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RESEARCH ARTICLE

Epigenome wide association study in peripheral blood of pregnant women 
identifies potential metabolic pathways related to gestational diabetes
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ABSTRACT
Gestational diabetes mellitus (GDM) increases the risk of developing metabolic disorders in both 
pregnant women and their offspring. Factors such as nutrition or the intrauterine environment 
may play an important role, through epigenetic mechanisms, in the development of GDM. The 
aim of this work is to identify epigenetic marks involved in the mechanisms or pathways related to 
gestational diabetes. A total of 32 pregnant women were selected, 16 of them with GDM and 16 
non-GDM. DNA methylation pattern was obtained from Illumina Methylation Epic BeadChip, from 
peripheral blood samples at the diagnostic visit (26–28 weeks). Differential methylated positions 
(DMPs) were extracted using ChAMP and limma package in R 2.9.10, with a threshold of FDR 
<0.05, deltabeta >|5|% and B >0. A total of 1.141 DMPs were found, and 714 were annotated in 
genes. A functional analysis was performed, and we found 23 genes significantly related to 
carbohydrate metabolism. Finally, a total of 27 DMPs were correlated with biochemical variables 
such as glucose levels at different points of oral glucose tolerance test, fasting glucose, choles-
terol, HOMAIR and HbA1c, at different visits during pregnancy and postpartum. Our results show 
that there is a differentiated methylation pattern between GDM and non-GDM. Furthermore, the 
genes annotated to the DMPs could be implicated in the development of GDM as well as in 
alterations in related metabolic variables.
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Background

GDM is defined as a carbohydrate intolerance with 
onset during pregnancy [1]. GDM can increase the 
risk of prematurity, C-section delivery, preeclamp-
sia, the long-term risk of type 2 diabetes mellitus 
(T2DM), metabolic syndrome, renal disease and 
cardiovascular disease (CVD). Furthermore, off-
spring from women with GDM have an increased 
risk of foetal macrosomia, higher infant fat mass 
and long-term obesity [2]. Globally, the prevalence 
of GDM varies depending on the country and the 
diagnostic criteria, ranging from 1% to 31% [3]. In 
Europe, the prevalence ranges from 1.5% in 

Sweden to 10% in Italy [4,5]. Obesity, increasing 
reproductive age of women, sedentary lifestyle, 
and environmental factors are some of the princi-
pal risk factors for developing GDM [6].

During normal pregnancy, beta-cells secrete 
more insulin to compensate and maintain normal 
glucose levels, due to the insulin resistance, espe-
cially at the end of the gestation. However, in 
GDM, certain alterations exist that produce reduced 
insulin sensitivity and impaired insulin secretion 
[7], developing carbohydrate intolerance. The mole-
cular mechanisms that produce these alterations are 
still unknown. GDM development is influenced by 
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genetic, epigenetic, and environmental factors [8– 
11]. Epigenetics is the link between genetics and the 
environment, and it could explain how environ-
mental factors affect the development of diseases. 
There are different epigenetic mechanisms involved 
such as histone modification, DNA methylation 
and some authors have also included non-coding 
RNAs. DNA methylation is the most extensively 
studied, and it consists of the addition of a methyl 
group to the five positions of cytosine residues [12]. 
There are different techniques to study DNA 
methylation, but one of the best ways to have 
a global view of methylation is with an epigenome- 
wide association study (EWAS), performing methy-
lation arrays.

A few EWAS studies on GDM have been 
reported with different approaches such as the epi-
genetic changes in cord blood and the effect on the 
offspring and epigenetic patterns on the foetus- 
placental endothelium [13–15]. However, there are 
not many epigenetic studies on blood samples of 
mothers with GDM. According to an epigenetic 
study in peripheral blood in GDM vs non-GDM 
pregnancies, it has been revealed that five of the 
most differentiated methylated CpG in the follow-
ing genes, Solute Carrier Family 9 Member A3 
(SLC9A3), Male-Enhanced Antigen 1 (MEA1), 
Kelch Domain Containing 3 (KLHDC3) and 
Calmodulin Binding Transcription Activator 1 
(CAMTA1) were correlated to glucose levels and 
fasting insulin in the first visit (at 23 weeks of 
pregnancy) [10]. Another study on peripheral 
blood of GDM vs. non-GDM presented five CpGs 
within COP9 signalosome Subunit 8 (COPS8), 
Phosphoinositide-3-Kinase Regulatory (PIK3R), 
3-Hydroxyanthranilate 3,4- Dioxygenase (HAAO), 
Coiled-Coil Domain Containing 124 (CCDC124) 
and Chromosome 5 Open Reading Frame 34 
(C5orf34) with biomarker potential for early ther-
apeutic intervention [16]. Also, a recent study in 
peripheral blood identified three CpGs in Long 
Intergenic Non-Protein Coding RNA 917 
(LINC00917), Trafficking Protein Particle Complex 
Subunit 9 (TRAPPC9) and Lymphoid Enhancer 
Binding Factor 1 (LEF1) genes, respectively, that 
may be implicated in the development of GDM 
and postpartum abnormal glucose tolerance [17].

In this study, we have compared by EWAS the 
epigenome of GDM vs non-GDM women in the 

moment of the diagnosis and studied the associa-
tion with clinical variables related to diabetes in an 
attempt to elucidate the molecular mechanisms of 
the development of gestational diabetes.

Methodology

Subjects

The participants of this study are part of the 
EPI_DG study, which started at the beginning of 
2019. The recruitment was done in the Diabetes 
and Pregnancy Unit at the University Hospital 
Virgen de la Victoria, Málaga, Spain. The inclu-
sion criteria were age 18–45 years, singleton preg-
nancy and being in the second or third trimester 
of pregnancy. The existence of a GDM diagnosis at 
<14 weeks of pregnancy and multiple pregnancy 
were exclusion criteria. All the participants were of 
Caucasian Mediterranean ethnicity.

Sixteen GDM pregnant women and 16 non- 
GDM pregnant women (controls) were studied. 
The GDM diagnosis was made according to the 
National Diabetes Data Group NDDG criteria in 
two-step screening [18]: firstly, an O’Sullivan test 
(50 g glucose overload) was performed in primary 
care centres. If post-load glucose was ≥7.8 mmol/L, 
women were referred to our Diabetes and 
Pregnancy Unit for performing the 100 gr oral 
glucose tolerance test (OGTT-100 g). GDM was 
diagnosed if glucose values were higher than the 
threshold, at least in two points: fasting >5.8 mmol/l 
(OGTT0.0), after 1 h >10.6 mmol/l (OGTT60.0), 
after 2 h >9.2 mmol/L (OGTT120.0), and after 3 h 
>8.0 mmol/l (OGTT180.0). Pregnant women with 
normal OGTT-100 were considered as controls.

The study protocol includes a baseline visit (at 
the moment of performance of 100 gr OGTT, at 
24–29 weeks of pregnancy; T0), a pre-labour visit 
(at 36–37 weeks of pregnancy; T1), and a pos- 
labour visit (8 weeks after birth; T2), all of them 
at our Diabetes and Pregnancy Unit. Height was 
measured at T0, and weight and blood pressure 
(BP) were measured at every visit, according to 
standardized procedures. At T0, we collected data 
regarding pre-pregnancy weight to calculate ‘pre- 
pregnant body mass index (BMI)’ as weight (kg)/ 
height2 (m2). Weight gain was calculated as the 
difference between the weight at T1 and at T0.
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At T2, we collected anthropometric data—weight, 
length, and head circumference— from the digital 
medical history of newborns (these parameters were 
measured by the neonatologist during the first eva-
luation of newborns according to local protocols and 
compiled at the medical history).

Samples

Peripheral blood samples were collected at three 
different times: T0 during the diagnostic visit (24– 
29 weeks); T1 pre-labour visit (37–38 weeks) and 
T2 post-birth visit (8 weeks after birth). The 75 gr 
OGTT at T2 (OGTT.2), measuring fasting glucose 
(OGTT0.2) and 2 h postload glucose 
(OGTT120.2), was only performed in the GDM 
group to test these women for prediabetes or dia-
betes according to ADA recommendation [19]. 
Blood and serum were stored at −80ºC until the 
analysis.

Biochemical analysis

Glucose was measured by the oxidase method 
(Bayer, Leverkusen, Germany). Insulin levels 
were measured by a radioimmunoassay method 
using BioSource International Inc. (Camarillo, 
CA, USA). We calculated the homoeostasis 
model assessment of insulin resistance index 
(HOMA-IR) as described by Matthews et al. [20]. 
Serum 25(OH)D levels were determined by the 
Enzyme-Linked ImmunoAssay (ELISA) kit 
(Immundiagnostik, Bensheim, Germany). 
Cholesterol, triglycerides, and HDL were mea-
sured using commercial enzymatic methods. The 
blood pressure was measured twice with 
a sphygmomanometer with an interval of 5 min 
between measurements and the average of the two 
measurements was used in the analyses.

DNA isolation and bisulphite conversion

DNA was isolated using QIAamp DNA Blood 
Mini Kit (Qiagen, Hilden, Germany) according to 
the manufacturer’s instructions. Quality and con-
centration of DNA were measured using Qubit 3.0 
Fluorometer with Qubit dsDNA HS Assay Kit 
Fluorometer (Thermo Fisher Scientific, Waltham, 
MA, USA). A total of 500 ng of genomic DNA 

from T0 was bisulphite treated with Epitect 
Bisulphite Kit (Qiagen, Germany) for posterior 
DNA methylation analysis.

Epigenome-wide DNA methylation

DNA methylation was tested using the Infinium 
Mehylation EPIC BeadChip Kit. R statistical soft-
ware (https://www.rstudio.com/) was used to extract 
the data, using ChAMP package version 2.9.10 [21]. 
The probes were deleted using the following thresh-
old: a detection p-value above 0.01 in one or more 
samples, with a bead count less than 3 in at least 5% 
of the samples, probes non-cpg and probes with 
SNPs [22,23]. Intra-cell type normalization was 
done using the beta-mixture quantile normalization 
(BMIQ) method. Houseman correction was used to 
correct the differences in methylation resulting from 
differences in cellular heterogeneity [24]. Finally, 
inflation levels were calculated with RaMWas pack-
age in R studio.

Methylation data analysis

β-values and M-values were calculated to obtain the 
methylation levels. M-values are a logical transfor-
mation of β-value, and they were used to obtain the 
differentially methylated positions (DMPs) by per-
forming an eBayes moderated t-statistic with limma 
package in R statistical software. β-value is the esti-
mate of the methylation level using the ratio of the 
methylation probe intensity and the overall intensity. 
The DMPs were filtered using the False Discovery 
Ratio (FDR) <0.05, the difference of β level between 
groups (deltaβ) higher than 5% in absolute terms, 
and the log odds that the CpG site is deferentially 
methylated (B) higher than 0. The models were 
adjusted by variables previously associated with 
GDM such as age, pre-pregnant BMI, foetal sex, 
weight gain, gestational age, and HOMAIR [25].

Functional analysis

A functional enrichment analysis was performed 
looking for the potential mechanism that may be 
altered in GDM compared with non-GDM. Once 
we obtained the DMPs with annotated genes, 
a gene ontology (GO) and Kyoto encyclopaedia 
of genes and genomes (KEGG) were performed. 
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GO terms and KEGG pathways were obtained 
using Missmethyl package in R software. In addi-
tion, a String net (https://string-db.org/) was per-
formed to identify protein–protein interactions 
(PPI). The significant threshold was an interaction 
score >0.7 and FDR <0.05. Clustering was per-
formed in Cytoscape (https://cytoscape.org/) with 
MCODE app. Finally, each cluster was analysed by 
DAVID (https://david.ncifcrf.gov/summary.jsp) to 
identify the potential function.

Statistical analysis

Due to the small sample size and the fact that 
some variables did not show a normal distribu-
tion, non-parametric tests were used to compare 
quantitative variables and for correlation analy-
sis. R software (4.0.4) was used to study the 
differences in clinical and biochemical variables 
using the U-Mann Whitney test. A correlation 
analysis by spearman test was performed 
between methylation levels and biochemical 
variables. Genes with more than 1 DMP, and 
those genes related with carbohydrate metabo-
lism function in the functional analysis were 
chosen for this analysis. The correlation was 
made with clinical variables at different times 
(T0, T1 and T2). The correlation matrix was 
obtained and represented with the package 
GGally in R studio (4.0.4), and the threshold 
was r > 0.5 and p < 0.05.

Results

Clinical characteristic of the subjects

The characteristics of the subjects are represented 
in Table 1. Both groups were matched by age, 
gestational age, and pre-pregnancy BMI. The con-
trol group showed higher weight gain during preg-
nancy compared with GDM. The rest of the 
variables were not statistically different between 
groups. In the GDM group, after diet and exercise 
recommendation, six pregnant women required 
additional pharmacological treatment (insulin).

Differential methylation analysis

A total of 1.141 differentially methylated posi-
tions (DMPs) were found comparing GDM vs. 
non-GDM, with a threshold of FDR <0.05, 
deltaβ >|0.5|, and B ≥0. Slight level of inflation 
was found in our EWAS (λ = 1.136) 
(Supplementary fig. S1). The PCA analysis 
shown in Figure 1a represents the two popula-
tions. As shown in Figure 1b, cg13824270 in 
pre-mRNA processing factor 4B (PRPF4B) 
gene, cg20409752 in CAMTA1 and 
cg050373962 are the most hypomethylated, 
and cg04248279 in rabphilin 3A like 
(RPH3AL) gene, cg20758759 in non-annotated 
gene, cg02518222 in hydroxysteroid 17-beta 
dehydrogenase 11 (HSD17B11) gene are the 

Table 1. Clinical characteristic of the subject included in the study.

Comparison Basal (24/28 weeks) Pre-Labor (36–38 weeks) Pos-labour (8 weeks)

Non-GDM GDM P-value Non-GDM GDM P-value Non-GDM GDM P-value

Age 34.2 ± 4.5 33.8 ± 4.1 0.808
Gestational age (weeks)† 29 ± 3 28 ± 2 0.579 36 ± 2 36 ± 1 0.282
O’sullivan (mg/dl) 160.7 ± 16.3 172.9 ± 22.2 0.085
Weight (Kg) 75.4 ± 11.3 76.0 ± 13.5 0.892 78.7 ± 11.9 76.5 ± 13.1 0.622 71.9 ± 12 67.3 ± 11.5 0.335
Pre-pregnant BMI† 24.6 ± 6.9 23.8 ± 6.9 0.862
SBP (mm Hg) 104.2 ± 9.9 111.4 ± 15.4 0.131 106.9 ± 12.8 109.1 ± 12.8 0.643 104.1 ± 7.32 108.3 ± 8.9 0.179
DBP (mm Hg) 69.1 ± 8.2 70.1 ± 7.8 0.710 71.2 ± 6.5 73.6 ± 8.8 0.393 78.4 ± 6 75.9 ± 5.4 0.242
Cholesterol (mg/dl) 272 ± 48.1 258.5 ± 51.1 0.446 273.6 ± 49.1 254.7 ± 54 0.308 214.4 ± 15.3 193.5 ± 35.3 0.09
HDL (mg/dl) 82.7 ± 18.2 77.8 ± 15.7 0.424 74.6 ± 12.3 73.2 ± 16.8 0.785 66.3 ± 15.3 58.1 ± 15 0.156
Tg (mg/dl)† 194 ± 68 183 ± 38 0.829 249 ± 112 242 ± 79 0.749 89 ± 38 61 ± 57 0.890
HbA1C (%) 5.1 ± 0.3 5.3 ± 0.4 0.151 5.3 ± 0.3 5.8 ± 1.6 0.045 5.4 ± 0.3 5.4 ± 0.41 0.756
HOMA-IR† 1.5 ± 1.1 1.7 ± 1.4 0.147 1.5 ± 1.4 2.1 ± 3.2 0.883 1.0 ± 0.7 0.8 ± 1.3 0.964
Weight_NB (g) 3455 ± 430.7 3309 ± 354.2 0.312
Length_NB (cm) 50.4 ± 1.4 50.3 ± 1.6 0.853
HC_NB (cm) 34.2 ± 1.2 34.1 ± 1.6 0.916
Weight gain (kg) 3.3 ± 1.4 0.49 ± 2.6 0.001

Data are expressed as the mean ± standard deviation or median ± interquartile range (IQR) for variables with no normal distribution. P-values for 
continuous data were calculated using U-Mann Whitney test. O’sullivan: glucose level in O’sullivan test. BMI: body mass index. HDL: high density 
lipoprotein cholesterol. SBP: diastolic blood pressure. SBP: systolic blood pressure. Tg: triglycerides. NB: newborn. HC: head circumference. Weight 
gain: calculated as the difference between the weight at the visit and at basal visit. †Median ± IQR. 
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most hypermethylated (Supplementary 
table S1).

According to the position of the CpGs respect-
ing the gene (feature position), 36% are located in 
the body, 37% in the intergenic region (IGR), 
around 20% in the promoters area (transcription 
start site (TSS) 1500 1500, 5’UTR, and TSS200) 
and the rest are in the beginning of the exon and 
in 3’UTR (Figure 1c). Related to the cgi position, 
most of the DMPs were in the Open sea position 
(67%). The rest of the DMPs were in shore (19%), 
island (7%) and shelf (7%) positions, respectively 
(Figure 1d).

Functional enrichment analysis

In order to understand what potential mechanisms 
are involved in GDM, a functional enrichment 
analysis was performed. First, a gene ontology 
(GO) and a Kyoto encyclopaedia of genes and 
genomes (KEGG) analyses were performed in all 

the CpGs with genes annotated (714). The most 
significant GO terms are represented in Figure 2a. 
Among the significant GO, we identified the fol-
lowing mechanisms: the regulation of insulin 
secretion, cellular response to amino acid stimulus 
and response to nutrient levels. KEGG analysis 
showed that the most significant pathways were 
the insulin signalling pathway, growth hormone 
synthesis, ErbB signalling pathway, and T2DM 
(Figure 2b).

In addition, a String net was performed in genes 
annotated (714) to identify protein–protein inter-
actions (PPI) and their related mechanisms. The 
resulting net was clustered in Cytoscape using 
MCODE app and analysed in DAVID. As shown 
in Figure 2c, a total of 15 clusters were defined 
using the default values of MCODE app. The three 
most significant (enrichment p-value <1e-16) clus-
ters were related to carbohydrate metabolism 
pathways: positive regulation of glycolytic process, 
MAPK signalling pathway, insulin pathway, 

Figure 1. a) Principal component analysis between GDM (blue, cluster 2) and non-GDM (Red, cluster 1) b) Volcano plot, green: CpGs 
most hypometylated, red: most hypermethylated, blue: non-significant. c) DMPs according with feature position in the gene d) DMPs 
according with island position (Cgi position).
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cellular response to nutrient levels, type 1 diabetes, 
T2DM, and insulin resistance. A total of 23 of our 
annotated genes were included in these clusters, 
and there was also interaction between them.

Correlation analysis

Within the top 100 DMPs, genes with more than 
one DMP and those genes related with carbohy-
drate metabolism according to our enrichment ana-
lysis were selected to perform a correlation analysis 
with the biochemical variables at different times T0, 
T1, and T2. A total of 27 CpGs were significantly 
correlated to biochemical variables (p < 0.05, r>| 
0.5|) (Table 2).

The highest correlations were for OGTT0.2 in 
epidermal growth factor receptor (EGFR) 
(cg14688342), protein disulphite isomerase family 
A member 5 (PDIA5) (cg21873971), protein kinase 
AMP-activated catalytic subunit alpha 2 
(PRKAA2) (cg05894391) genes, and in non- 

annotated region cg04217177; and for 
OGTT120.2 in DAN Family BMP antagonist 
(NBL1) gene (cg14579430, cg15589641, 
cg12474394, and cg14715327) and in the mito-
chondrial inner membrane organizing system 
1-NBL1 (MINOS1-NBL1) gene (cg10211745, 
cg19234140) (Figure 3). There is a strong correla-
tion between CpGs in the same gene (r > 0.9), and 
in the same direction (Figure 3b).

Discussion

In this work, we found a total of 1041 DMPs in 
the peripheral blood of GDM vs. non-GDM 
women. Based on functional analysis of the 714 
genes annotated, we found 23 genes related to 
positive regulation of glycolytic process, MAPK 
signalling pathway, insulin pathway, cellular 
response to nutrient levels, T2DM, and insulin 
resistance. Furthermore, the correlation analysis 

Figure 2. a) GO terms most enrichment pval<0.01 b) KEGG pathways most enriched. c)String net PPI (p-value<1.0e-16) with 23 
genes related to glucose metabolism.
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showed that some of the most enriched genes 
are correlated to glucose and insulin variables 
(fasting glucose, different points of OGTT, 
HbA1C, HOMAIR) at baseline and post-labour 
clinical analytics.

Currently, there is a growing interest in the 
study of genetic and epigenetic patterns in GDM 
pregnant women and their offspring [14,26]. Our 
results agree with recent studies. Ballesteros et al. 
[17] identified 3 DMPs within LINC00917, 

Table 2. CpGs most correlated to biochemical variables.
CpG Genes Variables r P value

cg07894331 MAPK1 BMI_p 0.5187 0.002
cg12080079 PAX7 Chl.1 0.5809 0.0005
cg09418268 MTOR Glucose.0 0.5391 0.001
cg12854232 ERBB4 Glucose.0 −0.5263 0.002
cg20344956 LOC646214 HbA1c.2 0.53 0.003
cg20409752 CAMTA1 HOMAIR.0 −0.5521 0.001
cg07420274 GAD1 HOMAIR.0 −0.5227 0.002
cg14688342 EGFR OGTT0.2 −0.6216 0.023
cg04217177 ESRRB OGTT0.2 0.6725 0.01
cg17434154 ESRRG OGTT0.2 0.5535 0.04
cg21873971 PDIA5 OGTT0.2 0.7919 0.001
cg05894391 PRKAA2 OGTT0.2 0.6177 0.02
cg11055991 PTPRN2 OGTT0.2 0.5803 0.037
cg14479198 RASGRF2 OGTT0.2 −0.5752 0.039
cg19891476 SYK OGTT0.2 0.5576 0.047
cg13487126 AKT2 OGTT120.2 0.5939 0.032
cg10211745 MINOS1-NBL1 OGTT120.2 0.6742 0.011
cg19234140 MINOS1-NBL1 OGTT120.2 0.6898 0.009
cg14579430 NBL1 OGTT120.2 0.6161 0.024
cg15589641 NBL1 OGTT120.2 0.6261 0.022
cg12474394 NBL1 OGTT120.2 0.6912 0.008
cg14715327 OR4A16 OGTT120.2 0.6704 0.012
cg20230784 GNAQ OGTT180.0 0.5602 0.0008
cg17816038 CAMTA1 Tg.1 −0.5287 0.002
cg00856432 CACNA1D VitaminD.2 0.5914 0.0007

r: Spearman correlation. OGTT0: Oral Glucose Tolerance Test first point. OGTT120: Oral Glucose 
Tolerance Test, point 120 min. OGTT180: Oral Glucose Tolerance Test, point 180 min. Tg: 
Triglycerides. BMI_p: pre-pregnancy body mass index. Chl: cholesterol levels. .0: basal visit. .1: pre 
labour visit. .2: post labour visit.. 

Figure 3. Correlation-plots a)the most correlated CpGs with OGTT0.2 (r>|0.6|). b) the most correlated CpGs with OGTT120.2(r>|0.6|). 
*: p-value<0.05, **: p-value<0.01, ***: p-value<0.005, ****: p-value<0.001. OGTT0: Fasting glucose; OGTT120: Oral Glucose Tolerance 
Test, point 120 min. .2: post labour visit.
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TRAPPC9, and LEF1 genes in GDM women with 
abnormal glucose tolerance, and also LINC00917 
and TRAPPC9 were associated with abnormal glu-
cose levels after 4 years of postpartum. In another 
study, carried out in maternal blood before the 
GDM diagnosis, they found five DMPs in 
COPS8, PIK3R5, HAAO, CCDC124, and C5orf34 
genes with the potential to be clinical biomarkers 
of GDM development [16]. In another study, in 
a group of South African women with GDM and 
non-GDM, the five CpG more differentiated were 
in SLC9A3, MEA1, KLHDC3, CAMTA1, and 
RASA3 genes. According to their functional ana-
lysis, these genes were related to signal transduc-
tion, cell growth, proliferation, differentiation and 
apoptosis, insulin resistance, glucose metabolism, 
inflammation, neurological signalling, and onco-
genesis [10].

CAMTA1 was one of the most hypomethy-
lated genes and is correlated with relevant meta-
bolic variables. CAMTA1 seems to be implicated 
in the beta cell insulin regulation and secretion 
[27]. Guerra-Mollet suggests that in response to 
a high level of sugar there is a decreased level of 
CAMTA1 downregulating the expression of INS1 
and INS2, and decreasing insulin secretion. 
Recent studies highlight the importance of 
CAMTA1 at multiple levels, from the detection 
of glucose to insulin production and secretion, 
and beta cell function. As it is well known, 
insulin regulates the glucose and lipid metabo-
lism [28]. The hypomethylation observed in the 
GDM group could imply an altered expression 
of CAMTA1 affecting the insulin secretion, and 
in consequence in the regulation of glucose and 
lipid metabolism [28], as we observed with 
a negative correlation with HOMA-IR and tri-
glyceride levels. However, this effect should be 
evaluated with additional experiments. Dias et al. 
found, as we did, a lower methylation of 
CAMTA1 in GDM vs non-GDM [29]. 
Although our DMPs are different from their 
work, the location of both our CPGs and theirs 
are in the body region, meaning that the biolo-
gical response may be similar. Finally, different 
studies have shown an association between poly-
morphisms in CAMTA1 and carbohydrate meta-
bolism such as blood lipid traits and blood 

pressure [30], fasting glucose [31] and 
T2DM [32].

It is known that insulin secretory defect, high 
insulin resistance, and beta cell dysfunction may be 
implicated in the development of GDM [7,33,34]. 
Accordingly, in our functional enrichment analysis 
of the DMPs, we found that the most significant GO 
and KEGG were related to the regulation secretion 
of insulin, insulin signalling pathway, and T2DM. 
All of these pathways are implicated in the develop-
ment of T2DM [35–37]. Therefore, the epigenetic 
pattern of these genes may be implicated in the 
development/risk of GDM.

We found that some CpGs were correlated with 
some clinical variables at different times. Most of 
these associations are related to glucose levels and 
the OGTT result after labour. Several genes seem 
to be associated with the response to the glucose 
overload. For example, AKT serine/threonine 
kinase 2 (AKT2) and mechanistic target of rapa-
mycin kinase (MTOR) are known for their impli-
cation in the insulin signalling pathways. Some 
studies in mice suggest that downregulation of 
AKT2 is related to high levels of glucose and 
insulin resistance [38]. In humans, certain poly-
morphisms associated with decreased levels of 
AKT2 were related with impaired glucose, insulin 
resistance, and T2DM risk [39,40]. In general, 
hypermethylation in promoters regions is asso-
ciated with downregulation, whereas gene body 
methylation is associated with expression in sev-
eral studies, although this latter is still unclear [41]. 
We have found that AKT2 is hypermethylated in 
the promoter region (5’UTR), suggesting that this 
gene could be downregulated and therefore con-
tributing to the increase in glucose levels. 
Regarding MTOR, overexpression is associated 
with anabolic process and insulin secretion 
[42,43]. In our study, CpGs of MTOR were hyper-
methylated in the body region, which could 
involve a higher expression of this gene. 
PRKAA2 was associated with glucose levels after 
OGTT, and this gene seems to be related to insulin 
sensitivity [44] and some polymorphisms have 
been associated with T2DM [45]. Furthermore, 
PRKAA2 is closely related to MTOR regulation, 
i.e., downregulation of PRKAA2 induces MTOR 
expression and an increase in protein synthesis 

8 T. M. LINARES-PINEDA ET AL.



and insulin resistance in rats [46]. Perhaps higher 
methylation in the TSS1500 region of PRKAA2, as 
we have found, could mean a downregulation of 
this gene resulting in a decrease in insulin secre-
tion and higher glucose levels after OGTT.

In our result NBL1 and MINOs-NBL1 had more 
than 1 CpG correlated with the response to OGTT 
at 120 min, after labour. NBL1 could be implicated 
in the regulation of β cell function and in diabetic 
kidney disease acting as a bone morphogenetic 
protein (BMP) antagonist, which are part of the 
TGF-β pathway [47,48]. Therefore, lower level of 
NBL1 may induce a dysregulation in beta cell 
function. As a result, an altered function of β 
cell, maintained in the time, could result in an 
increased risk of high glucose levels in response 
to an OGTT. Also, there are recent studies that 
suggest the implication of the BMP family in obe-
sity and glucose metabolism (potential functions 
of the BMP family in bone, obesity, and glucose 
metabolism). Therefore, the antagonist role of 
NBL1 through BMP could be implicated in the 
glucose level after an OGTT in the post-labour 
visit. However, more studies would be necessary 
to understand the role of NBL1 gene in glucose 
metabolism.

Our study presents some limitations that we 
must comment. Although the differences found 
are relevant and significant beyond the FDR 
threshold, the sample size is small, and the results 
should be interpreted with caution. Furthermore, 
validation in a larger cohort or with other tech-
nologies would reinforce our findings. 
Nevertheless, we consider that the probability of 
false positives is low due to the small genomic 
inflation lambda factor obtained, but more studies 
are necessary to confirm our results. Regarding the 
characteristics of our population, the control 
group are pregnant women with a previous posi-
tive O’Sullivan test, so this issue should be con-
sidered when extrapolating these results to other 
populations. Finally, with our study design, we 
cannot demonstrate that the associations found 
imply causality.

Regarding the strengths of our study, we high-
light the homogeneous selection of the sample, 
emphasizing that the differences found are mostly 
due to the different epigenetic marks and not to 
other possible confounding variables, which were 

also considered in the study. The main difference 
between the groups was that the control group 
showed higher weight gain during pregnancy 
compared with GDM. This finding is not surpris-
ing and indicates good adherence from GDM 
pregnant women to therapeutic measures imple-
mented at diagnosis. Furthermore, our results are 
in accordance with previous studies that found 
a different methylation pattern between GDM 
and non-GDM. In fact, our findings were strongly 
significant at a threshold of FDR <0.05.

Conclusion

In addition, these epigenetic differences corre-
spond to genes involved in the glucose metabolism 
and are associated with some biochemical vari-
ables after labour. These results help to understand 
which mechanism could be modified in GDM and 
how the methylation profile at the diagnostic visit 
can be associated with glucose metabolism-related 
variables in the future.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This study was supported by the Juan Rodés program from 
“Instituto de Salud Carlos III” (JR20-00040 to MM-V), 
Miguel Servet Type I program from the ISCIII-Madrid, 
Spain (CP20/00066 to CG-R), PFIS program (FI19/00178 to 
TML-P), Garantía Juvenil program (POEJ-0039-18) from 
Ministerio de trabajo y economía social de España, and the 
Nicolas Monardes Program from the “Servicio Andaluz de 
Salud, Junta de Andalucía”, Spain (RC-0008-2021 to SM). In 
addition, this study was supported by the “Centros de 
Investigación Biomédica en Red” (CIBER) of the Institute 
of Health Carlos III (ISCIII) (CB06/03/0018) and research 
grants from the ISCIII (PI18/01175, PI21/01864) and from 
“Servicio Andaluz de Salud”, Junta de Andalucía (PI-0283- 
2018, PI-0419-2019). This study has been co-funded by 
FEDER funds (“A way to make Europe”).

Data availability of statement

The data sets used during the current study are available 
from the corresponding author on reasonable request.

EPIGENETICS 9



Ethics approval and consent to participate

This study was conducted according to the guidelines of the 
Declaration of Helsinki and approved by the Ethics 
Committee of the Hospital Universitario Virgen de la 
Victoria, Málaga.

Authors’ contributions

TML-P: methodology, analysis, interpretation of the data and 
wrote original draft, NP-M: processed the samples and per-
formed the experiments prior to the DNA methylation, CG-R: 
participated in the design of the work, FL-M: sample collection, 
AS-P: revision of the manuscript, FJ-T: supervision and revi-
sion of the paper, MM-V: conceptualization and acquired data 
from the patients and collected samples, MJ-P: conceptualiza-
tion, funding acquisition and contributed to the discussion, 
SM: conception/design, funding acquisition, interpretation of 
the data and has substantively revised the work.

ORCID

Sonsoles Morcillo http://orcid.org/0000-0001-6932-5637

References

[1] Phelan S, Jelalian E, Coustan D, et al. Protocol for 
a randomized controlled trial of pre-pregnancy lifestyle 
intervention to reduce recurrence of gestational dia-
betes: gestational diabetes prevention/Prevención de la 
diabetes gestacional. Trials [Internet]. 2021 Dec 1;22 
(1). [cited 2022 Feb 2]. Available from: /pmc/articles/ 
PMC8024941/

[2] Lesseur C, Chen J. Adverse maternal metabolic intrau-
terine environment and placental epigenetics: implica-
tions for fetal metabolic programming. Curr Environ 
Heal Reports. 2018 Dec 1;5(4):531–543.

[3] McIntyre HD, Catalano P, Zhang C, et al. Gestational 
diabetes mellitus. Nat Rev Dis Prim 2019 51 [Internet]. 
2019 Jul 11; 5(1):1–19. [cited 2022 Feb 3]. Available from: 
https://www.nature.com/articles/s41572-019-0098-8

[4] Mack LR, Tomich PG Gestational Diabetes: Diagnosis, 
Classification, and Clinical Care [Internet]. Obstet 
Gynecology Clin North Am WB Saunders. 
2017;44:207–217. [cited 2020 Sep 28]. Available from: 
https://pubmed.ncbi.nlm.nih.gov/28499531/

[5] Eades CE, Cameron DM, Evans JMM. Prevalence of 
gestational diabetes mellitus in Europe: a meta-analysis. 
Diabet Res Clin Pract. 2017 Jul 1;129:173–181.

[6] Xiong X, Saunders LD, Wang FL, et al. Gestational 
diabetes mellitus: prevalence, risk factors, maternal 
and infant outcomes. Int J Gynaecol Obstet 
[Internet]. 2001;75(3):221–228. [cited 2022 Jul 29]. 
Available from: https://pubmed.ncbi.nlm.nih.gov/ 
11728481/

[7] Fakhrul-Alam M, Sharmin-Jahan MH, Nusrat-Sultana 
MZ, et al. Insulin secretory defect may be the major 
determinant of GDM in lean mothers. J Clin Transl 
Endocrinol [Internet]. 2020 Jun 1;20:100226. [cited 
2022 Jul  28].  Available from: /pmc/articles/  
PMC7199011/

[8] Haertle L, El Hajj N, Dittrich M, et al. Epigenetic 
signatures of gestational diabetes mellitus on cord 
blood methylation. Clin Epigenetics. 2017 Mar 
27;9:2–12.

[9] Yang IV, Zhang W, EJ D, et al. Epigenetic marks of in 
utero exposure to gestational diabetes and childhood adip-
osity outcomes: the EPOCH study. Diabet Med [Internet]. 
2018 May 1;35(5):612–620. [cited 2021 Sep 22]. Available 
from: https://pubmed.ncbi.nlm.nih.gov/29461653/

[10] Dias S, Adam S, Rheeder P, et al. Altered genome-wide 
DNA methylation in peripheral blood of South African 
women with gestational diabetes mellitus. Int J Mol Sci 
[Internet]. 2019 Nov 20;20(23):5828. [cited 2020 Apr 
20]. Available from: http://www.ncbi.nlm.nih.gov/ 
pubmed/31757015

[11] Wu L, Cui L, Tam WH, et al. Genetic variants asso-
ciated with gestational diabetes mellitus: a 
meta-analysis and subgroup analysis. Sci Rep 
[Internet]. 2016 Jul 29;6. [cited 2022 Feb 3]. Available 
from: https://pubmed.ncbi.nlm.nih.gov/27468700/

[12] Moore LD, Le T, Fan G DNA methylation and its basic 
function. Neuropsychopharmacology [Internet]. 2013 
Jan;38(1):23–38. [cited 2022 Jul 28]. Available from: 
https://pubmed.ncbi.nlm.nih.gov/22781841/10.1038/ 
npp.2012.112

[13] Dias S, Pheiffer C, Abrahams Y, et al. Molecular bio-
markers for gestational diabetes mellitus. Int J Mol Sci. 
2018 Oct 1;19:2926–2899.

[14] Valencia-Ortega J, Saucedo R, Sánchez-Rodríguez MA, 
et al. Epigenetic alterations related to gestational dia-
betes mellitus. Int J Mol Sci [Internet]. 2021 Aug 31;22 
(17):9462. [cited 2021 Sep 22]. Available from: https:// 
www.mdpi.com/1422-0067/22/17/9462

[15] Canouil M, Khamis A, Keikkala E, et al. Epigenome- 
wide association study reveals methylation loci asso-
ciated with offspring gestational diabetes mellitus expo-
sure and maternal methylome. Diabetes Care 
[Internet]. 2021 Sep 1;44(9):1992–1999. [cited 2023 
Mar 29]. Available from: https://pubmed.ncbi.nlm.nih. 
gov/34116986/

[16] Wu P, Farrell WE, Haworth KE, et al. Maternal 
genome-wide DNA methylation profiling in gestational 
diabetes shows distinctive disease-associated changes 
relative to matched healthy pregnancies. Epigenetics 
[Internet]. 2018 Feb 1;13(2):122. [cited 2021 Oct 8]; 
Available from: /pmc/articles/PMC5873366/

[17] Ballesteros M, Gil-Lluís P, Ejarque M, et al. DNA 
methylation in gestational diabetes and its predictive 
value for postpartum glucose disturbances. J Clin 
Endocrinol Metab [Internet]. 2022 Aug 2. [cited 2022 

10 T. M. LINARES-PINEDA ET AL.

https://www.nature.com/articles/s41572-019-0098-8
https://pubmed.ncbi.nlm.nih.gov/28499531/
https://pubmed.ncbi.nlm.nih.gov/11728481/
https://pubmed.ncbi.nlm.nih.gov/11728481/
http:///pmc/articles/PMC7199011/
http:///pmc/articles/PMC7199011/
https://pubmed.ncbi.nlm.nih.gov/29461653/
http://www.ncbi.nlm.nih.gov/pubmed/31757015
http://www.ncbi.nlm.nih.gov/pubmed/31757015
https://pubmed.ncbi.nlm.nih.gov/27468700/
https://pubmed.ncbi.nlm.nih.gov/22781841/10.1038/npp.2012.112
https://pubmed.ncbi.nlm.nih.gov/22781841/10.1038/npp.2012.112
https://www.mdpi.com/1422-0067/22/17/9462
https://www.mdpi.com/1422-0067/22/17/9462
https://pubmed.ncbi.nlm.nih.gov/34116986/
https://pubmed.ncbi.nlm.nih.gov/34116986/


Aug 9]. Available from: https://pubmed.ncbi.nlm.nih. 
gov/35914803/

[18] Classification and diagnosis of diabetes mellitus and 
other categories of glucose intolerance. National 
Diabetes Data Group Diabetes. 1979 Dec;28 
(12):1039–1057.

[19] Elsayed NA, Aleppo G, Aroda VR, et al. 15. 
Management of diabetes in pregnancy: standards of 
care in diabetes—2023. Diabetes Care [Internet]. 2023 
Jan 1;46(Supplement_1):S254–66. [cited 2023 Mar 29]. 
Available from: https://diabetesjournals.org/care/arti 
cle/46/Supplement_1/S254/148052/15-Management-of 
-Diabetes-in-Pregnancy-Standards

[20] Matthews DR, Hosker JP, Rudenski AS, et al. 
Homeostasis model assessment: insulin resistance and 
β-cell function from fasting plasma glucose and insulin 
concentrations in man. Diabetologia [Internet]. 1985 
Jul;28(7):412–419. [cited 2023 Mar 29]. Available from: 
https://link.springer.com/article/10.1007/BF00280883

[21] Morris TJ, Butcher LM, Feber A, et al. ChAMP: 450k 
chip analysis methylation pipeline. Bioinformatics 
[Internet]. 2014 Feb 1;30(3):428–430. [cited 2022 Jun 
13]. Available from: https://academic.oup.com/bioinfor 
matics/article/30/3/428/228299

[22] Zhou W, Laird PW, Shen H Comprehensive character-
ization, annotation and innovative use of infinium 
DNA methylation BeadChip probes. Nucleic Acids 
Res [Internet]. 2017 Feb 28;45(4):e22. [cited 2022 Jun 
13]. Available from: https://academic.oup.com/nar/arti 
cle/45/4/e22/2290930

[23] Weng X, Liu F, Zhang H, et al. Genome-wide DNA 
methylation profiling in infants born to gestational 
diabetes mellitus. Diabet Res Clin Pract. 2018 Aug 
1;142:10–18.

[24] Houseman EA, Accomando WP, Koestler DC, et al. 
DNA methylation arrays as surrogate measures of cell 
mixture distribution. BMC Bioinf [Internet]. 2012 May 
8;13(1):1–16. [cited 2022 Jun 13]. Available from: 
https://bmcbioinformatics.biomedcentral.com/articles/ 
10.1186/1471-2105-13-86

[25] Alptekin H, Çizmecioäÿlu A, Işik H, et al. Predicting 
gestational diabetes mellitus during the first trimester 
using anthropometric measurements and HOMA-IR. 
J Endocrinol Invest [Internet]. 2016 May 1;39 
(5):577–583. [cited 2023 Mar 29]. Available from: 
https://pubmed.ncbi.nlm.nih.gov/26754418/

[26] Samra NA, Jelinek HF, Alsafar H, et al. Genomics and 
epigenomics of gestational diabetes mellitus: under-
standing the molecular pathways of the disease 
pathogenesis. Int J Mol Sci [Internet]. 2022 Apr 1;23 
(7). [cited 2022 Aug 8]. Available from: https:// 
pubmed.ncbi.nlm.nih.gov/35408874/

[27] Mollet IG, Malm HA, Wendt A, et al. Integrator of 
stress responses calmodulin binding transcription acti-
vator 1 (Camta1) regulates miR-212/miR-132 expres-
sion and insulin secretion. J Biol Chem [Internet]. 2016 
Aug 26;291(35):18440–18452. [cited 2022 Aug 10]. 

Available from: https://pubmed.ncbi.nlm.nih.gov/ 
27402838/

[28] Saltiel AR, Kahn CR Insulin signalling and the regula-
tion of glucose and lipid metabolism. Nature 
[Internet]. 2001 Dec 13;414(6865):799–806. [cited 
2023 Mar 29]. Available from: https://pubmed.ncbi. 
nlm.nih.gov/11742412/

[29] Dias S, Adam S, Rheeder P, et al. Altered genome-wide 
DNA methylation in peripheral blood of South African 
women with gestational diabetes mellitus. Int J Mol Sci 
[Internet]. 2019 Dec 1;20(23). [cited 2021 Sep 22]. 
Available from: https://pubmed.ncbi.nlm.nih.gov/ 
31757015/

[30] Wei FJ, Cai CY, Yu P, et al. Quantitative candidate 
gene association studies of metabolic traits in Han 
Chinese type 2 diabetes patients. Genet Mol Res 
[Internet]. 2015 Nov 30;14(4):15471–15481. [cited 
2022 Aug 10]. Available from: https://pubmed.ncbi. 
nlm.nih.gov/26634513/

[31] Mohamed SA, Fernadez-Tajes J, Franks PW, et al. 
GWAS in people of Middle Eastern descent reveals 
a locus protective of kidney function-a cross-sectional 
study. BMC Med [Internet]. 2022 Dec 1;20(1). [cited 
2022 Aug 10]. Available from: https://pubmed.ncbi. 
nlm.nih.gov/35227251/

[32] Cauchi S, Proença C, Choquet H, et al. Analysis of 
novel risk loci for type 2 diabetes in a general French 
population: the D.E.S.I.R. study. J Mol Med (Berl) 
[Internet]. 2008 Mar;86(3):341–348. [cited 2022 Aug 
10]. Available from: https://pubmed.ncbi.nlm.nih.gov/ 
18210030/

[33] Ellerbrock J, Spaanderman B, Drongelen JV, et al. Role 
of beta cell function and insulin resistance in the devel-
opment of gestational diabetes mellitus. Nutrients 
[Internet]. 2022 Jun 13;14(12):2444. [cited 2022 Aug 
9]. Available from: /pmc/articles/PMC9231208/.

[34] Zhang NJ, Tao MF, Li HP, et al. The relationship 
between patterns of insulin secretion and risks of gesta-
tional diabetes mellitus. Int J Gynaecol Obstet 
[Internet]. 2020 Sep 1;150(3):318–323. [cited 2022 
Aug 9]. Available from: https://pubmed.ncbi.nlm.nih. 
gov/32415984/

[35] Doria A, Patti ME, Kahn CR The emerging genetic 
architecture of type 2 diabetes. Cell Metab [Internet]. 
2008 Sep 3;8(3):186–200. [cited 2022 Aug 10]; 
Avai lable  from: http://www.cel l .com/art ic le/  
S1550413108002477/fulltext

[36] Florez JC The genetics of type 2 diabetes: a realistic 
appraisal in 2008. J Clin Endocrinol Metab [Internet]. 
2008 Dec 1;93(12):4633–4642. [cited 2022 Aug 10]. 
Available from: https://academic.oup.com/jcem/arti 
cle/93/12/4633/2627272

[37] Staiger H, Machicao F, Fritsche A, et al. 
Pathomechanisms of type 2 diabetes genes. Endocr 
Rev [Internet]. 2009 Oct 1;30(6):557–585. [cited 2022 
Aug 10]. Available from: https://academic.oup.com/ 
edrv/article/30/6/557/2355053

EPIGENETICS 11

https://pubmed.ncbi.nlm.nih.gov/35914803/
https://pubmed.ncbi.nlm.nih.gov/35914803/
https://diabetesjournals.org/care/article/46/Supplement_1/S254/148052/15-Management-of-Diabetes-in-Pregnancy-Standards
https://diabetesjournals.org/care/article/46/Supplement_1/S254/148052/15-Management-of-Diabetes-in-Pregnancy-Standards
https://diabetesjournals.org/care/article/46/Supplement_1/S254/148052/15-Management-of-Diabetes-in-Pregnancy-Standards
https://link.springer.com/article/10.1007/BF00280883
https://academic.oup.com/bioinformatics/article/30/3/428/228299
https://academic.oup.com/bioinformatics/article/30/3/428/228299
https://academic.oup.com/nar/article/45/4/e22/2290930
https://academic.oup.com/nar/article/45/4/e22/2290930
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-13-86
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-13-86
https://pubmed.ncbi.nlm.nih.gov/26754418/
https://pubmed.ncbi.nlm.nih.gov/35408874/
https://pubmed.ncbi.nlm.nih.gov/35408874/
https://pubmed.ncbi.nlm.nih.gov/27402838/
https://pubmed.ncbi.nlm.nih.gov/27402838/
https://pubmed.ncbi.nlm.nih.gov/11742412/
https://pubmed.ncbi.nlm.nih.gov/11742412/
https://pubmed.ncbi.nlm.nih.gov/31757015/
https://pubmed.ncbi.nlm.nih.gov/31757015/
https://pubmed.ncbi.nlm.nih.gov/26634513/
https://pubmed.ncbi.nlm.nih.gov/26634513/
https://pubmed.ncbi.nlm.nih.gov/35227251/
https://pubmed.ncbi.nlm.nih.gov/35227251/
https://pubmed.ncbi.nlm.nih.gov/18210030/
https://pubmed.ncbi.nlm.nih.gov/18210030/
https://pubmed.ncbi.nlm.nih.gov/32415984/
https://pubmed.ncbi.nlm.nih.gov/32415984/
http://www.cell.com/article/S1550413108002477/fulltext
http://www.cell.com/article/S1550413108002477/fulltext
https://academic.oup.com/jcem/article/93/12/4633/2627272
https://academic.oup.com/jcem/article/93/12/4633/2627272
https://academic.oup.com/edrv/article/30/6/557/2355053
https://academic.oup.com/edrv/article/30/6/557/2355053


[38] Cho H, Mu J, Kim JK, et al. Insulin resistance and 
a diabetes mellitus-like syndrome in mice lacking the 
protein kinase Akt2 (PKB beta). Science [Internet]. 2001 
Jun 1;292(5522):1728–1731. [cited 2023 Mar 27]. Available 
from: https://pubmed.ncbi.nlm.nih.gov/11387480/

[39] Manning A, Highland HM, Gasser J, et al. A 
low-frequency inactivating AKT2 variant enriched in 
the Finnish population is associated with fasting insulin 
levels and type 2 diabetes risk. Diabetes [Internet]. 2017 
Jul 1;66(7):2019–2032. [cited 2023 Mar 27]. Available 
from: https://pubmed.ncbi.nlm.nih.gov/28341696/

[40] Latva-Rasku A, Honka MJ, Stancáková A, et al. 
A partial loss-of-function variant in AKT2 is associated 
with reduced insulin-mediated glucose uptake in mul-
tiple insulin-sensitive tissues: a genotype-based callback 
positron emission tomography study. Diabetes 
[Internet]. 2018 Feb 1;67(2):334–342. [cited 2023 Mar 
27]. Available from: https://diabetesjournals.org/dia 
betes/article/67/2/334/15949/A-Partial-Loss-of- 
Function-Variant-in-AKT2-Is

[41] Yang X, Han H, DeCarvalho DD, et al. Gene body 
methylation can alter gene expression and is 
a therapeutic target in cancer. Cancer Cell [Internet]. 
2014 Oct 13;26(4):577–590. [cited 2023 Mar 27]. 
Available from: https://pubmed.ncbi.nlm.nih.gov/ 
25263941/

[42] Alejandro EU, Bozadjieva N, Blandino-Rosano M, et al. 
Overexpression of kinase-dead mTOR impairs glucose 
homeostasis by regulating insulin secretion and not β- 
cell mass. Diabetes [Internet]. 2017 Aug 1;66 
(8):2150–2162. [cited 2023 Mar 27]. Available from: 
https://pubmed.ncbi.nlm.nih.gov/28546423/

[43] Leprivier G, Rotblat B How does mTOR sense glucose 
starvation? AMPK is the usual suspect. Cell Death 

Discov [Internet]. 2020 Dec 1;6(1). [cited 2023 Mar 
27]. Available from: https://pubmed.ncbi.nlm.nih.gov/ 
32351714/

[44] Ganbold M, Ferdousi F, Arimura T, et al. New amphi-
philic squalene derivative improves metabolism of adi-
pocytes differentiated from diabetic adipose-derived 
stem cells and prevents excessive lipogenesis. Front 
Cell Dev Biol [Internet]. 2020 Nov 4;8. [cited 2022 
Aug 11]. Available from: https://pubmed.ncbi.nlm.nih. 
gov/33251210/

[45] Virginia DM, Dwiprahasto I, Wahyuningsih MSH, et al. 
The effect of PRKAA2 variation on type 2 diabetes melli-
tus in the Asian population: a systematic review and 
meta-analysis. Malays J Med Sci [Internet]. 2022 Jun 
28;29(3):5–16. [cited 2022 Aug 11]. Available from: 
https://pubmed.ncbi.nlm.nih.gov/35846493/

[46] Saha AK, Xu XJ, Lawson E, et al. Downregulation of 
AMPK accompanies leucine- and glucose-induced 
increases in protein synthesis and insulin resistance in 
rat skeletal muscle. Diabetes [Internet]. 2010 Oct;59 
(10):2426–2434. [cited 2023 Mar 27]. Available from: 
https://pubmed.ncbi.nlm.nih.gov/20682696/

[47] Wang HL, Wang L, Zhao CY, et al. Role of TGF-Beta 
signaling in beta cell proliferation and function in 
diabetes. Biomolecules [Internet]. 2022 Mar 1;12 
(3):373. [cited 2022 Sep 26]. Available from: /pmc/ 
articles/PMC8945211/

[48] Kobayashi H, Looker HC, Satake E, et al. 
Neuroblastoma suppressor of tumorigenicity 1 is 
a circulating protein associated with progression to 
end-stage kidney disease in diabetes. Sci Transl Med 
[Internet]. 2022 Aug 10;14(657):eabj2109. [cited 2022 
Sep 26]. Available from: https://www.science.org/doi/ 
10.1126/scitranslmed.abj2109

12 T. M. LINARES-PINEDA ET AL.

https://pubmed.ncbi.nlm.nih.gov/11387480/
https://pubmed.ncbi.nlm.nih.gov/28341696/
https://diabetesjournals.org/diabetes/article/67/2/334/15949/A-Partial-Loss-of-Function-Variant-in-AKT2-Is
https://diabetesjournals.org/diabetes/article/67/2/334/15949/A-Partial-Loss-of-Function-Variant-in-AKT2-Is
https://diabetesjournals.org/diabetes/article/67/2/334/15949/A-Partial-Loss-of-Function-Variant-in-AKT2-Is
https://pubmed.ncbi.nlm.nih.gov/25263941/
https://pubmed.ncbi.nlm.nih.gov/25263941/
https://pubmed.ncbi.nlm.nih.gov/28546423/
https://pubmed.ncbi.nlm.nih.gov/32351714/
https://pubmed.ncbi.nlm.nih.gov/32351714/
https://pubmed.ncbi.nlm.nih.gov/33251210/
https://pubmed.ncbi.nlm.nih.gov/33251210/
https://pubmed.ncbi.nlm.nih.gov/35846493/
https://pubmed.ncbi.nlm.nih.gov/20682696/
https://www.science.org/doi/10.1126/scitranslmed.abj2109
https://www.science.org/doi/10.1126/scitranslmed.abj2109

	Abstract
	Background
	Methodology
	Subjects
	Samples
	Biochemical analysis
	DNA isolation and bisulphite conversion
	Epigenome-wide DNA methylation
	Methylation data analysis
	Functional analysis
	Statistical analysis

	Results
	Clinical characteristic of the subjects
	Differential methylation analysis
	Functional enrichment analysis
	Correlation analysis

	Discussion
	Conclusion
	Disclosure statement
	Funding
	Data availability of statement
	Ethics approval and consent to participate
	Authors’ contributions
	References

