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Abstract

We consider the existence of bound and ground states for a family of nonlinear elliptic systems in RN , 
which involves equations with critical power nonlinearities and Hardy-type singular potentials. The equa-
tions are coupled by what we call “Schrödinger-Korteweg-de Vries” non-symmetric terms, which arise in 
some phenomena of fluid mechanics. By means of variational methods, ground states are derived for several 
ranges of the positive coupling parameter ν. Moreover, by using min-max arguments, we seek bound states 
under some energy assumptions.
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1. Introduction

In this work we study a system of elliptic equations involving critical power nonlinearities 
and Hardy-type singular potentials, coupled by the so-called “Schrödinger-Korteweg-de Vries” 
non-symmetric terms. Precisely, we consider the problem

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−�u − λ1
u

|x|2 − u2∗−1 = 2νh(x)uv in RN,

−�v − λ2
v

|x|2 − v2∗−1 = νh(x)u2 in RN,

u, v > 0 in RN \ {0},

(1.1)

where h ∈ L∞(RN) a positive function, λ1, λ2 ∈ (0, �N) with �N = (N−2)2

4 the Hardy critical 
constant, 2∗ = 2N

N−2 the critical Sobolev exponent and the coupling parameter ν > 0. In addition, 
we will assume that 3 � N � 6.

In the last years, both coupled Nonlinear Schrödinger (NLS for short) equations and cou-
pled NLS-Korteweg-de Vries (NLS-KdV) equations, have been extensively studied, (cf., e.g., 
[3–5,16–19] and [8,12] respectively, among others). Systems of coupled NLS equations arise 
naturally in Optics and also in the Hartree-Fock theory for Bose-Einstein condensates, among 
other physical phenomena. The main studied systems of Schrödinger equations adopt the form 
of the vector Schrödinger equation, iEt +Exx + ν|E|2E =0 where i, E denote the imaginary unit 
and the complex envelope of an electrical field respectively, and ν > 0 (the coupling parameter) 
is a normalization constant corresponding to the fact that the medium is self-focusing.

In particular, considering also the KdV equation, the following system arises

{
ift + fxx + |f |2f + 2νfg = 0 in R×(0,∞),

gt + gxxx + ggx + ν(|f |2)x = 0 in R×(0,∞),
(1.2)

where f = f (x, t) ∈ C, g = g(x, t) ∈ R and ν ∈ R denotes the real coupling coefficient. Let 
us point out that the first equation corresponds to the NLS equation and the second comes from 
the KdV one. System (1.2) modelizes the interaction of short and long dispersive waves for 
instance the interaction of capillary-gravity water waves (cf. [2,10,13] and the references therein). 
Looking for solitary “traveling-wave” solutions f (x, t) = eiwt eikxu1(x − ct), g(x, t) = u2(x −
ct), with uj � 0 real functions, and choosing λ1 = k2 + w, λ2 = 2k, we get the system

⎧⎨
⎩

−u′′
1 + λ1u1 = u3

1 + 2νu1u2 in R,

−u′′
2 + λ2u2 = 1

2u2
2 + νu2

1 in R,
(1.3)

where the nonlinear coupling terms are known as non-symmetric Schrödinger-Korteweg-de 
Vries–type coupling. In what concerns Hamiltonian systems with singular potentials we refer 
to [6,11].
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On the other hand, systems like (1.1) have been studied in [1,7] with similar coupling terms:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−�u − λ1
u

|x|2 − u2∗−1 = ναh(x)uα−1vβ in RN,

−�v − λ2
v

|x|2 − v2∗−1 = νβh(x)uαvβ−1 in RN,

u, v > 0 in RN \ {0},

(1.4)

where α, β > 1. The authors have recently established new existence results for bound and 
ground states of (1.4). These results complement the given ones along this paper. See [9] for 
a complete picture of the solvability of system (1.4).

Along this work, we will focus on the existence of positive solutions to system (1.1) which has 
a “Schrödinger-Korteweg-de Vries” nonlinear non-symmetric terms similar to the one coming
from the NLS-KdV system (1.3). To do so, we shall use variational methods. In particular, let us 
recall that solutions to (1.1) are critical points of the following energy functional

Jν(u, v) =1

2

∫
RN

(
|∇u|2 + |∇v|2

)
dx − λ1

2

∫
RN

u2

|x|2 dx − λ2

2

∫
RN

v2

|x|2 dx

− 1

2∗

∫
RN

(
|u|2∗ + |v|2∗)

dx − ν

∫
RN

h(x)u2v dx,

(1.5)

defined in D = D1,2(RN) × D1,2(RN), where D1,2(RN) is the completion of C∞
0 (RN) under 

the norm

‖u‖2
D1,2(RN)

=
∫
RN

|∇u|2 dx.

In order to obtain (positive) solutions to (1.1), we can apply the maximum principle to the 
critical points of Jν in a suitable way. Notice that the second equation guarantees the positivity 
of the v component, while the positivity of u is subsequently deduced by the first equation.

As we will use the radial space, we also define

D1,2
r (RN) = {u ∈ D1,2(RN)| u is radially symmetric},

and Dr = D1,2
r (RN) ×D1,2

r (RN).
A main role in our analysis will be performed by the unique semi-trivial solution. Let us stress 

that for any ν ∈R, problem (1.1) has the semi-trivial positive solution (0, z2), with z2 satisfying 
the next problem

−�z2 − λ2
z2

2 = z2∗−1
2 and z2 > 0 in RN \ {0}.
|x|
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Also some properties of the semi-trivial pair (z1, 0), with z1 satisfying

−�z1 − λ1
z1

|x|2 = z2∗−1
1 and z1 > 0 in RN \ {0},

will be crucial in the analysis, although it is not a semi-trivial solution, in contrast to problem 
(1.4). By the study of the second variation of the energy functional Jν , in Proposition 2.2 is 
proved the existence of an explicit parameter ν > 0 which allows the couple (0, z2) to become 
either a local minimum if ν < ν or a saddle point in case that ν > ν, as critical point of Jν on the 
Nehari manifold to be defined.

The parameter ν dramatically affects the behavior of Jν : if ν > ν, the semi-trivial solution is 
a saddle point and it arises a positive ground state, see Theorem 4.1; while in case that ν < ν, the 
couple (0, z2) is a local minimum and the energy configuration depends on λ1, λ2.

The relation between λ1 and λ2 controls the relation between the energy levels of the semi-
trivial solution and (z1, 0): if λ1 � λ2, we find a positive ground state, see Theorem 4.2; if λ2 >

λ1 and ν is small enough, then the ground state corresponds to (0, z2), see Theorem 4.3; while, 
under the assumption that λ1 and λ2 are somehow closed, we prove that the energy functional 
has a Mountain-Pass geometry on the Nehari manifold, so that a positive bound state is found, 
see Theorem 4.5.

To prove the above mentioned results, we first need to establish some compactness proper-
ties. This step is accomplished by Palais-Smale (PS for short) condition relying on the classical 
concentration-compactness principle by Lions (cf. [14,15]). To that end, we have to take into 
account the failure of the compactness of the embedding of D1,2(RN) in L2∗

(RN). Moreover, 
the coupling term u2v might be critical depending on the dimension N . We shall distinguish be-
tween the subcritical dimensions, 3 � N � 5, and the critical one, N = 6. Then, we will assume 
along the paper that 3 � N � 6.

The paper has three more sections. Section 2 contains the main functional setting and defi-
nitions, as well as an analysis of the character as a critical point of the semi-trivial solution. In 
Section 3, we prove the PS condition in both subcritical and critical dimensions. Finally, Sec-
tion 4 is devoted to prove the main results about the existence of bound and ground states of 
(1.1).

2. Variational setting

The energy functional associated to (1.1) is given by Jν introduced in (1.5). Jν is well defined 
in D = D1,2(RN) ×D1,2(RN), endowed with the norm ‖(u, v)‖2

D = ‖u‖2
λ1

+ ‖v‖2
λ2

,

‖u‖2
λ =
∫
RN

|∇u|2 dx − λ

∫
RN

u2

|x|2 dx.

Note that, by Hardy’s inequality,

�N

∫
RN

u2

|x|2 dx �
∫
RN

|∇u|2 dx, (2.1)

the norm ‖ · ‖λ is equivalent to the norm ‖ · ‖D1,2(RN) for any λ ∈ (0, �N).
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On the other hand, if either system (1.1) is decoupled, namely ν = 0, or the first component 
vanishes, then the second component v is a solution of the entire equation

−�z − λ
z

|x|2 = z2∗−1 with z > 0 in RN \ {0}. (2.2)

Observe that if the second component v = 0, then necessarily u = 0 because of the second equa-
tion of (1.1). That is the reason why there exists only one semi-trivial solution. Positive solutions 
to equation (2.2) were completely classified by Terracini, (cf. [22]). In particular, among other 
results, it was proved that, if λ ∈ (0,�N), the family of solutions to equation (2.2) is given by

zλ
μ(x) = μ− N−2

2 zλ
1

(
x

μ

)
with zλ

1(x) = A(N,λ)

|x|aλ

(
1 + |x|2− 4aλ

N−2

)N−2
2

, (2.3)

with aλ = N−2
2 −

√(
N−2

2

)2 − λ and A(N, λ) = N(N−2−2aλ)2

N−2 . Solutions of (2.2) are also mini-
mizers of the associated Rayleigh quotient

S(λ) = inf
u∈D1,2(RN)

u �≡0

‖u‖2
λ

‖uλ
μ‖2

2∗
= ‖zλ

μ‖2
λ

‖zλ
μ‖2

2∗
=
(

1 − 4λ

(N − 2)2

)N−1
N

S =
(

1 − λ

�N

)N−1
N

S, (2.4)

with S being the Sobolev’s constant, i.e.,

S

⎛
⎜⎝ ∫

RN

|u|2∗
dx

⎞
⎟⎠

2
2∗

�
∫
RN

|∇u|2dx. (2.5)

Using (2.3), it is easy to see that

‖zλ
μ‖2∗

2∗ = S N
2 (λ), (2.6)

and, as a consequence, for every μ > 0 the pair (0, zλ2
μ ) is a semi-trivial solution of (1.1). Our 

main aim is then to find neither semi-trivial nor trivial solutions, namely solutions (u, v) with 
u �≡ 0 and v �≡ 0 in RN .

Definition 2.1. A pair (u, v) ∈D is said to be a non-trivial bound state of (1.1) if it is a non-trivial 
critical point of Jν . While a bound state (ũ, ṽ) is called a ground state if its energy is minimal 
among all the non-trivial and non-negative bound states, i.e.,

c̃ν = Jν(ũ, ṽ) = min{Jν(u, v) : (u, v) ∈D \ {(0,0)}, u, v � 0, and J ′
ν(u, v) = 0}. (2.7)

The functional Jν ∈ C2(D, R) and Jν is unbounded from below, namely, given (ũ, ṽ) ∈ D, if ∫
RN h(x)ũ2ṽ dx > 0, then Jν(t ũ, t ṽ) → −∞ as t → ∞. Therefore, it is convenient to introduce 

a proper constraint in order to minimize the energy functional Jν . To that end, let us define the 
Nehari manifold associated to Jν as
564



E. Colorado, R. López-Soriano and A. Ortega Journal of Differential Equations 365 (2023) 560–590
Nν = {(u, v) ∈D \ {(0,0)} : �(u,v) = 0} ,

where �(u, v) = 〈J ′
ν(u, v)

∣∣(u, v)
〉
. Given (u, v) ∈Nν , it holds

‖(u, v)‖2
D =
∫
RN

(
|u|2∗ + |v|2∗)

dx + 3ν

∫
RN

h(x)u2vdx, (2.8)

and

Jν

∣∣
Nν

(u, v) = 1

N

∫
RN

(
|u|2∗ + |v|2∗)

dx + ν

2

∫
RN

h(x)u2v dx. (2.9)

For every (u, v) ∈ D \ {(0, 0)}, there exists a constant t depending on (u, v) such that (tu, tv) ∈
Nν . Indeed, t(u,v) is the unique real solution to the algebraic equation

‖(u, v)‖2
D = t2∗−2

∫
RN

(
|u|2∗ + |v|2∗)

dx + 3ν t

∫
RN

h(x)u2v dx. (2.10)

By using (2.8), one gets that

J ′′
ν (u, v)[u,v]2 = 〈�′(u, v)

∣∣(u, v)
〉

= −‖(u, v)‖2
D − (2∗ − 3)

∫
RN

(
|u|2∗ + |v|2∗)

dx < 0,
(2.11)

for any (u, v) ∈ Nν . Therefore, Nν is a locally smooth manifold close to every (u, v) ∈ D \
{(0, 0)} with �(u, v) = 0. In addition,

J ′′
ν (0,0)[ϕ1, ϕ2]2 = ‖(ϕ1, ϕ2)‖2

D > 0 for any (ϕ1, ϕ2) ∈Nν .

Then, (0, 0) is a strict minimum for Jν and, thus, it is an isolated point of the set Nν ∪ {(0, 0)}. 
Consequently, the Nehari manifold Nν is a smooth complete manifold of codimension 1. Fur-
thermore, there exists ρ > 0 constant such that

‖(u, v)‖D > ρ for all (u, v) ∈Nν . (2.12)

Let us emphasize that, if (u, v) ∈ Nν is a critical point of Jν constrained on Nν , there exists 
a Lagrange multiplier ω such that

∇Nν
Jν(u, v) = J ′

ν(u, v) − ω�′(u, v) = 0.

Testing this expression with (u, v), one gets �(u, v) = 〈J ′
ν(u, v)

∣∣(u, v)
〉= ω

〈
�′

ν(u, v)
∣∣(u, v)

〉=
0. By using (2.11), we deduce 

〈
�′(u, v)

∣∣(u, v)
〉
< 0. So, ω = 0 and hence J ′

ν(u, v) = 0. In con-
clusion,

(u, v) ∈D is a critical point of Jν ⇐⇒ (u, v) ∈ Nν is a critical point of Jν on Nν . (2.13)
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Let us also note that, the functional Jν on the Nehari manifold Nν reads also as

Jν

∣∣
Nν

(u, v) = 1

6
‖(u, v)‖2

D + 6 − N

6N

∫
RN

(
|u|2∗ + |v|2∗)

dx. (2.14)

Hence, by (2.12) and N � 6, we have Jν(u, v) >
1

6
ρ2 for all (u, v) ∈ Nν . Thus, Jν is bounded 

from below on Nν , so we can look for solutions of (1.1) by minimizing the functional on Nν .

2.1. Semi-trivial solution

In this subsection we are going to study the character of the semi-trivial solution as critical 
point of Jν |Nν

. Let us consider the decoupled energy functionals Ji :D1,2(RN) → R,

Ji (u) = 1

2

∫
RN

|∇u|2 dx − λi

2

∫
RN

u2

|x|2 dx − 1

2∗

∫
RN

|u|2∗
dx, (2.15)

for i = 1, 2 so that Jν(u, v) = J1(u) + J2(v) − ν

∫
RN

h(x)u2v dx. Observe that zλi
μ , defined by 

(2.3), is a global minimum of Ji constrained on the Nehari manifold Ni defined by

Ni =
{
u ∈ D1,2(RN) \ {0} : 〈J ′

i (u)
∣∣u〉= 0

}

=

⎧⎪⎨
⎪⎩u ∈ D1,2(RN) \ {0} : ‖u‖2

λi
=
∫
RN

|u|2∗
dx

⎫⎪⎬
⎪⎭ .

(2.16)

Due to the explicit expression (2.3), it is easy to prove that the energy levels of zλi
μ , are

J1(z
λ1
μ ) = 1

N
S N

2 (λ1) = Jν(z
λ1
μ ,0), J2(z

λ2
μ ) = 1

N
S N

2 (λ2) = Jν(0, zλ2
μ ), (2.17)

for any μ > 0 with S(λ) defined in (2.4).
Given (ũ, ṽ) ∈ Nν we denote by T(ũ,ṽ)Nν the tangent space of Nν at (ũ, ṽ). Note that

ϕ = (ϕ1, ϕ2) ∈ T
(0,z

λ2
μ )

Nν ⇐⇒ ϕ2 ∈ T
z
λ2
μ
N2. (2.18)

Next, we determine the character of (0, zλ2
μ ) as critical point of Jν |Nν

.

Proposition 2.2. There exists ν > 0 such that the following holds:

i) if 0 < ν < ν, (0, zλ2
μ ) is a local minimum of Jν constrained on Nν ,

ii) for any ν > ν, (0, zλ2
μ ) is a saddle point of Jν constrained on Nν .
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Proof. To obtain i), let us set

ν = inf
ϕ∈D1,2(RN)

ϕ �≡0

‖ϕ‖2
λ1

2
∫
RN

h(x)ϕ2zλ2
μ dx

. (2.19)

Next, given ϕ = (ϕ1, ϕ2) ∈ T
(0,z

λ2
μ )

Nν , we have

J ′′
ν (0, zλ2

μ )[(ϕ1, ϕ2)]2 = ‖ϕ1‖2
λ1

+J ′′
2 (zλ2

μ )[ϕ2]2 − 2ν

∫
RN

h(x)ϕ2
1zλ2

μ dx. (2.20)

As zλ2
μ is a minimum of J2 on N2 and ϕ2 ∈ T

z
λ2
μ
N2, by (2.18), there exists C > 0 such that

J ′′
2 (zλ2

μ )[ϕ2]2 � C‖ϕ2‖2
λ2

. (2.21)

Then, if ν < ν, there exists c > 0 such that J ′′
ν (0, zλ2

μ )[(ϕ1, ϕ2)]2 � c(‖ϕ1‖2
λ1

+ ‖ϕ2‖2
λ2

), which 

proves that (0, zλ2
μ ) is a local strict minimum of Jν constrained on Nν .

To prove ii), first we note that, by (2.20) and (2.21),

J ′′
ν (0, zλ2

μ )[(0, ϕ2)]2 = J ′′
2 (zλ2

μ )[ϕ2]2 � C‖ϕ2‖2
λ2

. (2.22)

On the other hand, if we take ϕ = (ϕ1, 0) such that

ν >
‖ϕ1‖2

λ1

2
∫
RN

h(x)ϕ2
1zλ2

μ dx

> ν,

we get

J ′′
ν (0, zλ2

μ )[(ϕ1,0)]2 = ‖ϕ1‖2
λ1

− 2ν

∫
RN

h(x)ϕ2
1zλ2

μ dx < 0 for any ν > ν. (2.23)

Thus, by (2.22) and (2.23), we conclude that (0, zλ2
μ ) is saddle point of Jν on Nν . �

Remark 2.3. Although the pair (zλ1
μ , 0) is not a critical point of the energy functional Jν , this 

couple does belong to the Nehari manifold Nν .

To conclude this section we recall the following result which will be useful in several proofs.
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Lemma 2.4. [1, Lemma 3.3] Assume that A, B > 0 and γ � 2. We define the set


ν = {σ ∈ (0,+∞) : Aσ
N−2
N < σ + Bνσ

γ
2

N−2
N }.

Then, for any ε > 0 there exists ν̃ > 0 such that, for 0 < ν < ν̃, we have inf

ν

σ > (1 − ε)A
N
2 .

3. The Palais-Smale condition

As commented in the introduction, a crucial step to obtain existence of solution to (1.1) is the 
PS condition.

Definition 3.1. Let V be a Banach space. We say that {un} ⊂ V is a PS sequence for an energy 
functional F : V → R if

F(un) → c and F′(un) → 0 in V ∗ as n → +∞, (3.1)

where V ∗ is the dual space of V . Moreover, we say that {un} satisfies a PS condition if

{un} has a strongly convergent subsequence.

Even more, we say that {un} ⊂ V is a PS sequence at level c if (3.1) holds. Also, the functional 
F satisfies the PS condition at level c if every PS sequence at level c for F satisfies the PS 
condition.

Lemma 3.2. Assume that {(un, vn)} ⊂ Nν is a PS sequence of Jν constrained on Nν . Then 
{(un, vn)} is a PS sequence of Jν .

Proof. Since {(un, vn)} ⊂ Nν is a PS sequence of Jν constrained on Nν we have

Jν(un, vn) → c and ∇Nν
Jν(un, vn) = J ′

ν(un, vn) − ωn�
′(un, vn) → 0,

where ωn is the corresponding Lagrange multiplier sequence. Testing the above expres-
sion with (un, vn), we have �(un, vn) = (J ′

ν(un, vn)|(un, vn)) = 0, while, by (2.11) and 
(2.12), �′(un, vn) < −ρ < 0, then we conclude that ωn → 0. As a consequence, we obtain 
J ′

ν(un, vn) → 0. �
Remark 3.3. By Lemma 3.2 and (2.13), it is enough to show that the PS condition for Jν holds 
instead of proving the PS condition for Jν|Nν

.

Now, we address the boundedness of PS sequences that, together with the compact embedding 
of the space D1,2 in the subcritical regime, will provide compactness of PS sequences.

Lemma 3.4. If {(un, vn)} ⊂ D is a PS sequence for Jν at level c ∈R, then ‖(un, vn)‖D < C.
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Proof. Let {(un, vn)} ⊂ D be a PS sequence for Jν at level c, i.e.,

Jν(un, vn) → c and J ′
ν(un, vn) → 0 as n → +∞.

Since J ′
ν(un, vn) → 0 in D′, we have 

〈
J ′

ν(un, vn)

∣∣∣∣ (un, vn)

‖(un, vn)‖D
〉

→ 0. Hence, there exists a 

subsequence (still denoted by {(un, vn)}) such that

‖(un, vn)‖2
D −
∫
RN

(
|un|2∗ + |vn|2∗)

dx − 3ν

∫
RN

h(x)u2
nvndx = ‖(un, vn)‖D · o(1).

Since Jν(un, vn) → c, one obtains

1

2
‖(un, vn)‖2

D − 1

2∗

∫
RN

(
|un|2∗ + |vn|2∗)

dx − ν

∫
RN

h(x)u2
nvndx = c + o(1).

Therefore

1

6
‖(un, vn)‖2

D + 6 − N

6N

∫
RN

(
|un|2∗ + |vn|2∗)

dx = c + o(1). (3.2)

As a consequence, 
1

6
‖(un, vn)‖2

D � c + ‖(un, vn)‖D · o(1). Thus, the sequence {(un, vn)} is 

bounded in D. �
3.1. Subcritical dimension 3 � N � 5

Lemma 3.5. Assume 3 � N � 5. Then, Jν satisfies the PS condition at every level c satisfying

c <
1

N
min{S N

2 (λ1),S
N
2 (λ2)}. (3.3)

Proof. Because of Lemma 3.4, any PS sequence is bounded in D so that there exists (ũ, ṽ) ∈ D
and a subsequence (denoted also by {(un, vn)}) such that

(un, vn) ⇀ (ũ, ṽ) weakly in D,

(un, vn) → (ũ, ṽ) strongly in Lq(RN) × Lq(RN) for 1 � q < 2∗,

(un, vn) → (ũ, ṽ) a.e. in RN.

By the concentration-compactness principle (cf. [14,15]), there exist a subsequence (denoted 
also by) {(un, vn)}, two (at most countable) sets of points {xj }j∈J ⊂ RN and {yk}k∈K ⊂ RN , and 
non-negative quantities {μj, ρj }j∈J, {μk, ρk}k∈K, μ0, ρ0, γ0, μ0, ρ0 and γ 0 such that
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|∇un|2 ⇀ dμ � |∇ũ|2 +∑j∈J μjδxj
+ μ0δ0,

|∇vn|2 ⇀ dμ � |∇ṽ|2 +∑k∈K μkδyk
+ μ0δ0,

|un|2∗
⇀ dρ = |ũ|2∗ +∑j∈J ρj δxj

+ ρ0δ0,

|vn|2∗
⇀ dρ = |ṽ|2∗ +∑k∈K ρkδyk

+ ρ0δ0,

u2
n

|x|2 ⇀ dγ = ũ2

|x|2 + γ0δ0,

v2
n

|x|2 ⇀ dγ = ṽ2

|x|2 + γ 0δ0,

(3.4)

in the sense of measures. Let us note that, using (2.5) and (2.1), the above numbers satisfy

Sρ
2

2∗
j � μj for all j ∈ J∪ {0} and Sρ

2
2∗
k � μk for all k ∈ K∪ {0}, (3.5)

�Nγ0 � μ0 and �Nγ 0 � μ0. (3.6)

The concentration of {un} at infinity is described by the quantities

μ∞ = lim
R→+∞ lim sup

n→+∞

∫
|x|>R

|∇un|2dx,

ρ∞ = lim
R→+∞ lim sup

n→+∞

∫
|x|>R

|un|2∗
dx,

γ∞ = lim
R→+∞ lim sup

n→+∞

∫
|x|>R

u2
n

|x|2 dx.

(3.7)

The concentration at infinity of {vn} is given by μ∞, ρ∞ and γ ∞ defined analogously. For j ∈ J, 
we consider ϕj,ε(x) a smooth cut-off function centered at xj , i.e., ϕj,ε ∈ C∞(R) and

ϕj,ε = 1 in Bε
2
(xj ), ϕj,ε = 0 in Bc

ε (xj ) and |∇ϕj,ε| � 4

ε
, (3.8)

where Br(xj ) denotes the ball of radius r > 0 centered at xj ∈RN . Therefore, testing J ′
ν(un, vn)

with (unϕj,ε, 0), we get

0 = lim
〈
J ′

ν(un, vn)
∣∣(unϕj,ε,0)

〉

n→+∞
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= lim
n→+∞

⎛
⎜⎝ ∫

RN

|∇un|2ϕj,εdx +
∫
RN

un∇un∇ϕj,εdx − λ1

∫
RN

u2
n

|x|2 ϕj,εdx

−
∫
RN

|un|2∗
ϕj,εdx − 2ν

∫
RN

h(x)u2
nvnϕj,εdx

⎞
⎟⎠

=
∫
RN

ϕj,εdμ +
∫
RN

ũ∇ũ∇ϕj,εdx − λ1

∫
RN

ϕj,εdγ

−
∫
RN

ϕj,εdρ − 2ν

∫
RN

h(x)ũ2ṽϕj,ε dx.

Observe that 0 /∈ supp(ϕj,ε) for every ε > 0. Since h ∈ L∞(RN), taking ε → 0, it follows that 
μj − ρj � 0. Therefore, it arises the following alternative:

Either ρj = 0 for all j ∈ J or, by (3.5), ρj � S N
2 for all j ∈ J, (3.9)

that is, either the PS sequence has a convergent subsequence or it concentrates around some of 
the points xj and, therefore, the set J is finite.

An analogous argument provides the same conclusion for the numbers ρk , i.e.,

Either ρk = 0 for all k ∈ K or, by (3.5), ρj � S N
2 for all k ∈ K, (3.10)

and the set K is also finite.
Testing J ′

ν(un, vn) with (unϕ0,ε, 0) where ϕ0,ε denotes a smooth cut-off function centered at 
x = 0, it follows that μ0 − λ1γ0 − ρ0 � 0 and μ0 − λ2γ 0 − ρ0 � 0. From (2.4) we get

μ0 − λ1γ0 � S(λ1)ρ
2

2∗
0 and μ0 − λ2γ 0 � S(λ2)ρ

2
2∗
0 , (3.11)

so that, by (3.6),

ρ0 = 0 or ρ0 � S N
2 (λ1) and ρ0 = 0 or ρ0 � S N

2 (λ2). (3.12)

Next, for R > 0 such that {xj }j∈J ∪ {0} ⊂ BR(0), we consider ϕ∞,ε a cut-off function supported 
near ∞, i.e.,

ϕ∞,ε = 0 in BR(0), ϕ∞,ε = 1 in Bc
R+1(0) and |∇ϕ∞,ε| � 4

ε
. (3.13)

Testing J ′
ν(un, vn) with (unϕ∞,ε, 0) being ϕ∞,ε a smooth cut-off function supported in a 

neighborhood of ∞ we can analogously prove that μ∞ − λ1γ∞ − ρ∞ � 0 as well as μ∞ −
λ2γ ∞ − ρ∞ � 0 and, as above, we get

μ∞ − λ1γ∞ � S(λ1)ρ
2

2∗
∞ and μ∞ − λ2γ ∞ � S(λ2)ρ

2
2∗
∞ , (3.14)
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and we also conclude

ρ∞ = 0 or ρ∞ � S N
2 (λ1) and ρ∞ = 0 or ρ∞ � S N

2 (λ2). (3.15)

From (3.2) we get

c = 1

6
‖(un, vn)‖2

D + 6 − N

6N

∫
R

(
|un|2∗ + |vn|2∗)

dx + o(1) as n → +∞.

Hence, by (3.4), (3.5), (3.6), (3.11) and (3.14) above, we get

c �1

6

⎛
⎝‖(ũ, ṽ)‖2

D +
∑
j∈J

μj + (μ0 − λ1γ0) + (μ∞ − λ1γ∞)

+
∑
k∈K

μk + (μ0 − λ2γ 0) + (μ∞ − λ2γ ∞)

)

+ 6 − N

6N

⎛
⎜⎝ ∫

RN

|ũ|2∗
dx +

∫
RN

|ṽ|2∗
dx

+
∑
j∈J

ρj + ρ0 + ρ∞ +
∑
k∈K

ρk + ρ0 + ρ∞

⎞
⎠

�1

6

⎛
⎝S
⎡
⎣∑

j∈J
ρ

2
2∗
j +

∑
k∈K

ρ
2

2∗
k

⎤
⎦+ S(λ1)

[
ρ

2
2∗
0 + ρ

2
2∗
∞
]

+ S(λ2)

[
ρ

2
2∗
0 + ρ

2
2∗
∞
]⎞⎠

+ 6 − N

6N

⎛
⎝∑

j∈J
ρj + ρ0 + ρ∞ +

∑
k∈K

ρk + ρ0 + ρ∞

⎞
⎠ .

(3.16)

If concentration at the point xj , i.e., ρj > 0 occurs, from above and (3.9), it follows that

c � 1

6
S1+ N

2
2

2∗ + 6 − N

6N
S N

2 = 1

N
S N

2 ,

which contradicts the hypothesis (3.3) on the energy level c. Therefore, ρj = μj = 0 for every 
j ∈ J. In a similar way, we also conclude that ρk = μk = 0 for every k ∈ K.

If ρ0 �= 0, from the above inequalities and (3.12), we infer that

c � 1

N
S

N
2 (λ1),

which also contradicts the hypothesis (3.3) on the energy level c. Hence, ρ0 = 0. Analogously we 
also find that ρ0 = 0. Finally, arguing as above and using (3.15) we also find ρ∞ = 0 and ρ∞ =
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0. Thus, the PS sequence has a subsequence that strongly converges in L2∗
(RN) × L2∗

(RN). 
Finally,

‖(un − ũ, vn − ṽ)‖2
D = 〈J ′

ν(un, vn) |(un − ũ, vn − ṽ)
〉+ o(1),

and then the PS-condition follows. �
The next Lemma 3.6 is a refinement of Lemma 3.5, in the sense that it states the PS condition 

for supercritical energy levels excluding multipliers or combinations of the critical ones.
In order to address the issue of positive solutions, it will be useful to consider the problem

⎧⎪⎪⎨
⎪⎪⎩

−�u − λ1
u

|x|2 − (u+)2∗−1 = 2νh(x)u+ v in RN,

−�v − λ2
v

|x|2 − (v+)2∗−1 = νh(x)(u+)2 in RN,

(3.17)

where u+ = max{u, 0}. Similarly, u− = min{u, 0} denotes the negative part of the function u. 
With this notation, u = u+ + u−.

It is not difficult to prove that the pair (u, v) solution to (3.17) is positive in every component. 
Moreover, the system (3.17) is a variational system and its solutions are critical points of the 
energy functional

J +
ν (u, v) = ‖(u, v)‖2

D − 1

2∗

∫
RN

(
(u+)2∗ + (v+)2∗

dx
)

− ν

∫
RN

h(x)(u+)2 v dx (3.18)

defined in D. We will denote N+
ν as the Nehari manifold associated to J+

ν , i.e.,

N+
ν = {(u, v) ∈D \ {(0,0)} : 〈(J +

ν )′(u, v)
∣∣(u, v)

〉= 0
}
.

Lemma 3.6. Assume that 3 � N � 5, λ2 � λ1 and

S N
2 (λ1) + S N

2 (λ2) < S N
2 . (3.19)

There exists ν̃ > 0 such that for 0 < ν � ν̃ and {(un, vn)} ⊂ D a PS sequence for J +
ν at level 

c ∈R such that

1

N
S N

2 (λ2) < c <
1

N

(
S N

2 (λ1) + S N
2 (λ2)

)
, (3.20)

and

c �= �

N
S N

2 (λ2) for every � ∈N \ {0}, (3.21)

then (un, vn) → (ũ, ṽ) ∈ D up to subsequence.
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Proof. As in Lemma 3.4, any PS sequence for J+
ν is also bounded in D and, hence, there exists 

a subsequence {(un, vn)} which weakly converges to (ũ, ṽ) ∈ D. Since (J +
ν )′(un, vn) → 0, then

〈
(J +

ν )′(un, vn)
∣∣(u−

n ,0)
〉= ∫

RN

|∇u−
n |2 dx − λ1

∫
RN

(u−
n )2

|x|2 dx → 0,

and, hence, that u−
n → 0 strongly in D1,2(RN). Analogously,

〈
(J +

ν )′(un, vn)
∣∣(0, v−

n )
〉= ∫

RN

|∇v−
n |2 dx − λ2

∫
RN

(v−
n )2

|x|2 dx − ν

∫
RN

h(x)(u+)2 v− dx → 0,

so that v−
n → 0. As a consequence, {(u+

n , v+
n )} is a bounded PS sequence of J +

ν . Thus, we can 
assume that {(un, vn)} is a non-negative PS sequence for Jν at the level c.

Next, a similar argument to that of Lemma 3.5 provides the existence of a subsequence, still 
denoted by {(un, vn)}, two (at most countable) sets of points {xj }j∈J ⊂ RN and {yk}k∈K ⊂ RN , 
and also non-negative quantities {μj, ρj }j∈J, {μk, ρk}k∈K, μ0, ρ0, γ0, μ0, ρ0 and γ 0 such that 
(3.4) is satisfied. Besides, the inequalities (3.9), (3.10), (3.11), (3.12) hold.

Similarly, we define the concentration at infinity with the values μ∞, ρ∞, μ∞ and ρ∞ as in 
(3.7), for which (3.14) and (3.15) hold.

Claim.

Either un → ũ in L2∗
(RN) or vn → ṽ in L2∗

(RN). (3.22)

Let us prove the claim arguing by contradiction. Assume that un and vn do not converge 
strongly in L2∗

(RN). Then, there exists j ∈ J ∪{0 ∪∞} and k ∈ J ∪{0, ∞} such that ρj > 0 and 
ρk > 0. Finally, because of (3.2), (3.9), (3.10), (3.11), (3.12) and (3.16) we get

c =1

6
‖(un, vn)‖2

D + 6 − N

6N

∫
RN

(
u2∗

n + v2∗
n

)
dx + o(1),

�1

6

(
S(λ1)ρ

2
2∗
J + S(λ2)ρ

2
2∗
K

)
+ 6 − N

6N
(ρJ + ρK)

� 1

N

(
S N

2 (λ1) + S N
2 (λ2)

)
,

which contradicts assumption (3.20), so claim (3.22) is proved.
Subsequently, we claim that:

either un → ũ in D1,2(RN) or vn → ṽ in D1,2(RN). (3.23)

Without loss of generality, we assume by (3.22) that un strongly converges in L2∗
(RN). Then, 

it is enough to observe that

‖(un − ũ)‖2 = 〈J ′
ν(un, vn) |(un − ũ,0)

〉+ o(1).
λ1
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This implies that un → u in D1,2(RN). Repeating the argument for vn, completes (3.23).
In order to show that both components strongly converge in D1,2(RN) we consider two cases:

Case 1. vn strongly converges to ṽ in D1,2(RN).

In order to prove that un strongly converges to ũ in D1,2(RN), let us assume, by contradiction, 
that none of its subsequences converge. Note that, assuming J ∪ {0, ∞} contains more than one 
point, because of (3.16), (3.9), (3.11), (3.12), (3.14) and (3.15) it follows that

c � 2

N
S N

2 (λ1) � 1

N

(
S N

2 (λ1) + S N
2 (λ2)

)

since λ2 � λ1 and S(λ) is decreasing. This expression contradicts (3.20). Then, assume that 
there exists only one concentration point for the sequence un, corresponding to the index j ∈
J ∪ {0, ∞}.

Let us prove now that ṽ �≡ 0. Assume that ṽ ≡ 0, then ũ ≡ 0 and hence un satisfies

−�un − λ1
un

|x|2 − un
2∗−1 = o(1)

in the dual space 
(
D1,2(RN)

)∗
and

c = Jν(un, vn) + o(1) = 1

N

∫
RN

u2∗
n + o(1) → 1

N
ρj ,

since un concentrates at one point xj . Moreover, since j ∈ J, then un is a positive PS sequence 
for the functional

Ij (u) = 1

2

∫
RN

|∇u|2 dx − 1

2∗

∫
RN

|u|2∗
dx.

Hence, by the characterization of PS sequences for Ij provided by [21], we have ρj = �S N
2 for 

some � ∈ N , in contradiction with (3.19) and (3.20). So that J = ∅. If un concentrates at zero or 
infinity we can use a similar argument for J1, defined in (2.15), together with the results of [20]
to conclude

c = Jν(un, vn) + o(1) = J1(un) + o(1) → �

N
S N

2 (λ1),

with � ∈ N ∪ {0}. This is in contradiction with (3.20). Then, v � 0 in R. Next, we prove that 
un ⇀ ũ in D1,2(RN) with ũ �≡ 0. As before, by contradiction, we assume that ũ = 0 so that ṽ
satisfies

−�ṽ − λ2
ṽ

2 = ṽ2∗−1 in RN. (3.24)
|x|
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Then v = z
λ2
μ for some μ > 0 and 

∫
RN

ṽ2∗
dx = S N

2 (λ2) by (2.6). Hence, combining (3.16) with 

(3.9), (3.11), (3.12), it follows that

c � 1

N

⎛
⎜⎝ ∫

RN

ṽ2∗
dx + S N

2 (λ1)

⎞
⎟⎠= 1

N

(
S N

2 (λ1) + S N
2 (λ2)

)
,

which contradicts (3.20). Therefore, ũ, ṽ �≡ 0. Next,

c = Jν(un, vn) − 1

2

〈
J ′

ν(un, vn) |(un, vn)
〉+ o(1)

= 1

N

∫
RN

(
u2∗

n + v2∗
n

)
dx + ν

2

∫
RN

h(x)u2
nvn dx + o(1) →

1

N

∫
RN

(
ũ2∗ + ṽ2∗)

dx + ρj

N
+ ν

2

∫
RN

h(x)ũ2ṽ dx,

(3.25)

by the concentration at j ∈ J ∪ {0, ∞}. Since 
〈
J ′

ν(un, vn) |(ũ, ṽ)
〉→ 0, we find

‖(ũ, ṽ)‖D =
∫
RN

(
ũ2∗ + ṽ2∗)

dx + 3ν

∫
RN

h(x)ũ2ṽ dx,

that is the same to say (ũ, ṽ) ∈ Nν . Next, by (3.25), (3.27), (2.14), (3.9), (3.11), (3.12) and (3.16), 
we have

Jν(ũ, ṽ) = 1

N

∫
RN

(
ũ2∗ + ṽ2∗)

dx + 1

2
ν

∫
RN

h(x)ũ2ṽ dx

= c − ρj

N
<

1

N

(
S N

2 (λ1) + S N
2 (λ2)

)
− 1

N
S N

2 (λ1) = 1

N
S N

2 (λ2).

Then,

c̃ν = inf
(u,v)∈Nν

Jν(u, v) <
1

N
S N

2 (λ2),

that, for ν sufficiently small, contradicts Theorem 4.3. Thus, un → ũ strongly in D1,2(RN).

Case 2. un strongly converges to ũ in D1,2(RN).

As before, in order to prove that vn strongly converges to ṽ in D1,2(RN), let us assume, 
by contradiction, that none of its subsequences converge. First, let us prove that ũ �≡ 0. If we 
assume, once again by contradiction, that ũ ≡ 0, then vn is a PS sequence for J2 defined in 
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(2.15) at level c. As vn ⇀ ṽ in D1,2(RN) with ṽ solution to (3.24), we have ṽ = z
λ2
μ for some 

μ > 0. Furthermore, because of the compactness theorem given by [20], it follows that

c = J2(vn) + o(1) → J2(z
λ2
μ ) + m

N
S N

2 + �

N
S N

2 (λ2) = m

N
S N

2 + � + 1

N
S N

2 (λ2), (3.26)

with m ∈N and � ∈N ∪ {0}, in contradiction with (3.20) and (3.21). Hence, ũ �≡ 0.
Conversely, assuming that ṽ ≡ 0, we have ũ ≡ 0 by the second equation of (1.1), which gives 

a contradiction with (3.26). Thus, ũ, ṽ �≡ 0. Since (ũ, ṽ) is a solution of (1.1), we get

Jν(ũ, ṽ) = 1

N

∫
RN

(
ũ2∗ + ṽ2∗)

dx + ν

2

∫
RN

h(x)ũ2ṽ dx � c. (3.27)

Since by assumption vn does not strongly converge in D1,2(RN), using again (3.25), it follows 
that there exists at least one k ∈ K ∪ {0, ∞} such that ρk > 0

c = 1

N

⎛
⎜⎝ ∫

RN

(
ũ2∗ + ṽ2∗)

dx +
∑
k∈K

ρk + ρ0 + ρ∞

⎞
⎟⎠+ ν

2

∫
RN

h(x)ũ2ṽ dx.

By (3.27), (3.10), (3.11), (3.12) and (3.20), one gets

Jν(ũ, ṽ) = c − 1

N

∑
k∈K

ρk + ρ0 + ρ∞

<
1

N

(
S N

2 (λ1) + S N
2 (λ2)

)
− 1

N
S N

2 (λ2)

= 1

N
S N

2 (λ1).

(3.28)

Using the first equation of (1.1) and the definition of S N
2 (λ1), we find

σ1 + ν

∫
RN

h(x)ũ2ṽ dx =
∫
RN

|∇ũ|2 dx − λ1

∫
RN

ũ2

|x|2 dx � S N
2 (λ1)σ

2/2∗
1 , (3.29)

where σ1 = ∫RN ũ2∗
dx. Using Hölder’s inequality, one gets

∫
RN

h(x) ũ2 ṽ dx � ||h||L∞(RN)

⎛
⎜⎝ ∫

RN

ũ2∗
dx

⎞
⎟⎠

2
2∗ ⎛⎜⎝ ∫

RN

ṽ2∗
dx

⎞
⎟⎠

1
2∗

. (3.30)

Combining (3.30) and (3.27), we can transform (3.29) into

σ1 + Cνσ
2

2∗ � S(λ1)σ
2

2∗
. (3.31)
1 1
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Since ṽ �≡ 0, there exists ε̃ such that 
∫
RN ṽ2∗

dx � ε̃. Taking ε > 0 such that ε̃ � εS N
2 (λ1), 

because of (3.31) and Lemma 2.4, we find some ν̃ > 0 such that

σ1 � (1 − ε)S N
2 (λ1) for any 0 < ν � ν̃.

The above estimates and (3.27), provide us with

Jν(ũ, ṽ) � 1

N

(
(1 − ε)S N

2 (λ1) + ε̃
)

� 1

N
S N

2 (λ1),

which contradicts (3.28). Hence, vn → ṽ strongly in D1,2(RN). �
3.2. Critical dimension N = 6

In the critical case, more hypotheses on the function h are supposed:

h ∈ L∞(RN), h continuous around 0 and ∞ and h(0) = lim
x→+∞h(x) = 0. (H)

We also split the results in the cases in which either h is radial or h is non-radial but ν > 0 is 
sufficiently small.

To obtain the existence of Mountain-Pass solutions claimed in Theorem 4.5 for the critical 
regime, we need the following Lemma, analogous to [1, Lemma 4.1].

Lemma 3.7. Assume that N = 6 and (H) holds. Let {(un, vn)} ⊂ Dr be a PS sequence for Jν at 
level c ∈ R such that either (3.3) or (3.20) and (3.21) hold, then there exists ν > 0 such that for 
every ν � ν then (un, vn) → (ũ, ṽ) ∈ Dr up to subsequence.

Proof. As in Lemma 3.5 and Lemma 3.6, to exclude concentration at the x = 0, it is enough to 
prove that

lim
ε→0

lim sup
n→+∞

∫
RN

h(x)u2
nvnϕ0,ε(x)dx = 0, (3.32)

for ϕj,ε a smooth cut–off function centered at the origin defined as in (3.8). To exclude concen-
tration at ∞, it is enough to show that

lim
R→+∞ lim sup

n→+∞

∫
|x|>R

h(x)u2
nvnϕ∞,ε(x)dx = 0, (3.33)

where ϕ∞,ε is a cut–off function supported near ∞, see (3.13). To prove (3.32), observe that, 
because of Hölder’s inequality,

∫
N

h(x)u2
nvnϕ0,ε(x)dx �

⎛
⎜⎝ ∫

N

h(x)|un|2∗
ϕ0,εdx

⎞
⎟⎠

2
2∗ ⎛⎜⎝ ∫

N

h(x)|vn|2∗
ϕ0,εdx

⎞
⎟⎠

1
2∗

. (3.34)
R R R
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Hence, by (3.4) and (H), it follows that

lim
n→+∞

∫
RN

h|un|2∗
ϕ0,εdx =

∫
RN

h|ũ|2∗
ϕ0,εdx + ρ0h(0) �

∫
|x|�ε

h|ũ|2∗
dx,

lim
n→+∞

∫
RN

h|vn|2∗
ϕ0,εdx =

∫
RN

h|ṽ|2∗
ϕ0,εdx + ρ0h(0) �

∫
|x|�ε

h|ṽ|2∗
dx.

Thus, we conclude

lim
ε→0

lim sup
n→+∞

∫
RN

h(x)u2
nvnϕ0,ε(x)dx � lim

ε→0

⎛
⎜⎝ ∫

|x|�ε

h|ũ|2∗
dx

⎞
⎟⎠

2
2∗ ⎛⎜⎝ ∫

|x|�ε

h|ṽ|2∗
dx

⎞
⎟⎠

1
2∗

= 0.

Since lim|x|→+∞h(x) = 0, the proof of (3.33) follows analogously. �
The PS condition for the non-radial case follows assuming that ν is small enough.

Lemma 3.8. Suppose N = 6 and (H) holds. Let {(un, vn)} ⊂ D be a PS sequence for Jν at level 
c ∈R such that

c <
1

N
min{S(λ1),S(λ2)}N

2 .

Then, there exists ν > 0 such that, for every ν � ν, (un, vn) → (ũ, ṽ) ∈ D up to subsequence.

Proof. Concentration at the points 0 and ∞ can be excluded by similar arguments to those of 
Lemma 3.7, so we only have to consider concentration at xj �= 0, ∞. Furthermore, we can also 
assume that j ∈ J ∩ K. Otherwise, for ϕj,ε(x) a cut-off function centered at xj ∈ RN defined as 
in (3.8) we have

lim
ε→0

lim sup
n→+∞

∫
RN

h(x)u2
nvnϕj,ε(x)dx = 0,

and, then, there is no concentration at xj ∈ RN with j ∈ J and j /∈ K or xk ∈ RN with k /∈ J and 
k ∈ K. Therefore, assuming j ∈ J ∩K and testing J ′

ν(un, vn) with (unϕj,ε, 0) we get

0 = lim
n→+∞

〈
J ′

ν(un, vn)
∣∣(unϕj,ε,0)

〉

= lim
n→+∞

⎛
⎜⎝ ∫

RN

|∇un|2ϕj,εdx +
∫
RN

un∇un∇ϕj,εdx − λ1

∫
RN

u2
n

|x|2 ϕj,εdx

−
∫
N

|un|2∗
ϕj,εdx − 2ν

∫
N

h(x)u2
nvnϕj,εdx

⎞
⎟⎠ ,

(3.35)
R R
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and testing J ′
ν(un, vn) with (0, vnϕj,ε) we get

0 = lim
n→+∞

〈
J ′

ν(un, vn)
∣∣(0, vnϕj,ε)

〉

= lim
n→+∞

⎛
⎜⎝ ∫

RN

|∇vn|2ϕj,εdx +
∫
RN

vn∇vn∇ϕj,εdx − λ2

∫
RN

v2
n

|x|2 ϕj,εdx

−
∫
RN

|vn|2∗
ϕj,εdx − ν

∫
RN

h(x)u2
nvnϕj,εdx

⎞
⎟⎠ .

(3.36)

Hence, as h ∈ L∞(RN), by (3.34), we get

lim
ε→0

lim sup
n→+∞

∫
RN

h(x)u2
nvnϕj,ε(x)dx � C̃ρ

2
2∗
j ρ

1
2∗
j . (3.37)

Therefore, letting ε → 0, from (3.35), (3.36) and (3.37) it follows that

μj − ρj − 2νC̃ρ
2

2∗
j ρ

1
2∗
j � 0 and μj − ρj − νC̃ρ

2
2∗
j ρ

1
2∗
j � 0.

Thus, because of (3.5), we get

S
(

ρ
2

2∗
j + ρ

1
2∗
j

)
� ρj + ρj + 2∗νC̃ρ

2
2∗
j ρ

1
2∗
j ,

so S
(
ρj + ρj

) 2
2∗ � (ρj +ρj )(1 +2∗νC̃). Then, either ρj +ρj = 0 or ρj +ρj �

( S
1 + 2∗νC̃

)N
2

. 

As in Lemma 3.5, in case of having concentration, we get

c � 1

6
(μj + μj ) � S

1

6
(ρj + ρj )

2
2∗ � 1

N

( S
1 + 2∗νC̃

)N
2

.

Hence, for ν > 0 sufficiently small, we find

c � 1

N

( S
1 + 2∗νC̃

)N
2

� 1

N
min{S(λ1),S(λ2)}N

2 ,

in contradiction with the hypothesis on the energy level c. �
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(
0, z

λ2
μ

)
→ Saddle point

1
N
S

N
2 (λ2)

(
z
λ1
μ ,0
)

1
N
S

N
2 (λ1)

(ũ, ṽ) → Positive Ground State
c̃ν

‖(· , ·)‖D

Jν

∣∣
Nν

Fig. 1. The energy configuration under hypotheses of Theorem 4.1.

4. Main results

We prove now the main theorems regarding the solvability of the system (1.1). In this section, 
we shall assume one of the following

Either 3 � N � 5 or N = 6 and h is radial and satisfies (H), (C)

N = 6, ν satisfies Lemma 3.8 and (H) holds. (D)

The first result addresses the case ν > ν. By Proposition 2.2, the semi-trivial solution (0, zλ2
μ )

is a saddle point of Jν constrained to Nν . See Fig. 1 for a scheme of this situation.

Theorem 4.1. Assume that ν > ν defined by (2.19). If (C) holds, then system (1.1) admits a 
positive ground state solution (ũ, ṽ) ∈ D.

Proof. By Proposition 2.2, the couple (0, zλ2
μ ) is a saddle point of Jν constrained on Nν . Recall 

that (zλ1
μ , 0) is not a critical point of Jν on Nν . In particular, its energy level is greater than c̃ν . 

Consequently,

c̃ν < min{Jν(z
λ1
μ ,0),Jν(0, zλ2

μ )} = 1

N
min{S(λ1),S(λ2)}N

2 , (4.1)

where c̃ν is defined in (2.7). For a subcritical dimension, 3 � N � 5, Lemma 3.5 guarantees the 
existence of (ũ, ṽ) ∈ D such that Jν(ũ, ṽ) = c̃ν . In addition, due to

Jν(|ũ|, |ṽ|) � Jν(ũ, ṽ), (4.2)
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(
0, z

λ2
μ

)
→ Minimum

1
N
S

N
2 (λ2)

(
z
λ1
μ ,0
)

1
N
S

N
2 (λ1)

(ũ, ṽ) → Positive Ground State
c̃ν

‖(· , ·)‖D

Jν

∣∣
Nν

Fig. 2. The energy configuration under hypotheses of Theorem 4.2.

we can assume that ũ � 0 and ṽ � 0 in RN . By classical regularity results, ũ and ṽ are smooth 
in RN \ {0}. Moreover, ũ �≡ 0 and ṽ �≡ 0. Otherwise, if ũ ≡ 0, one obtains that ṽ satisfies (3.24). 
Actually, ṽ = z

λ2
μ , which violates (4.1). The case ṽ �≡ 0, can not take place since, on the contrary, 

both ũ, ṽ ≡ 0 and (0, 0) /∈ Nν . Finally, using the maximum principle in RN \ {0}, one derives 
that (ũ, ṽ) ∈ Nν is a ground state such that ũ > 0 and ṽ > 0 in RN \ {0}. The same conclusion 
holds for the critical dimension N = 6, by applying Lemma 3.7 instead. Consequently, also we 
infer that (ũ, ṽ) is a positive ground state. �

We point out that the order between the energy levels of the semi-trivial solution and (zλ1
μ , 0)

is determined by the order of the parameters λ1 and λ2, since (2.17) and (2.4) illustrate. Indeed, if 
λ1 � λ2, the minimum level between both corresponds to (zλ1

μ , 0), which is not a critical point of 
Jν on Nν . As an immediate consequence, the existence of a positive ground state is derived. See 
Fig. 2 for the corresponding energy configuration. Note that, in this figure, (0, zλ2

μ ) is assumed to 
be a local minimum, but it may be a saddle point.

Theorem 4.2. Suppose λ1 � λ2. If either (C) or (D) holds, then system (1.1) admits a positive 
ground state (ũ, ṽ) ∈ D.

Proof. Since λ1 � λ2 and (zλ1
μ , 0) is not a critical point of Jν constrained on Nν ,

c̃ν < Jν(z
λ1
μ ,0) = 1

N
S N

2 (λ1) = 1

N
min{S(λ1),S(λ2)}N

2 ,

with c̃ν was introduced in (2.7). Therefore, for subcritical dimension, 3 � N � 5, Lemma 3.5
implies that there exists (ũ, ṽ) ∈ Nν with c̃ν = Jν(ũ, ṽ). Using (4.2), one can suppose that u, v �
582



E. Colorado, R. López-Soriano and A. Ortega Journal of Differential Equations 365 (2023) 560–590
0 in RN . Moreover, arguing by contradiction, it is deduced easily that (ũ, ṽ) �≡ (0, 0). Applying 
the maximum principle in RN \ {0}, we obtain the desired conclusion.

For the case of critical dimension N = 6, we arrive at the existence of a positive ground 
state (ũ, ṽ) of (1.1), by using Lemma 3.7 instead. On the other hand, for ν > 0 small enough, 
Lemma 3.8 provides the conclusion. �

Next, we focus on the case that 0 < ν < ν. In the following result, we infer that if the minimum 
energy level of the semi-trivial couples corresponds to the semi-trivial solution (0, zλ2

μ ), i.e. λ2 >

λ1, it is indeed a ground state to (1.1) for ν sufficiently small.

Theorem 4.3. Assume λ2 > λ1. If either (C) or (D) holds, then there exists ν̃ > 0 such that for 
any 0 < ν < ν̃ the couples (0, ±z

λ2
μ ) are critical points of minimal energy for Jν on Nν . Even 

more, (0, zλ2
μ ) is a ground state to (1.1).

Proof. Let us suppose by contradiction that there exists a sequence νn ↘ 0 whose energy level 
satisfies c̃νn < Jνn(0, zλ2

μ ), where c̃νn defined in (2.7) with ν = νn. Moreover, by the assumption 
λ2 > λ1, we have

c̃νn <
1

N
min{S(λ1),S(λ2)}N

2 = 1

N
S N

2 (λ2). (4.3)

If 3 � N � 5, the PS condition is satisfied at level c̃νn , thanks to Lemma 3.5. If N = 6, the 
compactness follows from Lemmas 3.7 and 3.8. Thus, we derive the existence of (ũn, ṽn) ∈ D
with c̃νn = Jνn(ũn, ṽn). By (4.2), one can suppose that ũn � 0 and ṽn � 0. Furthermore, by 
contradiction, we infer that ũn �≡ 0 and ṽn �≡ 0 in RN . Finally, one can conclude that ũn > 0 and 
ṽn > 0 in RN \ {0} by applying the maximum principle.

Let us define

σ1,n =
∫
RN

ũ2∗
n dx and σ2,n =

∫
RN

ṽ2∗
n dx.

By (2.9), one obtains

c̃νn = Jνn(ũn, ṽn) = 1

N

(
σ1,n + σ2,n

)+ νn

2

∫
RN

h(x) ũ2
n ṽn dx. (4.4)

Combining (4.3) and (4.4), we deduce that

σ1,n + σ2,n < S N
2 (λ2). (4.5)

Now use that ũn and ṽn satisfy (1.1). From the first equation of (1.1) and (2.4), we get

S(λ1)(σ1,n)
N−2
N � σ1,n + 2νn

∫
RN

h(x) ũ2
n ṽn dx. (4.6)

Hence, applying Hölder’s inequality and (4.5), it follows that
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∫
RN

h(x) ũ2
n ṽn dx � ‖h‖L∞

⎛
⎜⎝ ∫

RN

ũ2∗
n dx

⎞
⎟⎠

2
2∗ ⎛⎜⎝ ∫

RN

ṽ2∗
n dx

⎞
⎟⎠

1
2∗

� ‖h‖L∞(S(λ2))
N−2

4 (σ1,n)
N−2
N .

Introducing the above inequality in (4.6), it follows that

S(λ1)(σ1,n)
N−2
N < σ1,n + 2νnC(h)(S(λ2))

N−2
4 (σ1,n)

N−2
N .

As λ2 > λ1, there exists ε > 0 such that

(1 − ε)S N
2 (λ1) � S N

2 (λ2). (4.7)

Next, we apply Lemma 2.4 to σ1,n and we deduce the existence of ν̃ = ν̃(ε) > 0 such that

σ1,n > (1 − ε)S N
2 (λ1) for any 0 < νn < ν̃.

Since parameter ε satisfies (4.7), it follows that σ1,n > S N
2 (λ2), in contradiction with (4.5). Thus, 

for ν small enough,

c̃ν = 1

N
S N

2 (λ2).

If (ũ, ṽ) is a minimizer of Jν , repeating the above argument, it follows that ũ ≡ 0. In addition, ṽ
solves to

−�ṽ − λ2
ṽ

|x|2 = |ṽ|2∗−2ṽ in RN.

We prove now that ṽ does not change its sign and, actually, ṽ = ±z
λ2
μ . Arguing by contradiction, 

we shall suppose that ṽ is sign-changing. Then, ṽ± �≡ 0 in RN . Due to (0, ṽ) ∈ Nν , one obtains 
(0, ṽ±) ∈ Nν . By using the equality (4.4), one gets

c̃ν = Jν(0, ṽ) = 1

N

∫
RN

|ṽ|2∗
dx = 1

N

⎛
⎜⎝ ∫

RN

(ṽ+)2∗
dx +

∫
RN

|ṽ−|2∗
dx

⎞
⎟⎠> Jν(0, ṽ+) � c̃ν ,

contradicting the fact that the energy of (0, ṽ) is minimum. Hence, (0, ±z
λ2
μ ) is the minimizer of 

Jν in Nν if λ2 > λ1. Furthermore, the ground state to (1.1) corresponds to (0, zλ2
μ ). �

Remark 4.4. If λ2 −λ1 increases, the interval for admissible ν in Theorem 4.3 increases. Indeed, 
the greater the difference λ2 − λ1, the greater the range of ε whose satisfies (4.7). Consequently, 
we can choose a bigger ν̃ in Lemma 2.4.
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(
0, z

λ2
μ

)
→ Ground State

1
N
S

N
2 (λ2)

(
z
λ1
μ ,0
)

1
N

S
N
2 (λ1)

2
N

(S(λ1)+S(λ2)
2

)N
2

cMP

(ũ, ṽ)

‖(· , ·)‖D

Jν

∣∣
Nν

Fig. 3. The energy configuration given by Theorem 4.3 and Theorem 4.5.

Finally, we deduce the existence of bound states by applying a min-max argument. In partic-
ular, it is proved that the energy functional J+

ν , presented in (3.18), exhibits the Mountain-Pass
geometry for certain choice of parameters λ1, λ2. This assumption, a kind of separability condi-
tion, allows us to establish a proper separation between the semi-trivial energy levels. In Fig. 3, 
we can see the couple (0, zλ2

μ ) as a ground state, provided by Theorem 4.3, and the bound state 
provided by the following theorem.

Theorem 4.5. Assume that λ2 > λ1 and

2− 2
N−1 <

�N − λ2

�N − λ1
. (4.8)

If (C) holds, then there exists ν̃ > 0 such that, for 0 < ν � ν̃, J +
ν

∣∣∣
N+

ν

admits a Mountain-Pass 

critical point (ũ, ṽ) ∈ D which is a positive bound state to (1.1).

Proof. The proof is divided into two steps. In the first one, we prove that the energy func-
tional J +

ν admits the Mountain-pass geometry, whereas in the second one we prove that for the 
Mountain-pass level the PS condition is guaranteed. As a consequence, there exists a critical 
point (ũ, ṽ) ∈ D of J +

ν .
First, let us define the set of paths connecting (zλ1

μ , 0) with (0, zλ2
μ ) continuously,

�ν =
{
ψ = (ψ1,ψ2) ∈ C0([0,1],N+

ν ), ψ(0) = (z
λ1 ,0) s. t. and ψ(1) = (0, z

λ2)
}

,
1 1
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and the MP level

cMP = inf
ψ∈�ν

max
t∈[0,1]J

+
ν (ψ(t)).

The hypothesis (4.8) implies that

2

N
S N

2 (λ2) >
1

N
S N

2 (λ1).

Due to the continuity and monotonicity of S(λ), one can fix ε > 0 small enough with

2

N
(1 − ε)

(S(λ1) + S(λ2)

2

)N
2

>
2

N
S N

2 (λ2) >
1 + ε

N
S N

2 (λ1). (4.9)

Claim. There exists ν̃ = ν̃(ε) > 0 such that, for any 0 < ν < ν̃, we have

max
t∈[0,1]J

+
ν (ψ(t)) � 2

N
(1 − ε)

(S(λ1) + S(λ2)

2

)N
2

with ψ ∈ �ν. (4.10)

Taking ψ = (ψ1, ψ2) ∈ �ν , and applying (2.8) to J +
ν , we obtain that

∫
RN

(
|∇ψ1(t)|2 + |∇ψ2(t)|2

)
dx − λ1

∫
RN

ψ2
1 (t)

|x|2 dx − λ2

∫
RN

ψ2
2 (t)

|x|2 dx (4.11)

=
∫
RN

(
(ψ+

1 (t))2∗ + (ψ+
2 (t))2∗)

dx + 3ν

∫
RN

h(x)(ψ+
1 (t))2ψ2(t) dx,

and, by (2.14) applied to J +
ν ,

J +
ν (ψ(t)) = 1

N

⎛
⎜⎝ ∫

RN

(ψ+
1 (t))2∗ + (ψ+

2 (t))2∗
dx

⎞
⎟⎠+ ν

2

∫
RN

h(x) (ψ+
1 (t))2 ψ2(t) dx. (4.12)

Let us define σ(t) = (σ1(t), σ2(t)) where σi(t) =
∫
RN

(ψ+
i (t))2∗

dx for i = 1, 2 and let us assume 

that σi(t) � 2S N
2 (λ1) for t ∈ [0, 1] and i = 1, 2 since, on the contrary, (4.10) is done.
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By using the definition of S(λ), we can pass from (4.11) to the inequality

S(λ1)(σ1(t))
N−2
N + S(λ2)(σ2(t))

N−2
N �

∫
RN

(
|∇ψ1(t)|2 + |∇ψ2(t)|2

)
dx

− λ1

∫
RN

ψ2
1 (t)

|x|2 dx − λ2

∫
RN

ψ2
2 (t)

|x|2 dx

= σ1(t) + σ2(t) + 3ν

∫
RN

h(x)(ψ+
1 (t))2ψ2(t) dx.

(4.13)

Moreover, by Hölder’s inequality,

∫
RN

h(x)(ψ+
1 (t))2(ψ2(t)) dx � ν‖h‖L∞(RN)(σ1(t))

N−2
N (σ2(t))

N−2
2N , (4.14)

and by the definition of ψ ,

σ(0) =
⎛
⎜⎝ ∫

RN

(z
λ1
1 )2∗

dx,0

⎞
⎟⎠ and σ(1) =

⎛
⎜⎝0,

∫
RN

(z
λ2
1 )2∗

dx

⎞
⎟⎠ .

Since σ is continuous, there exists t̃ ∈ (0, 1) with σ1(t̃) = σ̃ = σ2(t̃). Combining (4.13) with 
t = t̃ and (4.14),

(S(λ1) + S(λ2))σ̃
N−2
N � 2σ̃ + 3νσ̃

3
2

N−2
N .

On the other hand, by Lemma 2.4, there exists ν̃ depending on ε such that

σ̃ � (1 − ε)

(S(λ1) + S(λ2)

2

)N
2

for every 0 < ν � ν̃. (4.15)

Then, by (4.12) and (4.15), one has

max
t∈[0,1]J

+
ν (ψ(t)) � σ1(t) + σ2(t)

N
� 2(1 − ε)

N

(S(λ1) + S(λ2)

2

)N
2

,

proving the claim (4.10). In addition, because of (4.9) and (4.10), we get

cMP >
(1 + ε)

N
S N

2 (λ1) = (1 + ε)J +
ν (z

λ1
1 ,0). (4.16)

Consequently, the energy functional J+ has a Mountain-Pass geometry on Nν .
ν
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Now we address the second step. To do so, let us consider

ψ(t) = (ψ1(t),ψ2(t)) =
(
(1 − t)1/2z

λ1
1 , t1/2z

λ2
1

)
for t ∈ [0,1].

Because of the properties of the Nehari manifold N+
ν , we can deduce the existence of a positive 

function γ : [0, 1] → (0, +∞) with the γψ ∈ N+
ν for t ∈ [0, 1]. We point out that γ (0) = γ (1) =

1. As above, let us define the integral vector

σ(t) = (σ1(t), σ2(t)) =
⎛
⎜⎝ ∫

RN

(γψ1(t))
2∗

dx,

∫
RN

(γψ2(t))
2∗

dx

⎞
⎟⎠ .

Since zλ1
1 ∈ N1 and zλ1

2 ∈ N2, introduced in (2.16), it holds

σ1(0) = ‖zλ1
1 ‖2

λ1
=
∫
RN

(z
λ1
1 )2∗ = S(λ1), and σ2(1) = ‖zλ2

1 ‖2
λ2

=
∫
RN

(z
λ2
1 )2∗ = S(λ2).

Since γψ(t) ∈N+
ν and (2.10), one has that

∥∥∥((1 − t)1/2z
λ1
1 , t1/2z

λ2
1

)∥∥∥2

D
=γ 2∗−2(t)

(
(1 − t)2∗/2σ1(0) + t2∗/2σ2(1)

)

+ 3νγ (t)(1 − t)t1/2
∫
RN

h(x)(z
λ1
1 )2z

λ2
1 dx.

By the expression above, we can get an upper bound for the function γ as follows,

γ 2∗−2(t) <
||(ψ1(t),ψ2(t))||2D∫

RN (ψ1(t))2∗ + (ψ2(t))2∗
dx

= (1 − t)σ1(0) + tσ2(1)

(1 − t)2∗/2σ1(0) + t2∗/2σ2(1)
, (4.17)

for every t ∈ (0, 1). By the definition of γ , (4.17) and (2.14), one gets

J +
ν (γψ(t)) = 1

6
‖γψ(t)‖2

D + 6 − N

6N
γ 2∗

(t)

⎛
⎜⎝ ∫

RN

(ψ1(t))
2∗ + (ψ2(t))

2∗
dx

⎞
⎟⎠

= γ 2(t)

6
[(1 − t)σ1(0) + tσ2(1)] + 6 − N

6N
γ 2∗

(t)
[
(1 − t)2∗/2σ1(0) + t2∗/2σ2(1)

]
(4.18)

<
γ 2(t)

N
[(1 − t)σ1(0) + tσ2(1)] .

From (4.17), we have that
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γ 2(t) <

[
(1 − t)σ1(0) + tσ2(1)

(1 − t)2∗/2σ1(0) + t2∗/2σ2(1)

]N−2
2

,

so that, because of (4.18), for 0 < t < 1 we have

J +
ν (γψ(t)) <

(1 − t)σ1(0) + tσ2(1)

N

[
(1 − t)σ1(0) + tσ2(1)

(1 − t)2∗/2σ1(0) + t2∗/2σ2(1)

]N−2
2 = g(t).

Note that g(t) attains its maximum at t = 1
2 and

g

(
1

2

)
= σ1(0) + σ2(1)

N
= S N

2 (λ1) + S N
2 (λ2)

N
.

Hence, we have established an upper bound for the Mountain-pass level cMP . More precisely,

cMP � max
t∈[0,1]J

+
ν (γψ(t)) <

S N
2 (λ1) + S N

2 (λ2)

N
.

Finally, introducing the separability condition, by (4.8) and (4.16), then

S N
2 (λ2)

N
<

S N
2 (λ1)

N
< cMP <

1

N

(
S N

2 (λ1) + S N
2 (λ2)

)
< 3

S N
2 (λ2)

N

if λ2 > λ1. The previous inequality means that cMP satisfies the hypotheses of Lemma 3.6. Next, 
by the Mountain-Pass Theorem, there exists a sequence {(un, vn)} ⊂ N+

ν such that

J +(un, vn) → cν J +|N+
ν

(un, vn) → 0.

Moreover, by Lemma 3.6, (un, vn) → (ũ, ṽ). Indeed, (ũ, ṽ) is a critical point of Jν on Nν . 
Even more, ũ, ṽ � 0 in RN . Moreover, the ground state is actually strictly positive by applying 
maximum principle in RN \ {0}. We obtain the same conclusion for N = 6, using Lemma 3.7 for 
convergence of the PS sequence. �
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