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Abstract
We consider a convex solid cone C ⊂ R

n+1 with vertex at the origin and boundary ∂C smooth
away from 0. Our main result shows that a compact two-sided hypersurface � immersed in
C with free boundary in ∂C \ {0} and minimizing, up to second order, an anisotropic area
functional under a volume constraint is contained in a Wulff-shape. The technique of proof
also works for a non-smooth convex cone C provided the boundary of � is away from the
singular set of ∂C.

Mathematics Subject Classification 49Q20 · 53C42

1 Introduction

In this paper we study a variational problem for Euclidean hypersurfaces associated to an
energy functional of anisotropic character. This means that the energy is computed by inte-
grating an elliptic parametric function (or surface tension) which depends on the normal
direction along the hypersurface. As it is explained in the introduction of Taylor [38] these
functionals provide a mathematical model to study solid crystals. In the particular case of a
constant surface tension we obtain the isotropic case, where the energy is proportional to the
Euclidean area.

The surface tension that we consider in this work is the asymmetric norm given by the
support function hK of a smooth strictly convex body K ⊂ R

n+1 containing the origin in its
interior. The corresponding anisotropic area of a two-sided hypersurface� with unit normal
N has the expression AK (�) := ∫

�
hK (N ) d�, where d� is the Euclidean area element.

By using the metric projection onto K it is possible to define also anisotropic counterparts
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to some of the classical notions in the extrinsic geometry of hypersurfaces, see Reilly [32]
and Sect. 2 for a precise description. When K is the round unit ball about the origin we have
hK (N ) = 1, so that we recover the isotropic situation. We point out that the anisotropic
geometry of hypersurfaces is typically introduced by means of a function F : Sn → R

+
instead of a convex body K , see Remark 2.3 for more details.

It is well known that the round spheres uniquely solve the isoperimetric problem inRn+1.
In our anisotropic setting, the strictly convex hypersurface ∂K uniquely minimizes, up to
translations and dilations centered at the origin, the anisotropic area computed with respect
to the outer unit normal among hypersurfaces enclosing the same Euclidean volume. There
are different proofs of this statement relying on analytical and geometric techniques, see
Taylor [37, 38], Fonseca andMüller [13], Brothers andMorgan [3], Milman and Rotem [28],
and Cabré et al. [4]. The minimizer ∂K is usually referred to as the Wulff shape in honor of
the crystallographer Georg Wulff, who first constructed the optimal crystal for a specified
integrand [43].

As in the isotropic case, it is interesting to analyze the critical points (stationary hyper-
surfaces) and the second order minima (stable hypersurfaces) of the anisotropic area under
a volume constraint. From the first variational formulas, a hypersurface � is anisotropic
stationary if and only if its anisotropic mean curvature HK defined in (2.6) is constant, see
for instance Palmer [31] or Clarenz [7]. This motivated the generalization to the anisotropic
context of some classical results for constant mean curvature hypersurfaces in Rn+1. In this
direction, an Alexandrov type theorem (resp. a Hopf type theorem) characterizing the Wulff
shape among compact embedded hypersurfaces (resp. immersed spheres) with HK constant
was obtained by Morgan [29] for n = 1, and by He et al. [15] in higher dimension (resp. by
He and Li [17], and Koiso and Palmer [25]). On the other hand, Palmer [31] and Winklmann
[42] employed the second variation of the anisotropic area to show that, up to translation
and homothety, the Wulff shape ∂K is the unique compact, two-sided, anisotropic stable
hypersurface immersed in Rn+1. This is an anisotropic extension of a celebrated theorem of
Barbosa and do Carmo [2] also discussed by Wente [41].

When we consider a smooth proper domain � instead of the whole space Rn+1, we are
naturally led to study the anisotropic partitioning problem. Here, we seek minimizers of the
functional AK among hypersurfaces inside �, possibly with non-empty boundary contained
in ∂�, and separating a fixed Euclidean volume. A critical point � for this problem is called
an anisotropic stationary hypersurfacewith free boundary in ∂�. From the calculus of A′

K (0),
and reasoning as Koiso and Palmer [22], this is equivalent to that HK is constant on � and
the anisotropic normal NK defined in (2.2) is tangent to ∂� along ∂�. The more general
case of anisotropic capillary hypersurfaces arises when both, HK and the angle between
NK and the inner unit normal to ∂�, are constant. These are critical points of an energy
functional which involves not only AK (�) but also the wetting area of the set bounded by
∂� in ∂�. We remark that isotropic capillary hypersurfaces in convex domains of Rn+1

have been extensively investigated, see Ros and Souam [34], Wang and Xia [39], and the
references therein.

An anisotropic stationary hypersurface with free boundary in ∂� is stable if A′′
K (0) is

nonnegative under variations preserving the volume separated by � and the boundary of �.
The computation of A′′

K (0) and the subsequent analysis of anisotropic stable hypersurfaces
have been treated in several previous works. In [22–24], Koiso and Palmer considered stable
capillary surfaces when� is a slab ofR3 and theWulff shape is rotationally symmetric about
a line orthogonal to ∂�. In [19, 21], Koiso classified compact anisotropic stable capillary
hypersurfaces disjoint from the edges in wedge-shaped domains of Rn+1. Inside a smooth
domain of revolution � ⊂ R

3, and for certain rotationally symmetric surface tensions,
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Barbosa and Silva [1] established that the totally geodesic disks orthogonal to the revolution
axis are the unique compact stationary surfaces with free boundary in ∂� and meeting ∂�

orthogonally. By assuming convexity of � they also discussed the stability of these surfaces.
More recently, Jia et al. [18] have employed a Heintze-Karcher inequality and a Minkowski
formula to prove that any compact, embedded, anisotropic capillary hypersurface inside an
open half-space of Rn+1 is part of a Wulff shape. In [14], besides the computation of a very
general second variation formula, Guo and Xia have generalized the argument ofWinklmann
[42] after Barbosa and do Carmo [2] to show that a compact, two-sided, anisotropic stable
capillary hypersurface immersed in a Euclidean half-space of Rn+1 is a truncated Wulff
shape.

In this paper we are interested in the stability question when the ambient domain is an
open solid cone C ⊂ R

n+1 with vertex at the origin and boundary ∂C smooth away from 0.
We do not require C to have any kind of symmetry. In the isotropic case it is known that round
balls about the vertex provide the unique solutions to the partitioning problem in a (possibly
non-smooth) convex cone C, up to translations leaving C invariant, see Lions and Pacella
[26], and Figalli and Indrei [12]. When ∂C \ {0} is smooth, Ritoré and the author [33] solved
the problem by combining existence of minimizers with the classification of compact stable
hypersurfaces with free boundary in ∂C. A similar characterization result for homogenous
weights in convex cones is due to Cañete and the author [5]. Wemust also mention the papers
of Choe and Park [6], and Pacella and Tralli [30], where an Alexandrov type theorem for
compact, embedded, stationary hypersurfaces in convex cones is proven.

In the anisotropic case it is easy to check that the truncated Wulff shape ∂K ∩ C is an
anisotropic stationary hypersurface with free boundary in ∂C, see Example 4.2. In [40],
Weng derived an anisotropic version of the aforementioned result of Pacella and Tralli [30,
Thm. 1.2]. By assuming an integral condition along ∂� that involves the conormal vector it
is shown that a compact embedded hypersurface � in a smooth convex cone C with constant
anisotropic mean curvature and boundary ∂� ⊂ ∂C \ {0} must be the truncated Wulff shape,
up to translation and homothety. Also when the cone C is convex, results of Milman and
Rotem [28], and Cabré et al. [4] for anisotropic area functionals with homogeneous weights
entail that ∂K ∩ C minimizes the anisotropic area (computed with respect to the outer unit
normal) for fixed volume.We remark that the techniques in [28] and [4] still hold underweaker
regularity assumptions on the cone C and the surface tension. By extending arguments of
Figalli and Indrei [12], the uniqueness of ∂K ∩C as a solution to the partitioning problem in C
was recently discussed by Dipierro et al. [11, Thm. 4.2]. The fact that ∂K ∩ C is a minimizer
implies, in particular, the weaker property that it is an anisotropic stable hypersurface with
free boundary in ∂C. Our main result, Theorem 4.8, is the following uniqueness statement:

Up to a translation and a dilation centered at the vertex, any compact, connected,
two-sided, anisotropic stable hypersurface immersed in a convex solid cone C with free
boundary in ∂C \ {0} is part of the Wulff shape.

We must observe that, in general, we cannot expect ∂K ∩ C to be the only anisotropic stable
hypersurface, up to translation and homothety, see Example 4.7. This motivates us to find
additional conditions on the cone in order to deduce stronger rigidity consequences.With this
idea in mind, in Corollary 4.11 we prove that a compact anisotropic stable hypersurface in a
cone C over a smooth strictly convex domain of the sphere Sn must be a dilation of ∂K ∩ C.
On the other hand, for the case of a Euclidean half-spaceH, recently treated by Guo and Xia
[14], we can conclude that ∂K ∩ H is the only compact anisotropic stable hypersurface, up
to translations along the boundary hyperplane.

123



  185 Page 4 of 20 C. Rosales

Our proof of Theorem 4.8 is different from the ones in [5, 33] and [14], which are mainly
inspired by Barbosa and do Carmo [2, Thm. (1.3)]. Instead, we adapt to our setting the
idea employed by Wente [41] to characterize the round spheres as the only compact, two-
sided, stable hypersurfaces immersed in R

n+1. Wente applied the stability inequality with
the special volume-preserving deformation obtained by parallel hypersurfaces dilated to
keep the volume constant. After computing the second variation formulas for this particular
variation, he observed that the area decreases unless the hypersurface is a round sphere. By
using dilations of anisotropic parallel hypersurfaces, Palmer [31] proved the uniqueness of
the Wulff shape as a compact, two-sided, anisotropic stable hypersurface immersed inRn+1.
The variation of a hypersurface� by anisotropic parallels is defined asψt (p) := p+t NK (p),
where p ∈ �, t ∈ R and NK is the anisotropic normal introduced in (2.2). With a similar
argument, Koiso [19, Thm. 4], [21, Thm. 1] was able to classify compact anisotropic stable
hypersurfaces disjoint from the edges in a wedge-shape domain � of Rn+1. Moreover, after
a suitable translation, the same variation allows to treat the capillary case. We remark that
such a deformation is possible because ∂� consists of finitely many pieces of hyperplanes.

In a convex cone C different from a half-space, Palmer’s deformation does not work
in general. Indeed, even though NK is tangent to ∂C along ∂�, we cannot ensure that ∂C
contains a small anisotropic normal segment p + t NK (p) centered at any point p ∈ ∂�. To
solve this difficulty we replace the anisotropic parallels deformation of � with a variation
�t := ψt (�) associated to the one-parameter group {ψt }t∈R of a vector field X on R

n+1

such that X(0) = 0, X is tangent on ∂C \ {0} and X |� = NK . After this, as ∂C is invariant
under dilations centered at 0, we can apply to �t a suitable dilation in order to construct a
deformation that preserves both, ∂C and the volume of�. To finish the proof we compute the
second derivative of the anisotropic area for this variation, and we discover that it is strictly
negative unless � is contained in the Wulff shape (up to translation and homothety). In the
isotropic case this is a new demonstration of the stability result by Ritoré and the author [33]
when we consider immersed hypersurfaces without singularities.

We emphasize that, to prove Theorem 4.8, we only need to calculate A′′
K (0) for defor-

mations associated to a smooth vector field X on R
n+1 which is tangent on ∂C \ {0} and

satisfies X |� = NK . This is done in Proposition 3.3 for arbitrary compact hypersurfaces
with non-empty boundary in R

n+1. As a difference with respect to the anisotropic paral-
lels deformation, a boundary term involving the acceleration vector field Z appears. For
anisotropic stationary hypersurfaces in C we see in Proposition 4.5 that this term is related to
the extrinsic Euclidean geometry of ∂C. As the formula for A′′

K (0) in Proposition 4.5 is valid
for any smooth domain �, this shows that the stability condition is more restrictive when �

is convex. It is worth mentioning that, in most of the aforementioned works about anisotropic
capillary hypersurfaces in a Euclidean domain �, this boundary term had no relevance since
∂� was contained in the union of finitely many hyperplanes.

Finally, we remark that the proof of Theorem 4.8 is still valid in non-smooth convex cones,
provided the boundary ∂� of an anisotropic stable hypersurface � is inside a smooth open
part of ∂C.

The paper is organized into three sections besides this introduction. In Sect. 2 we review
some basic facts about the anisotropic geometry of hypersurfaces. In Sect. 3 we compute the
second derivative of the anisotropic area for certain deformations of a compact hypersurface
with non-empty boundary. Finally, in Sect. 4 we prove our classification result of anisotropic
stable hypersurfaces in convex solid cones.
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2 Preliminaries

In this section we gather some definitions and results that will be needed throughout this
work. Starting with a Euclidean convex body we will use its support function and metric
projection to introduce the anisotropic area and notions of anisotropic extrinsic geometry for
two-sided hypersurfaces. The relation between this point of view and previous approaches
is shown in Remark 2.3.

By a convex body (about the origin) we mean a compact convex set K ⊂ R
n+1 containing

0 in its interior. The associated support function hK : Rn+1 → R is given by

hK (w) := max{〈u, w
〉; u ∈ K },

where
〈·, ·〉 is the standard scalar product in Rn+1. This defines an asymmetric norm in Rn+1

(which is a norm when K is centrally symmetric about 0), see [35, Sect. 1.7.1]. For any
w �= 0, the supporting hyperplane of K with exterior normal w is the set

�w := {p ∈ R
n+1; 〈

p, w
〉 = hK (w)}.

The corresponding support set is �w ∩ K . This set is not empty because K is compact.
If �w ∩ K is a single point p, then hK is differentiable at w, and its gradient satisfies
(∇hK )(w) = p, see [35, Cor. 1.7.3].

Henceforth, we suppose that K is a strictly convex body with smooth boundary ∂K . Thus,
for any w �= 0, there is a point πK (w) ∈ ∂K for which �w ∩ K = {πK (w)}. This provides
a map πK : Rn+1∗ → ∂K , which is called the K -projection, and verifies these identities

〈
πK (w),w

〉 = hK (w), for any w �= 0,

(∇hK )(w) = πK (w), for any w �= 0.
(2.1)

On the other hand, if ηK is the outer unit normal on ∂K , then (ηK ◦ πK )(w) = w for any
w ∈ S

n . This equality and the fact that πK (λw) = πK (w) for any w �= 0 and λ > 0 entail
that πK (w) = η−1

K (w/|w|) for any w �= 0 (here | · | stands for the Euclidean norm). As
ηK : ∂K → S

n is a diffeomorphism, the support function hK is C∞ on Rn+1∗ . Observe that,
when K is the round unit ball about 0, then hK (w) = |w| and πK (w) = w/|w| for any
w �= 0, whereas ηK (p) = p for any p ∈ ∂K = S

n .
Let ϕ0 : � → R

n+1 be a smooth two-sided immersed hypersurface, possibly with smooth
boundary ∂�. Most of the time we will omit the map ϕ0. We will also identify any set
S ⊆ � with ϕ0(S), and the tangent space Tp� at a point p ∈ � with (dϕ0)p(Tp�). For
a fixed smooth unit normal vector field N on �, the associated shape operator at p is the
endomorphism Bp : Tp� → Tp� introduced by Bp(w) := −DwN . Here D denotes the
Levi-Civita connection for the Euclidean metric. It is well known that Bp is self-adjoint with
respect to the metric induced by the scalar product in Rn+1.

The anisotropic Gauss map or anisotropic normal in � is the map NK : � → ∂K given
by

NK := πK ◦ N . (2.2)

By setting ϕK := hK (N ) we infer from (2.1) that
〈
NK , N

〉 = ϕK on �. (2.3)

When ∂� �= ∅ we introduce the anisotropic conormal by setting

νK := ϕK ν − 〈
NK , ν

〉
N , (2.4)

123



  185 Page 6 of 20 C. Rosales

where ν is the inner conormal along ∂�. Note that νK is a normal vector to ∂� with〈
NK , νK

〉 = 0.
For any p ∈ � we have TNK (p)(∂K ) = [ηK (NK (p))]⊥ = N (p)⊥ = Tp�, so that the

differential (dNK )p is an endomorphism of Tp�. The anisotropic shape operator at p is
defined by

(BK )p := −(dNK )p = (dπK )N (p) ◦ Bp. (2.5)

The anisotropic mean curvature at p is the number

HK (p) := tr((BK )p)

n
= − (div� NK )(p)

n
, (2.6)

where div� is the divergence relative to � and tr( f ) is the trace of an endomorphism f :
Tp� → Tp�. It is known, see for instance Palmer [31, p. 3666], that

tr
(
(BK )2p

)
� nHK (p)2, for any p ∈ �, (2.7)

and equality holds if and only p is an anisotropic umbilical point, i.e., (BK )p is a mul-
tiple of the identity map in Tp�. This fact has a short proof that we reproduce here for
the sake of completeness. Since ∇hK = πK in R

n+1∗ and K is a strictly convex body,
then (dπK )N (p) can be represented as a positive definite symmetric matrix of order n.
Thus, there exist an orthonormal basis {e1, . . . , en} of Tp� and {λ1, . . . , λn} ⊂ R

+ such
that (dπK )N (p)(e j ) = λ j e j for any j = 1, . . . , n. From (2.5) we get (BK )p(ei ) =∑n

j=1 σi j λ j e j , where σi j := 〈
Bp(ei ), e j

〉
. By using the Cauchy-Schwarz inequality in R

n

with the vectors (σ11λ1, . . . , σnnλn) and (1, . . . , 1), we obtain

tr(B2
K ) − nH2

K =
n∑

i, j=1

σ 2
i j λi λ j − 1

n

(
n∑

i=1

σi i λi

)2

�
n∑

i, j=1

σ 2
i j λi λ j −

n∑

i=1

σ 2
i i λ

2
i =

∑

i �= j

σ 2
i j λi λ j � 0.

Equality holds if and only ifσi j = 0 for any i �= j andσi i λi = σ j j λ j for any i, j = 1, . . . , n.
By denoting α := σi i λi , this is equivalent to (BK )p(w) = α w for anyw ∈ Tp�, as desired.

Examples 2.1 (i). If K is the round unit ball about 0, then NK = N , BK = B and HK equals
the Euclidean mean curvature of �.

(ii). For a hyperplane � ⊂ R
n+1 oriented with a unit normal N , the map NK is constant, so

that BK = 0 and HK = 0 in �.
(iii). Consider the hypersurface � = ∂K with outer unit normal N = ηK . Then NK (p) = p,

(BK )p(w) = −w and HK (p) = −1, for any p ∈ � and w ∈ Tp�. Observe that, if K
is not centrally symmetric about 0, and we take the inner normal N = −ηK on �, then
similar equalities need not hold and HK may be nonconstant. So, the role of the chosen
unit normal N is very important for the computations.

The previous examples show that ∂K and Euclidean hyperplanes are anisotropic umbilical
hypersurfaces, i.e., all of its points are anisotropic umbilical. Next, we provide a converse
statement after Palmer [31, p. 3666] and Clarenz [8, p. 358].

Proposition 2.2 Let � be a two-sided, connected, anisotropic umbilical hypersurface
immersed in R

n+1, and such that HK is constant. If HK = 0 then � is contained inside
a hyperplane. If HK �= 0 then, up to a translation and a dilation centered at 0, we have
� ⊂ ∂K.

123



Anisotropic stability in convex solid cones Page 7 of 20   185 

Proof For any p ∈ �, there is α(p) ∈ R such that (BK )p(w) = α(p)w for any w ∈ Tp�.
By definition (2.6) it is clear that α(p) = HK for any p ∈ �. By Eq. (2.5) we deduce that
the differential of NK + HK Id vanishes on �. In case HK = 0 this implies that NK is a
constant vector n, and so � is within a hyperplane with unit normal ηK (n). When HK �= 0
we can find c ∈ R

n+1 satisfying

p = c

HK
− 1

HK
NK (p), for any p ∈ �.

From here we infer that � ⊆ (c/HK ) − (1/HK ) (∂K ), as we claimed. ��
We finish this section with the notions of anisotropic area and algebraic volume for a

two-sided hypersurface �. For a fixed smooth unit normal N on �, the anisotropic area is
given by

AK (�) :=
∫

�

ϕK d� =
∫

�

hK (N ) d�,

where d� denotes the area element of �. This coincides with the Euclidean area of � when
K is the round unit ball about 0. When K is not centrally symmetric about 0 the value of
AK (�)may depend on the normal N that we consider on�. On the other hand, for a compact
hypersurface �, we follow Barbosa and do Carmo [2, Eq. (2.2)] to define

V (�) := 1

n + 1

∫

�

〈
p, N (p)

〉
d�. (2.8)

When� is embedded and�′ ⊂ � is a sufficiently small open set, we can apply the divergence
theorem to the position vector field X(p) = p in the cone C over �′ with vertex at 0 to
conclude that |V (�′)| equals the Lebesgue measure of C. If � is immersed then it is possible
that V (�) = 0.

Consider a dilation δλ(p) := λ p with λ > 0 and p ∈ R
n+1. A unit normal Nλ on the

hypersurface δλ(�) is determined by Nλ(δλ(p)) := N (p) for any p ∈ �. Therefore, the
change of variables formula and the fact that the Jacobian of the diffeomorphism δλ|� : � →
δλ(�) equals λn , entail that

AK (δλ(�)) = λn AK (�),

V (δλ(�)) = λn+1 V (�).
(2.9)

These identities will play a relevant role in the proof of our main result in Sect. 4.

Remark 2.3 It is usual to introduce the anisotropic area AF associated to an arbitrary function
F : Sn → R

+. This has the expression AF (�) := ∫
�
F(N ) d�. Convexity assumptions on

F are necessary to deduce fine properties for AF and for the F-Laplacian, see for instance
Maggi [27, Ch. 20] or Palmer [31]. Other ellipticity conditions for more general integrands,
including equivalences between them and first variation formulas for the corresponding ener-
gies are found in De Rosa and Kolasiński [10], and De Lellis et al. [9]. By extending F as
a 1-homogeneous function we get an asymmetric norm � in R

n+1. The Wulff shape for �

is the convex body W� supported by �, see [27, Eq. (20.8)]. As we remembered in the
Introduction, W� minimizes the anisotropic perimeter among sets of the same Euclidean
volume. In our context we have F = hK |Sn , � = hK and W� = K . So, the initial convex
body K is the optimal shape for the anisotropic area AK defined from its support function
hK . In Palmer [31, Sect. 1] the Wulff hypersurface of F is the strictly convex hypersurface
defined as φ(Sn), where φ(w) := F(w)w + (∇Sn F)(w). When F = hK |Sn it follows from
Eq. (2.1) that φ = πK on Sn , so that the correspondingWulff hypersurface φ(Sn) equals ∂K .
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3 A second variation formula for the anisotropic area

In this section we compute the second derivative of the anisotropic area for certain deforma-
tions of an immersed hypersurface with non-empty boundary. The resulting formula will be
employed in the proof of our main result in Theorem 4.8. We begin with some preliminary
definitions.

A flow (of diffeomorphisms) in R
n+1 is a smooth map φ : Rn+1 × R → R

n+1 such that
φ(p, 0) = p for any p ∈ R

n+1, and themap φt : Rn+1 → R
n+1 defined by φt (p) := φ(p, t)

is a diffeomorphism for any t ∈ R. Usually we will denote a flow by {φt }t∈R. The associated
velocity vector field is given by

X(p) := d

dt

∣
∣
∣
∣
t=0

φt (p), for any p ∈ R
n+1.

When Y is a smooth complete vector field on Rn+1, the corresponding one-parameter group
of diffeomorphisms {φt }t∈R is a flow with velocity Y .

For a hypersurface � immersed in Rn+1 the variation of � induced by a flow {φt }t∈R is
the family {�t }t∈R, where �t := φt (�) for any t ∈ R. The flow is compactly supported on
� if there is a compact set C ⊆ � such that φt (p) = p for any p ∈ � \C and t ∈ R. If � is
a two-sided hypersurface with unit normal N then, along the variation {�t }t∈R, we can find
a smooth vector field N whose restriction to �t provides a unit normal Nt with N0 = N . For
a fixed smooth strictly convex body K ⊂ R

n+1 with support function hK , the anisotropic
area functional for the variation {�t }t∈R is the function

AK (t) := AK (�t ) =
∫

�t

hK (Nt ) d�t =
∫

�

hK (N ◦ φt ) Jacφt d�, (3.1)

where Jacφt is the Jacobian of the diffeomorphism φt |� : � → �t .
Our objective is to provide a useful expression of A′′

K (0) for some variations. For that we
must compute A′

K (0) first. We need some preliminary calculations that we gather below.

Lemma 3.1 Let K ⊂ R
n+1 be a smooth strictly convex body with support function hK . For a

two-sided hypersurface� immersed inRn+1 with unit normal N, the function ϕK := hK (N )

satisfies
∇�ϕK = −B(N�

K ), (3.2)

where ∇� is the gradient relative to � and N�
K is the tangent projection of the anisotropic

normal NK . Moreover, for any smooth vector field U with compact support on� and normal
component u := 〈

U , N
〉
, we have

∫

�

div�(ϕK U ) d� = −
∫

�

nHK u d� +
∫

�

〈
NK ,∇�u

〉
d� −

∫

∂�

〈
U , νK

〉
d(∂�), (3.3)

where HK is the anisotropic mean curvature and νK is the anisotropic conormal.

Proof Take a point p ∈ � and a vector w ∈ Tp�. By using (2.1), (2.2) and that the shape
operator Bp is a self-adjoint endomorphism of Tp�, we obtain

〈
(∇�ϕK )(p), w

〉 = 〈
(∇hK )(N (p)), DwN

〉 = −〈
πK (N (p)), Bp(w)

〉

= −〈
NK (p), Bp(w)

〉 = −〈
Bp(N

�
K (p)), w

〉
.

(3.4)

This implies (3.2). Let us prove (3.3). For any w ∈ R
n+1 we denote by w� and w⊥ the

projections of w with respect to Tp� and (Tp�)⊥, respectively. For a smooth vector fieldU
on �, note that
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ϕK U = ϕK U� + ϕK u N = ϕK U� + u N⊥
K = ϕK U� + u NK − u N�

K ,

where in the second equality we have employed (2.3). By taking divergences relative to �

and having in mind (2.6), we get

div�(ϕK U ) = div�(ϕK U�) − nHK u + 〈
NK ,∇�u

〉 − div�(u N�
K ).

From here the desired formula follows by using (2.4) and the divergence theorem on �. ��
Next, we compute the first variation of AK . This was previously derived by many authors,

see for instance Clarenz [7, Sect. 1], or Koiso and Palmer [22, Proof of Prop. 3.1]. As in Koiso
[20, Lem. 9.1], our formula holds for arbitrary deformations of a Euclidean hypersurface with
non-empty boundary. We include a short proof that will be helpful in the subsequent calculus
of A′′

K (0).

Proposition 3.2 Let K ⊂ R
n+1 be a smooth strictly convex body, � a two-sided immersed

hypersurface with boundary, and {φt }t∈R a flow in Rn+1 with compact support on �. Then,
we have

A′
K (0) = −

∫

�

nHK u d� −
∫

∂�

〈
X , νK

〉
d(∂�),

where HK is the anisotropic mean curvature, u := 〈
X , N

〉
is the normal component of the

velocity vector field X, and νK is the anisotropic conormal along ∂�.

Proof Recall that we denote ϕK := hK (N ). For a fixed point p ∈ �, we define

h p(t) := hK (Nt ◦ φt )(p), jp(t) := (Jacφt )(p), for any t ∈ R. (3.5)

By differentiating under the integral sign in (3.1) and taking into account that φ0 = Id, we
obtain

A′
K (0) =

∫

�

(
h′
p(0) + ϕK (p) j ′p(0)

)
d�. (3.6)

On the one hand it is well known, see Simon [36, §9], that

j ′p(0) = d

dt

∣
∣
∣
∣
t=0

(Jacφt )(p) = (div� X)(p). (3.7)

On the other hand, from Eqs. (2.1) and (2.2), it follows that

h′
p(0) = 〈

(∇hK )(N (p)), DX(p)N
〉 = 〈

NK (p), DX(p)N
〉
.

The computation of DX(p)N is found in [34, Lem. 4.1(1)]. We get

DX(p)N = d

dt

∣
∣
∣
∣
t=0

(Nt ◦ φt )(p) = −(∇�u)(p) − Bp(X
�(p)), (3.8)

where X�(p) is the projection of X(p) onto Tp�. By substituting this information into the
previous expression for h′

p(0) and having in mind the third equality in (3.4), we arrive at

h′
p(0) = −〈

NK ,∇�u
〉
(p) + 〈∇�ϕK , X�〉

(p). (3.9)

Thus, the integrand in (3.6) is the evaluation at p of the function

−〈
NK ,∇�u

〉 + 〈∇�ϕK , X�〉 + ϕK div� X = −〈
NK ,∇�u

〉 + div�(ϕK X).

The proof finishes by applying the formula in (3.3) with U = X . ��
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Second variation formulas for the anisotropic area under different hypotheses on � and
the deformation can be found in Koiso and Palmer [22, Prop. 3.3], [23, Prop. 3.3], Barbosa
and Silva [1, Prop. 3], and Guo and Xia [14, Prop. 3.5]. In this work we only need to compute
A′′
K (0)when we move a hypersurface� with non-empty boundary by means of some special

flows.

Proposition 3.3 Let K ⊂ R
n+1 be a smooth strictly convex body, � a compact two-sided

immersed hypersurface with boundary, and X a smooth complete vector field on Rn+1 such
that X |� = NK . Then, for the one-parameter group of diffeomorphisms {φt }t∈R associated
to X, we have

A′′
K (0) =

∫

�

(
n2H2

K − tr(B2
K )

)
ϕK d� −

∫

�

nHK v d� −
∫

∂�

〈
Z , νK

〉
d(∂�),

where HK is the anisotropic mean curvature, BK is the anisotropic shape operator, νK
is the anisotropic conormal and v := 〈

Z , N
〉
is the normal component of the vector field

Z := DX X.

Proof For any w ∈ R
n+1 the notations w� and w⊥ will stand for the projections of w onto

T� and (T�)⊥, respectively. For a given point p ∈ � we define h p(t) and jp(t) as in (3.5).
By differentiating under the integral sign twice in (3.1) and taking into account that φ0 = Id,
we get

A′′
K (0) =

∫

�

(
h′′
p(0) + 2h′

p(0) j
′
p(0) + ϕK (p) j ′′p(0)

)
d�. (3.10)

Let us compute all the derivatives in the integrand above.
For the calculus of j ′p(0) and j ′′p(0) we refer the reader to Simon [36, §9]. From (3.7),

(2.6), and the fact that X |� = NK , we obtain

j ′p(0) = (div� X)(p) = (div� NK )(p) = −nHK (p). (3.11)

On the other hand, we have

j ′′p(0) = (div� Z)(p) + (div� X)2(p) +
n∑

i=1

|(Dei X)⊥|2 −
n∑

i, j=1

〈
Dei X , e j

〉 〈
Dej X , ei

〉
,

where {e1, . . . , en} is an orthonormal basis of Tp�. Equation (2.5) and the fact that X |� = NK

yield

Dei X = Dei NK = −(BK )p(ei ),

so that (Dei X)⊥ = 0 for any i = 1, . . . , n. It is also clear that

n∑

i, j=1

〈
Dei X , e j

〉 〈
Dej X , ei

〉 = tr
(
(BK )2p

)
.

All this together with (3.11) shows that

j ′′p(0) = (
div� Z + n2H2

K − tr(B2
K )

)
(p). (3.12)

Next, we compute h′
p(0) and h′′

p(0). Note that
〈
X , N

〉 = 〈
NK , N

〉 = ϕK by (2.3). Hence,
Eq. (3.9) implies that

h′
p(0) = −〈

NK ,∇�ϕK
〉
(p) + 〈∇�ϕK , N�

K

〉
(p) = 0. (3.13)
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In order to calculate h′′
p(0) we need an expression for h

′
p(t). From the definition in (3.5) we

deduce

h′
p(t) = 〈

(∇hK )((Nt ◦ φt )(p)), (DX N )(φt (p))
〉 = 〈

πK ((Nt ◦ φt )(p)), (DX N )(φt (p))
〉

because of Eq. (2.1). This entails that

h′′
p(0) = 〈

(dπK )N (p)(DX(p)N ), DX(p)N
〉 + 〈

NK (p), DX(p)DX N
〉
.

As
〈
X , N

〉 = ϕK on �, Eqs. (3.8) and (3.2) lead to

DX(p)N = −(∇�ϕK )(p) − Bp(N
�
K (p)) = 0. (3.14)

On the other hand, by Lemma 3.4 below we know that

DX(p)DX N = −(∇�v)(p) − Bp(Z
�(p)),

and so

h′′
p(0) = −〈

NK ,∇�v
〉
(p) − 〈

NK (p), Bp(Z
�(p))

〉

= −〈
NK ,∇�v

〉
(p) + 〈∇�ϕK , Z�〉

(p), (3.15)

where we have employed the third equality in Eq. (3.4).
Now, by having in mind (3.15), (3.13) and (3.12), we conclude that the integrand in (3.10)

is the evaluation at p of the function

−〈
NK ,∇�v

〉 + div�(ϕK Z) + (
n2H2

K − tr(B2
K )

)
ϕK .

From here the proof finishes by applying the formula in (3.3) with U = Z . ��
Lemma 3.4 In the conditions of Proposition 3.3, for any p ∈ �, we have

DX(p)DX N = −(∇�v)(p) − Bp(Z
�(p)).

Proof Take an orthonormal basis {e1, . . . , en} of Tp�. We use the flow {φt }t∈R associated
to X to construct, for any i = 1, . . . , n, a smooth vector field Ei around p which is tangent
on any �t := φt (�) while satisfying Ei (p) = ei and [X , Ei ] = 0 (here [·, ·] stands for the
Lie bracket of vector fields in Rn+1). It is clear that

DX(p)DX N =
n∑

i=1

〈
DX(p)DX N , ei

〉
ei + 〈

DX(p)DX N , N (p)
〉
N (p). (3.16)

We will compute the different terms in the previous equation.
Since |N |2 = 1 we get

〈
DX N , N

〉 = 0. By differentiating and applying Eq. (3.14), we
deduce

0 = 〈
DX(p)DX N , N (p)

〉 + |DX(p)N |2 = 〈
DX(p)DX N , N (p)

〉
. (3.17)

On the other hand, we differentiate twice with respect to X in equality
〈
N , Ei

〉 = 0. By taking
into account that DX(p)N = 0 (see Eq. (3.14)) and [X , Ei ] = 0, we obtain

〈
DX(p)DX N , ei

〉 = −〈
N (p), DX(p)DX Ei

〉 = −〈
N (p), DX(p)DEi X

〉
.

Since the Riemann curvature tensor vanishes for the standard metric in Rn+1, we infer

0 = DX DEi X − DEi DX X − D[X ,Ei ]X = DX DEi X − DEi Z
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because DX X = Z . This shows that DX(p)DEi X = Dei Z . As a consequence
〈
DX(p)DX N , ei

〉 = −〈
N (p), Dei Z

〉 = −ei
(〈
Z , N

〉) + 〈
Z(p), Dei N

〉

= −〈
(∇�v)(p), ei

〉 − 〈
Z�(p), Bp(ei )

〉

= −〈
(∇�v)(p), ei

〉 − 〈
Bp(Z

�(p)), ei
〉
. (3.18)

By substituting (3.17) and (3.18) into (3.16) the proof follows. ��
Remarks 3.5 (i). If K ⊂ R

n+1 is the round unit ball about 0, then the anisotropic area
coincides with the Euclidean area and the obtained formulas are well known.

(ii). It is interesting to observe that, unless K is centrally symmetric about 0, the formulas for
A′
K (0) and A′′

K (0) may depend on the unit normal vector N fixed on �.
(iii). In Proposition 4.5 we will see that, under some extra conditions, the boundary integrand

in the expression of A′′
K (0) has a geometric interpretation.

4 Anisotropic stable hypersurfaces in solid cones

In this section we consider a Euclidean solid cone (not necessarily convex) and study com-
pact hypersurfaces immersed in the cone and minimizing the anisotropic area up to second
order for deformations preserving the volume of the hypersurface and the boundary of the
cone. In this situation we will show that the variational formulas computed in Sect. 3 can be
slightly simplified. After that we will prove our main theorem, where we characterize these
second order minima when the cone is convex. It is worth mentioning that, excluding this
classification statement and the Minkowski-type formula in Eq. (4.5), all the results in this
section still hold when we replace the cone with any smooth Euclidean open set.

We begin by introducing some notation and definitions. For a domainD ⊂ S
n with smooth

boundary, the solid cone over D is the set

C := {λ p; λ > 0, p ∈ D}.
This is a domain of Rn+1 with boundary ∂C smooth away from 0. We call ξ the inner unit
normal along ∂C \ {0}. Note that C and ∂C are invariant under the dilations δλ centered at 0.
It is also clear that C coincides with an open half-space when D is an open hemisphere.

Let� be a smooth, compact, two-sided hypersurface immersed in Cwith smooth boundary
∂� in ∂C \ {0}. We suppose that � ∩ ∂C = ∂�, so that � \ ∂� ⊆ C. We fix a smooth unit
normal vector field N on �. The inner conormal vector of ∂� in � is represented by ν. In
the planar distribution T (∂�)⊥ we choose the orientation induced by {ν, N }. Thus, for any
p ∈ ∂�, there is a unique μ(p) ∈ Tp(∂�)⊥ such that {ξ(p), μ(p)} is a positively oriented
orthonormal basis. Observe that μ is tangent to ∂C and normal to ∂�. It is easy to check that
these equalities hold along ∂�

ν = (cos θ) ξ − (sin θ) μ, μ = −(sin θ) ν + (cos θ) N ,

N = (sin θ) ξ + (cos θ) μ, ξ = (cos θ) ν + (sin θ) N ,
(4.1)

where θ is the oriented angle function between ν and ξ in T (∂�)⊥. As a consequence, for
a fixed smooth strictly convex body K ⊂ R

n+1, the anisotropic normal NK on � and the
anisotropic conormal νK along ∂� given in (2.2) and (2.4) verify

〈
NK , μ

〉 = 〈
νK , ξ

〉
,

〈
NK , ξ

〉 = −〈
νK , μ

〉
. (4.2)
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A flow of diffeomorphisms {φt }t∈R in R
n+1 is admissible for C if φt (∂C) = ∂C and

φt (0) = 0, for any t ∈ R. The induced variation {�t }t∈R of � satisfies ∂�t ⊂ ∂C \ {0} and
�t ∩ ∂C = ∂�t , for any t ∈ R. Moreover, the velocity vector field X is tangent on ∂C \ {0}
and vanishes at 0. We consider the anisotropic area functional AK (t) introduced in (3.1) and
the volume functional V (t), which assigns to any t ∈ R the algebraic volume enclosed by
�t as defined in (2.8). We computed A′

K (0) in Proposition 3.2. On the other hand, it is well
known ([2, Eq. (2.3)]) that

V ′(0) =
∫

�

u d�, (4.3)

where u := 〈
X , N

〉
. We say that the flow preserves the volume of � if V (t) is constant for

any t small enough. This implies that
∫
�
u d� = 0. Conversely, for any smooth function

u : � → R with
∫
�
u d� = 0, there is a flow {φt }t∈R admissible for C, preserving the

volume of �, and such that
〈
X , N

〉 = u on �, see Barbosa and do Carmo [2, Lem. (2.4)].
A hypersurface � in the previous conditions is anisotropic stationary (with respect to the

fixed unit normal N ) if A′
K (0) = 0 for any admissible flow for C preserving the volume of�.

We emphasize that this property may depend on the unit normal N when K is not centrally
symmetric. Thus, � could be anisotropic stationary with respect to N but not with respect to
−N .

The first variational formulas in Proposition 3.2 and Eq. (4.3), together with the afore-
mentioned construction of volume-preserving flows, lead to a characterization of anisotropic
stationary hypersurfaces. Indeed, we can reason asKoiso and Palmer [22, Prop. 3.1] to deduce
the next result, which generalizes the isotropic situation.

Proposition 4.1 A two-sided hypersurface � immersed in C with boundary ∂� in ∂C \ {0}
is anisotropic stationary if and only if the anisotropic mean curvature HK is constant on �

and
〈
NK , ξ

〉 = 0 along ∂�.

Example 4.2 Take the hypersurface� = ∂K ∩C with unit normal N = ηK (the one pointing
outside K ). Note that ∂K meets ∂C transversally because K is convex and contains 0 in its
interior. Hence, � is a compact hypersurface with boundary ∂� such that � ∩ ∂C = ∂�.
In Examples 2.1 (iii) we saw that HK (p) = −1 and NK (p) = p, for any p ∈ �. As ∂C
is invariant under dilations centered at 0 then NK (p) ∈ Tp(∂C) for any p ∈ ∂� and so,〈
NK , ξ

〉 = 0. From the previous proposition we conclude that � is anisotropic stationary.

In the isotropic case the orthogonality condition for a stationary hypersurface � entails
that ν = ξ along ∂�. In the next lemma we establish a similar equality for the anisotropic
conormal νK that will be useful in future results.

Lemma 4.3 Let� be a two-sided hypersurface immersed in C with boundary ∂� in ∂C \ {0}.
If

〈
NK , ξ

〉 = 0 in ∂�, then cos θ never vanishes and

νK = ϕK

cos θ
ξ along ∂�,

where ϕK := hK (N ) and θ is the oriented angle function between ν and ξ in T (∂�)⊥.

Proof Recall that νK := ϕK ν − 〈
NK , ν

〉
N , which is normal to ∂�. By Eq. (4.2) we have〈

νK , μ
〉 = −〈

NK , ξ
〉 = 0. This shows that νK is normal to ∂C and so, νK = 〈

νK , ξ
〉
ξ along

∂�.
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Let us compute
〈
νK , ξ

〉
. Consider the projection N∗

K of NK onto T (∂�)⊥. By using (4.2),
equality

〈
NK , ξ

〉 = 0, and that {ν, N } and {ξ, μ} are orthonormal basis of T (∂�)⊥, we obtain
〈
νK , ξ

〉2 = 〈
NK , μ

〉2 = |N∗
K |2 = 〈

NK , ν
〉2 + ϕ2

K ,

which is a positive number. Hence,
〈
νK , ξ

〉
never vanishes along ∂�. On the other hand, by

substituting the expression for ξ in (4.1) into equality
〈
NK , ξ

〉 = 0, we get

sin θ = −
〈
NK , ν

〉
cos θ

ϕK
along ∂�.

The definition of νK and the two previous relations lead to

〈
νK , ξ

〉 = ϕK cos θ − 〈
NK , ν

〉
sin θ = ϕ2

K + 〈
NK , ν

〉2

ϕK
cos θ =

〈
νK , ξ

〉2

ϕK
cos θ,

and so
〈
νK , ξ

〉

ϕK
cos θ = 1 along ∂�.

This implies that cos θ never vanishes and allows to deduce the announced expression for
νK . ��

Now, we can provide new expressions for the derivatives of the anisotropic area when
we consider an anisotropic stationary hypersurface � in C. On the one hand, the boundary
term in the formula for A′

K (0) obtained in Proposition 3.2 vanishes for any flow {φt }t∈R
admissible for C. This comes from Proposition 4.1 and Lemma 4.3 since the velocity vector
field X is tangent to ∂C \ {0}. Hence

A′
K (0) = −nHK

∫

�

u d�, (4.4)

where u := 〈
X , N

〉
on �. Note that, for the flow φt (p) := et p, the first equation in (2.9)

implies that A′
K (0) = nAK (�). Thus, by having in mind (4.4) and Eq. (2.8), it follows that

AK (�) = −(n + 1) HK V (�). (4.5)

This identity is a Minkowski-type formula for compact anisotropic stationary hypersurfaces
in C.

Remark 4.4 We can use (2.8) to write (4.5) as
∫

�

(
ϕK + HK

〈
p, N (p)

〉)
d� = 0.

The proof of (4.5) implies that the previous identity is true for any compact hypersurface �

immersed in C with boundary ∂� in ∂C \ {0} and satisfying
〈
NK , ξ

〉 = 0 along ∂�. Similar
formulas were previously obtained by He and Li [16, Thm. 1.1], and Jia et al. [18, Thm. 1.3].

On the other hand, the boundary integrand appearing in A′′
K (0), see Proposition 3.3, can

be written in terms of the Euclidean extrinsic geometry of ∂C. We prove this in the next
proposition, where we also compute the second derivative of the volume for certain flows.
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Proposition 4.5 Let � be a two-sided anisotropic stationary hypersurface immersed in C
with boundary ∂� in ∂C \ {0}. Consider a smooth complete vector field X onRn+1 such that
X |� = NK , X(0) = 0 and X is tangent to ∂C \ {0}. Then, for the admissible flow {φt }t∈R
defined by the one-parameter group of diffeomorphisms associated to X, we have

A′′
K (0) =

∫

�

(
n2H2

K − tr(B2
K )

)
ϕK d�

−
∫

�

nHK v d�

−
∫

∂�

II(NK , NK )

cos θ
ϕK d(∂�), (4.6)

V ′′(0) =
∫

�

(−nHK ϕK + v) d�, (4.7)

where BK is the anisotropic shape operator of�, II is the second fundamental form of ∂C\{0}
with respect to the inner normal, θ is the oriented angle function between ν and ξ in T (∂�)⊥,
and v := 〈

Z , N
〉
is the normal component of Z := DX X.

Remark 4.6 Observe that NK is tangent to ∂C along ∂� because � is anisotropic stationary.
This guarantees the existence of a vector field X in the conditions of the statement and that
the term II(NK , NK ) is well defined. Note also that cos θ never vanishes by Lemma 4.3.

Proof of Proposition 4.5 We first check that (4.6) holds. From Proposition 3.3 it suffices to
see that

〈
Z , νK

〉 = II(NK , NK )

cos θ
ϕK along ∂�.

By Lemma 4.3 we know that
〈
Z , νK

〉 = ϕK

cos θ

〈
Z , ξ

〉
along ∂�.

It is clear that
〈
X , ξ

〉 = 0 along ∂C because X is tangent to ∂C \ {0} and X(0) = 0. By
differentiating with respect to X , we obtain

0 = 〈
DX X , ξ

〉 + 〈
X , DX ξ

〉 = 〈
Z , ξ

〉 − II(X , X),

so that
〈
Z , ξ

〉 = II(X , X) = II(NK , NK ) along ∂�.
Now we compute V ′′(0). As the family {φt }t∈R is a one-parameter group of diffeomor-

phisms, we can employ Eq. (4.3) to get

V ′(t) =
∫

�t

〈
X , Nt

〉
d�t =

∫

�

(〈
X , Nt

〉 ◦ φt
)
Jacφt d�.

By differentiating and having in mind (3.8), (3.7), (3.14), (2.6) and (2.3), it follows that

V ′′(0) =
∫

�

(〈
DX X , N

〉 + 〈
X , DX N

〉 + 〈
X , N

〉
div� X

)
d� =

∫

�

(v − nHK ϕK ) d�.

This completes the proof. ��
We now turn to the main result of the paper. This is a classification of anisotropic stable

hypersurfaces in a Euclidean solid cone.
Let � be a two-sided hypersurface immersed in C with boundary ∂� in ∂C \ {0}. We fix a

smooth unit normal vector field N on �. We say that � is anisotropic stable (with respect to
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N ) if A′
K (0) = 0 and A′′

K (0) � 0 for any flow admissible for C and preserving the volume
of �. When C is convex, the hypersurface ∂K ∩ C is anisotropic stable with respect to the
outer unit normal since it minimizes the anisotropic area among compact hypersurfaces in C
separating the same volume, see [28, Cor. 1.2] and [4, Thm. 1.3]. So, it is natural to ask if this
property characterizes ∂K ∩C up to translations and dilations centered at 0. The next example
shows that, in general, the answer is negative because other anisotropic stable hypersurfaces
may appear.

Example 4.7 Let C be a convex cone different from a Euclidean half-space and such that
∂C contains a half-hyperplane P (any solid cone in R

2 satisfies this property). Consider the
open half-space H ⊂ R

n+1 with P ⊂ ∂H and C ⊂ H. Since H is a convex cone, we can
apply the isoperimetric result in [28, Cor. 1.2] and [4, Thm. 1.3] to deduce that the truncated
Wulff shape ∂K ∩ H minimizes the anisotropic area in H for fixed volume. Next, we apply
to ∂K ∩H a translation along P so that the resulting hypersurface � is contained in C. Note
that� is anisotropic stable in C because ∂K ∩H is anisotropic stable inH. Finally, as C �= H,
then � �= p0 + λ (∂K ∩ C) for any p0 ∈ R

n+1 and λ > 0.

This example illustrates that the optimal conclusion to be deduced for an anisotropic stable
hypersurface � in C is that � ⊂ ∂K , up to translation and homothety. We prove this fact in
the next uniqueness statement under our regularity conditions for �, C and K .

Theorem 4.8 Let C ⊂ R
n+1 be a solid convex cone over a smooth domain of Sn. Consider

a compact, connected, two-sided hypersurface � immersed in C with smooth boundary ∂�

in ∂C \ {0} and such that � ∩ ∂C = ∂�. If � is anisotropic stable for the area AK defined
by a smooth strictly convex body K ⊂ R

n+1 then, there is p0 ∈ R
n+1 and λ > 0 such that

� ⊂ p0 + λ (∂K ).

Proof We will follow the idea explained in the Introduction. As � is anisotropic stationary,
Proposition 4.1 implies that HK is constant on � and

〈
NK , ξ

〉 = 0 along ∂�. So, we can find
a smooth complete vector field X on Rn+1 such that X |� = NK , X(0) = 0 and X is tangent
to ∂C \ {0}. By Eq. (2.3) it is clear that u = ϕK on �, where u := 〈

X , N
〉
and ϕK := hK (N ).

Let {ψt }t∈R be the one-parameter group of diffeomorphisms associated to X . We take the
functionals AK (t) := AK (�t ) and V (t) := V (�t ) associated to the variation �t := ψt (�).
From the Minkowski formula in Eq. (4.5) we have HK �= 0 and V (�) �= 0. Hence, there is
ε > 0 such that V (t) has the same sign as V (�) for any t ∈ (−ε, ε). Next, for any t ∈ (ε, ε),
we apply to �t a dilation δλ(t)(p) := λ(t) p with λ(t) > 0, so that the volume of δλ(t)(�t )

equals the volume of �. Since V (δλ(t)(�t )) = λ(t)n+1 V (t), see (2.9), we get

λ(t) :=
(
V (�)

V (t)

) 1
n+1

, for any t ∈ (−ε, ε). (4.8)

In particular, λ(0) = 1. We consider a smooth positive function on R extending λ(t) for
small values of t . We also denote this function by λ(t). If we define

φt := δλ(t) ◦ ψt , for any t ∈ R,

then we produce an admissible flow for C that preserves the volume of �. Hence, the
anisotropic stability of� entails that the functionalaK (t) := AK (φt (�)) satisfiesa′′

K (0) � 0.
To prove the theorem we need to compute a′′

K (0). By Eq. (2.9) we know that

aK (t) = AK (δλ(t)(�t )) = λ(t)n AK (t). (4.9)
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Thus, the calculus of a′′
K (0) relies on the values of λ′(0), λ′′(0), A′

K (0) and A′′
K (0).

By using (4.3), (4.4), the fact that u = ϕK on �, and that AK (�) = ∫
�

ϕK d�, we obtain

V ′(0) = AK (�), (4.10)

A′
K (0) = −nHK AK (�). (4.11)

On the other hand, from the expression of λ(t) in (4.8), we have

λ′(t) = − 1

n + 1
V (�)

1
n+1 V (t)

−n−2
n+1 V ′(t). (4.12)

Hence, from Eqs. (4.10) and (4.5), it follows that

λ′(0) = − 1

n + 1

AK (�)

V (�)
= HK . (4.13)

Now we compute A′′
K (0) and λ′′(0). From (4.7) and (4.6), since HK is constant, we get

V ′′(0) = −nHK AK (�) + α, (4.14)

A′′
K (0) = n2H2

K AK (�) −
∫

�

tr(B2
K ) ϕK d� − nHK α

−
∫

∂�

II(NK , NK )

cos θ
ϕK d(∂�), (4.15)

where α := ∫
�

v d� and v := 〈
DX X , N

〉
. Recall that II is the second fundamental form of

∂C \ {0} with respect to the inner normal ξ . On the other hand, from (4.12) we deduce

λ′′(t) = −1

n + 1
V (�)

1
n+1

(

−n + 2

n + 1
V (t)

−2n−3
n+1 V ′(t)2 + V (t)

−n−2
n+1 V ′′(t)

)

.

By evaluating at t = 0 and simplifying, Eqs. (4.10) and (4.14) give us

λ′′(0) = n + 2

(n + 1)2
AK (�)2

V (�)2
+ n

n + 1

HK AK (�)

V (�)
− 1

n + 1

α

V (�)
.

When we employ the identity (4.5) in the three summands above, we arrive at

λ′′(0) = 2H2
K + HK

AK (�)
α. (4.16)

Finally, we differentiate into Eq. (4.9) to infer

a′
K (t) = n λ(t)n−1 λ′(t) AK (t) + λ(t)n A′

K (t).

As a consequence

a′′
K (t) = n

{
(n − 1) λ(t)n−2 λ′(t)2 AK (t) + λ(t)n−1 λ′′(t) AK (t) + 2λ(t)n−1 λ′(t) A′

K (t)
}

+λ(t)n A′′
K (t).

By substituting above the expressions in (4.13), (4.16), (4.11), (4.15), and simplifying, we
obtain

a′′
K (0) = −

∫

�

(
tr(B2

K ) − nH2
K

)
ϕK d� −

∫

∂�

II(NK , NK )

cos θ
ϕK d(∂�). (4.17)

The first integrand in the previous formula is nonnegative by (2.7). The convexity of C
implies that II(NK , NK ) � 0 along ∂�. Let us see that cos θ > 0 along ∂�. From the first
equation in (4.1) we know that cos θ = 〈

ν, ξ
〉
. Take a point p ∈ ∂�. Since ν(p) is the inner
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conormal of ∂� in �, there is a smooth curve γ : [0, τ ) → � such that γ (0) = p and
γ ′(0) = ν(p). As � ⊂ C and C is convex, the function f (t) := 〈

γ (t) − p, ξ(p)
〉
satisfies

f (t) � 0 for any t ∈ [0, τ ) and f (0) = 0. This gives us
〈
ν(p), ξ(p)

〉 = f ′(0) � 0. Indeed
we have

〈
ν(p), ξ(p)

〉
> 0 because cos θ never vanishes, see Lemma 4.3. All this together

with the stability inequality a′′
K (0) � 0 entails that tr(B2

K ) = nH2
K on � (this means that �

is anisotropic umbilical) and

II(NK , NK ) = 0 along ∂�. (4.18)

Since HK �= 0 (as a consequence of Eq. (4.5)) the proof finishes by invoking Proposition 2.2.
��

Remark 4.9 (Non-smooth cones) The proof of Theorem 4.8 is still validwhen C is an arbitrary
open convex cone (the base domainD ⊂ S

n need not be smooth), provided the boundary ∂�

is contained in a smooth open portion of ∂C. For instance, the conclusion holds for a compact
anisotropic stable hypersurface � disjoint from the edge of a domain C bounded by two
transversal hyperplanes. In this direction, Koiso [19, Thm. 4], [21, Thm. 1] has characterized
compact anisotropic stable capillary hypersurfaces in wedge-shaped domains of Rn+1.

Remark 4.10 (Planar cones) For a solid cone C ⊂ R
2, the boundary ∂C is the union of two-

closed half-lines leaving from 0. Thus, we have II = 0 along ∂C \ {0} and the boundary term
in (4.17) disappears. Hence, the conclusion of Theorem 4.8 remains valid even if the cone is
not convex.

The situation described in Example 4.7 leads us to seek additional conditions on the cone
in order to deduce stronger uniqueness conclusions. In this direction we can prove the next
statement.

Corollary 4.11 Let C ⊂ R
n+1 be a solid cone over a smooth strictly convex domain of

S
n. Consider a compact, connected, two-sided hypersurface � immersed in C with smooth

boundary ∂� in ∂C \ {0} and such that � ∩ ∂C = ∂�. If � is anisotropic stable for the area
AK defined by a smooth strictly convex body K ⊂ R

n+1, then � = λ (∂K ∩ C) for some
λ > 0.

Proof From Theorem 4.8 we know that � ⊂ p0 + λ (∂K ) for some p0 ∈ R
n+1 and λ > 0.

If we define on � the unit normal vector N (p) := ηK
(
(p − p0)/λ

)
then, by using (2.2) and

equality (πK ◦ ηK )(w) = w for any w ∈ ∂K , we get NK (p) = (p − p0)/λ for any p ∈ �.
The fact that the base set D ⊂ S

n of the cone C is a strictly convex domain means that
the second fundamental form of ∂D as a hypersurface of Sn is always positive definite with
respect to the inner unit normal. This implies that IIp(w,w) > 0 for any p ∈ ∂� and
any vector w ∈ Tp(∂C) non-proportional to p. From the identity in (4.18) it follows that
(p − p0)/λ is proportional to p, for any p ∈ ∂�. From here we get p0 = 0, and this
completes the proof. ��

A special example of convex cone is a half-space H ⊂ R
n+1 with 0 ∈ ∂H. Since ∂H

is smooth we do not need to assume ∂� ⊂ ∂H \ {0}. Note that Corollary 4.11 cannot be
applied in this situation because II = 0 on ∂C. However, in the next statement we deduce that
∂K ∩ H is the unique compact anisotropic stable hypersurface in H, up to dilations about 0
and translations along ∂H. A similar result for anisotropic stable capillary hypersurfaces in
H has been given by Guo and Xia [14, Thm. 1.1] with a different proof.
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Corollary 4.12 Let� be a compact, connected, two-sided hypersurface immersed in an open
half-space H ⊂ R

n+1 with smooth boundary ∂� ⊂ ∂H such that � ∩ ∂H = ∂�. If � is
anisotropic stable, then � = p0 + λ (∂K ∩ H) for some p0 ∈ ∂H and λ > 0.

Proof After applying Theorem 4.8 it remains to see that p0 ∈ ∂H. By reasoning as in the
proof of Corollary 4.11 we obtain NK (p) = (p − p0)/λ, for any p ∈ �. The orthogonality
condition

〈
NK , ξ

〉 = 0 along ∂� entails that p − p0 ∈ Tp(∂H) for any p ∈ ∂�. As ∂H
is a Euclidean hyperplane, the straight line starting from a point p ∈ ∂� with p �= p0 and
generated by the vector p − p0 is entirely contained in ∂H. This shows that p0 ∈ ∂H, as we
claimed. ��
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