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A B S T R A C T

This paper provides a mathematical optimization framework to incorporate fairness measures from the
facilities’ perspective to discrete and continuous maximal covering location problems. The main ingredients to
construct a function measuring fairness in this problem are the use of (1) ordered weighted averaging operators,
a popular family of aggregation criteria for solving multiobjective combinatorial optimization problems; and
(2) 𝛼-fairness operators which allow generalizing most of the equity measures. A general mathematical
optimization model is derived which captures the notion of fairness in maximal covering location problems.
The models are first formulated as mixed integer non-linear optimization problems for both the discrete and the
continuous location spaces. Suitable mixed integer second order cone optimization reformulations are derived
using geometric properties of the problem. Finally, the paper concludes with the results obtained from an
extensive battery of computational experiments on real datasets. The obtained results support the convenience
of the proposed approach.
1. Introduction

The term fairness is defined as ‘‘the quality of treating people equally
or in a way that is right or reasonable’’ (Cambridge Dictionary). It is an
abstract but widely studied concept in Decision Sciences in which some
type of indivisible resources are to be shared among different agents.
The importance of fairness issues in resource allocation problems has
been recognized and well-studied in a variety of settings, with tons
of applications in different fields (see e.g., Kelly et al., 1998; Luss,
1999; Li and Li, 2006; Jiang et al., 2021). Fair allocations should imply
impartiality, justice, and equity in the allocation patterns, which are
usually quantified by means of inequality measures that are minimized.
Several measures have been proposed in the literature to this end,
although the most popular one is the max–min (or min–max) approach,
which assures that the most harmed agent in the share is as little dam-
aged as possible (see e.g., Megiddo, 1974; Hayden, 1981; Jaffe, 1981;
Bertsekas et al., 1992). Other popular proposals of fairness measures
are the minimum envy (Lipton et al., 2004; Caragiannis et al., 2009;
Espejo et al., 2009; Netzer et al., 2016) or certain families of ordered
weighted averaging criteria (Ogryczak and Trzaskalik, 2006; Hurkała
and Hurkała, 2013; Ogryczak et al., 2014), among others.

In this paper, we analyze the notion of fairness in the context of
Location Science. Facility location problems aim to optimally determine
the position of one or more facilities to satisfy the demand of a set of
users. There is a vast variety of location problems, which are commonly
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classified by the nature of the users and facilities, the optimization crite-
ria, the type of demand to be satisfied, among many others (Hamacher
and Nickel, 1998). The interested reader is referred to the recent
book Laporte et al. (2019) for a fresh view of the developments on both
theoretical and applied aspects of location problems.

We analyze here a particular family of location problems, known
as Covering Location (CL) problems, that arise whenever a decision-
maker aims to cover a given demand in case the facilities have a limited
coverage area. These types of problems appear in many practical
situations where the services to be located are unable to satisfy the
demand outside their coverage area. One of the most interesting CL
problems is the Maximal Covering Location Problem (MCLP), whose
goal is to find the positions of a given number of services, 𝑝, each of
them endowed with a coverage area, maximizing the covered demand
of the users. This problem was first introduced by Church and ReVelle
(1974), and since then, the MCLP has attracted significant attention
from both researchers and practitioners (Wei and Murray, 2015). As in
other Location Science problems, it is usual to analyze two different
types of location spaces for the MCLP, in terms of the nature of the
facilities that are to be located. In the discrete MCLP, the services are
selected from a given finite set of potential facilities, whereas in the
continuous MCLP, the services are allowed to be located at any position
of the decision space (usually, the plane).
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This paper provides a general mathematical optimization-based
framework to incorporate fairness measures from the facilities’ per-
spective to discrete and continuous MCLPs, allowing the workload to
be fairly balanced among facilities. We assume that a given number
of services must be located to maximize the demand covered by the
different agents. In a fairly ideal solution, one would desire to ‘‘indepen-
dently’’ maximize the covered demand of each of the services without
negatively affecting the demand coverage of the others. However, since
the demands are usually indivisible, in most cases, an advantageous
solution for one service (covering a large amount of the demand) harms
others. As already occurs in other resource allocation problems, one
may prefer to slightly sacrifice the overall covered demand in order to
alance the different covered demands among the open services. This
ight be applicable to the case of the location of public schools, in
hich it is preferable to find a homogeneous distribution of students
mong the schools, or the location of routers with high capacities,
here a ‘‘good’’ location for them would be the one in which the
erformance of all the routers can be better used instead of saturating
ome and leaving others covering a small number of users.

.1. Related work

In many resource reallocation problems, a special attention has been
aid to the notion of fairness. For this reason, it has been widely recog-
ized in the literature and, due also to the subjective implications the
erm fairness has, it has been studied in a wide variety of ways. The ap-
lications of fair resource allocation range from social or humanitarian
ontexts to engineering applications or logistics problems.

The social context is an important field where fairness has been
pplied. Gross (2008) highlights the importance of studying the notions
f equity and justice and incorporating them into decision problems,
uch as the fair allocation of water in irrigation farms. Huang and
afiei (2019) analyze the notion of fairness in the field of humanitarian

ogistics.
In engineering applications, as in telecommunication networks,

here limited resources must be allocated among the different com-
eting entities, the notion of fairness is also crucial (see e.g., Kleinberg
t al., 1999; Luss, 1999; Bonald and Massoulié, 2001; Ogryczak et al.,
014).

The allocation of public resources is one of the most studied applica-
ions when analyzing equity and fairness. For instance, in the allocation
f beds and ambulances in emergency medical services. In Leclerc
t al. (2012, Chapter 4), the authors review different measures pre-
iously proposed in the literature and study their incorporation into
he allocation of ambulances. Another example of the importance of
quity allocation comes from healthcare scheduling. Specifically, in the
llocation of beds and other resources to patients, where fairness might
elp to reduce mortality (see e.g, Zhou et al., 2020).

In Location Science, some equity measures have been also ana-
yzed (Espejo et al., 2009; Chanta et al., 2014). A review of measures
or equitable facility location problems is given by Marsh and Schilling
1994) and Barbati and Piccolo (2016).

Nevertheless, the notion of fairness can be interpreted in many
ifferent ways and there is no universal principle that is accepted
s ‘‘the most fair’’ (Bertsimas et al., 2012). The most usual strategy
o incorporate fairness in resource allocation problems is to quantify
he degree of fairness associated with any feasible action through a
airness measure, a function that maps each feasible solution into a
eal value indicating its degree of equity. Therefore, different measures
ave been proposed in the literature in order to capture the notion of
airness. The most popular one is the max–min (or min–max) approach
hich assures that the most disadvantaged agent in the share is as

ittle disadvantaged as possible (see e.g., Jiang et al., 2021; Kelly
t al., 1998; Li and Li, 2006; Luss, 1999). The max–min ratio is given
y the maximum pairwise ratio between the resources allocated to
2

he agents. Furthermore, some authors have incorporated fairness in
decision problems through envy measures, understood as the overall
deviation in the gain (or cost) between all pairs of agents (see e.g.,
Lipton et al., 2004; Caragiannis et al., 2009; Espejo et al., 2009; Chanta
et al., 2014; Netzer et al., 2016).

Another popular measure that has been widely investigated is Jain’s
index (Jain et al., 1984) which is obtained by normalizing the square
mean of an entropy function. Jain’s index measures the equity of
an allocation pattern, with the Jain’s index being 1 for the fairest
allocation in which all the agents receive (or pay) the same amount.
This index was generalized by Lan et al. (2010), where the authors
proposed a method to construct fairness schemes based on different
axioms. The authors proposed fairness measures generated by power
functions that generalize the Jain’s index.

Another family of approaches that have been applied to construct
fair solutions in resource allocation problems is based on using objec-
tive functions in the underlying optimization problem that do not force
fairness but guide the solutions to be fair. This is the case of the so-
called 𝛼-fairness operators (Kelly et al., 1998; Mo and Walrand, 2000;
Lan et al., 2010; Bertsimas et al., 2011, 2012). The 𝛼-fairness func-
tions were introduced by Atkinson (1970) as the ones maximizing the
constant elasticity social welfare. This family of functions generalizes
well-known criteria in the allocation of resources, such as the utilitarian
principle (𝛼 = 0), which is neutral toward inequalities; proportional
fairness (𝛼 = 1), which was introduced by Nash (1950); and for 𝛼 → ∞,
the measure converges to the max–min criterion. As we will observe,
other possibilities of 𝛼 allow to find a trade-off between efficiency and
fairness, opening room up for different and suitable allocation patterns.

An ideal approach to finding solutions that fully satisfy all the
agents involved in the allocation problem is to model it as a multiobjec-
tive problem. However, solving this problem may be computationally
difficult in practice (Ehrgott and Gandibleux, 2000). Moreover, the
solution of a multiobjective problem is, in general, not a single solu-
tion but a solution set, the Pareto frontier, which can be useless in
many decision problems. Thus, the use of aggregation operators is a
widely accepted practice to combine the different objectives and find
compromise solutions that partially satisfy all the agents involved in
the decision problem. Several aggregation criteria have been proposed,
being the most popular the weighted sum aggregation, the minimum
of the values (resulting in max–min problems), and the lexicographic
order (Ogryczak et al., 2014).

Another general family of aggregation criteria that has been suc-
cessfully applied is the one of Ordered Weighted Averaging (OWA)
functions, introduced by Yager (1988). These operators have been
also applied to encourage fairness in the obtained solutions (see e.g.,
Ogryczak and Trzaskalik, 2006; Hurkała and Hurkała, 2013; Ogryczak
et al., 2014). An OWA operator maps a vector to a weighted sum
of its coordinates in which the weights are assigned to their sorted
values. These operators allow to generalize most of the robust statistical
measures, as the mean, the minimum, the 𝑘-means, the trimmed mean
values or the Gini index and have been applied in different fields (see
e,g, Argyris et al., 2022; Blanco et al., 2018, 2021; Marín et al., 2022,
among many others).

The use of OWA operators in Facility Location is not new and
several authors have studied the incorporation of these operators to
the classical problems through the so-called ordered median location
problems (see Puerto and Fernández, 1994). Furthermore, in case the
weights defining the OWA function are nonnegative and monotone
(non-decreasing) the OWA operator is considered a fair aggregation
criterion. See Nickel and Puerto (2006) and Puerto and Rodríguez-
Chía (2019) and references therein for further developments on ordered
median problems.

In this paper, we analyze a novel version of one of the core families
of problems in Facility Location, Covering Location problems. The loca-
tion of the facilities in CL is characterized by the fact that the facilities
are allowed to give service to the users at a limited distance from them.

This type of problems has been applied in different fields, such as in
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the location of emergency services (Toregas et al., 1971), mail adver-
tising (Dwyer and Evans, 1981), archaeology (Bell and Church, 1985),
among many others. The interested reader is referred to García and
Marín (2019) for further details and recent advances in CL problems.
In particular, we answer the question of how to incorporate fairness
in the Maximal Covering Location problem (MCLP). In the MCLP,
introduced by Church and ReVelle (1974), it is assumed the existence
of a budget for opening facilities and the goal is to accommodate it to
satisfy as much demand as possible. As usual in location problems, one
can consider different frameworks based on the nature of the solution
space for the facilities: discrete or continuous spaces. While the discrete
setting is more adequate when locating physical services, (such as
ATMs, stores, hospitals, etc.), the continuous location space is known
to be more adequate to determine the positions of routers, alarms, or
sensors, that can be more flexibly positioned. This type of space is also
useful to determine the set of potential facilities that serve as input for
a discrete version of the problem. One of the main differences between
these two families of problems (from the mathematical optimization
viewpoint) is that in the discrete one the distances between the facilities
and the users are given as input data (or can be preprocessed before
solving the problem), while in the continuous case, the distances are
part of the decision and they must be incorporated to the optimization
problem.

As far as we know, the incorporation of fairness measures into
CL problems have been studied in Drezner and Drezner (2014), in
which the max–min approach has been applied to the gradual maximal
covering location problem. There, the authors incorporate the worst-
case fairness criteria from the user’s perspective, i.e. in order to enforce
equity between the partial coverage of all users. In networks, Rahmat-
talabi et al. (2020) consider the selection of a subset of nodes to cover
their adjacent nodes with fairness constraints with applications to social
networks. Asudeh et al. (2022) analyze a covering location problem
with fairness constraints minimizing the pairwise deviations between
the different covered sets. Korani and Sahraeian (2013) study a hub
covering problem with equity allocation constraints.

Despite these applications, the measure of efficiency used in the
MCLP is the overall covered demand, i.e., the more covered demand
the better the solution. However, when one looks at the individual
utilities of each of the constructed facilities, one may obtain solutions
with highly saturated facilities in contrast to others that only cover
a small amount of demand, which results in unfair systems from the
facilities’ perspective. Furthermore, in many situations, this type of
unfair solution is also undesirable from the users’ viewpoint which
may see reduced quality of the required service, as in the location
of telecommunication servers which have a higher probability to fail
in case of being saturated, or in the student assignment process to
schools, in which a higher number of alumni allocated to a school
may deteriorate the education system. As far as we know, this problem
has not been previously investigated in the literature in the context of
Covering Location.

Finally, it is worth mentioning that the MCLP exhibits, in many
situations, multiple alternative optimal solutions. For instance, in case
a user belongs to the coverage area of several services since the user’s
demand is accounted as covered, no matter where it is allocated, any
combination of possible allocation patterns results in the same global
coverage. In addition, several options for the location of services are
possible with the same result in coverage. In particular, it is known
that in continuous MCLPs, there exists a continuous region where
facilities can be located, with the same effect on the objective function.
Therefore, it is advisable to use fair measures in the MCLP that allow
guiding the possible solutions towards the fairest.

1.2. Contributions

In this paper, we provide a flexible mathematical optimization-
3

based framework to incorporate fairness measures from the facilities’ w
perspective to Discrete and Continuous MCLPs. This generalization of
the fairness measure for the MCLP is based on adequately combining
the two main tools mentioned above: OWA operators and 𝛼-fairness
operators.

Our specific contributions to this paper are:

1. To define a novel fairness measure combining OWA and 𝛼-
fairness operators that can be incorporated to the objective
function of the MCLP.

2. To describe a general mathematical optimization model which
captures the notion of fairness from the facilities’ perspective in
MCLPs.

3. To provide a mixed integer non-linear optimization formula-
tion for the two main location spaces in the facility location
problems: discrete and continuous.

4. To derive MISOCO reformulations for the problem, suitable to
be solved with off-the-shelf optimization software.

5. To assess the performance of our proposal on an extensive
battery of computational experiments.

.3. Paper structure

The remainder of the paper is organized as follows. Section 2 is
evoted to recalling the used tools for our proposed method and to
tating the notation for the rest of the paper. In Section 3 we introduce
he generalized fair maximal covering problem. In Section 4 we present

mathematical optimization formulation for the problem, both in
he discrete and the continuous location spaces. The results of our
omputational experience are reported in Section 5. Finally, the paper
nds with some conclusions and future research lines.

. Preliminaries

In this section, we introduce the notation used for the rest of the
ections as well as the main results for analyzing the problem studied
n this paper.

.1. Maximal Covering Location Problem

Consider a finite set of demand points in a 𝑑-dimensional space,  =
𝑎1,… , 𝑎𝑛} ⊆ R𝑑 , indexed by the set 𝑁 = {1,… , 𝑛}. Each demand point
𝑎𝑖 ∈  has associated a non-negative demand weight 𝜔𝑖. Throughout
the paper, we often call a demand point interchangeably by the node
𝑎𝑖 or by the index 𝑖. Demand points may represent users or regions and
the weights allow one to give more importance to different users or
take into account the size/population of each of the regions. We are
also given a potential set of facilities,  ⊆ R𝑑 , where the services are to
be chosen. The set  is not necessarily finite.

Each potential position for the facilities, 𝑋 ∈  is endowed with
a coverage area. It is usual to define the coverage areas as Euclidean
balls with certain coverage radii. In this paper, we consider ball-shaped
coverage areas in the form:

B𝑅(𝑋) = {𝑧 ∈ R𝑑 ∶ ‖𝑧 −𝑋‖ ≤ 𝑅}

here 𝑅 > 0 is the radius and ‖ ⋅ ‖ is a 𝓁𝜏 -based norm (𝜏 ≥ 1), that is:

‖𝑥‖𝜏 =

( 𝑑
∑

𝑙=1
|𝑥|𝜏

)

1
𝜏

,

or a polyhedral norm with a symmetric polytope 𝐵 (with respect to the
origin) in R𝑑 :

‖𝑥‖𝐵 = min{
𝐺
∑

𝑔=1
|𝛽𝑔| ∶ 𝑥 =

𝐺
∑

𝑔=1
𝛽𝑔𝑒𝑔},

here {±𝑒 ,… ,±𝑒 } are the extreme points of 𝐵.
1 𝐺
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A demand point 𝑎 ∈  is said to be covered by the facility 𝑋 ∈  if
it belongs to the coverage area of 𝑋, i.e., 𝑎 ∈ B𝑅(𝑋). Given 𝑋 ∈  , we
denote by (𝑋), the index set of demand points covered by 𝑋, i.e.,

(𝑋) = {𝑖 ∈ 𝑁 ∶ 𝑎𝑖 ∈ B𝑅(𝑋)}.

The goal of the Maximal Covering Location Problem (MCLP), in-
roduced by Church and ReVelle (1974), is to determine the positions
f 𝑝 new facilities in  , that is {𝑋1,… , 𝑋𝑝} ⊆  , maximizing the (𝜔-

weighted) covered demand. Denoting by 𝑃 = {1,… , 𝑝} the index set for
he facilities to be located, the MCLP can be formulated as the following
ptimization problem:

max
1 ,…,𝑋𝑝∈

∑

𝑖∈
⋃

𝑗∈𝑃 (𝑋𝑗 )
𝜔𝑖.

bserve that in the MCLP, each point is accounted at most once as
overed, even if it belongs to the coverage area of more than one
acility.

Two main families of MCLP arise based on the nature of the metric
et from where the facilities are to be located. In case  is a finite

set, one obtains the Discrete MCLP that was introduced by Church and
ReVelle (1974). On the other hand, in case  = R𝑑 one obtains the
Continuous MCLP that was firstly formulated by Church (1984) for the
planar case (𝑑 = 2). In this paper, we will analyze a unified and
articular version of the MCLP for both types of location spaces.

.2. Ordered weighting averaging operators

As in most decision problems in which several agents are involved,
he MCLP also exhibits a compromise in view of the users that require
he services to be located or for the decision makers that construct
nd locate the facilities to give the different services to the users.
n this paper, we analyze the MCLP from the point of view of the
ifferent decision-makers that invest in the installation of the facilities
o give service to the users. In an ideal solution, one would desire
o determine the position of the services to maximize, separately, the
emand covered by each service. This approach will result in modeling
he problem as a multiobjective mathematical optimization problem
with objectives the demands covered by each of the facilities) which
an be cumbersome in practice. Instead, we aggregate the 𝑝 objective

functions by means of Ordered Weighted Averaging (OWA) operators,
introduced by Yager (1988).

OWA operators are functions in the form 𝛷𝝀 ∶ R𝑝 → R with
associated weighting vector 𝝀 = (𝜆1,… , 𝜆𝑝), with 𝜆𝑗 ∈ [0, 1], ∀𝑗 ∈
{1,… , 𝑝} and ∑𝑝

𝑗=1 𝜆𝑗 = 1. We denote as 𝑃 = {1,… , 𝑝} the index set
or coordinates of vectors in R𝑝. For 𝐖 = (𝑊1,… ,𝑊𝑝) ∈ R𝑝, the OWA

operator is defined as:

𝛷𝝀(𝑊1,… ,𝑊𝑝) =
𝑝
∑

𝑗=1
𝜆𝑗𝑊(𝑗),

where 𝑊(𝑗) is the 𝑗th-largest value in the vector 𝐖, i.e., 𝑊(𝑗) ∈
{𝑊1,… ,𝑊𝑝} such that 𝑊(1) ≤ ⋯ ≤ 𝑊(𝑝). OWA operators are weighted
sums of the different criteria, but where weights are associated with the
position of the criteria when they are sorted in non-decreasing order.

When aggregating different criteria by means of an OWA operator,
a crucial step is to provide the adequate weights 𝝀 that are assigned
to the sorted sequence. The most popular OWA operators (min – 𝝀 =
(1, 0,… , 0) and max – 𝝀 = (0,… , 0, 1)) serve as reference weights to
define the notion of orness of a vector of 𝝀-weights defining an OWA
operator:

orness(𝝀) =
𝑝
∑

𝑗=1

𝑝 − 𝑖
𝑝 − 1

𝜆𝑖

The degree of orness emphasizes the higher (better) values or the
ower (worse) values in a set of attributes associated with the different
gents/services. As the value of 𝝀 approaches 1, the operator gets closer
4

to the min-operator; when the value of 𝝀 approaches 0, the operator
ets closer to the max-operator. Assuming that all the criteria are to be
inimized, the min-operator allows one to generate solutions protected
nder the worst-case scenario (pessimistic), while the max-operator

produces a solution in which the best situation for all the criteria is
assumed (optimistic). In between, one can find an equilibrium between
those extreme choices. In particular, for 𝝀 = ( 1𝑝 ,… , 1𝑝 )– the mean
perator, its orness degree takes value 0.5. In Table 1 we show a list of
ome of the most popular OWA operators and their orness degree.

It is clear that an OWA operator (identified with a 𝝀-weight) is not
uniquely determined by its orness degree (unless its orness degree is in
{0, 1} or 𝑝 = 2). Thus, several optimization-based methods have been
proposed in order to construct, with different paradigms, 𝝀-weights
with a given orness degree 𝛽 ∈ (0, 1) (see, e.g., Filev and Yager, 1995;
Fullér and Majlender, 2001; Liu and Chen, 2004). The main idea when
searching for 𝝀-weights with a given orness degree is to solve problems
in the form:

min (𝜆)

s.t. orness(𝜆) = 𝛽,

𝝀 ∈ R𝑝
+,

where  is a loss function measuring some properties of the weights.
For instance, if (𝜆) = −

∑𝑝
𝑗=1 𝜆𝑗 log 𝜆𝑗 one obtains the maximal entropy

monotone OWA (O’Hagan, 1988), or choosing (𝜆) =
∑𝑝

𝑗=1(𝜆𝑗 −𝜆)2 one
obtains the minimum variance weights (Fullér and Majlender, 2003),
where 𝜆 stands for the mean of the vector 𝝀.

There are several ways to sort a list of (unknown) values and
ompute the OWA operator. The most known are the one proposed
y Ogryczak and Tamir (2003) and the reformulation proposed by
lanco et al. (2014) known in the literature by the acronym BEP. In
oth representations, the authors provide a suitable linear optimization
epresentation of the problem of minimizing the sum of the 𝑘 largest
equivalently, smallest) linear functions on a polyhedral set in R𝑑 .
his representation is extended to the minimization of monotone OWA
unctions by means of a telescopic sum of 𝑘-sum functions.

.3. Fairness axiomatic and 𝛼-fairness operators

As already mentioned, fairness is a crucial requisite when making
ecisions in many practical situations in which different agents are
nvolved. Since the notion of fairness is by itself weak, a list of ax-
oms/desirable properties have been stated for a resource allocation
cheme to be considered fair. Lan et al. (2010) provides an axiomatic
pproach to fairness measures which served as starting point to derive
ew fairness measures fulfilling a list of minimum required properties.
ere, we provide some useful desirable properties of fairness schemes.
et 𝛹 ∶ R𝑝

+ → R be a fairness scheme, and 𝐖 = (𝑊1,… ,𝑊𝑝) ∈ R𝑝
+

he allocation of resources. Some of these properties were stated in Lan
t al. (2010), Jain et al. (1984), Barbati and Piccolo (2016).

1. Continuity: 𝛹 is a continuous function. This axiom assures that,
locally, small changes in the allocation do not significantly affect
the measure.

2. Population size independence: Equal resource allocations are,
eventually, independent of the number of users, i.e.,
lim𝑝→∞

𝛹 (𝟏𝑝+1)
𝛹 (𝟏𝑝)

= 1.

3. Pareto optimality: If 𝑊𝑗 ≤ 𝑊̄𝑗 ,∀𝑗 ∈ {1,… , 𝑝}, and 𝑊𝑗 < 𝑊̄𝑗 for
at least some 𝑗, then 𝛹 (𝐖) ≤ 𝛹 (𝐖̄).

4. Symmetry: 𝛹 (𝑊1,… ,𝑊𝑝) = 𝛹 (𝑊𝜎(1),… ,𝑊𝜎(𝑝)), where 𝜎 is an
arbitrary permutation of the indices.

5. Boundedness: The value of allocation given by the scheme is
bounded.

6. Scale and metric independence: The measure is independent

of scale, i.e., the unit of measurement does not matter.
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Table 1
Some examples of fair OWA operators and its orness.
𝑂𝑊𝐴 𝝀 Operator orness

Average 𝜆𝑗 =
1
𝑝

1
𝑝

∑

𝑗∈𝑃
𝑊𝑗

1
2

Minimum 𝜆1 = 1, 𝜆𝑗 = 0 (𝑗 ≥ 2) min𝑗∈𝑃 𝑊𝑗 1

𝑘-Average 𝜆𝑗 =
1
𝑘

(𝑗 ≤ 𝑘), 𝜆𝑗 = 0 (𝑗 > 𝑘) 1
𝑘

𝑘
∑

𝑗=1
𝑊(𝑘) 1 − 𝑘−1

2(𝑝−1)

𝛼-Min-Average 𝜆1 =
1

1+(𝑝−1)𝛼
, 𝜆𝑗 =

𝛼
1+(𝑝−1)𝛼

(𝑗 ≥ 2) 1−𝛼
1+(𝑝−1)𝛼

min𝑗∈𝑃 𝑊𝑗 +
𝛼

1+(𝑝−1)𝛼

∑

𝑗∈𝑃
𝑊𝑗

−𝑝𝛼+𝑝+2𝛼
2𝑝𝛼−2𝛼+2

Gini 𝜆𝑗 =
2(𝑝−𝑗)+1

𝑝2
for all 𝑗 1

𝑝2

∑

𝑗∈𝑃
𝑊𝑗 +

2
𝑝2

∑

𝑗∈𝑃
(𝑝 − 𝑗)𝑊(𝑗)

4𝑝+1
6𝑝

Harmonic 𝜆𝑗 =
1
𝑝
(𝐻(𝑝) −𝐻(𝑗 − 1)) (𝐻(𝑘) =

𝑘
∑

𝓁=1

1
𝓁

) 1
𝑝

∑

𝑗∈𝑃
(𝐻(𝑝) −𝐻(𝑗 − 1))𝑊(𝑗)

3
4
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Here, we consider a particular measure of fairness that has gained
ttention in the operations research community (Bertsimas et al., 2011,
012), the 𝛼-fairness scheme, that was introduced by Atkinson (1970).

According to this scheme, the decision maker decides on the allocation
of the resources by maximizing the constant elasticity social welfare
operator 𝛹𝛼 parameterized by 𝛼 ≥ 0 and for 𝐖 = (𝑊1,… ,𝑊𝑝) ∈ R𝑝

+,
he number of resources allocated into 𝑝 agents,

𝛼(𝑊1,… ,𝑊𝑝) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
1−𝛼

𝑝
∑

𝑗=1
𝑊 1−𝛼

𝑗 if 𝛼 ≥ 0, 𝛼 ≠ 1,

𝑝
∑

𝑗=1
log(𝑊𝑗 ) if 𝛼 = 1.

The parameter 𝛼 is known as the inequality aversion parameter
since it controls the difference between the allocation of resources
𝑊1,… ,𝑊𝑝. In particular, any 𝛼-fairness function above verifies the
Pigou–Dalton principle, which states that a fair function should pri-
oritize transferring resources from agents with greater means to those
with fewer means (Erkut, 1993; Bosmans et al., 2009; Lan et al., 2010).
Specifically, one can reduce the resources of the 𝑗th agent by

(𝑊𝑗
𝑊𝑘

)𝛼

units to compensate an increase of one unit of the 𝑘th agent. The
interested reader is referred to Chen and Hooker (2021) for further
details on the Pigou–Dalton principle in different fair and equitable
resource allocation schemes.

Therefore, moving the 𝛼 value, one can represent classical fairness
measures. For 𝛼 → ∞, the scheme converges to the max–min fairness,
whereas if 𝛼 = 0 one obtains the sum, which is neutral toward
inequalities. For 𝛼 = 1, one obtains the proportional fairness measure
that has been widely studied in the literature (Nash, 1950).

3. The generalized Fair Maximal Covering Location Problem

As already mentioned, the Maximal Covering Location Problem
(MCLP), in its different versions, can be seen as a resource allocation
problem, in which the overall demand of the covered users is shared
among the different services that are located. Thus, high coverage of the
total demand (no matter which service is providing the coverage) is ap-
propriate from a global perspective, but from an individual viewpoint,
one can easily get unfair allocation patterns. Furthermore, the MCLP
usually exhibits multiple optimal solutions, that is, different subsets of
𝑝 services covering the maximum possible covered demand, and then,
optimization solvers output an arbitrary one, possibly not the fairest.

In the following example, we illustrate this situation in a toy in-
stance.

Example 1. We consider a randomly generated set of 200 demand
points with coordinates in [0, 20] × [0, 20]. We assign to each of them a
random integer weight in [0, 100]. We assume that three (𝑝 = 3) services
are to be located chosen from the same set of demand points. The cover-
age areas for all the potential locations of the services are disks of radius
5. The solution obtained by Gurobi for the classical MCLP is shown in
Fig. 1(a). In such a solution, 65.7% of the demand is covered, and the
5

distribution of (weighted) users among the services is (1723, 2365, 2804),
hat is, there are two services covering close to one thousand more
lients than the other one. Another feasible (non-optimal for the MCLP)
olution for the problem is also shown in Fig. 1(b), in which 62.58%
f the demand is covered and whose distribution of covered demand
s (2126, 2162, 2278). This solution, although covers 3% less demand
han the classical MCLP, is clearly much more balanced than the MCLP
olution, since all the users cover approximately the same demand, but
till efficient. In the figures, each of the colored disks represents the
overage area for a service, whereas colored dots represent the demand
oints allocated to the open services. Black dots indicate demand points
oncovered by any of the facilities. Observe that the allocation of users
o centers is clear for those users that are covered by a single facility.
hose that belong to the intersection of two or more coverage areas,

.e., those that can be covered by more than one center, are assigned
n favor of the objective function of the problem. In the classical
CLP, the only measure that matters is coverage, so multiple allocation

atterns are possible, all of them resulting in the same value. This
ehavior will not happen in our proposed fair MCLP, where in the case
f multiple allocation schemes, the most favorable one will be chosen
o fairly balance the workload of the facilities.

In what follows we introduce a new fairness measure that we
ncorporate into the MCLP in order to provide fair coverage of the
emands.

efinition 1. Let 𝛼 ≥ 0 and 𝝀 ∈ R𝑝
+ with ∑𝑝

𝑗=1 𝜆𝑗 = 1 and 𝜆1 ≥ ⋯ ≥ 𝜆𝑝.
he (𝛼,𝝀)-fair operator is a function 𝐹𝛼,𝝀 ∶ R𝑝

+ → R+ defined as:

𝛼,𝝀(𝑊1,… ,𝑊𝑝) ∶=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
1−𝛼

𝑝
∑

𝑗=1
𝜆𝑗𝑊

1−𝛼
(𝑗) if 𝛼 ≠ 1,

𝑝
∑

𝑗=1
𝜆𝑗 log(𝑊(𝑗)) if 𝛼 = 1.

(1)

It is straightforward to check that 𝐹𝛼,𝝀 is a concave function that
verifies all of the desirable properties described in Section 2.3.

The (1) operator depends of 𝑝+ 1 parameters (𝛼 and the 𝝀-weights)
and combines the 𝛼-fairness measure introduced by Atkinson (1970)
and the OWA operators introduced in Yager (1988). In case 𝛼 = 0, the
operator turns into the 𝝀-OWA operator, whereas if 𝝀 = ( 1𝑝 ,… , 1𝑝 ) it
becomes the 1

𝑝 -weighted 𝛼-fairness function 1
𝑝 𝛹𝛼 . This combination of

these two operators allows us to derive a unified framework for dealing
with fairness in maximal covering location problems, which we detail
below.

We are given a set of demand points in a 𝑑-dimensional space,
= {𝑎1,… , 𝑎𝑛} ⊆ R𝑑 , indexed by the set 𝑁 = {1,… , 𝑛}, and each

f the points endowed with a demand weight 𝜔𝑖 ≥ 0, for all 𝑖 ∈ 𝑁 .
e are also given a metric space  ⊆ R𝑑 endowed with a distance
easure ‖ ⋅ ‖ and a radius, 𝑅, for each 𝑋 ∈  , which is assumed to be

the same for all facilities to be located (although it is not a limitation of
the results provided in this paper). The goal of the Fair MCLP is to find
the position of the 𝑝 facilities to locate, 𝑋1,… , 𝑋𝑝 ∈  , maximizing the
(𝛼,𝝀)-fair operator of the demands covered by these services. Formally,



Computers and Operations Research 157 (2023) 106287V. Blanco and R. Gázquez

g

d
s
c
m
w
e
l
p
w
q
r

f

Fig. 1. Optimal solutions obtained with the MCLP.
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iven 𝝀 and 𝛼, the (𝛼,𝝀)-Fair Maximal Covering Location Problem
((𝛼,𝝀)-FMCLP, for short) can be modeled as the following optimization
problem:

𝐹 ∗
𝛼,𝝀 = max

𝑋1 ,…,𝑋𝑝∈
𝐹𝛼,𝝀(𝑊 (𝑋1),… ,𝑊 (𝑋𝑝)) (2)

where 𝑊 (𝑋𝑗 ) is the covered demand of facility 𝑋𝑗 , assumed that each
demand point is accounted as covered by at most one of the facilities.
We denote by 𝛼;𝝀 = (𝑊 (𝑋∗

1 ), …, 𝑊 (𝑋∗
𝑝 )) ∈ R𝑝

+ a coverage vector
of each of the facilities in the problem above. We also denote by
sum

𝛼;𝝀 =
∑𝑝

𝑗=1 𝑊 (𝑋∗
𝑝 ) the total covered demand in the solution and by

min
𝛼;𝝀 = min

𝑗=1,…,𝑝
𝑊 (𝑋∗

𝑝 ) the demand covered by the service with smallest
coverage in the solution.

The problem introduced above allows one to determine the position
of facilities that are fair from the individual viewpoint, but a question
arises: how much is one willing to sacrifice when imposing fairness on
the MCLP? The price of fairness in any allocation rule is a notion studied
in Bertsimas et al. (2011) in order to measure the efficiency loss under
a fair allocation compared to the one that maximizes the overall sum of
the users’ utilities. In our case, the solution of (2) is compared against
the solution of the classical MCLP in order to know how far is a fair
solution to the best coverage of the given demand.

Definition 2. The price of fairness measure for (2) is defined as the
index:

PoF(𝐹 ∗
𝛼,𝝀) =

sum
0;( 1𝑝 ,…, 1𝑝 )

−sum
𝛼;𝝀

sum
0;( 1𝑝 ,…, 1𝑝 )

, (3)

The price of fairness indicates the relative deviation of the covered
emand when solving the maximal (𝛼,𝝀)-FMCLP with respect to the
olution of the classical MCLP, which achieves the maximum possible
overage. Thus, the price of fairness is a value between 0 and 1
easuring how close is the effectiveness of the obtained fair solution
ith respect to the most effective covering solution. A price of fairness
qual to 0 indicates that (2) is able to construct a fair allocation without
oss of efficiency (at the maximum possible coverage). In contrast, a
rice of fairness with a value close to 1 indicates that (2) got the
orst global coverage. Thus, as closer this measure to 0 the better. It
uantifies the percent coverage loss of imposing (𝛼, 𝝀)-fairness with
espect to the maximum possible coverage of an instance.

On the other hand, one can also measure how far is a fair solution
6

rom the fairest share, which is obtained by solving the max–min f
overing location problem, i.e., by comparing the demand covered (in
ur fair MCLP) with the service covering the smallest demand in the
olution with respect to the solution in which the coverage of the
ervice covering the least demand is maximized. This measure was
alled in Bertsimas et al. (2012) the price of efficiency.

efinition 3. The price of efficiency measure for (2) is defined as:

oE(𝐹 ∗
𝛼,𝝀) =

min
0;(1,0,…,0) −min

𝛼;𝝀

min
0;(1,0,…,0)

, (4)

The price of efficiency is interpreted as the percent loss in the mini-
mum demand coverage guarantee compared to the maximum minimum
covered demand guarantee. This index also takes value in [0, 1], in
which a value of 0 means that the (𝛼,𝝀)-FMCLP obtains the fairest
olution, while a value of 1 indicates the least fair solution in which
here is a service not covering any demand.

Another widely used measure of fairness is the envy. In the MCLP the
envy of facility positioned in 𝑋𝑗 ∈  , whose covered demand is 𝑊 (𝑋𝑗 ),
for a facility located at 𝑋𝑘 ∈  , whose covered demand is 𝑊 (𝑋𝑘), is
defined as:

envy(𝑋𝑗 , 𝑋𝑘) = max{0,𝑊 (𝑋𝑘) −𝑊 (𝑋𝑗 )}

that is, facility 𝑗 suffers envy of value 𝑊 (𝑋𝑘) −𝑊 (𝑋𝑗 ) from facility 𝑘
n case 𝑘 covers more demand than 𝑗. The overall envy of a set of 𝑝

facilities 𝑋1,… , 𝑋𝑝 ∈  is the overall sum of all the pairwise envies.
From this, the Gini index is defined as the ratio of this total envy and
all the covered demand by the facilities multiplied by 2𝑝 (the overall
number of pairwise comparisons):

Definition 4. The Gini index is defined as:

Gini(𝑋1,… , 𝑋𝑝) =

∑

𝑗,𝑘∈𝑃
envy(𝑋𝑗 , 𝑋𝑘)

2𝑝
∑

𝑗∈𝑃
𝑊 (𝑋𝑗 )

(5)

We will see in our computational experience that the family of (𝛼,𝝀)-
MCLP exhibits differences when varying the values of 𝛼 and 𝝀 with
espect to the three measures that we described above (PoF, PoE, and
ini). A trade-off solution between these measures will be desirable

rom the point of view of efficiency and also of fairness.
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4. Mathematical optimization formulations for (𝜶, 𝝀)-FMCLP

In this section, we derive a suitable mathematical optimization
formulation to model the (𝛼,𝝀)-FMCLP. We will present different for-
mulations for the problem for both the discrete case ( being a finite
pre-specified set) and the continuous case ( = R𝑑). The nature of the
domain of this problem directly affects the development of resolution
strategies for it.

A general formulation for the problem considers the following
decision variables:

𝑥𝑖𝑘 =

⎧

⎪

⎨

⎪

⎩

1, if node 𝑎𝑖 is covered by the 𝑘th
selected facility in  ,

0, otherwise,
for all 𝑖 ∈ 𝑁, 𝑘 ∈ 𝑃 .

and 𝑋𝑘 ∈ R𝑑 : coordinates of the 𝑘th selected facility in  .
(2) can be formulated as follows:

max 𝐹𝛼,𝝀

(

∑

𝑖∈𝑁
𝜔𝑖𝑥𝑖1,… ,

∑

𝑖∈𝑁
𝜔𝑖𝑥𝑖𝑝

)

(6a)

s.t.
∑

𝑘∈𝑃
𝑥𝑖𝑘 ≤ 1, ∀𝑖 ∈ 𝑁, (6b)

𝑎𝑖 ∈ B(𝑋𝑘) if 𝑥𝑖𝑘 = 1, ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝑃 , (6c)

𝑥𝑖𝑘 ∈ {0, 1}, ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝑃 , (6d)

𝑋𝑘 ∈  , ∀𝑘 ∈ 𝑃 , (6e)

he objective function aims to maximize the (𝛼,𝝀)-fairness of the
emand coverage by each of the facilities. Constraint (6b) assures that
ach covered demand point is counted at most once as covered. (6c)
nsures the adequate definition of the 𝑥-variables.

The feasible set of the problem above will be described by a set of
inear and second-order cone representable inequalities on binary and
ontinuous variables. One of the main difficulties of the model above
tems on the representation of the objective function 𝐹𝛼,𝝀 which consists
f the following two ingredients:

orting: Representing the order specified by the OWA operator into
an optimization problem is a difficult challenge. In Section 2.2
we mention two of the most popular optimization-based repre-
sentations for this operator. A third representation is based on
the 𝑥-variables that we consider in our problem, by sorting the
selected facilities in  in non-increasing order of the demand
coverage, i.e, enforcing the following constraints:
∑

𝑖∈𝑁
𝜔𝑖𝑥𝑖𝑘 ≤

∑

𝑖∈𝑁
𝜔𝑖𝑥𝑖𝑘+1, ∀𝑘 ∈ 𝑃 , (7)

(1 − 𝛼)-powers: Observe that the (1 − 𝛼) powers of the coverage of
each facility appear in the objective function. Denoting by 𝑊𝑘 =
∑

𝑖∈𝑁
𝜔𝑖𝑥𝑖𝑘 and by 𝑍𝑘 = 𝑊 1−𝛼

𝑘 , for 𝑘 ∈ 𝑃 , assuming that 𝑊1 ≤ ⋯ ≤

𝑊𝑝, the objective function above can be written as the linear
function:

𝐹𝛼,𝝀(𝑊1,… ,𝑊𝑝) =
1

1 − 𝛼
∑

𝑘∈𝑃
𝜆𝑘𝑍𝑘

as long as it is fulfilled that 𝑍𝑘 ≤ 𝑊 1−𝛼
𝑘 (for 𝛼 < 1) or 𝑍𝑘 ≥ 𝑊 1−𝛼

𝑘
(for 𝛼 > 1) for all 𝑘 ∈ 𝑃 . Assuming that 𝛼 is rational, we get that
there exists 𝑝, 𝑞 ∈ Z+ with 𝑝 ≥ 𝑞 ≥ 1 and gcd(𝑝, 𝑞) = 1 such that:

1
1 − 𝛼

=

⎧

⎪

⎨

⎪

⎩

𝑝
𝑞 if 𝛼 < 1,

− 𝑞
𝑝 if 𝛼 > 1

Thus, the power-constraints can be rewritten as:

𝑍𝑝
𝑘 ≤ 𝑊 𝑞

𝑘 , for all 𝑘 ∈ 𝑃 . (8)

These constraints can be conveniently rewritten as a set of
quadratic second-order cone constraints following a simplifica-
tion of the results in Blanco et al. (2014).
7

In the rest of the section we describe how to represent constraints
6c) in a suitable mathematical optimization formulation. This repre-
entation highly depends on the nature of the set of potential coordi-
ates for the facilities  . We analyze the cases in which  is a finite
et and the one where  = R𝑑 .

.1. Continuous domain

We analyze here the case where the potential set from which the
oordinates of the services are chosen is the entire space, i.e.,  = R𝑑 .
n this case, the norm-based covering contraints (6c) can be rewritten as

𝑋𝑘 − 𝑎𝑖‖ ≤ 𝑅 + 𝑈𝑖(1 − 𝑥𝑖𝑘),∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝑃 . (9)

here 𝑈𝑖 is a big enough constant (𝑈𝑖 > ‖𝑎𝑖 − 𝑎𝑖′‖ for all 𝑖′ ∈ 𝑁). It
nsures that in case 𝑖 is allocated to the 𝑘th selected facility (𝑋𝑘), then
𝑖 must belong to B𝑅(𝑋𝑘).

In case ‖ ⋅ ‖ is the Euclidean norm, it is well known that these con-
traints can be re-written as the following set of linear and second-order
one inequalities:

𝑣𝑖𝑘𝑙 ≥ 𝑎𝑖𝑙 −𝑋𝑘𝑙 , ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝑃 , (10a)
𝑣𝑖𝑘𝑙 ≥ −𝑎𝑖𝑙 +𝑋𝑘𝑙 , ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝑃 , (10b)

𝑠2𝑖𝑘 ≥
𝑑
∑

𝑙=1
𝑣2𝑖𝑘𝑙 , ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝑃 , (10c)

𝑖𝑘 ≤ 𝑅 + 𝑈𝑖 (1 − 𝑥𝑖𝑘), ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝑃 , (10d)
𝑣𝑖𝑘𝑙 ≥ 0, ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝑃 , (10e)
𝑠𝑖𝑘 ≥ 0, ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝑃 . (10f)

here 𝑣𝑖𝑘𝑙 represents (via (10a) and (10b)) the absolute value |𝑎𝑖𝑙 −𝑋𝑘𝑙|

(here 𝑎𝑖𝑙 and 𝑋𝑡
𝑘𝑙 stand for the 𝑙th coordinate of demand point 𝑎𝑖 and

the 𝑘th facility, respectively) and 𝑠𝑖𝑘 determines the euclidean distance
(by (10c)) as the squared sum of the absolute differences between
the coordinates of 𝑎𝑖 and 𝑋𝑘. Consequently, the problem simplifies to
a mixed-integer second-order cone optimization (MISOCO) problem,
which can be solved using any of the available off-the-shelf solver.

Actually, by the results in Blanco et al. (2014), one can also consider
block-norm based distances (deriving linear optimization models) or
𝓁𝜏 -norms (with 𝜏 ≥ 1) inducing again mixed-integer second-order cone
ptimization problems.

As already observed in other maximal covering location prob-
ems (see Blanco and Gázquez, 2021; Blanco et al., 2023) the norm-
ased constraints (9) can also be rewritten as linear constraints. This
inearization is based on projecting out the 𝑋-variables by ensuring that
these can be constructed from the 𝑥-variables. The observation that will
allow this formulation is a direct consequence of the following lemma
whose proof is straightforward:

Lemma 1. Let 𝑁1,… , 𝑁𝑝 ⊆ 𝑁 be 𝑝 nonempty disjoint subsets of 𝑁 . Then,
there exists 𝑋1,… , 𝑋𝑝 ∈ R𝑑 such that the points of 𝑁𝑘 are covered by 𝑋𝑘,
for all 𝑘 ∈ 𝑃 , if and only if
⋂

𝑖∈𝑁𝑘

B𝑅(𝑎𝑖) ≠ ∅,∀𝑘 ∈ 𝑃 .

From this result, (9) can be replaced by:
∑

𝑖∈𝑄
𝑥𝑖𝑘 ≤ |𝑄| − 1,∀𝑘 ∈ 𝑃 , ∀𝑄 ⊆ 𝑁 ∶

⋂

𝑖∈𝑄
B𝑅(𝑎𝑖) = ∅, (11)

These exponentially many constraints assure that those subsets of in-
compatible demand points cannot be covered by the same facility. Thus,
from a solution in the 𝑥-variables, 𝑥̄, fulfilling (11), we can construct
the coordinates of the services that must verify

𝑋𝑘 ∈
⋂

𝑖∈𝑁∶

B𝑅(𝑎𝑖), for all 𝑘 ∈ 𝑃 .
𝑥̄𝑖𝑘=1
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Actually, these coordinates can be found (in poly-time) for a given
feasible solution 𝑥̄ either by solving a second order cone optimization
problem or by solving a one-center facility location problem. This
strategy has been successfully applied in the literature by Blanco and
Gázquez (2021), Blanco et al. (2023).

Nevertheless, the above formulation requires incorporating the ex-
ponentially many constraints (11). However, they can be simplified by
reducing from exponential to many polynomial constraints by means of
Helly’s Theorem (Helly, 1923) (see also Danzer et al., 1963). Invoking
that result, only intersections of (𝑑 + 1)-wise balls are needed to check,
allowing to replace Constraints (11) by:
∑

𝑖∈𝑄
𝑥𝑖𝑘 ≤ |𝑄|−1,∀𝑘 ∈ 𝑃 , ∀𝑄 ⊆ 𝑁 ∶

⋂

𝑖∈𝑄
B𝑅(𝑎𝑖) = ∅, with |𝑄| = 𝑑+1. (12)

Despite this simplification, the number of constraints is still 𝑂(𝑛𝑑 )
making the problem difficult to solve. Then, we propose considering an
incomplete formulation (removing (12)) and iteratively incorporating
these constraints on-the-fly, as needed.

The selection of the constraints to incorporate in each iteration
s found using the following separation strategy: After solving the
roblem with none or part of the constraints (12) a solution, say 𝐱̄,

is obtained. Then, for each 𝑘 ∈ 𝑃 the define set 𝑄𝑘 = {𝑖 ∈ 𝑁 ∶ 𝑥̄𝑖𝑘 = 1}.
One can check for the validity of the set 𝑄𝑘 as a feasible cluster of
demand points for our problem by solving the 1-center problem for the
points in such a set. In case the optimal coverage radius obtained is
less than or equal to 𝑅, one can conclude that 𝑄𝑘 is a valid subset of
demand points that can be covered by the same server. Otherwise, the
solution violates the relaxed constraints, and thus we add the cut
∑

𝑖∈𝑄𝑘

𝑥𝑖𝑘′ ≤ |𝑄𝑘| − 1,∀𝑘′ ∈ 𝑃 , (13)

to ensure that such a solution is no further deemed feasible and thus
obtained again.

The 1-center problem with Euclidean distances on the plane is
known to be solvable in polynomial time (see, e.g., Elzinga and Hearn,
1972). Extensions to higher dimensional spaces and generalized cov-
ering shapes have been recently proven to be also poly-time solv-
able (Blanco and Puerto, 2021).

4.2. Discrete domain

Let us assume that the potential set of facilities is finite, that is,
 = {𝑏1,… , 𝑏𝑚} ⊆ R𝑑 . We denote by 𝑀 = {1,… , 𝑚} its index set.
The model, in this case, can be simplified considering that the subset
of potential facilities that are able to cover each single demand point
can be pre-computed. It also allows avoiding using of the 𝑋-variables,
replacing them by the following decision variables to decide which
potential facilities from {𝑏1,… , 𝑏𝑚} are open and which is the position
of the demand covered by each facility in the ordered vector.

𝑦𝑗𝑘 =

⎧

⎪

⎨

⎪

⎩

1, if the covered demand of facility
𝑗 is the 𝑘th largest,

0, otherwise,
for all 𝑗 ∈ 𝑀, 𝑘 ∈ 𝑃 .

Then, (6) can be alternatively formulated as:

max 1
1 − 𝛼

∑

𝑘∈𝑃
𝜆𝑘𝑍𝑘 (14a)

s.t. (6b), (7), (8) (14b)

𝑥𝑖𝑘 ≤
∑

𝑗∈𝑀∶
‖𝑎𝑖−𝑏𝑗 ‖≤𝑅

𝑦𝑗𝑘, ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝑃 , (14c)

∑

𝑗∈𝑀
𝑦𝑗𝑘 = 1, ∀𝑘 ∈ 𝑃 , (14d)

∑

𝑦𝑗𝑘 ≤ 1, ∀𝑗 ∈ 𝑀, (14e)
8

𝑘∈𝑃
𝑥𝑖𝑘 ∈ {0, 1}, ∀𝑖 ∈ 𝑁,∀𝑘 ∈ 𝑃 , (14f)

𝑦𝑗𝑘 ∈ {0, 1}, ∀𝑗 ∈ 𝑀,𝑘 ∈ 𝑃 . (14g)

Apart from (14b), the covering constraints (6c) are rewritten using
the 𝑦-variables using (14c)–(14e). Constraints (14c) assure that the
demand points can be assigned to a facility if it is sorted in any position
(equivalently, if it is open). Constraints (14d) enforces that a single
facility is assigned to a position and (14e) that at most one position
is assigned to a facility (those facilities not assigned to a position will
be not open). Both constraints together with (7) assure that exactly 𝑝
facilities are open, each of them in a different order in the coverage
sequence.

The classical formulations for the MCLP use one-index binary vari-
ables to determine the open facilities. Note that in our case, it is not
enough since the positions of the activated services in the sorting
coverage sequence are needed to allow the allocation of the demand
points to a facility only in case it is open.

5. Computational study

In this section, we report the results of the computational experience
that we have run in order to analyze the performance of the proposed
methodologies.

We consider the dataset provided in Orlandini (2019) where the
coordinates (latitude and longitude) of Residential Schools and student
hostels operated by the federal government in Canada are detailed. The
coordinates of this dataset have been normalized in the unit square.

From the whole dataset we have constructed different instances
with sizes, 𝑛, ranging in {45, 90, 120, 179} (the first 𝑛 demand nodes in
the complete instance). The demands have been randomly generated
by a uniform distribution in (0, 1). The set of generated instances are
available in the github repository github.com/vblancoOR/fmclp. The
number of facilities to be located, 𝑝, ranges in {5, 10, 15, 20}, and we
consider the radius for the services, 𝑅, ranging in {0.1, 0.15}.

We run our models by choosing the 𝝀-parameters of the OWA
operator in {𝚆, 𝙲, 𝙺, 𝙳, 𝙶, 𝙷} (see Table 1, where C - Minimum, D - 𝛼−Min-
Average, G - Gini, H - Harmonic, K - 𝑘−Average, and W - Average). The
𝛼-parameter was chosen in {0, 0.5, 1, 2} except for problems under the
𝙲-objective, where the value of 𝛼 does not affect the result, and we only
solved the instances for 𝛼 = 0.

Finally, we have solved all these instances for the two types of
domains: discrete and continuous (we refer to them in the rest of
the current section as Disc and Cont). With that, a total of 672
instances for each type of location space (a total of 1344 instances) have
been solved in our computational study. For the continuous MCLP, we
observed that the nonlinear formulation (9) have a worse performance
than the linear formulations proposed in the literature (see Blanco and
Gázquez, 2021; Blanco et al., 2023), as expected. Thus, we provide the
results of using formulation (13) in our experiments.

All the experiments have been run on a virtual machine in a physical
server equipped with eight threads from a processor AMD EPYC 7402P
24-Core Processor, 64 Gb of RAM, and running a 64-bit Linux operating
system. The models were coded in Python 3.7, and we used Gurobi 9.1
as optimization solver. A time limit of two hours was fixed for all the
instances.

We analyze in this section the computational performance of our
approach as well as the managerial insights of the obtained solutions
in terms of fairness and efficiency.

5.1. Computational performance

In order to analyze the computational difficulty of the proposed
approach, in Table 2 we summarize the obtained results in terms of
consumed CPU time, MIP Gap, and unsolved instances. In column
Time, we show the average required computational times for those

instances solved up to optimality within the time limit (two hours).

https://github.com/vblancoOR/fmclp
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Table 2
Average CPU time (CPUTime), percentage of instances solved within time limit (GAP0), percentage of instances solved with less than 1% and 5% of gap (GAP0 and GAP5), and
verage of MIP GAP of unsolved instances (GAP unsolved) averaged by size 𝑛 and number of centers 𝑝 for the discrete location problem.
𝑛 𝑝 CPUTime (secs.) GAP0 GAP1 GAP5 GAP unsolved

Disc Cont Disc Cont Disc Cont Disc Cont Disc Cont

45

5 2.00 25.50 100% 100% 100% 100% 100% 100% 0% 0%
10 1672.71 1557.52 71.43% 42.86% 80.95% 71.43% 85.71% 83.33% 9.44% 4.70%
15 192.04 159.60 11.90% 11.90% 28.57% 38.10% 54.76% 78.57% 44.68% 6.09%
20 66.41 524.13 9.52% 9.52% 19.05% 23.81% 30.95% 57.14% 67.15% 60.52%

90

5 142.73 329.32 100% 80.95% 100% 100% 100% 100% 0% 0.03%
10 366.22 2003.43 61.90% 33.33% 97.62% 83.33% 100% 97.62% 0.24% 0.98%
15 1174.07 191.58 21.43% 11.90% 69.05% 35.71% 80.95% 92.86% 3.13% 2.10%
20 56.66 1487.77 9.52% 7.14% 21.43% 16.67% 40.48% 38.10% 14.85% 7.74%

120

5 41.27 850.91 85.71% 83.33% 100% 100% 100% 100% 0.09% 0.17%
10 1269.24 275.26 59.52% 9.52% 95.24% 50.00% 97.62% 88.1% 0.52% 2.36%
15 958.53 868.72 30.95% 14.29% 78.57% 21.43% 85.71% 80.95% 2.05% 3.44%
20 51.28 445.71 9.52% 9.52% 30.95% 11.90% 66.67% 64.29% 7.96% 4.47%

179

5 102.51 2306.03 78.57% 57.14% 100% 69.05% 100% 100% 0.03% 1.73%
10 1897.44 TL 38.10% 0% 78.57% 9.52% 100% 28.57% 0.79% 10.85%
15 1642.58 82.43 7.14% 2.38% 28.57% 9.52% 73.81% 45.24% 3.26% 23.16%
20 2224.03 17.19 7.14% 4.76% 14.29% 7.14% 45.24% 42.86% 6.45% 7.38%
i
s

c
v
C

a
t
r
m

c
p

In column GAP0, we report the percent of instances that were solved
n the time limit. The rest of the columns show the information for
hose instances not optimally solved. GAP1 shows the percentage of
nsolved instances but MIPGap less than 1%, whereas GAP5 is the
verage percentage of instances that are with MIPGap in (1%, 5%].

Finally in column GAP unsolved, we show the average MIPGap of
the instances that we are not able to solve within the time limit. All
the results are averaged for each fixed value of 𝑛 (number of demand
points), 𝑝 (number of facilities to locate), and the type of location space
(Disc and Cont).

The first observation is that the continuous domain is more compu-
tationally challenging than the discrete one. Even being both problems
nonlinear in most of the cases because of the 𝛼-fairness objective func-
ion, the distance-based constraints needed for the continuous domain
ake those problems much more difficult to solve (in terms of CPU

ime and unsolved instances).
The table also highlights the percentage of solved instances. As

xpected, as the number of facilities increases, the number of solved
nstances decreases. The MIPGap, however, are relatively small, being
round 75% the instances that were solved within the time limit, with
ess than 5% of MIPGaps, 55% being with less than 1% MIPGap. The
nique exception is the instances with 𝑛 = 45 and 𝑝 = 20. In those
nstances, a 100%-coverage can be obtained in all cases, but the number
f feasible allocations is huge, being the underlying combinatorial
roblem tough to solve.

In Fig. 2 we show the results of columns GAP0, GAP1 and GAP5 for
iscrete and continuous domains. Each bar represents all the instances
or each combination of 𝑛 and 𝑝. Each bar is partitioned into the four
ossible sets: optimally solved within the time limit (GAP0), unsolved
ut with MIPGap less than 1% (GAP1), unsolved by with MIPGap in
1%, 5%] (GAP5) and unsolved with MIPGap greater than 5% (GAP+).

Although the percentage of solved instances within the time limit
decreases as 𝑝 increases, the percentage of instances with less than a
5% gap is stable for each value of 𝑛. In addition, when 𝑝 ≤ 10, we were
ble to solve in most of the cases with less than one 5% for the two
ypes of location spaces.

In Fig. 3, we show a similar graph but averaging by the type of
roblem (𝝀) and by the values of 𝛼. We observe that C and W were less

computationally demanding than the others, with close to 60% of the
instances optimally solved. We also observed that around 70% of the
instances are solved with less than a 5% gap.

However, for the value of 𝛼 = 1, the figure shows a higher
percentage of instances with a gap greater than 5%, caused by the
piecewise linear representation of Gurobi of the logarithmic function,
9

which requires a new set of variables and constraints in the problem. o
5.2. Managerial insights

In what follows, we analyze the quality of the obtained solutions
with the different approaches regarding fairness and efficiency. As
noted above, the MIPGaps for the instances unsolved within the time
limit are small, being most of the instances assumed to be optimally
solved (with a certain degree of accuracy). In order to show the quality
of the solutions, we consider those instances with a MIPGap smaller
than 5%.

Figs. 4 and 5 show the values of the price of fairness (PoF) and
the price of efficiency (PoE) defined in Section 3 for the discrete and
continuous location problems, respectively. These values are shown
for each type of problem (𝝀) considered and for each value of 𝛼. The
highest values of the PoF are obtained with C (the one for which PoE
is the smallest), whereas the highest values of the PoE are obtained
with W (the one with the smallest PoF). However, when the parameter
𝛼 increases, we obtain a range of fair solutions between the classical
MCLP (𝛼 = 0, 𝝀 = 𝚆) and the maximin approach (C), balancing
efficiency and fairness.

The performance of the solutions for each of the problem types 𝝀
seems to indicate a relationship between the PoF and the PoE, in the
sense that the largest PoF is related to the smallest PoE (or vice versa)
as can be seen for C (or W). Nevertheless, this is not true in general.
For instance, in the discrete case (Fig. 4), we got that D have a value of
PoF between those obtained by G and K, but its PoE is below K. That
is, the solution for D is better than K in efficiency and fairness.

Finally, for the discrete location problem, we observe that the trade-
off between fairness and efficiency is promising when considering as
𝝀 ∈ {𝙳, 𝙶}, obtaining fairer solutions by increasing the value of 𝛼. If one
s willing to lose more efficiency to gain fairness, the better operator
eems to be the harmonic (H).

For continuous domains, similar conclusions are derived. Specifi-
ally, the harmonic operator (H) seems to provide fair solutions with
alues of PoE close to zero but still with not so high values of PoF as
.

These graphs show that for different values, the decision maker has
wide range of possibilities to decide between the fairest or the one

hat covers the most. Thus, the first conclusion we can draw from the
esults, which verifies the starting hypothesis, is that a new fairness
easurement function is derived for allocation problems.

We refer the reader to the file Appendix in our repository github.
om/vblancoOR/fmclp for similar graphs with other combinations of
arameters involved in the problem.

We have also analyzed the behavior of the solutions obtained with

ur approaches with respect to the Gini index (Section 3). The Gini

https://github.com/vblancoOR/fmclp
https://github.com/vblancoOR/fmclp
https://github.com/vblancoOR/fmclp
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Fig. 2. Percentage of instances optimally solved within the time limit (GAP0), unsolved but with MIPGap less than 1% (GAP1), unsolved by with MIPGap in (1%, 5%] (GAP5) and
unsolved with MIPGap greater than 5% (GAP+) averaged for each fixed value of 𝑛 (number of demand points), 𝑝 (number of facilities to locate) and the type of location space
(Disc and Cont).
Fig. 3. Percentage of instances optimally solved within the time limit (GAP0), unsolved but with MIPGap less than 1% (GAP1), unsolved by with MIPGap in (1%, 5%] (GAP5) and
unsolved with MIPGap greater than 5% (GAP+) averaged for parameters involved in the problem 𝝀–problem type and 𝛼.
index measures the global pairwise envy of the different facilities
(in this case, the more significant the difference in covered demand
between two facilities, the larger the Gini index). In Fig. 6, we show the
overall performance of all the solved instances in terms of the average
Gini indices for each of the used 𝝀-weights and each of the values
of 𝛼. Observe that the behavior is very similar to PoE. Again, the C
models outperform the rest of the models for all 𝛼, while W exhibits
the worse behavior, being the maximum-envy solution. In the middle,
D provides a trade-off and H has also a better performance than W. For
the continuous location case, both K and H have similar Gini indices
to C, in contrast to the PoE. This is because the difference between the
facilities is the same as C and therefore minimal, but does not reach
the minimum coverage.

Finally, in Fig. 7 we illustrate different optimal solutions obtained
for a selected instance for different values of (𝝀, 𝛼) of fairness measure.
From left top to right bottom we draw: (C, any 𝛼), (𝙺, 1), (𝙳, 0.5), (𝙳, 0),
10
(𝚆, 0.5) and (𝚆, 0). The reader can observe that, geometrically, a greater
concentration of facilities is obtained for fairer solutions. Not only is the
position of the facilities a factor that affects the fairness of a solution
but also the allocation of the users to them. This allocation can be
more easily achieved when different facilities are able to cover the same
demand points.

6. Conclusions and further research

We present in this paper a novel fairness measure for Maximal Cov-
ering Location Problems (MCLP), that combines the OWA operators,
early introduced by Yager (1988), and the 𝛼-fairness scheme introduced
by Atkinson (1970).

We have developed suitable mathematical optimization models that
allow us to capture the notion of fairness in the MCLP for the two main

types of location spaces that are studied in the literature: discrete and
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Fig. 4. PoF and PoE averaged for each value of 𝛼 for Discrete location problem.

Fig. 5. PoF and PoE averaged for each value of 𝛼 for Continuous location problem.

Fig. 6. Gini averaged for each value of 𝛼 for both types of location spaces.
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Fig. 7. Example of fairness distribution for some results when 𝑛 = 179 and 𝑝 = 10, and in parenthesis the weighted covered percentage.
continuous. The models have been reformulated as MISOCO problems,
using the geometrical insights of the problem, and then, the programs
that we propose are able to be solved with the available off-the-shelf
software.

We tested our models using a real data set containing the locations
of residential schools and student hostels in Canada. By applying our
new scheme to this dataset, we observed empirically that our models
provide different solutions in terms of fairness than using the OWA op-
erators and the 𝛼-fairness scheme separately. Therefore, we concluded
that the combination of both in the same allocation scheme provides
the decision maker with a wide range of options to find a trade-off
between fairness and efficiency.

Further research lines on fairness topic include applying this combi-
nation of schemes into different location problems, such as set covering,
location problems with capacities, or location problems under conges-
tion where users may have to wait to receive the service, where fair
solutions are desirable in practice.
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