leading to two sub-populations, and then
each of them branches again producing four sub-populations. Later, the two central sub-
populations coalesce producing a stationary trait distribution with three peaks (see Sec.
3.5 for more details ). In Fig.6.5 we plot the entropy production (A) and the entropy flux
component (B,C) for this double series of branching case. Note that the entropy produc-
tion grows rapidly after the first branching reaching a plateau, and then increases even
more at the second branching. In B and C we plot the component of the entropy change
before and after the second branching point. After the first branching the selection contri-
bution has, as explained before, a deep negative minimum (B). Then, it increases rapidly
reaching a second positive maximum corresponding to the second branching point and
finally relaxes to a negative value (C). The mutational contribution, after experiencing
a positive maximum (B), relaxes to stationary positive value (C). In the inset of Fig.6.5
A, we also plot the type contribution Ṡtype, showing that similarly to precedent case, at
each branching point it decays very rapidly, first to a positive value and finally to a neg-
ative one. Hence, the entropy production increases in during a branching event, and
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the entropy change contributions present a highly non-trivial behavior showing maxima
or minima in correspondence to these events, similarly to what has been observed near
phase transitions [509, 510, 188] and bifurcations [185].
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FIGURE 6.4: Entropy production in the evolutionary branching phase In A) we plot the entropy
production as a function of time (red line), while in B and C we report the component of the
entropy change in two different time shots nearby the branching point. The colors represent the
different terms in the entropy production: Ṡmut (orange),Ṡsel (blue) and Ṡtype (green). Note that
in A the entropy production increases rapidly at the branching point,t ∼ 700, and then reaches
a stationary value correspondent to Ṡdiv. On the other hand, in B we can appreciate the non-
monotonic behavior of Ṡmut and Ṡsel : while the first has positive minimum at the branching point,
the second shows there a positive maximum with a cuspid form. Notably, the C panels show
that after the branching the mutational contribution increases till a maximum and than relaxes
to stationary value, while the selection one reaches a deep negative minimum and than increases
to a stationary negative value. Finally, in the inset of the A panel we plot the Ṡtype contribution,
showing that at the branching point it decays from positive not negative values. Parameters:σK =
1., σα = 0.8, k = 0.1, σ = 10−3.
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Parameters:σK = 1., σα = 0.6, k = 0.1, σ = 10−3.
Parameters:σK = 1., σα = 0.6, k = 0.1, σ = 10−3.

FIGURE 6.5: Entropy production in the multiple (two) evolutionary branching phase In A) we
plot the entropy production as a function of time, while in B and C we report the component of the
entropy flux in two different time shots nearby the second branching point. The colors represent
the different terms in the entropy production: Ṡmut (orange),Ṡsel (blue) and Ṡtype (green). Note
that in A the entropy production increases rapidly at the branching point,t ∼ 600, reaching a first
plateau. At the second branching point it increases again saturating finally to Ṡdiv. On the other
hand in B and C we can appreciate the non-monotonic behavior of Ṡsel (blue) and Ṡmut (orange).
After the first branching, the selection term increases from a deep negative minimum to positive
maximum corresponding to the second branching event (B and C). At later times, it relaxes to
a negative stationary value (C). On the other hand, the mutational contribution after a positive
maximum (B) decreases to a positive minimum and then converges to a stationary value. Finally,
in the inset of the A panel we plot the Ṡtype contribution, showing that at the first branching point
it decays to a positive plateau, and later during second branching to tiny negative values.
Parameters:σK = 1., σα = 0.6, k = 0.1, σ = 10−3.
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FIGURE 6.6: Dependence of entropy production on the mutation amplitude σ in the case of
stabilizing selection. A the stationary entropy production Ṡdiv as a function of σ in linear scale
in the main plot and log-log one in the inset. The stationary entropy decays as σ−1, producing
a kind of trade-off dependency: for high mutations the population is weakly irreversible, but by
decreasing σ the entropy production increases very rapidly. B) Change in entropy components
as a function of σ : Ṡsel (blue curve),Ṡtype (orange curve) and Ṡtype (green curve). Note that the
mutation component increases with σ while the type and selection one decrease with it. Parame-
ters:σK = 1, σK = 1, σα = 1.2, k = 0.1

6.6 Conclusions and discussion

In this chapter we have studied the irreversible properties of evolution, both in a gen-
eral fashion and in various scenarios such as neutral evolution, stabilizing selection and
evolutionary branching. We have found that evolution is in general out of equilibrium
due to the contemporary presence of a mutation current and selection differences. Even
if these forces balance at a stationary state, their different effects on the population drive
the system away from equilibrium. Furthermore, we have found the different contribu-
tions to the entropy production correlate with the evolutionary regimes and evolution-
ary transitions that the population is experiencing. Even if our results are promising,
we feel to have just scratched the surface of this interdisciplinary subject. Many possi-
ble avenues open in front of use. Let us introduce some of them starting from the open
question emerging from our results. First, it would be interesting to prove in general that
the stationary covariance between the surprise rate s and the fitness is negative or zero
Ṡ∗sel = Σ( f , s) ≤ 0.

Stochastic generalizations A possible future direction would be to study the effects of
finite size drift on evolutionary irrversibiliy. Stochastic effects are fundamental and very
well studied in evolution. In Sec. 3.6 we have generalized the framework to accommo-
date for stochastic fluctuations. Yet, this possibility make us face a dilemma in trying to
calculate their effects on irreversibility. Following our derivation we could use the SGCK
Eq. to derive the fluctuations of Shannon entropy of the trait density:

S = −∫ dxρ(x) log ρ(x) (6.72)

Ṡ = ∂t⟨s⟩ = Σ( f , s)+ v∂xs +∫ dx

√
( f (x)+ f̄ )ρ(x)+ σ2/2∂x f (x)ρ(x)

N
s(x)ξ(x, t) (6.73)
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If we approximate the fitness function to first and neglect the mutational contribution in
the stochastic coefficient (as done in appendix Sec.3.6), the Langevin Eq. (6.73 )can be
simplified as:

Ṡ = ∂t⟨s⟩ = Σ( f , s)+ v∂xs +

¿
ÁÁÀ2 f (x̄)s2

N
η(t), (6.74)

revealing the presence of multiplicative fluctuations in the entropy. This fluctuating evo-
lution of the entropy could be used to search for universal properties of the entropy pro-
duction, as done in stochastic thermodynamics [451], and to derive uncertainty relations
and bound for the entropy production such as the "Time-information uncertainty rela-
tion" [511, 512, 513].
another possibility would to consider the Onsager-Machlup action corresponding to the
SGCK [187]:

S = −N
2 ∫

T

0
dt∫ dx

(ρ̇ − ( f − f̄ )ρ + ∂x j)2

( f + f̄ )ρ − ∂x j
(6.75)

and to study its time asymmetric part as a quantification of irreversibility:

S− = N∫
T

0
dt∫ dx

ρ̇(( f − f̄ )ρ − ∂x j)
( f + f̄ )ρ − ∂x j

. (6.76)

This approach is the one taken by Mustonen and Laessig [184]. It is evident the quanti-
ties described in Eq.(6.74) and Eq.(6.76) are radically different. While the first in the de-
terministic limit converges to the mean-field limit of the microscopic change in entropy,
the second, as shown in [184], recovers Fisher-Theorem, or more in general is related with
the Jeffreys divergence. A possible direction of research would be to try to relate Eq.(6.74)
with the change in the population microstates, hence clarifying its physical meaning. At
the same time, Eq.(6.76) can be seen as the macroscopic approximation of the irreversibil-
ity of a Master equation in the space of trait frequencies, as explained in appendix B
Sec.3.6. In future works we will explore in detail this dilemma and understand the dif-
ferences in these two measures of irreversibility.

Irreversibility vs mutation trade-off and the error catastrophe While the components of
the change in Shannon entropy are clear expressions of the different forces acting during
evolution, the dominant stationary entropy production is the combinations of different
quantities:

Ṡ∗div = (Σ − σ2)
f̄

2σ2 = [diversity]×
[mean f itness]

2[mutation strength]
, (6.77)

making its interpretation not straightforward. In Sec. 6.4 we have shown that it emerges
from the continuous balance between the local mutational current and the non-local effect
of selection, or, at a microscopic level it is the consequence of the incessant generation and
removal of individuals. In Fig. 6.6 A we plot Ṡ∗div as a function of σ in the concrete exam-
ple of stabilizing selection. Figure 6.6 A shows that its dependence on σ creates a kind of
trade-off: for large mutations the system is weakly irreversible, while for small mutations
irreversibility is extremely large. This behavior give as a clue on the interpretation of Ṡ∗div
as a "population efficiency". For high mutations the trait distribution is very wide, many
sub-fit traits are maintained by mutations. Even if the average fitness is not high, the



170 Chapter 6. Irreversibility in adaptive evolution

population can explore easily vast regions of trait space. On the contrary, for small muta-
tions the distribution is very peaked around the fittest individual, and hence efficiency is
very high, but diversity is low. Selection is very strong, causing high irreversibility. This
trade-off is analogous to phenomenon known as the Eigen error catastrophe [514, 493],
where mutation rate cannot overcome a critical vale to keep the population "efficient",
with more a majority of fittest individuals. In future works we would like to explore
more in detail this interpretation and understand how different organisms, such as bac-
teria, viruses or eukaryotes, react to this trade-off. It would be very intriguing to study
the irreversbility in models based in population genetics, such as fitness waves [169, 160,
275] or neutral networks [515]. In genetic system it would be possible to relate evolution-
ary information, i.e. the genetic patterns maintained by selection, with irreversibility and
complexity. Finally, it would be interesting to consider systems of molecular replicators
where fitness could be related to thermodynamic or to energetic properties [516, 517, 518,
519]. Is evolutionary irreversibility related to thermodynamic dissipation ?
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Chapter 7

General conclusions an perspectives

In this thesis we have studied collective phenomena in microbial ecology and evolution,
using the theory of (non-equilibrium) statistical physics. In this section, we derive some
general conclusions and comment on possible upcoming developments. Before flying to
future perspectives let us briefly summarize the results reported in this thesis:

• In Chapter 2, we have revealed the emergence of a new macroecological law in
microbial communities. This empirical law states in quantitative terms that the
average pairwise correlation function decays from positive to null values as the
phylogenetic distance increases, approximately following a stretched-exponential
decay function.
By defining a stochastic ecological model (the CSLM), we have shown that coupled
environmental (multiplicative) fluctuations, also known as environmental filtering,
are responsible for such universal pattern. By connecting ecological preferences
with species phylogentic distance, we can formulate a model where phylogenetic
trees can be directly used. Last but not least, we analyze temporal data for a fixed
community, showing that the macroecological law also holds quantitatively in this
context and that delayed temporal correlations are naturally reproduced by our
model with environmental filtering. Therefore, the results reported in this Chapter
allow us to conclude that only environmental filtering (and not, e.g., species com-
petition) explains the empirically-observed pattern of decaying correlations with
phylogenetic distance, and hence is probably the dominant ecological force in nat-
ural microbial communities.

• In Chapter 3, we introduced an eco-evolutionary framework for bacterial traits.
In particular, we descrobed adaptive evolution as the dynamics of the popula-
tion trait distribution in phenotypic spaces, synthetized by the socalled General-
ized Crow-Kimura equation (GCK). By modelling explicitly selection, mutations
and finite-size drift we generalize the celebrated theory of adaptive dynamics to
eco-evolutionary scenarios in. With our formalism, we can exactly describe the
population and trait distribution also after an evolutionary branching, and in par-
ticular, predict the peak of the two subp-populations. Finally, we generalized our
description to include stochastic finite-size effects, revealing the possible frustration
of evolutionary branching. The frustration is due to the peculiar multiplicative fluc-
tuations of the trait variance, that can create a metastable or an absorbing state in
the dynamics. Hence, the work presented in this Chapter contributes to the devel-
opment of an eco-evolutionary theory for microbial communities, allowing to shed
further light on the empirically-observed astonishing diversity in traits and interac-
tions of microbial communities. Our hope is that the present work makes this kind
of quantitative approaches to complex eco-evolutionary communities accessible to
a broader audience, including physicists, biologists, and ecologists.
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• In Chapter 4 we applied the aforementioned eco-evolutionary framework to the
emergence of antibiotic tolerance by lag- time adaptation in bacteria. Recent lab-
oratory experiments on E. Coli have shown that bacteria adapt their lag time to
survive to antibiotics in a dormant state [10]. The resulting lag time population
distributions show a direct proportionality between the mean lag time and its vari-
ance. We identified this characteristic as typical of multiplicative processes, and de-
signed an evolutionary model where the offspring lag variation is proportional to
the mother cell value. The model can effectively be described by the GCK equation
with a new "multiplicative variations term", and it is able to reproduce the empirical
lag distributions. Hence, the work presented in this Chapter shed light on the evo-
lution of antibiotic tolerance, and furthermore it represent an example of a general
class of evolutionary problems where our framework can be applied.

• The last part of the thesis was devoted to non-equilibrium statistical physics, and,
in particular, in Chapter 5 we illustrated the general geometrical and topological
properties of velocity currents in NESS. These geometrical properties can be ex-
plained as symmetry breaking induced by irreversibility and dissipation. While in
dimension equal or large than two, stochastic system with additive noise generate
divergence free current velocities, the addition of multiplicative noise induces more
complicated geometrical situations. In particular, in this case gradient-like veloc-
ities push the system to regions of the phase space with low fluctuation, such as
absorbing states. Remarkably, thanks to this geometric framework, we can give
a clear thermodynamic interpretation of the excess entropy and relate it with Pri-
gogine principle, solving a debated issue with a long-history.

• To conclude, in Chapter 6 we studied the irreversible nature of evolution, using
the framework introduced in 3 both in a general fashion and in various scenarios
concrete such as neutral evolution, stabilizing selection and evolutionary branch-
ing. We found that evolution is in general out of equilibrium due to the contempo-
rary presence of a mutation current and selection differences. Even if these forces
balance at a stationary state, their different effects on the population drive the sys-
tem away from equilibrium. Furthermore, we found the various contributions to
the entropy production correlate with the evolutionary regimes and evolutionary
transitions that the population is experiencing. In the discussion, Sec.3.7, we com-
mented on a possible stochastic generalization of the Shannon entropy change, and
in particular we remarked its multiplicative nature. Hence, the work presented in
this Chapter shed light onto the fundamental aspect of time in adaptation, and re-
veal the role of mutations and selection in creating irreversibility during Darwinian
evolution.

We have emphasized the important role of multiplicative fluctuations that indeed are
present in all the Chapters of this thesis. Now, let us conclude with some general per-
spectives and possible future directions of research.

Microbial ecology: a problem with many scales of diversity

In the article "Problems in Physics with many Scales of Length", Kenneth G. Wilson in-
troduced the Renormalization group as tool for studying phenomena generate by the
co-presence of many scales [239]. The paradigmatic example is a critical point in a con-
tinuous phase transition, where scale invariant fluctuations are generated [9].
By applying a coarse-graining procedure, the renormalization group gives the possibility
of exploring physical phenomena at different scales and individuating scale-free phe-
nomena.
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FIGURE 7.1: Ecological attractor. Two possible ecological attractors are depicted in a pictorial
way. On the left, a single noisy attractor while on the right a multiple attractors scenario.

As we have discussed in the introduction and in Chapter 2, microbial ecology is a prob-
lem where various diversity scales exist. Different ecological forces manifest themselves
in each scale, and depending on the particular question, an operational scale must be cho-
sen. On the other hand, some other patterns seem to be conserved across scales. To clarify
this issue, phylogenetic coarse-graining methods have been developed both in theoret-
ical models [241, 520], and in empirical datsets [124]. In particular, the Gamma AFD is
conserved both at the finer scale of strains [126], and in a continuous coarse-graining to
higher taxa[124].
On the other hand, in Sec.2.2 we have shown that the phylogenetic signal of correlations
is lost at the coarse-grained scale of phyla. In particular, Fig. 2.2 illustrates that by con-
sidering just inter-phyla correlations one cannot observe the stretched exponential decay,
that is determined by intra-phyla OTU pairs. Analogously, by extending our analyses
to finer phylogenetic resolutions it could be possible to reveal the nature of intra-specific
interactions, eventually elucidating the emergence of competition as a key player in de-
termining correlations [238, 126].
Furthermore, the oscillating decay of the correlation variance, see Fig.B.5, suggests that
also the residual correlations, i.e. the ones not captured by the stretched exponential de-
cay, show a kind of "heterogenous" scale invariance, typical of multifractals [521].
Hence, we propose to analyze the species correlation pattern across diversity scales in
future works. As a first step, we will repeat the correlation vs phylogeny analysis at the
finer level of ASV, and then perform a coarse-graining in sequence space, similarly to the
Kadanoff renormalization group [240, 124]
Alternatively to the taxonomic coarse-graining, we could use a correlation coarse-graining
method, recently developed in the field of neuroscience, inspired by the combination of
the renonrmalization group with principal component analysis [522, 523, 524, 525].
By studying the correlation pattern at different diversity scales, we could understand
which are the dominant ecological forces across taxonomic resolutions

The nature of the ecological attractor

Which are the sources of variation in microbial communities? A general, and probably
oversimplified, answer distinguishes between stochastic and deterministic effects. In the
language of non-equilibrium physics, this distinction can be translated in two different
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characteristic of the dynamics attractor, i.e. of the stationary probability distribution.
As a first expectation, the ecological dynamics could converge to a unique globally stable
attractor, but continuously perturbed by large stochastic fluctuations (see Fig. 7.1 left). In
this case, the variability is a pure consequence of fluctuations, similarly to what happens
in models such the (C)SLM.
On the other hand, it could be that, at the stationary state, multiple deterministic com-
munity attractors are present, with fluctuations make possible the transitions between
them ( see Fig. 7.1 right). In this case, variability is given by the transition between these
multiple states, similarly to what happens to some class of random interaction models,
like the GLVM with demographic fluctuations in the low noise regime [63, 71].
Both the phylogenetic pattern of correlations analyzed in Chapter 2, and the macroeclog-
ical laws discussed in Sec.1.6 emerge equivalently by averaging over different communi-
ties or in a single one by averaging over time. This ergodic property, i.e. the equivalence
of time and ensamble average, suggests that the correct scenario is the single attractor
one, as depicted in Fig.7.1 left, given that ergodicity is generally broken in the presence
of many possible attractors, such as in disordered systems [526, 527, 528]. Nonetheless,
in laboratory experiments of microbial community assembly, alternative stable states are
found [39, 529], suggesting also the validity of the second picture.
Furthermore, an analysis of species abundance dissimilarity in time series of the human
gut have revealed a mixed scenario: while some species are stable around a stationary
value, some others experience transitions to alternatively states [123].
In synthesis, we can hypothesize that the strong fluctuations present in natural commu-
nities tend to destroy alternative states, but, as often i in real phenomena, the truth lies
somewhere in between.

The evolution of ecological interactions

In Chapter 3 we introduced an eco-evolutionary framework for bacterial traits. By recon-
sidering a classic model from adaptive dynamics and speciation [157, 303], we showed
how one or multiple evolutionary branchings can happen by the interplay of growth and
competition. In particular, the number of niches, or of "species", produced by evolution
increases with the strength of competition.
Nevertheless, bacterial populations are subject to many differences ecological forces emerg-
ing from resource consumption, like cross-feeding and environmental fluctuations. Hence,
in future works we will combine the framework derived in Chapter 3 with the ecological
phenomena studied in Chapter 2. In particular, we will study the evolution of ecolog-
ical interactions in a fluctuating consumer-resource model. As discussed briefly in Sec.
2.4, we have devised a method to derive an effective GLVM from the consumer-resource
one. This method will let us perform some analytical predictions on the evolution of
metabolic preferences, and hence of ecological interactions , going beyond recent works
in the field[144]. In generally used adaptive models such as the one we have analyzed in
Sec. 3.5, one can derive a criterion for evolutionary branching in terms of the strength of
competition and the size of the available niche. On the other hand, with our method we
are able derive these two parameters from the resources entry and exit rate and species
metabolic properties. Hence, under which circumstances does branching happen in this
scenario?
Furthermore, we hypothesize that after a first evolutionary diversification induced by
competition, as the one studied in Sec. 3.5, cross-feeding could evolve to reduce compe-
tition even more.
Finally, evolutionary diversification in the presence of environmental fluctuations is a
new research direction promising recent results on the emergence of cooperation [315].
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The universal strategy of dormancy: from bacteria to plants

In Chapter 4, we studied the evolution of bacterial lag as a strategy to survive in presence
of cycles of antibiotics. This strategy is called dormancy, and is found across biological
levels in different forms, from bacteria and viruses to plants and animals [530]. In gen-
eral terms, it consists of entering a “dormant” low- metabolic but highly resistant state
to cope with sub-optimal environmental conditions. In large populations, often exists a
small subset of dormant individual, or “seed bank”, that, even if inactive, store informa-
tion and impart memory giving rise to complex and multiscale dynamics and interac-
tions involving the population or even full ecosystems. Examples range from extended
lag phase in bacteria to tolerate the presence of antibiotics during many hours, dormancy
in seeds to prevent germination in dry period of days or months and even decade long
metastatic dormancy in tumor cells. While the biological and physiological causes of dor-
mancy vary across systems, its adaptive value could be universal.
The adaptive model introduced in Chapter 4 was defined for bacterial dormancy, but it
can easily be extended to more general situations. In particular, it would be relevant to
add memory effects to the model, enabling the implementation of non-exponential wait-
ing times distributions. In the original context of evolution of tolerance, it would make
possible to model the noisy effects of the toxin-antitoxin circuit, hence generating an in-
dividual lag variability. Apart from this concrete case, this modification would be useful
for studying the evolution of dormancy under general circumstances, and in particular
for analyzing the emergence of bet-hedging strategies [342].

Selection and irreversibility away from equilibrium : a hint for the origin of life ?

In Chapter 5, we discussed how irreversibility is associated with a chiral symmetry break-
ing in the stationary current velocity of general mesoscopic systems in a NESS. In the
simplest case, this symmetry breaking consists in the appearance of vortex-like configu-
rations in the velocity field, rotating clock or anticlockwise. Following a recent results in
the thermodynamics of chemical systems [471], one could interpret this symmetry break-
ing as a "selection" of a particular configuration with respect to the others. In general,
one could frame non-equilibrium statistical physics as theory of selection in the trajectory
space: if one considers two possible transition between two states, while at equilibrium
all directed and inverse transitions are equally probable, in non-equilibrium conditions
one (the time directed one) is preferred to the reversed one.
This perspective could be applied to some physical-chemical scenarios of the origin of
life, bridging thermodynamics with evolution. In particular, several types of molecules
happen to be selected away from equilibrium, like handedness or homochiraly [531], or
the preference for furanose against pyranose in nucleid acids chemical components [472].
More generally, the appearance of cycling currents in non-equilibrium systems echoes the
chemical hypercycles theorized by Eigen as one of the basic element in proto-cellular or-
ganization [490].
To discern real connections between the chemistry of the origin of life and dissipative
symmetry breaking, in the future we will extend our analysis to discrete stochastic sys-
tems, that comprehend chemical reaction networks.

Irreversibility in evolution: can it be quantified in data ?

Finally, in Chapter 6, we have derived a general formula for estimating the irreversibiliy
in adaptive evolution using our eco-evolutionary framework. Interestingly, if one con-
siders an experimental evolving population, and is able the estimate the population trait
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diversity, the average fitness and mutation rate, the entropy production rate can be esti-
mated by data. Nevertheless, the majority of high quality evolutionary data are in terms
of genetic sequences and not in traits [11], and hence in the future we will derive with
the entropy production in population genetics models, even if with the same mean-field
procedure. Furthermore, in recent studies the full genetic networks of viral populations
are becoming available, together with some genotypic-phenotypic maps [515, 416, 532].
Viral populations have very large size, but also big mutation rates, making them an ideal
candidate to study irreversibility.

Finally, in the last section, we draw some personal and philosophical conclusion from
this travel across the boundaries of physics and biology.

Epilogue: from individual to collective phenomena

In the book "What is Life ?", Erwin Schrödinger laid the foundations of contemporary
biophysics by analyzing biological phenomena with the lenses of physics [533]. His cen-
tral question is stated in the introduction : " How can the events in space and time which take
place within the spatial boundary of a living organism be accounted for by physics and chemistry
?".
In the book, Schrödinger goes through different concepts and phenomena such as molec-
ular chaos, Darwinian evolution, the physical origin of mutations, and, finally, the nature
of biological inheritance. In discussing this last argument, Schrödinger theorized that
the genetic material must be molecule, but a particular one that he define as "aperiodic
crystal", able to encode a large quantity of information. Even if some theories of heredity
were yet in circulation, Schrödinger’s intuition can be considered a theoretical predic-
tion about the properties of DNA, and it stimulated a vigorous interest in researching
the molecular basis of genetic. Indeed, Watson and Crick acknowledged Schrödinger as
source of inspiration.
In the last, less known, part of the book titled "On determinism and free will", Schrödinger
flies to more metaphysical reflection on the nature of consciousness, influenced princi-
pally by Schopenhauer and the Indian Upanishad. The incipit of the Chapter is: "As a
reward for the serious trouble I have taken to expound the purely scientific aspects of our problem
sine ira et studio, I beg leave to add my own, necessarily subjective, view of the philosophical im-
plications.
We think the usage of a scientist exposing is philosophical ideas to be a very healthy and
necessary exercise. Indeed, the majority of great physicist of the past century, such as
Einstein, Bohr, Pauli, Heisenberg, and, of course Schrödinger, wrote extensively about
their philosophical. Hence, with humility, we propose here some general reflections.
We are not interested in the nature of consciousnesses, but we share with Schrödinger the
necessity of not interpreting the individual as the basis of nature. Indeed, collective eco-
logical relations, lateral genetic transfer and symbiosis in evolution invite us to rethink
the concept of individual. Let us guide the reader through some interesting examples
illustrate this necessity.
In Sec.1.3.1 we reported briefly that during biological evolution, many endosymbiotic
events happened. For example, the eukaryotic mitochiondria are the remnants of pro-
teobacterium captured by, probably, an archea. Viruses had also an important role in
shaping life as we see it. In 2001, the International Human Genome Sequencing Consor-
tium established that the 8% of the genome of mammals, and hence of humans, consists
of remnants of ancient viruses, while up to the 40% is composed by repetitive strings of
genetic letters that is also thought to have a viral origin [534, 17]. The ancient viruses
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were endogenous, as the modern HIV, and, to reproduce, had to insert their genetic ma-
terial into their host’s genome. Some of them were able to infect germ cells, like eggs
or sperm, and transmitted their genome to future generations [535]. These hybrid part
of the genome is often beneficial, and in mice has been found to give protection against
similar viruses. Nevertheless, the most surprising fact is that this viral genome is re-
sponsible for the for a key cellular process involved in development of the mammalian
placenta [536]. T. Heidmann, the group leader of aforementioned research on the pla-
centa, resumed these facts in a provocative way :"Our genes or not only our genes. They
are also retroviral genes" [17].
Ecological interactions between species of different domains can be so tight to put in cri-
sis our concept of individual. Lichens are composite organism that arise from algae or
cyanobacteria living among filaments of multiple fungi species in a symbiotic relation-
ship. The fungi benefit from the nutrients produced by the algae or cyanobacteria via
photosynthesis. On the other hand, the algae or cyanobacteria benefit by being protected
from the environment by the filaments of the fungi[537]. Symbiosis is also extremely
frequent in marine environments, especially as chemosynthetic symbioses between bac-
teria and invertebrates, where the latter are the primary producers, providing most of
the organic carbon needed for the animal host’s nutrition [538]. In a recent study [539], it
has been reported a three-way symbiosis in a tropical grass plant. This particular plant
grows in high soil temperatures thanks, it was thought, to a symbiotic fungus living in
its leaves. Instead, the responsibility for heat tolerance is of a virus that has infected the
fungus.
Humans have also evolved intimate symbiotic relationships with gut microbes (micro-
biome), that influence the host’s health [540, 541, 56]. Furthermore, recent evidence sug-
gests that the present species are an inheritance of our ancestors, concluding the the gut
microbiome is heritable [542].
On a more general level, all plants and animals live in symbiosis with its microbiome,
composed by bacteria, archea, fungi and protists. Hence, we are not an individual, but
an ecosystem, or in a more specific term an holobiont. As M. Sheldrake states in his book
Entangled life [537], microbial communities make us understand that "individual" is just a
scientific category with some limits of applicability: "Biology, the study of living organisms,
has transformed into ecology, the study of interactions between living organisms."
In this perspective, statistical physics and complex systems are useful scientific disci-
plines to comprehend the new collective world emerging from the relations of an astro-
nomical number of living beings. If we accept that an individual is not an island, a new
tangled world appears in front of our eyes.
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Appendix A

Stochastic processes

A.1 Itô-Stratonovich dilemma

Stochastic differential equations (SDE )like the Langevin one are mathematical defined
only in the discrete time limit, from which the continuous formulation can be derived.
This definition is problematic in the moment of treating integrals involving the noise, i.e.
the so called stochastic integrals.
Let us integrate Eq(1.1), for simplicity in one dimension, over a time interval [t0, t], ob-
taining:

x(t) = x(t0)+∫
t

t0
dsF(xs, s)+∫

t

t0
dsξ(s)G(xs, s). (A.1)

The term ξ(s)ds is a Gaussian random variable representing the stochastic increment of
the Wiener process defined as:

dWt = ξ(t)dt, (A.2)

P(dWt) =
1√

2πdt
exp(−

dW2
t

2dt
), (A.3)

⟨dWt⟩ = 0, ⟨dW2
t ⟩ = dt. (A.4)

Hence dWt is a very particular measure, and by integrating over it one is realizing a
stochastic integral (see Ref. [91] for more details). The Langevin equation can be rewritten
as:

x(t) = x(t0)+∫
t

t0
dsF(xs, s)+∫

t

t0
dWsG(xs, s) (A.5)

The mathematical problems come when one has to define the stochastic integral in terms
of discrete sums, as done for the Riemann integral. Considering a general function of
time A(t) one can defines the stochastic integral as:

∫
t

t0
dWs A(s) = limn→∞

n
∑
i=0

A(si)(Wi −Wi−1), (A.6)

where the time interval has been partitioned in n sub-intervals with extremes t0 ≤ t1 ≤ t2 ≤
.. ≤ tn = t, while si is a general midpoint in each sub-interval ti−1 ≤ si ≤ ti. Choosing the
value of si has very non-trivial consequences on the properties of the stochastic integral
and hence on the underlying physics. There are two important ways of doing it. The
Itô’s stochastic integral is defined by choosing the intermediate point to coincide with the
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minimum of the interval siti−1

∫
t

t0
dWs A(s) = limn→∞

n
∑
i=0

A(ti−1)(Wi −Wi−1); (A.7)

while the Stratonovich integral is obtained by choosing the intermediate point as the
interval midpoint:

∫
t

t0
dWs A(s) = limn→∞

n
∑
i=0

A ( ti−1 + ti

2
) (Wi −Wi−1); (A.8)

Let us report on the main differences in these two approaches. In Itô’s approach the
discretized version of the Langevin reads:

xi+1 = xi + F(xi, ti)∆t +G(xi, ti)∆Wi (A.9)

where xi = x(ti) and ∆Wi = Wi+1 −Wi. This choice makes the Wiener increment ∆Wi =
Wi+1 −Wi generally statistically independent of xi. Furthermore, it has the non-trivial
consequence of modifying the chain rule. Considere any function of xt B(xt) and Taylor
expand its infinitesimal change in a time interval up to order dt:

dtB(xt) = B(xt + dxt)− B(xt) = B′(xt)dxt +
1
2

B′′(xt)dx2
t + .. = (A.10)

= B′(xt)[F(xt, t)dxt +G(xt, t)dWt]+
B′′(xtG2)dW2

t
2

(A.11)

where we have used Eq.(A.9)); by using that dW2
t = dt finally one arrives to celebrated

Itô’s formula:

dtB(xt) = [F(xt, t)B′ + 1
2

G2B′′]dt +G(xt, t)B′(xt)dWt. (A.12)

Hence, when performing any change of variable in an Itô’s SDE, Eq. (A.12) needs to be
used. As a consequence, the Fokker-Planck equation in the Itô discretization reads:

∂tP = −∂x [FP − 1
2

∂x(DP)] (A.13)

where D = G2.
On the other hand, in the Stratonovich discretization, the Langevin reads:

xi+1 = xi + F(xi, ti)∆t +G (xi + xi+1

2
, ti)∆Wi (A.14)

and hence G and the increment ∆Wi are statistically dependent. On the contrary than the
Itô case, there is no change in the chain rule:

dtB(xt) = F(xt, t)B′dt +G(xt, t)B′(xt)dWt. (A.15)

Finally, in this case the Fokker-Planck reads:

∂tP = −∂x [FP − D
2

∂xP] . (A.16)
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The main differences between the two discretizations manifest when the noise is multi-
plicative. Indeed the Itô scheme, with respect to the Stratonovich one, adds a term to the
deterministic-drift in the Fokker-Planck equation:

∂tP = −∂x [(F − 1
2

∂xD) FP − D
2

∂xP] . (A.17)

and hence the deterministic fixed point x∗, F(x∗) = 0, and the mean x∗ of the station-
ary distribution P∗ are different. Furthermore, The Itô scheme is necessary to correctly
simulate and study systems with absorbing states. On the other hand, the Stratonovich
one is necessary to study the effects of the time reversal transformation in the dynamics
(ẋ → −ẋ) and hence, for example, to formulate the celebrated fluctuations relations [178].

A.2 Brownian motion

As an example, let us consider Brownian motion, i.e. the random motion of a particle
suspended in a medium, like a fluid or a gas, in this case driven by an external force [93,
543, 89]. In the case of large friction, it can be modeled by a Langevin equation for the
particle position:

ẋ = F(x)
mγ

+ ξt (A.18)

⟨ξ⟩ = 0, ⟨ξ(t)ξ(t′)⟩ = δ(t − t′)kBT/γ. (A.19)

where m mass of the particle, γ the friction, F the external force and ξi the stochastic noise
emerging by the interaction with the medium at a certain temperature T.
Let us give an example of correspondence between a Langevin and Fokker-Planck equa-
tions. The one dimensional Brownian particle described in Eq.(A.18) is easily be trans-
lated to a Fokker-Planck equation, this case called Smoluchowski equation:

∂xP = 1
mγ

∂x [−F + kBT∂xP] . (A.20)

The current in the Fokker-Planck equation can be decomposed into two contributions:

J = JF + JD, (A.21)

as consequence of the external force, the particle is be driven by a current JF:

JF = P
F

γm
, (A.22)

but at the same time experience a diffusion current:

JD = −
kBT
γm

∂xP. (A.23)
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When the force derives from a potential U, one can use the detailed balance condition to
balance the two currents and obtain the equilibrium Boltzmann distribution [543]:

J∗ = 0 → JF = JD (A.24)

P∗ ∼ exp(−U(x)
kBT

). (A.25)

To see transient non-equilibrium effects it is necessary to study the time-dependent so-
lution of Eq.(A.18) [93]. On the other hand, a simple example of solvable NESS is the
Ornstein-Uhelenbeck process [93], that will be studied in a concrete example of chapter

A.3 Stationary solution of the SLM

Let us consider the SLM for one species

ẋ = 1
τ
(1− x

K
)+
√

σ

τ
ξx (A.26)

where ξ is a Gaussian white noise:

⟨ξ(t)⟩ = 0, ⟨ξ(t)ξ(t′)⟩ = δ(t − t′); (A.27)

In the following we will derive the stationary solution in general discretizaion by using
the parameter α, that for α = 0 gives the Stratonovich case while for α = 1 the Itô’s ones.
We start by performing the following change of variables:

u = log(x) (A.28)

by which we obtain a additive noise Langevin equation (using the Itô’s formula for the
change of varibale, Eq.A.12):

u̇ = 1
τ
(1− eu

K
− ασ

2
)+
√

σ

τ
ξ. (A.29)

In one dimension it is, as always, an equilibrium problem, and hence we can define the
potential

V(u) = −2− ασ

2τ
u + eu

Kτ
. (A.30)

The associated Fokker Planck equation

∂tP(u, t) = +∂u(V′(u)P(u, t))+ σ

2τ
∂2

uP(u, t). (A.31)

It converges to the stationary distribution

P∗(u) = 1
Z

e−
2V(u)τ

σ , (A.32)

that can be transformed back to the original variable by including the Jacobian of the
transformation:

P∗(x) = P∗(u)du
dx
= 1

Γ( 2
σ − α)

( 2
Kσ
)

2
σ
−α

x
2
σ
−α−1e−

2x
σK = Γ (x∣ 2

σ
− α,

σK
2
) . (A.33)
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The result is Gamma distribution with shape and scale parameter γ = ( 2
σi
− 1), θ = Kiσi

2
from which the mean and the variance can be easily derived.

⟨x⟩ = γθ = ( 2
σ
− α) Kσ

2
= K − α

Kσ

2
(A.34)

Var∗ = γθ2 = ( 2
σ
− α) K2σ2

4
(A.35)
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Appendix B

Data analysis

B.1 Datasets

All the datasets analyzed in this work were obtained from EBI Metagenomics (now Mag-
nify) and have been previously published [544]. Raw data were processed under dif-
ferent versions of EBI Metagenomics pipelines [544] . The consistency of results across
studies and pipelines strongly support the robustness and generality of the conclusions
here. Supplementary Table S1 reports the references to the original works, description
of the Magnify pipeline, and other relevant informations about each dataset. Note that
the pipeline version 4.1 uses the algorithm SILVA [545] to assign an OTU classification.
Observe also that here we use the term “species” to refer to OTUs, defined accordingly
to the methods referred above. Datasets were selected to represent a wide set of diverse
biomes: “gut” (human gut), “oral” (human mouth), “lake” and “river” (aquatic ecosys-
tems), “activated sludge”, “soil” and “glacier”. We considered only datasets with at least
50 samples with more than 104 reads. No dataset was excluded a-posteriori.

Biome Type EBI ID Magnify ID Pipeline Version NCBI ID Reference # Samples [Range Tot, # Reads Ns]
Gut c SRP056641 MGYS00001056 2.0 PRJNA275349 [546] 66 [13842, 102971]
Oral c SRP056641 MGYS00001056 2.0 PRJNA275349 [546] 62 [10006, 138172]
River c ERP012927 MGYS00001669 3.0 PRJEB11530 [547] 188 [76042, 352675]
Lake c ERP012927 MGYS00001669 3.0 PRJEB11530 [547] 198 [57408, 350877]
Soil c SRP052295 MGYS00000905 2.0 PRJNA272333 - 112 [11352, 58219]

Sludge c ERP009143 MGYS00001064 2.0 PRJEB8105 [547] 575 [22255, 912713]
Glacier c ERP017997 MGYS00001292 3.0 PRJEB16145 [546] 30 [79765, 1104214]
Gut F4 l ERP021896 MGYS00002184 4.1 PRJEB19825 [548] 131 [21008, 51986]
Gut M3 l ERP021896 MGYS00002184 4.1 PRJEB19825 [548] 334 [15047, 58463]
Oral F4 l ERP021896 MGYS00002184 4.1 PRJEB19825 [548] 135 [5683, 12651]
Oral M3 l ERP021896 MGYS00002184 4.1 PRJEB19825 [548] 331 [1052, 2‘3567]

Skin L-palm F4 l ERP021896 MGYS00002184 4.1 PRJEB19825 [548] 134 [12298, 34607]
Skin L-palm M3 l ERP021896 MGYS00002184 4.1 PRJEB19825 [548] 365 [144, 48475]
Skin R-palm M3 l ERP021896 MGYS00002184 4.1 PRJEB19825 [548] 358 [135, 91953]

TABLE B.1: Description and references for the datasets used in this work. In column ‘Type′, c
refers to cross- sectional (across communities) and l to longitudinal (across time).

B.2 Phylogenetic Analysis

All the statistical analyses have been carried out with the tools of the phyloseq R library
[549]. The phylogenetic tree of each community is obtained by removing the absent
species from the three with all possible species. Then, the distance dG,ij between species
i and j is calculated as the cophenetic distance [549]. Furthermore, each distance is cat-
egorized in one of nb = 17, possible logarithmic bins, where the bin b to which a diven
distance is assigned is given by

b = int(
log(d)−min(log(d))

[max(log(d))−min(log(d))]nb
) . (B.1)
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Note that the min and max are calculated for each community/sample independently.
In each bin, the mean distance is calculated by averaging over all the species pairs with a
distance within such a bin:

dG(b) = ⟨dG,ij⟩b =
Nb

∑
i,j∈b

dG,ij

Nb
, (B.2)

where Nb is the number of species couples within bin b. Figure B.1 shows the histograms
of the phylogenetic average distance dG for the set of considered biomes. Even if the
distributions show quantitatively different patterns for each biome, they share the fact
that they exhibit a maximum at large distance (slightly below 1) and a monotonous decay
to zero with a long tail.

FIGURE B.1: Phylogenetic distance distribution (log scale) Histogram of the average phyloge-
netic distances dGfor different biomes (colors). The frequency in each bin (points) is calculated
using the discretization given by Eq.(B.1). We only considered bins with at least 103 pairs of
species. Interestingly, for all the considered biomes there is a peak around 1 and slowly-decaying
left tail. The inset shows the same data but in log-log scale.

B.3 Correlation analysis

B.3.1 Cross-sectional data

In each community a, with a = 1, ..., M, the count of species i, with i = 1, ..., N, is repre-
sented by na

i ; only sufficiently abundant samples are considered, i.e. the total reads for a
community a must be larger than 104: Na = ∑N

i=1 na
i ≥ 104.

The relative abundance of species i in community a is calculated as:

xa
i =

na
i

Na , (B.3)

and the average over communities is defined as:

⟨..⟩ = 1
M

M
∑
a=1
(..), (B.4)
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such that one can calculate the mean and the variance of a species relative abundance:

⟨xi⟩ =
M
∑
a=1

xa
i

M
, (B.5)

Vari = ⟨x2
i ⟩− ⟨xi⟩2. (B.6)

Another important observable is the rank of species i in community a, ra
i : the most abun-

dant species has rank ra
i = 1, the second most abundant ra

j = 2, and etc.
Using these ingredients one can construct a set of different observables quantifying species-
abundance fluctuations:

qa
1i =

xa
i − ⟨xi⟩
⟨xi⟩

, (B.7)

qa
2i =

na
i −Na⟨xi⟩
Na⟨xi⟩

, (B.8)

qa
3i =

xa
i − ⟨xi⟩√

Vari
, (B.9)

qa
4i =

log xa
i − ⟨log xi⟩√

Var(log xi)
, (B.10)

qa
5i = 2ra

i − 1. (B.11)

By multiplying a couple corresponding to different species i and j, of the same-type ob-
servables, one can estimate pairwise correlations of species-abundance fluctuations:

ηkij = ⟨q
a
kiq

a
k j⟩a =

N
∑
a=1

qa
kiq

a
k j

N
, (B.12)

with k = 1, 2, 3, 4 or 5. Finally, by averaging over all possible pairs of species with a mutual
distance within a certain bin b, one can compute the averaged correlation in abundance
fluctuations as a function of phylogenetic distance:

ηk(dG) = ⟨ηk,ij⟩dG,ij∈b =
N
∑

i,j=1,dP,ij∈b

ηk,ij

Nb
, (B.13)

where Nb is the number of species couples in bin b.
To disentangle actual effects of phylogeny from possible spurious ones, we compared the
measured correlations with those emerging from two alternative null models.
A) The first null model consists in calculating ηk on a randomized tree, preserving its
high-order structure, meaning preserving the transitivity relation, i.e. if ∣a − b∣ < d and
∣b − c∣ < d also ∣a − c∣ < d.
B) In the second null model one calculates correlations using a randomization of phylo-
genetic distances between species, i .e. the distance between a couple is exchanged ran-
domly with another one. These two alternative null models are equivalent for abundant
samples. Figures B.2-B.3 show that the decay of abundance-fluctuation correlations with
phylogenetic distance is qualitatively independent of the chosen observable, eq.(B.7), and
that the null models show constant, almost vanishing, correlations. These results strongly
support that the observed decay results from the actual structure of the phylogenetic tree.
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FIGURE B.2: Correlation decay as a function of phylogenetic distance for different observables
(η’s) in four different biomes, namely: glacier, gut, lake and oral. Colored points stand for
empirical correlation data, blue squares for the null model and the black line for the average of
points weighted by the number of couples in each bin. Bars represent standard errors in each bin.
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FIGURE B.3: Correlation decay as a function of phylogenetic distance for different observables
in three different biomes: river, sludge and soil. As in the previous figure but for a different set
of biomes.



190 Appendix B. Data analysis

Biome χ λ R2

Gut 0.34± 0.02 3.42± 0.16 0.97
Oral 0.41± 0.03 3.9± 0.40 0.94
River 0.35± 0.05 3.52± 0.47 0.83
Lake 0.40± 0.05 4.62± 0.62 0.88
Soil 0.26± 0.02 2.6± 0.14 0.94

Sludge 0.29± 0.02 3.44± 0.19 0.96
Glacier 0.31± 0.03 3.00± 0.22 0.91
Total 0.33± 0.01 3.41± 0.13 0.86

TABLE B.2: Stretched-exponential fit parameters for each biome.

B.3.2 Fit to a stretched-exponential function

Here, we present the fitting procedure used to obtain the stretched exponential decay.
For each biome, we fitted the η3 estimator with a stretched exponential function of the
form:

η = e−λdχ
G , (B.14)

by conducting a linear fit between log(−log(η)) and log(dG), i.e. :

log (− log η) = log λ + χ log (dG) . (B.15)

The different points are weighted by the number of couples within the bin. In Fig.
B.4 A and in Table A.2 we present the best estimation for λ and χ, including errors, as
well as the R2 coefficient for cross-sectional data and present the resulting fitted curves
together with data (plots). As it can be seen, the vast majority of biomes follow a stretched
exponential with excellent approximation, i.e. R2 ≥ 0.9, except for the lake and river
ones where R2 is smaller, but still larger than 0.8. Furthermore, there is a consistent
variability of both the exponent χ and the scale parameter λ. Moreover, by considering all
the points together independently of the biome, we still obtain a good fit to the stretched
exponential curve (R2 = 0.86), with the best fit parameters reported in chapter 2 χ = 0.33 ∼
1/3, λ = 3.5, see Fig. 2.1

In Fig. B.4 B) we present a scatter plot of λ vs χ. Interestingly, we find that the two
parameters are not independent there seems to be a linear correlation between them. This
results suggests that the macroecological law could be simplified further as function of
just one parameter. We will study this dependency in details in a future work.

Finally, in table A.3 and A.4 we report for comparison the result of fitting the cor-
relation patter with a exponential decay, η = exp (−χd − λ), and a power-law η = λd−χ.
Clearly, the quality of the exponential fit is not good, because it cannot capture the scale
invariant properties of the phylogenetic structure (R2 < 0.8 a part for gut and oral where
R2 ∼ 0.9). On the other hand, the power law fit is reasonably good, but in general with
smaller R2 than the stretched exponential one. Nevertheless, in some biomes it is almost
as good as it (Oral,Lake, River R2 > 0.9). In particular, the Lake dataset is fitted almost
perfectly by the power law function, suggesting a that this biome might have specific fea-
tures. Finally, the river biome is not well approximated by neither of the three fit, given
that R2 < 0.9
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A B

FIGURE B.4: Stretched exponential fit for cross-sectional data. A) Plots of the stretched expo-
nential fit together with data. All the biomes follows with very good approximation a stretched
exponential decay eq.(B.14), with a poorer fit in the lake and river. Variability of both χ and λ can
be appreciated both in Table A.2 and in the plot. Nevertheless, the overall dataset still follows a
stretched-exponential decay with λ = 3.41sim3.5 and χ = 0.33 ∼ 1/3 with good approximation. B)
Scatter plot of λ vs χ obtained from a linear fit for different biomes (see Table A.2). Remarkably, a
linear correlation seems to exist between the two parameters, suggesting further redundancies in
the macroecological law.

Biome χ λ R2

Gut 2.53± 0.24 1.04± 0.12 0.91
Oral 3.98± 0.23 1.78± 0.09 0.94
River 1.77± 0.63 1.20± 0.37 0.37
Lake 3.02± 0.75 1.17± 0.30 0.59
Soil 1.70± 0.25 1.06± 0.11 0.78

Sludge 2.32± 0.42 1.07± 0.16 0.67
Glacier 2.15± 0.39 1.05± 0.15 0.70
Total 2.15± 0.39 1.05± 0.15 0.70

TABLE B.3: Exponential fit parameters for each biome.

B.3.3 Variability

The results exposed in the preceding sections deal with the decay of the mean Pearson
correlation (i.e. mediated in each bin) with phylogenetic distance. On the other hand,
here we report on the properties of the full correlation distribution within each bin. For
the sake of simplicity, we consider the η3 estimator only, but the results are similar for
other quantifiers. Fig. B.5 shows that the correlation variance exhibits a tendency to de-
cay with the phylogenetic distance as a power law d−γ, with the exponent γ ∈ [1/6, 1/2]
different for each biome. The power-law decay is not perfect as it shows some “oscil-
lations”, similar to what happens discrete fractals and could reveal a discrete scale in-
variance in the underlying tree. We leave for future research a systematic study of this
pattern. For the sake of completeness, in Fig. B.6 and Fig. B.7, we plot the η3 correlation-
coefficient distribution within each logarithmic bin, including at least 103 couples, for all
the considered biomes.

B.3.4 Taxonomic Analysis

To verify that the behavior of correlations is uniform across the phylogenetic tree, i.e.
that particularly abundant phylum is not determining the decay, we study the correla-
tion pattern at the larger taxonomic scale of phyla. First, we report on the correlations
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Biome χ λ R2

Gut 0.63± 0.06 0.042± 0.001 0.88
Oral 0.77± 0.14 0.028± 0.013 0.71
River 0.50± 0.06 0.048± 0.009 0.84
Lake 0.68± 0.03 0.022± 0.002 0.97
Soil 0.36± 0.04 0.087± 0.009 0.89

Sludge 0.37± 0.03 0.005± 0.007 0.91
Glacier 0.43± 0.05 0.067± 0.011 0.85
Total 0.44± 0.39 0.070± 0.010 0.84

TABLE B.4: Power law fit parameters for each biome.

between species of the same phylum (intra-phylum correlation). By averaging separately
the correlation between species of the same phylum, we obtain how the correlation of
abundances fluctuations decays with the phylogenetic distance for each single phylum.
In Fig. B.8 we plotted the intra-phylum correlation for each biome and verify that major-
ity of them decay coherently with general pattern, while a few of them, e.g. actinobac-
teria, exhibit some deviations. Such taxa-dependent deviations could be responsible for
deviations from the typical stretched exponential pattern for specific biomes. To test this
claim, we consider as an example the soil biome, where a small non-monotonicity is
present in the decay, as illustrated by a characteristic bump around d = 0.1 (cfr. with Fig.
B.3). In Fig. B.9) (Top), we show that such a deviation is probably due to the behavior
of actinobacteria, that present small negative correlation at intermediate distances. Fur-
thermore, in the bottom of Fig. B.9), we show that, by zooming into the actinobacteria
phylum and considering correlations at the finer level of orders, the negative correla-
tions around distance dG = 0.1 is caused by the actinomycetales and gaiellales. The other
orders contribute mainly with positive correlation. These results seem to suggest that
deviation from the typical pattern are driven by few bacterial orders. This analysis could
be carried forward by going at even finer taxonomic resolution to identify the drivers of
this deviation, with the goal of understanding which are the corresponding ecological
traits which could produce such decreasing correlation. All these analyses open exciting
routes for future research.

To complement the precedent analysis, in Fig. B.10 we plotted the intra-phylum cor-
relation (same data as before) for each phylum, representing with colors the different
biomes. The decaying pattern is found consistently in the most abundant phylum, like
acidobacteria, bacteriotedes, proteobacteria and firmicutes. On the other hand, in less
abundant phyla correlations are still positive but not showing a universal behavior. We
leave for a future work the study of how different order deviate from the general pattern
and why.

Finally, in order to understand how the universal pattern changes at the larger scale
of phylum and to discover how it emerges from the different phylum and what changes
by coarse-graining in Fig. B.11 we report both intra-phylum correlations (red points)
and inter-phylum ones (i.e. between species of different phylum) separately. The corre-
lation pattern for these taxonomic relation show two totally different behaviors. Inter-
correlations concentrate symmetrically around zero and correspond to very large phylo-
genetic distances. On the other hand, as showed in the preceding figures, intra-taxonomic
correlations decay from positive value to zero with with distance. By averaging over dif-
ferent phyla the stretched-exponential pattern (black line) emerges both in each single
biome and in the total case.
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FIGURE B.5: Quasi-universal pattern of correlation variance. Points stand for the variance of the
correlation distribution within each distance bin. Left: Correlation variance versus phylogenetic
distance in natural scale, where the black line is a power-law fit d−γ, with γ = 1/2. Right: the same
data but represented in a log-log scale. There seems to be a tendency to behave like a power-
law but each biome shows a different exponent γi (red and blue lines stand for power-law fits
with maximum and minimum possible exponents γmax = 1/2, γmin = 1/6) and there seem to be
oscillations.



194 Appendix B. Data analysis

FIGURE B.6: η3 correlation histogram in each bin (colored lines) in log-scale. Numbers on top
of plots indicate the corresponding bin, from 1 to 17. Only bins with at least 103 couples are
considered.
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FIGURE B.7: η3 correlation histogram in each bin (colored lines) in log-scale. Numbers on top
of plots indicate the corresponding bin, from 1 to 17. Only bins with at least 103 couples are
considered.

FIGURE B.8: Taxonomic Analysis. Intra-phylum correlations versus phylogenetic distance for
each biome (see color code and point shapes in legend). Black lines represent the fit with the
average parameters (see Fig. B.4 and Table A.2) while the symbol sizes represent the log of the
number of couples within the bin. The colored points are obtained by averaging only species of
the same phylum.
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FIGURE B.9: Taxonomic analysis in the soil biome. Top: intra-phylum correlation pattern in
soil; symbol colors and shapes stand for each different phylum (see legend), while symbol sizes
stand for the logarithm of the number of couples within each bin. The phylum actinobacteria is an
example of a taxa with large deviations from the main pattern, in particular they show negative
correlations around phylogenetic distance of 0.1. Also verrucomicrobia exhibit some negative
correlation, but are not less abundant than actinobacteria. Bottom: intra-order correlation pattern
in the phylum actibacteria in soil biome. By considering the correlation between species of the
order inside the actinobacteria phylum we show that the observed deviation is mostly due to
actinomycetales and gaiellales.
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FIGURE B.10: Correlation versus phylogenetic distance in each phylum for different biomes.
Colored points indicate the corresponding biomes and the black line the averaged behavior over
biomes weighted by abundances. Correlation of phyla that are resent in many biomes — such
as acidobacteria, bacteriotedes, proteobacteria and firmicutes— tend to follow a positive to null
decay. On the other hand, less abundant phyla present large deviations for such an overall trend.
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FIGURE B.11: Taxonomic Analyses. a: Correlation between abundance fluctuations versus phy-
logenetic distance for intra-phylum (red points) and inter (green points) phyla. In total, 29 phyla
are considered and each point represents the correlation of one of them, within a certain phy-
logenetic distance, in a particular biome (shapes). Black lines are averages over both taxas and
biomes, weighted by abundances in each considered bin. (b) Same data as in (a) above but plotted
separately for each biome.
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FIGURE B.12: Histogram of correlations for both intra and inter phyla. As clearly illustrated,
inter-taxonomic correlations have a symmetric distribution centered around zero, while intra ones
are skewed to positive values.
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B.3.5 Time-series

The analysis of temporal data is analogous to that in Section (B.3.1), but instead of study-
ing fluctuations and correlations between different communities, one considers one sin-
gle community across time. For each host, h = 1, .., H, one has different samples from
different times (days) t = 1, .., T. All the observables are defined as in Sec.B.3.1 but replac-
ing the community average by a time average ⟨..⟩t = 1

T ∑
T
t=1(..). In particular, the equal

time correlation between two species abundance fluctuations (i, j) is defined by:

ηkij = ⟨q(t)kiq(t)k j⟩t =
T
∑
t=1

q(t)kiq(t)k j

T
; (B.16)

and the ∆t delayed correlation as:

ηkij(∆t) = ⟨q(t +∆t)kiq(t)k j⟩t =
T−∆t
∑
t=1

q(t +∆t)kiq(t)k j

T
. (B.17)

In Fig. B.13 A) and in Table A.5, we report the results of fitting the correlations with a
stretched-exponential curve as done in Sec.B.3.2. One can see that the correlations follow
a stretched exponential of the form of Eq.(B.14) with very good approximation, R2 ≥ 0.9 in
all biomes and hosts, except for the oral biome of the F4 host. Interestingly, there is some
variation in the values of λ and χ both across hosts and biomes. In addition, the gut and
oral biomes show different but similar parameters in the cross-sectional and longitudinal
datasets. Furthermore, the skin biome seems to deviate from the stretched-exponential
fit at very small distances coherently across hosts. Nevertheless, observe that the fit of
the total pattern to a single stretched exponential is still good, R2 > 0.8, but that the skin
biome deviate in totally different way than the oral and gut (see Fig. B.14). In Fig. B.13
B) we present also a scatter plot of λ vs χ, showing a linear dependency between the pa-
rameters, as found in cross-sectional data (see FigB.4). Finally, in tables A.6-A.7 we report
for comparison also the results of fitting the equal-time correlations with an exponential
decay η = exp (−χx − λ) and a power-law η = λd−χ. Similarly, to what happens in cross-
sectional data, the exponential fit is worse than the stretched exponential in all biomes.
Also, the power law fit is worse than the stretched one in the gut and oral biomes, but
slightly better in the skin, in particular in the right palm. This suggest that this biome has
some peculiar characteristics, as already noted in a precedent work by one of us [123].
We leave for future work the investigation of the factors driving such a variability in χ
and λ, that appears to be larger than in cross-sectional datasets.

Moreover, in Figures B.15-B.18, we report separately for each biome the behavior of
the correlation, for each host and averaging over them, and show that also the delayed
correlations can be well fitted by following modification of stretched-exponential func-
tion see Sec.2.8:

η(∆t, dG) = exp(−∆t
τ
− λd1/3

G ), (B.18)

where λ and χ are fixed from the equal-time correlations,see Table A.3, and τ is fixed just
once for each biome, τ = 1 for Gut and oral and τ = 0.5 for left and right-palm skin .
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A B

FIGURE B.13: Stretched exponential fit for longitudinal data. A) Plots of stretched-exponential
fits for different biomes and hosts together with data. Almost all the biomes follow with very good
approximation a stretched-exponential decay Eq.(B.14), with a the poorest fit in the F4 oral case.
Such large deviations are probably due to some unknown conditions of the host. Furthermore, the
skin biome consistently deviates from the stretched exponential at small distances. B)Scatter plot
ofλ vs χ obtained from linear fit for different biomes (colors) and hosts (shapes),see Table A.3.
Interestingly, a direct linear proportionality emerges between the two parameters, suggesting
further redundancies in the macroecological law.

Biome Host Id χ λ R2

Gut M3 0.31± 0.01 4.18± 0.11 0.98
Gut F4 0.25± 0.01 3.76± 0.04 0.99
Oral M3 0.26± 0.01 3.30± 0.15 0.90
Oral F4 0.20± 0.04 3.18± 0.26 0.54

Skin Left Palm M3 0.38± 0.03 3.77± 0.24 0.96
Skin Left Palm F4 0.39± 0.03 3.81± 0.39 0.92

Skin Right Palm M3 0.47± 0.05 4.08± 0.58 0.89
Total Total 0.30± 0.01 3.73± 0.12 0.82

TABLE B.5: Stretched-exponential fit parameters for each biome for equal-time temporal data.

Biome Host Id χ λ R2

Gut M3 3.65± 0.41 1.38± 0.13 0.90
Gut F4 2.43± 0.15 1.65± 0.05 0.78
Oral M3 2.32± 0.13 1.33± 0.07 0.90
Oral F4 1.87± 0.35 1.70± 0.18 0.52

Skin Left Palm M3 2.53± 0.35 1.26± 0.21 0.82
Skin Left Palm F4 2.4± 0.36 1.17± 0.17 0.84

Skin Right Palm M3 2.47± 0.42 1.08± 0.18 0.78

TABLE B.6: Exponential fit parameters for each biome for equal-time temporal data.

Biome Host Id χ λ R2

Gut M3 0.64± 0.05 0.024± 0.004 0.93
Gut F4 0.53± 0.01 0.033± 0.001 0.98
Oral M3 0.55± 0.05 0.039± 0.005 0.83
Oral F4 0.54± 0.11 0.024± 0.004 0.53

Skin Left Palm M3 0.68± 0.03 0.033± 0.002 0.98
Skin Left Palm F4 0.61± 0.03 0.037± 0.003 0.97

Skin Right Palm M3 0.65± 0.02 0.038± 0.001 0.99

TABLE B.7: Power-law fit parameters for each biome for equal-time temporal data.
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FIGURE B.14: Macroecological law for temporal data: average over hosts and biomes Correla-
tions as function of phylogenetic distance averaged over hosts for each biomes. Inset: −log(Corr)
as function of distance averaged over hosts. Points represent correlations for each biomes av-
eraged over hosts. The black line is the stretched-exponential fit corresponding to the last line
reported in the Table A.3. Observe that, at small distances, gut and oral biomes have a different
behavior than the skin one.

FIGURE B.15: Macroecological law for temporal data: Gut biome. Correlations as function
of phylogenetic distance for each host (a-b), averaged over hosts (c), −log(Corr) as function of
distance averaged over hosts (d). Colored points represent correlations at equal time (red) or one,
two and ten day delay(green, yellow, blue). Shapes stand for different hosts. Solid lines are the
stretched exponential decay from eq.(B.18). Notably, the delayed correlations can be predicted
using eq.(B.18),with the same λ and χ of equal time correlation, just by fixing growth timescale
τ = 1. for all the plots. The other parameters for the solid lines are: (a)χ = 0.31, λ = 4.18; (b)χ =
0.25, λ = 3.76; (c, d)χ = 0.3, λ = 4.
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FIGURE B.16: Macroecological law for temporal data: Oral biome. Symbols, lines and sub-figure
legend as in Fig. B.15. Observe that the F4 host presents major deviations, that are probably
caused by some special health conditions. Nevertheless, the correlations are still decaying from
positive to null values, and the delayed pattern follows the same, predictable, tendency of the
other biomes. Solid lines are the stretched-exponential decay from Eq.(B.18), with τ = 1 in all the
plots. The other parameters for the solid lines are: (a, c, d)χ = 0.26, λ = 3.3; (b)χ = 0.2, λ = 3.18.

FIGURE B.17: Macroecological law for temporal data: Skin, left- palm biome. Symbols, lines
and sub-figure legend as in Fig. B.15. Observe that deviations from the stretched-exponential
fit are significant at small phylogenetic distance. Notably, the delayed correlations decay to zero
way faster than the other biomes. Both observations are coherent with recent macroecological
studies on human microbiome that identified a very rapid dynamics in this skin dataset [123].
Solid lines are the stretched exponential decay from eq.(B.18), with τ = 0.5 for all the plots. The
other parameters for the solid lines for all plots are: χ = 0.38, λ = 3.8.

FIGURE B.18: Macroecological law for temporal data: Skin, right- palm biome. Correlations
(a) and −log(Corr)versus phylogenetic distance for host M3. Observe that deviations from the
stretched exponential and the rapid decay of the delayed correlation are coherent with the left-
palm biome, Fig. B.17. Solid lines are stretched exponential decay from eq.(B.18), with τ = 0.5 The
other parameters for the solid lines are: χ = 0.47, λ = 4..
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Appendix C

Statistical mechanics of phenotypic
eco-evolution: mathematical details

C.1 From Microsopic to Macroscopic Process

In this section we present a microscopic description of evolutionary dynamics, and derive
the mean field equations. The first part it’s devoted to the simple case of a generalized
Moran process with constant population size. In the limit of infinite population size a
mean-field theory is derived. In the second part we generalize the theory to a general
birth-death process with varying population size.

C.1.1 Generalized Moran process

The evolutionary model is interpreted as a many-particle Markov jump process. Let’s
consider N indistinguishable individuals, or particles, that can have a continuum position
xi the phenotypic space, P . The state of the entire system is represented by the the vector

xN = (x1, x2, .xi, .., xj, ..xN), (C.1)
dim(xN) = N; (C.2)

that collects the individual traits. xi. Any vector different from x for just one individual
trait, say individual j, will be indicated as:

x̃j
N = (x1, x2, ..., xi, x̃j, ...xN), (C.3)

dim(x̃j
N) = N. (C.4)

Finally, when always with respect to xN the j individual has a different trait and, say the
1 individual is absent, we will use the following notation for the population vector:

x̃j,1̂
N = (x2, ..., xi, x̃j, ...xN), (C.5)

dim(x̃j,1̂
N ) = N − 1. (C.6)

and also for the differential:

dx̃j,1̂
N = dx2dx3..dx̃j..dxN . (C.7)

In the following paragraphs, we will study the evolution of probability of a certain con-
figuration xN , P(xN). The probability, and hence its evolution, satisfies the symmetry of
individual indistinguishability that we define as the fact that the probability is unaffected
by any permutation of the elements of the configuration vector xN .
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The population evolves by implementing the following stochastic process, that we
call gen. Moran Process:

1 A first individual with trait xi is select randomly to reproduce proportionally to its
fitness rate f (xi, x̃j). We restrict our selves to cases where the fitness is composed
by a growth rate, K(xi) and a pairwise interaction I(xi, xk):

f (xi, x̃j) ≡ K(xi)+
1

N − 1

N
∑

k=1,i≠k
I(xi, xk). (C.8)

2 A second individual with trait x̃j is selected randomly to die, i.e. with death rate
d(x̃j) = 1

N−1 .

3 The second individual dies while the first one reproduces asexually by produc-
ing an offspring whose trait will be the parent trait plus a variation, or mutation,
δj:xj = xi + δj. The variation is sampled from a probability distribution β(δj) that
can in principle depend on the parent trait. Hence the total number of individuals
is conserved

To translate such process as a stochastic Markov-jump process the step 3 needs to be
rewritten as a jump. In detail, two jumps are happening: first, the i individual is jumps
from position xi to xj, and the magnitude of the jump is ruled by β(δj). At the same time,
the "dying" individual has to jump from x̃j to xi, effectively replacing the first individual.
This last jump is "non-local" because does not depend on the initial position x̃j. Such jump
is possible for individual indistinguishability. Furthermore, given that the population
size is constant we will drop the N pedix from the state notation.
We can write down a general master equation for the probabilistic dynamics of the the
population vector x for the gen. Moran process:

∂tP(x, t) =
N
∑
i=1

N
∑

j=1,j≠i
∫
P

dx̃j[Wi(x, x̃j)P(x̃j, t)−Wi(x̃j, x)P(x, t)] (C.9)

where

Wi(x, x̃j) = f (xi, x̃j) β(xj − xi) d(x̃j)
= f (xi, x̃j) β(xj − xi)/(N − 1) (C.10)

is the transition rate to go from a state x̃j = (x1, .., xi, .., x̃j, .., xN) (with just one coordinate
differing from those of x) to x = (x1, .., xi, .., xj, ..xn), and W(x̃j, x) is the rate for the reverse
process.

Marginalization

Now we would like to derive a macroscopic mean field equation for the probability of a
position in the phenotypic space. To do that we formulate a coarse-graining procedure.
We introduce the one particle density of individual with phenotype x at time t can be
simply expressed as

ρ(x, t) =
N
∑
i=1

δ(x − xi)
N

. (C.11)
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Averaging over all possible microscopic configurations one obtains the one-particle prob-
ability density

ϕ(x, t) ≡ ⟨
N
∑
i=1

δ(x − xi)
N

⟩

= 1
N

N
∑
i=1
∫
PN

dxδ(x − xi)P(x, t)

= ∫
PN−1

dx2dx3..dxN P(x, x2, x3, .., xN), (C.12)

where in the second to last passage we used the fact that the particles are indistinguish-
able(the probability function is symmetric for the exchange of two particles), and in the
last one the definition of marginal probability. The same can be written for the n-partcle
density:

ϕ(n)(x1, x2, .., xn; t) = N − n
N!
⟨Πn

j=1

N
∑
ij=1

δ(xi − xij)⟩ (C.13)

= ∫
PN−n

dxn+1dxn+2..dxN P(x, t) = P(n)(x1, x2, ..xn; t) (C.14)

For now let’s consider just the one particle density(C.12) and let’s derive it to respect
to time use the Master eq.( 3.3)

∂tϕ
(1)(x, t) = ∫

PN−1
dx2..dxN∂tP(x, t)

= ∫
PN−1

dx1̂
N

N
∑
i=1

N
∑

i≠j,1
∫
P

dx̃jP(x̃j, t)
f (xi, x̃j, t)

N − 1
β(xj − xi)

− ∫
PN−1

dx1̂
N P(x, t)

N
∑
i=1

N
∑

i≠j,1

f (xi, x, t)
N − 1

Wgain −Wloss (C.15)

Now let’s consider the loss contribution (we drop the time dependence):

Wloss = ∫
PN−1

dx1̂
N P(x, t)

N
∑
i=1

N
∑

i≠j,1

f (xi, x)
N − 1

. (C.16)

We split the sums in the following way:

∑
i≥1
∑

j≥1,i≠j
=

N
∑
j>1

δi1 +
N
∑
i>1

N
∑

j≥1,i≠j
.

Doing so:

Wloss = ∫
PN−1

dx1̂
N P(x, t) f (x1, x)+∫

PN−1
dx1̂

N P(x, t)∑
i>1

f (xi, x)

= ∫
PN−1

dx1̂
N[ f (x1, x)+ (N − 1) f (x2, x)]P(x, t) (C.17)
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where, once again, we have used the indistinguishability of individuals eq.(C.12).
The gain term is:

Wgain = ∫
PN−1

dx1̂
N

N
∑
i=1

N
∑

i≠j,1
∫
P

dx̃jP(xj, t)
f (xi, x̃j)
N − 1

β(xj − xi). (C.18)

Let’s split the sums in the following way:

∑
i≥1
∑

j≥1,i≠j
=

N
∑
j>1

δi1 +
N
∑
i>1

δj1 +
N
∑
i>1

N
∑

j>1,i≠j

This is equivalent to say that in the first sum we are considering the case when the particle
1 is reproducing while we are summing over all the possible compatible dying individu-
als j. In the second term the situation is reversed: individual 1 is dying(i.e. becoming an
offspring of j) and we are summing on all the possible j. Finally, the last term considers
when individual 1 is not involved in the jump process. Starting with the first term, we
integrate over x̃1:

N
∑
j>1

δi1∫
PN

dx1̂
Ndx̃jP(x̃j, t)

f (xi, x̃j)
N − 1

β(xj − x1)

= ∑
j>1
∫
PN

dx1̂
Ndx̃jP(x̃j)

f (x1, x̃j)
N − 1

β(xj − x1).

Now, thanks to individuals indistinguishability each term of the sum gives the same
contribution, such that we can fix j = 2 without loss of generality:

(N − 1)∫
PN

dx1̂
Ndx̃2P(x̃2)

f (x1, x̃2)
N − 1

β(x2 − x1)

= ∫
PN

dx1̂
Ndx̃2P(x̃2) f (x1, x̃2)β(x2 − x1).

Next, we can integrate the mutation function using the fact that it is the only term de-
pending on x2 and ∫ dx2β(x2 − x1) = 1, leading to:

∫
PN

dx̃1̂,2
N P(x̃2) f (x1, x̃2)∫ dx2β(x2 − x1) = ∫

PN
dx̃1̂,2

N P(x̃2) f (x1, x̃2).

By considering the second term and applying the same procedure of above by fix i = 2
one obtains:

N
∑
i>1

δj1∫
PN

dx1̂
Ndx̃jP(x̃j)

f (xi, x̃j)
N − 1

β(xj − xi) = ∫
PN

dx1̂
Ndx̃1P(x̃1) f (x2, x̃1)β(x1 − x2).

Finally consider the last term. Thanks to indistinguishability we can fix i = 2, j = 3 by
multiplying for a factor (N − 1)(N − 2) :

N
∑
i>1

N
∑

j>1,i≠j
∫
PN

dx1̂
Ndx̃jP(x̃j, t)

f (xi, x̃j)
N − 1

β(xj − xi)

= (N − 2)∫
PN

dx1̂
Ndx̃jP(x̃3, t)(x2, x̃3)β(x3 − x2). (C.19)
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Next, we can integrate the mutation function using the fact that it is the only term de-
pending on x3 and ∫ dx3β(x3 − x2) = 1

(N − 2)∫
PN

dx̃1̂,3
N dx̃3P(x̃3) f (x2, x̃3)∫ dx3β(x3 − x2) = (N − 2)∫

PN
dx̃1̂,3

N P(x̃3) f (x2, x̃3)

Putting the three terms together:

Wgain = ∫
PN

dx̃1̂,2
N P(x̃2) f (x1, x̃2)+∫

PN
dx1̂

Ndx̃1P(x̃1) f (x2, x̃1)β(x1 − x2)

+ (N − 2)∫
PN

dx̃1̂,3
N P(x̃3) f (x2, x̃3) (C.20)

As a second step, we can consider the explicit form of the fitness function and use the
indistinguishability of individuals to simplify more the expression. Namely, the fitness
function can be written as the sum over the pairwise fitness over the population:

f (xi, x) =
N
∑

k=1,k≠i

f (xi, xk)
N − 1

(C.21)

with:

f (xi, xk) = K(xi)+ I(xi, xk). (C.22)

Let us insert explicitly this expression in the loss term and use individual indistinguisha-
bility

Wloss = ∫
PN−1

dx1̂
N[ f (x1, x)+ (N − 1) f (x2, x)]P(x, t) (C.23)

= 1
N − 1 ∫PN−1

dx1̂
N[

N
∑
k=2

f (x1, xk)+ (N − 1)
N
∑

k=1,≠2
f (x2, xk)]P(x, t)

= ∫
P

dx2P(x1, x2) f (x1, x2)+ (N − 1)∫
P2

dx2dx2P(x1, x2, x3) f (x2, x3),

where we have fixed k = 2 in the first term and k = 3 in the second. Similarly, one can
reduce the gain term to:

Wgain = ∫
P

dx2P(x1, x2) f (x1, x2) (C.24)

+ ∫
P2

dx2dx3[P(x2, x3) f (x2, x3)β(x1 − x2)+ (N − 2) f (x2, x3)P(x1, x2, x3)].

By combining them we obtain the marginalized Master equation:

∂tϕ(x, t) =Wgain −Wloss

= ∫
P2

dx2dx3[P(x2, x3) f (x2, x3)β(x1 − x2)− f (x2, x3)P(x1, x2, x3)]. (C.25)

Mean Field Approximation

To go further with the analytic derivation it is necessary to perform a mean field approx-
imation for the probability:

P(x, t) = ΠN
i=1ϕ(xi, t), (C.26)
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that is expected to be true in the thermodynamic limit N → ∞. By applying such ansatz
to the marginalized Master eq.(C.25)

∂tϕ(x, t) = ∫
P

dx2dx3ϕ(x2)β(x1 − x2)∫
P

dx3ϕ(x3) f (x2, x3)

− ϕ(x, t)∫
P

dx2ϕ(x2)∫
P

dx3ϕ(x3) f (x2, x3) (C.27)

and by defining the "marginal fitness" as:

f (x, t) = ∫
P

dxdx̃ f (x, x̃)ϕ(x̃, t), (C.28)

one finally obtain the Mean-field Master eq:

∂tϕ(x, t) = ∫
P

x̃ f (x̃, t)β(x − x̃)ϕ(x, t)− ϕ(x, t) f̄ (t) (C.29)

with the average fitness defined by

f̄ (t) = ∫
P

dx f (x, t)ϕ(x, t) = ∫
P2

dxdx̃ f (x, x̃)ϕ(x, t)ϕ(x̃, t). (C.30)

C.1.2 Kramers-Moyal expansion

From the macroscopic one-body master equation we are interested in applying a small
mutation approximation, i.e. considering that the offspring trait x is a small deviation
from the ancestor, x = x̃ + δ, δ ≪ 1. We consider a general mutation kernel β(x − x̃; x̃)
where we leave the freedom of the dependence on the ancestor trait x̃. This must be
normalized in the jump amplitude δ = x − x̃such that the new trait is still inside the phe-
notypic space P , that for simplicity we consider as an interval [p1, p2]

∫
p2−x̃

p1−x̃
d(x − x̃)β(x − x̃; x̃) = ∫

p2−x̃

p1−x̃
dδβ(δ; x̃) = 1 (C.31)

Furthermore, we consider it symmetric in this first variable:

β(δ, x) = β(−δ, x) (C.32)

and with finite first and second moment:

θ(x) = ∫
p2−x̃

p1−x̃
dδδβ(δ; x) (C.33)

σ2(x) = ∫
p2−x̃

p1−x̃
dδδ2β(δ; x) (C.34)

To this aim we rewrite the equation separating the part involving mutations from the
rest:

ϕ̇(x, t) = ∆1ϕ(x, t)+∆2ϕ(x, t) (C.35)

where

∆1ϕ(x, t) = ∫ dx̃[ f (x̃)β(x − x̃; x̃)ϕ(x̃, t)− f (x)β(x − x̃; x)ϕ(x, t)] (C.36)
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and

∆2ϕ(x) = ( f (x)− f̄ )ϕ(x, t) (C.37)

If one consider the first term it is easy to see that it does conserve the probability and has
the typical form of a Master equation:

∆1ϕ(x, t) = ∫ dx̃[W(x̃, δ)ϕ(x̃, t)−W(x, δ)ϕ(x, t)] (C.38)

with transition rate

W(x̃, δx) = f (x̃)β(δ; x̃). (C.39)

Consider that now this rate can be written as function of the final trait and of the jump
amplitude x̃ = x − δ:

W(x̃, x) = f (x̃)β(x − x̃; x̃) = f (x − δ)β(δ; x − δ) ∶=W(t − δ; δ) (C.40)

In the same way perform the change of variable in the equation:

∆1ϕ(x, t) = ∫
x−p1

x−p2
dδ[W(x − δ; δ)ϕ(x − δ)−W(x; δ)ϕ(x)] (C.41)

where the change of integration variable is:

∫
p2

p1

dx̃W(x̃, x)ϕ(x̃, t) = −∫
x−p2

x−p1

dδW(x − δ; δ)ϕ(x − δ) = ∫
x−p1

x−p2
dδW(x − δ; δ)

Now we can perform the classical taylor expansion in the first variable of the rate, assum-
ing δ small

W(x − δ; δ) =W(x; δ)− δ∂xW(x; δ)+ δ2

2
∂2

xW(x; δ)+O(δ3) (C.42)

and insert it back in the equation ( thanks to the Pawula theorem it sufficient to calculate
the first two moments, if they are finite):

∆1ϕ(x) = −∂xm1(x)ϕ(x, t)+ 1
2

∂2
xm2ϕ(x, t) (C.43)

where

m1(x) = ∫
x−p1

x−p2
dδxδ f (x)β(δ; x) = 2 f (x)θ(x) (C.44)

m2(x) = ∫
x−p1

x−p2
dδxδ2 f (x)β(δ; x) = σ2(x) f (x) (C.45)

Going back to the full equation we get :

ϕ(x, t) = ( f (x)− f̄ )ϕ(x, t)− ∂xθ(x) f (x)ϕ(x, t)+ 1
2

∂2
xσ2(x) f (x)ϕ(x), (C.46)

that is a generalization the celebrated Crow-Kimura equation.
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C.2 Landau-like Theory

C.2.1 4th order expansion

In this section we analyze the fitness function following the parsimonious principle of
Landau[304, 9]. In this approach it is fundamental to understand the most important
physical properties of the phenomenon in order to retain them and neglect the rest. This
is achieved by expanding the function representing the properties of the system (the
Hamiltonian in statistical physics while the fitness here), and individuate the fundamen-
tal terms based on symmetry. Hence, as a first step we Taylor expand the fitness function
around the average value x̄ till fourth order to grasp which terms are essential ones. We
start from the basic interaction fitness and expand it in both variables:

f (x, y) ≈ f (x̄, x̄)+ f x
1 (x̄, x̄)(x − x̄)+ f y

1 (x̄, x̄)(y − x̄)+ 1
2

f x
2 (x̄, x̄)(x − x̄)2

+ 1
2

f y
2 (x̄, x̄)(y − x̄)2 + f xy

11 (x̄, x̄)(x − x̄)(y − x̄)+ 1
3!

f x
3 (x̄, x̄)(x − x̄)3

+ 1
3!

f y
3 (x̄, x̄)(y − x̄)3 + 1

2
f xy
21 (x̄, x̄)(x − x̄)2(y − ȳ)

+ 1
2

f xy
12 (x̄, x̄)(x − x̄)(y − ȳ)2 1

4!
f x
4 (x̄, x̄)(x − x̄)4

+ 1
4!

f y
4 (x̄, x̄)(y − x̄)4 1

6
f xy
31 (x̄, x̄)(x − x̄)3(y − x̄)

+ 1
6

f xy
13 (x̄, x̄)(x − x̄)(y − x̄)3 + 1

4
f xy
22 (x̄, x̄)(x − x̄)2(y − ȳ)2; (C.47)

where the top indices indicate the variable in which respect the derivative is taken and
the bottom one the order of the derivatives, i.e. f xy

22 (x̄, x̄) = ∂2
x∂2

y f (x, y)∣x=y=x̄. Once that
the interaction fitness expansion has been carried out, by integrating over the trait dis-
tribution we obtain the "marginalized" fitness, i.e. the function that appears in the GCK
eq:

f (x) = ∫
P

dy f (x, y)ϕ(y, t) (C.48)

≈ f (x̄, x̄)+ f x
1 (x̄, x̄)(x − x̄)+

f x
2 (x̄, x̄)

2
(x − x̄)2 +

f y
2 (x̄, x̄)

2
Σ(t)+ 1

3!
f x
3 (x̄, x̄)(x − x̄)3

+ 1
3!

f y
3 (x̄, x̄)µ3(t)+

1
2

f xy
12 (x̄, x̄)(x − x̄)Σ(t)+ 1

4!
f x
4 (x̄, x̄)(x − x̄)4 + 1

4!
f y
4 (x̄, x̄)µ4(t)

+ 1
6

f xy
13 (x̄, x̄)(x − x̄)µ3(t)+

1
4

f xy
22 (x̄, x̄)(x − x̄)2Σ(t); (C.49)

note that the terms proportional to (y − x̄), i.e. f y
1 , f xy

11 , f xy
21 and f xy

31 once integrated are
zero because ∫P dy(y− x̄)ϕ(y) = (x̄− x̄) = 0. Finally, by averaging the marginal fitness one
obtains the mean one:

f̄ = ∫
P

dx f (x)ϕ(x, t) = f (x̄, x̄)+
f x
2 (x̄, x̄)

2
Σ(t)+

f y
2 (x̄, x̄)

2
Σ(t)+ 1

3!
f x
3 (x̄, x̄)µ3(t)

+ 1
3!

f y
3 (x̄, x̄)µ3(t)+

1
4!

f x
4 (x̄, x̄)µ4(t)+

1
4!

f y
4 (x̄, x̄)µ4(t)+

1
4

f xy
22 Σ(t)2.

(C.50)
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Now, we calculate the relative fitness, i.e. the selection coefficient of the traits. Such
quantity is fundamental because it determines the fixed point of the GCK eq.:

f (x)− f̄ = f x
1 (x̄, x̄)(x − x̄)+

f x
2 (x̄, x̄)

2
[(x − x̄)2 −Σ(t)]+ 1

3!
f x
3 (x̄, x̄)[(x − x̄)3 − µ3]

+ 1
2

f xy
12 (x − x̄)Σ(t)+ 1

4!
f x
4 (x̄, x̄)[(x − x̄)4 − µ4]+

1
6

f xy
13 (x − x̄)µ3(t)

+ 1
4

f xy
22 Σ(t)((x − x̄)2 −Σ). (C.51)

Here it is fundamental to note that all the fitness term not depending on the trait x are
canceled out by the mean fitness, that we resume in the symbol f̃ , while the relevant
terms are indicated as F(x). Hence, to determine the fixed point of the dynamics it is not
necessary to study the full fitness function, but just an effective one F(x) that contains
the relevant terms and gives the same relative fitness:

f (x) = F(x)+ f̃ , f (x)− f̄ = F(x)− F̄ (C.52)

F(x) = f x
1 (x̄, x̄)(x − x̄)+

f x
2 (x̄, x̄)

2
(x − x̄)2 + 1

3!
f x
3 (x̄, x̄)(x − x̄)3 + 1

2
f xy
12 (x − x̄)Σ(t)

+ 1
6

f xy
13 (x − x̄)µ3(t)+

1
4

f xy
22 (x − x̄)2Σ(t)+ 1

4!
f x
4 (x̄, x̄)(x − x̄)4 (C.53)

f̃ = f (x̄, x̄)+
f y
2 (x̄, x̄)

2
Σ(t)+ 1

3!
f y
3 (x̄, x̄)µ3(t)+

1
4!

f y
4 (x̄, x̄)µ4(t). (C.54)

Finally, we can write down the effective fitness function in powers of (x − x̄) like the
Hamiltonian in statistical physics:

F(x) = g1(t)(x − x̄)+
g2(t)

2
(x − x̄)2 +

g3(t)
3!
(x − x̄)3 +

g4(t)
4!
(x − x̄)4 (C.55)

g1(t) = f x
1 (x̄, x̄)+ 1

2
f xy
12 Σ(t)+ 1

6
f xy
13 µ3(t), g2(t) = f x

2 +
1
2

f xy
22 Σ(t)

g3(t) = f x
3 (x̄, x̄), g4(t) = f x

4 (x̄, x̄). (C.56)

First of all, let us note that in principle all the coefficients depend on time, given that the
average trait evolves. Second, the first and second order coefficients have some correction
terms due to higher order terms which depend on the trait distribution moments. To bet-
ter understand this mathematical structure, we follow once more the approach of Landau
and search for a symmetry condition valid at all time. For example, the trait distribution
ϕ(x, t) can be assumed to be always symmetric around its mean, imposingµ3(t) = 0, to-
gether with all odd central moments. For simplicity one can also assume the interaction
term appearing in the fitness function to be symmetric, leading to vanish all the cross
derivative terms of odd order, such as f xy

12 (x̄). In this way, Eq.(3.35) takes the simpler
form:

F(x) = f x
1 (x̄)(x − x̄)+ (

f x
2 (x̄)

2
+

f xy
22 (x̄)

4
Σ(t)) (x − x̄)2

+
f x
3 (x̄)
3!
(x − x̄)3 +

f x
4 (x̄)
4!
(x − x̄)4. (C.57)
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Furthermore, at stationarity the symmetry condition has further consequences. First,
consider the dynamics of the mean trait:

dt x̄ = Cov((x − x̄), f ) = f x
1 (x̄)Σ(t)+

f x
3 (x̄)
3!

µ4(t), (C.58)

given that the distribution needs to be symmetric around the mean, at the stationary
state of the mean x̄∗ the third order fitness needs to be zero f x

3 (x̄
∗) = 0. Hence, this term

contributes to the dynamics but vanishes at the stationary state conserving the fact that
the stationary mean needs to be an extreme point of the fitness f x

1 (x̄
∗) = 0. Hence, we

can write down an even simpler effective fitness with just two terms that determines the
stationary state of the system:

F(x) =
g2

2
(x − x̄∗)2 +

g4

4!
(x − x̄∗)4, (C.59)

g2 = f x
2 (x̄

∗)+ 1
2

f xy
22 (x̄

∗)Σ, (C.60)

g4 = f x
4 (x̄

∗) (C.61)

For sake of simplicity we set x̄∗ without loss of generality. To study the branching phase
we use as a first try a vanishing mutation approximation, assuming that the stationary
distribution is a sum of two deltas:

ϕ∗(x) = δ(x − x∗)
2

+ δ(x + x∗)
2

. (C.62)

Thanks to this approximation we can determine the variance Σ∗ = x∗2 and search for
extreme point of the fitness function:

∂xF(x) = 0,→ x ( f x
2 +

f xy
22

2
x∗2 +

f x
4

3!
x2) = 0 (C.63)

The possible solutions are:

x = 0, x = x∗ = ±

¿
ÁÁÀ−6

f x
2

f x
4 + 3 f xy

22

. (C.64)

The existence condition for the second and third points are:

f x
2 > 0,∧ f x

4 + 3 f xy
22 < 0 (C.65)

or

f x
2 < 0,∧ f x

4 + 3 f xy
22 > 0 (C.66)

The first point need to be a minimum, hence leading to:

∂2
xF∣x=0 > 0,→ g2 = f x

2 +
1
2 f xy

22 x∗2 > 0 (C.67)

By using Eq.(C.64) the condition turns to be:

f x
2 (1− 6

f xy
22

f x
4 + 3 f xy

22

) > 0 (C.68)
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leading to :

f x
2 > 0∧ f x

4 < 3 f xy
22 (C.69)

Then, ±x∗ need to be maxima, translating into the following conditions

∂2
xF∣x=±x∗ < 0,→ f x

4 < 0 (C.70)

that is always trivially true. Summing up, the necessary condition to have branching are:

f x
2 > 0, f x

4 < 0, f x
4 < 3 f xy

22 . (C.71)

C.2.2 Bimodal trait distribution

Here we derive the equation determining the trait distribution in the branching phase
using the 4th order theory and a bimodal ansatz for the stationary distribution:

ϕ∗(x) = 1
2

N(−µ, ω)+ 1
2

N(µ, ω), (C.72)

where N(µ, ω) is a normal distribution with mean µ and std ω. Its central moments are:

x̄ = µ1 = 0, µ2 = Var = ω2 + µ2, µ3 = 0
µ4 = 3ω4 + 6µ2ω2 + µ4, µ5 = 0, µ6 = µ6 + 14µ4ω2 + 45µ2ω4 + 15ω6. (C.73)

From the 4th order theory the necessary conditions are: f x
2 (0) > 0 and f x

4 (0) < 0. Note
that, in this simplified case, we need to find just two paramters, µ and ω.

First, by using the extremal condition for x = µ we obtain a relation between them:

∂xF(x)∣x=µ = 0 → µ2 = −6(
f x
2 + f xy

22 ω2

f x
4 + 6 f xy

22

) . (C.74)

Second, we consider the stationary equation for the variance Σ:

dtΣ∗ =
1
2
( f x

2 +
f xy
4

2
(µ2)) (µ4 − µ2

2)+
f x
4

4!
(µ6 − µ4µ2)

+ σ2 ( f (0)+
f x
2 + f y

2

2
µ2 +

f xy
22

4
µ2

2 +
f x
4 + f y

4

4!
µ4) = 0;

by inserting the explicit expression of the moments, eq.( C.73) it does convert to:

( f x
2 +

f xy
22

2
(ω2 + µ2))ω2(ω2 + µ2)+

f x
4

4!
(12ω6 + 36ω4µ2 + 7µ4ω2)

+ σ2 ( f (0)+
f x
2 + f y

2

2
(ω2 + µ2)+ f xy

22 (ω
2 + µ2)2 +

f x
4 + f y

4

4!
(3ω4 + 6µ2ω2 + µ4)) = 0.

(C.75)

By inserting Eq.(C.74) in Eq.(C.75) the problem reduces to solving cubic equation. Sadly,
it is not feasible analytically and one needs to rely on numerical methods.
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C.3 Finite size fluctuations

C.3.1 Derivation from microscopic process

To account for finite size fluctuations we proceed to derive an equation for ρ(x, t),
Eq.(C.12), that is a random variable describing the density or frequency of individuals
with a certain trait x . Note that the average value of the phenotypic density gives the one-
particle probability density, and hence recover all previous results. To derive a stochastic
equation for ρ we follow the typical procedure used in statistical physics. First, we write
down a Master equation in a discrete setting by "coarse-graining" the phenotypic space.
Then, by using a Kramers-Moyal expansion [309] in the space of densities under a "local-
noise" approximation we derive a Langevin equation for ρ. Finally, the continuum limit
is performed. We start from the set of N individuals(xN) and move to a coarse grained
scale where we consider M "species", each one with phenotype yi and density ρi = ni/N
that sum to 1. To go from one scale to another we consider the following clustering, or
binning, procedure:

1. divide the(one-dimensional) phenotypic space P in M intervals Ii =]yi − δi, yi + δi]

2. Individuals with phenotype in the same interval pertain to the same species.

3. integrate over the individual phenotype and collapse them on the species pheno-
type. All individuals of species have the same fitness, probability, and mutation
function. The species fitness is the sum of individual fitness functions.

4. Both the fitness and the mutation function are now a discrete functions, i.e. el-
ements of a matrix. The mutation function from a species i to j depend on the
phenotypic distance of the two.

Hence, starting from the individual probability P(x) and its Master eq.(C.9), first we write
down the probability of the species abundances :

P(n, t) = P(n1, n2, .., nM, t) = ∫
PN

dxδ(x1 − yz1)δ(x2 − yz2)..δ(xN − yzM)P(x, t)

= P(y1, y1, .., y1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n1 times

, y2, y2, .., y2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n2 times

, .., yM, yM, .., yM
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

nM times

, t).
(C.76)

where the yzj are the species trait to which they pertain. By taking the time derivative
and using the Master equation (3.3)we get to

dtP(n) = ∫
PN

dxNδ(x1 − yz1)..δ(xN − yzN) (C.77)

× ∑
i,j
[∫
P

dx̃j f (xi, x̃j) β(xj − xi)d(x̃j)P(x̃j)− P(x) f (xi, x)d(xj)]

Now we apply the coarse-graining instructions

• Coarse-craining the traits One of the delta function, namely the one of xi acts on the
mutation functions:

∫ dxiδ(xi − yzi) f (xi, x̃j) β(xj − xi)d(x̃j)P(x̃j)

= β(yzi − xj) f (yzi , x̃j)d(x̃j)P(x̃j) (C.78)

The other N −1 deltas act on the fitness and probability giving f (yzi , yzj,z j̃)P(yzj,z j̃ , t)
where we have assumed that the new offspring named xj, and the dying individual,
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x̃j, pertain respectively to the species zj and z j̃,and hence the origin vector reads:
where

yzj,z j̃ = (y1, .., y1
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
n1 times

, .., yzi , .., yzi
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
nzi times

, .., yzj , .., yzj

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
nzj − 1 times

, .., yM, .., yM
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

nM times

)
(C.79)

• From continuous to discrete space Second, we rename the indices as i = zi, j = zj and
k = z j̃, and sum over the possible transitions from state:

ñj,k = (n1, .., ni, .., nj − 1, .., nk + 1, .., nM) (C.80)

to state:

n = (n1, .., ni, .., nj, .., nz, .., nM) (C.81)

where a individual of the the species k dies, one ofi reproduces by asexually, and
the offspring mutates to species j. Note that i, j and k can be the same species.
Naturally one defines the species fitness and death rate as the sum of all individuals
in pertaining to it:

f (ni, n) =∑
j∈i

f (xj, x) =∑
j∈i

f (yi, y) = f (yi, n)ni, d(ni, n) = d(yi, n)ni. (C.82)

Also, the βs now are discrete rates β(yi − yj) = βi,j.

Summing all the terms we find:

dtP(n, t) =∑
i,j,k
[Ti(n, ñj,k)P(ñj,k, t)− P(n, t)Ti(ñj,k, n)] (C.83)

where

Ti(n, ñj,k) = f (yi, ñj,k)nid(yk)(nk + 1)βi,j. (C.84)

Now we are interested in the diffusive approximation in the N ≫ 1 limit, where we can
derive a Langevin equation for the density of i species ρi = ni

N , see [309] for a reference.

Consider the following notation for the rates Ti(n, ñj,k) = T j,k
i ; to calculate the moments

of the expansion let us not that effectively there is just a flux of probability from the k
species, who loses an individual, to the j one who obtains an offspring. The probability
of the i species does not change and hence we can sum over it. Hence, the first moment
of the expansion corresponds to(remember that di = 1/(N − 1)):

Aj =
1
N
∑
i,k
[T j,k

i − Tk,j
i ] =

1
N

M
∑
ik

fibijni
nk

N − 1
− 1

N

M
∑
ik

fiβikniβ nj
N−1

; (C.85)

assuming that ∑k nk = N ≈ N − 1, we obtain the deterministic part of the equation:

Aj =
M
∑
i=1

βij fiρi − f̄ ρj, (C.86)
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that is the discretized version of the mean-field equation. In the same way we can calcu-
late the diffusion matrix :

Bjk = 1
N2

M
∑

i
[T j,k

i + Tk,j
i ] =

1
N
[ fimiβij + f jmjβ ji +

M
∑

k
fkmk(βkimj + βkjmi)] (C.87)

Bjj =
1

N2

M
∑

i,k,k≠j
[T j,k

i + Tk,j
i ] =

1
N
∑

i
fibijρi +

1
N
∑

i
fiρiρj, (C.88)

where we used tha ∑k βik = 1. Now, to write down a Langevin equation for ρi, it would
be necessary to diagonalize the matrix B and find the matrix C that follows the relation
CTC = B to obtain:

ρ̇j = Aj +
M
∑
k=1

Cikξk. (C.89)

As clearly expressed in [309] this can be done numerically but not analytically in full gen-
erality. Given that our aim here is to derive an analytical expression for such finite size
fluctuations in the limit of infinite species, it is natural to assume a "local noise approxi-
mation", i.e. Bjk = 0 for j ≠ k. In this case the Langevin equation is trivially determined
as:

ρ̇j =
M
∑
i=1

βij fiρi − f̄ ρj +

¿
ÁÁÀ∑i fibijρi + f̄ ρj

N
ξ j, (C.90)

⟨ξi(t)⟩ = 0 (C.91)
⟨ξi(t)ξ j(t′)⟩ = δ(t − t′)δij (C.92)

By taking the continuum limit, i.e. M → ∞, δ → 0 we finally obtain the stochastic
mutation-selection eq.:

ρ̇(x, t) = ∫
P

dx̃ f (x̃)ρ(x̃)β(x − x̃)− f̄ ρ(x)+

√
∫P dx̃ f (x̃)ρ(x̃)β(x − x̃)+ f̄ ρ(x)

N
ξ(x, t).(C.93)

Finally, by considering a small mutation approximation both in the deterministic and
stochastic part we end up with the stochastic generalized Crow-Kimura eq:

ρ̇(x, t) = ( f (x)− f̄ ) ρ(x)− ∂xθ f (x)ρ(x)+ 1
2

∂2
xσ2 f (x)ρ(x)

+

¿
ÁÁÀ( f (x)+ f̄ ) ρ(x)− ∂xθ f (x)ρ(x)+ 1

2 ∂2
xσ2 f (x)ρ(x)

N
ξ(x, t)

⟨ξ(x, t)⟩ = 0
⟨ξ(x, t)ξ(y, t′)⟩ = δ(t − t′)δ(x − y) (C.94)

In the case of trait-independent and undirected mutaions we obtain the following sim-
plified stochastic GCK eq.:

∂tρ(x) = ( f (x)− f̄ )ρ(x)+ σ2

2
∂2

x f (x)ρ(x)+

¿
ÁÁÀ( f (x)+ f̄ )ρ(x)+ σ2

2 ∂2
x f (x)ρ(x)

N
ξ(x, t)

⟨ξ(x, t)⟩ = 0
⟨ξ(x, t)ξ(y, t′)⟩ = δ(x − y)δ(t − t′) (C.95)
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C.3.2 Langevin eqs. for the moments

In this section we will derive a couple of Langevin equation for the trait mean and vari-
ance first in a general fashion and then in the context of Gaussian theory. For sake of
simplicity we limit ourselves to trait-independent and consider the mean trait evolution

dt x̄(t) = ∫ dx(x − x̄)∂tρ = f1Σ(t)+
f2

2
µ3

+ ∫ dx(x − x̄)

√
( f + f̄ )ρ − ∂xθ f ρ + 1/2∂2

xσ2 f ρ

N
ξ(x, t). (C.96)

where we have used Eq(3.51). The stochastic term can be written down as an effective
noise in the following form:

ηx̄(t) = ∫ dx(x − x̄)

√
( f + f̄ )ρ − ∂xθ f ρ + 1/2∂2

xσ2 f ρ

N
ξ(x, t); (C.97)

⟨ηx̄(t)⟩ = 0 (C.98)

⟨ηx̄(t)ηx̄(t′)⟩ =
δ(t − t′)

N ∫ dx(x − x̄)[( f + f̄ )ρ − ∂xθ f ρ + 1/2∂2
xσ2 f ρ]

= δ(t − t′)
N

[(x − x̄)2 f +Σ f̄ + 2(x − x̄)θ f + σ2 f ] (C.99)

The same can be done for the trait variance Σ (where we leave implicit the determin-
istic part as GΣ)

dtΣ = GΣ +∫ dx(x − x̄)2
√
( f + f̄ )ρ − ∂xθ f ρ + 1/2∂2

xσ2 f ρ

N
ξ(x, t)

ηΣ(t) = ∫ dx(x − x̄)

√
( f + f̄ )ρ − ∂xθ f ρ + 1/2∂2

xσ2 f ρ

N
ξ(x, t) (C.100)

⟨ηΣ(t)⟩ = 0 (C.101)

⟨ηΣ(t)ηΣ(t′)⟩ =
δ(t − t′)

N
((x − x̄)4 f + µ4 f̄ + 4(x − x̄)3θ f + 6(x − x̄)2σ2 f) (C.102)

The two effective noises are correlated as follows

⟨ηx̄(t)ηΣ(t′)⟩ =
δ(t − t′)

N
((x − x̄)3 f + µ3 f̄ + 3(x − x̄)2θ f + 3(x − x̄)σ2 f) . (C.103)

Now by considering undirected mutations together with the Gaussian approximation,
the noise moments reduce to a simpler form:

⟨ηx̄(t)ηx̄(t′)⟩ =
δ(t − t′)

N
( f (x̄)(2Σ + σ)+ f2(2Σ + σ/2)) (C.104)

⟨ηΣ(t)ηΣ(t′)⟩ =
3δ(t − t′)

N
(2 f (x̄)+ 3 f2Σ) (Σ + σ2Σ) (C.105)

⟨ηx̄(t)ηΣ(t′)⟩ =
3δ(t − t′)

N
f x
1 (Σ + σΣ). (C.106)
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Finally, we get to the couple of simplified Langevin eqs. that determine the trait distribu-
tion in Gaussian theory:

dt x̄ = f x
1 Σ +

√
f (x̄)(2Σ + σ)+ f2(2Σ + σ/2)

N
ηx̄(t) (C.107)

dtΣ = f x
2 (x̄)Σ

2 + σ2 f (x̄)+ σ2

2
f2(x̄)Σ +

√
3
(2 f (x̄)+ 3 f2Σ) (Σ + σ2Σ)

N
ηΣ(t)

⟨ηx̄(t)⟩ = 0, ⟨ηΣ(t)⟩ = 0, ⟨ηx̄(t)ηx̄(t′)⟩ = δ(t − t′), ⟨ηΣ(t)ηΣ(t′)⟩ = δ(t − t′)

⟨ηx̄(t)ηΣ(t′)⟩ =
3δ(t − t′) f x

1 (Σ + σΣ)
√

3 ( f (x̄)(2Σ + σ)+ f2(2Σ + σ/2)) (2 f (x̄)+ 3 f2Σ) (Σ + σ2Σ)
(C.108)

C.3.3 Variance analysis

To study the stationary behavior of the trait variance, we assume that the mean trait
has already converged, enabling us to study the variance independently. Furthermore,
for sake of simplicity and intuition we consider just the first fitness term f (x̄) in the
coefficient of the stochastic noise, obtaining the following simplified equation:

dtΣ = f x
2 (x̄)Σ

2 + σ2 f (x̄)+ 1
2

σ2 f2(x̄)Σ +
√

3 f (x̄) (Σ + σ2Σ)
N

ηΣ(t). (C.109)

Equivalently to Eq.(C.109), one can consider the following Fokker-Planck equation for
the variance probability distribution P(Σ), in the Ito discretization scheme:

∂tP(Σ, t) = −∂Σ[A(Σ)P(Σ, t)− ∂Σ
B(Σ)
2N

P(Σ, t)], (C.110)

with

A(Σ) = f x
2 (x̄)Σ

2 + σ2 f (x̄)+ 1
2

σ2 f2(x̄)Σ, (C.111)

B(Σ) = 3 f (x̄) (Σ + σ2Σ) . (C.112)

Then, we search for a stationary solution P∗(Σ):

∂tP∗(Σ) = 0, A(Σ)P∗(Σ)− ∂Σ
B(Σ)

2
P∗(Σ) = 0 (C.113)

leading to:

P∗ = 1
Z

exp (−VN(Σ)) (C.114)

with the potential reading:

VN(Σ) = −2N∫ dΣ
A(Σ)
B(Σ)

+ log B(Σ)

= 2N
f (x̄∗)

(( f2 −
f x
2

2
)σ2 + f (x̄∗)) log (Σ + σ2)

− 2N log Σ −
2N f x

2

f (x̄∗)
Σ − log ( f (x̄) (Σ2 +Σσ2)) , (C.115)
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where in chapter 3 for simplicity we have assumed ( f2 −
f x
2
2 ) ≈ f x

2 /2 in the first term. Now,
we search for the extreme point of the potential, ∂ΣVN(Σ∗) = 0, leading to the following
solution:

Σ∗N1,2 =
σ2bN

2 f x
2 (x∗)aN

(±
√

σ2 f 2
2 (x∗)− 4 f (x∗) f x

2 (x∗)aNcN/bN − f2(x∗)) (C.116)

with the size-dependent coefficients

aN = (1−
27 f2

N f x
2
) , bN = (1−

3
N f2σ2 (2 f (x̄)− 3 f2σ2)) , cN = (2−

3
N
) . (C.117)

Depending on the determinant sign ∆N , Eq.(C.116) has zero ∆N < 0, one ∆N or two ∆N > 0
reals solutions, that correspond to the three regimes reported in chapter 3. The condition
of ∆N > 0 can be translated into a condition for the size N to be smaller than a critical one
N∗:

N < N∗
f (x̄∗)

σ

⎛
⎝

8
√

f (x̄∗)+ 2σ
√

f x
2√

f x
2 (16 f (x̄∗)− f x

2 σ2)
⎞
⎠
≈

f (x̄∗)
σ

(C.118)

C.4 From microscopic to macroscopic entropy production

C.4.1 Detailed balance

The "Detailed-balance condition" is a fundamental sufficient condition for Master Equa-
tions to converge to an equilibrium stationary state [89]. Physically it is illuminating,
cause it detects the presence of currents capable of driving the system away from equi-
librium. Consider a couple of possible microstates:

Wi(x, x̃j)P∗(x̃j) = Wi(x̃j, x)P∗(x) (C.119)
fi(x̃j)β(xj − xi)P∗(x̃j) = fi(x)β(x̃j − xi), (C.120)

where P∗(x) is the stationary probability of being in the configuration x and Wi(x̃j, x) the
rate of jumping from configuration x to x̃j. If we translate the condition in words this
means that the probability of a transition from a microstate to an other by a reaction is as
probable as the inverse. Now we will apply the mean-field condition to the probability:
procedure to the detailed-balance condition to derive the equilibrium condition for the
GCK Eq. Now, we apply the mean field conditions

P(x1, x2, x3, ..., xN) = Πn
i=1ϕ(xi) (C.121)

fi(x̃j)ϕ∗(x̃j)β(xj − xi) = fi(x)ϕ∗(xj)β(x̃j − xi) (C.122)

If furthermore we consider N⋘ 1 then fi(x̃j) ≈ fi(x) the detailed balance condition does
not involve the fitness :

ϕ∗(x̃j)β(xj − xi) = ϕ∗(xj)β(x̃j − xi) (C.123)

The mean-field mutation-selection equation can be rewritten as a non-linear master eq

Wy(x̃ → x) = f (y)β(x − x̃)ϕ(y) (C.124)
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leading to the (marginalized) master equation:

˙ϕ(x, t) = ∫ dx̃dyWy(x̃ → x)ϕ(x̃1)−∫ dx̃2dyWy(x → x̃)ϕ(x) (C.125)

So, the detailed balance condition for the mean-field mutation-selection Eq. is:

Wy(x̃ → x)ϕ(x̃) = Wy(x → x̃)ϕ(x) (C.126)
f (y)ϕ(y)ϕ(x̃)β(x − y) = f (y)ϕ(x)ϕ(y)β(x̃ − y) (C.127)

ϕ(x̃)β(x − y) = ϕ(x)β(x̃ − y) (C.128)

that indeed coincides with Eq.(C.123).

C.4.2 Microscopic Entropy production

Consider the Gibbs-Shannon entropy divided by the number of individuals:

Smicro(t) = − 1
N ∫

dxP(x, t) log P(x, t), (C.129)

we are interested in its time evolution. Using the Master Eq.(3.3)

Ṡmicro(t) = − 1
N ∫

dx
dP(xN, t)

dt
log P(x, t)

= − 1
N

N
∑
i=1

N
∑

j=1,j≠i
∫ dxdx̃j[Wi(xj, x)P(xjt)−Wi(x, xj)P(x, t)] log P(x, t)

(C.130)

To gain physical insights we follow Lebowitz and Spohn [550] and divide the quantity
in two terms using simple manipulations. As first step, using the integration variable
symmetries we insert the probability of the other microstates in the log:

Ṡmicro(t) = 1
2N

N
∑
i=1

N
∑

j=1,j≠i
∫ dxdx̃j[Wi(xj, x)P(xjt)−Wi(x, xj)P(x, t)] log

P(xjt)
P(x, t)

.

(C.131)

Then, by multiplying and dividing for the rates ratio, one obtains two different contribu-
tions:

Ṡmicro(t) = Ṡmicro
prod − Ṡmicro

f lux , (C.132)

where the first is the non-negative Schnakenberg entropy production:

Ṡmicro
prod =

1
2N

N
∑

i,j=1,j≠i
∫ dxx̃j[Wi(xj, x)P(xjt)−Wi(x, xj)P(x, t)] log

Wi(xj, x)P(xjt)
Wi(x, xj)P(x, t)

≥ 0

(C.133)
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and the second is the entropy flux:

Smicro
f lux (t) =

1
2N

N
∑

i,j=1,j≠i
∫ dxdx̃j[Wi(xj, x)P(xjt)−Wi(x, xj)P(x, t)] log

Wi(xj, x)
Wi(x, xj)

(C.134)

To simplify the notation, in the following section we will remove the t dependency in the
probability distribution. Hence, the entropy production is :

Ṡmicro
prod = 1

2N

N
∑
i=1

N
∑

j=1,j≠i
∫ dxdx̃j[ f (xi, xj)β(xj − xi)djP(xj)+

− f (xi, x)β(x̃j − xi)djP(x))] log
f (xi, xj)β(xj − xi)µjP(xj)
f (xi, x)β(x̃j − xi)djP(x))

(C.135)

We can simplify the expression by choosing i = 1 and j = 2. Furthermore, by noting
that all the variables are integrated the negative term in the current can be eliminated by
multiplying the total expression by two:

Ṡmicro
prod = ∫ dxdx̃2 f (x1, x2)β(x2 − x1)P(x2) log

f (x1, x2)β(x2 − x1)P(x2)
f (x1, x)β(x̃2 − x1)P(x)

,

(C.136)

and

Ṡmicro
f lux = ∫ dxdx̃2 f (x1, x2β(x2 − x1)P(x2, t) log

f (x1, x2)β(x1 − x̃1)β(x2 − x1)
f (x1, x)β(x̃1 − x1)β(x̃2 − x1)

(C.137)

For notation sake we introduce the currents between microstates:

Ji(xjx) =Wi(xj, x)P(xjt)−Wi(x, xj)P(x, t), (C.138)

and the analogue of thermodynamics forces, that we call evolutionary forces[319]:

Ri(xjx) = log
Wi(xj, x)
Wi(x, xj)

. (C.139)

As a consequence, the entropy flux is the product of current and forces

Ṡmicro
f lux = ∫ dxdx̃2 J1(x2x)R1(x2x) (C.140)

Furthermore, note that we can decompose the evolutionary forces in two contributions:

R1(x2x) = log
f (x1, x2)
f (x1, x)

+ log
β(x2 − x1)
β(x̃2 − x1)

, (C.141)
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where the first involves just the fitness while the second only mutations. This relation
leads to decompose the entropy flux as:

Ṡmicro
f lux = ∫ dxdx̃2 f (x1, x2)β(x2 − x1)P(x2) log

f (x1, x2)
f (x1, x)

+ ∫ dxdx̃2 f (x1, x2)β(x2 − x1)P(x2) log
β(x2 − x1)
β(x̃2 − x1)

= φ f (t)+ νβ(t), (C.142)

and similarly the entropy production

Ṡmicro
prod = ∫ dxdx̃2 f (x1, x2)β(x2 − x1)P(x2) log

f (x1, x2)
f (x1, x)

+ ∫ dxdx̃2 f (x1, x2)β(x2 − x1)P(x2) log
β(x2 − x1)
β(x̃2 − x1)

+ ∫ dxdx̃2 f (x1, x2)β(x2 − x1)P(x2) log
P(x2)
P(x)

= φ f + νβ + Ṡmicro = Ṡmicro
f lux + Ṡmicro. (C.143)

The first contribution φ f is proportional to fitness difference of the reproducing individ-
ual in the present and past state, while the second one νβ takes into consideration the
different probabilities of mutation between individuals.

C.4.3 Mean-field limit approximation

In the following section, we derive the macroscopic entropy production by applyng a
mean-field limit the to the microscopic one. The calculation is quite cumbersome, so we
carry it out in the simplest scenario. Let us start directly with the approximation ansatz,
in this section we use the following approximations:

• Large population size N⋙ 1

• Mean field approximation for the probability distribution P(xN) = ϕ(x1)..ϕ(xN)

• Fitness from two body interaction f (x1, x) = ∑N
k

1
N−1 f (x1).

• Gaussian Kernels with zero mean and small variance( in comparison with the phe-
notypic space), such that also in a finite dominium of [a, b]the truncation terms are
negligible:

βx(δ) =
e−

δ2

2σ2

√
σ2π

2 (Er f ((b − x)/
√

2σ)− Er f ((a − x)/
√

2σ))

≈ e−
δ2

2σ2

√
2πσ

= βx(−δ) (C.144)

First, let us comment that in this limit we can consider as negligible the contribution φ f .
Indeed, given that the fitness is weighted sum of many two-body interaction terms, if just
one term is modified the change in the individual fitness is negligible:

f (x1, x2) ≈ f (x1, x)→ φ f ≈ 0 (C.145)
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Second, we apply the mean-field ansatz to the net change in entropy :

Ṡm f = ∫ dxdx̃2 f (x1, x2)β(x2 − x1)P(x2) log
ϕ(x̃2)
ϕ(x̃2)

. (C.146)

Now, by using the fact that the fitness is weighted sum of two-body interactions we get
to:

Ṡm f = N − 2
N − 1 ∫

dx1dx2dx̃2 f (x1)β(x2 − x1)ϕ(x1)ϕ(x̃2) log
ϕ(x̃2)
ϕ(x̃2)

+ 1
N − 1 ∫

dx1dx2dx̃2 f (x1, x̃2)β(x2 − x1)ϕ(x1)ϕ(x̃2) log
ϕ(x̃2)
ϕ(x̃2)

, (C.147)

where in the first term the fitness has been marginalized :

f (x1) = ∫ dxk f (x, xk)ϕ(xk). (C.148)

Given that N⋙ 1, the second contribution is sub-leading and we get to:

Ṡm f = ∫ dx1dx2dx̃2 f (x1)β(x2 − x1)ϕ(x1)ϕ(x̃2) log
ϕ(x̃2)
ϕ(x̃2)

. (C.149)

Now, we will like to perform a small mutation approximation, and to do that we use the
change of variable x2 = δ + x1:

Ṡm f = ∫ dx1dx̃2dδ f (x1)β(δ)ϕ(x1)ϕ(x̃2) log
ϕ(x̃2)

ϕ(δ + x1)
. (C.150)

By performing the expansion around δ = 0 up to second order, we obtain two terms:

Ṡm f = Ṡ0
m f + Ṡ2

m f

= ∫ dx1dx̃2 f (x1)ϕ(x1)ϕ(x̃2) log
ϕ(x̃2)
ϕ(x1)

− σ2

2 ∫
dx1dx̃2 f (x1)ϕ(x1)ϕ(x̃2)∂2

x1
log ϕ(x1). (C.151)

The zero order term can be easily rewritten as:

Ṡ0
m f = −∫ dx1dx2 f (x1)ϕ(x1) log ϕ(x1)+∫ dx1dx̃2 f (x1)ϕ(x1)ϕ(x̃2) log ϕ(x̃2)

= Σ[ f , I]. (C.152)

On the other hand, in the second term we can first we can integrate by part in x1, and
obtain:

Ṡ2
m f =

σ2

2 ∫
dx1dx̃2∂x1( f (x1)ϕ(x1))∂x1 log ϕ(x1), (C.153)

where we have assumed the surface term to be zero. Then, we can use the definition of
mutation current j = −(σ2/2)∂x f ϕ and following relation:

∂xϕ(x)
ϕ(x)

= −
j(x)

σ2 f (x)ϕ(x)
−

∂x f (x)
f (x)

, (C.154)
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to rewrite the second term as:

Ṡ2
m f =

1
2 ∫

dx
j(x)2

σ2 f (x)ϕ(x)
+ 1

2 ∫
j
∂x f (x)

f (x)
(C.155)

= 1
2

v2

σ2 f
+ 1

2
v∂x log f . (C.156)

Hence, we obtain the same entropy change derived from the GCK Eq.6.3.
Now, let us consider the contribution to the entropy production ν:

νm f (t) = ∫ dx1dx2dδβ(δ) f (x1)ϕ(x1)ϕ(x2) log
β(x2 − x1)

β(δ)
, (C.157)

where we have approximated the marginalized fitness as before, and renamed x2 = x̃2. ν
can be decomposed in two contributions:

νm f (t) = νA(t)+ νA(t) (C.158)

νA(t) = ∫ dx1dx2dδβ(δ) f (x1)ϕ(x1)ϕ(x2) log β(δ) = − f̄ S[β] (C.159)

νB(t) = ∫ dx1dx2) f (x1)ϕ(x1)ϕ(x2) log β(x2 − x1). (C.160)

While the first contribution has a very intuitive form, the second one needs to be worked
out with the Gaussian ansatz for the mutational kernel :

νB = −∫ dx1dx2dδβ(δ) f (x1)ϕ(x1)ϕ(x2) log β(x2 − x1)

= 1
2 ∫

dx1dx2dδβ(δ) f (x1)ϕ(x1)ϕ(x2)(
(x1 − x2)2

σ2 + log(2πσ2))

= 1
2σ2 (x

2 f + (x2) f − 2(x)x f)− 1
2

log(2πσ2) f̄ . (C.161)

By using the covariance between the second moment and fitness we obtain that:

Σ((x − x̄)2, f ) = x2 f + (x2) f − 2(x)x f −Σ f , (C.162)

it can be further rewritten as:

νB = 1
2σ2 (Σ((x − x̄)2, f )+Σ f̄ )+ S[β] f

= 1
2σ2 (dtΣ + (Σ − σ2) f̄ )+ S[β] f . (C.163)

Hence, by summing the two terms, νA and νB we get to:

νm f (t) =
1

2σ2 (dtΣ + (Σ − σ2) f̄ ) . (C.164)
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In resume, we have calculated the entropy production in adaptive evolution using a
mean-field limit and a Gaussian mutation approximation, and it reads:

Ṡm f
prod = Ṡm f

f lux + Ṡm f (C.165)

Ṡm f
f lux = 1

2σ2 (dtΣ + (Σ − σ2) f̄ ) (C.166)

Ṡm f = Σ[ f , I]+ 1
2

v2

σ2 f
+ 1

2
v∂x log f (C.167)

C.5 Simulation algorithm

To simulate exactly and efficiently the microscopic Master Eq.(C.9) for the Growth-competition
model, we used the following version of the Gillespie algorithm. Consider N individuals
at time t0:

• The fitness function of all individuals is calculated as the weighted sum over the
interaction with all the population:

fi(x) =
N
∑

j=1,j≠i

f (xi, xj)
N − 1

(C.168)

for all i.

• A random uniform distributed number χ ∈ [0, 1] is generated to calculate the time
interval for the next event:

δt = − log χ/(
N
∑
i=1

fi(x)) (C.169)

• Consider the representation of the reproduction probabilities of all individuals qi =
fi(x)/(∑N

i=1 fi(x)). A random uniform distributed number η ∈ [0, 1] is generated.
Using a standard search algorithm the value of i such that

qi < η <≤ qi+1 (C.170)

is found. The i individual will reproduce.

• The j individual is sampled randomly and will die. Hence, the j individual is re-
placed by the offspring of the i individual. Its new trait x̃j is the mother one plus a
variation δj sampled form the distribution βδ:

x̃j = xi + δj (C.171)

• time is updated to t0 = t + δt. Iterate.
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Appendix D

Evolution of tolerance
supplementary materials

D.1 The Microscopic process

Consider the dynamics of a population of N individual bacteria cyclically exposed to
antibiotics, as described in chapter 4. Each bacteria is characterized by its intrinsic lag
time τi ∈ P = R+, where P denotes the continuous one−dimensional phenotype space of
possible lag time values. In addition, each individual can be in two different states, as
indicated by the variable yi: if yi = 1 the individual is in the awake state, such that it can
reproduce, while if yi = −1 it is in dormant state, where no activity happens. Finally, the
environment, represented by the parameter η, varies between two states characterized
by the presence (η = −1) or absence (η = 1) of antibiotics. The environmental dynamics is
considered to be cyclical with period Tmax, η(t) = η(t + Tmax), and within each cycle:

η =
⎧⎪⎪⎨⎪⎪⎩

−1 if 0 ≤ T ≤ Ta

+1 if Ta < T ≤ Tmax
(D.1)

where T ∈ [0, Tmax] is the time within a cycle and Ta is the duration of the antibiotic phase.
The whole population state is thus represented by the vectors τN = (τ1, τ2, .., τi, .., τN)

and yN = (y1, y2, .., yi, .., yN). The vector subindex indicates the dimensionality, i.e., the

number of bacteria: dim(τN) = N, dim(τ̃i, ĵ
N−1) = N − 1. To further proceed, let us consider

that all individuals are indistinguishable, i.e., that the system state is invariant under indi-
vidual permutations; for example: τN = (τ1, τ2, .., τi, .., τN) = τ′N = (τi, τ1, τN , . . . , τ2, . . . , τ3).
The following notation is implemented in order to account for changes in the population;
consider a reference state τN = (τ1, τ2, . . . , τi, . . . , τj, . . . , τN); then a "modified” state with

respect to τN is defined as τ̃
i, ĵ
N−1 = (τ1, τ2, . . . , τ̃i, . . . , τj−1, τj+1, .., τN) = (τ1, τ2, . . . , τ̃i, . . . , τN−1),

where the i individual has a different trait, τ̃i ≠ τi, and the j one is absent, while the rest of
individuals have the same traits in both states. Note that the property of indistinguisha-
bility has been used to derive the last equality.

Having defined the states, one can define the dynamics. In particular, each individual
cell can perform diverse stochastic “reactions” (using the jargon of stochastic processes),
that are illustrated in Fig 1 of chapter 4.

Any individual i in the growing state(yi = 1) with trait τ̃i is exposed to a demographic-
adaptive process (∆D):

• It can try to reproduce asexually at rate g(τi, τN) = b ∈ R+. On the one hand,
if the antibiotics are present (η = −1), the reproduction does not happen and the
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individual is killed. On the other hand, in fresh environment, (η = 1), the repro-
duction is successful and the individual is replaced by two offspring with pheno-
types τi = τ̃i + ξi and τj = τ̃i + ξ j, where ξi, ξ j are the variations, which are sampled
from probability distribution β(ξi = τi − τ̃i; τ̃i) and β(ξ j = τj − τ̃i; τ̃i) respectively. If
the population size N has reached the carrying capacity K this reproduction event
must be accompanied by the death of individual j with trait τj, chosen at random
(i.e. with rate µ = 1

K−1 ), much as in the Moran process. In principle, β is an ar-
bitrary probability distribution normalized in the jump amplitude (the first argu-
ment): ∫

∞

−τ̃ β(τ − τ̃; τ̃)d(τ − τ̃) = 1, but it can depend on the initial phenotype, that is
indicated with the second argument. In the following, for the sake of notation, the
second argument will be omitted when not necessary.

• If in the awake state, it can die by natural causes at rate µ(τi, τN) = d ∈ R+.

Furthermore, any individual with trait τi can switch on and off from dormancy with
the following processes (∆GD):

• If dormant (yi = 1), it can wake up at rate A(τi, τN) = 1/τi .

• If awake (yi = 1) and in the presence of antibiotics (η = −1) it can sense their presence
and switch to dormancy at rate S(τi, τN) = s ∈ R+.

D.1.1 Master equation

The general trait-dependent expression of the rates will be used for the sake of theoret-
ical comprehensiveness, and it will be reduced to the particular one used in chapter 4
when necessary. From these processes it is possible to write down a master equation for
probability of the system configurations P(τN , yN , t):

dP(τN , yN , t)
dt

= ∆DP(τN , yN , t)+∆GDP(τN , yN , t), (D.2)

where ∆BD stands for the time change with respect to the demographic part of the dy-
namics, and the ∆GD for the growing-dormant state transitions. In addition, it is useful to
separate the demographic change into two contributions, the birth-death part, i.e. the set
of processes that change the population size N, and the Moran processes part that drives
the dynamics when the carrying capacity K is reached and does not change N:

dP(τN , yN , t)
dt

= (1− δN,K)∆BDP(τN , yN , t)+ δN,K∆MP(τN , yN , t)+∆GDP(τN , yN , t).(D.3)

Birth-death contribution To take into account the change in population size, it is as-
sumed that the probability of a state (τN , yN , t) can be written as the ratio of some popu-
lation state function ψ(τN , yN , t), ψ ∶ P →R0,+, and its normalization:

P(τN , yN , t) ≡
ψ(τN , yN , t)

∫PN dτN∑y∈{±1}N ψ(τN , yN , t)
. (D.4)

ψ is non-negative, and its integral is heuristically assumed not to diverge, but it is not
a probability function since it is not normalized. It can be thought as a scalar field gen-
eralizing, to population configurations, the concept of the number of individuals of a
particular species in a discrete set of them (e.g. in evolutionary game theory, where the
frequency of species i is written as pi = ni

N , where ni is the number of individual of species
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i and N the population size). The time evolution of the probability density is specified
by:

∆BDP(τN , yN , t) =
ψ̇(τN , yN , t)

∫PN dτN∑y∈{±1}N ψ(τN , yN , t)
+

−
ψ(τN , yN , t)

∫PN dτN∑y∈{±1}N ψ(τN , yN , t)
∫PN dτN∑y∈{±1}N ψ̇(τN , yN , t)

∫PN dτN∑y∈{±1}N ψ(τN , yN , t)
=

=
ψ̇(τN , yN , t)

∫PN ∑y∈{±1}N dτNψ(τN , yN , t)
− P(τN , yN , t)

∫PN dτN∑y∈{±1}N ψ̇(τN , yN , t)

∫PN dτN∑y∈{±1}N ψ(τN , yN , t)
=

=
ψ̇(τN , yN , t)

∫PN ∑y∈{±1}N dτNψ(τN , yN , t)
−ΛN(t)P(τN , yN , t), (D.5)

where we have defined the normalizing factor:

ΛN(t) ≡
∫PN dτN∑y∈{±1}N ψ̇(τN , yN , t)

∫PN dτN∑y∈{±1}N ψ(τN , yN , t)
. (D.6)

Note that in (D.5) the probability is conserved, so once the equation of motion for ψ is
written down, one has an equation for P. Thus, for the ∆BD term it is mandatory to take
into account this normalization, whereas it is not necessary for the ∆GD and ∆M terms,
which do not change N.

Let us consider the various processes that change the population size:

• Birth, that increases the population’s size of one, e.g. from a state τ̃
i, ĵ
N−1 to τN , with

rate:

B(τN , yN ∣τ̃
i, ĵ
N−1ỹi, ĵ

N−1) = β(τi − τ̃i)β(τj − τ̃i)g(τ̃i, τ̃
i, ĵ
N−1)δη,1δỹi ,1δyi ,1δyj,1. (D.7)

where the i individual with trait τ̃i produces two offspring with traits τi, τj. Natu-
rally, to reproduce individual i must be in the growing state and antibiotics must
be absent.

• Death of the i individual by the effect of antibiotics, which reduces the population
size from N to N − 1 at rate:

Q(τ î
N−1, yî

N−1∣τN , yN) = g(τi, τN)δη,−1δyi ,1, (D.8)

where the index î represent the absence of the i individual with respect to τN .

• Natural death of individual i at rate:

T (τ î
N−1, yî

N−1∣τN , yN) = µ(τi, τN)δyi ,1. (D.9)

Thus, by adding these two rates (eq.D.8-D.9) one gets the full death rate:

D(τ î
N−1, yî

N−1∣τN , yN) ≡ Q(τ
î
N−1, yî

N−1∣τN , ỹN)+ T (τ
î
N−1, yî

N−1∣τN , yN). (D.10)
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Putting together all these contributions, ∆BD can be written as:

∆BDP(τN , yN , t) = (D.11)

=
N
∑
i=1

N
∑

j=1,j≠i
∑

ỹi∈{±1}
∫
P

dτ̃i
1

N − 1
B(τN , yN ∣τ̃

i, ĵ
N−1ỹi, ĵ

N−1)
ψ(τ̃i, ĵ

N−1, ỹi, ĵ
N−1, t)

∫PN dτN∑y∈{±1}N ψ(τN , yN , t)

+
N+1

∑
i=1

∑
yi∈{±1}

∫
P

dτi
1

N + 1
D(τ î

N , yî
N ∣τN+1, yN+1)

ψ(τN+1, yN+1, t)
∫PN dτN∑y∈{±1}N ψ(τN , yN , t)

−
N
∑
i=1

N+1

∑
j=1,j≠i

∑
ỹi∈{±1}

∫
P2

dτ̃idτ̃j
1
N
B(τ̃i,j

N+1, ỹi,j
N+1∣τN , yN)

ψ(τN , yN , t)
∫PN dτN∑y∈{±1}N ψ(τN , yN , t)

−
N
∑
i=1
∑

yi∈{±1}
D(τ î

N−1, yî
N−1∣τN , yN)

ψ(τN , yN , t)
∫PN dτN∑y∈{±1}N ψ(τN , yN , t)

− P(τN , yN , yN , t)ΛN(t). (D.12)

Note that in the first three lines it is necessary to normalise the sums by the initial popu-
lation size to respect individuals’ indistinguishability. Consider for example the first line:
it quantifies the probabilities that the state τN is the result of a birth event in the state

τ̃
i, ĵ
N−1 where the i individual has reproduced. One of the offspring is indicated as xi but

there are N − 1 possibilities of assigning the index j to the second one. Due to individual
indistinguishability all these possibilities are equivalent, and therefore the sum must be
normalized by N − 1.

To rewrite this expression in terms of probabilities, we normalize it in the following
way:

ψ(τN)
∫PM dτMψ(τM, t)

=
ψ(τN)

∫PN dτNψ(τN , t)
∫PN dτNψ(τN , t)
∫PM dτMψ(τM, t)

= P(τN) ∫P
N dτNψ(τN , t)

∫PM dτMψ(τM, t)
≡ P(τN)aN,M,(D.13)

where the re-scaling factor is defined as:

aN,M ≡ ∫P
N dτNψ(τN , t)

∫PM dτMψ(τM, t)
. (D.14)

Thanks to this definition, ∆BD reads:

∆BDP(τN , yN , t) = aN−1,N

N
∑
i=1

N
∑

j=1,i≠j
∑

ỹi∈{±1}
∫
P

dτ̃i
1

N − 1
B(τN , yN ∣τ̃

i, ĵ
N−1ỹi, ĵ

N−1)P(τ̃
i, ĵ
N−1, ỹi, ĵ

N−1)

+ aN+1,N

N+1

∑
i=1

∑
yi∈{±1}

∫
P

dτi
1

N + 1
D(τ î

N , yî
N ∣τN+1, yN+1)P(τN+1, yN+1, t)

−
N
∑
i=1

N+1

∑
j=1≠i

∑
ỹi∈{±1}

∫
P2

dτ̃idτ̃j
1
N
B(τ̃i,j

N+1, ỹi,j
N+1∣τN , yN)P(τN , yN , t)

−
N
∑
i=1
∑

yi∈{±1}
D(τ î

N−1, yî
N−1∣τN , yN)P(τN , yN , t)

− ΛN(t)P(τN , yN , yN , t). (D.15)
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Let us now calculate explicitly the normalization factor ΛN(t):

ΛN(t) =
∫PN dτN∑y∈{±1} ψ̇(τN , yN , t)

∫PN dτN∑y∈{±1} ψ(τN , yN , t)
=

= aN−1,N ∑
y∈{±1}

∫
PN

dτN

N−1

∑
i=1

N
∑

j=1,i≠j
∑

ỹi∈{±1}
∫
P

dτ̃i
1

N − 1
B(τN , yN ∣τ̃

i, ĵ
N−1ỹi, ĵ

N−1)P(τ̃
i, ĵ
N−1, ỹi, ĵ

N−1)

+ aN+1,N ∑
y∈{±1}

∫
PN

dτN

N+1

∑
i=1

∑
yi∈{±1}

∫
P

dτi
1

N + 1
D(τ î

N , yî
N ∣τN+1, yN+1)P(τN+1, yN+1, t)

− ∑
y∈{±1}

∫
PN

dτN

N
∑
i=1

N+1

∑
j=1≠i

∑
ỹi=±1
∫
P2

dτ̃idτ̃j
1
N
B(τ̃i,j

N+1, ỹi,j
N+1∣τN , yN)P(τN , yN , t)

− ∑
y∈{±1}

∫
PN

dτN

N
∑
i=1
∑

ỹi∈{±1}
D(τ î

N−1, yî
N−1∣τN , yN)P(τN , yN , t). (D.16)

The expression can be split in four terms:

ΛN(t) = Λ1 +Λ2 −Λ3 −Λ4, (D.17)

and each of them can be calculated separately. The first term is:

Λ1 = aN−1,N ∑
y∈{±1}

∫
PN

dτN

N
∑
i=1

N
∑

j=1,j≠i
∑

ỹi∈{±1}
∫
P

dτ̃i
1

N − 1
B(τN , yN ∣τ̃

i, ĵ
N−1ỹi, ĵ

N−1)P(τ̃
i, ĵ
N−1, ỹi, ĵ

N−1)

= aN−1,N ∑
y∈{±1}

∫
PN

dτN

N
∑
i=1

N
∑

j=1,j≠i
∑

ỹi=±1

× ∫
P

dτ̃i
1

N − 1
β(τi − τ̃i)β(τj − τ̃i)g(τ̃i, τ̃

i, ĵ
N−1)δη,1δỹi ,1δyi ,1δyj,1P(τ̃i, ĵ

N−1, ỹi, ĵ
N−1).

(D.18)

Using the fact that individuals are indistinguishable the sums ∑N
i=1 , ∑N

j=1,i≠j can be re-
placed with a factor N ⋅ (N − 1) by fixing i and j, e.g. i = 1, j = 2:

Λ1 = N ⋅ aN−1,N ∑
y∈{±1}

∫
PN

dτN ∑
ỹ1∈{±1}

× ∫
P

dτ̃1β(τ1 − τ̃1)β(τ2 − τ̃1)g(τ̃1, τ̃1,2̂
N−1)δη,1δỹ1,1δy1,1δy2,1P(τ̃1,2̂

N , ỹ1,2̂
N )

= N ⋅ aN−1,N ∑
y∈{±1}

∫
PN−1

dτ̃1,2̂
N−1 ∑

ỹ1=±1
∫
P

dτ1β(τ1 − τ̃1)

× ∫
P

dτ2β(τ2 − τ̃1)g(τ̃1, τ̃1,2̂
N−1)δη,1δỹ1,1δy1,1δy2,1P(τ̃1,2̂

N , ỹ1,2̂
N ).

(D.19)

By using the normalization of the β’s in the variable δ = τ− τ̃, ∫
∞

0 dτ1β(τ1− τ̃1) = ∫
∞

−τ̃1
dδβ(δ) =

∫
∞

0 dτ2β(τ2 − τ̃1) = 1, one obtains:

Λ1 = N ⋅ aN−1,N ∑
y∈{±1}

∫
PN−1

dτ̃1,2̂
N−1 ∑

ỹ1∈{±1}
g(τ̃1, τ̃1,2̂

N−1)δη,1δỹ1,1δy1,1δy2,1P(τ̃1,2̂
N , ỹ1,2̂

N ). (D.20)
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By performing a marginalization ∑y∈{±1} P(τ̃1,2̂
N , ỹ1,2̂

N ) = P(τ̃1,2̂
N , ỹ1) and defining the aver-

age birth and death rates:

ḡN = ∫
PN

dτN g(τi, τN)P(τN , yi, t)δyi ,1, (D.21)

µ̄N = ∫
PN

dτNµ(τi, τN)P(τN , yi, t)δyi ,1, (D.22)

one readily obtains:

Λ1 = N ⋅ aN−1,N ∑
y∈{±1}

∫
PN−1

dτ̃1,2̂
N−1 ∑

ỹ1∈{±1}
g(τ̃1, τ̃1,2̂

N−1)δη,1δỹ1,1δy1,1δy2,1P(τ̃1,2̂
N , ỹ1,2̂

N )

= aN−1,N NḡN−1δη,1. (D.23)

Similarly, one can work out the second term:

Λ2 = aN+1,N ∑
y∈{±1}

∫
PN

dτN

N+1

∑
i=1

∑
yi∈{±1}

∫
P

dτi
1

N + 1
D(τ î

N , yî
N ∣τN+1, yN+1)P(τN+1, yN+1, t)

= aN+1,N ∑
y∈{±1}

∫
PN

dτN ∑
yN+1∈{±1}

× ∫
P

dτN+1P(τN+1, yN+1, t)[µ(τN+1, τN+1)δyN+1,1 + g(τN+1, τN+1)δη,−1δyN+1,1] =

= aN+1,N(µ̄N+1 + ḡN+1δη,−1), (D.24)

where i has been fixed to N + 1. The third one reads:

Λ3 =

= ∑
y∈{±1}

∫
PN

dτN

N
∑
i=1

N+1

∑
j=1≠i

∑
ỹi∈{±1}

∫
P2

dτ̃idτ̃j
1
N
B(τ̃i,j

N+1, ỹi,j
N+1∣τN , yN)P(τN , yN , t)(D.25)

= ∑
y∈{±1}

∫
PN

dτN

N
∑
i=1
∑

ỹi∈{±1}

∫
P

dτ̃iβ(τi − τ̃N+1)β(τN+1 − τ̃i)g(τ̃i, τ̃
i, ĵ
N)δη,1δỹi ,1δyi ,1δyN+1,1P(τ̃i,N̂+1

N , ỹi,N̂+1
N ) =

= N ⋅∫
PN−1

dτ̃1
N ∑

ỹ1∈{±1}

× ∫
P

dτ1β(τ1 − τ̃1)∫
P

dτN+1β(τN+1 − τ̃1)g(τ̃1, τ̃1
N)P(τ̃

1
N , ỹ1

N)δη,1δỹ1,1δy1,1 =

= N ⋅∫
PN−1

dτ̃1
N ∑

ỹ1∈{±1}
g(τ̃1, τ̃1

N)P(τ̃
1
N , ỹ1

N)δη,1δỹ1,1δy1,1 = NḡNδη,1, (D.26)
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where the indices has been fixed as i = 1, j = N + 1. Finally, the fourth one term can be
written as:

Λ4 = ∑
y∈{±1}

∫
PN

dτN

N
∑
i=1
∑

yi∈{±1}
D(τ î

N−1, yî
N−1∣τN , yN)P(τN , yN , t)

= ∑
y∈{±1}

∫
PN

dτN

N
∑
i=1
∑

yi∈{±1}
P(τN , yN , t)[µ(τi, τN)δyi ,1 + g(τi, τN)δη,−1δyi ,1] =

= N ∑
y∈{±1}

∫
PN

dτN ∑
y1∈{±1}

P(τN , yN , t)[µ(τ1, τN)δy1,1 + g(τ1, τN)δη,−1δy1,1]

= N(µ̄N + ḡNδη,−1).
(D.27)

Thus, by collecting the four terms (D.23, D.24, D.25, D.27) one finally obtains an explicit
expression for the normalization factor:

ΛN(t) =
= N [aN−1,N ⋅ ḡN−1 − ḡN] δη,1 + (aN+1,N ⋅ µ̄N+1 −N ⋅ µN)+ [aN+1,N ḡN+1 −N ⋅ ḡN] δη,−1.(D.28)

Moran process contribution. When the systems reaches the carrying capacity K each
birth must be compensated by a random death. This part of the dynamics follows a
master equation that conserves the system size N = K:

∆MP(τn, yN , t) =
N
∑
i=1

N
∑

j=1,j≠i
∑

ỹi∈{±1}
∑

ỹj∈{±1}
∫
P2

dτ̃idτ̃j[WM(τN , yN ∣τ̃
ij
N , ỹij

N)P(τ̃
ij
N , ỹij

N , t)

− WM(τ̃
ij
N , ỹij

N ∣τN , yN)P(τN , yN , t)], (D.29)

where the transition rate is given by:

WM(τN , yN ∣τ̃
ij
N , ỹij

N) =
1

K − 1
β(τi − τ̃i)β(τj − τ̃i)g(τ̃i, τ̃i,j)δη,1δỹi ,1δyi ,1δyj,1. (D.30)

Growing and Dormant state contribution The part representing the transitions between
growing and dormant states is relatively easy to define given that N is conserved:

∆GDP(τN , yN , t) =

=
N
∑
i=1
∑

ỹi∈{±1}
[WGD(τN , yN ∣, τN , ỹi

N)P(τN , ỹi
N , t)−WGD(τN , ỹi

N ∣, τN , yN)P(τN , yN , t)],(D.31)

where the transition rate ỹi → yi is given by:

WGD(τN , yN ∣τN , ỹi
N) = δỹi ,−1δyi ,1A(τi, τN)+ δỹi ,1δyi ,−1δη,−1S(τi, τN), (D.32)

the δ stand for Kronecker deltas introduced because each term only contributes in a spe-
cific medium or state.
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Thus, summarizing, the master equation defining our proposed model reads:

dP(τN , yN , t)
dt

= (1− δN,K)∆BDP(τN , yN , t)+ δN,K∆MP(τN , yN , t)+∆GDP(τN , yN , t),(D.33)

where the birth-death contribution ∆BD is given by eqs.(D.11,D.28,D.7,D.10), the Moran
process contribution ∆M by eqs.(D.29,D.30) and the growing-dormant transition ∆GDis
specified by eqs. (D.31,D.32).

D.1.2 Gillespie algorithm

To integrate the master equation (D.2) numerically we use the Gillespie algorithm. The
Gillespie algorithm is a kinetic Monte Carlo Method [551] initially proposed in the field
of chemistry to simulate individual trajectories of a set of chemical reactions [400]. How-
ever, since its initial formulation, the Gillespie algorithm has gained great importance
e.g. statistical physics and biophysics [552]. In general each individual simulation of the
Gillespie algorithm represents an exact trajectory of the probability density function that
is ruled by the master eq. (D.2) [551].

At each time step one possible event is randomly chosen with a probability propor-
tional to its rate. In our case there are four different events in the antibiotic-exposure
phase and five events in the fresh medium phase. Moreover, each bacteria can be in two
different states: growing state and dormant state.

Antibiotic-exposure phase: 1) A bacteria in the growing state can be randomly cho-
sen to die with rate d = const. Overall, bacteria death at rate φdeath = NG ⋅ d, where NG
is the number of growing individuals. 2) A bacteria in growing state can be randomly
chosen to die while trying to reproduce with rate b = const. Overall, bacteria are killed
by antibiotics with rate φkilled by a. = b ⋅ NG. 3) A bacteria in the growing state can sense
the environment and enter in dormant state at rate s = const. Overall, bacteria enter in
dormant sate at rate φenter d.s. = s ⋅ NG. 4) A bacteria in the dormant state can randomly
chosen to exit dormant state at rate φi

exit d.s. =
1

τi
lag

. Overall, bacteria exit from dormant

state at rate: ∑i φi
exit d.s..

Fresh medium phase: 1) A bacteria in the growing state can be randomly chosen for
die at a constant rate d. Overall, bacteria death at rate φdeath. 2) A bacteria in the growing
state can be randomly chosen to reproduce at constant rate b. Overall, bacteria reproduce
at rate φbirth = b ⋅NG. Bacteria reproduce asexually by duplication, so both offspring will
inherit the same phenotype τi

lag plus a variation. Here we explore two possibilities for
the variation σ(τ), additive amplitude σA(τ) ∼ αA = const and multiplicative amplitude
σm(τ) ∼ αM ⋅ τ.. 3)A bacteria in dormant state can randomly chosen to exit dormant state
with rate φi

exit d.s. =
1

τi
lag

. Overall, bacteria exit from dormant state at rate: ∑i φi
exit d.s.. Im-

portantly, there is also a maximum carrying capacity K, so once it is reached for each
reproduction event , a randomly chosen member of the population is deleted (following
a Moran process).

Since the rate φi
exit d.s. is specific to each bacteria i, the search of the randomly cho-

sen reaction could be computationally expensive, thus a binary search is implemented.
In the worst case, binary search needs O (Ln (N)) comparisons, whereas direct search
needs O (N) comparisons.
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D.2 From Microscopic to Macroscopic Process

D.2.1 Marginalization

The master equation (D.2,D.15, D.29, D.31) rules the system’s evolution at the micro-
scopic level (individual-based). Our aim now is to derive the “one-cell” probability den-
sity , see appendix B.3.5, ϕ(1)(τ, y, t): given a certain pair (τ, y), ϕ(1) gives the probability
of finding an individual in that state at a time t, i.e. it is the one-particle probability den-
sity in the jargon of statistical physics. ϕ(1) is an experimentally measurable magnitude
that provides a macroscopic description (population-based) of the system.
To obtain the one-cell density one needs to marginalize P(τN , yN , t), i.e. to remove the
dependence of P in all individuals but one [77]. Mathematically, the one-cell probability
density is defined as:

ϕ(1)(τ, y, t) ≡ 1
N
⟨

N
∑
i=1
∑

yi∈{±1}
δ(τ − τi)δy,yi⟩, (D.34)

and, by writing down explicitly the average operator ⟨. . . ⟩, it does coincide with the
marginalized phenotypic distribution for the first individual:

ϕ(1)(τ, y, t) ≡ 1
N
⟨

N
∑
i=1
∑
yi

δ(τ − τi)δy,yi⟩ =
1
N
∑

y∈{±1}
∫
PN

dτN

N
∑
i=1

δ(τ − τi)δy,yi P(τ, y, t) =

= ∑
yj∈{±1},j∈[2,N]

∫
PN−1

dτ2 . . . dτN P(τ, τ2, . . . , τN , y, y2, y3, .., yN) = P(1)(τ, y, t).

In the same way the n−cells probability density can be defined:

ϕ(n)(τn, yn, t) = N − n
N!
⟨

n
∏
j=1

N
∑
ij=1
∑
yN

δ(τj − τij)δyj,yi⟩

= Pn(τ1, τ2, .., τn, y1, y2, .., yn, t). (D.35)

Taking the time derivative of ϕ(1), by using the master eq.(D.2) one obtains:

∂tϕ
(1)(τ, y, t) = ∑

yj∈{±1},j∈[2,N]
∫
PN−1

dτ2dτ3..dτN∂tP(τN , yN , t) =

= ∑
yj∈{±1},j∈[2,N]

∫
PN−1

dτ2dτ3..dτN[∆DP(τN , yN , t)+∆GDP(τN , yN , t)] =

= ∆BDϕ(1)(τ, y, t)+∆Mϕ(1)(τ, y, t)+∆GDϕ(1)(τ, y, t). (D.36)

Here on, we consider separately the birth-death (∆BD, D.15), Moran (∆M, D.29) and
growing-dormant (∆GD, D.32) contributions.

Birth and death contribution. The Birth-Death is defined as:

∆BDϕ(1)(τ, y, t) = ∑
yk∈{±1},k∈[2,N]

∫
PN−1

dτ2 . . . dτN∆BDP(τN , yN , t). (D.37)

The birth-death contribution of the master eq.(D.15) is composed by five terms: the four
positive/negative contribution of birth and death, plus the normalizing factor. This last
one does not depend on the variables, and thus it is not relevant for the marginalization.
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Therefore, we focus here on the first four terms one at the time:

∆BDϕ(1)(τ, y, t) = B1 + B2 − B3 − B4 −ΛNϕ(1)(τ, y, t) (D.38)

The first one takes into account the positive contribution of reproduction:

B1 = aN−1,N ∑
yk∈{±1},k∈[2,N]

∫
PN

dτ1̂
N−1

N
∑
i=1

N
∑

j=1,i≠j
∑

ỹi∈{±1}

× ∫
P

dτ̃i
1

N − 1
B(τN , yN ∣τ̃

i, ĵ
N−1ỹi, ĵ

N−1)P(τ̃
i, ĵ
N−1, ỹi, ĵ

N−1, t). (D.39)

Let us split the i, j sums in three contributions: ∑N
i=1∑

N
j=1,i≠j = δi,1∑N

j=2 +δj,1∑N
i=2 +∑

N
i=2∑

N
j=2≠i,

to decompose the expression in three contributions:

B1 = (Ba
1 + Bb

1 + Bc
1) aN−1,N (D.40)

The first two terms, Ba
1 y Bb

1 give a similar contribution: in the first sum, the individual 1
duplicates and gives birth to the new individual 1 and the j one, while the second term is
just the reversed process. Indeed, there are (N − 1) ways of doing so, because when the
first individual is chosen there are other N − 1 that could be its offspring. Hence, the first
term is then computed as follows:

Ba
1 = ∑

yk∈{±1},k∈[2,N]
∫
PN−1

dτ1̂
N−1δi,1

N
∑
j=2
∑

ỹi∈{±1}

× ∫
P

dτ̃i
P(τ̃i, ĵ

N−1, ỹi, ĵ
N−1, t)

N − 1
β(τi − τ̃i)β(τj − τ̃i)g(τ̃i, τ̃

i, ĵ
N−1)δη,1δỹi ,1δyi ,1δyj,1, (D.41)

and using the fact that individuals are indistinguishable, one can rewrite the ∑N
j=2 by

fixing j = 2 and pulling out a N − 1 factor:

Ba
1 = ∑

yk∈{±1},k∈[2,N]
∫
PN

dτ̃1
N ∑

ỹ1∈{±1}
P(τ̃1,2̂

N−1, ỹ1,2̂
N−1, t)β(τ1 − τ̃1)β(τ2 − τ̃1)g(τ̃1, τ̃1,2̂

N−1)

× δη,1δỹ1,1δy1,1δy2,1

= ∑
yk∈{±1},k∈[2,N]

∫
PN−1

dτ̃1,2̂
N−1 ∑

ỹ1∈{±1}
P(τ̃1,2̂

N−1, ỹ1,2̂
N−1, t)g(τ̃1, τ̃1,2̂

N−1)β(τ1 − τ̃1)δη,1δỹ1,1δy1,1δy2,1.

(D.42)

The second contribution of the sum has a very similar form:

Bb
1 = ∑

yk∈{±1},k∈[2,N]
∫
PN−1

dτ1̂
N−1δj,1

N−1

∑
i=2

∑
ỹi∈{±1}

× ∫
P

dτ̃i
P(τ̃i, ĵ

N−1, ỹi, ĵ
N−1)

N − 1
β(τi − τ̃i)β(τj − τ̃i)g(τ̃i, τ̃

i, ĵ
N−1)δη,1δỹi ,1δyi ,1δyj,1

= ∑
yk∈{±1},k∈[2,N]

∫
PN−1

dτ̃1̂,2
N−1 ∑

ỹ1∈{±1}
P(τ̃2,1̂

N−1, ỹ2,1̂
N−1)β(τ1 − τ̃2)g(τ̃2, τ̃2,1̂

N−1)δη,1δỹ2,1δy2,1δy1,1

(D.43)
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where the ∑N
i=2 pulls out a (N − 1) factor by fixing i = 2. By renaming τ̃2 → τ̃1 one obtains:

Bb
1 = ∑

yk∈{±1},k∈[2,N]
∫
PN−1

dτ̃1,2̂
N−1 ∑

ỹ1∈{±1}
P(τ̃1,2̂

N−1, ỹ1,2̂
N−1, t)g(τ̃1, τ̃1,2̂

N−1)

× β(τ1 − τ̃1)δη,1δỹ1,1δy1,1δy2,1. (D.44)

Finally, the third contribution of the sum, ∑N
i=2∑

N
j=2≠i reads:

Bc
1 = ∑

yk∈{±1},k∈[2,N]
∫
PN−1

dτ1̂
N−1

N
∑
i=2

N
∑

j=2≠i
∑

ỹi=∈{±1}

× ∫
P

dτ̃i
P(τ̃i, ĵ

N−1, ỹi, ĵ
N−1)

N − 1
β(τi − τ̃i)β(τj − τ̃i)g(τ̃i, τ̃

i, ĵ
N−1)δη,1δỹi ,1δyi ,1δyj,1

= (N − 2) ∑
yk∈{±1},k∈[2,N]

∫
PN−1

dτ1̂
N−1 ∑

ỹ2∈{±1}

× ∫
P

dτ̃2P(τ̃2,3̂
N−1, ỹ2,3̂

N−1)β(τ2 − τ̃2)β(τ3 − τ̃2)g(τ̃2, τ̃2,3̂
N−1)δη,1δỹ2,1δy2,1δy3,1.

(D.45)

where first sum, ∑N
i=2, pulls a N − 1 factor by fixing i = 2, whereas the second sum, ∑N

j=2≠i,

pulls a N − 1 factor by fixing j = 3. By splitting the following factor dτ1̂
N−1 as dτ1̂,2̂

N−3dτ2dτ3
and performing the integrals ∫P dτ2β(τ2 − τ̃2) = ∫P dτ3β(τ3 − τ̃2) = 1 one gets to:

Bc
1 = (N − 2) ∑

yk∈{±1},k∈[2,N]
∫
PN−2

dτ̃1̂,2,3̂
N−2 ∑

ỹ2∈{±1}
P(τ̃2,3̂

N−1, ỹ2,3̂
N−1)g(τ̃2, τ̃2,3̂

N−1)δη,1δỹ2,1δy2,1δy3,1.

(D.46)

By summing all the three contributions (D.42, D.44, D.46) one obtains the marginalization
of the positive birth contribution:

B1 = 2aN−1,N ∑
yk=±1,k∈[2,N]

∫
PN−1

dτ̃1,2̂
N−1 ∑

ỹ1∈{±1}
P(τ̃1,2̂

N−1, ỹ1,2̂
N−1, t)g(τ̃1, τ̃1,2̂

N−1)

× β(τ1 − τ̃1)δη,1δỹ1,1δy1,1δy2,1 +

+ (N − 2)aN−1,N ∑
yk∈{±1},k∈[2,N]

∫
PN−2

dτ̃1̂,2,3̂
N−2 ∑

ỹ2∈{±1}
P(τ̃2,3̂

N−1, ỹ2,3̂
N−1)g(τ̃2, τ̃2

N−1)δη,1δỹ2,1δy2,1.

(D.47)

The marginalization of second term of the birth-death process, i.e. positive contribution
of death, is straightforward:

B2 = aN+1,N

N+1

∑
i=1

∑
yk∈{±1},k∈[2,N]

∫
PN−1

dτ1̂
N−1

N+1

∑
i=1

∑
yN+1∈{±1}

× ∫
P

dτi
1

N + 1
D(τ î

N , yî
N ∣τN+1, yN+1)P(τN+1, yN+1, t) =

= aN+1,N ∑
yk∈{±1},k∈[2,N]

∫
PN−1

dτ1̂
N−1 ∑

yi∈{±1}
∫
P

dτN+1[µ(τN+1, τN+1)δyN+1,1P(τN+1, yN+1, t)

+ g(τN+1, τN+1)δη,−1δyN+1,1]P(τN+1, yN+1, t)], (D.48)



238 Appendix D. Evolution of tolerance supplementary materials

where the index i has been fixed to i = N + 1. The third term of the master equation
quantifies the negative contribution of reproduction

B3 =

= ∑
yk∈{±1},k∈[2,N]

∫
PN−1

dτ1̂
N−1

N
∑
i=1

N+1

∑
j=1≠i

∑
ỹi∈{±1}

∫
P2

dτ̃idτ̃j
1
N
B(τ̃i,j

N+1, ỹi,j
N+1∣τN , yN)P(τN , yN , t)

= ∑
yk∈{±1},k∈[2,N]

∫
PN−1

dτ1̂
N−1

N
∑
i=1
∑

ỹi∈{±1}
∫
P2

dτ̃idτN+1B(τ̃i,N+1
N+1 , ỹi,N+1

N+1 ∣τNyN)P(τN , yN , t).

where the index j has been fixed to N + 1. By splitting the sum ∑N
i=1 = δi,1 +∑N

i=2, and
integrating the variations kernels one obtains:

B3 = ∑
yk∈{±1},k∈[2,N]

∫
PN−1

dτ1̂
N−1 ∑

ỹ1∈{±1}
P(τN , yN , t)g(τ1, τN)δη,1δỹ1,1δy1,1

+ (N − 1) ∑
yk∈{±1},k∈[2,N]

∫
PN−1

dτ1̂
N−1 ∑

ỹ2∈{±1}
P(τN , yN , t)g(τ2, τN)δη,+1δỹ2,1δy2,1.

(D.49)

where in the second term we have fixed i = 2. Finally, the fourth term, i.e. the negative
contribution of death, is very similar to the second one:

B4 = ∑
yk∈{±1},k∈[2,N]

∫
PN−1

dτ1̂
N−1

N
∑
i=1
∑

yi∈{±1}
D(τ î

N−1, yî
N−1∣τN , yN)P(τN , yN , t), (D.50)

by splitting the sum as ∑N
i=1 = δi,1 +∑N

i=2, one obtains:

B4 = ∑
yk∈{±1},k∈[2,N]

∫
PN−1

dτ1̂
N−1 ∑

y1∈{±1}
[µ(τ1, τN)δy1,1 + g(τ1, τN)δη,−1δy1,1]P(τN , yN)

+ (N − 1) ∑
yk∈{±1},k∈[2,N]

∫
PN−1

dτ1̂
N−1 ∑

y2∈{±1}
[µ(τ2, τN)δy2,1 + g(τ2, τN)δη,−1δy2,1]P(τN , yN).

(D.51)

By putting all terms together (D.38, D.47,D.48, D.49, D.51) and marginalizing also on the
y1 variable one finally obtains the marginalized birth-death contribution:

∆BDϕ(1)(τ, t) = ∑
yk∈{±1},k∈[1,N]

∫
PN−1

dτ2 . . . dτN∆BDP(τN , yN , t)

= 2aN−1,N ∫
PN−1

dτ̃1,2̂
N−1P(τ̃1,2̂

N−1, ỹ1 = 1, t)g(τ̃1, τ̃1,2̂
N−1)β(τ1 − τ̃1)δη,1 +

+ aN−1,N(N − 2)∫
PN−1

dτ̃2dτ1̂,3̂
N−2P(τ̃2

N−1, ỹ2 = 1, t)g(τ̃2, τ̃2
N−1)δη,1

+ aN+1,N ∫
PN−1

dτ1̂
N−1∫

P
dτN+1 [µ(τN+1, τN+1)+ g(τN+1, τN+1)δη,−1]P(τN+1, yN+1 = 1, t)

− ∫
PN−1

dτ1̂
N−1 [g(τ1, τN)δη,1P(τN , ỹ1 = 1, t)+ (µ(τ1, τN)+ g(τ1, τN)δη,−1)P(τN , y1 = 1, t)]

− (N − 1) ⋅∫
PN−1

dτ1̂
N−1

× [g(τ2, τN)δη,1P(τN , ỹ2 = 1, t)+ (µ(τ2, τN)+ g(τ2, τN)δη,−1)P(τN , y2 = 1, t)]

− ΛN(t)ϕ(1)(τ, t). (D.52)
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Moran Process Contribution The marginalization of the Moran process contribution
(when N = K)

∆Mϕ(1)(τ, y, t) = ∑
yk∈{±1},k∈[2,N]

∫
PN−1

dτ2 . . . dτN∆MP(τN , yN , t). (D.53)

is analogous to the birth-death one. It is necessary to consider separately the positive and
negative contributions,

∆Mϕ(1)(τ, y, t) = M1 −M2. (D.54)

The first one reads:

M1 = ∑
yk∈{±1},k∈[2,N]

∫
PN−1

dτ2 . . . dτN

N
∑
i=1

N
∑

j=1,j≠i
∑

ỹi∈{±1}
∑

ỹj∈{±1}

× ∫ dτ̃idτ̃jWM(τN , yN ∣τ̃
ij
N , ỹij

N)P(τ̃
ij
N , ỹij

N , t). (D.55)

As done before, one can split the sum as ∑N
i=1∑

N
j=1,i≠j = δi,1∑N

j=2 +δj,1∑N
i=2 +∑

N
i=2∑

N
j=2,j≠i to

respectively separate three contributions:

M1 = Ma
1 +Mb

1 +Mc
1. (D.56)

The calculation is identical to the first term of the birth-death part (D.47). The three
contributions read:

Ma
1 = Mb

1 = ∑
yk∈{±1},k∈[2,N]

∫
PN

dτ̃1,2
N ∑

ỹ1∈{±1}
P(τ̃1,2

N , ỹ1,2
N , t)g(τ̃1, τ̃1,2

N )β(τ1 − τ̃1)δη,1δỹ1,1δy1,1δy2,1,

Mc
1 = (N − 2) ∑

yk∈{±1},k∈[2,N]
∫
PN

dτ1̂
N ∑

ỹ2∈{±1}

× ∫
P

dτ̃2P(τ̃2,3
N , ỹ2,3

N )β(τ2 − τ̃2)β(τ3 − τ̃2)g(τ̃2, τ̃2,3
N−1)δη,1δỹ2,1δy2,1δy3,1.

(D.57)

By summing them all, one obtains:

M1 = ∑
yk∈{±1},k∈[2,N]

∫
PN

dτ̃1,2
N ∑

ỹ1∈{±1}
P(τ̃1,2

N , ỹ1,2
N , t)g(τ̃1, τ̃1,2

N )β(τ1 − τ̃1)δη,1δỹ1,1δy1,1δy2,1

+ (N − 2) ∑
yk∈{±1},k∈[2,N]

∫
PN

dτ1̂
N ∑

ỹ2∈{±1}

× ∫
P

dτ̃2P(τ̃2,3
N , ỹ2,3

N )β(τ2 − τ̃2)β(τ3 − τ̃2)g(τ̃2, τ̃2,3
N−1)δη,1δỹ2,1δy2,1δy3,1.

(D.58)
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The marginalization of the negative term is analogous to the birth-death one (D.49), lead-
ing to:

M2 = ∑
yk∈{±1},k∈[2,N]

∫
PN−1

dτ1̂
N ∑

ỹ1∈{±1}
P(τN , yN , t)g(τ1, τN)δη,1δỹ1,1δy1,1

+ (N − 1) ∑
yk∈{±1},k∈[2,N]

∫
PN−1

dτ1̂
N−1 ∑

ỹ2∈{±1}1
P(τN , yN , t)g(τ2, τN)δη,1δỹ2,1δy2,1.

By summing the two terms and summing over y1one obtains the marginalized contribu-
tion of the Moran process:

∆Mϕ(1)(τ, t) =

= ∑
yk∈{=±1},k∈[2,N]

∫
PN

dτ̃1,2
N ∑

ỹ1∈{±1}
P(τ̃1,2

N , ỹ1,2
N , t)g(τ̃1, τ̃1,2

N )β(τ1 − τ̃1)δη,1δỹ1,1δy1,1δy2,1

+ (N − 2) ∑
ykin{±1},k∈[2,N]

∫
PN

dτ1̂
N ∑

ỹ2in{±1}

× ∫
P

dτ̃2P(τ̃2,3
N , ỹ2,3

N )β(τ2 − τ̃2)β(τ3 − τ̃2)g(τ̃2, τ̃2,3
N−1)δη,1δỹ2,1δy2,1δy3,1

− ∑
ykin{±1},k∈[2,N]

∫
PN−1

dτ1̂
N ∑

ỹ1=±1
P(τN , yN , t)g(τ1, τN)δη,1δỹ1,1δy1,1

− (N − 1) ∑
ykin{±1},k∈[2,N]

∫
PN−1

dτ1̂
N−1 ∑

ỹ2in{±1}
P(τN , yN , t)g(τ2, τN)δη,2δỹ2,1δy2,1δy3,1.(D.59)

Growing and Dormant state contribution Using the definition of this part of the pro-
cess from the master eq.(D.31, D.32):

∆GDϕ(1)(τ, y, t) = ∑
yjin{±1},j∈[2,N]

∫
PN−1

dτ2 . . . dτN∆GDP(τN , yN , t) =

= ∑
yjin{±1},j∈[2,N]

∫
PN−1

dτ1̂
N

N
∑
i=1

∑
ỹiin{±1}

× [WGD(yN ∣ỹ
i
N , τN)P(τN , ỹi

N , t)−WGD(ỹi
N ∣yN , τN)P(τN , yN , t)] =

= ∑
yjin{±1},j∈[2,N]

∫
PN−1

dτ1̂
N−1

N
∑
i=1

∑
ỹiin{±1}

× [{δỹi ,−1δyi ,1 A(τi, τN)+ δỹi ,1δyi ,−1δη,−1S(τi, τN)}P(τN , ỹi
N , t)

− {δỹi ,1δyi ,−1A(τi, τN)+ δỹi ,−1δyi ,1δη,−1S(τi, τN)}P(τN , yN , t)].,

(D.60)

and splitting the sum in i as ∑N
i=1 = ∑

N
i=1 δi,1 +∑N

i=2, the expression is composed by two
terms:

∆GDϕ(1)(τ, y, t) = G1 +G2, (D.61)
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as defined now. Let us consider first the second term, which takes into account the tran-
sitions in which individual 1 is not involved:

G2 = ∑
yjin{±1},j∈[2,N]

∫
PN−1

dτ1̂
N−1

N
∑
i=2

∑
ỹiin{±1}

× {δỹi ,−1δyi ,1 A(τi, τN)+ δỹi ,1δyi ,−1δη,−1S(τi, τN)}P(τN , ỹi
N , t)

− {δỹi ,1δyi ,−1A(τi, τN)+ δỹi ,−1δyi ,1δη,−1S(τi, τN)}P(τN , yN , t)]. (D.62)

Using individual indistinguishability, the index i is fixed to i = 2 and removing the sum
∑N

i=2 by pulling out a factor (N − 1):

G2 = (N − 1) ∑
yjin{±1},j∈[2,N]

∫
PN−1

dτ1̂
N−1 ∑

ỹ2in{±1}

× [{δỹi ,−1δy2,1 A(τ2, τN)+ δỹ2,1δy2,−1δη,−1S(τ2, τN)}P(τN , ỹ2
N , t)

− {δỹ2,1δy2,−1A(τ2, τN)+ δỹ2,−1δy2,1δη,−1S(τ2, τN)}P(τN , yN , t)], (D.63)

and by marginalizing this expression in yj, j = 3, . . . , N one obtains:

G2 = (N − 1) ∑
y2in{±1}

∫
PN−1

dτ1̂
N−1 ∑

ỹ2in{±1}

× [{δỹ2,−1δy2,1 A(τ2, τN)+ δỹ2,1δy2,−1δη,−1S(τ2, τN)}P(τN , y1, ỹ2, t)

− {δỹ2,1δy2,−1A(τ2, τN)+ δỹ2,−1δy2,1δη,−1S(τ2, τN)}P(τN , y1, y2, t)]. (D.64)

Obviously, if the individual before the transition was in a state, ỹ2in {±1}, after it the state
is opposite one y2in {±1}, implying that the sum of the contribution is zero:

G2 = (N − 1)∫
PN−1

dτ1̂
N−1 (D.65)

× [{A(τ2, τN)P(τN , y1, ỹ2 = −1, t)− S(τ2, τN)P(τN , y1, y2 = +1, t)}y2=+1,ỹ2=−1

+ {S(τ2, τN)P(τN , y1, ỹ2 = +1, t)− A(τ2, τN)P(τN , y1, y2 = −1, t)}y2=−1,ỹ2=+1] = 0.

Thus, the first term ∑N
i=1 δi,1, which takes in count the transitions in which individual 1 is

involved, is the only net contribution to the growing-dormant part:

∆GDϕ(1)(τ, y, t) = G1 = ∑
yjin{±1},j∈[2,N]

∫
PN−1

dτ1̂
N−1 ∑

ỹiin{±1}
[{δỹ1,−1δy1,1A(τ1, τN)+

+δỹ1,1δy1,−1δη,−1S(τ1, τN)}P(τN , ỹ1
N , t)

− {δỹ1,1δy1,−1A(τ1, τN)+ δỹ1,−1δy1,1δη,−1S(τ1, τN)}P(τN , yN , t)].

This is because index 1 is the only one that remains when function P(τN , yN , t) is marginal-
ized, i.e., τ = τ1. It is possible to separate the previous equation in two contributions:

∆GDϕ(1)(τ, y, t) = ∆GDϕ(1)(τ, y = +1, t)+∆GDϕ(1)(τ, y = +1, t), (D.66)
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where

∆GDϕ(τ, y = +1, t) = ∑
yjin{±1},j∈[2,N]

∫
PN−1

dτ1̂
N−1 (D.67)

× [A(τ1, τN)P(τN , y1 = +1, t)− S(τ1, τN)P(τN , y1 = −1, t)],

and

∆GDϕ(τ, y = −1, t) = ∑
yjin{±1},j∈[2,N]

∫
PN−1

dτ1̂
N−1 (D.68)

× [S(τ1, τN)P(τN , ỹ1 = +1, t)− A(τ1, τN)P(τN , y1 = −1, t)].

Given that the rates do not depend on the variable y, one can marginalize in the variables
using the sum ∑yjin{±1},j∈[2,N] and obtain:

∆GDϕ(1)(τ, t) = ∆GDϕ
(1)
G (τ, t)+∆GDϕ

(1)
D (τ, t), (D.69)

where the growing and dormant densities have been defined as:

ϕ
(1)
G (τ, t) ≡ ϕ(1)(τ, y = +1, t), (D.70)

ϕ
(1)
D (τ, t) ≡ ϕ(1)(τ, y = −1, t); (D.71)

while their evolution is given by:

∆GDϕG(τ, t) ≡ (D.72)

∫
PN−1

dτ1̂
N−1[A(τ1, τN)P(τN , ỹ1 = −1, t)− S(τ1, τN)P(τN , y1 = +1, t)]

∆GDϕD(τ, t) ≡ (D.73)

∫
PN−1

dτ1̂
N−1[S(τ1, τN)P(τN , y1 = +1, t)− A(τ1, τN)P(τN , ỹ1 = −1, t)].

D.2.2 Mean Field Approximation

To proceed further, one can first apply the individual rate approximation, i.e the rates
depend just on the single individual traits:

g(τi, τN) = g(τi), µ(τi, τN) = µ(τi), A(τi, τN) = A(τi), S(τi, τN) = S(τi).(D.74)

Thanks to this approximation it is possible to integrate over most of individuals traits,
but it leaves the dependence on the two-cells density as a kind of "correlation kernel" in
the birth-death contribution eq.(D.52):

∆BDϕ(1)(τ1, t) = 2aN−1,Nδη,1∫
P

ϕ
(1)
G (τ̃1, t)g(τ̃1)β(τ1 − τ̃1)dτ̃1

+ aN−1,N(N − 2)∫
P

dτ2ϕ(2)(τ1, τ2, y2 = 1, t)g(τ2)δη,1

+ aN+1,N[µ̄N+1 + δη,−1 ḡN+1]ϕ(1)(τ1, t)− [µ(τ1)+ g(τ1)]ϕ
(1)
G (τ1, t)

− (N − 1)∫
P

dτ2 [g(τ2)+ µ(τ2)]ϕ(2)(τ1, τ2, y2 = 1, t)−ΛN(t)ϕ(1)(τ, t);

(D.75)
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where we have used the definition of growing/dormant densities (D.70), the 2 − cells
density function (D.35) and the fact that 1 = δη,1 + δη,−1.
Similarly for the Moran process contribution (D.59) reads:

∆Mϕ(1)(τ1, t) = 2∫
P

dτ̃1ϕ(1)(τ̃1)g(τ̃1)β(τ1 − τ̃1)− g(τ1)ϕ
(1)
G (τ1, t)

+ ∫
P2

dτ̃2dτ2ϕ(2)(τ1, τ̃2, ỹ2 = 1, t)g(τ̃2) [(N − 1)β(τ2 − τ̃2)− (N − 1)δ(τ2 − τ̃2)] .(D.76)

On the contrary, in the marginalized growing-dormant part, eq.(D.72-D.73) , the rate ap-
proximation (D.74) is enough to reach the final expression:

∆GDϕ
(1)
G (τ, t) = A(τ)ϕ(1)D (τ, t)− δη,−1S(τ)ϕ(1)G (τ, t), (D.77)

∆GDϕ
(1)
D (τ, t) = δη,−1S(τ)ϕ(1)G (τ, t)− A(τ)ϕ(1)(τ, t). (D.78)

To simplify further the birth-death (D.75) and Moran (D.76) part one proceeds with a
second mean field approximation. Specifically, we assume that the correlation between
individuals is negligible. This is expected to be true in the thermodynamic limit N →∞,
see appendix B.3.5 In such a case one can factorize the probability distribution:

P(τ1, . . . , τN) = ϕ(N)(τ1, . . . , τN) =
N
∏
i=1

ϕ(τi), (D.79)

and the 1-cell density can be replaced by its mean-field approximation (removing also
the individual-subindexτ1):

ϕ(1)(τ, t) ≡ ϕ(τ, t), (D.80)

ϕ(2)(τ1, τ2, t) ≡ ϕ(τ1, t)ϕ(τ2, t). (D.81)

An important consequence of this simplification is that the normalization coefficients
aN,M fulfills the relationship:

aN,M =
∫PN dτNψ(τN , t)
∫PM dτMψ(τM, t)

= ∏
N
i=1 ∫P dτiψ(τi, t)

∏M
j=1 ∫PM dτjψ(τj, t)

= aN−M, (D.82)

and, moreover, the different marginal averages no longer dependent on the system size:

ḡN = ∫
PN

dτN g(τk, τN)P(τN , yi, t)δyk ,1

=
N
∏
i=1
∫

P
dτig(τk)P(τN , yi, t)δyk ,1 = ∫

P
dτkg(τk)ϕ(τk, t)δyk ,1 ≡ ḡ. (D.83)
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Hence, the birth-death term (D.75) becomes:

∆BDϕ(τ, t) =
2δη,1

a ∫
P

dτ̃1ϕ(τ̃, t)g(τ̃1)β(τ1 − τ̃1)+
(N − 2)

a
ϕ(τ1, t)ḡδη,1 +

+ a [µ̄ + ḡδη,−1]ϕ(τ, t)− (g(τ)+ µ(τ))ϕG(τ, t)− (N − 1)(ḡ + µ̄)ϕ(τ, t)

−
⎧⎪⎪⎨⎪⎪⎩

N(1
a
− 1)ḡδη,1 + µ̄(a −N)− (N − a)ḡδη,−1

⎫⎪⎪⎬⎪⎪⎭
⋅ ϕ(τ, t) =

=
2δη,1

a
(∫
P

dτ̃1ϕ(τ̃, t)g(τ̃1)β(τ1 − τ̃1)− ḡϕ(τ, t))

− (δη,1 + δη,−1) (g(τ)ϕG(τ, t)− ḡϕ(τ, t))+
− (µ(τ))ϕG(τ, t)− µ̄ϕ(τ, t)) . (D.84)

In practical terms ϕ(τ, t) is a frequency, and, for this reason, one can evaluate the normal-
ization constant a as 1

a =
N−1

N . Furthermore, by implementing the mean-field approxima-
tion it has been assumed the thermodynamic limit N → ∞, i.e. infinite population size,
hence the the normalization constant can be approximated as: N−1

N ≈ 1. Thanks to all of
these, equation (D.84) simplifies to:

∆BDϕ(τ, t) = δη,1 (2∫
P

dτ̃1ϕ(τ̃, t)g(τ̃1)β(τ1 − τ̃1)− g(τ)ϕG(τ, t)− ḡϕ(τ, t))

− δη,−1(g(τ)ϕG(τ, t)− ḡϕ(τ, t))− (µ(τ)ϕG(τ, t)− µ̄ϕ(τ, t)). (D.85)

Importantly, if one applies the mean-field approximation (D.79) to the Moran process
contribution (D.76) it coincides with the contribution of the birth-death process in the
fresh medium (see [77]):

∆Mϕ(τ, t) = δη,1 (2∫
P

dτ̃1ϕ(τ̃, t)g(τ̃1)β(τ1 − τ̃1)− g(τ)ϕG(τ, t)− ḡϕ(τ, t)) . (D.86)

Thus, in the mean-field description, i.e. in the thermodynamics limit, it is not necessary
to take into account if the population size is constant or varying: ∆Dϕ(τ, t) = ∆BDϕ(τ, t).
By using the decomposition in growing and dormant densities (D.70) in the birth-death
part, it is possible to separate such contribution in two equations:

∆BDϕG(τ, t) = δη,1 (2∫
P

dτ̃1ϕ(τ̃, t)g(τ̃1)β(τ1 − τ̃1)− (g(τ)+ ḡ)ϕG(τ, t))

− δη,−1(g(τ)− ḡ)ϕG(τ, t)− (µ(τ)− µ̄)ϕG(τ, t), (D.87)
∆BDϕD(τ, t) = −(ḡ[δη,1 − δη,−1]− µ̄)ϕD(τ, t). (D.88)

By summing the birth-death (D.87)and the growing-dormant (D.77) contributions, and
by rewriting the deltas as

δη,1 =
η + 1

2
, δη,−1 =

1− η

2
(D.89)
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one finally obtains the general mean-field equations :

ϕ̇G(τ, t) =
1+ η

2
[− g(τ)ϕG(τ, t)+ 2∫

∞

0
dτ̃g(τ̃)β(τ − τ̃)ϕG(τ̃, t)+

− ϕG(τ, t)∫
∞

0
dτ̃ϕGg(τ̃)(τ̃, t)]

−
1− η

2
[(g(τ)−∫

∞

0
dτ̃g(τ̃)ϕG(τ̃, t))+ S(τ)]ϕG(τ, t)

+ A(τ)ϕD(τ, t)− µ(τ)ϕG(τ, t)+ µ̄ϕ(τ, t) (D.90)

ϕ̇D(τ, t) = −(η∫
∞

0
dτ̃g(τ̃)ϕG(τ̃, t)+ A(τ))ϕD(τ, t) + S(τ)

1− η

2
ϕG(τ, t)+ µ̄ϕD(τ, t).

(D.91)

By adding these two eqs. one can easily compute the total marginalized distribution :

ϕ̇(τ, t) = ϕ̇G(τ, t)+ ϕ̇D(τ, t)

=
1+ η

2
(2∫

∞

0
dτ̃g(τ̃)β(τ − τ̃)ϕG(τ̃, t)− g(τ)ϕG(τ, t)

− [∫
∞

0
dτ̃g(τ̃)ϕG(τ̃, t)]ϕ(τ, t))

−
1− η

2
(g(τ)ϕG(τ, t)− ḡϕ(τ, t))− µ(τ)ϕG(τ, t)+ µ̄ϕ(τ, t). (D.92)

Finally, fixing the rates as

g(τi) = b = const, µ(τi) = 0, A(τi) = 1/τi , S(τi) = s = const; (D.93)

and by inserting them in the mean-field equation (D.90) one finds the equations in chap-
ter 4.

D.3 Small Variation Approximation

When variations are small, it is possible to perform a diffusive approximation to equation
(D.92). Specifically, we consider the term proportional to the variation kernel, β(τ − τ̃; τ̃),
which regulates the probability of changing from trait τ̃ to τ during reproduction, and
expand it around τ̃ ∼ τ . Note that β depends on the magnitude of variation, δ = τ − τ̃,
but can also depend explicitly on the value of the starting trait, τ̃, (i.e. state dependent,
or multiplicative variation). Given that β is a probability distribution of variation, hence:
∫
∞

−τ̃ dδβ(δ; τ̃) = 1. Furthermore, one can assume it to be symmetric in δ: β(δ; τ̃) = β(−δ; τ̃);
and with finite first and second moments:

µ(τ̃) = ∫
∞

−τ̃
dδδβ(δ; τ̃), σ(τ̃) = ∫

∞

−τ̃
dδδ2β(δ; τ̃). (D.94)

Let us separate the mean-field equation for the birth-death change of the growing indi-
vidual as(D.87) in two parts:

∆BDϕG(τ, t) = ∆1ϕG(τ, t)+∆2ϕG(τ, t), (D.95)
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where the first part involves the local variation events:

∆1ϕG(τ, t) = (1+ η) (∫
∞

0
dτ̃ϕG(τ̃, t)g(τ̃)β(τ − τ̃; τ̃)− g(τ)ϕG(τ, t)) , (D.96)

and the second involves the remaining rates:

∆2ϕG(τ, t) = η(g(τ)− ḡ)ϕG(τ, t)− (µ(τ)− µ̄)ϕG =
= [(g(τ)− µ(τ))− (ḡ − µ̄)]ϕG(τ, t), (D.97)

where the deltas have been replaced as in eq.(D.89). Considering now ∆1(D.96), which
does conserve the probability and has the typical structure of a master equation [92]):

∆1ϕG(τ, t) = (η + 1)∫
∞

0
dτ̃[W(τ̃, τ)ϕG(τ̃, t)−W(τ, τ̃)ϕ(τ, t)], (D.98)

with the "effective" stochastic transition rate from phenotype τ̃ to τ:

W(τ̃, τ) = g(τ̃)β(τ − τ̃; τ̃). (D.99)

Thus it is possible to perform a Kramers-Moyal expansion of eq.(D.98) around τ = τ̃.
The final trait can be written as the initial one plus the "jump" amplitude δ: τ = τ̃ + δ,
allowing one to rewrite the transition rate as function just of the initial trait and of the
jump amplitude:

W(τ̃, τ) = W(τ − δ, τ) ∶=W(τ − δ; δ) = g(τ − δ)β(δ; τ − δ). (D.100)

Hence, equation(D.96) can be rewritten as:

∆1ϕG(τ, t) = (η(t)+ 1)∫
τ

−∞
dδ[W(τ − δ; δ)ϕ(τ − δ, t)−W(τ;−δ)ϕ(τ, t)], (D.101)

where we have performed the following change of variable:

∫
∞

0
dτ̃W(τ̃, τ)ϕG(τ̃, t) = −∫

τ−∞

τ
dδW(τ − δ; δ)ϕ(τ − δ, t) = ∫

τ

−∞
dδW(τ − δ; δ)ϕ(τ − δ, t).

One can consider δ as a small change in the first variable of the rate, and Taylor expand
uo to second order:

W(τ − δ; δ)ϕ(τ − δ, t) = W(τ; δ)ϕ(τ, t)− δ∂τW(τ; δ)ϕ(τ, t)+

+ δ2

2
∂2

τW(τ; δ)ϕ(τ, t)+O(δ3). (D.102)

Inserting it back in the equation and noting that W(τ; δ) =W(τ;−δ), one obtains:

∆1ϕG(τ, t) = (η + 1) (−∂τm1(τ)ϕG(τ, t)+ ∂2
τm2(τ)ϕG(τ, t)) , (D.103)

where

m1(τ) = 2∫
τ

−∞
dδδβ(δ; τ)g(τ)ϕG(τ, t) = θ(τ)g(τ)ϕG(τ, t), (D.104)

m2(τ) = ∫
τ

−∞
dδδ2β(δ; τ)g(τ)ϕG(τ, t) = σ2(τ)

2
g(τ)ϕG(τ, t). (D.105)
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Plugging the eq. for ∆1 (D.103) into eq.(D.95), and then inserting it back in the mean-field
equation for the growing population (D.92), one obtains:

∂tϕG(τ, t) = ({g(τ)η − µ(τ)}− {ḡη − µ̄})ϕG(τ, t)+

− (1+ η)∂τθ(τ)g(τ)ϕG(τ, t)+
1+ η

2
∂2

τσ2(τ)g(τ)ϕG(τ, t)

+ A(τ)ϕD(τ, t)−
1− η

2
S(τ)ϕG(τ, t). (D.106)

By adding ∂tϕG (D.106) and ∂tϕD (D.91) one obtains the following expression for ∂tϕ(τ, t)
within the small-variation approximation:

∂tϕ(τ, t) = {g(τ)η − µ(τ)}ϕG(τ, t)

− {ḡη − µ̄}ϕ(τ, t)+

− (1+ η)∂τθ(τ)g(τ)ϕG(τ, t)+
1+ η

2
∂2

τσ2(τ)g(τ)ϕG(τ, t). (D.107)

By choosing the rates as in main text(D.93), one obtains the equations for the growing
and dormant densities:

ϕ̇G(τ, t) = b (1−∫
∞

0
dτ̃ϕG(τ̃, t))ϕG(τ, t)− s

(1− η)
2

ϕG(τ, t)+ 1
τ

ϕD(τ, t)+

− b(1+ η(t))∂τθ(τ)ϕG(τ, t)+ b (
1+ η

2
) ∂2

τσ2(τ)ϕG(τ, t), (D.108)

ϕ̇D(τ, t) = −1
τ

ϕD(τ, t)+ s
(1− η)

2
ϕG(τ, t)− bϕD(τ, t) ⋅∫

∞

0
dτ̃ϕG(τ̃, t). (D.109)

In addition, one can define an effective fitness function f (τ, t) ≡ b ϕG(τ,t)
ϕ(τ,t) , leading to the

following expression of eq.(D.107) :

∂tϕ(τ, t) = η(t) ( f (τ, t)− f̄ )ϕ(τ, t)− (1+ η(t))∂τθ(τ) f (τ)ϕ(τ, t)+

+
1+ η(t)

2
∂2

τσ2(τ) f (τ)ϕ(τ, t). (D.110)

This expression for the marginal probability distribution is a version of the celebrated
Crow-Kimura selection-mutation equation for "infinite alleles" in population genetics
[404, 77]. From here on, we refer eq. (D.110) as the generalized Crow-Kimura equation
(GCK). The first term of this equation, ϕ (τ, t) ( f (τ, t)− f ), is a replicator-like term for
continuous phenotypes. The replicator dynamics captures the essence of selection. If a
phenotype τ has fitness which is below the average fitness f it will tend to disappear,
whereas if it is above f it will tend to expand through the population. The second term,
that resembles the divergence of a current from a Fokker-Planck eq.([92]), captures the
effects of mutation/variation:

∂tϕ(τ, t) = η(t) ( f (τ, t)− f̄ )ϕ(τ, t)− ∂τ J(τ, t) (D.111)

J(τ, t) = (1+ η(t))θ(τ)g(τ)ϕG(τ, t)− (
1+ η(t)

2
) ∂τσ2(τ)g(τ)ϕG(τ, t). (D.112)

Note that this term has the typical structure of a conserved local probability current of a
Fokker-Planck equation, modeling variations as a reaction-diffusion dynamics [77] and
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then allowing ϕ(τ, t) to move across the phenotype space. Let us note that the main struc-
tural difference with the classic Crow-Kimura eq. is the presence of the fitness function
in the variation terms. This dependence is typical of phenotypic evolution and couple
together ecological and evolutionary timescales.

Consider the two types of variation kernel presented in chapter 4. The additive case
has no direct dependence on the initial phenotype; so we choose :

βA(τ − τ̃) = e
−
(τ−τ̃)2

2α2
A

ZA
, ZA =

√
2αA ∫

∞

− τ̃√
2αA

e−y2/2dy = αA

√
π√
2

Er f c(− τ̃√
2αA
) , (D.113)

where, due to the truncation in the domain [−τ̃,∞], the normalization function ZA presents
a dependence on the phenotypic state and Er f c stands for the complementary error func-
tion. Its first two cumulants are:

θA(τ) =
∫
∞

−τ δe
− δ2

2α2
A

ZA
dδ = 2αAe

− τ2

2α2
A Er f c(− τ√

2αA
)
−1

, (D.114)

σ2
A(τ) = α2

A

⎡⎢⎢⎢⎢⎣
1− Er f c( τ√

2αA
)
−1

e
− τ2

2α2
A
⎛
⎝

τ√
2αA
− e−

τ2

2α2 Er f c( τ√
2αA
)
−1⎞
⎠

⎤⎥⎥⎥⎥⎦
.(D.115)

For sufficiently small α it is possible to ignore the Er f c function, such that:

θA(τ) ≈ 0 σ2
A(τ) ≈ α2

A. (D.116)

On the other hand, is the multiplicative case we consider a Gaussian with the variance
proportional to the phenotype:

βM(τ − τ̃; τ̃) = e
−
(τ−τ̃)2
2α2

M τ̃2

ZM
, (D.117)

ZM = ∫
∞

−τ̃
dδe
− δ2

2α2
M τ̃2 =

√
2αMτ̃∫

∞

− 1√
2αM

e−y2
dy = αMτ̃

√
π

2
Er f c(− 1√

2αM
) ;

(D.118)

whose first two moments are:

θM(τ) =
√

2
π

ταMe
− 1

2α2
M Er f c(− 1√

2αM
)
−1

,

σ2
M(τ) = α2

Mτ2
⎡⎢⎢⎢⎢⎣
1− Er f c(− 1√

2αM
)
−1

e
− 1

2α2
M
⎛
⎝

1√
2αM

− e
− 1

2α2
M Er f c(− 1√

2αM
)
−1⎞
⎠

⎤⎥⎥⎥⎥⎦
.

(D.119)

For sufficiently small α it is possible to approximate them to:

θM(τ) ≈ 0, σ2
M(τ) ≈ τ2α2

M. (D.120)
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D.4 Deviation between theory and simulations

Systematic deviations between theory and simulations have been reported in chapter 4.
Hence, one needs to check if the performed approximations are valid for the range of
parameters used in simulations.

D.4.1 Validity of the small variation approximation and border effects

FIGURE D.1: Validity of the small variation approximation in the additive case. Evolution of the
first three cumulants (K1, K2, K3) in a asymptotic cycle calculated by the numerical integration of
both the general mean-field equation (D.92 )(solid line) and the generalized Crow-Kimura equa-
tion (D.110)(points) for two different values of αA, in (A) αA = 0.16h and in (B) αA = 0.035h. The
first variation value is the best fit the experimental results (main text), while the second causes
negligible border effects. In both cases the small-variation approximation is a good approxima-
tion. Parameter values: Ta = 3h, the rest of the parameters, as well as the initial conditions, are
kept fixed as specified in chapter 4).

In this section we explore the validity of two different approximations used in the
previous section: (i) the small-variation approximation, that leads from the general mean
field equation (D.92) to the GCK equation (D.110), and (ii) the neglection of the border
effects in the truncated domain δ ∈]− τ̃,∞[, (D.116-D.120) in equation (D.110).

Validity of the small variation approximation. The generalized Crow-Kimura equa-
tion (D.110) is derived through a diffusion approximation of the full mean-field equation
(D.92). This approximation is valid only in the limit of small variation, thus here we ver-
ify if the optimal values of αA and αM, i.e. the ones that best fits to experimental results,
meet this condition. At a practical level, the objective of this section is to compare the
results given by the general mean-field eq. (D.92) and the generalized Crow-Kimura eq.
(D.107) for the full density both in the additive (D.114) and multiplicative(D.119) case. In
order to quantitatively compare these two equations one can define the parameter δ:

δas.(α) ≡ 1
M

M
∑
j=0

δas.
j =

1
M

M
∑
j=0
∣⟨τG.M.F.

j ⟩− ⟨τG.C.K.
j ⟩∣ (D.121)

where M + 1 = Tmax
∆t + 1 is the number of measures taken through a whole cycle (note that

+1 is added since measures starts at t = 0 ), Tmax = 23h is the total duration of one single
experimental cycle, ∆t = 0.5h is the interval between measures, ⟨τG.M.F.

j ⟩ and ⟨τG.C.K.
j ⟩ are

the mean of the general mean field and the generalized Crow-Kimura equation respec-
tively at time j ⋅∆t, and super-index as. in δas.(α) points out that comparison is performed
in the asymptotic state (see Fig (D.5) for a visual definition of δas.).

On the one hand, the numerical integration in the additive amplitude case (D.113) is
straightforward. Fig D.1 shows the time evolution of the first three cumulants (K1,K2 and
K3) of ϕ(t, τ) along a cycle in the asymptotic state both for the general mean field and
the GCK equation. Moreover, in Fig D.2 the parameter δ is plotted for different variation
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amplitudes αA, showing the range of applicability of the small-variation approximation.
On the other hand, the multiplicative case presents some subtleties since the multiplica-

FIGURE D.2: Range of validity of the small variation approximation in the additive scenario.
Systematic comparison of equations (D.110) and (D.92) via parameter (D.121) for different αA val-
ues, both axis in log−scale. Note that the deviation monotonically increases with αA. In particular
for αA = 0.16h, the one used in chapter 4 results, the deviation δst. = (3.5 ± 0.2) ⋅ 10−2h, (D.121) is
small enough to use equation (D.110). Parameter values: Ta = 3h, the other as in chapter 4.

tive variation kernel (D.117) has a singularity in τ = 0. In addition, since its variance is
proportional to α ⋅ τ̃, one has to numerically impose that:

lim
τ̃→0

β(τ − τ̃) = δ(τ − τ̃). (D.122)

Individuals in the vicinity of τ̃ = 0 experience either negligible or null variations after
reproduction, thus one can safely decompose the variation contribution of the general
mean field equation (D.92) in two terms:

2δη,1b∫
∞

0
dτ̃β(τ − τ̃)ϕG(τ̃, t) =

= 2δη,1b (∫
ϵ

0
dτ̃δ(τ − τ̃)ϕG(τ̃, t)+∫

∞

ϵ
dτ̃β(τ − τ̃)ϕG(τ̃, t)) (D.123)

where ϵ is a small parameter that delimits the vicinity of τ̃ = 0, such that variations of
individuals with τ̃ < ϵ can be considered as null. The initial condition ϕ(t = 0, τ) =
ϕG(t = 0, τ) is defined by cases: it is a truncated Gaussian (see methods in chapter 4),
with the peak µϵ, and standard deviation is σ = 1h 16min for τ ≥ ϵ, and it is set to zero for
0 < τ < ϵ. Fig (D.3) shows the integration of the mean-field equation with this numerical
prescription and it is compared with the GCK eq. In conclusion, the validity of the small-
variation approximation both in the additive and multiplicative case is confirmed.

Border effects. We also study the importance of border effects, i.e the dependence on
τ̃ (initial phenotype) in the normalization/moments of β given by the truncation of the
probability density in ]− τ̃,∞[. Equivalently, we check if their negligence, eqs.(D.116,D.120),
is a good approximation in the range of variation amplitudes αA and αM that fits the ex-
perimental results. In Fig (D.4) the exact moments, (D.114-D.119), are compared with the
approximated ones,(D.116,D.120), both in the additive and multiplicative case. Clearly,
the results indicate the border effects are considerable in the additive case, but negligible
in the multiplicative one.
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FIGURE D.3: Validity of the small variation approximation in the multiplicative scenario. Evo-
lution of the first three cumulants (K1, K2, K3) in a asymptotic cycle calculated by the numerical
integration of both the general mean-field equation (D.92 )(solid line) and the generalized Crow-
Kimura equation (D.110)(points). The generalized Crow-Kimura equation is a good approxima-
tion of the general mean-field equation for the αM-value that best fits the experimental results,
e.g.δst. = (1.5 ± 0.3) ⋅ 10−3h. Parameter values: Ta = 3h, αM = 0.048, the remaining are specified in
chapter 4.

FIGURE D.4: Border effects in the variation functions. First (A-B) and second (C-D) moment
of the variation functions as function of the trait τ in additive (left) and multiplicative (right)
variation cases. In (A) the additive case, θA(τ) is positive in τ = 0 but decays rapidly to zero as
τ increases, such that it is sufficient to restrict τ axis between 0 and 1. In (C) the same is shown
for the second moment σ2

A(τ). Note that the magnitude of the dependence decreases with αA).
Nevertheless, the value used in chapter 4, αA = 0.16h, is too large to neglect (D.116) this effect in
the generalized Crow-Kimura eq. On the other hand, in the multiplicative case chapter 4 value,
αM = 0.048, is small enough to avoid the border effects in the GCK eq. In (B) one can observe
that θA(τ) almost vanishes, and in (C) that the exact moment σ2

M(τ) coincides quite well with the
approximation αMτ2(D.120).
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D.4.2 Finite-size effects

Here we complement the analysis of the finite-size effects of chapter 4 with the number
of growing and dormant individuals as a function of time during a asymptotic cycle
(Fig. D.9). In addition, the definition of the parameter δst.(Ta) (see Fig D.5), which os
analogous to eq.(D.121), to measure the difference between the macroscopic theory and
the simulations is:

δas.(Ta) ≡
1
M

M
∑
j=0

δas.
j =

1
M

M
∑
j=0
∣⟨τsim.

j ⟩− ⟨τtheo.
j ⟩∣. (D.124)

where M + 1 = Tmax
∆t + 1 is the number of measures taken through a whole cycle (note that

+1 is added since measures starts at t = 0), Tmax = 23h is the total duration of one single
experimental cycle, ∆t = 0.5h is the waiting interval between measures, ⟨τsim.

j ⟩ and ⟨τtheo.
j ⟩

are the mean lag time calculated from simulations and the generalized Crow-Kimura
equation at time j ⋅∆t, respectively and the super-index as indicates that it is calculated
in the asymptotic state.

FIGURE D.5: Schematic definition of the Parameter δ (illustrated in the multiplicative amplitude
scenario). αM = 0.048, Ta = 6h

D.5 Spontaneous shifting to the dormant state

In this section we investigate how the main results are changed when there is a non-
vanishing spontaneous rate to enter the dormant state in the absence of antibiotics, e.g.
when starving. Let us call such a generalized rate S(τi, τN); in chapter 4 we use

S(τi, τN) =
⎧⎪⎪⎨⎪⎪⎩

sk = s if 0 ≤ T ≤ Ta

s f = 0 if Ta < T ≤ Tmax
(D.125)

where the sub-indexes k and f denote “killing medium” and “fresh medium”, respec-
tively.

Given that bacteria can enter in dormant state when they sense lack of resources,
i.e. when they approach starvation (i.e. the system carrying capacity), we consider a
small, but non-zero, value for the rate to enter the dormant state in the fresh medium. In
particular, we keep sk constant as in chapter 4 but consider two possible scenarios for s f :
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FIGURE D.6: A) Functional dependence of the rate to enter the dormant state in fresh medium
s f and the number of particles in growing state NG. B) and C) Lag-time probability distribution
function, P(τ), at the end of the tenth cycle (for the multiplicative case) for a constant s f and
s f = sk (tanh[−cNG/K]), respectively. The results in chapter 4, for s f = 0, are represented by a
dashed line. Observe that in both cases the value of K1, K2, K3 increase, but the qualitative form
of the distributions remains unchanged. Parameter values: hτ = 0.01, αM = 0.048, Ta = 3h, c = 3,
T = 23h, the rest of parameters are fixed as in chapter 4.

1. a constant rate s f = s̃ = 0.01 all across the fresh-medium phase, or

2. a state-dependent rate, increasing as the carrying capacity is approached; in partic-
ular we consider a sigmoidal-like function s f = s̃ (tanh[−cNG/K]), (s̃ = 0.01).

Computational results for the variants of the model obtained by implementing these
types of rate are displayed in D.6 Figs, corresponding to the end of the 10th exposure
cycle (results are presented only for the multiplicative version of the model, but similar
curves and conclusions can be obtained for the additive version).

Observe that, on the one hand, a non-vanishing s f increases the values of K1, K2, K3,
but maintains the functional form of the lag-time distributions, see Fig D.6B and D.6C.
Thus, one can recover the results of chapter 4 by just tuning the mutational amplitude
parameter, αM. In conclusion, considering s f = 0 —though not a completely realistic
assumption— is a reasonable approximation which eases the tractability of the model by
reducing the computational times without significantly modifying the qualitative results.
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FIGURE D.7: Dynamics of the averaged population structure within one cycle. Abundances NG
and ND along the 10th cycle for s f constant —A) and C)— and s f = s̃ (tanh[−cNG/K])—B) and
D)—. The two scenarios are very similar to each other. At the beginning of the cycle ND is non-
vanishing, since bacteria entered this state during the fresh phase of the previous cycle. During
the antibiotic exposure phase both, ND and NG, decrease to a minimum as the bacteria die. When
the antibiotic is removed and a fresh medium is added, NG grows towards the system’s carrying
capacity. Observe that the bacteria still enter the dormant state, but the reproduction rate is much
higher, in such a way that an overall reduction of NG is only observed as the system approaches
the carrying capacity.
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D.6 Additional Figures

FIGURE D.8: Characterization of the asymptotic state in the additive version of the model. (A)
Relaxation of the mean lag-time to its asymptotic state (curves obtained from the integration of
Equation (D.110) with Ta = 3h and additive model. The different curves correspond to three dif-
ferent values of the variation amplitude, αA; from the lowest to the highest: αA = 0.035h, αA = 0.1h
and αA = 0.16h. (B) Zoom of the curve αA = 0.16h for one single cycle. In particular, the mean
lag time, K1, is shown along a cycle in the asymptotic regime. At T = 0 the antibiotic is added
and the system enters in the “killing phase” (T ∈ [0, Ta]). When the antibiotic is present, the sys-
tem experiences a selection pressure towards longer lag times, in consequence, K1 increases. At
T = Ta the antibiotic is washed and the fresh medium is added (T ∈ [Ta, Tmax]). In this regime,
the selection pressure is towards shorter lag times and K1 relaxes back to the initial value. (C)
Lag-time probability distribution at T = 0 (leftmost curve) and T = Ta = 3h (rightmost curve) as
derived theoretically (Eq.(D.110), dashed lines) and computationally (dots). In the asymptotic
state the system oscillates between these two limiting probability distributions, both of them ex-
hibiting weak tails. (D) Evolution of the first three cumulants, K1, K2 and K3, (mean, variance ,
and skewness respectively) along a cycle in the asymptotic state (both theoretical and computa-
tional results are displayed). Observe that in C/D the theory correctly predicts the properties of
the distribution, however there are deviations due to finite size effects.
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FIGURE D.9: Simulated number of cells via the Gillespie algorithm —additive-amplitude sce-
nario, linear scale—. a) Number of cell in dormant state during a whole cycle in the asymptotic
state for different exposition times Ta. b) Same as a) but for growing state bacteria. Obviously,
the minimum number of bacteria in growing state NG,min is reached at t = Ta, since, during the
antibiotic exposure phase, that number can only decrease. Parameters: αA = 0.16h, the rest are
fixed as in chapter 4.

FIGURE D.10: Evolution of the MDK99 over 10 exposure cycles. a) Additive case. b) Multiplica-
tive case. In our simulations, the MDK99 is calculated analogously to the experimental procedure.
After a certain number cycles (i.e. # in the figure) of antibiotics-fresh environment, the evolved
population is posed back in the antibiotic phase for a long time. The maximum number of cycles
is 10 as in the experiments. The MDK99 is estimated by the time necessary to kill to the 99% of
the population. Both in the additive and multiplicative case, the MDK99 increases with the # and
Ta. Interestingly, in the multiplicative case by increasing Ta the change in MDK99 is bigger than
the additive one.

FIGURE D.11: Comparison of experimental and simulated MDK99 of the evolved population
after 10 cycles of exposure. For both the additive and multiplicative cases, we observe that the
simulated MDK99 falls within —or it is very close— the experimental values (i.e. the mean plus
error) for Ta = 3h and 5h, but outside for the case of Ta = 8h. This result is to be expected given the
higher noise of the experimental measurements. In particular the experimental mean is ⟨τ⟩exp.

Ta=8h =
10± 1h higher than the theoretical prediction of 8h.
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D.7 Movies

We provide three videos to help visualize the system dynamics:

• (V1) https://github.com/MCMateu/Phenotypic-dependent-variability/blob/main/
AsymptoticAdditive.mp4

• (V2) https://github.com/MCMateu/Phenotypic-dependent-variability/blob/main/
AsymptoticMultiplicative.mp4

• (V3) https://github.com/MCMateu/Phenotypic-dependent-variability/blob/main/
TransitoryAdditive.mp4

The first two videos show the evolution of ϕ(τ, t) along an antibiotic exposure cycle
in the asymptotic state, calculated both by the simulation via Gillespie algorithm and by
numerical integration of generalized Crow-Kimura equation (D.107) in the additive (V1)
and multiplicative (V2) case respectively. Note that, as in Fig 4 of chapter 4, there exists a
small deviation between theory and simulation, due to finite-size effects. The duration of
the killing phase is Ta = 3h, and the duration of the whole cycle is T = 23h. The full length
of the video is 23 s, thus each second approximately matches 1h of the cycle. During the
first three seconds the distributions move towards longer lag times (to the right side),
since individuals with longer lag times are the one that survives, until the mean lag time
reaches a maximum value when antibiotics are removed. Then, the distribution moves
back towards the initial configuration. Numerical value the of parameters: αA = 0.16h,
αM = 0.048, b = 2.4h−1 , s = 0.12h−1, d = 3.6 ⋅ 10−5h−1.

On the other hand, the third video (V3) shows the transient dynamics of ϕ(τ, t) as
calculated by the numerical integration of the general mean-field equation (D.92) and the
generalized Crow-Kimura (D.107) in the additive case. The full length of the video is 50s
at a speed of 25 f ps, the full video counts with 1250 frames. Each cycle has 50 frames,
so the total duration of each cycle is approximately 2s. The duration of the killing phase
is Ta = 5h. The oscillations observed in the video correspond with the killing phase,
when the density moves to the right, and with the growing phase, when it moves to the
left. Note that the two distributions matches almost perfectly. Numerical value the of
parameters: αA = 0.035h , b = 2.4h−1 , s = 0.12h−1, d = 3.6 ⋅ 10−5h−1.
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Resumen

La física estadística estudia las propiedades macroscópicas de agregados de muchas molécu-
las o componentes, desde gases hasta sistemas ferromagnéticos. En lugar de seguir la
trayectoria individual de cada componente, la física estadística adopta un enfoque de
conjunto y estudia la probabilidad de una cierta configuración colectiva. Al pasar al nivel
macroscópico, se revelan nuevos fenómenos colectivos y cooperativos, como diferentes
"fases" y transiciones particulares entre ellas [9]. Al aplicar este paradigma a sistemas no
físicos, como los biológicos o sociales, los físicos han contribuido a crear la disciplina de
los "sistemas complejos", cuyo objetivo es estudiar los fenómenos colectivos naturales.
Los ecosistemas son un ejemplo paradigmático de sistemas complejos, ya que están com-
puestos por un gran número de especies cuyas interacciones generan propiedades emer-
gentes colectivas, como la diversidad, la estabilidad y las funciones. Sin embargo, las
comunidades ecológicas son mucho más complejas que los gases, ya que en las primeras
las diferencias individuales tienen un efecto, mientras que en los últimos se promedian
debido al enorme tamaño de 1023 moléculas por mol. Además, mientras que en la física
estadística el sistema está en equilibrio termodinámico, las comunidades ecológicas se
encuentran lejos del equilibrio debido a las interacciones no triviales entre especies y las
constantes fluctuaciones del entorno. Por último, las especies están siempre en un pro-
ceso de "evolución" que, aunque en escalas de tiempo largas, provoca una transformación
continua de los componentes e interacciones del sistema. Por lo tanto, construir una física
estadística de los sistemas ecológicos es un objetivo mucho más difícil que el enfrentado
por Boltzmann y Gibbs.

Para facilitar la tarea, intentaremos construir una teoría tan ambiciosa en uno de los
sistemas más accesibles disponibles: las poblaciones bacterianas. De hecho, gracias a los
avances tecnológicos recientes, las comunidades bacterianas (o más en general, micro-
bianas), como el microbioma intestinal humano, pueden ser muestreadas, analizadas y
secuenciadas fácilmente, obteniendo las abundancias de típicamente 103 especies para
un total del orden de 1013 individuos. A primera vista, este número no es tan grande
como el número de Avogadro, pero es más que el número total de árboles en el planeta.
Por lo tanto, las comunidades microbianas son el sistema ecológico ideal para estudiar
fenómenos emergentes.

Efectivamente, las características de las poblaciones bacterianas, como su corto tiempo
de división y su alta tasa de mutación, las convierten en sistemas excelentes para estu-
diar fenómenos evolutivos. La aparición de tolerancia a los antibióticos y el surgimiento
de diferentes especies son solo algunos ejemplos de los complejos procesos evolutivos
que se pueden observar en las poblaciones bacterianas [10, 11]. Estos procesos tienen im-
plicaciones significativas en medicina, especialmente en la comprensión del papel de la
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microbiota intestinal en enfermedades crónicas y el alarmante aumento de la resistencia
a los antibióticos. Al desarrollar una física predictiva de las comunidades microbianas
utilizando la física estadística de no equilibrio, podemos obtener una comprensión más
profunda de los mecanismos subyacentes que impulsan estos fenómenos biológicos. La
física estadística de no equilibrio proporciona herramientas y conceptos poderosos para
estudiar sistemas complejos, incluyendo la dinámica de las poblaciones, la aparición de
comportamiento colectivo y el papel de las fluctuaciones y la irreversibilidad.
La tesis se divide en tres partes, correspondientes a los argumentos investigados: ecología,
evolución y física estadística fuera del equilibrio. En el Capítulo 1, ofrecemos una visión
general de las motivaciones y el contenido de esta tesis, junto con una introducción gen-
eral a los sistemas complejos y la ecología y evolución de las bacterias (considerar la
siguiente sección para un resumen en español).
En la Parte I, nos enfocamos en la macroecología microbiana y exploramos las interac-
ciones dentro de los ecosistemas bacterianos. A través del análisis de datos, descubrimos
una ley macroecológica universal que relaciona la correlación entre especies con su dis-
tancia filogenética. Mediante el desarrollo de un modelo estocástico basado en la física es-
tadística, atribuimos este patrón a fluctuaciones ambientales acopladas, conocidas como
filtro ambiental.
La parte II se adentra en la eco-evolución bacteriana. En el Capítulo 3 establecemos un
nuevo marco teórico utilizando herramientas de física estadística para estudiar la dis-
tribución de fenotipos y diversos fenómenos evolutivos, como la especiación simpátrica.
Además, en el Capítulo 4 empleamos este marco para investigar la evolución de la tol-
erancia a los antibióticos en bacterias mediante la adaptación del tiempo de lag. Presen-
tamos un modelo estocástico que reproduce los resultados experimentales y obtenemos
predicciones analíticas utilizando nuestro marco teórico.
En la Parte III, examinamos el concepto de irreversibilidad en la física estadística de sis-
temas fuera de equilibrio. El Capítulo 5 se centra en las propiedades geométricas de
las corrientes en termodinámica estocástica y sus implicaciones. Analizamos la relación
entre irreversibilidad, disipación y rupturas de simetría de las corrientes en estados esta-
cionarios fuera de equilibrio. En particular, conseguimos generalizar el principio de Pri-
gogine utilizando el exceso de entropía.
En el Capítulo 6, exploramos las propiedades irreversibles de la evolución Darwiniana
utilizando el marco teórico general presentado anteriormente. Descubrimos que la evolu-
ción se mantiene constantemente fuera de equilibrio debido a la presencia de selección y
mutaciones, y estudiamos la irreversibilidad en ejemplos como la especiación.
Finalmente, en el Capítulo 7, presentamos conclusiones generales y sugerimos posibles
direcciones para futuras investigaciones. Al emplear la física estadística, esta tesis con-
tribuye a la comprensión de los sistemas complejos, proporcionando conocimientos sobre
el comportamiento colectivo, la ecología y la evolución de las comunidades bacterianas.
En el siguiente capítulo proponemos una concisa introducción al mundo de los micro-
bios.

Un rápido viaje en el mundo microbiano

Los microbios son organismos microscópicos, tanto unicelulares como pluricelulares,
como bacterias, arqueas, protistas y algunas especies de algas y hongos. Aunque los mi-
crobios han sido utilizados por los seres humanos en la preparación de alimentos desde
la antigüedad, fueron descubiertos por primera vez por el biólogo neerlandés Leeuwen-
hoek en 1677 [33].
Las bacterias son los organismos más abundantes en la Tierra (aproximadamente 1030

células [34], una biomasa total de 70Gt de carbono) y se encuentran en toda la biosfera,
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desde los intestinos humanos hasta los glaciares, desde el suelo hasta los lodos activados.
Las bacterias son organismos unicelulares (procariotas), similares a un sistema "abierto",
capaces de aprovechar la energía del entorno y convertirla en biomasa y residuos. Las
bacterias se "reproducen" mediante división asexual; el tiempo de duplicación puede
variar desde 20 minutos para la E. coli en condiciones de laboratorio hasta dos años para
los microbios que viven en sedimentos del fondo marino. Su metabolismo es altamente
diverso, ya que pueden realizar la respiración molecular, la fermentación e incluso algu-
nas especies son capaces de la fotosíntesis.
La ecología microbiana estudia cómo crecen, interactúan y se mantiene la diversidad de
especies en las comunidades microbianas. Esta cuestión es especialmente relevante para
las bacterias, debido a la gran diversidad observada a nivel taxonómico de cepas [35].
Por ejemplo, en las poblaciones marinas de la cianobacteria Prochlorococcus (género), se
observan cientos de cepas diferentes [31]. ¿Cómo pueden coexistir tantas cepas?
Muchos procesos ecológicos posibles, o "fuerzas" ecológicas, pueden surgir en comu-
nidades diversas, pero en general son consecuencia de las propiedades metabólicas de
los individuos.
La fuerza ecológica que generalmente se considera dominante es la "competencia". Puede
surgir entre dos individuos cuando comparten un recurso común de suministro limitado
[36]. Cuando hay competencia, el crecimiento de una especie implica una reducción en
el número de la especie competidora, lo que posiblemente puede llevar a extinciones.
En términos generales, la competencia se asocia con el "Principio de Exclusión Compet-
itiva", que establece que "dos especies o poblaciones no pueden habitar el mismo nicho:
una consistentemente superará a la otra" [37]. El nicho de una especie es un concepto
ecológico abstracto que consiste en sus interacciones con su comunidad y las condiciones
ambientales necesarias para su supervivencia. Por lo tanto, si la exclusión competitiva
está en acción, solo puede haber un número de especies igual o menor al número de
nichos disponibles.
También pueden surgir interacciones mutualistas entre especies bacterianas gracias a los
subproductos del metabolismo celular. De hecho, a menudo ocurre que dos especies
competidoras pueden coexistir si una es capaz de metabolizar el subproducto de la otra.
Este fenómeno se llama "cross-feeding" y se encuentra en muchas comunidades bacte-
rianas [38, 39, 40]. Por ejemplo, un par de cepas de las familias Pseudomonadaceae y
Enterobacteriaceae pueden sobrevivir juntas porque la primera puede crecer utilizando
acetato, que es un subproducto de la segunda [39].
Los subproductos metabólicos de una especie también pueden inhibir la presencia de
otra, es decir, un comportamiento llamado "antagonismo". Por ejemplo, la bacteria Strep-
tomyces coelicolor es capaz de producir antibióticos, que luego se utilizan para neu-
tralizar a otras especies como E. coli [41].
La depredación también está presente en los procariotas, aunque generalmente se con-
sidera rara (solo se han identificado quince especies depredadoras) [42, 43]. La bacteria
altamente móvil B. bacteriovorus ha sido reportada como capaz de ingresar al espacio
periplasmático de otras bacterias y consumir su contenido citoplasmático [44].

Las interacciones ecológicas también pueden producir efectos colectivos, como las
funciones comunitarias. De hecho, las funciones ecológicas no son solo propiedades in-
dividuales, sino más bien propiedades colectivas de las comunidades que emergen de
una compleja red de interacciones moleculares, fisiológicas y organismales [45], como el
ciclo del carbono en ecosistemas cerrados [46], el ciclo de nutrientes en el suelo [47] y
el ciclo del nitrógeno en el océano [48]. Por último, los ecosistemas microbianos mues-
tran redundancia funcional: aunque la presencia y abundancia de especies varía entre
comunidades, se conserva el número y tipo de funciones realizadas [38, 49]. Aunque las



262 Appendix E. Resumen y conclusiones en castellano

comunidades bacterianas exhiben una diversidad taxonómica astronómica, muchas es-
pecies comparten las mismas funciones metabólicas, lo que sugiere que la selección no
actúa solo a nivel de especies.
Un efecto colectivo adicional que surge en las comunidades bacterianas son los biofilms,
es decir, comunidades de bacterias que se adhieren colectivamente a superficies, creando
un medio físico adaptado para interactuar a través de señalización e intercambio de nu-
trientes.
Finalmente, las fuerzas ecológicas no son solo interacciones "internas" entre especies,
sino también factores "externos" como fluctuaciones ambientales y demográficas, migra-
ciones, estructura espacial, etc. Por ejemplo, se sabe que el caos espacial en modelos de
meta-poblaciones amplía enormemente el número de especies coexistentes en compara-
ción con la exclusión competitiva [50, 51, 52].
Por lo tanto, uno podría preguntarse: ¿Es posible desentrañar los efectos de estas difer-
entes fuerzas? ¿Cuál es la principal responsable de la existencia de la biodiversidad?
Existe un debate interminable sobre la importancia relativa de las fuerzas deterministas,
como la exclusión competitiva, o las estocásticas, como las fluctuaciones ambientales y
demográficas, en la determinación del mantenimiento de la biodiversidad en la comu-
nidad. En comunidades muy diversas, como el prochlorococcus o el plancton marino
[53], la existencia de un número astronómico de nichos es hipotético y no completamente
razonable. Por lo tanto, se puede cuestionar la importancia relativa de la exclusión com-
petitiva.
El cross-feeding parece tener la capacidad de mantener la diversidad, ya que las comu-
nidades que crecen en una sola fuente de carbono pueden soportar hasta 40 taxa gracias
al reciclaje de metabolitos.
Además, las comunidades bacterianas tienen diferentes "diversidades" dependiendo del
nivel taxonómico en el que se consideren. ¿Cómo se puede elegir la escala taxonómica
correcta? Aunque la mayoría de nuestro conocimiento sobre ecología microbiana ha
surgido de entornos de laboratorio simples y controlados, las respuestas a estas pregun-
tas fundamentales se pueden obtener interrogando a comunidades naturales. En los últi-
mos años, los proyectos del microbioma humano y programas similares han muestreado
y caracterizado un número astronómico de comunidades [54, 55]. Comprender los pa-
trones generales que emergen en estas comunidades es útil tanto a nivel fundamental
como con importantes consecuencias para la salud general en el caso del microbioma
intestinal humano [56].
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Conclusiones

En esta tesis hemos estudiado fenómenos colectivos en ecología y evolución microbiana,
utilizando la física estadística (del no equilibrio). En esta sección, derivamos algunas
conclusiones generales y comentamos sobre posibles desarrollos futuros. Antes de aden-
trarnos en perspectivas futuras, resumamos brevemente los resultados reportados en esta
tesis:

• En el Capítulo 2, hemos revelado la emergencia de una nueva ley macroecológica
en comunidades microbianas. Esta ley empírica establece en términos cuantitativos
que el promedio de la función de correlación entre pares de especies disminuye
desde valores positivos hasta valores nulos a medida que aumenta la distancia filo-
genética, aproximadamente siguiendo una función de "stretched exponential".
Al definir un modelo ecológico estocástico (el CSLM), hemos demostrado que las
fluctuaciones ambientales acopladas (multiplicativas), también conocidas como fil-
trado ambiental, son responsables de este patrón universal. Al vincular las pref-
erencias ecológicas con la distancia filogenética de las especies, podemos formular
un modelo en el cual los árboles filogenéticos se pueden utilizar directamente. Por
último, pero no menos importante, analizamos datos temporales para una comu-
nidad fija, mostrando que la ley macroecológica también se cumple cuantitativa-
mente en este contexto y que las correlaciones temporales retardadas se reproducen
naturalmente en nuestro modelo con filtrado ambiental. Por lo tanto, los resultados
reportados en este capítulo nos permiten concluir que solo el filtrado ambiental (y
no, por ejemplo, la competencia entre especies) explica el patrón observado empíri-
camente de correlaciones decrecientes con la distancia filogenética, y por lo tanto,
es probablemente la fuerza ecológica dominante en las comunidades microbianas
naturales.

• En el Capítulo 3, introdujimos un marco eco-evolutivo para los rasgos bacterianos.
En particular, describimos la evolución adaptativa como la dinámica de la distribu-
ción de rasgos de la población en espacios fenotípicos, sintetizada por la llamada
ecuación Generalized Crow-Kimura (GCK). Al modelar explícitamente la selección,
las mutaciones y la deriva de tamaño finito, generalizamos la celebrada teoría de la
dinámica adaptativa a escenarios eco-evolutivos. Con nuestro formalismo, pode-
mos describir exactamente la población y la distribución de rasgos incluso después
de una ramificación evolutiva, y en particular, predecir el pico de las dos subpobla-
ciones. Por último, generalizamos nuestra descripción para incluir efectos estocás-
ticos de tamaño finito, revelando la posible frustración de la ramificación evolutiva.
La frustración se debe a las peculiares fluctuaciones multiplicativas de la varianza
de rasgos, que pueden crear un estado metastable o un estado absorbente en la
dinámica. Por lo tanto, el trabajo presentado en este capítulo contribuye al desar-
rollo de una teoría eco-evolutiva para comunidades microbianas, lo que permite
arrojar más luz sobre la asombrosa diversidad observada empíricamente en los ras-
gos y las interacciones de las comunidades microbianas. Nuestra esperanza es que
este trabajo haga que este tipo de enfoques cuantitativos para comunidades eco-
evolutivas complejas sean accesibles a un público más amplio, que incluya físicos,
biólogos y ecólogos.

• En el Capítulo 4, aplicamos el marco eco-evolutivo mencionado anteriormente a
la aparición de la tolerancia a los antibióticos mediante la adaptación del tiempo
de retraso en las bacterias. Experimentos de laboratorio recientes en E. coli han
demostrado que las bacterias adaptan su tiempo de retraso para sobrevivir a los
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antibióticos en un estado latente [10]. Las distribuciones de la población de tiem-
pos de retraso resultantes muestran una proporcionalidad directa entre el tiempo
de retraso promedio y su varianza. Identificamos esta característica como típica de
los procesos multiplicativos y diseñamos un modelo evolutivo donde la variación
del tiempo de retraso de la descendencia es proporcional al valor de la célula madre.
El modelo puede describirse de manera efectiva mediante la ecuación GCK con un
nuevo término de "variaciones multiplicativas" y es capaz de reproducir las dis-
tribuciones empíricas de retraso. Por lo tanto, el trabajo presentado en este capítulo
arroja luz sobre la evolución de la tolerancia a los antibióticos y, además, representa
un ejemplo de una clase general de problemas evolutivos donde se puede aplicar
nuestro marco matemático.

• La última parte de la tesis se dedicó a la física estadística de no equilibrio y, en par-
ticular, en el Capítulo 5 ilustramos las propiedades geométricas y topológicas gen-
erales de las corrientes de velocidad en los estados estacionarios de no equilibrio.
Estas propiedades geométricas pueden explicarse como una ruptura de simetría in-
ducida por la irreversibilidad y la disipación. Mientras que en dimensiones iguales
o mayores que dos, los sistemas estocásticos con ruido aditivo generan velocidades
de corriente sin divergencia, la adición de ruido multiplicativo induce situaciones
geométricas más complicadas. En particular, en este caso, las velocidades tipo gra-
diente empujan al sistema hacia regiones del espacio de fase con baja fluctuación,
como estados absorbentes. Es notable que, gracias a este marco geométrico, pode-
mos dar una interpretación termodinámica clara de la entropía en exceso y rela-
cionarla con el principio de Prigogine, resolviendo un problema debatido con una
larga historia.

• Para concluir, en el Capítulo 6 estudiamos la naturaleza irreversible de la evolución
utilizando el marco de trabajo introducido en el Capítulo 3, tanto de manera general
como en varios escenarios concretos, como la evolución neutral, la selección estabi-
lizadora y la ramificación evolutiva. Descubrimos que la evolución, en general, está
fuera del equilibrio debido a la presencia contemporánea de una corriente de mu-
tación y diferencias de selección. Aunque estas fuerzas se equilibran en un estado
estacionario, sus efectos diferentes en la población alejan al sistema del equilibrio.
Además, encontramos que las diversas contribuciones a la producción de entropía
se correlacionan con los regímenes evolutivos y las transiciones evolutivas que ex-
perimenta la población. En la discusión, en la sección 3.7, comentamos sobre una
posible generalización estocástica del cambio en la entropía de Shannon y, en par-
ticular, destacamos su naturaleza multiplicativa. Por lo tanto, el trabajo presentado
en este capítulo arroja luz sobre el aspecto fundamental del tiempo en la adaptación
y revela el papel de las mutaciones y la selección en la creación de irreversibilidad
durante la evolución darwiniana.

Epílogo

En el libro "¿Qué es la vida?", Erwin Schrödinger sentó las bases de la biología contem-
poránea al analizar los fenómenos biológicos desde la perspectiva de la física [533]. Su
pregunta central se plantea en la introducción: "¿Cómo pueden explicarse los eventos en el
espacio y el tiempo que tienen lugar dentro de los límites espaciales de un organismo vivo mediante
la física y la química?". En el libro, Schrödinger explora diferentes conceptos y fenómenos
como el caos molecular, la evolución darwiniana, el origen físico de las mutaciones y,
finalmente, la naturaleza de la herencia biológica. Al discutir este último argumento,
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Schrödinger teorizó que el material genético debe ser una molécula, pero una en particu-
lar que él define como un "cristal aperiódico", capaz de codificar una gran cantidad de in-
formación. Aunque algunas teorías de la herencia ya estaban en circulación, la intuición
de Schrödinger se puede considerar una predicción teórica sobre las propiedades del
ADN, y estimuló un vigoroso interés en investigar las bases moleculares de la genética.
De hecho, Watson y Crick reconocieron a Schrödinger como fuente de inspiración.
En la última parte del libro titulada "Sobre el determinismo y el libre albedrío", Schrödinger
se adentra en reflexiones más metafísicas sobre la naturaleza de la conciencia, influenci-
ado principalmente por Schopenhauer y las Upanishads indias. El inicio del capítulo
dice: "Como recompensa por los esfuerzos que he tenido que asumir para exponer los aspectos pu-
ramente científicos de nuestro problema "sine ira et studi, permítanme agregar mi propia visión,
necesariamente subjetiva, de sus implicaciones filosóficas."
Consideramos que el uso de un científico de exponer sus ideas filosóficas sea un ejercicio
muy saludable y necesario. De hecho, la mayoría de los grandes físicos del siglo pasado,
como Einstein, Bohr, Pauli, Heisenberg y, por supuesto, Schrödinger, escribieron extensa-
mente sobre sus ideas filosóficas. Por lo tanto, con humildad, proponemos aquí algunas
reflexiones generales.
Aquí no estamos interesados en la conciencia, pero compartimos con Schrödinger la
necesidad de no interpretar al individuo como la base de la naturaleza. De hecho, las
relaciones ecológicas colectivas, la transferencia genética lateral (LGT) y la simbiosis en
la evolución nos invitan a repensar el concepto de individuo.
En la sección 1.3.1expusimos brevemente que durante la evolución biológica ocurrieron
muchos eventos de endosimbiosis. Por ejemplo, las mitocondrias eucariotas son los re-
manentes de una proteobacteria capturada por, probablemente, un arquea. Los virus
también han desempeñado un papel importante en la configuración de la vida tal como
la conocemos. En 2001, el Consorcio Internacional de Secuenciación del Genoma Hu-
mano estableció que el 8% del genoma de los mamíferos, y por lo tanto de los humanos,
consiste en remanentes de antiguos virus, mientras que hasta el 40% está compuesto por
repeticiones de secuencias genéticas que también se cree que tienen origen viral [534, 17].
Los virus antiguos eran endógenos, como el VIH moderno, y para reproducirse tenían
que insertar su material genético en el genoma de su huésped. Algunos de ellos eran
capaces de infectar células germinales, como óvulos o espermatozoides, y transmitieron
su genoma a las generaciones futuras [535]. Esta parte híbrida del genoma a menudo es
beneficiosa y en ratones se ha descubierto que brinda protección contra virus similares.
Sin embargo, el hecho más sorprendente es que este genoma viral es responsable de un
proceso celular clave en el desarrollo de la placenta en mamíferos [536]. T. Heidmann,
líder del grupo de investigación mencionado sobre la placenta, resumió estos hechos de
manera provocativa: "Nuestros genes no solo son nuestros genes. También son genes
retrovirales" [17].
Las interacciones ecológicas entre especies de diferentes dominios pueden ser tan es-
trechas como para poner en crisis nuestro concepto de individuo. Los líquenes son or-
ganismos compuestos que surgen de algas o cianobacterias que viven entre los filamentos
de varias especies de hongos en una relación simbiótica. Los hongos se benefician de los
nutrientes producidos por las algas o cianobacterias a través de la fotosíntesis. Por otro
lado, las algas o cianobacterias se benefician al estar protegidas del medio ambiente por
los filamentos de los hongos [537]. La simbiosis también es extremadamente frecuente
en los ambientes marinos, especialmente como simbiosis quimiosintéticas entre bacte-
rias e invertebrados, donde estos últimos son los productores primarios y proporcionan
la mayor parte del carbono orgánico necesario para la nutrición del hospedador animal
[538]. En un estudio reciente [539], se ha informado de una simbiosis tridireccional en
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una planta de hierba tropical. Se pensaba que esta planta en particular crecía en temper-
aturas del suelo altas gracias a un hongo simbiótico que vive en sus hojas. Sin embargo,
se descubrió que la responsabilidad de la tolerancia al calor recae en un virus que ha in-
fectado al hongo.
Los seres humanos también han desarrollado relaciones simbióticas íntimas con micro-
bios intestinales, conocidos como el microbioma, los cuales tienen una influencia signi-
ficativa en la salud [540, 541, 56]. Además, evidencia reciente sugiere que la composición
del microbioma intestinal es heredable, lo que significa que se transmite de nuestros an-
cestros [542].
A nivel más amplio, todas las plantas y animales viven en simbiosis con sus microbiomas,
que consisten en bacterias, arqueas, hongos y protistas. Por lo tanto, no somos simple-
mente individuos, sino ecosistemas, o más específicamente, holobiontes. Como M. Shel-
drake afirma en su libro "Entangled Life" [537], las comunidades microbianas nos hacen
comprender que el concepto de "individuo" es simplemente una categoría científica con
ciertos límites de aplicabilidad. La biología, que solía ser el estudio de organismos indi-
viduales, se ha transformado en ecología, el estudio de las interacciones entre los organ-
ismos vivos.

En esta perspectiva, la física estadística y los sistemas complejos brindan conceptos
útiles para comprender el nuevo mundo colectivo que emerge de las interacciones de un
número astronómico de seres vivos. Al aceptar que un individuo no es una entidad ais-
lada, nos enfrentamos a un nuevo mundo interconectado que se despliega ante nuestros
ojos.
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