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Summary 
 
 
 
In a realistic decision-making process, there are often multiple subjects in a problem. Each subject can include 

various criteria. In traditional decision-making, multiple experts usually tackle the problems; however, they are 

supposed to have all-inclusive competence in each subject. Moreover, human decisions are subjected to risk of 

cognitive imperfections. In other problems, rationality of decision-makers is vague in real life. Besides, the data 

of decision-making problems are associated with uncertainty. Therefore, for multidisciplinary decision-making 

problems, the most important challenges are: 

 Segmentation is needed for experts as they may not have competence in all subjects of problem.  

 Risk of imperfect decisions should be considered as rationality of experts is under question.  

  Uncertainty of decision-making problems should be tackled with robust approaches to avoid loss of 

uncertain information. 

We attempt to efficiently tackle the above difficulties, as follows:  

 Multi-person structures supervised by a director are considered for our methodologies. Subject-oriented 

expert segments structures are employed when multiple subjects exist in decision-making problem.  

 We use the concept of fuzzy rationality as a cognitive aid to represent the degree of rationality of expert 

decisions in risky situations. 

 New uncertain measures are introduced to reach complete uncertain computation and preserve all data. 

Therefore, the main objectives of this doctoral thesis are studying: (1) supervised multi-person structures 

with subject-oriented expert segments, (2) risk in uncertain environment, and (3) uncertainty to preserve all of 

data in decision-making problems with multiple criteria and alternatives. 

In this regard, three methodologies are proposed, as follows: 

 An interval supervised multi-person multi-criteria decision-making methodology is presented. This 

methodology is without subject-oriented expert segments and has a non-risky decision-making process. 

The computation is based on interval distances of interval numbers and interval preference matrix.  

 A risky fuzzy supervised multi-person multi-criteria decision-making methodology is developed 

supported on fuzzy-rationality-based fuzzy prospect theory. This methodology is without subject-

oriented expert segments and formulated based on proposed fuzzy-rationality-based fuzzy prospect 

theory. The computation is based on fuzzy distances of trapezoidal fuzzy numbers and fuzzy distance 

matrix for extremum and ranking. 
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 A dynamic interval supervised multi-person multi-criteria decision-making methodology with subject-

oriented expert segments is introduced. This methodology includes the proposed Subject-oriented 

Expert Segments and has a non-risky decision-making process. The parametric representation is 

employed for interval preference in interval optimization model. 

The aforementioned methodologies are derived by introducing the following decision-making models: 

 BWM-based models for weighting process. 

 MULTIMOORA-based models for ranking process. 

We use the aforementioned methodologies and models to tackle engineering problems in the area of industrial, 

biomedical, and energy sectors. 

 

 

 

 

Resumen 
 
 
 
En un proceso de toma de decisiones realista, a menudo hay múltiples temas en un problema. Cada tema puede 

involucrar diferentes criterios. En la toma de decisiones tradicional, se dispone de múltiples expertos que suelen 

abordar los problemas; sin embargo, se parte del supuesto de que tienen competencias omnicomprensivas en 

cada tema. Además, las decisiones humanas  están sujetas al riesgo de imperfecciones cognitivas. En otras 

palabras, la racionalidad de los decisores es imprecisa en la vida real. Asimismo, los datos de los problemas de 

toma de decisiones están asociados a la incertidumbre. Por lo tanto, para los problemas de toma de decisiones 

multidisciplinares, los retos importantes más destacados son:  

 Se requiere de una segmentación de los expertos, ya que pueden no tener competencia en todos los 

temas del problema.   

 Hay que tener en cuenta el riesgo de decisiones imperfectas, ya que se cuestiona la racionalidad de los 

expertos.   

 La incertidumbre de los problemas de toma de decisiones debe abordarse con enfoques sólidos para 

evitar la pérdida de información incierta.  

Intentamos abordar eficazmente las dificultades anteriores de la siguiente manera: 

 Para nuestras metodologías se consideran estructuras multipersonales supervisadas por un director. Se 

emplean estructuras de segmentos expertos orientadas a sujetos cuando existen múltiples sujetos en el 

problema de toma de decisiones.   
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 Utilizamos el concepto de racionalidad difusa como ayuda cognitiva para representar el grado de 

racionalidad de las decisiones de los expertos en situaciones de riesgo.  

 Se introducen nuevas medidas de incertidumbre para alcanzar un cálculo incierto completo y preservar  

todos los datos.  

Por lo tanto, los principales objetivos de esta tesis doctoral son estudiar: (1) las estructuras supervisadas  

multipersona con segmentos de expertos orientados por temas, (2) el riesgo en un entorno incierto, y (3) la  

incertidumbre para preservar todos los datos en problemas de toma de decisiones con múltiples criterios y  

alternativas.  

A este respecto, se proponen las tres metodologías siguientes:  

 Se presenta una metodología de toma de decisiones multicriterio multipersona supervisada por  

intervalos. Esta metodología carece de segmentos de expertos orientados por temas y dispone de un 

proceso  de toma de decisiones no arriesgado. El cálculo se basa en distancias de intervalo de números 

de intervalo y matriz de preferencias de intervalo.   

 Se desarrolla una metodología de toma de decisiones multicriterio multipersona supervisada de riesgo 

difuso basada en la Teoría de la Perspectiva Difusa basada en la Racionalidad Difusa. Esta  metodología 

carece de segmentos de expertos orientados por temas y se formula a partir de la Teoría  difusa de las 

perspectivas basada en la racionalidad difusa propuesta. El cálculo se basa en distancias difusas de 

números trapezoidales difusos y matrices de distancias difusas para el extremo y la clasificación. 

 Se introduce una metodología dinámica de toma de decisiones multicriterio supervisada por intervalos 

con segmentos expertos orientados a temas. Esta metodología incluye los segmentos expertos 

orientados a temas propuestos y tiene un proceso de toma de decisiones no arriesgado. La representación 

paramétrica se emplea para la preferencia de intervalo en el modelo de optimización de intervalo.  

Las metodologías mencionadas se derivan introduciendo los siguientes modelos de toma de decisiones: 

 Modelos basados en BWM para el proceso de ponderación.  

 Modelos basados en MULTIMOORA para el proceso de clasificación.  

Utilizamos las metodologías y modelos mencionados para abordar problemas de ingeniería en el ámbito de los 

sectores industrial, biomédico y energético.



 

 

 
 
 
 

Introduction 
 
 
 
In this section, we present the context of Supervised Multi-person Multi-criteria Decision-Making (S-MpMcDM) 

considering risk and various concepts of uncertainty, motivation and hypothesis, objectives, methodologies and models, 

and structure of the thesis. 

Context 
The context of Supervised Multi-person Multi-criteria Decision-Making (S-MpMcDM) under risk and uncertainty deals 

with the significance of supervision of multiple experts and the impact of various theories of vagueness in decision-making 

area. In such problems, multiple experts supervised by a director are responsible for evaluating alternatives according to 

multiple criteria in a vague situation subjected to risk and uncetainty. The ideas of “supervised multi-person structures”, 

“risk”, and “uncertainty” in S-MpMcDM and its engineering applications are clarified as follows.  

In real-life, many socio-economic and industrial companies deal with multidisciplinary S-MpMcDM problems. In this 

regard, multiple groups of experts with special competence in each subject are often required [1]. Such decision-making 

process can be reinforced by the supervision of a director. The director can have multiple roles to evaluate competence of 

experts and also participates in assessment of criteria and alternatives of the problem [2]. 

In the models of S-MpMcDM, the term of risk can be utilized and interpreted differently. In some cases, risk may be 

the indicator of the degree of optimism about the information available in the problem. Additionally, risk can be interpreted 

as the intensity and probability of unfavorable effects in other cases [3]. The uncertain conditions can incur risk to the 

problem. Risk can also be interpreted as vagueness of rationality of decision-makers [4]. 

In many practical S-MpMcDM problems, the available data are associated with some degrees of vagueness [5], [6]. 

In this regard, different kinds of uncertain sets are applied to tackle the vagueness of data, including interval numbers, 

fuzzy sets, and their extensions [7]. 

In industrial, biomedical, and energy applications of S-MpMcDM, supervised multi-person structure can result in 

robust decision-making process. Moreover, in many practical engineering problems, the input data are reported as uncertain 

values which may also entail some risks [8]. 

Contexto 

El contexto de la Toma de Decisiones Multicriterio Supervisada por Múltiples Personas (S-MpMcDM) bajo riesgo e 

incertidumbre aborda la importancia de la supervisión de múltiples expertos y el impacto de diversas teorías de vaguedad 

en el ámbito de la toma de decisiones. En este tipo de problemas, múltiples expertos supervisados por un director se 

encargan de evaluar alternativas según múltiples criterios en una situación de vaguedad sometida a riesgo e incertidumbre. 

Las ideas de "estructuras multipersonales supervisadas", "riesgo" e "incertidumbre" en el proceso S-MpMcDM se aclaran 

como sigue.  
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En la vida real, muchas empresas socioeconómicas e industriales se enfrentan a problemas multidisciplinares de S-

MpMcDM. En este sentido, a menudo se requieren múltiples grupos de expertos con competencias especiales en cada 

materia [1]. Este proceso de toma de decisiones puede verse reforzado por la supervisión de un director. El director puede 

desempeñar múltiples funciones para evaluar la competencia de los expertos y también participa en la evaluación de 

criterios y alternativas del problema [2]. 

En los modelos para abordar el S-MpMcDM, el término de riesgo puede utilizarse e interpretarse de forma diferente. 

En algunos casos, el riesgo puede ser el indicador del grado de optimismo sobre la información disponible en el problema. 

Además, en otros casos, el riesgo puede interpretarse como la intensidad y probabilidad de efectos desfavorables [3]. Las 

condiciones de incertidumbre pueden suponer un riesgo para el problema. El riesgo también puede interpretarse como la 

vaguedad de la racionalidad de los decisores [4]. 

En muchos problemas prácticos de S-MpMcDM, los datos disponibles están asociados con algunos grados de 

vaguedad [5], [6]. En este sentido, se aplican diferentes tipos de conjuntos inciertos para abordar la vaguedad de los datos, 

incluidos los números de intervalo, los conjuntos difusos y sus extensiones [7]. 

En las aplicaciones industriales, biomédicas y energéticas de S-MpMcDM, la estructura multipersonal supervisada 

puede dar lugar a un proceso de toma de decisiones robusto. Además, en muchos problemas prácticos de ingeniería, los 

datos de entrada se presentan como valores inciertos que también pueden conllevar algunos riesgos [8]. 

Motivation and hypothesis 

Although many researches have been conducted on S-MpMcDM under risk and uncertainty, serious research gaps still 

exist in this regard, as follows: 

 Supervision analysis in S-MpMcDM: In traditional S-MpMcDM, decision-making with multi-person structure 

is analyzed in very limited studies [2]. Director can also participate in downstream decisions of the problem. If 

there exist multiple subjects in decision-making problem, experts can be segmented based on their competence in 

the subjects. Director may additionally evaluate the relative significance of the problem subjects.  

 Risk analysis in S-MpMcDM: The concept of risk factors are usually presented as independent criteria in the 

context of MpMcDM methods [9]; however, there are a few studies that include risk factors directly into the 

formulation [10]. As rationality of human decisions is imperfect in real-life, considering the risk of the degrees of 

rationality is an interesting topic in the S-MpMcDM context. In some real cases, decisions are subject to the risks 

posed from the lack of or limited knowledge of problem conditions. 

 Uncertainty analysis in S-MpMcDM: There are many studies in the field of uncertain decision-making problems 

with multiple person structure; however, some research gaps still exist in this regard. For considering uncertainty, 

the thesis focuses on interval numbers and fuzzy sets for suggesting new developments. Interval S-MpMcDM 

approaches have got rather lower attention comparing the fuzzy methods despite their privileges especially in 

practical industrial application [11]. Research gaps exist regarding complete uncertain computation based on 

interval and fuzzy data. 

This study attempts to plug the aforementioned research gaps, as follows:  

 Supervision analysis in S-MpMcDM: We employ two supervised multi-person structures for S-MpMcDM 

process. The first structure consists of one director and multiple experts. For the second structure, multiple experts 

are segmented based on problem subjects. That is, the second structure comprises one director and multiple expert 
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segments. For the second structure, we coin the expression “Subject-oriented Expert Segments (SoESs)” and 

introduce it into the S-MpMcDM context. The SoESs structure is a multi-person decision-making framework in 

which experts are segmented based on their competence in problem subjects. 

 Risk analysis in S-MpMcDM: We introduce the “Fuzzy-Rationality-based Fuzzy Prospect (FRFP)” theory to 

evaluate the risk of experts decisions. We use the concept of fuzzy rationality as an cognitive aid to represent the 

degree of rationality of expert decisions in risky S-MpMcDM. That is, fuzzy rationality is used to indicate risk of 

expert decision in realistic problems.  

 Uncertainty analysis in S-MpMcDM: We tackle uncertainty for S-MpMcDM based on theories of interval and 

trapezoidal fuzzy numbers. In the theory of interval numbers, we propose interval distance and interval preference 

matrix to make pairwise comparison and obtain extremum and ranking, respectively. In the theory of trapezoidal 

fuzzy numbers, we develop fuzzy distance to make pairwise comparison. To compute extremum and ranking of 

trapezoidal fuzzy numbers, we first calculate α-cuts to reach the corresponding interval numbers and then employ 

the proposed interval preference matrix. 

Objectives 
The main objectives of this thesis is to develop Supervised Multi-person Multi-criteria Decision-Making (S-

MpMcDM) methodologies under risk and uncertainty. Besides, the related studies in the literature are reviewed 

comprehensively and the proposed methodologies are utilized in practical engineering problems.  

We present the objectives of this thesis, as follows: 

 Objective 1: Overview of the MpMcDM methodologies with specific interest in uncertainty, risk, and their 

applications. 

 Objective 2: Study of “supervised multi-person structures” in S-MpMcDM process with subject-oriented expert 

segments. 

 Objective 3: Study of “risk” in S-MpMcDM process based on the prospect theory in uncertain environment. 

 Objective 4: Study of “uncertainty” in S-MpMcDM process based on the theories of interval and fuzzy numbers. 

 Objective 5: Analysis of engineering applications of S-MpMcDM problems in industrial, biomedical, and energy 

sectors. 

Methodologies and models 
As it is aforementioned in Objectives Section, the focus of theory of this thesis is on the study of “supervised multi-person 

structures”, “risk”, and “uncertainty” in S-MpMcDM process. In this regard, three methodologies are proposed, as follows: 

 Methodology 1: We present the “Interval Supervised Multi-person Multi-criteria Decision-Making (I_S-

MpMcDM)” methodology. This methodology is without subject-oriented expert segments and has a non-risky 

decision-making process. The computation is based on interval distances of interval numbers and interval 

preference matrix.  

 Methodology 2: We develop the “Risky Fuzzy Supervised Multi-person Multi-criteria Decision-Making 

methodology supported on Fuzzy-Rationality-based Fuzzy Prospect Theory (RF_S-MpMcDM_FRFP)”. This 

methodology is without subject-oriented expert segments and formulated based on “Proposed Fuzzy-Rationality-
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based Fuzzy Prospect Theory (FRFP)”. The computation is based on fuzzy distances of trapezoidal fuzzy numbers 

and and fuzzy distance matrix for extremum and ranking. 

 Methodology 3: We introduce the “Dynamic Interval Supervised Multi-person Multi-criteria Decision-Making 

methodology with Subject-oriented Expert Segments (DI_S-MpMcDM_SoESs)”. This methodology includes the 

proposed “Subject-oriented Expert Segments (SoESs)” and has a non-risky decision-making process. The 

parametric representation is employed for interval preference in interval optimization model. 

The abovementioned methodologies will be explained and clarified with details in Methodologies Section. The proposed 

methodologies are derived by introducing the following decision-making models: 

1) BWM-based models for weighting process: We derive models based on Best-Worst Method (BWM) to compute 

weights needed for the proposed methodologies. For the I_S-MpMcDM methodology, two interval BWM-based 

model is generated to weight experts and criteria. For the RF_S-MpMcDM_FRFP methodology, two risky fuzzy 

BWM-based model supported on the FRFP theory is generated to weight experts and criteria. For the DI_S-

MpMcDM_SoESs methodology, three interval BWM-based models supported on the SoESs structure are 

generated to calculate dynamic weights of subjects, experts, and alternatives.  

2) MULTIMOORA-based models for ranking process: We develop models based on Multi-Objective Optimization 

by Ratio Analysis plus the full MULTIplicative form (MULTIMOORA) to calculate ranking of alternatives in the 

eventual step of the proposed methodologies. The obtained weights in the BWM-models are used in derivation of 

the MULTIMOORA-based models. For the I_S-MpMcDM methodology, the final rankings of alternatives are 

obtained utilizing the interval MULTIMOORA-Borda model. For the RF_S-MpMcDM_FRFP methodology, 

subordinate rankings are generated based on the fuzzy MULTIMOORA model and the final ranking is obtained 

employing the fuzzy distance matrix. For the DI_S-MpMcDM_SoESs methodology, the dynamic assessment 

values of alternatives are aggregated based on the interval MULTIMOORA-Borda model. 

Structure of the thesis 
The remainder of this thesis is arranged into six chapters as follows: 

 Chapter I gives preliminaries on MpMcDM, uncertainty, and risk. 

 Chapter II is allocated to the overview on MULTIMOORA for risky uncertain MpMcDM and its applications. 

 Chapter III presents the I_S-MpMcDM methodology and its industrial application. 

 Chapter IV discusses the RF_S-MpMcDM_FRFP methodology and its biomedical application. 

 Chapter V presents the DI_S-MpMcDM_SoESs methodology and its energy application. 

 Chapter VI gives the concluding remarks, research papers published regarding the overview and methodologies, 

as well as the directions for future works. 



 

 

 
 
 
 
 
 
 

Chapter I 
 

I. Preliminaries on MpMcDM, uncertainty, 
and risk 
 
 
 
In this chapter, we present the preliminaries required for derivation of methodologies. Sections 1, 3, and 2 give 

fundamentals on MpMcDM, uncertainty, and risk, respectively. 

1. MpMcDM methods 
We discuss two important decision-making methods in the context of  MpMcDM methods, MULTIMOORA and BWM in 

Sections 1.1 and 1.2, respectively. 

1.1.  MULTIMOORA method for MpMcDM 

MULTIMOORA is a robust decision-making approach employing three subordinate methods and a rank aggregation 

function. The subordinate techniques are Ratio System, Reference Point Approach, and Full Multiplicative Form. Ratio 

System and Full Multiplicative Form effectively solve problems with independent and dependent criteria, respectively. 

Reference Point Approach leads to a conservative ranking of alternatives [12]. 

Earlier studies have exploited the approach of MULTIMOORA in many MpMcDM problems. Wang et al. [13] put 

forward a trust model for preference of experts based on the multi-person MULTIMOORA. Zolfaghari and Mousavi [14] 

presented a risky multi-person MULTIMOORA extension employing failure mode and effect analysis. Deng et al. [15] 

introduced an optimization-based consensus model supported on the multi-person MULTIMOORA. 

A review of the researches on MULTIMOORA, including its developments and applications, has been conducted by 

Hafezalkotob et al. [16]. 

1.2.  BWM for MpMcDM 

BWM is an important decision-making technique for obtaining relative preferences of decision items as: (i) it needs less 

number of comparisons in contrast to Analytic Hierarchy Process (AHP); (ii) BWM has higher consistency than AHP; (iii) 

consistency of BWM also represents the confidence level; and (iv) BWM is straightforward for decision-makers from the 

viewpoint of mathematical computation [17]. 

Many researchers developed MpMcDM approaches based on the BWM. Hafezalkotob et al. [18] suggested a multi-

person BWM model in which a director supervises an expert panel. Yazdi et al. [19] developed a risky multi-person BWM 
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approach with a democratic-autocratic decision-making style. Omrani et al. [20] employed the concept of data envelopment 

analysis for a multi-person BWM approach. 

A review of the studies on BWM comprising its extensions and applications has been presented by Mi et al. [17]. 

2. Uncertainty theories 

We dicuss the important theories and our novelties related to interval numbers nand trapezoidal fuzzy numbers in Sections 

2.1 and 2.2, respectively. 

 
2.1.  Interval numbers 

Mathematical theories of interval numbers are given in this section including basic definitions, interval distance, and 

preference matrix used for extremum and rankings. 

 Basic definitions of interval numbers 

The midpoint of A  is defined as [21]: 

 
2

L U
M A A

pm A A


    (I.1) 

For two non-negative real interval numbers ,L UA A A     and ,L UB B B     and a non-negative real number ,r  the 

following arithmetic operations were defined [22]: 

   

, , ,

,

, , with  and 0

, , ,

L L U U L U U L

L L U U

L U U L L U

r rL U r L U

A A B A B A A B A B

A A B

r

A B

A A B A B B B

A rA rA A A

B

A

B

B

B

             
   
   

       

  (I.2) 

 Interval distance between two interval numbers 

The interval distance between interval numbers A  and B  was defined by Trindade et al. [21]: 

 
 
 

min ,

( , ) max , , if 

0, max , ,if

L U U L
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  (I.3) 

Eq. (I.3) has some shortcomings and thus Hafezalkotob and Hafezalkotob [23] improved it to the following form: 

 min , , ,if
( , )

0, , if

L U U L M M

M M

A B A B A B A B
d A B

A B A B


       
     

  (I.4) 

To show the differences between d  and ,d


 we present some numerical examples as listed in Table I.1. The general 

point which can be conceived from Table I.1 is that d

 leads to smaller interval distance comparing with d . Considering 

the second to fifth rows of Table I.1, it is obvious that d  may not be sensitive to the degrees of intersection and inclusion 

of two interval numbers. However, d

 changes with the degrees of intersection and inclusion. The last row of Table I.1 
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shows that the interval distance d  between two equal interval numbers is a given interval number; however, it may not be 

rational. In contrast to d , the interval distance  d

 between two equal interval numbers is exactly zero. 

Table I.1. The differences between the interval distance d  and d
. 

A  B   vs.A B  Relation ( , )d A B  ( , )d A B  

[1, 2] [3, 7] 
 B  A A B  Non-intersection [1, 6] [1, 3.5] 

[1, 4] [3, 7] 
 B  A A B

 Intersection [0, 6] [0, 2.5] 

[1, 6] [3, 7] 
 B  A A B  Intersection [0, 6] [0, 1.5] 

[3.5, 5.5] [3, 7]  BA  Inclusion [0, 3.5] [0, 0.5] 

[3.5, 6] [3, 7]  BA  Inclusion [0, 3.5] [0, 0.25] 

[3, 7] [3, 7]  BA  Equality [0, 4] 0 

 
 Preference matrix for finding the extremum and rankings of interval numbers 

The preference degree of ,L UA A A     over ,L UB B B     is defined as [24]: 

   max 0, max 0,
( )

U L L U

U L U L

A B A B
P A B

A A B B

  
 

  
  (I.5) 

The following properties hold [25]: 

 ( ) 1 ( )P B A P A B    . If BA  then ( ) ( ) 0.5P A B P B A    . 

 If ( ) ( )P A B P B A   , then A  is said to be superior to B  to the degree of ( )P A B , represented as 

( )P A B
A B


 ; If ( ) ( ) 0.5P A B P B A    , then A  is said to be indifferent to B , indicated as ~A B ; If 

( ) ( )P B A P A B   , then A  is said to be inferior to B  to the degree of ( )P B A , displayed as 
( )P B A

A B



. 

 If BA  and A B   , then ( ) 0P A B  . If BA  and A B   , then 0 ( ) 0.5P A B   . 

 If BA  and A B   , then ( ) 1P A B  . If BA  and ( )AP  , then 0.5 ( ) 1P A B   . 

To rank a set of interval numbers  , , ,A B N , a preference degree matrix is defined as Table I.2. 

Table I.2. Preference degree matrix. 
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In the next step, the relative preference P  is generated as: 

1, if  ( ) 0.5,
, , , ,

0, if  ( ) 0.5,

P
P A B N

P

 
 

 
 

   
   (I.6) 

Table I.3 shows the preference matrix for calculating extremum and ranking of interval numbers. 
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Table I.3. Preference matrix. 

Relative preferences  Aggregated preferences 
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N
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AAP
 

ABP
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BAP
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NBP
 


 NNP

 

 ( )AP N
 

The aggregated preference ( )AP   is the sum of the relative preferences P  in each row of Table I.3: 

( )
N

A

AP P





   (I.7) 

The maximum and minimum values of the set of interval values  , , ,A B N  as well as the descending and ascending 

rankings of each interval value are obtained as: 

 max , , , arg max ( )A B N AP


   (I.8) 

 min , , , arg min ( )A B N AP


   (I.9) 

  
  

( ) , , , , , [decendingorder]

( ), ( ), ( ), , ( ) ,[decendingorder]

dr r A B N

r AP AP A AP B AP N

 



 


  (I.10) 

  
  

( ) , , , , , [ascendingorder]

( ), ( ), ( ), , ( ) ,[ascendingorder]

ar r A B N

r AP AP A AP B AP N

 



 


  (I.11) 

2.2. Trapezoidal fuzzy numbers 

A trapezoidal fuzzy number is a prevalent form of representing fuzzy numbers [5]. Every fuzzy number is defined through 

a membership function. A trapezoidal fuzzy number 1 2 3 4( , , , )A A A A A  is defined by a membership function as introduced 

in Eq. (I.12): 

The important mathematical concepts of trapezoidal fuzzy numbers include (i) basic mathematics, (ii) distance 

measure, and (iii) extremum and rankings. The following points presents the three items: 

 Basic mathematics of trapezoidal fuzzy numbers 

A trapezoidal fuzzy number 1 2 3 4( , , , )A A A A A  is defuzzified based on the concept of centroid obtains as [26]: 

1

1
1 2

2 1

2 3

4
3 4

3 4

4

0, ,

, ,

( ) 1, ,
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0, .
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x A
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A x A

A A

x A x A
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The arithmetic operations for two positive trapezoidal fuzzy numbers 1 2 3 4( , , , )A A A A A and 1 2 3 4( , , , )B B B B B  as 

well as a positive real number are [26]: 

 Distance measures of trapezoidal fuzzy numbers 

Based on the vertex method, the traditional crisp distance between positive trapezoidal fuzzy numbers is represented as 

follows [26]: 

Interval distance measure for two positive trapezoidal fuzzy numbers is defined as [27]: 

where L
INd and U

INd  are the lower and upper bounds given in Appendix in the supplementary file. INd is computed based 

on -cut with a weighting factor for different values of . L
INd is obtained by assigning more weight to the intervals with 

higher values of , while U
INd indicates the equal weights for the intervals at various levels of .  

In the literature of fuzzy computation, different types of distance measures of trapezoidal fuzzy numbers exist, but the 

introduced distances are crisp or parametric (e.g., based on -cut )[27]–[29]. In contrast, we propose a novel fuzzy distance 

measure of positive trapezoidal fuzzy numbers as defined in Eq. (I.17): 

( , )d A B    is also a trapezoidal fuzzy number where 1 min ,   2 1min \ ,   3 max ,   4 3max \ ,   and 

  5 1 2min \ ,    (operator “\” denotes the extraction of its right side term from set ). Set  is defined as follows: 

where 0z  and efz are defined as: 

In Table I.4, we have compared the results of the proposed distance measure of trapezoidal fuzzy numbers with those 

of two measures previously introduced in the literature by providing some numerical examples. Four relative conditions of 

trapezoidal fuzzy numbers, i.e., Non-Intersection, Partly-Intersection, Fully-Intersection (Inclusion Mode), and Fully-

4 3 1 2
1 2 3 4

4 3 1 2

1

3 ( ) ( )

A A A A
A A A A A

A A A A
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(I.14)

       2 2 2 2

CR 1 1 2 2 3 3 4 4

1
( , ) 2 2

6
d A B A B A B A B A B         

 
. 

(I.15)

IN ( , ) ,L U
IN INd A B d d   

 
, (I.16)

 
  

1 2 3 4

1 2 5

( , ) , , , , for Non-Intersection or Partly-Intersection,

0, , , , for Fully-Intersection (Inclusion or Equality Modes) ,

d A B    
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Intersection (Equality Mode), are considered in Table I.4. CR ( , )d A B   and IN ( , )d A B  provide crisp and interval distances 

obtained based on Eqs. (I.15) and (I.16), respectively. In Table I.4, the two crisp and interval distance measures are followed 

by the proposed fuzzy distance (obtained based on Eq. (I.17)) and the last column shows the defuzzified values of the fuzzy 

distance. Table I.4 indicates that IN ( , )d A B  has a shortcoming in Equality Mode as it finds a value for the distance between 

a trapezoidal fuzzy number and itself. However, in Equality Mode, our measure, i.e., ( , )d A B   , obtains zero which is 

reasonable. The defuzzified values of the fuzzy distances are consistent with the values of the crisp distances (i.e., 

CR ( , )).d A B  This issue implies the validity of our proposed fuzzy distance measure. 

Table I.4. Comparison between the proposed fuzzy distance and other distance measures of trapezoidal fuzzy numbers. 

𝑨 𝑩 𝑨 𝐯𝐬.𝑩 Relation 𝒅𝐂𝐑 𝑨,𝑩 [26] 𝒅𝐈𝐍 𝑨,𝑩 [27] 𝒅 𝑨,𝑩   
(our proposed measure) 

Defuzzified value of 
𝒅 𝑨,𝑩    

(1, 2, 3, 4) (5, 6, 7, 8) B
A B

A    Non-Intersection  4 [4.08, 4.09] (1, 2, 6, 7) 4 

(1, 2, 3, 4) (3.5, 4.5, 5.5, 6.5) B
A B

A    Partly-
Intersection 

 2.5 [2.63, 2.64] (0.5, 0.5, 3.5, 4.5) 2.26 

(1, 2, 3, 4) (1.5, 2, 2.5, 3) BA  
Fully-Intersection 
(Inclusion Mode) 

 0.54 [0.69, 0.72] (0, 0, 1, 1) 0.5 

(1, 2, 3, 4) (1, 2, 3, 4) BA  
Fully-Intersection 
(Equality Mode) 

 0 [0.82, 0.85] (0, 0, 0, 0) 0 

 

 Extremum and rankings of trapezoidal fuzzy sets 

Several previous studies have presented some techniques for computing extremum and rankings of trapezoidal fuzzy 

numbers [27], [30]. In this paper, we use a preference matrix for pairwise comparison of trapezoidal fuzzy numbers. First, 

the trapezoidal fuzzy numbers are converted into interval numbers based on the α-cut (α =  0.5); then, the maximum and 

minimum values of the set of resultant intervals besides the descending and ascending rankings of the set are determined 

based on the preference matrix. For briefness, we avoid mentioning the details of the related computation which can be 

found in [18]. 

3. Risk theory based on prospect theory 

In this part, the principles of prospect theory are discussed, initially. Then, the proposed Fuzzy-Rationality-Based Prospect 

(FRFP) theory is described. 

3.1.  Principles of prospect theory 

Kahneman and Tversky [31] proposed the prospect theory. Daniel Kahneman won a “Nobel Memorial Prize in Economics” 

for his outstanding work concerning the development of prospect theory. Risky decision-making cannot be tackled by the 

expected utility theory; however, the prospect theory considers the risk of decisions to provide a more realistic modeling 

of human behaviors. In prospect theory, some pervasive effects of risky decisions are contemplated which are inconsistent 

with the expected utility theory. The main pervasive effects in prospect theory are the certainty and isolation effects. The 

certainty effect relates to the tendency of people to underestimate the probable outcomes compared to the certain ones. 

That is, the certainty effect matches the tendency of people to be risk-averse toward the selections with sure gains while to 

be risk-seeking as for the selections associated with sure losses. To streamline the selection process from a set of 

alternatives, people may neglect the components which the alternatives share while pay attention to the components that 

differentiate them. This tendency of people is entitled the isolation effect which may result in inconsistent preferences[31]. 
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In prospect theory, a value function denotes the gain or loss of a decision (relative to the reference point) represented 

as follows[4]: 

where x  represents the deviation of a decision from the reference point dependent on the subjective viewpoint of the 

decision-maker. x
and ( )x   are the terms for the gain or loss where   and   (0 , 1)    denote the concave 

and convex degree of the terms, respectively[32]. That is,   and   represent the sensitive degree of the decision-maker 

on gain or loss, respectively.  ( 1)   indicates the loss aversion degree of the decision-maker. In prospect theory, the 

utility of decision-makers on losses is considered to be higher than the utility on gains[33]. Based on the study of Kahneman 

and Tversky[31], the values 0.88    and 2.25   could show the real behavior of a decision-maker. 

Eq. (I.20) could be reformulated based on the distance to the reference points. Eq. (I.21) shows the distance-based 

formulation where x  is the decision as a positive value, and R
and R

stand for positive and negative reference points, 

respectively: 

Dai et al.[4] introduced a fuzzy prospect theory based on crisp distance of triangular fuzzy numbers. In a similar way, 

fuzzy prospect theory based on crisp distance of trapezoidal fuzzy numbers can be obtained as: 

where CRd  represents crisp distance of trapezoidal fuzzy numbers defined in Eq. (I.15).  

3.2.  Proposed Fuzzy-Rationality-Based Prospect (FRFP) theory 

In this section, we introduce the Fuzzy-Rationality-Based Prospect (FRFP) theory. The theory is based on the cognitive 

theory of decision-choice as illustrated in Fig. I.1. 

 
Fig. I.1. The relation of the proposed FRFP theory and the cognitive theory of decision-choice (the flowchart in the figure extracted 

form Ref. [34]). 
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For the problems based on the FRFP theory, a fuzzy form of the value function of prospect theory is needed. Some 

researchers introduced such fuzzy extensions of the value function of prospect theory[4],[35]. They have extended the 

traditional value function of prospect theory (i.e., Eq. (I.20)) into fuzzy representation or presented fuzzy form of the 

distance-based value function (i.e., Eq. (I.21)) supported on the crisp distance of fuzzy numbers. However, we suggest a 

novel derivation by developing the distance-based value function of the prospect theory (i.e., Eq. (I.21)) employing the 

proposed measure of fuzzy distance (i.e., Eq. (I.17)), as: 

where x  is the fuzzy decision of a decision-maker as a positive value and  ,  , and   are defined similar to Eq. (I.20). 

If we consider ,x R , and R as trapezoidal fuzzy values, the resultant value function would be also a trapezoidal fuzzy 

rating (the distance measure defined in Eq. (I.17) provides trapezoidal fuzzy outputs). 

 
 

, , ,
( )

, , ,

d x R x R
v x

d x R x R






 

 

    
   

   
 

   
 

(I.23)



 

 

 
 
 
 

Chapter II 
 

II. Overview on MULTIMOORA for risky 
uncertain MpMcDM and its applications 
  

 

MULTIMOORA is a useful multi-criteria decision-making technique. The output of the 

MULTIMOORA is a ranking obtained by aggregating the results of the ternary ranking methods: Ratio 

System, Reference Point Approach, and Full Multiplicative Form. In the literature of MULTIMOORA, 

there is not a comprehensive review study. In this chapter, we conduct an overview of MULTIMOORA 

by categorizing and analyzing main researches, theoretically and practically. 

First, we go through an theoretical survey of MULTIMOORA in terms of the subordinate ranking 

methods, and the robustness of the method. We analyze MpMcDM with MULTIMOORA. We 

scrutinize the developments of MULTIMOORA based on uncertainty theories. 

Practical problems of MULTIMOORA are discussed mainly sectors concerning industries and 

healthcare management.   
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1. Introduction 
MpMcDM methods tackle the problem of finding the best solution from a set of candidate alternatives in respect of multiple 

criteria. Often, there is no alternative which dominates the others on all criteria; thus, decision-makers usually look for the 

satisfactory solution [36]. The decision-making pproaches can be categorized into three groups: ① Value Measurement 

Methods, like SAW (Simple Additive Weighting) [37] and WASPAS (Weighted Aggregated Sum Product Assessment) 

[38]; ② Goal or Reference Level Models, such as TOPSIS (Technique for Order Performance by Similarity to Ideal 

Solution) [39] and VIKOR (VIse Kriterijumska Optimizacija kompromisno Resenje, in Serbian, Multiple Criteria 

Optimization Compromise Solution) [40]; and ③ Outranking Techniques, like PROMETHEE (Preference Ranking 

Organization METHod for Enrichment of Evaluations) [41], ELECTRE (ELimination Et Choix Traduisant la REalité, in 

French, ELimination and Choice Expressing the Reality) [42], ORESTE (Organísation, Rangement Et SynThèse de 

donnéEs relarionnelles, in French, Organization, Arrangement and Synthesis of Relational Data) [43], and GLDS (Gained 

and Lost Dominance Score) method [44]. 

In 2006, Brauers and Zavadskas [45] introduced MOORA (Multi-Objective Optimization on the basis of a Ratio 

Analysis) combining Ratio System and Reference Point Approach. In 2010, Brauers and Zavadskas [46] improved 

MOORA to MULTIMOORA (Multi-Objective Optimization on the basis of a Ratio Analysis plus the full MULTIplicative 

form) by adding Full Multiplicative Form and employing Dominance Theory to obtain a final integrative ranking based on 

the results of these triple subordinate methods. Ratio System and Full Multiplicative Form belong to the first group of 

decision-making approaches (i.e., Value Measurement Methods) while Reference Point Approach falls in the second 

group of decision-making approaches (i.e., Goal or Reference Level Models). 

As Ratio system employs arithmetic weighted aggregation operator, it is useful in applications like student selection 

in which “independent” criteria exist in the problem. Suppose, we compare two students based on their exam marks. As 

the exams are independent on each other, arithmetic operator works fine for the case. That is, it is not important that in 

which exams the student has better performance. Thus, the overall performance in all exams (which are independent) is 

significant. However, Ratio system has defects in the cases where “dependent” criteria appear in a decision-making 

problem. Suppose, we compare two investment companies based on their portfolios in different years. The performance of 

an investment company in each year is “dependent” on the other years, that is, investment in a particular year influences 

the status of the following years. For example, if the portfolio return in one year were very poor, in reality, this issue should 

affect the overall performance dramatically. Geometric operator could consider the dependency of performances of each 

year while arithmetic operator neglects the issue. In the cases where “dependent” criteria exist in decision-making 

problems, Full Multiplicative Form can be helpful as it applies geometric weighted aggregation operator. Reference Point 

Approach which utilizes Min-Max Metric is a “conservative” method useful for the cases where the optimal choice for 

decision-makers is the alternative that does not have a very bad performance on none of the criteria. 

To integrate the outcomes of the three subordinate parts, a variety of ranking aggregation techniques can be deployed. 

In this regard, the most common ranking aggregation tool in the literature of MULTIMOORA is Dominance Theory which 

is also the concept adopted in the original MULTIMOORA suggested by Brauers and Zavadskas [46]. Other ranking 

aggregation tools such as Dominance-Directed Graph, Rank Position Method, Technique of Precise Order Preference, 

Borda Rule, Improved Borda Rule, ORESTE Method, and Optimization Model have also been applied to generate the final 

ranking of the MULTIMOORA approach.  
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Only one survey study was previously conducted on MULTIMOORA, by Baležentis and Baležentis [36] in 2014. The 

work is limited to a few models regarding Group Decision-Making, Fuzzy Set Theory, and practical applications. In the 

current overview, we discuss MULTIMOORA models not only based on Group Decision-Making, Fuzzy Set Theory and 

applications, but also evaluate multiple theoretical features, various uncertainty theories, and applications in different fields 

besides provide bibliometric analysis, and identify significant theoretical and practical challenges. In this regard, this 

overview can be presented as the following itemized list: 

1) We highlight the features of MULTIMOORA by discussing the ternary subordinate utilities and clarifying 

the robustness of the decision-making method. Besides, we analyze multi-person decision-making structures, 

and the models used for combination. 

2) We present the developments of MULTIMOORA based on uncertainty theories including interval numbers, 

and fuzzy set theories as well as their combinations. The formulations of the significant uncertain extensions 

are also provided and all developments are evaluated statistically. 

3) We present the applications of MULTIMOORA in the sectors of industries and healthcare management. Also, 

the important applications are evaluated statistically.   

This overview is organized as follows. Section 2 focuses on Theory of MULTIMOORA method. We present 

applications of MULTIMOORA method in Section 3.  

2. Theory of MULTIMOORA method 

Fundamentals of MULTIMOORA, MpMcDM with MULTIMOORA, and its uncertain developments are discussed in 

Sections 2.1, 2.2, and 2.3, respectively. 

2.1.  Fundamentals of MULTIMOORA 

MULTIMOORA exploits the vector normalization technique for generating comparable ratings and three subordinate 

ranking methods entitled Ratio System, Reference Point Approach, and Full Multiplicative Form. Each of the three ranking 

methods has some privileges but suffers from shortcomings; thus, MULTIMOORA uses more than one approach. In this 

subsection, we make a description about these three subordinate ranking method to facilitate the understanding of the 

MULTIMOORA method. 

The first step in an decision-making problem is constructing a decision matrix and weight vector. Thus, for 

MULTIMOORA, decision matrix composed of the ratings ijx  of m  candidate alternatives of the problem with respect to 

n criteria is first constructed, as follows [47]: 

Because the ratings of alternatives on the multiple criteria of the problem may have different dimensions, the ratings 

should be normalized before utilization in a decision-making model. Different normalization schemes have been employed 

in MpMcDM methods [45], [48]. Liao et al. [49] made a comparison over different normalization schemes. Brauers et al. 
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[50] claimed that Van Delft and Nijkamp (i.e., Vector) Normalization is the most robust choice for application in 

MULTIMOORA. Vector Normalization is represented as follows [45]: 

Ratio System, as a fully compensatory model, is useful when “independent” criteria exist in the problem. For cases 

with the existence of “dependent” criteria, Full Multiplicative Form, as an incompletely-compensatory model, is a 

beneficial tool. Reference Point Approach, as a non-compensatory model, is a “conservative” method comparing Ratio 

System and Full Multiplicative Form. Ratio System and Full Multiplicative Form both provide the opportunity to 

compensate the poor performance of an alternative on one criterion by the performances on other criteria (the degree of 

compensation related to the two techniques is not equal); however, Reference Point Approach does not allow such an 

opportunity. As “dependent” and “independent” criteria may exist simultaneously in the problem and for the sake of having 

a “conservative” result, MULTIMOORA integrates the triple methods to exploit the advantages of each of them and reach 

a final outcome that is more robust than the individual results [51]. We discuss the derivation of the triple subordinate 

ranking methods besides the connection of the methods with other decision-making approaches, as follows: 

 Ratio System 

Ratio System which uses the arithmetic weighted aggregation operator is a fully compensatory model. It means that small 

normalized values of an alternative could be completely compensated by the same degree of large values. In other words, 

an alternative with poor performance in respect to some criteria and fine performance in respect to the remained criteria 

can be substituted by an alternative with moderate performance in respect to all criteria [52]. To compute the utility of 

Ratio System, the weighted normalized ratings are added for beneficial criteria and deducted for non-beneficial criteria as 

follows [53]: 

where g  is the number of beneficial criteria and ( )n g  is the number of non-beneficial criteria. The best alternative 

based on Ratio System has the maximum utility iy and the ranking of this method is obtained in descending order as: 

Ratio System, is inspired by SAW. In SAW, same as Ratio System, the utility is obtained by aggregation of the 

weighted normalized alternatives ratings; however, there is only one term for sum (i.e., no term exists for subtraction) 

because SAW’s normalization is based on a linear ratio. For beneficial criteria, each alternative rating is divided by the 

maximum value of ratings per criterion and for non-beneficial criteria, minimum value of ratings per criterion is divided 

by each alternative rating. The concept of Ratio System can be also found in other decision-making methods like WASPAS 

and (Multi-Objective Optimization by Simple Ratio Analysis) (MOOSRA). The first term of WASPAS utility is inspired 

by Ratio System. In MOOSRA, the beneficial sum is divided by the non-beneficial sum while in Ratio System, the non-

beneficial sum is subtracted from the beneficial sum. 

 2*

1
  m

ij ij iji
x x x

. 
(II.2)

* *

1 1  
  g n

i j ij j ijj j g
y w x w x

, 
(II.3) 

RS max min
 

  
 

 i ii ii i
y yA AR

. 
(II.4) 



 
 
 
 

30   II. Overview 
 
 

 

 Reference Point Approach 

In Reference Point Approach, the best alternative is the one that its worst value in respect of all criteria is not very bad 

[52]. This approach, as a non-compensatory model, first finds the alternatives ratings with the worst performance with 

respect to each criterion and finally selects the overall best value (i.e., the minimum value) from these worst ratings. 

Reference Point Approach is based on Tchebycheff Min-Max Metric [45]. Tchebycheff Min-Max Metric is originated from 

the general theory of Murkowski Metric which is the source of several decision analysis approaches in literature such as 

Goal Programming. To obtain the utility, first, Maximal Objective Reference Point (MORP) Vector is defined as [45]: 

The distance between the weighted value of each member of MORP Vector and the weighted alternative rating is obtained 

as [54]: 

The utility of Reference Point Approach is obtained by maximizing the distance introduced in Eq. (II.6) as follows [54]: 

The best alternative based on Reference Point Approach has the minimum utility iz  and the ranking of the approach is 

produced in ascending order as: 

In Reference Point Approach, the distance of each alternative rating from MORP Vector is obtained. There are other 

forms of Reference Point Vectors in the literature, including: 

 Utopian Objective Reference Point (UORP) Vector: In this vector, higher values are targeted not the maximum 

values, necessarily; 

 Aspiration Objective Reference Point (AORP) Vector: This vector tries to moderate aspirations as finding the 

maximum distance from the target values; that is, finding the alternatives with the worst performance. 

TOPSIS and VIKOR also fall into the group of “Goal or Reference Level Models”. Both of them are based on LP-

Metric. TOPSIS is supported on L2 while VIKOR is formulated on the basis of L1 and L∞. In TOPSIS, there exist two 

Reference Points, including the Positive-Ideal Solution (PIS) inspired by MORP and the Negative-Ideal Solution (NIS) 

inspired by AORP. In Classical Reference Point Approach, only MORP Vector is considered without paying attention to 

AORP Vector, but in Extended Reference Point Approach suggested by Eghbali-Zarch et al. [55], AORP Vector is also 

taken into account. Reference Point Approach sometimes cannot differ on two or more alternatives; that is, the approach 

leads to same rankings [56]. Thus, Reference Point Approach is often integrated with other decision-making tools to 

remedy the defect. 

 Full Multiplicative Form 

Full Multiplicative Form, which uses the geometric weighted aggregation operator, is an incompletely-compensatory 

model. In this technique, small normalized values of an alternative could not be completely compensated by the same 

degree of large values. Thus, the issue leads to the perception that an alternative with moderate performance may be 
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superior to an alternative which has both good and bad performances with respect to different criteria [52]. To obtain the 

utility of Full Multiplicative Form, the product of weighted normalized alternatives ratings on beneficial criteria are divided 

by the product of weighted normalized alternatives ratings on non-beneficial criteria [53]: 

In utility formula of Full Multiplicative Form, multiplying normalized ratings with weights leads to the same result as 

the situation in which no weights are considered. Thus, weights should be considered as exponent in utility equation of 

Full Multiplicative Form. The best alternative based on Full Multiplicative Form has the maximum utility iu and the 

ranking of this technique is generated in descending order as: 

The concept of Full Multiplicative Form can be observed in other decision-making techniques like WASPAS. That is, 

the second term of WASPAS utility index is similar to Full Multiplicative Form. However, WASPAS uses a linear ratio 

for normalization considering the maximum and minimum values of alternatives ratings. 

 Dominance Theory 

Dominance Theory was used in the original MULTIMOORA method. This theory is supported on some principles 

including Dominance (Absolute Dominance and Partial Dominance), Equality (Absolute Equality, Partial Equality, and 

Equality according to Circular Reasoning), and Transitiveness [51]. There are some drawbacks to utilizing Dominance 

Theory: ① obtaining ranks of alternatives is hard as the theory is not yet automated [6]; ② the theory only uses ordinal 

values by neglecting the relative importance of alternatives; and ③ circular reasoning happens in some cases which leads 

to identical ranks which is not satisfactory [52]. 

 Borda and Improved Borda Rules 

Borda Rule, also named Borda Count, is an easy but effective technique from the group of single-winner election methods 

in which the number of votes equals to the number of alternatives [57]. In this method, if there are t  alternatives, the first-

ranked alternative gets t votes and the second-ranked gets one vote less, and so on. The final score of Borda Rule is 

computed by the summation of the scores of the subordinate methods. The highest value of Borda Rule score shows the 

best alternative. 

Improved Borda Rule is based on Borda Count [58]; however, it integrates both cardinal and ordinal values (i.e., 

utilities and rankings, respectively) of each subordinate methods of MULTIMOORA. In this sense, the Improved Borda 

Rule is superior to Dominance Theory. To employ the Improved Borda Rule, first, the subordinate utilities are normalized 

based on Vector Normalization to produce ,iy ,iz and 

iu . The assessment value of Improved Borda Rule, i.e.,   ,iIMB A  

is obtained using the following equation [58]: 

   * *

1 1  
 j jw wg n
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where   ,ir y  ,ir z  and  ir u are the rankings of Ratio System, Reference Point approach, and Full Multiplicative Form, 

respectively. The best alternative based on Improved Borda Rule has the maximum value of  .iIMB A  

Remark: Dominance Theory is complicated due to pairwise comparisons and probable occurrence of circular reasoning. 

The case would be more confusing for decision-makers when the number of alternatives and criteria are large because 

Dominance Theory is based on manual comparison. Nevertheless, Improved Borda Rule neither needs any manual 

comparison, nor has special conditions. 

 Robustness of MULTIMOORA 

In Table II.1, the performance of MOORA which is a part of MULTIMOORA is compared with other decision-making 

methods. As we can find from Table II.1, MOORA is simple and reliable. Original MULTIMOORA combines MOORA 

with the full multiplicative form using the dominance theory. Brauers and Zavadskas [51] claimed that “use of two different 

methods of multi-objective optimization is more robust than the use of a single method; the use of three methods is more 

robust than the use of two, and so on;” thus, “MULTIMOORA is more robust than MOORA”. 

Table II.1. Performance of MOORA regarding other decision-making methods [51]. 

MCDM method Computational time Simplicity Mathematical calculations Stability Information type 
MOORA Very less Very simple Minimum Good Quantitative 
AHP Very less Very critical Maximum Poor Mixed 
TOPSIS Moderate Moderately critical Moderate Medium Quantitative 
VIKOR Less Simple Moderate Medium Quantitative 
ELECTRE High Moderately critical Moderate Medium Mixed 
PROMETHEE High Moderately critical Moderate Medium Mixed 

 

Generally, the advantages of MULTIMOORA include: ① simple mathematics, ② low computational time, ③ 

straightforwardness for decision-makers, ④ using three different methods for determining subordinate rankings, and ⑤ 

employing ranking aggregation tools for integrating the subordinate rankings. To clarify item ⑤, it is worthwhile to 

mention that many decision-making methods have only one utility function; however, MULTIMOORA produces an 

integrative outcome by combining three utility values employing a ranking aggregation tool. 

The three subordinate parts of MULTIMOORA are based on the fully compensatory, non-compensatory, and 

incompletely-compensatory models. As discussed in Subsections 2.2, each of the approaches may have some shortcomings, 

in practice. Therefore, integration of their outcomes would lead to a more robust final result comparing to the individual 

outcomes by curing the existing defects. 

 Graphical summary of MULTIMOORA theory 

The concepts used in Subsections 2.2 and 2.3 to derive the model of MULTIMOORA can be summarized into five phases 

as illustrated in Fig. II.1. Decision matrix and weight vector are constructed in Phase 1. The decision matrix is normalized 

in Phase 2. The utilities of subordinate parts of MULTIMOORA, i.e., Ratio System, Reference Point Approach, and Full 

Multiplicative Form, are computed in Phase 3. Rankings of subordinate methods are produced in Phase 4. Eventually, the 

subordinate rankings are combined into final outcomes of MULTIMOORA in Phase 5. 
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Fig. II.1. Flowchart of MULTIMOORA phases. 

 
2.2.  MpMcDM with MULTIMOORA method 

In real life, many significant decisions are made through a group of elites and experts rather than considering an individual 

decision-maker. In industries and factories, technical expert panel takes the crucial decisions on identifying plans and 

strategies, selecting staff, and exploiting available resources. In practical problems like legal systems, healthcare 

management, and social services, the significant decisions are usually made based on collective opinions of multiple 

advisors and experts. Sometimes, experts may have different fields and levels of expertise; therefore, in such cases, 

collective decisions are analyzed to handle the conflicts among various opinions [2]. 

Multiple-person decision-making can be done in cooperative or non-cooperative styles. Cooperative group decisions 

are significant in engineering, medical, and scientific fields while non-cooperative group decisions are common in 

economic and political areas. Even by considering cooperative group decisions, reaching a complete consensus among all 

members of the group on the eventual solution is nearly infeasible because decision-makers, who are supposed to have 

identical goals, may have some opinion conflicts, in practice [59]. 

Near a half of total studies on MULTIMOORA has a multiple-person decision-making structure, which shows the 

importance of multiple-person decision-making. In some studies on MULTIMOORA, multiple-person decision-making 

structure is employed to generate criteria weights and alternatives ratings on the criteria; however, in the others, multiple 

decision-makers only participate in criteria weighting procedure.  
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2.3.  Developments of MULTIMOORA method under risk and uncertainty 

 Uncertain developments based on interval number theory 

Interval number theory is a simple but applicable concept of considering vagueness in decision-making problems. Interval 

numbers can be defined as: ① an extension of a real number; ② a degenerate flat fuzzy number without membership 

function; and ③ an α-cut of a fuzzy number. INs are important in decision-making problems, because: ① INs require the 

minimum amount of data; ② decision-makers could easily present the range of available data as interval numbers; and ③ 

INs are very practical as many data in real problems are essentially reported in the form of ranges.  

There are four important MULTIMOORA extensions based on interval theory. Kracka et al. [60] proposed interval 

MULTIMOORA utilizing arithmetic of interval numbers (MOORE rule), the crisp distance of interval numbers, and 

comparison based on arithmetic average. Hafezalkotob and Hafezalkotob [11] suggested a new model of interval 

MULTIMOORA by using preference matrix without degeneration of interval numbers. Hafezalkotob and Hafezalkotob 

[23] presented interval target-based MULTIMOORA employing MOORE rule, interval distance of interval numbers, and 

the preference matrix. Hafezalkotob and Hafezalkotob [47] developed interval target-based MULTIMOORA by adding 

preference-based rankings of interval numbers. 

 Uncertain developments based on fuzzy set theory 

Fuzzy set theory, introduced by Zadeh [61] in 1965, is an important theory of uncertainty which models the vagueness or 

imprecision of the human cognitive process. A fuzzy set is generally introduced by a membership function that maps 

elements to degrees of membership in a certain interval [62]. The theory is very applicable in various fields such as decision 

making, artificial intelligence, expert systems, control theory, and neural networks. There are different types of fuzzy sets 

like interval-valued fuzzy number, intuitionistic fuzzy number, and interval type-2 fuzzy set [7]. 

As fuzzy theory is one of most important concepts of uncertainty, there are many extensions of MULTIMOORA based 

on this theory. Triangular fuzzy number is the simplest form of representing the fuzziness of data. Triangular fuzzy number 

with mathematical features such as Vertex method for crisp distance and centroid-based method for defuzzification has 

combined with MULTIMOORA in several studies [6], [55], [71]–[74], [63]–[70]. However, Tian et al. [62] employed 

graded mean integration as defuzzification technique to generate triangular fuzzy MULTIMOORA. Trapezoidal fuzzy 

number with concepts of Vertex method for crisp distance and centroid-based method for defuzzification is used for three 

developments [3], [5], [26]. Liu et al. [75] applied the integral of area for defuzzification to derive Trapezoidal Fuzzy 

MULTIMOORA. Stanujkic et al. [76] suggested interval-valued fuzzy MULTIMOORA based on the weighted averaging 

operator and the geometric averaging operator of interval-valued fuzzy numbers. Dorfesh et al.  [77] suggested Interval 

type-2 fuzzy MULTIMOORA. Generalized interval-valued fuzzy number is a basis for four developments [78]–[81]. In 

these studies, centroid-based method is used for crisp distance of Generalized interval-valued fuzzy numbers and 

defuzzification is also based on the crisp distance. Baležentis and Baležentis [82] introduced intuitionistic fuzzy 

MULTIMOORA based on the power ordered weighted average operator and the power ordered weighted geometric 

operator as well as Euclidean distance and expected values of interval-valued fuzzy numbers. Baležentis et al. [83] 

presented another version of intuitionistic fuzzy MULTIMOORA using negation operator, the power ordered weighted 

average operator, the power ordered weighted geometric operator, comparison rule, and crisp distance of interval-valued 

fuzzy numbers. Interval-valued intuitionistic fuzzy MULTIMOORA has been developed considering the weighted average 
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operator, the weighted geometric operator, and score function of interval-valued fuzzy numbers [84], [85]. Hesitant fuzzy 

set was exploited in three studies [86]–[88] for new developments.  

 
3. Application of MULTIMOORA method 

The applications of MULTIMOORA in the sector of Industries are divided into the following subsectors: Construction, 

Automotive, Agricultural, Mining, Entertainment, Logistics, Steel, Aviation, Beverage, Carpentry, Energy, Ship-Building, 

and Textile Industries, besides Manufacturing System. In Construction Industry subsector, there are several case studies 

related to Buildings Revitalization Appraisal [84], Project Management [77], [89], and Ranking Countries/Cities/Regions 

[90] besides the selection of Investment [84], Component [91], [92], Design  [60], [93], [94], Material [92], Supplier [95], 

and Technology [96]. In Automotive Industry subsector, there are multiple case studies related to Battery Recycling Mode 

Selection [97] and Location Planning [98] as well as the selection of Material [26], [53], Robot [99], Supplier [56], and 

Vehicle [57], [100], [101]. In Agricultural Industry subsector, the case studies include Farming Efficiency Estimation [68] 

and the selection of Crop [73], Machine [102], and Supplier [75]. In Mining Industry subsector, there exist four case studies 

related to Design Selection [76], [103], Mining Technique Selection [104], and Personnel Management [105]. In 

Entertainment Industry subsector, two case studies exist concerning Company/Industrial Group Selection [58] and Device 

Selection [106]. In Logistics Industry subsector, two case studies have considered the problems regarding Partner Selection 

[6] and Transportation Efficiency Evaluation [107]. In Manufacturing System subsector, the practical cases are Enterprise 

Resource Planning [108] and the selection of Design  [109], Machine [23], [80], and Material [11], [53]. In Steel Industry 

subsector, two researches exist in respect to Risk Evaluation [69], [85]. 

For other subsectors of Industries sector, there is only one case study. Dorfeshan et al. [77] evaluated a project 

management problem in the area aircraft component development planning. Çebi and Otay [74] tackled a supplier selection 

problem in a company operating in beverage industry. Stojić et al. [38] assessed selection process of supplier for a PVC 

carpentry manufacturing company. Hafezalkotob and Hafezalkotob [3] handled material selection process for the blades 

of industrial gas turbine. Qin and Liu [110] chose a suitable supplier for purchasing components of ship equipment. Brauers 

and Zavadskas [111] undertook a project management problem for Tunisian textile industry. 

The applications of MULTIMOORA in the sector of Medical/Healthcare Management are divided into the following 

subsectors: Medical Service, Biomedical Service, and Health-Care Management. In Medical Service subsector, there is 

one case study related to pharmacological selection of type 2 diabetes [55]. In Biomedical Service subsector, two studies 

has conducted on the selection process of biomaterials for hip and knee surgical prostheses [47], [54]. In Health-Care 

Management subsector, three case studies have handled Risk Evaluation and Waste Management. Liu et al. [5] used the 

concept of failure mode and effects analysis to prevent infant abduction from hospitals. Two researched analyzed the 

treatment technologies regarding health-care waste management in Shanghai, China [63], [112].  



 

 

 
 
 
Chapter III 
 

III. I_S-MpMcDM methodology: Industrial 
application 
 
 
 
In this chapter, we present the I_S-MpMcDM methodology. The methodology is based on interval 

numbers and modeled by the BWM-MULTIMOORA approach. The method with complete interval 

computation in which interval distance of interval numbers and preference matrix are used. In addition, 

we propose a multi-person interval best-worst method with interval preference degree. The multi-

person interval best-worst method has two levels of experts. 

We introduce the interval Borda rule as an aggregation function which does not have the defects 

of the dominance theory. We calculate objective interval weights of criteria based on interval entropy 

method, which are integrated by the subjective weights computed by the multi-person interval best-

worst method. 

The I_S-MpMcDM methodology is employed to tackle a real-world engineering selection 

problem of hybrid vehicle engine based on real data and opinions of engineering design experts of 

automotive industry of Iran. 
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1. Introduction 

In many practical decision-making problems, the available data are associated with some degrees of vagueness. In this  

regard, different kinds of uncertain sets are applied to tackle the vagueness of data in the context of MpMcDM, including 

fuzzy sets and interval  numbers and their extensions [7], [113]. Interval numbers are the simple form of embodying 

uncertainty in decision-making problems, which can be defined as: (1) an extension of a real number; (2) a degenerate flat 

fuzzy number without membership function; (3) an α-cut of a fuzzy number. The merits of interval numbers in MpMcDM 

problems can be denoted as [3]: (1) interval numbers need the minimum amount of data; (2) decision-maker can easily 

obtain the range of available data as interval numbers; (3) interval numbers can be very practical. In many real-life problems 

particularly industrial cases such as material selection [3] and structural systems selection [4], the input data is based on 

measurements reported as interval numbers. Many MpMcDM methods were extended using the theory of interval numbers 

such as ELECTRE [4], TOPSIS [115], and VIKOR [6]. 

The MULTIMOORA technique is a widely used MpMcDM method due to its simple mathematics, low computational 

time and straightforwardness for decision-makers [46]. It aggregates ranks obtained from three subordinate models, 

namely, the reference point model, the ratio model, and the full multiplicative model. The MULTIMOORA method has 

been developed based on various uncertainty theories, including interval numbers [3], fuzzy sets [8], interval-valued fuzzy 

numbers [9], double hierarchy hesitant fuzzy linguistic term set [117] and the probabilistic linguistic term set [58]. The 

method is utilized in some practical applications, including mining method selection [12], performance appraisal method 

assessment [13], and logistics service provider selection [6]. Hafezalkotob et al. [16] reviewed and discussed the important 

studies on the MULTIMOORA. 

Determining the weights of criteria is a critical step in MpMcDM problems [119]. For subjective weighting methods 

based on the judgments of decision-makers, the best-worst method (BWM) [15] which compares each criterion with the 

best and worst criteria is more effective than analytic hierarchy process (AHP) which makes pairwise comparisons. In the 

BWM, the weights of criteria are produced by solving a max-min problem. The method has been developed using 

uncertainty theories, including intuitionistic fuzzy sets [120], intuitionistic fuzzy multiplicative numbers [121], and Z-

numbers [122]. For objective weighting methods based on the decision matrix, Shannon entropy is a powerful tool to 

calculate weights according to the contrast of information [3]. Shannon entropy measures diversity of data in a decision 

matrix. There are some extensions of the entropy method based on interval and fuzzy numbers [3], [26]. The entropy-based 

weighting model has been integrated with the MULTIMOORA method in a few studies [26], [118]. 

The I_S-MpMcDM methodology is motivated by the interval target-based MULTIMOORA [47], the fuzzy BWM 

based on the combination of group and individual decisions [2] and the enhanced Borda rule [123]. To tackle some open 

problems detected in the literature analysis and compared with the three aforementioned studies, the main contributions of 

this work are discussed in the following five items: 

We suggest an interval MULTIMOORA with entire interval computation. That is, no degradation of interval data is 

performed in the proposed interval MULTIMOORA model. For this purpose, interval distances between interval numbers 

and preference matrix are used. Hafezalkotob and Hafezalkotob [47] also proposed the interval distances between interval 

numbers and preference matrix; however, they only introduced a special form of interval MULTIMOORA with target-

based criteria. In this chapter, we enhance the original MULTIMOORA [7], which is based on beneficial and non-beneficial 

criteria, by considering the multiple theories of interval numbers. 
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 We present a multi-person interval BWM. In Ref. [2], fuzzy triangular preference degree was considered in the 

multi-person fuzzy BWM model. By contrast, we use interval preference degree with a different multi-person 

decision-making structure. 

 We develop the interval Borda rule to integrate ranks. We propose an interval form of the enhanced Borda rule 

[123] to integrate the assessment values and ranks of subordinate parts of interval MULTIMOORA to a final 

assessment values. 

 We use interval entropy method to determine the objective weights of criteria. The interval objective weights are 

then integrated with the subjective weights obtained from the multi-person interval BWM. 

 We apply the proposed model in a practical case of selecting hybrid vehicle engines. In many engineering 

problems like this case study, the ratings of alternatives on their criteria are intrinsically given as interval numbers. 

Thus, the developed interval decision-making method can be utilized in such significant real-world engineering 

problems.  

The remainder of this chapter is arranged as follows. The derivation of the proposed methodology including the interval 

BWM, interval entropy, interval MULTIMOORA, and its subordinate parts are presented in Section 2. We present a real-

world industrial decision-making problem in Section 3.  

2. Theory of I_S-MpMcDM methodology 

The decision matrix with interval ratings ,L U
ij ij ijx x x    of alternatives iA , 1, ,i m  , on criteria jC , 1, ,j n  , can 

be represented as follows [124]: 

1

11 1 1 1
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  (III.1) 

The flowchart of the proposed methodology is illustrated in Fig. III.1: 

 

 
 

Fig. III.1. Flowchart of the I_S-MpMcDM methodology. 
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2.1.  BWM-based model for weighting process 

 Subjective weights: Multi-person interval best-worst-method-based weighting model 

Hafezalkotob and Hafezalkotob [2] suggested a group fuzzy BWM. They proposed that director evaluates both the 

expertise degrees of the panel members and the relative importance of criteria. We propose a group interval BWM. The 

decision-making structure of the proposed group interval BWM is different from the study of Hafezalkotob and 

Hafezalkotob [2]. The steps of group interval BWM are as follows: 

Step 1. Consider a “director” and expert panel  1 1Expert , Expert , , Expert , , Expertk t  . In the multi-person 

interval BWM, the director evaluates the relative importance of the members of the panel in interval numbers, and the 

expert panel determines the relative importance of the criteria  1 2, ,..., ,...,j nC C C C  in interval numbers as well (see Fig. 

III.2). 

Step 2. Determine the best and worst experts by the director. 

Step 3. Assess expertise degrees of the panel by the director: 

Step 3.1. Specify the interval preference degree ,L U
Bk Bk Bkp p p    of the best expert B  who has the highest expertise and 

knowledge over each expert k  in the panel. The interval best-to-others vector of the expertise degrees of the panel is: 

 1 2, , , .B B B BtP p p p   

 
Fig. III.2. Supervised multi-person structure in the I_S-MpMcDM methodology. 

 

Step 3.2. Specify the interval preference degree ,L U
kW kW kWp p p     of expert k  over the worst expert W  who has the 

lowest expertise and knowledge in the panel. The interval others-to-worst vector of the expertise degrees of the panel is: 

 1 2, , ,
T

W W W tWP p p p  . 

Step 3.3. Calculate the optimal weights vector  1 2, , , t      for the expert panel using the following min-max model: 
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s.t., 1, 0, for all
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  (III.2) 

Model (III.2) can be converted into a linear programming form as follows: 
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  (III.3) 

In Model (III.3), symbol 


 denotes ‘almost lesser than’ constraint and leads to some degree of “smaller” condition 

considering the interval numbers Bkp  and Wkp . Model (III.3) is equivalent to the following form based on the definition 

of absolute values of  B Bk kp   and k Wk Wp  : 
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  (III.4) 

According to the crisp equivalents of the interval constraints in Model (III.4), the model can be transformed into the 

following form: 
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  (III.5) 

where  (0 1)   denotes a possibility level which can be defined by the experts. Model (III.5) is linear; thus, solving 

the problem for any given possibility level   leads to a unique optimal weight vector  1 2, , , t     and a corresponding 

objective value .     denotes the consistency level of the interval preference relation. If 0    for all  , we have 

B j Bkp    and j W Bkp   , and correspondingly Bk kW BWp p p   for all k . Thus, the interval preference relation 

BP   and WP are fully consistent. 

Step 4. Multi-person decision-making process: Each expert specifies the best and worst criteria from his/her attitude, 

and the interval preference degree 
[ ] [ ], [ ],,k k L k U
Bj Bj Bjq q q    of the best attribute B  over each attribute j .  The interval best-to-

others vector of criteria determined by expert k is 
[ ] [ ] [ ] [ ]

1 2( , , , )k k k k
B B B BnQ q q q  . In analogous, each expert specifies the 
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interval preference degree 
[ ] [ ], [ ],,k k L k U
jW jW jWq q q  of each attribute j  over the worst attribute W and establishes the interval 

others-to-worst vector of criteria as  [ ] [ ] [ ] [ ]
1 2, , ,

Tk k k k
W W W nWQ q q q  . 

Step 5. Obtain the optimal weight vector of criteria  * * *
1 2, , , nw w w  by the following model: 

 [ ] [ ]
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1
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s.t., 1, 0, for all
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  (III.6) 

where k
  is the optimal weight of expert k obtained from Step 3.3. Model (III.6) can be converted to the following form: 
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  (III.7) 

Similar to Model (III.5), a crisp equivalent can be formulated for Model (III.7); however, we ignore the detail explanation 

here for briefness. The crisp equivalent of Model (III.7) has a linear form; thus, its solution leads to a unique optimal weight 

vector  * * *
1 2, , , nw w w  and the consistency levels  1 1, , , t      for any given possibility level . 0   means the 

full consistency of interval preference relations of the experts panel, i.e.,
[ ]k
BQ  and 

[ ].k
WQ  However, the interval preference 

relation may not be so precise to reach the full  consistency in practice.  In 
[ ]k
BQ  and 

[ ]k
WQ , small deviations from the full 

consistency situation lead to small positive value of  . Thus, the magnitude of  is a measure of the consistency level of 

group decisions. 

 Objective interval weights: Interval Shannon entropy weighting method 

The following steps can be considered to calculate objective interval weights based on Shannon entropy [125] from the 

interval ratings. 

Step 1. Normalize the interval rating ijx  to obtain the interval project outcome ,L U
ij ij ijp p p    based on linear 

normalization ratio: 

1 1

,
L U
ij ijL U

ij ijm m
U U
ij ij

i i

x x
p p

x x
 

 

 
  (III.8) 

Step 2. Obtain interval Shannon entropy measure ,L U
j j jE E E     based on the interval project outcomes: 
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where 0 1/ln( )E m . 

Step 3. Compute the interval diversification ,L U
j j j      , where 

1 , 1L U U L
j j j jE E       (III.10) 

Step 4. Specify the objective interval weight 
, ,,o o L o U

j j jw w w    , where 

, ,

1 1

,
L U
j jo L o U

j jn nU U
j jj j

w w
 

 
 

 
 

  (III.11) 

The higher Shannon entropy measure jE  of an attribute is, the smaller variation degree of interval ratings on attribute

j  will be, and the existent information on the attribute is less. Then its resultant objective interval weight o
jw  will be lower 

[3]. 

 Integrating interval weights of criteria 

The subjective weight jw  determined from Model (III.7) and the objective interval weight o
jw  determined from Eq. (III.11) 

can be combined to produce the integrated interval weight ,L U
j j js s s    , where 
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, ,
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2.2.  MULTIMOORA-based model for ranking process 

Interval ratings of alternative ijx are converted into normalized interval value 
, ,,L U

ij ij ijx x x      ; thus,  *,L
ijx and *,U

ijx  are 

within the range [0, 1]. Stanujkic et al. [126] introduced a robust normalization formula for 
, ,,L U

ij ij ijx x x      as: 
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 The interval ratio system 

Based on arithmetic operations of interval numbers given in Eq. (I.2), and by considering the integrated interval weight js  

determined by Eq. (III.13), the interval assessment value iy  is calculated as: 

1 1

g n

i j ij j ij
j j g

y s x s x 

  

     (III.14) 
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The best alternative I-RSA has the maximum value of iy  which can be found using Eq. (I.8): 

I-RS maxi ii
yA A  

  
 

  (III.15) 

 The interval reference point approach 

Employing Eqs. (I.8) and (I.9), the interval reference point is: 

 * *max , ; min ,j ij ijii
r x j g x j g     (III.16) 

The deviation between the weighted normalized interval rating *
j ijs x  and the interval weighted reference point j jw r  

is: 

 *,ij j j j ijd d s r s x    (III.17) 

where d
 is an interval distance computed by Eq. (I.4). The interval assessment value of the interval reference point iz  is 

determined as follows: 

maxi ij
j

z d    (III.18) 

Based on Eq. (I.9), the optimal alternative I-RPA  has the minimum interval assessment value: 

I-RP min ii
i z

A A  
  
 

  (III.19) 

 The interval full multiplicative form 

Based on the arithmetic operations of interval numbers shown as Eq. (I.2) as well as the integrated interval weights js , the 

interval assessment value iu  of the interval full multiplicative form is calculated as follows: 
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  (III.20) 

Because all the elements *x and js  are between 0 and 1, it is clear that: 

     ,L U
ij ij

U L
j j js s s

x x x     
  (III.21) 

The best alternative I-MFA  has the maximum value of iu , which can be found using Eq. (I.8): 

I-MF max ii
i u

A A    
 

  (III.22) 

 The rankings of the interval MULTIMOORA 

Benshan [123] presented the enhanced Borda rule by consolidating the rankings and assessment values into aggregating 

assessment values. In this study, we propose the interval Borda rule to integrate the interval assessment values and rankings 

derived from the three models of interval MULTIMOORA. The interval Borda rule is superior to the dominance theory 

from the perspectives of mathematics and straightforwardness for decision-makers. Mathematically speaking, the 
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dominance theory only employs the ordinal rankings for aggregation; however, the interval Borda rule considers both 

cardinal interval assessment values and the ordinal rankings. From the aspect of application, the dominance theory is 

complicated because of pairwise comparisons and probable occurrence of circular reasoning in particular. The case would 

be confusing for decision-makers when the number of alternatives and criteria are large. In contrast, the interval Borda rule 

does not require any manual comparison and has special conditions. 

To use the interval Borda rule, the first step is to normalize the subordinate interval assessment values, i.e., Eqs. 

(III.14), (III.18), and (III.20), to obtain
, ,,L U

i i iy y y      ,
, ,,L U

i i iz z z      , and 
, ,,L U

i i iu u u      . The method to compute 

iy , iz

, and iu

is identical to Eq. (III.13). 

We define the interval Borda rule to obtain the interval assessment values of the interval MULTIMOORA as follows: 

( ) 1 ( ) ( ) 1

( 1) / 2 ( 1) / 2 ( 1) / 2
     

  
  

i i i
i i i i

m r y r z m r u
IMB y z u

m m m m m m
  (III.23) 

The best alternative based on the interval MULTIMOORA- Borda has the maximum value of iIMB  that can be found 

by Eq. (I.8): 

I-MULTIMOORA-Borda max ii
i IMB

A A  
  
 

  (III.24) 

3. Application of I_S-MpMcDM methodology in industrial sector 

This section discusses a practical problem in industrial sector. The case study concerns the selection of appropriate hybrid 

vehicle engine selection tackled using the proposed I_S-MpMcDM methodology as shown in Fig. III.3. Fig. III.4 illustrates 

the supervised multi-person structure for the case study. 

 
Fig. III.3. The case study of the I_S-MpMcDM methodology: Hybrid vehicle engine selection. 
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Fig. III.4. Supervised multi-person structure for the case study of the I_S-MpMcDM methodology. 

 

Vehicles are producing a major part of carbon emissions in the world, which has resulted in climate change. The global 

warming issue and poor air quality are the results of traditional internal combustion engines (ICEs) which are based on 

fossil fuels, such as gasoline and diesel fuels [127]. In recent decades, however, the efforts for changing the fuel blend and 

technology of vehicle engines have been markedly increased [128]. Besides, the pressure from social communities have 

stimulated the development of cleaner and more efficient vehicles and the production of hybrid vehicles. Hybrid vehicles 

have much lower deleterious effects on environment.  

There are different kinds of technologies for hybrid vehicle engines such as compact natural gas (CNG)-gasoline, plug-

in electric-gasoline, regenerative electric-gasoline, fuel cell-gasoline, and hydrogen-gasoline. Penetration rates of the 

category of hybrid electric cars are still low in big cities, mostly due to the high cost of batteries and the low number of 

existing charging stations [129]. Apart from the USA, Europe, Japan, and India also help in commercializing of hybrid 

electric cars [130]. In recent years, many leading automotive companies, such as Toyota, Ford, BMW, Honda, Chevrolet, 

Porsche, and McLaren, have been investing in hybrid vehicles. In addition to the firms, “Tesla” is a major company that 

both produces high-tech hybrid electric vehicles and batteries as well as solar panels. In late 2017, Tesla released its state-

of-the-art electric truck named “Tesla Semi”. The company claimed that “Semi has maximum power and acceleration and 

requires the lowest energy cost per mile (See tesla.com/semi)”. The mentioned issues clarify that both heavy and light 

hybrid vehicles will get much more attention worldwide and by the improvements in the technology of batteries as well as 

optimizing the engine technology and electrical and electronic systems besides investing in charging stations, hybrid 

vehicles would definitely get a substantial market share of automotive industry in near future. Moreover, government 
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policies including consumer incentives, taxation, investment in research and development, as well as incentives for 

automotive companies and consumers play a key role in the progress of growing industry of hybrid vehicles [131]. 

This case study is conducted on the basis of the collected information and comments of engineering design experts of 

Iran automotive industry (as shown Fig. III.4). Major automotive firms in Iran are researching into the possibility of 

improving the engine technology from traditional to hybrid engines. Six hybrid engines are taken into account as candidate 

alternatives in this case study, which include five items based on the type of CNG-gasoline (EF7 naturally aspirated, EF7 

Turbo charged, TU5 naturally aspirated, XU7 naturally aspirated, and XUM naturally aspirated) besides one engine with 

the technology of electric-gasoline which is planned to be produced and assembled in near future. The prospective electric-

gasoline (PEG) engine is a serial coupling of two engines, i.e., an internal combustion engine (ICE) based on gasoline fuel 

and an electric engine (motor/generator). Both ICE and electric engine (as motor) can drive the vehicle separately or 

simultaneously as coupled by clutch. Electric engine can also act as a generator and charges the batteries. Table III.1 shows 

the criteria of the hybrid engines and their units as well as the objective related to each criterion. The criteria of the hybrid 

engines are classified into three categories: technical, financial, and environmental criteria. Each category has items that 

may be beneficial or non-beneficial criteria. 

Table III.1. Criteria of candidate hybrid vehicle engines. 

Type Criterion name Abb.* Unit Objective 

Technical 
criteria 

Combined ultimate power  CUP hp Maximum 
Combined ultimate torque  CUT N.m Maximum 
Fuel consumption (gasoline) FCG L/(100 km) Minimum 
Index of durability and maintenance  IDM – Maximum 

     

Financial 
criteria 

Relative price RPC - Minimum 
Relative needed foreign fund RNF - Minimum 
Job creation index JCI - Maximum 

Environmental 
criteria 

    
Carbon monoxide emission CME g/km Minimum 
Total hydrocarbon emission THE  g/km Minimum 
Nitrogen oxides emission NOE  g/km Minimum 

    
*Abb.: Abbreviation 

The linguistic terms are obtained for IDM, RPC, RNF, and JCI based on the comments of design experts. The 

corresponding interval numbers for linguistic terms related to the four linguistic criteria are defined as shown in Table III.2. 

The decision matrix consists of the interval ratings of the hybrid engines on the ten criteria (i.e., the performances of the 

engines on each specifications) are given in Table III.3. The data of Table III.3 is collected based on the references of 

related engines. 

 Table III.2. Corresponding interval numbers for linguistic terms. 

Linguistic terms Corresponding interval number 
Very high (VH)  [7, 9] 
High (H) [6, 8] 
Medium high (MH) [5, 7] 
Medium (M)   [4, 6] 
Medium low (ML) [3, 5] 
Low (L) [2, 4] 
Very low (VL) [1, 3] 
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Table III.3. Decision matrix. 

Eng. ID1 Engine name  Technical criteria  Financial criteria  Environmental criteria 
   CUP CUT FCG IDM  RPC RNF JCI  CME THE NOE 
E1 EF7 TC2  [122, 150] [171, 209] [6.5, 7.9] [6, 8]  [6, 8] [6, 8] [2, 4]  [0.51, 0.55] [0.06, 0.07] [0.08, 0.09] 
E2 EF7 NA3  [96, 117] [131, 160] [6.8, 8.3] [6, 8]  [6, 8] [6, 8] [3, 5]  [0.50, 0.53] [0.07, 0.08] [0.07, 0.08] 
E3 TU5 NA  [84, 102] [109, 134] [6.7, 8.1] [5, 7]  [5, 7] [4, 6] [4, 6]  [0.54, 0.56] [0.06, 0.07] [0.10, 0.11] 
E4 XU7 NA  [79, 96] [116, 142] [8.3, 10.1] [4, 6]  [4, 6] [5, 7] [6, 8]  [0.60, 0.63] [0.08, 0.09] [0.10, 0.11] 
E5 XUM NA  [84, 102] [117, 143] [7.9, 9.7] [3, 5]  [5, 7] [3, 5] [6, 8]  [0.61, 0.64] [0.08, 0.09] [0.09, 0.10] 
E6 PEG4  [110, 125] [114, 174] [4.7, 5.8] [7, 9]  [7, 9] [7, 9] [4, 6]  [0.45, 0.48] [0.05, 0.06] [0.07, 0.08] 
1 Eng. ID: Engine ID; 2TC: Turbo-charged; 3NA: Naturally-aspirated; 4PEG: Prospective electric-gasoline. 

 

Table III.4 represents the linguistic preferences and the corresponding interval preferences. The design manager 

evaluates the expertise degrees of the designers by linguistic preferences. The corresponding interval preferences of the 

linguistic terms considered by the design manager are shown in Table III.5. Indeed, Table III.5 lists the interval best-to-

others and others-to-worst vectors of the designers’ expertise degrees. 

Table III.4. Linguistic preferences versus the corresponding intervals. 

Linguistic preferences Corresponding interval preferences  
Equally importance [1, 1] 
Weakly importance [1, 3] 
Fairly importance [3, 5] 
Very importance [5, 7] 
Absolutely importance [7, 9] 

Table III.5. Expertise degrees of designers. 

DM Best & worst designers Interval preferences obtained from linguistic terms  
 Designer 1 Designer 2 Designer 3 Designer 4 

 

Design manager 
 

Best: Designer 2  
 

Worst: Designer 4  

BP  [3, 5] [1, 1] [1, 3] [7, 9] 

WP  [1, 3] [7, 9] [1, 3] [1, 1] 

 

Based on group interval BWM, each designer rates the preferences of the engines’ criteria regarding to the best and 

worst criteria. The corresponding interval preferences of the linguistic terms considered by the designers are shown in 

Table III.6. Table III.6 presents the interval best-to-others and others-to-worst vectors of preference degrees of the engines 

criteria. 

Table III.6. Preference degrees of the engines criteria. 

 
DMs 

 
Best  
criterion 

 
Worst 
criterion 

Interval preferences obtained from linguistic terms 
 CUP CUT FCG IDM RPC RNF JCI CME THE NOE 

Designer 1 JCI THE 

[1]
BQ  [3, 5] [5, 7] [1, 3] [1, 3] [5, 7] [5, 7] [1, 1] [5, 7] [7, 9] [1, 3] 

[1]
WQ  [1, 3] [5, 7] [1, 3] [3, 5] [5, 7] [1, 3] [7, 9] [1, 3] [1, 1] [5, 7] 

Designer 2 RNF IDM 

[2]
BQ  [5, 7] [3, 5] [5, 7] [7, 9] [1, 3] [1, 1] [1, 3] [5, 7] [5, 7] [1, 3] 

[2]
WQ  [3, 5] [5, 7] [1, 3] [1, 1] [5, 7] [7, 9] [5, 7] [1, 3] [1, 3] [5, 7] 

Designer 3 JCI IDM 

[3]
BQ  [1, 3] [5, 7] [3, 5] [7, 9] [5, 7] [1, 3] [1, 1] [5, 7] [3, 5] [1, 3] 

[3]
WQ  [3, 5] [5, 7] [1, 3] [1, 1] [3, 5] [3, 5] [7, 9] [1, 3] [5, 7] [5, 7] 

Designer 4 RPC CUT 

[4]
BQ  [3, 5] [7, 9] [3, 5] [3, 5] [1, 1] [5, 7] [1, 3] [3, 5] [5, 7] [1, 3] 

[4]
WQ  [3, 5] [1, 1] [3, 5] [1, 3] [7, 9] [5, 7] [5, 7] [3, 5] [1, 3] [5, 7] 

 

For the subordinate parts and the interval MULTIMOORA-Borda, the best alternative is obtained based on Eqs. 

(III.15), (III.22), (III.24), and (III.19), shown as follows: 5I-MU -I-R LTIMOORA BordaS I-MFA A A E      and I-RP 4.A E   
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The normalized interval ratings of the engines for this problem are calculated using Eq. (III.13). Based on Eq. (III.17), 

the deviations of the weighted normalized interval ratings are generated. Table III.7 lists the assessment values for the 

interval ratio system, the interval reference point model, the interval full multiplicative model, and the interval 

MULTIMOORA-Borda model computed based on Eqs. (III.14), (III.18), (III.20), and (III.23), respectively, as well as the 

rankings for the interval ratio system, the interval reference point model, the interval full multiplicative model, and interval 

MULTIMOORA-Borda.   

Table III.7. Assessment values and rankings of the interval MULTIMOORA. 

Eng. ID I-RS  I-RP  I-MF  
 

I-MULTIMOORA-Borda1 

 iy  ( )ir y   iz  ( )ir z   iu ( )ir u  iIMB   ir IMB  

E1 [-0.205, 0.207] 6  [0.000, 0.047] 6  [0.485, 1.549] 6  [-0.284, 0.044] 6 
E2 [-0.205, 0.210] 5  [0.000, 0.035] 5  [0.525, 1.554] 5  [-0.191, 0.088] 5 
E3 [-0.187, 0.216] 4  [0.000, 0.023] 3  [0.549, 1.648] 2  [-0.075, 0.192] 3 
E4 [-0.200, 0.253] 2  [0.000, 0.010] 1  [0.603, 1.592] 3  [-0.061, 0.218] 2 
E5 [-0.184, 0.250] 1  [0.000, 0.013] 2  [0.592, 1.694] 1  [-0.067, 0.300] 1 
E6 [-0.203, 0.243] 3  [0.000, 0.023] 3  [0.579, 1.572] 4  [-0.114, 0.164] 4 
1I-MULTIMOORA-Borda: Interval MULTIMOORA-Borda. 

 

 



 

 

 
 
 

Chapter IV 
 

IV. RF_S-MpMcDM_FRFP methodology: 
Biomedical application 
 
 
 
In this chapter, we present the RF_S-MpMcDM_FRFP methodology. The methodology is based on 

fuzzy-rationality-based fuzzy prospect theory and trapezoidal fuzzy numbers and modeled by the 

BWM-MULTIMOORA approach.  

In the real-world decision-making problems, the judgements of experts are often expressed as 

uncertain values. Such uncertain judgements may also be associated with some degrees of risk posed 

by irrationality of experts. Fuzzy prospect theory is a significant approach to tackle risky uncertain 

problems. Accordingly, we suggest a fuzzy-rationality-based fuzzy prospect theory based on a novel 

fuzzy distance measure and utilize the theory to develop a risky fuzzy multi-person best-worst method. 

In the proposed methodology, a director manages an expert panel. The risky fuzzy preferences of the 

experts are utilized in a fuzzy MULTIMOORA model with target-based normalization technique to 

generate the final results. 

We discuss a practical case on biomedical problem regarding spinal prosthesis material selection. 

The proposed methodology is beneficial for the problem as multiple biomedical engineers are often 

involved in sensitive orthopedic treatments and their judgments are subjected to risk of irrationality 

entailed from work pressures. 
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1. Introduction 

In real-life, rationality of human decisions is imperfect. Thus, considering the risk of the degree of rationality is an 

interesting topic in the decision-making process. Risky Fuzzy Multi-person Multi-criteria Decision-Making supported on 

Fuzzy Prospect theory (RF_MpMcDM_FP) deals with the risk of rationality degree of decision-makers’ judgments in 

uncertain circumstances. The RF_MpMcDM_FP approaches have grabbed attention of researchers in the recent years[4], 

[132]–[134]. Liu and Zhang[132] introduced a hesitant fuzzy MABAC method on the basis of prospect theory. Liu et 

al.[133] developed a trapezoidal intuitionistic fuzzy Choquet integral operator to obtain the overall prospect value related 

to each alternatives. Huang et al.[134] put forward an extension of quality function deployment using hesitant fuzzy 

linguistic sets integrated with prospect theory. Dai et al.[4] presented a dynamic fuzzy MULTIMOORA based on prospect 

theory. 

As philosophers of science and methodologists criticize, human knowledge is subjected to cognitive imperfections 

leads to “classical and bounded rationalities” evaluated in the “classical paradigm of decision-choice”. However, according 

to “the nature of human cognitive process” which needs flexibility, a “paradigm shift” is inevitable. The new paradigm is 

regarded as the “fuzzy paradigm of decision-choice”. “Fuzzy rationality” is evaluated in this new paradigm[34].  

In classical paradigm of decision-choice theory, rationality of decision has been supposed as crisp values[34]. In real-

life, decisions are associated with uncertainty and there is doubt on rationality of these decisions. Knowledge vagueness 

places us under conditions of fuzzy rationality[135]. Fuzzy rationality of decisions  is an important issue from the 

perspective of realistic problems such as Political Economy[136]. 

Psychologically speaking, human decision always include some degrees of “irrationality” based on Sigmund Freud’s 

opinion. Even if a seller seemingly has a perfect solution for a buyer that fits all their needs, buyers often make irrational 

decisions and choose alternatives[137]. In real life, the decisions of humans are often associated with uncertainty[138]. 

The risk entailed from the irrationality of decisions can also have uncertain nature. In healthcare service, biomedical 

engineers may make irrational decisions because of their critical work and job pressure and their irrational decisions can 

have some degrees of uncertainty because of the uncertain nature of biomedical problems. 

In the context of RF-MpMcDM-FP, irrationality of fuzzy decisions is supposed to be a crisp value (irrationality is 

considered through fuzzy prospect theory). However, the question is “how to derive fuzzy irrationality of fuzzy decisions 

(in the context of RF-MpMcDM-FP)?” Fuzzy irrationality fits to real-life problems and also leads to a computation without 

degeneration of fuzzy data. Thus, a research gap exist in the context to tackle fuzzy irrationality  needed for realistic risky 

fuzzy problems with critical situation. 

To plug the gap related to “fuzzy rationality in the RF-MpMcDM-FP context”, we introduce the fuzzy-rationality-

based fuzzy prospect theory in the context of RF-MpMcDM-FP. In the proposed theory, a fuzzy value function can 

represent the fuzzy rationality of experts’ judgments. Thus, the fuzzy-distance-based prospect theory structure allows us to 

Risky Fuzzy Supervised Multi-person Multi-criteria Decision-Making methodology supported on Fuzzy-Rationality-based 

Fuzzy Prospect Theory (RF_S-MpMcDM_FRFP) applying the BWM-MULTIMOORA approach. The suggested 

methodology is derived by introducing the following decision-making models: 

1) Risky fuzzy BWM-based model supported on the FRFP for weighting process of experts and criteria: We 

introduce a fuzzy prospect theory supported on a novel fuzzy distance measure of trapezoidal fuzzy numbers 

applicable for risky fuzzy decision-making models. In the proposed prospect theory, a fuzzy-distance-based 

value function has been defined. As we have used the fuzzy distance, our development ensures fully uncertain 
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computation without degeneration of fuzzy information. We employ the proposed fuzzy-distance-based 

prospect theory to develop a risky fuzzy multi-person best–worst method. In this model, a director determines 

the relative preference (i.e., competence) of the members of an expert panel. The director and the expert panel 

both participate in obtaining preferences of problem criteria. A self-reliance coefficient is considered to 

combine the preferences of the director and expert panel. All preferences are in the form of risky fuzzy values 

based on the suggested fuzzy-distance-based prospect theory. The risky fuzzy multi-person best–worst 

method results in subjective weights of problem criteria. We combine the subjective weights with the 

objective weights obtained supported on a fuzzy TOPSIS-inspired method to reach the integrated weights of 

problem criteria. The proposed fuzzy distance measure is employed in the fuzzy TOPSIS-inspired method.  

2) Fuzzy MULTIMOORA-based model for ranking process of alternatives: To obtain the subordinate rankings 

of alternatives in the risky fuzzy decision-making model, we utilize the fuzzy MULTIMOORA method in 

which the aforementioned integrated weights of problem criteria are exploited. In the formulation of the fuzzy 

MULTIMOORA, we use a target-based normalization technique employing the proposed fuzzy distance 

measure. Eventually, to generate the final rankings of alternatives, the subordinate outcomes of the fuzzy 

MULTIMOORA are aggregated based on a fuzzy distance matrix. The fuzzy distance matrix outweighs the 

dominance theory used for rank aggregation in the traditional MULTIMOORA. In the formulation of the 

fuzzy distance matrix, we have also employed the introduced fuzzy distance measure. 

To perform a practical analysis of the proposed methodology, we assess a real-life problem in the area of biomedical 

engineering application. The purpose of problem is finding appropriate biomaterial for a fixator used in treatment of spinal 

disorders by considering risk of irrational decisions of biomedical engineers. Besides, we implement sensitivity analyses 

on the consistency of subjective weights of problem criteria and the variation of the final rankings. The results of the 

introduced model are compared with two other decision-making methods.  

The remander of this chapter is devised as follows: The proposed RF_S-MpMcDM_FRFP methodology is introduced 

in Section 2. We evaluate a practical problem of surgical implants in Section 3.  

2. Theory of RF_S-MpMcDM_FRFP methodology 

In this section, we present the RF_S-MpMcDM_FRFP methodology as illustrated in Fig. IV.1. The methodology is derived 

in two phases: (1) we develop the risky fuzzy weighting process of criteria comprising subjective, objective, and integrated 

approaches. Subjective weights of problem criteria are obtained using the proposed risky fuzzy multi-person best–worst 

method. The objective weights are computed using a TOPSIS-inspired method which are then combined with the subjective 

weights (see Section 2.1); and (2) we utilize a fuzzy ranking process of alternatives including the three subordinate parts 

of the fuzzy MULTMOORA model and the ranking aggregation technique based on fuzzy distance matrix (see Section 

2.2). 

The risky fuzzy decision-making problem based on trapezoidal fuzzy numbers has a decision matrix represented as: 

where  ,1 , 2 ,3 , 4, , ,ij ij ij ij ijx x x x x  is the fuzzy rating of alternative ,iA  1, , ,i m   on criterion ,jC 1, , .j n   For each 

criterion, the fuzzy target jt  is defined as: 

ij m n
x


  X 

, 
(IV.1)
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where I  and J are related to beneficial and cost criteria, respectively. The maximum and minimum of fuzzy ratings on 

beneficial and cost criteria can be determined utilizing the preference matrix introduced in Section I.2.1. K represents 

the criteria for which a given value (i.e., jg ) is preferred. The value of jg can be specified by decision-makers or obtained 

through experiments or extracted from handbooks based on the nature of practical problems.  

Fuzzy decision matrix X should be normalized before exploitation in the decision-making model as the ratings of 

alternatives on criteria are often not comparable due to various dimensions[16]. We propose a fuzzy target-based 

normalization technique, as follows: 

where the exponent value is defined as: 

In Eq. (IV.4), i jx represents the fuzzy rating (i.e., each array of the fuzzy decision matrix X ) and jt is the fuzzy 

target for each criterion defined in Eq. (IV.2). The fuzzy distance in the numerator of Eq. (IV.4) is obtained based on Eq. 

(I.17) and the crisp distance in the denominator is the defuzzified value of the fuzzy distance which could be computed by 

Eq. (I.13). 

   
 

Fig. IV.1. Flowchart of the RF_S-MpMcDM_FRFP methodology. 

 max , if ; min , if ; , if j ij ij jii
t x j I x j J g j K       , (IV.2)
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i
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2.1. BWM-based model for weighting process 

In this study, we use an integrative approach for weighting of criteria and experts’ competence. First, the subjective weights 

of criteria are computed based on the comments of a director and an expert panel by utilizing the risky fuzzy multi-person 

best–worst method. Expertise level of the members of the panel are also determined in the proposed best–worst method by 

the director. Second, the objective weights are calculated exploiting the fuzzy TOPSIS-inspired method. Third, the 

aforementioned subjective and objective weights are consolidated to be further used in the fuzzy ranking process of 

alternatives. 

 Subjective risky fuzzy weights of criteria 

We propose a risky fuzzy multi-person best–worst method to obtain subjective weights of problem criteria. The risk of 

decisions are supported on the FRFP theory introduced in Section I.3.2. Best–worst method has exclusive privileges for 

generating subjective weights in a decision-making problem: (i) it requires less pairwise evaluation in comparison to AHP 

to obtain criteria weights; (ii) best–worst method is more consistent than AHP method; (iii) the consistency percentage of 

BWM also denotes the confidence level; and (iv) in contrast with AHP, best–worst method only employs integers to 

consider preferences.  

The supervised multi-person decision-making structure has two levels of decision-making as illustrated in Fig. IV.2. 

To obtain the subjective weights of criteria using the model, the following procedure is considered (the judgments are made 

in the form of linguistic terms then converted into trapezoidal fuzzy numbers): 

 

 
Fig. IV.2. Supervised multi-person structure in the RF_S-MpMcDM_FRFP methodology 

(Ω denotes self-reliance coefficient considered in Model (IV.16)). 
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Consider a “director” and a “expert panel”  1Expert , , Expert , , Expert .k t   In the risky fuzzy multi-person best–

worst method, the director assesses the priority of the expert panel, and both the director and expert panel specify the 

priority of the criteria  1 , ..., , ...,j nC C C . 

Step 1 (Prioritize members of the expert panel by the director – using the risky fuzzy multi-person best–worst method): 

The director ascertains the best and worst experts and evaluates the risky fuzzy preference degrees of the expert panel 

regarding the best and worst experts. The director determines the fuzzy preference degree  ,1 , 2 , 3 , 4, , ,Bk Bk Bk Bk Bkh h h h h  

of the best expert B  over expert k in the panel. Bkh  is a trapezoidal fuzzy value ranging from (1, 1, 1, 1)  to (9, 9, 9, 9).  

Then, based on the value function of the FRFP theory proposed in Section I.3.2, i.e., Eq. (I.23), the risky fuzzy best-to-

others experts’ competence is calculated as: 

In Eq. (IV.5), we use the normalized value of fuzzy distance, i.e., d  , to keep the value of r
Bkh  in the same range of 

Bkh , i.e., (1, 1, 1, 1)  to (9, 9, 9, 9).  Also, we employ the exponential function to avoid zero values. The normalized values 

of fuzzy distance are computed as 1 2 3 4( / , / , / , / )d d d d d      where 1d , 2d , 3d , and 4d  are the base values of 

the fuzzy distance measure, and  2 2 2 2
1 2 3 4

1

1

4

n

j

d d d d


    . To generate results consistent with the empirical data, 

we set 2.25  and 0.88  [4].  1, , , ,r r r r
B B Bk BtH h h h       denotes the risky fuzzy best-to-others vector of the 

preference degrees of the expert panel. The director determines the fuzzy preference degree 

 ,1 , 2 , 3 , 4, , ,kW kW kW kW kWh h h h h  of expert k over the worst expert .W  Then, based on the value function of the fuzzy 

prospect theory introduced in Eq. (I.23), the risky fuzzy others-to-worst experts’ competence is calculated as: 

The reason of employing the normalized values of fuzzy distance and exponential function is similar to the explanation 

aforementioned in Step 3.1 for obtaining .r
B kh To achieve consistent results with the empirical data, we set 0.88  [4]. 

 1 , , , ,
T

r r r r
W W kW tWH h h h      indicates the risky fuzzy others-to-worst vector of the preference degrees of the members 

of the expert panel. The optimal weights vector  1 2, , ,
T

t      for the expert panel is computed utilizing a min-max 

model as follows: 

Model (IV.7) could be linearized as follows: 

 exp ,r
Bk Bk BBh d h h


       

   
. 

(IV.5)

 exp ,r
kW kW WWh d h h
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(IV.6)
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In Model (IV.8), the symbol   shows ‘almost lesser than’ constraint. An equivalent form of  Model (IV.8) could be 

formulated taking account of the absolute values definitions of 
r

B Bk kh    and 
r

k kW Wh   , as follows: 

By considering the crisp equivalents of fuzzy constraints in Model (IV.9) besides the α-cut (with 0.5 ) of r
Bkh  and 

r
kWh , the model is transformed as follows: 

where  (0 1)   is a possibility level assigned by the decision-makers. As Model (IV.10) has a linear form, it results 

in a unique optimal weight vector  1 2, , ,
T

t      and an objective value    for any given possibility level  .    

represents the consistency level of the fuzzy risky preferences. If 0   for all , we have 
r

B j Bkh     and 

r
j W kWh    , and correspondingly r r r

Bk kW BWh h h     for all k . Hence, the fuzzy risky preferences vectors r
BH  and r

WH  

are fully consistent. 



1

min ,

s.t. : , for all ,

, for all ,
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Step 2 (Prioritize criteria by the director and expert panel – using the risky fuzzy multi-person best–worst method): 

The director determines the best and worst criteria and considers the fuzzy preference degree Bjp   

 ,1 , 2 , 3 , 4, , ,Bj Bj Bj Bjp p p p  of the best criterion B  over criterion j . Then, according to the fuzzy-distance-based prospect 

theory, the risky fuzzy form of Bjp  is obtained as: 

The risky fuzzy best-to-others vector of the preference degrees of criteria determined by the director is 

 1, , , , .
Tr r r r

B B Bj BnP p p p     In analogous, the director allocates the fuzzy preference degree 

 ,1 , 2 , 3 , 4, , ,jW jW jW jW jWp p p p p  of criterion jC  over the worst criterion W . The risky fuzzy form of jWp  is calculated 

as: 

The risky fuzzy others-to-worst vector of the preference degrees of criteria determined by the director is obtained as 

 1 , , , ,
Tr r r r

W W jW nWP p p p     . Each expert determines the best and worst criteria and considers the fuzzy preference degree 

 [ ] [ ] [ ] [ ] [ ]
,1 ,2 ,3 ,4, , ,k k k k k

Bj Bj Bj Bj Bjq q q q q  of the best criterion B  over each criterion jC . Then, according to the fuzzy-distance-based 

prospect theory, the risky fuzzy form of [ ]k
Bjq  is computed as: 

The risky fuzzy best-to-others vector of the preference degrees of criteria evaluated by expert k  is obtained as 

[ ], [ ], [ ], [ ],
1( , , , , )k r k r k r k r T

B B Bj BnQ q q q     . Each expert also ascertains the fuzzy preference degree  [ ] [ ] [ ] [ ] [ ]
,1 ,2 ,3 ,4, , ,k k k k k

jW jW jW jW jWq q q q q of 

criterion jC  over the worst criterion .W  The risky fuzzy form of [ ]k
jWq  is calculated as: 

The risky fuzzy others-to-worst vector of the preference degrees of criteria specified by expert k  is obtained as 

[ ], [ ], [ ], [ ],
1( , , , , ) .k r k r k r k r T

W W jW nWQ q q q     The optimal weight vector of criteria  * * *
1 2, , ,

T

nw w w is generated using the 

following programming model: 

where k   is the optimal weight of expert k  calculated based on Model (IV.10). Model (IV.15) combines the 

individual and multi-person decisions of the director and expert panel. The director makes a tradeoff between his decision 

  exp ,r
Bj Bj BBp d p p
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(IV.11)
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(IV.12)
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and those of the expert panel by considering a self-reliance coefficient  (0 1).    0  means a democracy 

situation where the director does not interfere in criteria weighting (i.e., s/he only judges the priorities of the expert panel), 

while 1  indicates an autocracy situation where the criteria weighting of the expert panel are neglected (i.e., the director 

only evaluates the importance of criteria). Model (IV.15) can be reformulated as: 

Model (IV.16) could be transformed to an equivalent crisp model similar to the aforementioned procedure of Model 

(IV.10). As the resultant crisp formulation is a linear programming model, its solution, for any given possibility level  , 

is in the form of an unique optimal weight vector  * * *
1 2, , ,

T

nw w w , 
* ,  and  1 1, , ,

T

t     . The objective function 

value 
  implies the consistency of the risky fuzzy preference degrees of the director and expert panel. 0 indicates 

the full consistency. Nevertheless, the preferences are subjected to variance because of the probable irrationality of the 

director and expert panel or other reasons. Thus, the full consistency may be not feasible.  

 Objective weights of criteria 

We employ an objective weighting model supported on the theory of TOPSIS method. The proposed approach exploits the 

fuzzy distance measure, i.e., Eq. (I.17), and also utilizes the normalization technique, i.e., Eq. (IV.3). To derive the fuzzy 

objective weights, the optimistic and pessimistic values of the fuzzy normalized ratings of each alternative are first 

computed as: 

The overall distances between the fuzzy target-based normalized ratings and the optimistic/pessimistic values are 

obtained: 

The objective fuzzy weights are determined as follows: 

 Integrated risky fuzzy weights of criteria 

The combination of the subjective weight jw   obtained by Model (IV.16) and the objective fuzzy weight o
jw  determined 

by Eq. (IV.19) generates the integrated fuzzy weight js : 

1
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2.2. MULTIMOORA-based model for ranking process 

In this part, we obtain the three ranking lists based on subordinate models of fuzzy MULTIMOORA, i.e., the fuzzy ratio 

system, fuzzy reference point approach, and fuzzy full multiplicative form. The results of each method are then combined 

into the final ranking using a fuzzy distance matrix. 

MULTIMOORA is an integrative decision-making approach based on three subordinate parts: ratio system, reference 

point approach, and full multiplicative form. Ratio system, as a fully compensatory approach, takes account of independent 

criteria, whereas full multiplicative form considers dependent criteria and has an incompletely compensatory algorithm. 

Reference point approach is a non-compensatory technique tends to provide a conservative solution. In reference point 

approach, imperfections of ratings of an alternative on one criterion is not compensated by the satisfactory performance on 

another criterion. Thus, by exploiting the advantages of three approaches, MULTIMOORA can be a key tool in the 

problems where there are independent and dependent criteria while a conservative result is also important[16]. 

 Ranking of alternatives based on fuzzy ratio system 

Using arithmetic operations of trapezoidal fuzzy numbers presented in Eq. (I.14) and considering the integrated fuzzy 

weights obtained by Eq. (IV.20) as well as the normalized fuzzy ratings by Eq. (IV.3),  the assessment value iY  is generated 

as follows: 

The best alternative in the fuzzy ratio system has the maximum value of iY , obtained supported on the mathematics 

of trapezoidal fuzzy numbers given in Section I.2.2: 

The ranking of alternatives based on the fuzzy ratio system is obtained by ordering the assessment values descendingly. 

 Ranking of alternatives based on fuzzy reference point approach 

For this approach, first, the deviation between the normalized fuzzy rating ijf  and the reference point jf   is defined as: 

where d  denotes the fuzzy distance obtained by Eq. (I.17) and max .j ij
i

f f    To generate the assessment value of the fuzzy 

target-based reference point, we have: 

The best alternative obt(IV.21)ained by the fuzzy reference point approach has the minimum assessment value, where: 
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The ranking of alternatives in the fuzzy reference point approach is generated by ordering the assessment values 

ascendingly. 

 Ranking of alternatives based on fuzzy full multiplicative form 

The assessment value of the fuzzy full multiplicative form is generated as: 

As all the elements of ijf and js  are between 0 and 1, it can be shown that: 

The optimal alternative with the fuzzy full multiplicative form is calculated as follows: 

The ranking of alternatives based on the fuzzy full multiplicative is determined by ordering the assessment values 

descendingly. 

 Final ranking of alternatives based on fuzzy distance matrix 

We employ a fuzzy distance matrix supported on the proposed fuzzy distance measure to obtain the final ranking of 

alternatives. 

In the original MULTIMOORA method, the dominance theory was employed to consolidate the subordinate ranks of 

alternatives; however, the theory reveals some disadvantages, such as circular reasoning [18]. The ranking aggregation 

technique based on fuzzy distance matrix does not have the drawbacks of the dominance theory. The fuzzy distance matrix 

is defined by considering the assessment values of the fuzzy ratio system, fuzzy reference point approach, and fuzzy full 

multiplicative form as shown in Table IV.1. In Table IV.1, il  equals to: 

where indices iand l represent the position of alternatives. y
ilI , z

ilI , and u
ilI  are respectively defined as: 

where iY , iZ , and iU  are the assessment values of the fuzzy ratio system, reference point approach, and fuzzy full 

multiplicative form obtained by Eqs. (IV.21), (IV.24), and (IV.26), respectively. iY , iZ , and iU  are the defuzzified values 
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of their correspondent assessment indices calculated by Eq. (I.13). d  denotes the fuzzy distance measure introduced in 

Eq. Eq. (I.17). In Eq. (IV.30), the negative terms are obtained based on the following formula (for a positive trapezoidal 

fuzzy number 1 2 3 4( , , , )A A A A A  and a negative real number ): 

Table IV.1. The fuzzy distance matrix for obtaining final ranking. 

Relative fuzzy distances by considering sign of the measure  Aggregated distances 
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The best alternative of the fuzzy MULTIMOORA model supported on the fuzzy distance matrix is determined as: 

3. Application of RF_S-MpMcDM_FRFP methodology in biomedical sector 

In this part, we utilize the decision-making methodology introduced in Section 2 for material selection in a practical 

biomedical engineering problem. First, the motivation and specifications of the practical problem are depicted. Second, the 

solution of the biomaterial selection problem based on the RF_S-MpMcDM_FRFP methodology is provided  

The biomedical decision-making problems are sensitive cases as they deal with the health of human-beings. The 

physicians must decide about the situation of their patients with precision and quickness (where applicable) to present 

satisfactory diagnose and treatment. The precision and quickness lead to prevent fatal or permanent effects on the health 

of patients. To reach a final decision, the cases should often be evaluated by multiple experts. Additionally, biomedical 

engineers may make irrational decisions because of their critical work and job pressure. Thus, a systemic multi-person 

decision-making approach considering risk and consistent with the requirements of biomedical problems can be an 

effective tool for the experts. 

This practical case is related to biomaterial selection for a spinal fixator. A biomaterial is entitled to any substance 

engineered to be used in biological systems for the aim of diagnostic or therapeutic applications. A number of biomaterials 

can often be candidate solutions for orthopedic disorders. The proposed methodology helps in finding an appropriate 

alternative for biomaterial selection problems. 

The data of this case study was gathered based on several references of biomaterials [139]–[142] and also by consulting 

with the orthopedic experts deal with designing implants and surgical treatments. To collect the comments, biomedical 

engineers have been provided with specific forms to present their preferences about the performance of the candidate 

biomaterials. 

Biocompatibility is a significant feature needed for biomaterials utilized for implants and prostheses[143]. 

Biocompatibility means the capability of a biomaterial to act suitably without showing serious defects; however, this 
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property is rather case-sensitive which means biocompatibility in a particular usage does not guarantee suitability for 

another application[144]. Usually, to ensure biocompatibility, the value of the elastic modulus related to biomaterial and 

that of the tissue should be close as possible. This issue leads to decreasing stress concentration of biomaterial[145]. Thus, 

elastic modulus is supposed as a target-based criterion for selection of biomaterials. That is, the target value of elastic 

modulus of a biomaterial should be very close to elastic modulus of the adjacent tissue. Biomaterial properties are ordinarily 

given as uncertain information in the handbooks of materials science.  

Generally, spinal implants are produced to increase the stability of spine and lessen the pressure on the vertebral disc 

[146]. A sample of spine fixator is shown in Fig. IV.3 in the supplementary file. 
 

 
Fig. IV.3. The case study of the RF_S-MpMcDM_FRFP methodology: A typical spinal fixator. 

 
We follow the phases of the proposed methodology (shown in Fig. IV.1), i.e., (i) risky fuzzy weighting process of 

criteria, (ii) fuzzy ranking process of alternatives, to reach the outcome of the biomaterial selection problem. 

Six criteria exist in the problem: elastic modulus, density, tensile strength, fatigue strength, yield strength, and 

elongation. Elastic modulus and density are target-based criteria and the rest are beneficial. Table IV.2 denotes units and 

the fuzzy target values for the criteria. Table IV.3 represents the decision matrix of the practical case study. The decision 

matrix provides the fuzzy performances (i.e., fuzzy values of biomaterials properties) of eight biomaterials preselected as 

candidates in response to the criteria of the problem. The fuzzy ratings of the biomaterials are normalized by Eq. (IV.3). 

Table IV.2. Criteria of candidate biomaterials. 

Criterion name Unit Type 

Elastic modulus  GPa Target-based   1 12.8, 13.1, 14.9, 15.2g    

Density g/cm3 Target-based   2 1.9, 2.0, 2.2,  2.3g   

Tensile strength MPa Beneficial 
Fatigue strength MPa Beneficial 
Yield strength MPa Beneficial 
Elongation % Beneficial 

Table IV.3. Decision matrix constructed form the performance of the candidate biomaterials on their criteria. 

BioM. 
ID* 

Biomaterial name Target-based criteria  Beneficial criteria 

  Elastic modulus Density  Tensile strength Fatigue strength Yield strength Elongation 

M1 
Stainless Steel 316L 
(cold-worked) 

(177, 180, 206, 209) (7.2, 7.3, 8.5, 8.6)  (826, 834, 886, 894) (298, 301, 319, 322) (662, 669, 711, 718) (10.9, 11.2, 12.8, 13.1) 

M2 
Stainless Steel 316L 
(annealed) 

(177, 180, 206, 209) (7.2, 7.3, 8.5, 8.6)  (496, 501, 533, 538) (252, 254, 270, 272) (318, 321, 341, 344) (36.4, 37.2, 42.8, 43.6) 
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M3 
Wrought 
CoNiCrMo 

(208, 212, 242, 246) 
(8.4, 8.6, 9.8, 
10.0) 

 
(1721, 1739, 1847, 
1865) 

(480, 485, 515, 520) 
(1523, 1538, 1634, 
1649) 

(7.3, 7.4, 8.6, 8.7) 

M4 Pure Titanium (92, 94, 107, 109) (4.1, 4.2, 4.8, 4.9)  (528, 534, 567, 572) (230, 233, 247, 250) (354, 358, 380, 384) (13.7, 14.0, 16.1, 16.4) 

M5 Ti–6Al–4V (97, 99, 113, 115) (4.1, 4.2, 4.8, 4.9)  (826, 834, 886, 894) (499, 504, 536, 541) (763, 771, 819, 827) (9.1, 9.3, 10.7, 10.9) 

M6 Ti-6Al-7Nb (101, 103, 117, 119) (4.1, 4.2, 4.8, 4.9)  
(1008, 1019, 1082, 
1092) 

(431, 436, 462, 467) (768, 776, 824, 832) (11.8, 12.1, 13.9, 14.2) 

M7 
Co–Cr alloy 
(castable) 

(220, 224, 256, 260) (7.6, 7.7, 8.9, 9.0)  (629, 635, 675, 681) (408, 412, 438, 442) (432, 437, 464, 468) (18.2, 18.6, 21.4, 21.8) 

M8 
Co–Cr alloy 
(wrought) 

(220, 224, 256, 260) (8.3, 8.5, 9.7, 9.9)  (860, 869, 923, 932) (576, 582, 618, 624) (624, 631, 670, 676) (18.2, 18.6, 21.4, 21.8) 

* BioM. ID: Biomaterial identification code. 
 

As illustrated in Fig. IV.4, the decision-making structure comprises the manager of biomedical engineering department 

as the director and four biomedical engineers as the expert panel (the manager of biomedical engineering department is 

only referred as “manager” in the remainder of this study). To calculate subjective weights employing the proposed risky 

fuzzy multi-person best–worst method, first we need to obtain risky fuzzy preferences. 

 
Fig. IV.4. Supervised multi-person structure for the case study of the RF_S-MpMcDM_FRFP methodology. 
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Table IV.4 lists the terms used for assigning linguistic preferences and the related trapezoidal fuzzy preferences. The 

manager estimates the relative preferences (i.e., the experts’ competence) of the biomedical engineers using linguistic 

terms. The risky fuzzy preferences are then calculated based on the linguistic terms and Eqs. (IV.5) and (IV.6). Table IV.5 

gives the best-to-others and others-to-worst vectors of the biomedical engineers’ risky fuzzy preferences degrees from the 

viewpoint of the manager.  

 

Table IV.4. Linguistic preferences and corresponding trapezoidal fuzzy values. 

Linguistic preferences Corresponding trapezoidal fuzzy preferences  

Equal importance (1, 1, 1, 1) 
Minor importance (2, 2.75, 3.5, 4.25) 
Fair importance (4.25, 4.75, 5.25, 5.75) 
Major importance (5.75, 6.5, 7.25, 8) 
Extreme importance (9, 9, 9, 9) 

 
 

Table IV.5. Expertise degrees in the form of risky fuzzy preferences. 

DM* Best & worst biomedical 
engineers 

Risky fuzzy preferences based on the proposed fuzzy prospect theory 

 
Biomedical  
engineer 1 

Biomedical  
engineer 2 

Biomedical  
engineer 3 

Biomedical  
engineer 4 

Manager 

 

Best: Biomedical engineer 3  r
BH  (0.20, 0.20, 0.20, 0.20) (0.20, 0.48, 0.48, 0.48) (0.2, 1.00, 1.00, 1.00) (0.20, 0.36, 0.36, 0.36) 

Worst: Biomedical engineer 1
r
WH  (1.00, 1.00, 1.00, 1.00) (1.72, 1.72, 1.72, 1.86) (2.36, 2.36, 2.36, 2.36) (1.15, 1.15, 1.15, 1.25) 

* DM: Decision-maker. 

 
The manager and all biomedical engineers identify the best and worst criteria and then measure the preferences of the 

biomaterials’ criteria with reference to the pre-assigned best and worst criteria. The linguistic judgments of the manager 

and biomedical engineers are converted into fuzzy values based on Table IV.4 and then the resultant values are transformed 

into risky fuzzy preference degrees employing Eqs. (IV.11) and (IV.12) besides Eqs. (IV.13) and (IV.14), respectively. 

Table IV.6 lists the risky fuzzy preference degrees of the criteria from the viewpoints of the manager and biomedical 

engineers as best-to-others and others-to-worst vectors. 

Table IV.6. Risky fuzzy preference degrees of the criteria of the biomaterial selection problem. 

DMs Best 
criterion 

Worst 
criterion 

Risky fuzzy preferences based on the proposed fuzzy prospect theory 
 C1 

(Elastic 
modulus) 

C2  

(Density) 

C3 
(Tensile 
strength) 

C4 
(Fatigue 
strength) 

C5 
(Yield strength) 

C6 
(Elongation) 

Manager C1 C6 

r
BP

 

(1.00, 1.00, 
1.00, 1.00) 

(0.31, 0.31, 0.31,
0.31) 

(0.74, 0.74, 0.74, 
0.74) 

(0.43, 0.43, 0.43, 
0.43) 

(0.74, 0.74, 0.74, 
0.74) 

(0.16, 0.16, 0.16, 
0.16) 

r
WP  

(2.25, 2.25, 
2.25, 2.25) 

(1.14, 1.14, 1.14,
1.24) 

(1.44, 1.44, 1.44, 
1.52) 

(1.14, 1.14, 1.14, 
1.24) 

(1.67, 1.67, 1.67, 
1.79) 

(1.00, 1.00, 1.00, 
1.00) 

Biomedical  
engineer 1 

C4 C3 

[1],r
BQ

 

(0.32, 0.32, 
0.32, 0.32) 

(0.45, 0.45, 0.45,
0.45) 

(0.17, 0.17, 0.17, 
0.17) 

(1.00, 1.00, 1.00, 
1.00) 

(0.75, 0.75, 0.75, 
0.75) 

(0.45, 0.45, 0.45, 
0.45) 

[1],r
WQ

 

(1.15, 1.15, 
1.15, 1.15) 

(1.15, 1.15, 1.15,
1.15) 

(1.00, 1.00, 1.00, 
1.00) 

(2.37, 2.37, 2.37, 
2.37) 

(1.72, 1.72, 1.72, 
1.72) 

(1.15, 1.15, 1.15, 
1.15) 

Biomedical  
engineer 2 

C5 C6 

[2],r
BQ

 

(0.73, 0.73, 
0.73, 0.73) 

(0.41, 0.41, 0.41,
0.41) 

(0.41, 0.41, 0.41, 
0.41) 

(0.73, 0.73, 0.73, 
0.73) 

(1.00, 1.00, 1.00, 
1.00) 

(0.14, 0.14, 0.14, 
0.14) 

[2],r
WQ

 

(1.64, 1.64, 
1.64, 1.64) 

(1.13, 1.13, 1.13,
1.13) 

(1.13, 1.13, 1.13, 
1.13) 

(1.64, 1.64, 1.64, 
1.64) 

(2.19, 2.19, 2.19, 
2.19) 

(1.00, 1.00, 1.00, 
1.00) 

Biomedical  
engineer 3 

C4 C3 

[3],r
BQ

 

(0.39, 0.39, 
0.39, 0.39) 

(0.72, 0.72, 0.72,
0.72) 

(0.13, 0.13, 0.13, 
0.13) 

(1.00, 1.00, 1.00, 
1.00) 

(0.72, 0.72, 0.72, 
0.72) 

(0.72, 0.72, 0.72, 
0.72) 

[3],r
WQ

 

(1.12, 1.12, 
1.12, 1.21) 

(1.57, 1.57, 1.57,
1.67) 

(1.00, 1.00, 1.00, 
1.00) 

(2.04, 2.04, 2.04, 
2.04) 

(1.57, 1.57, 1.57, 
1.67) 

(1.57, 1.57, 1.57, 
1.67) 

Biomedical  
engineer 4 

C1 C6 

[4],r
BQ

 

(1.00, 1.00, 
1.00, 1.00) 

(0.43, 0.43, 0.43,
0.43) 

(0.74, 0.74, 0.74, 
0.74) 

(0.74, 0.74, 0.74, 
0.74) 

(0.31, 0.31, 0.31, 
0.31) 

(0.16, 0.16, 0.16, 
0.16) 

[4],r
WQ

 

(2.28, 2.28, 
2.28, 2.28) 

(1.14, 1.14, 1.14,
1.14) 

(1.68, 1.68, 1.68, 
1.68) 

(1.45, 1.45, 1.45, 
1.45) 

(1.14, 1.14, 1.14, 
1.14) 

(1.00, 1.00, 1.00, 
1.00) 
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The values of deviations of the normalized fuzzy ratings are obtained by Eq. (IV.23). Table IV.7 provides the values 

of assessment indices for the fuzzy ratio system, fuzzy reference point, and fuzzy full multiplicative form, generated 

utilizing Eqs. (IV.21), (IV.24), and (IV.26), respectively. Moreover, the subordinate and two aggregate rankings lists are 

provided in Table IV.7. The first aggregate ranking list is obtained based on the dominance theory. To generate the second 

aggregate ranking list, the fuzzy distance matix introduced in Section 2.2 is used. The related assessment values are 

computed based on Table IV.1. 

 

Table IV.7. Outcomes of the fuzzy MULTIMOORA with risky fuzzy weights supported on the fuzzy decision matrix. 

 
BioM. 
ID 

 
RF-RS1 

  
RF-RP2 

  
RF-MF3 

 
RF-MULTIMOORA-
Dominance4 

 
RF-MULTIMOORA-FDM5 

𝒀𝒊 𝒓 𝒀𝒊    𝒁𝒊 𝒓 𝒁𝒊    𝑼𝒊 𝒓 𝑼𝒊   𝑳𝒊 𝒓 𝑳𝒊  

M1 
(0.419, 0.427, 0.437, 
0.445) 

8  (0.156, 0.157, 
0.159, 0.161) 

6  (0.486, 0.485, 0.486, 
0.486) 

7 6 
(-1.705, -1.654, -
1.632, -1.583) 

6 

M2 
(0.444, 0.450, 0.460, 
0.467) 

6  (0.175, 0.176, 
0.178, 0.180) 

7  (0.482, 0.481, 0.481, 
0.479) 

8 6 
(-1.750, -1.717, -
1.688, -1.644) 

7 

M3 
(0.628, 0.638, 0.649, 
0.660) 

1  (0.082, 0.082, 
0.083, 0.084) 

3  (0.647, 0.648, 0.649, 
0.650) 

2 2 
(1.580, 1.642, 1.660, 
1.717) 

1 

M4 
(0.438, 0.445, 0.456, 
0.464) 

7  (0.182, 0.184, 
0.186, 0.188) 

8  (0.486, 0.485, 0.486, 
0.486) 

6 6 
(-1.793, -1.755, -
1.732, -1.681) 

8 

M5 
(0.607, 0.620, 0.632, 
0.646) 

2  (0.078, 0.078, 
0.079, 0.080) 

2  (0.659, 0.662, 0.664, 
0.667) 

1 1 
(1.577, 1.622, 1.658, 
1.696) 

2 

M6 
(0.576, 0.587, 0.599, 
0.611) 

4  (0.082, 0.082, 
0.083, 0.084) 

4  (0.642, 0.645, 0.646, 
0.649) 

3 4 
(1.258, 1.309, 1.335, 
1.389) 

3 

M7 
(0.463, 0.472, 0.483, 
0.493) 

5  (0.097, 0.098, 
0.099, 0.100) 

5  (0.521, 0.521, 0.522, 
0.523) 

5 5 
(-0.703, -0.648, -
0.627, -0.572) 

5 

M8 
(0.580, 0.588, 0.599, 
0.608) 

3  (0.073, 0.074, 
0.074, 0.075) 

1  (0.608, 0.608, 0.609, 
0.608) 

4 3 
(1.056, 1.106, 1.122, 
1.166) 

4 

1 RF-RS: Fuzzy Ratio System with Risky fuzzy weights; 2 RF-RP: Fuzzy Reference Point approach with Risky fuzzy weights; 3 RF-MF: Fuzzy full Multiplicative Form with 
Risky fuzzy weights; 4 RF-MULTIMOORA-Dominance: Fuzzy MULTIMOORA supported on Dominance theory with Risky fuzzy weights; 5 RF-MULTIMOORA-FDM: 
Fuzzy MULTIMOORA supported on Fuzzy Distance Matrix with Risky fuzzy weights. 
 

The best alternative based on the fuzzy ratio system, fuzzy reference point, fuzzy full multiplicative form, and fuzzy 

target-based MULTIMOORA model with the fuzzy distance matrix are computed by Eqs. (IV.22), (IV.25), (IV.28), and 

(IV.32), respectively (as risky weights are used to compute subordinate and final rankings, we consider a prefix “R” to 

indicate the weights): 

RF-RS RF-MULTIMOORA-FDM 3 RF-RP 8 RF-MF RF-MULTIMOORA-Dominance 5, , andA A M A M A A M         . 



 

 

 
 
Chapter V 
 

V. DI_S-MpMcDM_SoESs methodology: 
Energy application 
 
 
 
In this chapter, we present the DI_S-MpMcDM_SoESs methodology. The methodology is based 

interval numbers and modeled by the BWM-MULTIMOORA approach. The supervised multi-person 

structure is with subject-oriented expert segments. It is applied in an case study on renewable energy 

investment project. 

Most socio-economic and industrial decision-making problems are interdisciplinary, needing 

different expertise areas for handling. Considering Subject-oriented Expert Segments (SoESs) can 

streamline the decision-making process for such problems. The decisions of SoESs are dynamically 

improved by gaining experience. Accordingly, we propose a methodology to tackle SoESs sturcture. 

In this methodology, a director evaluates the relative preferences of experts and problem subjects. The 

methodology is derived through hybrid modeling based on BWM and MULTIMOORA method. 

Finally, we evaluate a real-life decision-making problem regarding investment in renewable 

energy sources. According to the consistency of the BWM-based models and the robustness of the 

MULTIMOORA-based model, the proposed methodology can be efficient in solving practical DI_S-

MpMcDM_SoESs problems. 
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1. Introduction 
Dynamic Multi-person Multi-criteria Decision-Making (D_MpMcDM) deals with the significance of time in decision-

making area [147]. In D_MpMcDM problems, multiple experts are responsible for evaluating alternatives according to 

multiple criteria in a changeable situation by passing time. 

The situation is mainly affected by dynamic changes in experts’ relative importance and judgments. Consequently, 

experts’ judgments progressively become more reliable based on their gained experience [13], [148]. The D_MpMcDM 

approaches have been utilized in various practical applications, including safety management, construction industry, and 

reverse logistics [149]–[151].  

In real-life, many socio-economic and industrial institutes tackle interdisciplinary dynamic decision-making problems. 

In this regard, multiple groups of experts with special competence in each subject are often required [1]. United Nations 

Economic and Social Council includes several groups of experts focused on information management, accounting, and 

transport dynamically directed by government officials. Industrially speaking, the Operations Engineering Department of 

Qatar Petroleum comprises several groups (e.g., related to inspection, process, systems, and planning) that enable the 

corporation to fulfill dynamic customer requirements [152], [153]. 

In the context of D_MpMcDM, experts have not been segmented according to their competence [154]–[156]. That is, 

all experts are supposed to be competent in all problem subjects. The question is: “Do all experts have competence in each 

subject?” In real-life, experts may not have all-inclusive competence [157]. Thus, a research gap exists in the context to 

tackle the segmentation of experts needed for realistic interdisciplinary problems. 

To plug the gap related to “the segmentation of experts according to experts’ competence,” we introduce the Subject-

oriented Expert Segments (SoESs) structure in the context of (D_MpMcDM). The SoESs structure is a multi-person 

decision-making framework in which experts are segmented based on their competence in the problem subjects and 

supervised by a director. The relative importance of subjects is also assessed by the director. SoESs provide the preferences 

of the problem alternatives based on their subject-oriented competence. 

The introduced SoESs structure can enhance the decision-making process in (D_MpMcDM) problems as: (1) the 

interdisciplinary nature of practical decision-making problems can be efficiently handled by considering a SoES for each 

subject; (2) precise evaluation is reached because each subject of the problem is assessed by the experts competent in the 

subject; (3) the supervision of SoESs can improve the whole decision-making process as the competence of experts is 

appreciated. 

The SoESs structure allows us to propose a decision-making methodology for D_MpMcDM with Subject-oriented 

Expert Segments (DI_S-MpMcDM_SoESs methodology) applying the BWM-MULTIMOORA approach with interval 

computation. The suggested methodology is derived by introducing the following decision-making models: 

1) BWM-Based Models Supported on the SoESs Structure for Obtaining Dynamic Weights of Subjects, Experts, and 

Alternatives: We develop three stepwise interval BWM-based models to calculate dynamic weights for the decision-

making problem. The first model is an interval BWM to calculate the dynamic weights of problem subjects (according 

to the competence of each SoES). The second model is also an interval BWM to obtain the dynamic weights of 

SoESs’ experts. The third model is an interval multi-person BWM based on the global criterion method to calculate 

the dynamic weights of alternatives (based on the preferences of SoESs’ experts). 

2) MULTIMOORA-Based Model for Obtaining Final Ranking of Alternatives: We introduce a MULTIMOORA-based 

model to integrate dynamic weights of alternatives obtained for each time period. First, the integrated significance 
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coefficients are calculated based on the consistency of the interval multi-person BWM and information entropy 

method. Second, the dynamic weights of alternatives are aggregated based on the MULTIMOORA-Borda approach 

to reach the final ranking of alternatives. 

We discuss a case study on a renewable energy investment project utilizing the proposed DI_S-MpMcDM_SoESs 

methodology. Segmentation of experts according to experts’ competences is essential in this case study as different 

competences are required to examine the problem’s financial, technological, environmental, and social subjects. 

The remainder of this chapter is arranged as follows. Section II presents the theory of the proposed DI_S-

MpMcDM_SoESs methodology. A real-life decision-making problem regarding investment in renewable energy sources 

is assessed in Section 3.  

2. Theory of DI_S-MpMcDM_SoES methodology 
This section introduces the derivation of the DI_S-MpMcDM_SoESs methodology, allowing segmentation of experts 

according to experts’ competence. Two phases exist for developing this methodology: (1) we compute the dynamic weights 

of subjects, experts, and alternatives using BWM-based models in which the preferences of director and experts of SoESs 

are considered (see Section 2.1); (2) we calculate the final ranking of alternatives using a MULTIMOORA-based model 

by considering the dynamic weights of alternatives and their integrated significance coefficients (see Section 2.2). The 

flowchart of the proposed decision-making is illustrated in Fig. V.1. 

 
Fig. V.1. Flowchart of the DI_S-MpMcDM_SoES methodology. 
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2.1.  BWM-based models for weighting process 

In this section, we develop three BWM-based models supported on the SoESs structure to process experts’ evaluations in 

each time period. The sequence of the three models and the notation (i.e., preferences and weights) are illustrated in Fig. 

V.1. All preferences are in the form of interval numbers. The purpose of the modeling is to generate dynamic weights of 

alternatives (obtained by the third model). The first and second models lead to dynamic weights of subjects and experts, 

respectively. The results of the first and second models are employed in the third model.  

The SoESs structure is shown with details in Fig. V.2. The subjects of the problem are represented as 

 1 , , , , ,j nS S S  1, 2 , .j n   For each subject, an SoES is allocated:  1SoES , , SoES , , SoES .j n   Each SoES 

includes jh experts, represented by  1Expert , , Expert , , Expert
j

j j j
k h  in which 1, 2 , .jk h  The director supervises 

SoESs and evaluates the relative importance of the subjects. 

 
Fig. V.2. Supervised multi-person structure in the DI_S-MpMcDM_SoES methodology. 

 
The criteria of the problem are categorized based on the subjects. For each subject, the set of criteria is represented as

 1 , , , , .
j

j j j
k hC C C   Each expert of SoES takes decision based on his/her competence in one criterion. Thus, Expert j

k  

(i.e., the thk expert in the thj  SoES) evaluates all alternatives   1 ,i ,.e. , , , , 1, 2 ,i mA A A i m   according to 

his/her competence in j
kC  (i.e., the thk criterion in the category of the thj subject). 

We consider a set of time periods for dynamic decision-making, i.e.,  0, , , ,t TP P P  where 0,1 ,t T   as 

shown in Fig. V.2. 0P denotes the present time and the set  1, , , ,t TP P P  represents the historical records. For 

each time period, the same SoESs structure is assigned. 

To obtain dynamic weights of subjects, experts, and alternatives, a step-by-step procedure is adopted as follows: 

Step 1 (Dynamic Weights of Subjects Using the Interval BWM Model): For each time period, the director assesses the 

priority of the problem subjects according to the best and worst items by considering best-to-others and others-to-worst 
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preferences. After designation of the best and worst subjects, the director assesses the interval preferences of all subjects, 

considering the best and worst subjects. 

 , ,,t t L t U
Bj Bj Bja a a     is the interval preference of BS (the best subject) over jS  for time period .t , ,,t t L t U

jW jW jWa a a     is 

the interval preference of subject j over WS (the worst subject) for time period .t The best-to-others and others-to-worst 

interval preference vectors are obtained for the subjects, respectively, as  1 2, , ,t t t t
B B B BnA a a a   and 

 1 2, , ,t t t t
W W W nWA a a a  . 

 For time period t , the weights of subjects are determined by solving the following interval BWM model: 

1

min , s.t. 

, , ,

, , ,

1, ; 0, , .

t

t t t t
B Bj j

t t t t
j jW W

n t t
j jj

a j t

a j t

t j t



  

  

 


  

  

   




  (V.1) 

Model (V.1) can be converted into the following form by considering crisp equivalents for the constraints: 

 
 
 
 

, , ,

, , ,

, , ,

, , ,

1

min , s.t.

, , ,

, , ,  

, , ,

, , ,

1, ; 0, ,

t

t t t L t U t L t
B Bj Bj Bj j

t t t L t U t L t
B Bj Bj Bj j

t t t L t U t L t
j jW jW jW W

t t t L t U t L t
j jW jW jW W

n t t
j jj

a a a j t

a a a j t

a a a j t

a a a j t

t j t



   

   

   

   

 


      
      
      
      

    .

 
 (V.2) 

where  (0 1)   is the possibility level of preferences determined by the director. Model (V.2) is linear; thus, for each 

time period, solving the problem for any given possibility level leads to a unique optimal weight vector

 , , ,
1 2, , ,t t t

n     and a corresponding objective value 
,t 

. 

 
,t 

denotes the consistency level of the interval preference relation. If 
, 0t    for all  , we have t t t

B j Bja    and 

t t t
j W jWa   , and correspondingly t t t

Bj jW BWa a a   for all j  and t . Thus, the interval preference relations t
BA   and t

WA

are entirely consistent. 

Step 2 (Dynamic Weights of SoESs’ Experts Using the Interval BWM Model): For each time period, the director 

distinguishes the best and worst experts in each SoES. Afterward, s/he provides the interval preferences (i.e., competence 

degrees) of all experts of the SoES according to the best and worst experts. 
, ,

, , ,,t t L t U
j Bk j Bk j Bke e e     is the interval preference 

of Expert j
B (the best expert in SoES )j  over Expert j

k ( 1,2, , )jk h   for time period .t  
, ,

, , ,,t t L t U
j kW j kW j kWe e e    is the 

interval preference of Expert j
k  ( 1,2, , )jk h   over Expert j

W (the worst expert in SoES j ) for time period .t  

 For SoES ,j  two interval preference vectors are obtained according to the best and worst experts, respectively, as 

 , , 1 , 2 ,, , ,t t t t
j B j B j B j BhE e e e   and  , ,1 ,2 ,, , , .t t t t

j W j W j W j hWE e e e   
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 For time period ,t we consider the following interval BWM model to obtain optimal weights of the experts of n  

SoESs: 

,

1

, , ,

, , ,

, ,1

min ,

s.t. 

, ,
, , ,

, ,

1, , ; 0, , , ,j

nt t t
j jj

t t t t
j B j Bk j k j

t t t t
j k j kW j W j

h t t
j k j kk

e k
j t

e k

j t k j t

 

  

  

 






 

    
   

   









  (V.3) 

where ,t
j
  represents the optimal weight of each subject obtained for each time period by solving Model (V.2) in Step 1. 

Similar to Model (V.2), a crisp equivalent can be formulated for Model (V.3). 

The crisp equivalent of Model (V.3) has a linear form; thus, for each time period, its solution leads to a unique optimal 

weight vector  , , ,
,1 ,2 ,, , ,t t t

j j j h      for each expert and the consistency levels  , , ,
1 1, , ,t t t

n      for any given possibility 

level .  

, 0t    means the complete consistency of interval competence degrees of all experts of the SoESs for time period 

t , i.e., ,
t
j BE  and , .t

j WE  However, the interval preference relation may not be so precise to reach the complete consistency 

in practice.  In ,
t
j BE  and ,

t
j WE , small deviations from the complete consistency situation lead to small positive values of 

, .t   Thus, the magnitude of ,t   represents the consistency level of multi-person decisions. 

Step 3 (Dynamic Weights of Alternatives Using the Interval Multi-Person BWM Model): For time period ,t  Expert j
k  

selects the best and worst alternatives according to his/her competence in j
kC  (i.e., the thk criterion in the category of the 

thj subject). Afterward, the expert considers interval preferences of all alternatives regarding the best and worst 

alternatives. 

 
, , , , ,
, , ,,k t k t L k t U

j Bi j Bi j Biq q q   is the interval preference of BA (the best alternative) over iA considered by Expert j
k  for time 

period .t
, , , , ,
, , ,,k t k t L k t U

j iW j iW j iWq q q     is the interval preference of iA over WA (the worst alternative) considered by Expert j
k  for 

time period .t  For SoES j and time period ,t two interval preference vectors are obtained according to the best and worst 

alternatives, respectively, as , , , ,
, , 1 , 2 ,( , , , )k t k t k t k t

j B j B j B j BmQ q q q   and  , , , ,
, ,1 ,2 ,, , , .k t k t k t k t
jW j W j W j mWQ q q q   

For each time period, the following interval multi-person BWM model (as a multi-objective programming problem) 

is derived as follows: 
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1

1

, ,
1, 1, , ,1 1

,
, ,1

,
, ,

,
, ,

1

min , , , ,

, , , ,

,

s.t. :

, , ,
, , ,

, , ,

1, ; 0, , ,

j

n

t t t t
j n

h ht t t t
k k j k j kk k

h t t
n k n kk

t k t t t
B j Bi i j k

t k t t t
i j iW W j k

m t t
i ii

f f f

w q w i k
j t

w q w i k

w t w i t

   

 





 
 






   
 




    
   

   

 




F  

 





  (V.4) 

where ,
,

t
j k   is the optimal weight of each expert of SoESs in time period t computed based on Model (V.3) in Step 2. 

1 , , , ,t t t t
j nf f f   F   is the objective function vector including the set of objective functions of each SoES in time 

period ,t i.e., 
,
, ,1

.jht t t
j j k j kk

f  


  

Model (V.4) can be solved using multi-objective programming methods such as Global Criterion Method, which is 

supported on Lp-metric. Based on this method, an optimal vector is obtained that minimizes a global criterion [158]. The 

transformed form of Model (V.4) based on the global criterion method is as follows: 

,

,
,1

,
, ,

,
, ,

1

min ,

s.t. :

, , ,
, , ,

, , ,

1, ; 0, , ,

t t
n j jt t

j tj
j

t k t t t
B j Bi i j k

t k t t t
i j iW W j k

m t t
i ii

p
f f

F
f

w q w i k
j t

w q w i k

w t w i t














 
 
 
 

    
   

   











  (V.5) 

where ,t
j
  is the optimal weight of each subject in time period t  attained through solving Model (V.2) in Step 1. ,t

jf   is 

the ideal objective function of each SoES in time period .t  The set of ,t
jf   for different values of j represents as 

, , , ,
1 , , , ,t t t t

j nf f f      F   . 

Based on the concept of the global criterion method [159], the aim of Model (V.5) is how close we can get to ideal 

objective function vector ,t F . The exponent of the objective in Model (V.5), i.e., p , is an integer considered from the set 

 1, 2, ,  . 

The value of p , considered by the director, denotes the type of distance. For 1,p   the deviation terms with lower 

values are considered more significant. As the value of p  increases from 2 to ,  the greater deviation terms gain more 

importance [159]. For p   , only the greatest deviation term is important and the summation operator converts to 

maximization of expression  , , ,t t t t
j j j jf f f     for different values of .j  
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Similar to Model (V.2), a crisp equivalent can be formulated for Model (V.5). The crisp equivalent of Model (V.5) 

has a linear form; thus, its solution leads to a unique optimal weight vector  ,* ,* ,*
1 2, , ,t t t

mw w w  and the consistency levels 

 , , ,
,1 ,2 ,, , ,

j

t t t
j j j h      for each time period and subject j and any given possibility level . 

 , 0tF  


 means the complete consistency of interval preference relations of all SoESs for time period t , i.e., ,
,

k t
j BQ  and 

,
, .k t

j WQ  However, the interval preference relation may not be so precise to reach the complete consistency in practice. In 

,
,

k t
j BQ  and ,

, ,k t
j WQ slight deviations from the complete consistency situation lead to small positive values of 

,tF 
. Thus, the 

magnitude of 
,tF 

 is a measure of the consistency level of group decisions in each time period. 

As illustrated in Fig. V.2, a dynamic matrix of overall assessments of all experts can be constructed from the results 

obtained for each time period, where each column is the output of Model (V.5) for the given time period. We show the 

dynamic matrix in Eq. (V.6). The decision-making process is the same in each time period; however, the judgment of 

experts may differ based on the variation of their judgments by passing time and changes in the conditions of the problem 

based on the essential varying dynamic feature of realistic problems. 
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2.2.  MULTIMOORA-based model for ranking process 

In this section, we develop a MULTIMOORA-based model to aggregate the judgments in multiple time periods to reach 

an integrative outcome of experts’ assessment. First, we must compute the integrated significance coefficients of the 

dynamic decisions to use in the MULTIMOORA-based model. 

 The integrated significance coefficients of each time period are obtained based on the concept of consistency of the 

interval multi-person BWM model and Information Entropy Method.   

Step 1 (Subjective, Objective, and Integrated Significance Coefficients of the Dynamic Decisions): The optimal values 

of the objective function of Model (V.5) are considered to calculate subjective significance coefficients of each time period, 

i.e., 
,tF 

. As 
,tF 

represents the consistency index of the interval multi-person BWM model, it can reflect the importance 

of the ranking of alternatives for each time period. 

The normalized values of 
,tF 

are considered as subjective significance coefficients of each time period: 

, , ,

0

.
T

t c t t

t

s F F 



 
 

  (V.7) 

Information Entropy, also called Shannon Entropy, is a powerful tool to compute objective significance coefficients 

in D-MpMcDM problems. In the theory of Information Entropy, contrasts of data sets are applied to help distinguish more 

significant sets [160]. 

To compute the objective significance coefficients, first, the dynamic matrix, introduced in Eq. (V.6), has to be 

normalized as: 
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Second, Information Entropy Measure is computed using the normalized dynamic matrix as follows: 

 
1

ln
m

t t t
i i

i

E k v v


       (V.9) 

where 1 ln( ).k m  Objective significance coefficients are computed based on Information Entropy as: 

   ,

0

1 1 .
T

t e t t

t

s E E


     (V.10) 

Subjective and objective significance coefficients, i.e., 
,t cs and 

, ,t es respectively, are consolidated to form integrated 

significance coefficients as: 

   , , , , ,

0

. . .
T

t t c t e t c t e

t

s s s s s



    (V.11) 

Step 2 (Subordinate Utilities and Rankings of Alternatives Based on MULTIMOORA Approach): In this step, we 

present the derivation of MULTIMOORA subordinate parts, i.e., Ratio System, Reference Point Approach, and Full 

Multiplicative Form. 

The utility of Ratio System is calculated as follows: 

 , ,

0

,
T

t t
i i

t

y s w 



    (V.12) 

where 
,ts 

 and 
,t

iw 
are the integrated significance coefficients of each time period and dynamic weights of alternatives 

based on Eqs. (V.11) and (V.12), respectively. The utilities of iy  are ordered descendingly to reach the ranking of 

alternatives based on Ratio System. 

The utility of Reference Point Approach is obtained as follows: 

   , , ,max ,t t t t
i i

t
z s r s w       (V.13) 

where the maximal objective reference point, i.e., tr , equals to 
,max .t

i
i

w 
 The utilities of iz  are ordered ascendingly to 

find the ranking of alternatives based on Reference Point Approach. 

The utility of Full Multiplicative Form is generated as: 

 ,

0

,

.
T

t
i i

t

ts
u w 





    (V.14) 

The utilities of iu  are arranged descendingly to obtain the ranking of alternatives based on Full Multiplicative Form. 

Step 3 (Final Utility and Ranking of Alternatives Based on MULTIMOORA-Borda Approach): We use the concept of 

Borda Rule to integrate the subordinate results of MULTIMOORA. 

Borda Rule is a technique from the category of voting theory. From the viewpoint of computation and 

straightforwardness for decision-makers, Borda Rule outweighs the dominance theory traditionally used in 

MULTIMOORA method [18]. 

 The formula for generating the final utility of MULTIMOORA-Borda approach is: 
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where ,iy ,iz and iu  are the normalized subordinate utilities computed similar to Eq. (V.8). ( )ir y , ( )ir z , and ( )ir u  are 

the rankings obtained for Ratio System, Reference Point Approach, and Full Multiplicative Form, respectively. m is the 

number of alternatives. 

The utilities of iMB  are arranged descendingly to obtain the final ranking of alternatives based on MULTIMOORA-

Borda approach. 

3. Application of DI_S-MpMcDM_SoES methodology in energy sector 

This section discusses a practical problem regarding an energy investment project. The case study concerns investment in 

renewable energy sources (see Fig. V.3) tackled using the proposed D-MpMcDM-SoESs methodology.  

As illustrated in Fig. V.4, a SoESs structure is considered because different competences are needed for the problem. 

The decision-making process is handled by four SoESs focused on financial, technological, environmental, and social 

subjects. As the director, a project manager supervises them. Each SoESs includes four experts. A project manager assesses 

the relative importance of the problem subjects and evaluates the relative competence degree of the experts of each SoES. 

Each expert of a SoES appraises the weights of the candidate renewable energy sources based on their specific competence 

in a single criterion. 

 

 

Fig. V.3. The case study of the DI_S-MpMcDM_SoES methodology: Renewable energy investment project. 

 
 

 
Fig. V.4. Supervised multi-person structure for the case study of the RF_S-MpMcDM_FRFP methodology. 
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The alternatives of renewable energy sources are six items: solar power, hydroelectric energy, wave energy, bioenergy, 

geothermal energy, and wind energy. 

Solar power can be collected through photovoltaic cells, specially-designed power plants, or water heating systems 

operated based on sunshine. Hydroelectric energy is a traditional form of harnessing clean energy. The water flowing off 

the dam powers a turbine to produce electricity. Wave energy is captured utilizing different devices such as absorbers or 

inverted-pendulum systems. Bioenergy can be absorbed from any organic matter called biomass, which can be directly 

fired or processed into gas (biogas) or liquid (biofuel). Geothermal energy is obtained by pumping water down into the 

underground, specifically near the boundaries of Earth’s tectonic plates. Wind energy is gathered by turbines established 

on windy lands [161]. 

First, we solve the decision-making problem for the present time ( 0)t  , i.e., the data of Oct-2021, based on Models 

(V.1)–(V.5). Linguistic preferences for all judgments made in Models (V.1)–(V.5) are the same values listed previously in 

Table III.4. The table also shows the equivalent interval values for the linguistic preferences. 

Interval preference vectors considered for obtaining weights of subjects by the project manager are gathered in Table 

V.1. Besides, optimal weights of the subjects obtained from Model (V.2), i.e., for possibility level 0.5 are listed in 

the table. The value of the objective function of Model (V.2), i.e., is equal to 0.085. Table V.2 gives the interval 

preference vectors considered by the project manager for comparing experts of SoESs. 

Table V.1. Interval preferences of subject of SoESs assessed by the project manager (obtained for the present time . 

Interval preferences and  
optimal weights 

 Finance  Technology  Environment Society 
 

(Best-to-Others vector)  

    Best subject: Environment 
 [3, 5] [7, 9] [1, 1] [3, 5] 

(Others-to-Worst vector) 

   Worst subject: Technology 
 [3, 5] [1, 1] [7, 9] [3, 5] 

(Optimal weights)  0.170 0.064 0.596 0.170 

 

Table V.2. Competence degrees of the experts of SoESs assessed by project manager (obtained for the present time . 

SoES Best expert Worst expert Interval preferences transformed from linguistic terms 

 Expert 1 Expert 2 Expert 3 Expert 4 

Financial segment Expert 1 Expert 3 
 

[1, 1] [1, 3] [7, 9] [3, 5] 

 

[7, 9] [5, 7] [1, 1] [1, 3] 

Technological segment Expert 2 Expert 1 
 

[7, 9] [1, 1] [1, 3] [3, 5] 

 

[1, 1] [7, 9] [5, 7] [3, 5] 

Environmental segment Expert 3 Expert 4 
 

[3, 5] [3, 5] [1, 1] [7, 9] 

 

[3, 5] [1, 3] [7, 9] [1, 1] 

Social segment Expert 4 Expert 2 
 

[1, 3] [7, 9] [1, 3] [1, 1] 

 

[5, 7] [1, 1] [5, 7] [7, 9] 

 

The six alternatives of renewable energy sources are assessed according to the related criterion based on the comments 

of each expert of the four SoESs. Table V.3 lists the relative interval preference degrees of the renewable energy sources 

provided by financial, technological, environmental, and social segments. 

0, ,j


0, , 

( 0))t 

0
BA

0
WA

0,
j 

( 0))t 

0
1,BE

0
1,WE

0
2,BE

0
2,WE

0
3,BE

0
3,WE

0
4,BE

0
4,WE



 
 
 
 

76   V. DI_S-MpMcDM_SoESs methodology 
 
 

 

Table V.3. Interval preference degrees of the alternatives of renewable energy sources assessed by SoESs (obtained for the present 
time ( 0))t  . 

SoES Expert of
SoES 

Criterion Best 
alternative 

Worst 
alternative 

Interval preferences transformed from linguistic terms 

 
Solar 
power 

Hydroelectric 
energy 

Wave 
energy 

Bioenergy Geothermal 
energy 

Wind 
energy 

F
in

an
ci

al
 s

eg
m

en
t 

Expert 1 Investment cost Solar power 
Geothermal 
energy 

1,0
1,BQ  [1, 1] [1, 3] [3, 5] [3, 5] [7, 9] [5, 7] 

1,0
1,WQ  [7, 9] [5, 7] [3, 5] [1, 3] [1, 1] [1, 3] 

Expert 2 Hardware cost Bioenergy Geothermal 
energy 

2 ,0
1,BQ  [5, 7] [3, 5] [1, 3] [1, 1] [7, 9] [5, 7] 

2 ,0
1,WQ  [1, 3] [3, 5] [3, 5] [7, 9] [1, 1] [1, 3] 

Expert 3 
Maintenance 
cost 

Solar power 
Geothermal 
energy 

3 ,0
1,BQ  [1, 1] [1, 3] [1, 3] [1, 3] [7, 9] [5, 7] 

3 ,0
1,WQ  [7, 9] [5, 7] [3, 5] [5, 7] [1, 1] [1, 3] 

Expert 4 Payback period Solar power Wave energy 

4 ,0
1,BQ  [1, 1] [3, 5] [7, 9] [1, 3] [3, 5] [3, 5] 

4 ,0
1,WQ  [7, 9] [1, 3] [1, 1] [5, 7] [3, 5] [1, 3] 

T
ec

hn
ol

og
ic

al
 s

eg
m

en
t Expert 1 Efficiency Wind energy 

Hydroelectric 
energy 

1,0
2 , BQ  [5, 7] [7, 9] [1, 3] [5, 7] [3, 5] [1, 1] 

1,0
2 ,WQ  [1, 3] [1, 1] [3, 5] [1, 3] [3, 5] [7, 9] 

Expert 2 Capacity factor Wind energy Wave energy 

2 ,0
2 , BQ  [3, 5] [5, 7] [7, 9] [1, 3] [5, 7] [1, 1] 

2 ,0
2 ,WQ  [1, 3] [1, 3] [1, 1] [5, 7] [1, 3] [7, 9] 

Expert 3 
Technical 
maturity 

Wind energy 
Hydroelectric 
energy 

3 ,0
2 , BQ  [3, 5] [7, 9] [5, 7] [1, 3] [1, 3] [1, 1] 

3,0
2 ,WQ  [1, 3] [1, 1] [1, 3] [5, 7] [3, 5] [7, 9] 

Expert 4 Feasibility Solar power 
Hydroelectric 
energy 

4 ,0
2 , BQ  [1, 1] [7, 9] [1, 3] [5, 7] [1, 3] [5, 7] 

4 ,0
2 ,WQ  [7, 9] [1, 1] [3, 5] [1, 3] [3, 5] [1, 3] 

E
nv

ir
on

m
en

ta
l s

eg
m

en
t 

Expert 1 
Pollution 
emission 

Wave energy Bioenergy 

1,0
3 , BQ  [3, 5] [3, 5] [1, 1] [7, 9] [5, 7] [1, 3] 

1,0
3 ,WQ  [1, 3] [1, 3] [7, 9] [1, 1] [1, 3] [3, 5] 

Expert 2 Land use Wind energy 
Geothermal 
energy 

2 ,0
3 , BQ  [5, 7] [3, 5] [1, 3] [5, 7] [7, 9] [1, 1] 

2 ,0
3 ,WQ  [1, 3] [3, 5] [5, 7] [1, 3] [1, 1] [7, 9] 

Expert 3 Water use Wind energy Bioenergy 

3 ,0
3 , BQ  [3, 5] [5, 7] [1, 3] [7, 9] [5, 7] [1, 1] 

3 ,0
3 ,WQ  [1, 3] [1, 3] [3, 5] [1, 1] [1, 3] [7, 9] 

Expert 4 Noise emission Wind energy Bioenergy 

4 ,0
3 , BQ  [1, 3] [5, 7] [1, 3] [7, 9] [3, 5] [1, 1] 

4 ,0
3 ,WQ  [5, 7] [1, 3] [5, 7] [1, 1] [3, 5] [7, 9] 

S
oc

ia
l s

eg
m

en
t 

Expert 1 Job creation Solar power Bioenergy 

1,0
4 , BQ  [1, 1] [5, 7] [3, 5] [7, 9] [1, 3] [3, 5] 

1,0
4 ,WQ  [7, 9] [1, 3] [3, 5] [1, 1] [5, 7] [1, 3] 

Expert 2 
Social 
acceptance 

Hydroelectric 
energy 

Bioenergy 

2 ,0
4 , BQ  [1, 3] [1, 1] [5, 7] [7, 9] [3, 5] [3, 5] 

2 ,0
4 ,WQ  [3, 5] [7, 9] [1, 3] [1, 1] [3, 5] [1, 3] 

Expert 3 Market maturity Solar power Bioenergy 

3 ,0
4 , BQ  [1, 1] [1, 3] [5, 7] [7, 9] [5, 7] [1, 3] 

3,0
4 ,WQ  [7, 9] [3, 5] [1, 3] [1, 1] [1, 3] [5, 7] 

Expert 4 Fatal accidents Solar power Geothermal 
energy 

4 ,0
4 , BQ  [1, 1] [1, 3] [3, 5] [3, 5] [7, 9] [1, 3] 

4 ,0
4 ,WQ  [7, 9] [5, 7] [1, 3] [3, 5] [1, 1] [5, 7] 

 

For each time, the computation procedure is similar to the present time. For briefness, we ignore to present the 

preferences tables and only report the final results, i.e., the optimal weights obtained based on Model (V.5). Utilizing the 

outcomes of Oct-2020, Apr-2021, and Oct-2021, besides the present time results, i.e., Apr-2022, we can construct a 

dynamic matrix as presented in Table V.4 (mathematically defined previously in Eq. (V.6)). The data of Table V.4 is 

obtained for the possibility level 0.5 of interval preferences and the exponent value 2 of the global criterion method. 
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Table V.4. Dynamic matrix of the results based on the data of the four time periods. 

 

Table V.5 put forward utilities and rankings of MULTIMOORA-Borda for the case study on renewable energy 

investment. For Reference Point Approach, the rankings are calculated by arranging the related utilities ascendingly, while 

for the two other subordinate methods, rankings are obtained based on descending order. 

Final utilities are obtained based on Borda Rule The final rankings are calculated by arranging the related utilities 

descendingly. The best alternative based on subordinate and final results of MULTIMOORA-Borda is similar, i.e., 

Alternative 6 (wind energy). 

The ranking lists of Ratio System and Full Multiplicative Form precisely match. The ranks of Reference Point 

Approach are very close to those of the two other techniques, i.e., they only differ in one rank (related to geothermal 

energy). 

 
Table V.5. Utilities and rankings of MULTIMOORA-Borda for the renewable energy investment project. 

 

Renewable energy sources  Results of the interval multi-person BWM model for the four time periods 

 
Oct-2020 
( 3)t    

Apr-2021 
( 2)t    

Oct-2021 
( 1)t    

Apr-2022 
( 0)t   

Solar power  0.148 0.116 0.151 0.153 
Hydroelectric energy  0.103 0.082 0.093 0.102 
Wave energy  0.205 0.219 0.199 0.191 
Bioenergy  0.079 0.063 0.067 0.076 
Geothermal energy  0.103 0.082 0.088 0.096 
Wind energy  0.362 0.438 0.402 0.382 

Renewable 
energy sources 

 
Ratio 
system 

Reference point approach Full multiplicative form 
MULTIMOORA- 
Borda 

Solar power  0.142 (3) 0.081 (3) 0.141 (3) 0.028 (3) 
Hydroelectric 
energy 

 0.096 (4) 0.098 (4) 0.096 (4) -0.015 (4) 

Wave energy  0.204 (2) 0.059 (2) 0.204 (2) 0.085 (2) 

Bioenergy  0.073 (6) 0.107 (6) 0.073 (6) -0.062 (6) 
Geothermal 
energy 

 0.094 (5) 0.098 (4) 0.094 (5) -0.024 (5) 

Wind energy  0.391 (1) 0 (1) 0.389 (1) 0.223 (1) 



 

 

 
 
 
Chapter VI 
 

VI. Conclusions, publications, and future 
works 
 

 

In this chapter, we present the conclusions of the overview and methodologies as well as the published research works 

based on the thesis and future works in Sections 1, 2, and I.2, respectively. 

1. Conclusions 
In this section, we present the concluding remarks regarding the three proposed methodologies (i.e., I_S-MpMcDM, RF_S-

MpMcDM_FRFP, and DI_S-MpMcDM_SoESs) as well as the points realized by analyzing the previous studies based on 

the overview on MULTIMOORA. 

The following points can be concluded from the MULTIMOORA overview: 

 Among uncertain sets, triangular fuzzy number, as a simple fuzzy number, is mostly applied to develop 

extensions. 

 some uncertain developments need more mathematical concepts for generating the models; however, there 

are several developments which do not require uncertain arithmetic because they simply use score functions 

which only need crisp arithmetic 

The following points can be concluded from the I_S-MpMcDM methodology: 

 The formulation of the proposed methodology is based on total interval computation. That is, the proposed 

theory of interval numbers lead to interval assessment values for subordinate parts of the interval 

MULTIMOORA-based model. Interval data is usually the outcome of laboratory experiments performed in 

many industries. Thus, in contrast to the most fuzzy/interval MpMcDM techniques existed in the literature, 

the model based on I_S-MpMcDM methodology does not need any degradation of the interval numbers. As 

a result, no data is missed in the modeling and the results are more reliable. 

 The integrated weights of criteria used in this methodology combine the comments of experts, based the 

interval BWM-based model, and the disorder of interval data of decision matrix, based on interval entropy. 

Thus, the consolidation of the two concepts results in more robust weights of criteria. 

The following points can be concluded from the RF_S-MpMcDM_FRFP methodology: 

 The risky fuzzy BWM-based model without considering director’s decision theoretically leads to more 

consistent criteria weights, but considering decisions of the expert panel is important in practice. 
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 Different values of possibility level of the risky fuzzy preferences nearly do not influence the consistency 

index of the risky fuzzy BWM-based model. 

 This risky fuzzy decision-making methodology fits well to the biomaterial selection problem because the 

work stresses of biomedical engineers may cause irrational decisions. 

The following points can be concluded from the DI_S-MpMcDM_SoESs methodology: 

 The triple interval BWM-based models are efficient for obtaining dynamic weights in the DI_S-

MpMcDM_SoESs problem as the obtained values for consistency levels are high. 

 The MULIMOORA-based model is effective for the problem as the values of the resultant subordinate and 

final rankings closely coincide. 

 Considering various values for possibility levels of interval experts’ preferences has a negligible impact on 

final ranking and does not change the best alternative. 

2. Publications 
The two publications based on the thesis are as follows: 

MULTIMOORA overview was published in Information Fusion (2019). The details of the publication is: 

 Arian Hafezalkotob, Ashkan Hafezalkotob, Huchang Liao, and Francisco Herrera, “An overview of 

MULTIMOORA for multi-criteria decision-making: Theory, developments, applications, and challenges,” 

Information Fusion, vol. 51, pp. 145–177, 2019. 

The I_S-MpMcDM methodology was published in IEEE Transactions on Cybernetics (2020). The details of the 

publication is: 

 Arian Hafezalkotob, Ashkan Hafezalkotob, Huchang Liao, and Francisco Herrera. Interval MULTIMOORA 

method integrating interval Borda rule and interval best-worst-method-based weighting model: Case study on 

hybrid vehicle engine selection. IEEE Transactions on Cybernetics, vol. 50 (3), pp. 1157–1169, 2020. 

3. Future works 

In this section, we give several guidelines for future research in the regard of the theory and application of the three 

proposed methodologies as well as the challenges for development of the MULTIMOORA. 

The following directions are suggested for future works in the area of the MULTIMOORA: 

 Prospective researchers may focus on cooperative and non-cooperative multi-person MULTIMOORA 

models. The comparative analysis of the cooperative and non-cooperative multi-person decision-making 

models can also be interesting. 

 Risk management and data mining approaches are less worked in the studies on MULTIMOORA. Measuring 

multifarious risks and specifying the acceptability degree of each risk and analysis of costs and advantages 

of considering risks are the challenges at the heart of real-world decision-making problems. 

The following directions are suggested for future works following the I_S-MpMcDM methodology: 

 We considered that director only assesses the relative importance of the experts. The methodology can be 

enhanced to a more general form when director is responsible for evaluating the relative importance of the 

criteria of the problem. 
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 The interval BWM-based model can be extended by calculating the lower and upper limits for the subjective 

optimal weights. That is, the subjective crisp optimal weights obtained in this study can be converted to 

interval numbers by finding extreme values. 

The following directions are suggested for future works following the RF_S-MpMcDM_FRFP methodology: 

 The risks of irrational decisions of director and the expert panel can be regarded with different attitudes. Such 

assumption can be reasonable as director probably has more experience and knowledge about the problem 

than expert panel. 

 The RF_S-MpMcDM_FRFP methodology can be employed in many real-world problems in which risky 

fuzzy decisions are significant such as practical cases on healthcare management and socioeconomic policy-

making. 

The following directions are suggested for future works following the DI_S-MpMcDM_SoESs methodology: 

 The proposed DI_S-MpMcDM_SoESs methodology may have defects in tackling problems with 

interdependent subjects. For such problems, an extension of the DI_S-MpMcDM_SoESs methodology 

considering multiple segments with different competence of experts oriented on each subject can be a feasible 

solution. 

 The behavior assessment of SoESs regarding the risk aversion of the experts’ judgments can be appealing 

future research for which the anticipated regret theory is beneficial. 

 Application of realistic fuzzy and linguistic representations to compute uncertain preferences of experts can 

be another extension of the proposed methodology [162], [163].
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