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Abstract 
Introduction. Cancer is one of the main causes of premature death 
worldwide. Cancers arise when cell genomes accumulate driver mutations, 
which are mutations that improve cell fitness. Driver mutations are a minority 
among the thousands of mutations present in a typical cancer genome. 
Although major efforts have been made to identify driver mutations in various 
cancers, most of them have focused on the protein coding genome, which only 
represents ~1.1% of the human genome. Part of the ~98.9% of the human 
genome that does not code for protein contains functional elements, such as 
regulatory DNA elements, intronic splice regions, untranslated regions of 
protein coding genes, and non-coding RNA genes. Among non-coding RNAs, 
microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) may 
participate in the regulation of gene expression and their expression is often 
altered in cancer. However, efforts to identify non-coding driver mutations 
have been rare, and sample sizes in lung adenocarcinoma (LUAD) have been 
low. In addition, the largest mutational study in diffuse large B-cell lymphoma 
(DLBCL) to date omitted mutations in intronic splice regions. 

Objectives. We aimed to computationally identify and characterize novel 
driver mutations in non-coding DNA in in-house and external LUAD cohorts, 
with special focus on miRNA genes, lncRNA genes, and intronic splice 
regions. In addition, we aimed to identify and characterize previously missed 
mutations in intronic splice sites in external DLBCL datasets. 

Methods. We performed targeted sequencing of genomic DNA in an in-house 
cohort of 70 LUAD primary tumors, 27 matched normal samples, and 37 
LUAD cell lines. Our design included all human miRNA genes (n = 1881), as 
well as exons of cancer-related lncRNA genes (n = 908) and protein coding 
genes (n = 1307). We developed computational pipelines to identify high-
confidence somatic variants by combining multiple variant calling tools, and 
we also applied them to external whole-genome sequencing data of LUAD 
samples from The Cancer Genome Atlas (N = 59 tumor-normal pairs). In 
addition, we applied state-of-the-art driver discovery tools to find putative 
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drivers in coding sequences, lncRNAs, miRNAs, intronic splice regions, 
proximal promoters, and untranslated regions. We assessed the functional 
relevance of the identified candidate drivers using external genomic, gene 
expression, and clinical data as well as functional impact scores. Furthermore, 
we developed a novel pipeline to annotate variants in a miRNA-centric 
manner, identifying variants that affect seeds and those that disrupt or create 
sequence motifs that mediate the processing of miRNA primary transcripts. 
Finally, in DLBCL, we reanalyzed external datasets (combined N = 1711) to 
identify previously missed recurrent mutations at intronic splice sites, we 
analyzed the impact of the splice site mutations on RNA processing, and we 
functionally characterized the most recurrent splice site mutation, which 
affected CD79B. 

Results. We successfully detected high-confidence somatic variants in all 
analyzed datasets. However, driver discovery tools did not perform adequately 
in our targeted sequencing cohorts of limited size, as one based on functional 
impact predictions lacked sensitivity in non-coding regions whereas one based 
on mutation clustering had a high false positive rate. Still, we identified three 
candidate driver lncRNAs that accumulated mutations so that at least one 
mutation had high predicted functional impact: TUSC7, SOX2-OT, and     
ZEB2-AS1. However, the affected lncRNAs had very low expression in 
external LUAD datasets. This, together with their mutational patterns and the 
genomic characteristics of their loci, argued against an RNA sequence-
dependent effect of their mutations. In miRNAs, a mutation in the seed of 
miR-133b was predicted to have high functional impact and to prevent it from 
targeting the oncogene EGFR. In addition, we identified mutations that 
disrupted or created processing motifs in miRNA primary transcripts, such as 
mutations that disrupted mismatched GHG motifs in mir-7-1, mir-7-2, and 
mir-139. In intronic splice regions, we found mutations that altered RNA 
splicing in LUAD driver genes such as MET and RBM10. In promoters and 
untranslated regions, we detected no high-confidence drivers. In DLBCL, 
intronic splice site mutations recurrently affected cancer driver genes and 
caused major RNA aberrations in cis. The most recurrent RNA alteration was 
intron 4 retention in CD79B. The alteration was caused by recurrent 
mutations at the fourth splice donor site of CD79B, and it was associated with 
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an increase in the number of B cell receptors in the cell surface and a 
subsequent increase in oncogenic signaling. 

Conclusions. Non-coding variants with high predicted functional impact 
were rare in our LUAD datasets. In addition, it was unclear whether the 
candidate driver non-coding RNAs in LUAD had RNA sequence-dependent 
functions. Experimental work will be necessary to confirm whether the 
candidate driver non-coding RNAs have biological activity in LUAD and 
whether their activity is altered by the observed mutations. In DLBCL, intronic 
splice site mutations are recurrent and they can cause major cancer-promoting 
aberrations in driver genes. 

  



 
4 

  



 

 
5 

Resumen 
Introducción. El cáncer es una de las principales causas de muerte prematura 
mundialmente. El cáncer se origina cuando los genomas celulares acumulan 
mutaciones conductoras, que son mutaciones que confieren ventaja selectiva 
a la célula. Las mutaciones conductoras son una minoría entre las miles de 
mutaciones que contiene un genoma tumoral promedio. Aunque se han 
llevado a cabo grandes esfuerzos para identificar mutaciones conductoras en 
una gran variedad de cánceres, la mayoría de los esfuerzos se han centrado en 
el genoma codificante de proteína, que tan solo supone ~1,1% del genoma 
humano. Parte del ~98,9% del genoma humano no codificante de proteína 
contiene elementos funcionales, tales como ADN regulador, regiones 
intrónicas de corte y empalme, regiones no traducidas de genes codificantes 
de proteína y genes de ARN no codificante. Entre los ARNs no codificantes, 
los microARNs (miARNs) y los ARNs largos no codificantes (ARNlncs) 
pueden participar en la regulación de la expresión génica y su expresión está a 
menudo alterada en cáncer. Sin embargo, los esfuerzos para identificar 
mutaciones conductoras en secuencias no codificantes han sido escasos, y los 
tamaños de muestra para adenocarcinoma de pulmón (ADC) han sido bajos. 
Además, el mayor estudio hasta la fecha en linfoma difuso de células B grandes 
(LDCBG) omitió las mutaciones en regiones intrónicas de corte y empalme. 

Objetivos. Nuestro objetivo principal fue analizar y caracterizar 
computacionalmente nuevas mutaciones conductoras en secuencias no 
codificantes en cohortes propias y externas de ADC, con especial interés en 
miARNs, ARNlncs y regiones intrónicas de corte y empalme. Un objetivo 
adicional fue identificar y caracterizar mutaciones previamente no descritas 
en sitios intrónicos de corte y empalme en datos externos de LDCBG. 

Métodos. Realizamos secuenciación de DNA genómico dirigida a todos los 
genes de miARNs humanos (n = 1881), así como a exones de genes de 
ARNlncs relacionados con cáncer (n = 908) y de genes codificantes de proteína 
relacionados con cáncer (n = 1307) en una cohorte propia de 70 tumores 
primarios de LUAD, 27 muestras normales pareadas y 37 líneas celulares de 
LUAD. Desarrollamos métodos computacionales para identificar variantes 
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somáticas con alta confianza mediante la combinación de múltiples 
herramientas. Además, aplicamos dichos métodos para analizar datos de 
secuenciación de genoma completo de muestras de ADC de The Cancer 
Genome Atlas (N = 59 parejas tumor-normal). Asimismo, aplicamos 
herramientas de descubrimiento de mutaciones conductoras en secuencias 
codificantes, ARNlncs, miARNs, regiones intrónicas de corte y empalme, 
promotores proximales y regiones no traducidas. Determinamos la relevancia 
funcional de los elementos candidatos a conductores utilizando datos externos 
genómicos, transcriptómicos y clínicos. Además, desarrollamos una nueva 
metodología para anotar variantes de una forma miARN-céntrica, pudiendo 
identificar variantes que afectan a secuencias semilla y aquellas que crean o 
destruyen motivos de secuencia que median el procesamiento de los 
transcritos primarios de miARNs. Finalmente, en LDCBG, reanalizamos 
conjuntos de datos externos (N combinada = 1711) para identificar 
mutaciones recurrentes en sitios intrónicos de corte y empalme no detectadas 
en estudios anteriores. Analizamos el impacto de las mutaciones halladas en 
el procesamiento del ARN afectado, y caracterizamos funcionalmente la 
mutación más recurrente, que afectaba a CD79B. 

Resultados. Detectamos exitosamente variantes somáticas con alta confianza 
en todos los conjuntos de datos analizados. Sin embargo, las herramientas de 
descubrimiento de mutaciones conductoras no tuvieron un rendimiento 
adecuado en nuestras cohortes de secuenciación dirigida de tamaño limitado: 
una herramienta basada en predicciones de impacto funcional tuvo baja 
sensibilidad en regiones no codificantes, mientras que otra basada en el 
agrupamiento de mutaciones tuvo una tasa elevada de falsos positivos. No 
obstante, identificamos tres ARNlncs candidatos a conductores que 
acumulaban mutaciones tal que al menos una de ellas tenía un alto impacto 
funcional predicho: TUSC7, SOX2-OT y ZEB2-AS1. Sin embargo, los ARNlncs 
afectados tenían una expresión extremadamente baja en datos externos de 
ADC. Esto, unido a sus patrones mutacionales y a las características genómicas 
de sus loci, hizo improbable que el efecto de sus mutaciones fuese dependiente 
de la secuencia de ARN. En miARNs, una mutación en la semilla de miR-133b 
tenía un alto impacto funcional predicho, impidiendo la unión de miR-133b 
al oncogén EGFR. Asimismo, identificamos mutaciones que destruían o 
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creaban motivos de procesamiento en los transcritos primarios de miARNs, 
destacando las mutaciones que afectaban a motivos GHG desapareados en 
mir-7-1, mir-7-2 y mir-139. En regiones intrónicas de corte y empalme, 
hallamos mutaciones que alteraban el corte y empalme de genes conductores 
de ADC como MET y RBM10. En promotores y en regiones no traducidas, no 
encontramos ninguna mutación conductora con alto nivel de confianza. En 
LDCBG, las mutaciones en sitios intrónicos de corte y empalme afectaban 
recurrentemente a genes conductores de la enfermedad y causaban grandes 
aberraciones a nivel de ARN en cis. La aberración más recurrente a nivel de 
ARN fue la retención del intrón 4 de CD79B. La alteración estaba causada por 
mutaciones recurrentes en el cuarto sitio intrónico donador de corte y 
empalme de CD79B, y estaba asociada a un incremento en el número de 
receptores de células B en la superficie celular y un consiguiente aumento en 
la señalización oncogénica. 

Conclusiones. Las variantes en ARNs no codificantes con impacto funcional 
predicho elevado fueron infrecuentes en nuestros conjuntos de datos. 
Asimismo, no se pudo determinar de manera concluyente que los ARNs no 
codificantes candidatos a conductores de ADC tuviesen funciones 
dependientes de la secuencia de ARN. Se requerirá trabajo experimental para 
confirmar si los ARNs no codificantes candidatos a conductores tienen 
actividad biológica en ADC y si las mutaciones detectadas en los mismos 
alteran dicha actividad. En LDCBG, las mutaciones en sitios intrónicos de 
corte y empalme son recurrentes y pueden causar grandes aberraciones en los 
principales genes conductores de la enfermedad. 
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Comments on notation and terminology 
Throughout this text, gene symbols, DNA elements, and RNAs are italicized 
(e.g., KRAS gene, KRAS promoter, KRAS mRNA). Protein names are not 
italicized (e.g., KRAS protein).  

For microRNAs (miRNAs), miRBase nomenclature has been followed 
(https://www.mirbase.org/help/nomenclature.shtml). Precursor miRNAs are 
not capitalized (e.g., hsa-mir-133b), whereas mature miRNAs are written with 
a capitalized R (e.g., hsa-miR-133b). For convenience, because this text refers 
exclusively to humans, the “hsa-” prefix has been omitted in most cases. 

To describe differences between a DNA sequence of interest and a reference 
sequence, the terms “variant” and “mutation” can be used almost 
interchangeably. However, due to its neutral connotation, “variant” is 
preferred when describing any type of sequence difference regardless of its 
functional significance, and “mutation” is reserved for variants detected in a 
tumor that may have functional impact. “Mutation” is also used instead of 
“variant” for well-established terms (e.g., “background mutation rate”). 

A “genomic feature” (or simply “feature”) is any sequence of nucleotides that 
share some property of interest. Features can be whole genes, but they can also 
be specific regions within a gene (e.g., exons, introns, coding sequences, or 
untranslated regions), promoters, enhancers, etc. 

Computer code is displayed in a fixed-width typography (e.g., bash). 
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Chapter 1. Introduction 
In this work, we have searched for cancer-promoting (or “driver”) mutations 
in multiple types of genomic elements that do not code for protein in various 
cancers. This Introduction begins by summarizing the worldwide incidence 
of cancer. Next, it introduces the concept of driver mutations in the context of 
cancer evolution. Then, it outlines the composition of the human genome, 
especially of the regions that do not code for protein, and it summarizes the 
conceptual framework for how to determine whether a non-coding DNA 
sequence has a biological function. Afterward, it outlines the statistical and 
computational methods that are used to identify driver mutations in the non-
coding genome. Finally, it introduces each type of non-coding element that 
will be addressed in this work, highlighting their known alterations in cancer. 

1.1. The global burden of cancer 

Cancer is a group of diseases in which abnormal cells grow uncontrollably, 
often invading adjacent or distant parts of the body (Wild et al., 2020). Cancer 
is a broad term, and a wide variety of cancer types with vastly different 
molecular characteristics can originate in almost any organ or tissue of the 
human body. Cancer is the first or second cause of premature death in most 
high- and medium-income countries. In 2018, 9.6 million people died from 
cancer worldwide, accounting for one in six deaths (World Health 
Organization, 2022). In the same year, the most diagnosed cancers in both 
sexes were those from the breast, lung, colorectum, prostate, and stomach 
(Wild et al., 2020) (Figure 1A). In addition, the deadliest cancers were those 
from the lung, followed by colorectum, liver, stomach, and breast (Figure 1B). 

The World Health Organization estimates that up to 50% of cancer deaths 
could be prevented by multiple courses of action (World Health Organization, 
2022). First, new cases can be reduced by promoting healthy lifestyles and 
reducing exposure to carcinogens, such as tobacco smoke (Wild et al., 2020). 
In addition, survival rates can be increased by diagnosing new cases at early 
stages, developing better therapies, and improving clinical procedures for 
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classifying, treating, and following up cancer patients. In fact, over the last two 
decades, improvements in clinical approaches have reduced cancer mortality 
in most high- and medium-income countries (Wild et al., 2020). Still, more 
research is urgently required to reduce the death toll of cancer.  

 

Figure 1. Worldwide cancer statistics by primary site.  A. Number of newly 
diagnosed cancers in 2018. B. Number of cancer deaths in 2018. NHL: Non-
Hodgkin lymphoma. Data from the International Agency for Research on 
Cancer, https://gco.iarc.fr/today. 

1.2. Molecular drivers of cancer 

To better diagnose, classify, treat, and follow up cancer patients, it is essential 
to decipher the molecular mechanisms by which cancer initiates and evolves. 
Such mechanisms may involve genetic, epigenetic, and environmental factors 
(Alizadeh et al., 2015). Any factor that promotes cancer must improve cell 
fitness, for example by stimulating cell growth, preventing cell death, or 
increasing resistance to treatment (Hanahan, 2022). In this text, we focus on 
genetic factors, which involve permanent changes (known as “variants” or 
“mutations”) in the DNA sequence of cancer cell genomes. In particular, we 
focus on somatic variants, which are those specifically present in cancer cells 
but not in non-cancer cells from the same patient. However, germline variants 
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(i.e., those that are inheritable and are present in all cells of the body) also play 
a crucial role in some cancers (Campbell et al., 2020). 

Cancer development can be understood as a Darwinian evolution process 
(Campbell et al., 2020) (Figure 2). Over time, cells in a tissue accumulate 
somatic variants in their DNA. Each variant has a minuscule probability of 
conferring a selective advantage to the cell. Those that do are known as driver 
mutations, and cells that harbor them are positively selected. However, most 
variants in the genome of a cancer cell are passenger mutations, which have a 
neutral or, occasionally, a detrimental effect on cell fitness. In particular, 
tumor genomes typically contain ~104-106 somatic variants, but only ~5 of 
them are estimated to be drivers (Rheinbay et al., 2020). 
 

 

Figure 2. Clonal evolution of cancer. Normal cells (purple) may acquire 
somatic variants throughout their lifespan. Most of these variants are expected 
to have a neutral effect on cell fitness (passenger mutations), but some may 
confer a competitive advantage (driver mutations), creating aberrant cells that 
outgrow their neighbors. As cancer cells proliferate, they may accumulate 
different sets of driver mutations, generating different clones (red, yellow, and 
blue). As time passes, or as the external conditions change, a new clone or an 
initially minor clone may become the dominant one, and previously dominant 
clones may become a minority or disappear. 
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Although this simplified model of “driver” and “passenger” mutations 
explains the basic processes that govern cancer evolution, more layers of 
complexity can be added for better accuracy: 

• Intra-tumor heterogeneity and the dynamics of tumor evolution. 
The distribution of mutations in a tumor changes over space and time 
(Gerstung et al., 2020). At a given time, a tumor is usually a mixture of 
different clones, which are groups of cells that have originated from a 
common ancestor and share the same set of driver mutations. As time 
passes, new driver mutations may appear and, with them, new clones 
may originate, expand, and outgrow the others. Changes in the external 
conditions, such as the patient starting a new treatment, can also 
change the equilibrium between clones. As a consequence, when a bulk 
tumor sample is sequenced, the detected variants represent a snapshot 
of a specific time point and, possibly, a mixture of different clones. 

• Drivers can be context-dependent. For example, variants that confer 
resistance to a specific drug may be selectively advantageous as long as 
the patient is being treated with the drug, and otherwise they may be 
passengers (Kumar et al., 2020). 

• Some drivers may not be genetic. Some researchers suggest that the 
definition of driver should incorporate epigenetic alterations and 
alterations that are not cell-autonomous (Alizadeh et al., 2015). 

• The definition of drivers and passengers may not be dichotomous. 
Each variant in each cell is under a certain degree of selective pressure, 
which can be positive, negative, or neutral (Kumar et al., 2020): 

o Positive selection occurs when DNA sequence changes increase 
fitness, and therefore they are favored. Driver mutations are 
positively selected. Contrary to species evolution, cancer 
evolution is more driven by positive than by negative selection 
(Martincorena et al., 2017; Melton et al., 2015). 

o Negative (or purifying) selection occurs when DNA sequence 
changes decrease fitness, and therefore they are disfavored. 
Some passenger mutations are negatively selected. In cancer, 
negative selection has been rarely observed, except for 
hemizygous essential genes (Van den Eynden et al., 2016).  



Chapter 1. Introduction 

 
29 

o Neutral evolution occurs when changes in the sequence are 
neither favored nor disfavored. Neutral processes largely shape 
the variability between species, populations, and individuals 
(Doolittle, 2013). In cancer, most passenger mutations are under 
neutral evolution. In some cases, the mutation truly has a 
neutral effect (neutral passenger). In other cases, however, it has 
a slightly positive or negative effect that is too small for selection 
to measurably act upon it (weak driver or weak deleterious 
mutations) (Kumar et al., 2020).  

1.3. The non-coding genome 

Human cells encode their genetic information in DNA, which contains the 
necessary instructions for their development, growth, differentiation, 
maintenance, and division. The collection of genetic information of a cell is 
known as its genome, and a human haploid genome has a size of ~3.1·109 base 
pairs (bp) (Nurk et al., 2022). Part of the genome is transcribed into RNA, and 
part of the RNA is translated into protein (Figure 3A). In its original 
definition, the central dogma of molecular biology correctly posits that “the 
transfer of information from nucleic acid to nucleic acid, or from nucleic acid 
to protein may be possible, but transfer from protein to protein, or from 
protein to nucleic acid is impossible” (Crick, 1958). 

In principle, cancer genomes could harbor variants in each of their thousands 
of millions of bases. However, analyzing every single nucleotide in the genome 
in search for driver mutations is a technically challenging and resource-
demanding task that is only being made feasible in recent years thanks to 
whole-genome sequencing (WGS) technologies, which for now have only 
been adopted by some of the largest projects to date (Elliott and Larsson, 
2021). As a consequence, in most mutational studies, it has been necessary to 
focus mutational analyses on the parts of the genome that are the most likely 
to harbor easily identifiable driver mutations. Therefore, studies of driver 
mutations have been influenced by the debate over which parts of the genome 
are expected to have any biological function at all, as well as by technical and 
methodological limitations. 



Chapter 1. Introduction. 

 
30 

As the end products of part of the genome, proteins have long been 
appreciated as crucial effectors that can perform a wide variety of biological 
functions (Crick, 1958). Accordingly, the protein coding genome has been 
thoroughly searched for driver mutations, and the vast majority of currently 
known driver mutations affect PCGs (Bailey et al., 2018; Martínez-Jiménez et 
al., 2020). However, there are only ~20 000 PCGs in humans, and only ~1.1% 
of the nucleotides of the human genome encode proteins (Frankish et al., 2019; 
Nurk et al., 2022) (Figure 3B). Therefore, several questions arise about the 
remaining ~98.9% of the human genome that does not code for protein:            
(i) what types of elements constitute it? (ii) Are these elements functional? 
And, (iii) are these elements implicated in cancer?  

 

Figure 3. Components of the human genome. A. Schematic representation of a 
hypothetical bidirectional promoter that modulates the expression of a non-
coding RNA (ncRNA) gene in the 3’-5’ direction and a protein coding gene 
(PCG) in the 5’-3’ direction. Exons, introns, untranslated regions (UTRs), and 
coding sequences (CDSs) are labeled. B. Percentage of the human genome that 
is constituted by each type of genomic element. LINEs (long interspersed nuclear 
elements), SINEs (short interspersed nuclear elements), and LTRs (long terminal 
repeats) are all repetitive DNA. Data sources: (Gregory, 2005; Lander et al., 
2001; Nurk et al., 2022). Sizes of components of coding and non-coding genes 
were estimated from GENCODE v29. 
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As an answer to the first question, there are many types of non-coding 
sequences in humans (Frankish et al., 2019; Nurk et al., 2022) (Figure 3B): 

• As part of PCGs. Not all the DNA within PCGs encodes the protein 
sequence. When a PCG is transcribed, it generates a primary transcript 
that is then processed to generate a mature messenger RNA (mRNA). 
During this processing, some internal sequences, known as introns, are 
removed and the remaining sequences, known as exons, are joined 
together in a process known as splicing (Figure 3A and Section 1.8). 
Introns of PCGs are much longer than exons, and they constitute ~22% 
of the human genome (Frankish et al., 2019; Lander et al., 2001). 
Mature mRNAs also contain sequences that are not translated into 
proteins at their 5’ and 3’ ends. These sequences are known as 
untranslated regions (UTRs), and they are ~1.8% of the human genome 
(Frankish et al., 2019) (Section 1.10).  

• Non-coding RNA genes. Non-coding RNA genes are genes that are 
transcribed into RNA but not translated into protein. Although the 
number of non-coding RNA genes in humans is still a controversial 
matter, current estimates roughly agree that there are a few tens of 
thousands, and their exons constitute ~0.7% of the human genome 
(Frankish et al., 2019; Nurk et al., 2022). Non-coding RNAs are a highly 
heterogeneous group. For example, they include transfer RNAs and 
ribosomal RNAs, which play well-known roles in protein translation 
(Frankish et al., 2019; Nurk et al., 2022). However, the remaining 
classes of non-coding RNAs have been historically less studied, and 
they are coarsely and arbitrarily classified based on the length of their 
RNA products. Thus, long non-coding RNAs (lncRNAs) are longer 
than 200 nt, whereas small non-coding RNAs are shorter than 200 nt 
(Slack and Chinnaiyan, 2019). Expectedly, the two groups are highly 
heterogeneous. On the one hand, short non-coding RNAs include 
microRNAs (miRNAs), PIWI-interacting RNAs, and small nuclear 
RNAs, among others (Slack and Chinnaiyan, 2019). On the other hand, 
lncRNAs are even more heterogeneous than their small counterparts 
and, currently, they cannot be classified into well-defined functional 
subclasses. Importantly, as will be detailed in later sections, miRNAs 
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and lncRNAs can regulate gene expression and some are consistently 
altered in cancer (Sections 1.6-1.7). Many non-coding RNA genes, 
especially lncRNA genes, contain introns, which are usually much 
longer than exons and may constitute ~6% of the human genome. 

• Pseudogenes, which are inactive copies of PCGs, usually generated by 
gene duplication. Pseudogenes may or may not be transcribed, and 
some of them are even translated, but their products are believed to be 
non-functional, possibly with very few exceptions (Frankish et al., 
2019; Slack and Chinnaiyan, 2019). Pseudogenes constitute ~1.9% of 
the human genome (Frankish et al., 2019). 

• DNA that plays a structural role, such as telomeres and centromeres. 
• Regulatory DNA, such as promoters and enhancers, which modulate 

gene expression. 
• Other intergenic non-coding DNA, such as inactive transposons and 

viral sequences, which are classes of repetitive DNA.  

About 54% of the human genome is made of repetitive sequences (Nurk et al., 
2022) (Figure 3B). The majority of repetitive sequences in the human genome 
consist of inactive transposons and defective viral sequences, which are 
unlikely to have a biological function. On the other hand, some repetitive 
sequences, such as ribosomal RNA genes, have well-established functions. 

Regarding the questions of whether non-coding DNA is functional and 
whether it is implicated in diseases such as cancer, current evidence suggests 
that the answer may be yes for a small part of it. Remarkably, less than 10% of 
the disease-associated polymorphisms identified by genome-wide association 
studies are located in coding sequences (Maurano et al., 2012). As a result, 
recent studies on cancer drivers have become increasingly interested in the 
non-coding genome (Elliott and Larsson, 2021). However, before exploring 
cancer driver elements in the non-coding genome, it is essential to robustly 
define what makes a DNA sequence functional, and to use that definition to 
predict which non-coding DNA elements are likely to have a function. 
Furthermore, this conceptual framework will be essential to distinguish 
between driver (“functional”) and passenger (“non-functional”) mutations. 
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1.4. Selective pressure, biological function, 
and non-coding DNA 

Strictly, a DNA sequence is functional if and only if it is under selection 
(Doolittle, 2013). In other words, if a sequence evolves neutrally, it is not 
functional. As discussed in Section 1.2, selection can be positive or negative. 
Whereas positive selection is more important than negative selection in cancer 
evolution, the reverse is generally true in the evolution of species and 
populations. Therefore, negative selection is a useful indicator of whether a 
DNA sequence is functional in humans. Negative selection can be quantified 
based on evolutionary conservation or on the constraint of the sequence 
within populations (Karczewski et al., 2020; Pollard et al., 2010). In contrast to 
evolutionary methods, population-based methods can detect functions that 
have been acquired or lost recently in evolution. However, they require very 
large cohorts and, for now, analyses in the largest cohorts are mostly restricted 
to coding regions (Karczewski et al., 2020).   

Decades of research on evolutionary biology and human population genetics 
have led to the estimate that approximately 10%, and no more than ~15%, of 
the human genome has a sequence-dependent biological function (Meader et 
al., 2010; Ponting and Hardison, 2011; Ward and Kellis, 2012). Because only 
~1.1% of the human genome codes for proteins, even if assuming that all 
protein-coding DNA is functional, there would be at least ~8 times more 
functional non-coding DNA than functional coding DNA, confirming the 
non-coding genome as a vast resource of functional DNA that might be 
implicated in disease. On the other hand, these estimates also mean that ~90% 
of the human genome is not functional. This agrees with the fact that more 
than half of the human genome is made of inactive transposons, inactive viral 
sequences, and introns (Nurk et al., 2022) (Figure 3). 

The estimates discussed above were challenged by large-scale next-generation 
sequencing-based studies. Most importantly, the Encyclopedia of DNA 
Elements (ENCODE) Project reported that ~80% of the human genome has a 
biochemical “function” (Dunham et al., 2012). ENCODE defined “function” 
as any type of biochemical activity, such as transcription, reproducible protein 
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binding, or histone marks. ENCODE’s claims have been heavily criticized 
because they misuse the concept of biological function (Doolittle, 2013; Eddy, 
2013; Graur et al., 2013). Most crucially, non-specific or non-functional 
interactions between biomolecules occur extensively in vivo, causing spurious 
transcription and protein-nucleic acid binding (Struhl, 2007; Willingham and 
Gingeras, 2006). ENCODE considered these events as functional, thus 
inflating their estimates (Doolittle, 2013; Eddy, 2013; Graur et al., 2013). 

In conclusion, the non-coding genome might be a vast resource of functional 
and disease-related DNA sequences, and this is fully compatible with the 
notion that the majority of the human genome is functionless. In this text, we 
will use the term “function” in its strict definition (i.e., under selection), and 
otherwise we will use the term “activity” instead.  

1.5. Identifying cancer drivers in non-coding 
sequences: a methodological overview 

1.5.1. General rationale of driver discovery  

Whereas negative selection is useful for identifying functional DNA sequences 
in humans, positive selection is the most important indicator of whether a 
variant promotes cancer. Indeed, driver mutations are defined as mutations 
that are positively selected in cancer. When mutations are positively selected 
in a cohort, they can be observed at higher frequencies than expected under a 
background model of neutral evolution. There are multiple methods for 
detecting positive selection, and they differ in how they measure the 
accumulation of variants and, most importantly, in how they model their 
background (Rheinbay et al., 2020). 

Regarding how the accumulation of variants is measured, all methods 
consider recurrence directly or indirectly (Rheinbay et al., 2020). Some 
methods leverage additional information, such as the predicted functional 
impact of each variant (Martincorena et al., 2017; Mularoni et al., 2016). On 
the other hand, other methods rely on the distribution of variants alone, for 
example by searching for clusters of nearby variants (Arnedo-Pac et al., 2019). 
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However, even some of the latter require a definition of “silent” variants to 
estimate their background, and therefore they require defining which variants 
are expected to have no functional impact (Tamborero et al., 2013). 

Constructing a correct background is the main challenge of driver discovery. 
The background mutation rate (BMR) is not constant across the genome 
because it is influenced by multiple factors at various levels (Gonzalez-Perez 
et al., 2019; Supek and Lehner, 2019). At a genome-wide level, the BMR is 
mainly influenced by replication timing. At a gene level, the BMR is affected 
by chromatin state and by transcription levels. For example, highly transcribed 
tissue-specific genes have high indel rates (Imielinski et al., 2017). At a single 
nucleotide level, the BMR depends on the trinucleotide context (i.e., the 
mutated nucleotide and its two immediately adjacent nucleotides). Moreover, 
in some tumor types, DNA or RNA editing enzymes such as the activation 
induced-cytidine deaminase (AID) and the apolipoprotein B mRNA-editing 
enzyme catalytic subunit (APOBEC) mutate certain sequence motifs or DNA 
hairpins, respectively (Gonzalez-Perez et al., 2019; Supek and Lehner, 2019). 
Furthermore, transcription factor binding sites in highly active promoters 
have an increased mutation rate, in part because bound transcription factors 
physically hinder DNA repair (Perera et al., 2016). This is also true for other 
genomic positions that are regularly bound to proteins, such as CTCF binding 
sites (Supek and Lehner, 2019). Overall, knowledge on local determinants of 
the BMR is recent and, most likely, incomplete (Elliott and Larsson, 2021).  

Although recent driver discovery methods account for global determinants of 
the BMR, their ability to account for local determinants is limited (Rheinbay 
et al., 2020). As a result, the “hits” reported by driver discovery tools may 
contain false positives, and they must be carefully evaluated in search for 
artifacts and signs of local mutational processes. Further complicating the 
issue, not all hits originating from background mutational processes are 
necessarily false positives. For example, we previously reported that recurrent 
somatic variants affecting a splice donor site of BCL7A in lymphoma were 
caused by AID activity, but they were also under positive selection (Baliñas-
Gavira et al., 2020). Moreover, we showed that the variants improved cell 
fitness in vivo and in vitro compared to wild type BCL7A. 
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Most driver detection methods aim to identify driver features, defined as 
genomic features whose patterns of somatic variants suggest positive selection. 
However, not all variants that affect a driver feature are driver mutations (i.e., 
not all of them are positively selected and contribute to the cancer phenotype) 
(Martincorena et al., 2017). To our knowledge, few methods have been 
developed to systematically distinguish driver from passenger mutations 
within a driver feature, and only in PCGs (Muiños et al., 2021). Otherwise, 
pipelines to distinguish driver from passenger mutations rely on external 
information, such as functional impact scores, conservation, prediction of 
transcription factor binding sites, or the effect of the variant on gene 
expression, which must be evaluated on a case-by-case basis (Fu et al., 2014; 
Rheinbay et al., 2020). 

1.5.2. Challenges of searching for non-coding 
drivers 

Some driver discovery methods rely on predictions of the functional impact of 
variants. In coding sequences (CDSs) of PCGs, such predictions are 
straightforward thanks to the genetic code. For example, the ratio between 
non-synonymous and synonymous variants (dN/dS) quantifies selection in 
PCGs (Martincorena et al., 2017). As a result, PCG-centric driver discovery 
tools are numerous and well-tested. Remarkably, multiple state-of-the-art 
driver discovery tools have been integrated to obtain comprehensive 
“consensus” collections of pan-cancer and cancer-specific driver PCGs (Bailey 
et al., 2018; Martínez-Jiménez et al., 2020). However, even consensus-based 
approaches require manual curation to remove false positives and rescue false 
negatives (Bailey et al., 2018). 

In contrast, methods to predict non-coding drivers have been less developed, 
and comprehensive reports of non-coding drivers are rare (Fredriksson et al., 
2014; Fujimoto et al., 2016; Nik-Zainal et al., 2016; Puente et al., 2015; 
Rheinbay et al., 2020; Weinhold et al., 2014). Overall, there are multiple 
reasons why research on non-coding drivers has been slow: 
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• Historical lack of cancer sequencing data in non-coding regions. 
Large-scale WGS projects have only been feasible in recent years. 
Before the era of WGS, sequencing was mostly limited to the exome, 
or to parts of it. Although targeted sequencing of non-coding DNA 
was, in theory, possible, sequencing studies still neglected non-coding 
regions. It may be argued that non-coding regions were ignored, in 
part, because proteins have been historically considered as the main 
effectors of eukaryotic phenotypes. However, this explanation is not 
complete because many non-coding sequences, such as promoters, 
enhancers, ribosomal RNAs and transfer RNAs, have long been known 
to be functional. Instead, we propose the remaining reasons below. 

• Annotation of functional non-coding elements is incomplete and 
inaccurate. For example, annotation of non-coding RNA genes has 
greatly evolved over the past decade thanks to technological and 
methodological improvements (Cao et al., 2018; Frankish et al., 2019; 
Lorenzi et al., 2021). However, it is currently unclear which annotated 
lncRNAs are functional and which ones are “transcriptional noise” 
(i.e., non-functional RNA generated by spurious transcription) (Cao 
et al., 2018). 

• Predicting the effect of non-coding variants is challenging because 
the relationship between sequence and function of most non-coding 
regions is not fully understood. In addition, most non-coding 
sequences may tolerate variants better than coding sequences. In 
contrast, the functional impact of variants in coding sequences can be 
predicted using the genetic code, and this is exploited by PCG-centric 
driver discovery methods. 

• Low mappability. Many non-coding sequences have multiple copies 
along the genome, which can cause mapping artifacts and impair 
analyses in these regions (Shuai et al., 2019; Suzuki et al., 2019). 

• Modeling the BMR in non-coding regions is challenging because 
localized mutational processes in non-coding regions are poorly 
understood (Imielinski et al., 2017; Nik-Zainal et al., 2016; Rheinbay 
et al., 2020). Without a proper background model, signals of positive 
selection cannot be accurately distinguished from noise.  
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1.5.3. Challenges of predicting the functional 
impact of non-coding variants 

The function of non-coding sequences, if any, resides in the DNA itself or in 
non-coding RNA products, and therefore the variety of criteria that can be 
used to predict the functional impact of non-coding variants is limited. One 
of the most important criteria is evolutionary conservation (Pollard et al., 
2010). If the rate of substitutions in a nucleotide is slower than expected under 
neutral evolution, the nucleotide is likely to be functional, and variants in the 
nucleotide are likely to alter its function. However, a conserved nucleotide 
may only be essential in specific cell types, contexts, or developmental stages, 
and some sequences may have gained or lost their function recently in 
evolution. Therefore, a somatic variant affecting a highly conserved nucleotide 
in a specific tumor need not have any functional impact. In addition, 
conservation metrics are not allele-specific.  

Besides conservation, other proposed criteria for quantifying the functional 
impact of non-coding variants are DNA accessibility, disruption or creation 
of transcription factor binding sites, histone modifications, expression, and 
distance to exon-intron boundaries (Kircher et al., 2014; Shihab et al., 2015). 
None of these metrics alone can accurately predict the functional impact of 
non-coding variants, and they must be used in conjunction with conservation 
metrics, as they may help circumvent the limitations of using conservation 
metrics alone. Thus, recent methods such as Combined Annotation–
Dependent Depletion (CADD) and Functional Analysis Through Hidden 
Markov Models and Multiple Kernel Learning (FATHMM-MKL) integrate 
multiple metrics into a single allele-specific score using machine learning 
(Kircher et al., 2014; Shihab et al., 2015). In this way, both CADD and 
FATHMM-MKL can predict the functional impact of every single possible 
variant in the human genome. 
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1.5.4. Methods for non-coding driver discovery 

As will be detailed in later sections, in our work we performed targeted 
sequencing of miRNAs, lncRNAs, and PCGs in search for novel non-coding 
cancer drivers. Therefore, we were especially interested in driver discovery 
tools that are valid, at least in theory, for targeted sequencing of non-coding 
regions. Here, we describe the two tools that we selected for our purposes. 

Among the methods that incorporate the functional impact of variants, 
OncoDriveFML is of particular interest for our purposes because, in contrast 
to most other tools, it is applicable to targeted sequencing of non-coding DNA 
(Mularoni et al., 2016). OncoDriveFML computes the mean functional impact 
score (from any external source, such as CADD or FATHMM-MKL) of the 
observed variants in each feature of interest (Figure 4A). Then, to construct 
the background, it randomly simulates variants along each feature of interest 
and computes their mean functional impact score. It performs the simulations 
a large number of times (by default, 10 000) accounting for differences in the 
mutation rate in different trinucleotide contexts, estimated empirically using 
all variants in the cohort. Finally, for each feature, it compares the observed 
mean functional impact score with that of its background, obtaining a p value 
that is then corrected to control the false discovery rate. Because 
OncoDriveFML constructs the background locally, it is insensitive to factors 
that affect the BMR at a genomic scale. In addition, whereas other driver 
discovery methods require variants from intergenic regions or other “silent” 
variants to construct their background, OncoDriveFML does not, which 
makes it applicable to targeted sequencing (Rheinbay et al., 2020).  

Among the methods that are independent of functional impact annotations, 
we selected OncoDriveCLUSTL (Arnedo-Pac et al., 2019). The tool identifies 
positive selection in any feature of interest by searching for clusters of variants 
(Figure 4B). Variant clusters are scored based on the number of variants that 
they contain and the shape of the smoothed distribution of variant density. 
OncoDriveCLUSTL constructs its background by simulating random 
mutations within the feature in a similar manner to OncoDriveFML. 
Therefore, OncoDriveCLUSTL is also applicable, in theory, to targeted 
sequencing of non-coding DNA (Arnedo-Pac et al., 2019). 
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Using both OncoDriveFML and OncoDriveCLUSTL, driver mutations can be 
searched for in targeted sequencing of various types of non-coding features. 
In the remaining sections of this Introduction, we introduce the three main 
non-coding features analyzed in our work: lncRNAs, miRNAs, and intronic 
splice regions. Finally, we discuss two other types of non-coding elements that 
we analyzed in lower detail: promoters and UTRs. 

 

Figure 4. Methods for driver discovery used in this work. A. OncoDriveFML. 
Variants are scored based on their predicted functional impact (FI), which is 
calculated by external tools. Then, simulations are performed in which variants 
are randomly generated and their FI score is estimated. Next, the mean FI score 
of the observed variants is compared to the background distribution obtained 
from the simulations, yielding a p value for each genomic feature of interest. B. 
OncoDriveCLUSTL. Kernel density estimator (KDE) smoothing is performed 
on the variants, and clusters of variants are searched for. A “clustering score” is 
calculated for each genomic feature of interest. Simulations are performed to 
estimate the background distribution of clustering scores. Finally, the observed 
clustering score is compared to the background distribution to obtain a p value. 
Figures adapted from (Arnedo-Pac et al., 2019; Mularoni et al., 2016). 
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1.6. Long non-coding RNAs in cancer 

1.6.1. Long non-coding RNAs are a 
heterogeneous group of biomolecules 

Long non-coding RNAs (lncRNAs) are defined as non-coding RNAs that are 
longer than 200 nucleotides (Statello et al., 2021). The definition of lncRNAs 
is extremely broad, and as a consequence lncRNAs can have vastly different 
properties and functions. Most, but not all, lncRNAs are transcribed by RNA 
polymerase II, m7G-capped at their 5’ end, and polyadenylated at their 3’ end, 
in a similar manner to mRNAs (Statello et al., 2021). However, several features 
distinguish lncRNAs from mRNAs. The most important one is that, by 
definition, lncRNAs are not translated into functional proteins. In addition, 
lncRNAs have lower evolutionary conservation, number of exons, expression 
levels, and splicing efficiency than mRNAs. Moreover, lncRNAs tend to be 
more localized in the nucleus than mRNAs.  

Because lncRNAs are such a heterogeneous group, they can be classified in 
multiple ways (Kopp and Mendell, 2018) (Figure 5): 

• Based on their genomic location relative to their closest gene (Figure 
5A), lncRNA loci can be intergenic, antisense (if they overlap or they 
are close to another gene in the opposite strand), or sense (if they 
overlap another gene in the same strand). 

• Based on the locality of their action (Figure 5B), lncRNAs can act in 
cis or in trans. On the one hand, some lncRNAs never abandon the 
chromatin fraction, but they modulate nearby genes in cis (Kopp and 
Mendell, 2018). These lncRNAs are strictly nuclear, and their steady-
state expression levels tend to be low because they are degraded quickly. 
On the other hand, some lncRNAs leave the chromatin fraction and act 
in trans, modulating distant genes or participating in cellular processes 
outside of the chromatin fraction. These lncRNAs can be nuclear or 
cytosolic, and their steady-state expression levels tend to be higher than 
those of cis-acting lncRNAs because they must be stable enough to 
reach their destination. 
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• Based on where their functionality resides (Figure 5C). The function 
of some lncRNA loci is dependent on the RNA sequence itself. 
However, this is not always the case. Because regulatory DNA elements 
such as promoters and enhancers are transcribed bidirectionally in 
humans, a lncRNA locus may be functional only because it contains or 
it is downstream of a regulatory DNA element, and not because of the 
RNA product (Ibrahim et al., 2018). In other cases, the sequence of the 
lncRNA is irrelevant for its function, but its act of transcription or 
splicing modulates nearby genes in cis (Kopp and Mendell, 2018). For 
example, when a lncRNA locus overlaps another gene, transcription of 
the lncRNA may physically interfere with transcription of the 
overlapping gene. Moreover, the function of some lncRNAs may be 
dependent on their secondary structure, and therefore their RNA 
sequence may tolerate variants as long as they do not disrupt the 
structure. Moreover, all these mechanisms are not mutually exclusive 
(Marchese et al., 2017). Therefore, when characterizing a novel 
lncRNA, all possibilities must be considered, and it should not be 
assumed by default that their function is dependent on the RNA 
sequence. 

• Based on their mechanism of action (Figure 5D). LncRNAs can have 
extremely diverse mechanisms of action by binding to chromatin, to 
other RNAs, or to proteins. LncRNAs often modulate gene expression, 
either via chromatin remodeling, transcriptional regulation in cis or in 
trans, or by acting as scaffolds for proteins (reviewed by (Statello et al., 
2021)). At a post-transcriptional level, lncRNAs may mediate the 
formation of RNA-protein complexes, organize nuclear architecture, 
or sequester proteins or miRNAs to impair their function (Section 1.7). 
The lncRNAs that bind to miRNAs, preventing them from binding to 
their other targets, are named competing endogenous RNAs (ceRNAs). 
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Figure 5. The diversity of long non-coding RNAs (lncRNAs). A. Classification 
of lncRNAs based on their genomic location relative to protein coding genes. 
Transcription start sites (TSSs) are marked with black arrows. B. lncRNAs may 
act in cis, i.e., directly on nearby genes, or in trans, i.e., on distant loci or 
subcellular compartments. C. The function of lncRNAs may be dependent on 
their primary sequence (left), on their act of transcription and/or splicing 
(middle), or on their secondary structure (right). D. Some proposed molecular 
mechanisms for lncRNA function include: recruitment of regulatory proteins, 
such as transcription factors and chromatin remodeling proteins, to specific loci 
(left); structural roles, e.g., by forming subcellular structures, such as speckles 
and paraspeckles, or by mediating contacts between chromosomes (middle); and 
sponging of microRNAs, preventing their function (right). RBP: RNA binding 
protein; ceRNA: competing endogenous RNA. 
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1.6.2. LncRNAs are altered in cancer 

LncRNAs have diverse biological functions that are usually related with the 
regulation of gene expression. As a consequence, lncRNAs are often 
dysregulated in cancer, directly participating in all hallmarks of cancer 
(Goodall and Wickramasinghe, 2021; Huarte, 2015). The Cancer LncRNA 
Census (CLC), a curated compendium of cancer-related lncRNAs, currently 
contains 492 entries (Vancura et al., 2021). Some representative lncRNAs that 
have been linked to each cancer hallmark are summarized in Table 1.  

Besides their direct role in tumorigenesis, lncRNAs may also be useful as 
cancer biomarkers. For example, the lncRNA PCA3 is expressed specifically in 
prostate cancer (Hessels et al., 2003), and a diagnostic test that detects PCA3 
expression has been approved by the U.S. Food and Drug Administration 
(FDA) to help determine whether it is necessary to repeat a biopsy in patients 
who have had a previous negative biopsy (FDA approval number: P100033). 
Although, to our knowledge, PCA3 is the only approved lncRNA biomarker 
to date, expression of other lncRNAs may have clinical value in the future. For 
example, expression of MALAT1 is associated with patient survival and tumor 
metastasis in non-small cell lung cancer (Ji et al., 2003). In addition, expression 
of TCL6 is strongly associated with specific subtypes of childhood leukemia 
(Cuadros et al., 2019). Overall, reports on lncRNAs whose expression is 
associated with specific cancer subtypes or with patient prognosis have been 
growing exponentially over the last decades, but they have very rarely reached 
clinical application.  

Although there are myriads of reports of lncRNAs whose expression is altered 
in cancer, few studies have explored other types of alterations, such as those at 
the genomic level. However, genomic alterations that involve lncRNAs may 
help uncover novel roles of lncRNAs. For example, by searching for genomic 
regions that are recurrently amplified or deleted in cancer, novel oncogenic or 
tumor suppressor lncRNAs can be discovered, respectively (Athie et al., 2020). 
In addition, in theory, point mutations could also affect lncRNA function in 
cancer, for example by altering their expression or by affecting their binding 
affinity to other biomolecules. However, driver point mutations in lncRNAs 
may be uncommon (Elliott and Larsson, 2021; Rheinbay et al., 2020). 
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Based on their accumulation of point mutations and small indels, NEAT1 and 
MALAT1 used to be strong candidate driver lncRNAs (Fujimoto et al., 2016; 
Nik-Zainal et al., 2016). However, their accumulation of variants may not be 
due to positive selection, but due to background processes (Rheinbay et al., 
2020). Other lncRNAs, such as G029190 and CTD-2105E13.15, were recently 
reported as possible pan-cancer drivers, but their signal was weak and their 
functional significance was unclear (Rheinbay et al., 2020).  

Table 1. Representative examples of lncRNAs that have been reported to 
promote (+) or suppress (-) cancer hallmarks. 

Hallmark lncRNA Effect Cancer  Reference 

Sustained 
proliferation 

MEG3 - Various (Zhou et al., 2007) 

Evasion of growth 
suppressors 

CDKN2B-AS1 + Various (Kotake et al., 
2011) 

Immune evasion ALAL-1 + Lung (Athie et al., 2020) 

Replicative 
immortality 

TERC + Cervix (Andersson et al., 
2006) 

Inflammation PACERR + Pancreas (Liu et al., 2022) 

Invasion and 
metastasis 

HOTAIR + Breast (Gupta et al., 
2010) 

Angiogenesis TUG1 + Glioblastoma (Cai et al., 2017) 

Genome 
instability and 
mutagenesis 

PCAT1 + Prostate (Prensner et al., 
2014) 

Avoidance of cell 
death 

PANDAR + Various (Hung et al., 2011) 

Metabolism 
deregulation 

TP53COR1 + Various (Yang et al., 2014) 

Hallmarks of cancer are described in (Hanahan, 2022). Newly emerging 
hallmarks have not been compiled here. 
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1.6.3. The controversy over lncRNA function 

1.6.3.1. Perspectives from evolutionary biology and 
population genetics 

Over the last decades, lncRNAs have consolidated as a distinct but diverse 
group of biological molecules. However, a lingering question is how many of 
the tens of thousands of human lncRNAs have an actual biological function. 
This question is especially challenging to answer because annotations of 
lncRNAs are unstable and because their functions are sometimes sequence-
independent, relying instead on their transcription, splicing, or secondary 
structure (Kopp and Mendell, 2018). Nevertheless, several remarkable 
approaches have been made to tackle the question of the functionality of 
lncRNAs (reviewed by (Ulitsky, 2016)). 

From an evolutionary point of view, lncRNA exons and promoters are more 
conserved than introns and intergenic regions, but less conserved than CDSs 
(Guttman et al., 2009; Haerty and Ponting, 2013). In particular, when 
accounting for conservation of sequence, transcription, or splicing patterns, 
~20-30% of high-confidence lncRNAs are conserved between humans and 
primates (Ulitsky, 2016). However, evolutionary approaches have 
encountered major limitations. First, conservation of lncRNA exons is only 
significant when analyzing curated sets of high-confidence lncRNAs, 
suggesting that general annotations may be plagued with non-functional 
entries (Haerty and Ponting, 2013). Second, evolutionary methods have 
mostly evaluated full sequences of lncRNAs, and therefore they are unable to 
detect small and highly conserved sequences within mostly non-conserved 
lncRNAs, an occurrence that has been described for some well-characterized 
lncRNAs (Ulitsky, 2016). Third, rapid evolution does not mean lack of 
function, as some lncRNAs may have acquired biological functions recently 
during evolution. For example, whereas human HOTAIR may be involved in 
the regulation of the HOXD cluster, there is no evidence for such activity in 
mice (Schorderet and Duboule, 2011). The latter limitation can be overcome 
by analyzing purifying selection within populations of the same species.   
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From an intra-specific point of view, little evidence of purifying selection has 
been found in lncRNA exons in humans (Haerty and Ponting, 2013). 
However, it has been robustly observed in other species, such as fruitflies 
(Haerty and Ponting, 2013). Because the effective population size of humans 
is relatively small (~2-3 orders of magnitude smaller than that of fruitflies), 
purifying selection may not be able to act on weakly deleterious variants in 
lncRNA exons, and therefore lncRNA exons may evolve neutrally in humans 
(Haerty and Ponting, 2013).  

1.6.3.2. Inconsistent annotation of lncRNAs hinders 
research on lncRNA function 

Studies on lncRNA function have been seriously limited by the lack of a robust 
annotation of human lncRNAs. Indeed, defining what is and what is not a 
lncRNA gene is a controversial subject. RNA polymerases and transcription 
factors spuriously bind to accessible DNA sequences across the whole genome 
and generate non-functional RNAs, causing what is known as transcriptional 
noise (Struhl, 2007; Willingham and Gingeras, 2006). Transcriptional noise is 
widespread in the genome, but its RNA products usually have low 
concentrations and they are quickly degraded. However, some bona fide 
lncRNAs have very low steady-state concentrations, even below one copy per 
cell (Seiler et al., 2017). Furthermore, regulatory DNA elements such as 
promoters and enhancers are usually transcribed in both directions, 
generating non-coding RNAs whose functionality is unclear in most cases and 
whose concentration is correlated with the activity of the promoter or 
enhancer (Ibrahim et al., 2018). Therefore, it is extremely challenging to 
distinguish between functional lncRNAs and non-functional RNAs generated 
by non-specific processes. As a consequence, using different criteria and 
different data to annotate lncRNA loci can lead to vastly different results. 
Illustratively, current estimates of the number of human lncRNA genes range 
from ~18 000 to ~100 000 (Frankish et al., 2019; Zhao et al., 2021a). However, 
without a proper and robust annotation, broad questions about the 
functionality of lncRNAs as a set cannot be answered accurately. 
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1.6.3.3. Transcription does not mean function 

The debate on how many lncRNAs are functional was strongly reignited by 
the ENCODE Project Consortium, who claimed that ~80% of the human 
genome is functional and who classified all transcribed DNA sequences as 
functional (Dunham et al., 2012). ENCODE found that up to ~75% of the 
human genome was transcribed in at least one of their analyzed cell types, and 
~39% was transcribed in a typical cell line (Djebali et al., 2012). Most of these 
transcripts were non-coding and not conserved, and ~80% of the non-coding 
transcripts were expressed at 1 or fewer copies per cell.  

Then, how many of the non-coding transcripts identified by ENCODE were 
functional? Members of ENCODE argued that most of them were likely to be 
functional because they had tissue-specific expression, and that they may have 
sequence-independent functions that could explain their lack of evolutionary 
conservation (Mattick and Dinger, 2013). As a counterargument, 
transcriptional noise is also tissue-specific because each cell type in each 
context expresses a specific set of transcription factors and has specific 
patterns of chromatin accessibility (Eddy, 2013). Furthermore, although some 
lncRNAs have sequence-independent functions, they are believed to be rare 
(Ponting and Hardison, 2011), and they are still constrained at some other 
level (e.g., secondary structure, transcription, or splicing) (Kopp and Mendell, 
2018; Ulitsky, 2016). Finally, although some functions in human genomes may 
have been acquired recently in evolutionary time, they are likely to represent 
only a small fraction of the human genome according to estimates from 
ENCODE researchers (Ward and Kellis, 2012). 

In conclusion, for any uncharacterized non-conserved non-coding transcript, 
the simplest explanation is that it originates from transcriptional noise, even 
if its transcription is tissue-specific. The null hypothesis should always be that 
of no function, and any claim on functionality should be robustly proven. 
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1.7. MicroRNAs in cancer 

1.7.1. MicroRNA biogenesis and function 

MicroRNAs (miRNAs) are short (~22 nt) non-coding RNAs that modulate 
gene expression (Bartel, 2004). In the nucleus, the primary transcripts of 
miRNA genes (pri-miRNAs) form hairpin structures that are recognized by 
the Microprocessor complex, which is constituted by one copy of the RNase 
III endonuclease DROSHA and two copies of the RNA-binding protein 
DGCR8 (Figure 6) (Partin et al., 2020). Auxiliary proteins, such as SRSF3, may 
help Microprocessor bind to pri-miRNAs (Kim et al., 2021). Microprocessor 
cleaves pri-miRNAs at specific sites generating a stem-loop structure known 
as precursor miRNA (pre-miRNA). Pre-miRNAs are then exported to the 
cytosol, where another RNase III endonuclease, DICER, cleaves off the loop 
end of the pre-miRNA, generating a double-stranded RNA (dsRNA) duplex 
constituted by the mature miRNA and a quasi-complementary fragment of 
similar size. Finally, the mature miRNA, in its single-stranded RNA (ssRNA) 
form, binds to a multiprotein complex constituted by Argonaute and 
accessory proteins and forms the RNA-induced silencing complex (RISC). 
The mature miRNA guides RISC towards target mRNAs, promoting their 
cleavage or translational repression. Mature miRNA names end in either           
“-5p” or “-3p” based on whether they originated from the stem-loop arm 
closest to the 5’ end or to the 3’ end of the sequence, respectively. 

The target specificity of miRNAs is mostly determined by their “seed” 
sequence, which is defined as nucleotides 2-7 in the mature miRNA (Agarwal 
et al., 2015). The model of canonical target recognition by miRNAs establishes 
that the seed sequence binds to the 3’-UTRs of target mRNAs by perfect base 
pairing, which can be strengthened by a match at position 8 and/or by an 
adenine opposite position 1. Models based on such simple assumptions can 
explain most experimentally validated miRNA-target interactions, and 
functional “non-canonical” binding is rare (Agarwal et al., 2015). Indeed, these 
models are the basis of one of the most popular miRNA target prediction tools, 
TargetScan (https://www.targetscan.org). 
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Figure 6. Canonical miRNA biogenesis pathway. The primary transcripts of 
miRNA genes (pri-miRNAs) undergo several processing steps to generate mature 
miRNAs. See main text for details. Pre-miRNA: precursor miRNA; miRISC: 
RNA-induced silencing complex, loaded with a mature miRNA. 

1.7.2. Processing motifs in miRNAs 

Seed sequences are critical for miRNA function, as proven by the fact that 
seed-target interactions are highly conserved in evolution (Bartel, 2009). Seed 
sequences are defined by their position in mature miRNAs, which is 
determined by where DROSHA and DICER cleave the pri- and pre-miRNAs, 
respectively (Figure 6). Therefore, DROSHA and DICER cleavage must be 
highly precise, and a shift of just 1 nt in a cleavage site can completely change 
the seed sequence and, with it, the targets of a mature miRNA. DICER 
determines its cleavage site by measuring ~22 nt from the basal end of the pre-
miRNA, which is dictated by DROSHA (Park et al., 2011). Therefore, in 
practice, DROSHA is the main determinant of the sequences of mature 
miRNAs. Accordingly, DROSHA cleavage is tightly controlled (Auyeung et 
al., 2013; Fang and Bartel, 2015; Kim et al., 2021; Kwon et al., 2019; Roden et 
al., 2017).  
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There are multiple structural and positional features in pri-miRNAs that 
define the DROSHA cleavage site and its cleavage efficiency (Figure 7): 

• The basal junction is the dsRNA-ssRNA junction at the basal end of 
the stem (i.e., the opposite end from the loop).  

• The apical junction is the dsRNA-ssRNA junction at the apical end of 
the stem (i.e., where the loop starts). 

• The lower stem is the part of the stem that is located between the basal 
junction and the DROSHA cleavage sites. 

• The basal UG motif is a UG sequence at the basal junction of the 5p 
arm. 

• The mismatched GHG motif (mGHG) is a complex motif located in 
the lower stem. Despite its name, which is kept for historical reasons, it 
need not be a GHG sequence and it is not defined by an exact sequence. 
Instead, it is defined by the sequences of two trinucleotides that usually 
face each other at a specific position in the lower stem, one in each arm. 
Their composition affects DROSHA cleavage site determination and 
cleavage efficiency. Currently, mGHG motifs are best defined by an 
“mGHG score”, which is based on experimental data from (Fang and 
Bartel, 2015). The mGHG scores range from 0 to 100 and quantify how 
efficiently DROSHA cleaves a pri-miRNA that harbors each possible 
pair of trinucleotides at the mGHG position (Kwon et al., 2019).  

• The apical UGUG motif is a UGU or GUG at the apical junction. 
• The downstream CNNC motif is a CNNC sequence downstream of 

the 3’ end of the stem-loop. 

According to structural evidence, DROSHA recognizes the basal junction, the 
basal UG motif (if present), and the lower stem, with different affinities for 
different mGHG sequences (Partin et al., 2020). On the other hand, DGCR8 
binds to the apical end of the stem, the apical loop, and the UGUG motif (if 
present). Together, DROSHA and DGCR8 form a “molecular ruler” that only 
accommodates stems that are ~35 bp long. Finally, the CNNC motif is 
recognized by the accessory protein SRSF3, but this is not always required for 
correct pri-miRNA processing (Kim et al., 2021). 
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Figure 7. Structure and sequence features of pri-miRNAs. Pri-miRNAs form 
hairpin structures whose stem is ~35 bp long. DROSHA and DICER cleavage 
sites are indicated with brown and blue arrows, respectively.  

Not all sequence motifs are present in all pri-miRNAs. In fact, most pri-
miRNAs only have one or two motifs, and many pri-miRNAs have none 
(Auyeung et al., 2013). However, pri-miRNAs that lack all sequence motifs 
may not generate biologically active mature miRNAs because they are not 
cleaved efficiently by Microprocessor (Kim et al., 2021). According to current 
models, the minimum requirements for DROSHA to cleave a pri-miRNA are 
as follows (Kim et al., 2021; Roden et al., 2017): 

• A hairpin-like structure whose stem is ~33-39 bp long. 
• A stable lower stem (< 4 mismatches). 
• At least one sequence motif. 

If DROSHA is to cleave a pri-miRNA, the exact cleavage site is determined by 
one of the following features, by order of preference (Kwon et al., 2019): 

• A strong mGHG motif (mGHG score ≥60), if present, establishes the 
DROSHA cleavage site at position +7 counting from the first mGHG 
nucleotide in the 5p arm.  

• Otherwise, the basal UG motif and the basal junction define the 
DROSHA cleavage site. DROSHA cleaves at 14 nt after the U of the UG 
motif, or at 13 nt after the basal junction. Most times, the UG motif is 
exactly at the basal junction and the two rules are equivalent. However, 
occasionally the UG motif is not exactly at the basal junction. In such 
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cases, DROSHA may follow both rules simultaneously, generating 
heterogeneous products. 

Finally, the following features improve DROSHA cleavage efficiency (Kim et 
al., 2021; Kwon et al., 2019): 

• The basal UG, apical UGUG, and downstream CNNC motifs help 
Microprocessor bind to the pri-miRNA in the correct orientation and 
increase cleavage efficiency. 

• mGHG motifs with higher mGHG scores lead to higher cleavage 
efficiencies. 

As hinted above, motifs can be defined by “positional” criteria (i.e., position 
of the motif relative to DROSHA cleavage sites) or by “structural” criteria (i.e., 
position of the motif relative to structural features) (Table 2 and Figure 7). 
Although both definitions are usually equivalent because the positions of the 
structural features are conserved, there are numerous exceptions (Kwon et al., 
2019). In such cases, which criterion should prevail? Several arguments can be 
made in favor of each criterion: 

• The positional definition of motifs is strongly supported by 
evolutionary conservation data (Auyeung et al., 2013) and by positional 
enrichment of motifs in pri-miRNAs that are correctly processed 
compared to those that are not (Kim et al., 2021). 

• However, mechanistically, Microprocessor measures physical 
distances, and the truly conserved feature is the physical distance, not 
the nucleotide distance, between DROSHA cleavage sites and sequence 
motifs. The relationship between physical distance and nucleotide 
distance depends on the presence of mismatches, bulges, and loops. As 
a consequence, some motifs and structural features are not exactly at 
their expected base pair position, but they are still functional (Kwon et 
al., 2019). In addition, basal junctions and UG motifs can be slightly 
shifted from their optimal position if a strong mGHG motif is present 
(Kwon et al., 2019). 
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Table 2. Key DROSHA recognition features in pri-miRNAs as defined by 
positional and by structural criteria. 

Feature Positional definition Structural definition 

Basal junction -13 nt from 5p DCS. dsRNA-ssRNA junction at 
basal end. 

Apical junction +22 nt from 5p DCS. dsRNA-ssRNA junction at 
apical end. 

Basal UG -14 nt from 5p DCS. UG at basal junction. 

mGHG  -7...-5 nt from 5p DCS, and 
opposite nt in 3p arm. 

Same as positional. 

Apical UGUG  UGU/GUG at +21...+25 nt 
from 5p DCS. 

UGU/GUG at apical 
junction. 

Downstream 
CNNC 

+16...+18 nt from 3p DCS. +5...+6 (up to +3...+11) 
from 3p basal junction. 

mGHG: “mismatched GHG”. DCS: DROSHA cleavage site. Distances are 
expressed in nucleotides (nt) and they express the range where the first 
nucleotide of the motif should start. Sources: (Auyeung et al., 2013; Kim et al., 
2021; Kwon et al., 2019; Roden et al., 2017). See also Figure 7. 
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1.7.3. MicroRNA alterations in cancer 

MicroRNAs are key regulators of gene expression that often target cancer-
related mRNAs (Arenas et al., 2022; Goodall and Wickramasinghe, 2021). A 
single miRNA typically has a large number of targets, and these can be 
enriched in either oncogenes or tumor suppressor genes. When a miRNA 
preferentially targets oncogenes, it acts as a tumor suppressor; when it 
preferentially targets tumor suppressor genes, it acts as an “oncomiR” (cancer-
promoting miRNA). As a result, expression of miRNAs is sometimes altered 
in cancer, so that oncomiRs are upregulated and tumor suppressor miRNAs 
are downregulated (Arenas et al., 2022; Goodall and Wickramasinghe, 2021). 

Alterations in miRNA expression in cancer can have several degrees of 
complexity. In some cases, a single miRNA, such as miR-21 or miR-155, is so 
strongly oncogenic that its overexpression alone can drive tumorigenesis in 
mice (Costinean et al., 2009; Medina et al., 2010). In addition, some miRNAs, 
such as the miR-34 family, the let-7 family, and the miR-15/16 cluster, are 
strong tumor suppressors that become recurrently inactivated in various 
cancer types (Arenas et al., 2022; Goodall and Wickramasinghe, 2021). 
However, most frequently, when a single type of miRNA binds to a target 
mRNA, the effect on mRNA expression is mild (Bracken et al., 2016). Instead, 
multiple alterations in complex miRNA-mRNA regulatory networks can 
converge in a large effect on a single pathway (Bracken et al., 2016). 

To date, most research on the role of miRNAs in cancer has focused on 
alterations in miRNA expression and their association with genomic copy 
number alterations, promoter hypermethylation, or alterations in proteins 
involved in miRNA biogenesis (Arenas et al., 2022; Bracken et al., 2016; 
Goodall and Wickramasinghe, 2021). However, point mutations that affect 
miRNA targeting or biogenesis remain underexplored (Urbanek-Trzeciak et 
al., 2020). Currently, the best known miRNA that accumulates driver point 
mutations in cancer is MIR142, a tumor suppressor in B-cell non-Hodgkin 
lymphomas (Kwanhian et al., 2012; Rheinbay et al., 2020). In particular, 
MIR142 recurrently harbors loss-of-function mutations that affect its seed 
(and, hence, its targeting) or that impair the biogenesis of mature miR-142 
(Kwanhian et al., 2012). 
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1.8. Splicing in cancer 

1.8.1. Conserved sequences determine splicing 

Most protein-coding genes, as well as many lncRNA genes, contain introns. 
Introns are removed from primary transcripts by the spliceosome 
ribonucleoprotein complex (Sibley et al., 2016). The spliceosome accurately 
recognizes exon-intron junctions, cleaves off introns, and joins exons 
together. This accuracy is largely thanks to specific sequences at exon-intron 
boundaries (Figure 8). In particular, the most constrained nucleotides are the 
first and last two intronic nucleotides, which in >98.5% of the cases in humans 
are GT and AG, respectively (Sibley et al., 2016). In the context of variant 
annotation, splice sites are usually defined as these first and last two intronic 
nucleotides, whereas splice regions are defined as a broader region that 
contains splice sites and nearby intronic nucleotides (McCarthy et al., 2014). 
In this text, we will use these definitions of splice sites and splice regions. 

Despite their importance, GT/AG sequences are insufficient to define exon-
intron junctions. Indeed, other intronic and exonic sequences help determine 
splice donor and acceptor sites (Figure 8). Regarding splice donor sites, the 
last exonic position has a strong preference for G, the third intronic position 
has a strong preference for A or G, and the fifth intronic position has a strong 
preference for G (Sibley et al., 2016). As for splice acceptor sites, two loosely 
defined intronic sequences known as the branch point and the polypyrimidine 
tract are required (De Conti et al., 2013). Furthermore, additional sequences 
deep within exons and introns may act as splicing enhancers and silencers (De 
Conti et al., 2013). Overall, the full picture of cis-acting elements that 
determine splicing is more complex than just the splice donors and acceptors. 
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Figure 8. Normal and aberrant splicing. Above: sequence features required for 
correct splicing. Exons are displayed in green and introns are displayed in light 
grey. Black lines represent the sites that are joined together by the spliceosome. 
The most constrained nucleotides in the splice donor site and the splice acceptor 
site are highlighted in purple. Poly-Py: polypyrimidine; R: A or G; Y: C or T.  
Below: examples of splicing aberrations caused by hypothetical variants (brown 
arrows) in a hypothetical transcript. The alterations are highlighted in brown. 
IpA: intronic polyadenylation.  

1.8.2. Functional effects of variants at splicing 
sequences 

Correct splicing is crucial for generating functional gene products. In cancer, 
somatic variants can disrupt splice sites or other sequences that determine 
splicing efficiency in cis, or they can create novel splice sites (Shiraishi et al., 
2018). Approximately 60% of variants at splice sites and 34% of variants at 
splice regions have a detectable effect on RNA splicing patterns in cis 
(Calabrese et al., 2020).  
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The most frequent effects of splice site variants on RNA include the following 
(Shiraishi et al., 2018) (Figure 8): 

• Intron retention. The full mutated intron is retained. 
• Exon skipping. The affected exon is not included in the mature 

transcript, and instead its two neighboring exons are joined together.  
•  “Partial intron retention” and intronic polyadenylation. A mutated 

splice donor is expressed along with the first few intronic nucleotides, 
but the full intron is not retained (Andrades et al., 2022). Instead, 
sequencing coverage drops to zero or near zero at some point within 
the intron. This may be caused by intronic polyadenylation (Zhao et al., 
2021b). According to this model, the variant at the splice donor initially 
causes intron retention, but a polyadenylation signal within the intron 
causes the transcript to get terminated prematurely. Alternatively, this 
coverage pattern may reflect that sequencing coverage decreases along 
introns, or it may reflect transcription-coupled processes (Sibley et al., 
2016). Therefore, in this text, we prefer using the term “partial intron 
retention” to refer to these aberrant coverage patterns, and we only use 
“intronic polyadenylation” when we find additional evidence 
supporting such a process. In particular, if most sequencing reads 
spanning the splice junction are mutant and the intron contains 
polyadenylation signals, intronic polyadenylation is a likely cause. 

• Usage of cryptic splice sites. Alternative splice donor or acceptor sites 
are used. If the cryptic splice site is located within an exon, the mature 
transcript will contain a deletion; if it is located within an intron, the 
mature transcript will contain an insertion.  

• Creation of novel exons (exonization). An intronic sequence may be 
recognized as an exon by the spliceosome, especially when a variant 
creates a novel intronic splice site (Calabrese et al., 2020).  

• Usage of alternative isoforms. This is a special case of any of the effects 
mentioned above (Andrades et al., 2022). It occurs when the transcript 
generated by the splice site variant is another canonical isoform of the 
gene. For example, one isoform of a gene may include an exon and 
another one may skip it. If a splice site variant causes skipping of that 
exon, the resulting transcript will still be canonical, not aberrant.  
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1.8.3. Splice site variants in cancer 

Variants at splice sites of PCGs are the best studied non-coding variants in 
cancer because they can be detected relatively easily, they are sometimes 
recurrent, and they usually cause major aberrations in gene products. For 
example, splice site variants can cause alterations in RNA processing that shift 
the reading frame in CDSs, remove of parts of a gene product, or terminate 
transcripts prematurely (Andrades et al., 2022; Shiraishi et al., 2018). 
Sometimes, the aberrant transcripts are degraded by nonsense-mediated 
decay, which can further impair gene function (Jung et al., 2015). As a 
consequence, splice site variants are most frequent in tumor suppressor genes, 
such as TP53 (Shiraishi et al., 2018). For example, in lung adenocarcinoma, 
the tumor suppressor genes TP53 and SMARCA4 are recurrently inactivated 
by splice site variants (Bouaoun et al., 2016; Peinado et al., 2022). 

Alternatively, splice-altering variants can affect oncogenes. These cases are 
relatively rare because they must maintain the oncogenic activity of the 
protein while disrupting domains that promote its degradation or 
inactivation. Nevertheless, these alterations are extremely important at a 
clinical level. For example, in ~3-4% of lung adenocarcinoma tumors, splice-
altering variants cause the exon 14 of the MET oncogene to be skipped while 
retaining the reading frame (Frampton et al., 2015). The aberrant MET protein 
lacks a degradation domain and, therefore, it has increased oncogenic activity. 
Importantly, splice site mutant MET is targeted by capmatinib and tepotinib, 
two specific inhibitors that have been approved for the treatment of metastatic 
non-small cell lung cancer (Mathieu et al., 2022).  

Splicing can also be altered in trans. In particular, RNA and protein 
components of the spliceosome, including U2AF1, SF3B1, SRSF2, and the U1 
small nuclear RNA, are recurrently mutated in multiple cancers (Seiler et al., 
2018; Shuai et al., 2019; Suzuki et al., 2019). The mutations cause 
transcriptome-wide splicing alterations that affect oncogenes and tumor 
suppressor genes. In general, the effects on each individual gene are thought 
to be mild, but the combined effects on all genes may be quantitatively 
relevant. Nevertheless, further research is needed to determine the how these 
transcriptome-wide splicing alterations promote oncogenesis.  
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1.9. Promoters in cancer 

Promoters are regulatory DNA sequences in which transcription of genes is 
initiated. Promoters contain sequence motifs that are specifically recognized 
by various proteins, including RNA polymerases and transcription factors, 
which mediate gene transcription (Messeguer et al., 2002). Therefore, variants 
in promoter sequences may affect gene expression by reducing or increasing 
the binding affinity of transcription factors (Calabrese et al., 2020). 

A major landmark in the study of non-coding driver mutations in cancer was 
the discovery of recurrent point mutations in the TERT promoter 
(Fredriksson et al., 2014; Horn et al., 2013; Huang et al., 2013). The TERT gene 
encodes the reverse transcriptase subunit of the telomerase complex, which 
maintains telomere length and prevents cell senescence. Recurrent mutations 
in the TERT promoter create binding sites for ETS transcription factors, 
increasing TERT expression. TERT promoter mutations are among the most 
recurrent driver mutations in human cancer and they have been described in 
over a dozen cancer types (Fredriksson et al., 2014; Rheinbay et al., 2020).  

Promoters other than TERT harbor cancer driver mutations, but never at such 
high recurrence or across so many cancer types. For example, driver mutations 
in the promoters of PLEKHS1, SDHD, TFPI2, and FOXA1 affect transcription 
factor binding and/or gene expression in cis (Fujimoto et al., 2016; Melton et 
al., 2015; Rheinbay et al., 2017). Another well-studied case is the promoter of 
WDR74 (Khurana et al., 2013; Nik-Zainal et al., 2016; Weinhold et al., 2014), 
but its reported variants may not be real because the region is prone to 
mapping artifacts (Rheinbay et al., 2020). Recurrent variants in other 
promoters have been reported, but their functional significance has not been 
explored in detail (Weinhold et al., 2014). 

Promoters of lncRNAs may also accumulate somatic variants, but they have 
rarely been studied. In multiple cancer types, the promoters of RMRP and 
NEAT1 harbor somatic variants that affect transcription factor binding and 
alter expression levels (Rheinbay et al., 2020; Rheinbay et al., 2017). However, 
both loci show patterns of non-specific mutational processes and the RMRP 
locus is prone to mapping artifacts (Rheinbay et al., 2020).  
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1.10. UTRs in cancer 

Both 5’- and 3’-UTRs are involved in the post-transcriptional regulation of 
gene expression, containing elements that can affect the stability, the 
translation efficiency, and the subcellular localization of mRNAs (Gruber and 
Zavolan, 2019; Schuster and Hsieh, 2019). As a consequence, UTRs may be 
altered in cancer. 

The most studied UTR alterations in cancer are those in 3’-UTRs. 3’-UTRs 
often contain miRNA binding sites and other regulatory sequences that 
shorten the half-life of mRNAs (Mayr and Bartel, 2009). As a consequence, 
shortening or mutating 3’-UTRs of certain oncogenes can be beneficial to 
cancer cells. The mechanisms by which 3’-UTRs are altered in cancer include: 

• Alternative polyadenylation. Generally, 3’-UTRs are shortened at a 
transcriptome-wide level in proliferating cells and in malignant cells, 
even in the absence of mutations in cis (Mayr and Bartel, 2009).              
3’-UTRs may be shortened because proliferating and malignant cells 
tend to use alternative polyadenylation sites located earlier within the 
transcript (Mayr and Bartel, 2009). Although this phenomenon may 
increase the protein levels of certain oncogenes, some researchers have 
questioned whether it can promote oncogenesis when considered at a 
transcriptome-wide level, as shorter 3’-UTRs do not always increase the 
half-life of the mRNA and the global effect may be weak (Gruber and 
Zavolan, 2019). In fact, it is still unclear whether shortened 3’-UTRs are 
a cause or a consequence of malignant transformation (Gruber and 
Zavolan, 2019). 

• Alternative splicing. Certain introns and exons in UTRs can be either 
included or excluded in the mature mRNA, generating UTRs of varying 
lengths (Chan et al., 2022). Together, alternative splicing and 
alternative polyadenylation constitute the two major mechanisms by 
which 3’-UTRs are generally shortened in cancer. Inhibition of 3’-UTR 
splicing decreases the expression of oncogenes and has an anti-tumor 
effect, supporting a causative role of 3’-UTR splicing in oncogenesis 
(Chan et al., 2022). 
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• Point mutations and deletions. For example, in lymphoma, the             
3’-UTR of the oncogene CCND1 recurrently suffers deletions and point 
mutations that induce its premature cleavage and polyadenylation 
(Wiestner et al., 2007). In addition, pan-cancer driver point mutations 
in the 3’-UTR of TOB1 are associated with a decrease in TOB1 mRNA 
expression, whereas those in the 3’-UTR of NFKBIZ in lymphoma are 
associated with an increase of its mRNA (Rheinbay et al., 2020). 
Furthermore, recurrent mutations in the 3’-UTR of NOTCH1 in 
chronic lymphocytic leukemia cause a deletion in its CDS by 
promoting the usage of a cryptic splice site, removing a protein domain 
that mediates its degradation (Puente et al., 2015). 

• Translocations. For example, in various cancer types, the HMGA2 
oncogene is targeted by chromosomal translocations that swap its        
3’-UTR with that of various other genes, allowing it to escape 
repression by the let-7 family of tumor suppressor miRNAs (Mayr et 
al., 2007). Interestingly, the translocation partners that receive the 
HMGA2 3’-UTR are sometimes tumor suppressor genes, thus 
strengthening the oncogenic effect of the translocation. 

Although 5’-UTRs, especially those of oncogenes, contain various regulatory 
elements, reports on 5’-UTR alterations in cancer are scarce (Schuster and 
Hsieh, 2019). For example, in prostate cancer, the 5’-UTR of TMPRSS2 is 
recurrently fused with genes such as ERG and ETV1, causing their 
overexpression (Tomlins et al., 2005). Moreover, a recurrent germline point 
mutation in the 5’-UTR of the tumor suppressor gene CDKN2A decreases 
CDKN2A protein expression and predisposes to melanoma (Liu et al., 1999). 
In particular, the mutation creates an upstream translation start site that 
impairs translation of the actual CDKN2A open reading frame. Furthermore, 
pan-cancer driver point mutations in the 5’-UTR of MTG2 decrease the 
expression of its mRNA (Rheinbay et al., 2020). Finally, it has been suggested 
that cancer cells may transcribe oncogenes from alternative downstream 
transcription start sites, shortening their 5’-UTRs and thereby removing 
regulatory elements, but evidence in real tumors is currently scarce (Schuster 
and Hsieh, 2019). 
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Chapter 2. Objectives 
The general objective of this thesis was to evaluate the presence of novel 
cancer-promoting somatic mutations in the non-coding genome of various 
cancer cohorts, with special focus on lncRNAs, miRNAs, and intronic splice 
regions. The specific objectives were: 

1. To develop computational pipelines to identify high-confidence 
somatic variants in targeted sequencing data of genomic DNA from 
cancer samples, with or without matched normal tissue samples. 

2. To search for novel non-coding cancer drivers in lung adenocarcinoma 
datasets, with special focus on lncRNAs, miRNAs, and intronic splice 
regions. 

3. To computationally predict whether candidate non-coding drivers and 
their variants are functional. 

4. To develop a miRNA-centric pipeline for annotating variants in 
miRNA genes, with special focus on identifying variants that affect seed 
sequences and DROSHA processing motifs. 

5. To search for novel cancer-promoting non-coding variants at intronic 
splice sites in external diffuse large B-cell lymphoma datasets, and to 
evaluate the impact of the identified recurrent splice site variants on 
RNA processing. 
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Chapter 3. Non-coding mutations in 
lung adenocarcinoma 

This Chapter addresses Objectives 1-4. Here, we describe our search for non-
coding drivers in in-house targeted sequencing data of genomic DNA from 
lung adenocarcinoma samples. The sequencing was directed towards all 
human miRNA genes, exons of a selection of lncRNAs, and exons of a 
selection of PCGs. The analysis was complemented with data from external 
sources, especially from The Cancer Genome Atlas (TCGA) / Pan-Cancer 
Analysis of Whole Genomes (PCAWG). To contextualize our work, we begin 
this Chapter with an introduction on the clinical and molecular features of 
lung adenocarcinoma. 

3.1. Background: lung adenocarcinoma 

3.1.1. Epidemiology, classification, and clinical 
characteristics of lung cancer 

Lung cancer is the deadliest and the second most diagnosed cancer worldwide. 
In 2018, 2.1 million people were diagnosed with lung cancer (13% of all 
cancers) and 1.8 million people died from it (19% of all cancer deaths) (Wild 
et al., 2020). Lung cancer is strongly associated with exposure to tobacco 
smoke, but up to ~15% of cases are not caused by it (Wild et al., 2020). 

Lung cancer is broadly classified as small cell lung cancer (~15% of lung 
cancers) and non-small cell lung cancer (NSCLC, ~85% of lung cancers) 
(Barta et al., 2019; Wang et al., 2021) (Figure 9). Within NSCLC, the most 
common subtype is lung adenocarcinoma (LUAD), which constitutes up to 
~60% of all NSCLC cases, followed by squamous cell carcinoma (~30%), and 
other minor subtypes (~10%). Although a more sophisticated histological 
classification of lung cancer has been adopted in recent years (Nicholson et al., 
2022), for the purposes of this text we will use the simpler classification. 
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Figure 9. Frequencies of the main lung cancer subtypes. NSCLC: non-small 
cell lung cancer; SCLC: small cell lung cancer; LUAD: lung adenocarcinoma; 
LUSC: lung squamous cell carcinoma. Data source: (Wang et al., 2021). 

The 5-year survival rate of lung cancer patients is dismal, being only 10-20% 
(Wild et al., 2020). Still, novel screening techniques for early diagnosis and 
novel therapies have improved the outcome of some groups of lung cancer 
patients in the last years. For example, targeted therapies have been developed 
for patients who harbor specific molecular alterations, such as EGFR 
mutations, ROS1 fusions, ALK translocations, and MET activation (Wang et 
al., 2021). In addition, immunotherapy may improve the survival of a subset 
of lung cancer patients. Nevertheless, fewer than 25% of NSCLC patients can 
be treated with a currently approved targeted therapy, and tumors eventually 
become resistant (Wang et al., 2021). Taken together, these facts highlight the 
urgent need for better clinical approaches against lung cancer, which may be 
achieved by a better understanding of the underlying molecular mechanisms 
of the disease. 

LUAD is the most frequent subtype among all lung cancers and among never-
smokers (Wild et al., 2020). Generally, LUAD develops in mucus-secreting 
cells in outer parts of the lung, especially in alveoli. A typical LUAD tumor is 
usually complex, consisting of a mixture of different types of cells with 
heterogeneous histological and genetic characteristics (Wild et al., 2020). 
Despite the complexity of LUAD tumors, they harbor recurrent driver 
mutations in a small collection of PCGs, some of which can be targeted by 
current or by developing therapies (Wang et al., 2021). 
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3.1.2. Driver genes in lung adenocarcinoma 
and the emerging role of the non-coding genome 

3.1.2.1. The single-driver model and its limitations 

A large number of driver alterations have been identified in LUAD, and all of 
them affect protein-coding genes (Bailey et al., 2018; Collisson et al., 2014). 
Currently, the prevailing model of LUAD driver alterations is a “single-driver” 
model (Skoulidis and Heymach, 2019). According to this model, each LUAD 
tumor has one “main” driver event, which may affect genes such as KRAS, 
EGFR, BRAF, MET, and others (Figure 10). These “main” driver events are 
mostly mutually exclusive and, therefore, they can be used to classify LUAD 
tumors at a molecular level. In addition, targeted therapies are available or 
under development for some of these driver events. However, the single-driver 
model has several issues (Skoulidis and Heymach, 2019): 

• It does not account for other “secondary” drivers that may co-occur 
and interact with the “main” drivers. In fact, a typical tumor has, on 
average, 5 driver mutations (Campbell et al., 2020). As a consequence, 
groups of LUAD tumors that share the same “main” driver can be 
highly heterogeneous from a phenotypical and clinical perspective 
(Skoulidis and Heymach, 2019). This heterogeneity may be dictated by 
“secondary” driver alterations in genes such as TP53, STK11, CDKN2A, 
or CDKN2B, whose relevance in LUAD is well-established. 

• Approximately 1 in every 4 LUAD tumors has none of the “main” 
driver alterations, leaving them unclassified. Although these tumors 
may have alterations in “secondary” drivers, they may not be enough 
to explain the tumor phenotype by themselves. 

The shortcomings of current models of LUAD drivers suggest that the 
spectrum of driver mutations in LUAD tumors has not been fully elucidated 
yet. However, researchers are struggling to complete the puzzle. One possible 
reason why the catalog of LUAD drivers is incomplete is that most research 
has focused on coding sequences, which constitute ~1.1% of the human 
genome (Nurk et al., 2022). Therefore, some of the “missing” LUAD drivers 
may reside within the non-coding genome, which remains underexplored.  
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Figure 10. Frequency of “main” driver alterations in lung adenocarcinoma 
(LUAD). The statistics include point mutations, genomic rearrangements, 
amplifications, and deletions. Data from (Skoulidis and Heymach, 2019). 

3.1.2.2. Recent efforts to identify non-coding LUAD 
drivers 

As detailed in Section 1.5.2, most research on LUAD driver mutations has 
ignored non-coding DNA for various technical and conceptual reasons. As a 
consequence, most studies have only sequenced exons of PCGs, either by 
whole-exome sequencing (WES) or by targeted sequencing of pre-selected sets 
of PCGs that are likely to be implicated in LUAD (Collisson et al., 2014). 
However, as research on non-coding DNA gained popularity and the required 
experimental techniques became more feasible, major efforts were made to 
perform WGS in LUAD and in other cancers. 

To date, the two largest pan-cancer WGS projects are those of the PCAWG 
Consortium and the Hartwig Medical Foundation. PCAWG, which is an 
extension of the TCGA project, analyzed 2658 whole genomes of primary 
tumors from various tissues in search for non-coding drivers (Campbell et al., 
2020; Rheinbay et al., 2020). On the other hand, the Hartwig Medical 
Foundation led similar efforts in metastatic tumors (Priestley et al., 2019). 
Furthermore, databases such as COSMIC compile non-coding variants from 
multiple studies (Tate et al., 2019). However, the number of LUAD tumors 
was limited both in PCAWG (N = 38 LUAD primary tumors) and in the 
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Hartwig study (N = 143 metastatic NSCLC tumors, subtypes not specified) 
(Campbell et al., 2020; Priestley et al., 2019; Rheinbay et al., 2020). To our 
knowledge, there are no LUAD-specific reports of non-coding drivers because 
relatively few LUAD whole genomes have been published.  

To detect mutations in the non-coding genome, an alternative to WGS is 
targeted sequencing. In this technique, a set of pre-defined regions of interest 
are captured and sequenced. Therefore, targeted sequencing is more 
manageable than WGS, but it requires a prior definition of target regions. For 
example, miRNA genes and lncRNA exons can be of interest because they are 
implicated in the regulation of gene expression and, therefore, they might 
harbor driver mutations (Sections 1.6-1.7). Furthermore, targeted sequencing 
also captures the first ~100-200 nt that flank the regions of interest, albeit at 
lower coverage. As a result, targeted sequencing of exons also allows for the 
identification of variants in intronic splice regions and in proximal promoters. 

In this work, we have analyzed a collection of 70 LUAD primary tumor 
samples, 27 matched normal adjacent tissue samples, and 37 LUAD cell lines 
by targeted sequencing of all human miRNA genes, exons of a pre-selected set 
of cancer-related lncRNAs, and exons of a selection of PCGs in search for 
novel non-coding LUAD drivers, expanding previous cohort sizes. The main 
focus of our work has been variants in exons of miRNAs and lncRNAs as well 
as variants in intronic splice regions. Moreover, we have analyzed variants in 
proximal promoters and UTRs. Furthermore, we have complemented our 
results by reanalyzing WGS data from TCGA-LUAD focusing on our 
sequencing targets of interest. Finally, we have tested the putative biological 
role of the top driver candidates using publicly available external data. 
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3.2. Materials and methods 

3.2.1. Software and online tools 

Table 3. Software and computational tools used in our work. 

Software Version URL / citation 

ANNOVAR 2017-07-17 https://annovar.openbioinformatics.org  

BWA 0.7.13-r1126 (Li and Durbin, 2009) 

CADD 1.6 https://cadd.gs.washington.edu  

Cutadapt - (Martin, 2011) 

FastQC 0.11.5 https://www.bioinformatics.babraham.ac.uk/pro
jects/fastqc  

FATHMM-MKL 2.3 https://fathmm.biocompute.org.uk/  

GATK ≥3.8.10 https://gatk.broadinstitute.org  

gdc-client 1.3.0 https://github.com/NCI-GDC/gdc-client 

IGV 2.3.94 https://software.broadinstitute.org/software/igv  

MAJIQ 2.2-e25c4ac (Vaquero-Garcia et al., 2016) 

miRDB - http://www.mirdb.org/custom.html 

MuTect2 4.0.3.0 https://gatk.broadinstitute.org 

OncoDriveCLUSTL 1.1.4 (Arnedo-Pac et al., 2019) 

OncoDriveFML 2.3.0 (Mularoni et al., 2016) 

Picard 2.9.1 https://broadinstitute.github.io/picard/  

PROMO 3.0.2 http://alggen.lsi.upc.es/cgi-
bin/promo_v3/promo/promoinit.cgi?dirDB=TF
_8.3  

Qualimap 2.2.1 (Okonechnikov et al., 2015) 

R ≥ 3.5.2 https://www.r-project.org/  

RNAsnp 1.2 https://rth.dk/resources/rnasnp/software.php  

samtools (+ bcftools 
& htslib) 

≥ 1.7 http://www.htslib.org/  

Strelka2 2.9.10 (Kim et al., 2018) 

TargetScan 5.2 http://www.targetscan.org/vert_50/seedmatch.h
tml 

VarScan2 2.4.3 (Koboldt et al., 2012) 
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Analyses that required high computational resources were performed in either 
of the following high-performance computing clusters: 

• ALHAMBRA (University of Granada), https://alhambra.ugr.es. 
• UBELIX (University of Bern), https://ubelix.unibe.ch. 
• Cluster of the Cancer Research Center of Salamanca (CSIC/USAL). 

3.2.2. External resources 

Table 4. External resources used in our work. 

Resource Version URL / reference 

CADD v1.5 https://cadd.gs.washington.edu/  

Cancer Gene Census COSMIC v90 https://cancer.sanger.ac.uk/census  

Cancer LncRNA 
Census 

v2 (Vancura et al., 2021) 

COSMIC non-
coding variants 

v90 https://cancer.sanger.ac.uk/cosmic/download  

dbSNP 150 https://www.ncbi.nlm.nih.gov/snp  

ExAc v3 https://exac.broadinstitute.org  

GENCODE  v29 https://www.gencodegenes.org  

gnomAD 3.0 https://gnomad.broadinstitute.org  

Human genome hg38 ftp://ftp.broadinstitute.org/bundle/hg38/Homo_
sapiens_assembly38.fasta.gz  

Human genome hg19 ftp://ftp.broadinstitute.org/pub/seq/references/
Homo_sapiens_assembly19.fasta 

Known indels - ftp://ftp.broadinstitute.org/bundle/hg38/Mills_a
nd_1000G_gold_standard.indels.hg38.vcf.gz  

miRBase 21 https://www.mirbase.org  

MirGeneDB 2.1 https://mirgenedb.org/  

phyloP (100-way) - https://genome-euro.ucsc.edu  

RepeatMasker - https://genome-euro.ucsc.edu  

TarBase v8 https://dianalab.e-
ce.uth.gr/html/diana/web/index.php  
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The annotation from GENCODE v29 is equivalent to Ensembl v94/v95. The 
hg38 human genome was used unless otherwise specified. Annotations and 
variants were converted between hg19 and hg38 human genome versions 
using the R package liftOver. Converting our sequencing targets from 
hg38 to hg19 resulted in the loss of 4 out of 18 000 targets (MIR6859-2, 
MIR1234, MIR4477A, and LINC00850). To compare sets of genes, Ensembl 
gene identifiers were used unless otherwise specified.  

3.2.3. Sample acquisition 

We acquired samples from 70 LUAD primary tumors and their matched 
normal adjacent tissues, as well as 37 LUAD cell lines, as we recently described 
(Peinado et al., 2020; Peinado et al., 2022). 

3.2.3.1. Patient samples 

DNA and RNA from 70 LUAD tumors and their matched normal adjacent 
tissues were obtained from the Basque Biobank (www.biobancovasco.org) and 
they were processed following standard operating procedures. All samples had 
been acquired in the Basque Country region of Spain. The study was approved 
by the Research Ethics Committee of Granada (CEI Granada, Department of 
Health, Regional Government of Andalusia, Spain) and by the Basque 
Foundation for Health Innovation and Research (Spain). Signed informed 
consent, following the procedures of the Declaration of Helsinki and 
institutional and national guidelines, was obtained from all participants. 

LUAD patients were diagnosed from August 2008 to January 2016 and an 
independent experienced pathologist confirmed all diagnoses via pathological 
examinations. The inclusion criteria were 1) histological diagnosis of lung 
adenocarcinoma, 2) availability of demographic and clinical data,                           
3) availability of DNA and RNA samples, and 4) provision of signed informed 
consent. Clinical information is summarized in Table 5. Treatment was highly 
heterogeneous: it could involve any combination of surgery, radiotherapy, and 
chemotherapy with or without neoadjuvant. Purity of all samples was 
estimated to be ≥70% according to an independent pathologist. 
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Table 5. Summarized clinical characteristics of our LUAD cohort. 

Clinical variable Value  

Sex Male 50 (71%) 

 Female 20 (29%) 
   

Age at diagnosis (years) Median [range] 62 [46-80] 
   

Stage (T) T1 15 (21%) 

 T2 40 (57%) 

 T3/T4 9 (13%) 

 Not available 6 (9%) 
   

Stage (N) N0 35 (50%) 

 N1 10 (14%) 

 N2 7 (10%) 

 Not available 18 (26%) 
   

Stage (M) M0 14 (20%) 

 M1 1 (1%) 

 Not available 55 (79%) 
   

Smoking status Current smoker 31 (44%) 

 Ex-smoker 30 (43%) 

 Non-smoker 7 (10%) 

 Not available 2 (3%) 
   

Vital status Alive 42 (60%) 

 Deceased 28 (40%) 
   

Relapse No 43 (61%) 

 Yes 27 (39%) 
   

Overall survival (months) Median [range] 61.5 [2-135] 
   

Disease-free survival (months) Median [range] 49.5 [0-92] 
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3.2.3.2. Cell lines 

Thirty-seven LUAD cell lines were grown under standard conditions (37°C, 
5% carbon dioxide) in DMEM or RPMI 1640 medium supplemented with 
glutamine, 10% fetal bovine serum and 1% penicillin/streptomycin/
amphotericin. The characteristics of the patients from whom the cell lines 
were retrieved are summarized in Table 6. 
 

Table 6. Summarized clinical characteristics of the patients from whom our 
LUAD cell lines were derived. 

Clinical variable Value  

Sex Male 21 (57%) 

 Female 14 (38%) 

 Not available 2 (5%) 
   

Age at diagnosis (years) ≤45 6 (16%) 

 >45 23 (62%) 

 Not available 8 (22%) 
   

Disease subtype Adenocarcinoma / carcinoma 32 (86%) 

 Bronchoalveolar carcinoma 4 (11%) 

 Papillary adenocarcinoma 1 (3%) 
   

Tissue Lung 16 (43%) 

 Metastatic site 17 (46%) 

 Not available 4 (11%) 
   

Smoking status Smoker 15 (41%) 

 Non-smoker 7 (18%) 

 Not available 15 (41%) 

Sources: American Type Culture Collection (ATCC) and PubMed. 
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3.2.4. Gene capture and targeted DNA 
sequencing 

Gene capture and targeted sequencing of genomic DNA were performed for 
the full collection of LUAD cell lines and primary tumors, as well as for 27 of 
the 70 matched normal samples, as previously described (Peinado et al., 2020; 
Peinado et al., 2022). 

3.2.4.1. Selection of targets for gene capture 

Gene capture was performed using a custom NimbleGen SeqCap EZ Choice 
Library (Roche, Inc., Madison, WI, USA). The baits for the gene capture were 
designed using the NimbleDesign software (Roche, v4.0). Selection of targets 
was performed within the limitations of the commercial kit (up to 7 Mb).  At 
the time of the design of the experiment, Ensembl v79 was used as a reference 
annotation. For downstream analyses, the annotation was later updated to 
GENCODE v29 (Ensembl v95) (Section 3.2.9).  

The following targets were included in the design: 

• All human miRNAs from miRBase 21 (n = 1881). 
• Exons from a curated list of putative cancer-related lncRNAs (n = 908). 

The list was obtained as follows: 
o Curated putative lung cancer-related lncRNAs profiled by the 

LncPathTM Human Cancer Array (Arraystar Inc.). 
o Disease-related lncRNAs from the LncRNADisease database 

(Chen et al., 2013). 
o Experimentally characterized lncRNAs from the lncRNAdb 

database (Amaral et al., 2010). 
o Manual curation of the scientific literature (PubMed search: 

‘lncRNA AND “lung cancer”’). 
• Exons from a list of putative cancer-related PCGs (n = 1307). The list 

was obtained as follows: 
o Curated putative lung cancer-related PCGs profiled by the 

LncPathTM Human Cancer Array (Arraystar Inc.). 
o Manual curation of the scientific literature. 
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The total number of targets was 18 000. Gene capture does not only capture 
the intended targets, but also the first nucleotides of flanking regions. For this 
reason, for downstream computational analyses, the target coordinates were 
padded by 200 nt at 5’ and 3’ (unless specified otherwise). This allowed us to 
analyze promoters and splice regions. 

3.2.4.2. Gene capture and sequencing protocols 

Gene capture was carried out following the instructions of the NimbleGen 
SeqCap EZ Library SR User's Guide v3.0 (Roche, Inc.) from pooled libraries 
prepared using the TruSeq DNA Sample Preparation Kits (Illumina, Inc., San 
Diego, CA, USA). Briefly, 300 ng of genomic DNA were fragmented using a 
Covaris S2 sonicator yielding 180-220 bp fragments. After end repair and 
adapter ligation, the adapter-ligated fragments were amplified by PCR (9 
cycles). The PCR fragments were purified and the fragments of correct size 
were selected. DNA was denatured and hybridized against biotinylated 
probes, which were then captured using streptavidin-bound magnetic beads. 
The DNA bound to the beads was isolated and amplified by PCR (14 cycles). 
The quality and the concentration of the DNA were evaluated using 
NanoDrop (Thermo Scientific) and BioAnalyzer (Agilent). 

The paired-end sequencing was performed on a NextSeq 500 instrument 
(Illumina) using a NextSeq 500/550 Mid Output Kit (Illumina), 2x150 cycles. 

3.2.5. External datasets 

3.2.5.1. WGS data from TCGA-LUAD 

WGS alignment files (BAM format, hg19 human genome) from TCGA-
LUAD were retrieved from the Legacy Portal of Genomic Data Commons 
(GDC, https://portal.gdc.cancer.gov/legacy-archive, version 12.0, accessed in 
June 2018). The dataset included 152 patients, most of which were discarded 
because they were from “low-pass” WGS (≤ 10X depth). In addition, only one 
tumor and one normal file per patient were kept. If multiple files were present 
for the same sample, the one with the largest size was kept. These criteria 
resulted in BAM files for 59 tumor-normal pairs. 
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The gdc-client command line tool was used to download the 118 BAM 
files. The BAM files were filtered using samtools view so that they only 
contained reads that spanned the padded sequencing targets from our design. 
Then, variant calling was performed in the same way as for our paired 
sequencing data, but using hg19 as a reference genome (Section 3.2.7). 
Variants were converted to hg38 prior to the annotation step. 

The International Cancer Genome Consortium (ICGC) Data Portal 
(https://dcc.icgc.org) also provided annotated variants from an analysis of 38 
of the 59 TCGA-LUAD WGS samples performed by the PCAWG 
Consortium. PCAWG combined multiple variant calling algorithms following 
a similar rationale to us (Campbell et al., 2020; Rheinbay et al., 2020) (Section 
3.2.7.3). However, only one variant calling algorithm, Mutect2, was used by 
both PCAWG and us. We downloaded the variant calling format (VCF) files 
of the 38 LUAD patients from the ICGC Data Portal (“Data Repositories” tab) 
and then we filtered them so that they only contained variants within our 
regions of interest using tabix (htslib). 

3.2.5.2. WES data from TCGA-LUAD 

WES data from TCGA-LUAD were downloaded from the GDC Data Portal 
(version 31.0, https://portal.gdc.cancer.gov) (N = 582). Alignment files in the 
BAM format, restricted to our regions of interest, were downloaded for 
coverage analyses using the gdc-client tool and its “BAM slicing” feature. 
Annotated variant files in the MAF format were directly downloaded from the 
GDC Data Portal. For each sample, up to 4 files were available, each of them 
originating from a different variant calling pipeline. We retained the variants 
that were annotated as “PASS” in the “FILTER” column in at least 2 of the 4 
pipelines. If a patient had more than one sequenced tumor sample, we 
combined all unique variants found across all samples. 

The targets of the exome capture design used by TCGA-LUAD were retrieved 
from Agilent’s eArray website (https://earray.chem.agilent.com), “SureSelect 
Human All Exon v4” protocol.  
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3.2.5.3. Gene expression datasets 

Clinical, transcriptome, and miRNA expression data from TCGA-LUAD were 
downloaded using the R package TCGAbiolinks. MicroRNA expression 
data were downloaded as “reads per million” and transformed to log2 adding 
a pseudocount of 1. Transcriptome profiling data were downloaded as 
fragments per kilobase of exon per million mapped fragments normalized by 
upper quartile method (FPKM-UQ). Then, they were transformed to log2, 
adding a pseudocount of 1. If the same patient had expression data from 
multiple tumor or normal samples, their expression values were averaged. For 
splicing analyses, filtered RNA-Seq BAM files from TCGA-LUAD were 
downloaded by BAM slicing via the GDC application programming interface 
(https://docs.gdc.cancer.gov/API/Users_Guide/BAM_Slicing). The query 
regions were the full splice site mutant genes of interest, padded by 200 nt. 

Transcriptome, proteome, and miRNA expression data from Gillette et al were 
downloaded from the supplementary material of the original publication 
(Gillette et al., 2020). MicroRNA expression data were available as log2-
transcripts per million (TPM). Transcriptome expression data were available 
as log2-transformed FPKM. Unfiltered protein expression data were available 
as log2-transformed standardized TMT ratios, where the ratios were calculated 
by dividing the expression of each protein in each sample by the expression of 
the same protein in a common reference sample. The transcriptome 
expression dataset only contained PCGs, and therefore it could not be used to 
evaluate lncRNA expression. 

Transcriptome and miRNA expression data of cell lines from the Cancer Cell 
Line Encyclopedia (CCLE) were downloaded from the DepMap portal 
(https://depmap.org/portal, data version 20181103). LUAD cell lines were 
selected based on the annotation from DepMap. 
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3.2.6. Power analysis 

Power analysis for the detection of driver features was performed based on a 
binomial power model as previously described (Lawrence et al., 2014; 
Rheinbay et al., 2017). In this context, a driver feature is defined as a feature 
that is significantly mutated in a cohort over the BMR. Although the statistical 
model for this power analysis is simpler than the models of the driver 
discovery tools used in our work, it is an adequate approximation because all 
driver discovery tools search for enrichments of variants above a BMR. The 
most critical simplification made by our power analysis model is assuming 
that all features of the same type have the same BMR. 

The statistical power to detect a feature as a driver is defined as the probability 
of finding an excess of variants in the feature above the BMR. For a given 
feature, let 𝑝𝑝0 denote the probability that it has at least one variant in a patient 
under the background model. The observed signal (i.e., frequency of variants 
in the feature, 𝑝𝑝1) can be defined as: 

𝑝𝑝1 = 𝑝𝑝0 + 𝑟𝑟(1 −𝑚𝑚) 

Where 𝑟𝑟 is the excess frequency of variants (above background) in the cohort, 
and 𝑚𝑚 is the probability that a real variant is not detected due to technical 
limitations or sampling issues (a usual value is 𝑚𝑚 = 0.1). We formulated the 
following null and alternative hypotheses: 

• H0: “All variants in a given feature are due to the BMR (𝑝𝑝1 = 𝑝𝑝0).” 
• H1: “A proportion of variants in a given feature do not originate from 

the BMR (𝑝𝑝1 ≠ 𝑝𝑝0).” 

𝑝𝑝0 can be estimated from the mutation rate per nucleotide in the tumor (𝜇𝜇), 
the length of the feature (𝐿𝐿), and optional correction factor 𝑓𝑓𝑔𝑔: 

𝑝𝑝0 = 1 − (1 − 𝜇𝜇𝑓𝑓𝑔𝑔)𝐿𝐿 

For 𝜇𝜇, we used 𝜇𝜇 = 10−5 (10 mutations / Mb) based on observations in our 
own data (see Section 3.3.4). For 𝐿𝐿, we estimated the median length of each 
feature type that was later studied in the driver analysis (Table 7). Feature 
types were defined as detailed in Section 3.2.9.1. 



Chapter 3. Non-coding mutations in lung adenocarcinoma.  

 
80 

The mutation rate factor, 𝑓𝑓𝑔𝑔, is a correction factor that accounts for the fact 
that each type of feature may be mutated above or below the overall 𝜇𝜇. We 
estimated 𝑓𝑓𝑔𝑔 as the ratio between the 90th percentile of the mutation rate of 
each feature type across all patients and 𝜇𝜇 (Table 7). 

Using the estimated values of 𝑝𝑝0, we then calculated 𝑝𝑝1 for different values of 
𝑟𝑟 within the range 0.01-0.2. Then, in our cohort of 𝑁𝑁 = 70 primary tumors, we 
estimated the maximum number of patients that were expected to be mutated 
in a given gene under the null model (𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) using a binomial distribution 
𝐵𝐵(𝑁𝑁,𝑝𝑝0) and a significance threshold 𝛼𝛼 = 0.25/𝑛𝑛, where 𝑛𝑛 was the number 
of features of that type (for multiple testing corrections; Table 7). In other 
words, 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 was the minimum value that satisfied that: 

𝑃𝑃(𝑋𝑋 ≤ 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) ≥ 1 − 𝛼𝛼,       𝑋𝑋 ~ 𝐵𝐵(𝑁𝑁,𝑝𝑝0) 

Finally, the power was the probability of observing at least 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 1 mutated 
patients under a binomial distribution 𝐵𝐵(𝑁𝑁,𝑝𝑝1).  

Table 7. Parameters used for power analysis in each feature type. 

Feature L n 𝑓𝑓𝑔𝑔 

CDSs 1089 1307 2.48 

UTRs 1222 1444 2.01 

Promoters, PCGs 400 1299 2.21 

Splice regions, PCGs 80 1690 2.44 

Exons, lncRNAs 598 908 3.13 

Promoters, lncRNAs 400 852 2.32 

Splice regions, lncRNAs 20 840 5.24 

L: median length of feature type; 𝑛𝑛: number of features; 𝑓𝑓𝑔𝑔: mutation rate factor; 
CDS: coding sequence; UTR: untranslated region; PCG: protein-coding gene; 
lncRNA: long non-coding RNA. Features were selected and filtered as described 
in Section 3.2.9.1. 
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3.2.7. DNA-Seq data analysis 

Driver discovery algorithms can output gravely biased results if the input set 
of variants contains germline variants or sequencing artifacts. To minimize 
these biases, we developed in-house DNA-Seq analysis pipelines for detecting 
high-confidence somatic variants in paired and unpaired samples. Our 
pipelines were published elsewhere together with an analysis of a subset of our 
data (Peinado et al., 2020; Peinado et al., 2022), and they are detailed below. 

3.2.7.1. Quality control and preprocessing of raw data 

Quality of the raw FASTQ files was checked using FastQC. Then, Cutadapt 
was used to eliminate adapter sequences: 

cutadapt -b AGATCGGAAGAGC -B AGATCGGAAGAGC \ 
–q 20 –m 50 \ 
-o trimmed.1.fastq.gz -p trimmed.2.fastq.gz \ 
sample.R1.fastq.gz sample.R2.fastq.gz > report.txt 

3.2.7.2. Alignment to human genome and BAM 
processing 

Alignment to the hg38 human genome was performed using BWA-MEM: 

bwa mem –M –t 4 hg38.fa trimmed.1.fastq.gz \ 
trimmed.2.fastq.gz > aln.sam 

The generated SAM files were processed using Picard to: (i) sort by coordinate; 
(ii) convert to BAM format and index; (iii) mark PCR duplicates; and (iv) 
check the quality of the BAM files. Furthermore, indel realignment and base 
quality score recalibration were performed using GATK and a source of 
known indels. Further BAM quality statistics were obtained using Qualimap. 

3.2.7.3. Variant calling 

Paired variant calling 

An in-house pipeline for high-confidence somatic variant calling was 
developed by combining three state-of-the-art tools. The pipeline was applied 
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to all tumor samples for which matched normal sequencing data was also 
available (27 tumor-normal samples from our cohort, and 59 samples from 
TCGA-LUAD). For a variant to be called as a “high-confidence” somatic 
variant, it had to be detected by at least two out of three somatic variant calling 
tools: VarScan2, Strelka2, and MuTect2. Such consensus-based methodologies 
improve the sensitivity and the specificity of variant calling compared to 
applying only one tool (Campbell et al., 2020). Details on the command line 
parameters for each tool are provided below. 

VarScan2 

1. Variant calling: 

samtools mpileup -E -q 1 -f $REF_PATH \ 
-l $TARGETS_FILE $NORMAL_BAM $TUMOR_BAM |\ 
java -Xmx6g -jar $VARSCAN_PATH somatic \ 
-mpileup $TUMOR_ID --output-vcf 

2. Variant processing: 

java -Xmx6g -jar $VARSCAN_PATH \ 
processSomatic ${TUMOR_ID}.snp.vcf 
 
java -Xmx6g -jar $VARSCAN_PATH \ 
processSomatic ${TUMOR_ID}.indel.vcf 

3. Obtaining the input for bam-readcount: 

3a. For SNVs: 

grep -v '^#' $VCF | \ 
awk '{print $1"\t"$2"\t"$2}' >\ 
readcounts_input/${NAME}.bed 

3b. For indels: 

awk 'BEGIN {OFS="\t"} {if (!/^#/) { isDel=(length($4) > 
length($5)) ? 1 : 0; print $1,($2+isDel-
20),($2+isDel+20); }}' $VCF >\ 
readcounts_input/${NAME}.bed 
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4. False positive filter: 

java -Xmx6g -jar $VARSCAN_PATH fpfilter \ 
$VCF <(bam-readcount -q 20 -b 13 -w 1 -f ${REF_PATH} \ 
-l readcounts_input/${NAME}.bed $TUMOR_BAM |\  
awk 'BEGIN {OFS="\t"} {for(i=2; i<=NF; i++){$i = 
toupper($i)}; print $0}') \ 
--output-file fpfilter/${NAME}.pass \ 
--filtered-file fpfilter/${NAME}.fail \ 
--max-mmqs-diff 100 --min-strandedness 0 

Strelka2 

The workflow was configured as: 

configureStrelkaSomaticWorkflow.py \ 
--normalBam=${NORMAL_BAM} \ 
--tumorBam=${TUMOR_BAM} \ 
--referenceFasta=${REF_PATH} \ 
--targeted \ 
--callRegions=${TARGETS_FILE} \ 
--runDir=${WORK_DIR} 

And then Strelka2 was run as: 

runWorkflow.py -m local -j 32 

MuTect2 

MuTect2 was run with the following parameters: -mbq 13 --disable-
read-filter MateOnSameContigOrNoMappedMateFilter. 

Then, FilterMutectCalls was run with default parameters. 

Variant processing and merging 

For each output of each variant caller, variants were normalized and left-
aligned using: 

bcftools norm –f ${REF_PATH} –m – 

Then, the variants from the three callers were merged, so that only those 
detected by at least two of the three callers were kept, using in-house R scripts.   
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Variant annotation and filtering 

Variants were annotated using ANNOVAR with the following databases:  

• ensGene (Ensembl gene annotation). 
• 1000g2015aug_all (polymorphisms in the general population, 1000 

Genomes Project). 
• exac03 (polymorphisms in the general population, ExAc Project). 
• avsnp150 (polymorphisms in the general population, dbSNP Project). 
• gnomad30_genome (polymorphisms in the general population, 

gnomAD Project) 

Then, variants meeting at least one of the following criteria were filtered out: 

• ≥0.1% frequency in 1000 Genomes, ExAc, or gnomAD. 
• Variant affects a “Low_complexity” or “Simple_repeat” region from 

RepeatMasker (data downloaded from UCSC Genome Browser). 
• Indels of length greater than 1. We found that the majority of the 

detected indels longer than 1 nt were artifacts and could impair 
downstream analyses.  

Unpaired variant calling 

Unpaired variant calling was performed on our full collection of 37 cell lines 
and 70 primary tumors. Among the 70 primary tumors, 27 had matched 
normal samples and therefore they were also analyzed by the paired pipeline, 
which allowed us to compare the performance of both pipelines. 

Variant calling was performed using bcftools. Then, extensive filtering 
was performed to remove low-quality variants: 

• Variants with a variant calling quality score < 20 were filtered out. 
• Variants in regions with fewer than 8 total reads, or supported by fewer 

than 5 mutant reads, were filtered out in tumor samples. 
• Variants with a low allele frequency (<20%) were flagged but not 

filtered out. 
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The command was: 

bcftools mpileup -f ${REF_PATH} -R ${TARGETS_FILE} \ 
--threads 32 -q 1 -Q 13 -a 'FORMAT/AD' \ 
-Ou ${SAMPLE}.bam |\ 
bcftools call -vmO u --threads 32 |\ 
bcftools filter -e \ 
"%QUAL<20 | ((FMT/AD[0:0]+FMT/AD[0:1])<8 & 
FMT/AD[0:1]<5)" \ 
-s "LowQual" -m +x -O u |\ 
bcftools filter –e \ 
"FMT/AD[0:1]/(FMT/AD[0:0]+FMT/AD[0:1])<0.2"\ 
-s "LowFreq" -m + -O u |\ 
bcftools sort -O z > ${SAMPLE}.vcf.gz 

For normal samples, the ((FMT/AD[0:0]+FMT/AD[0:1])<8 & 

FMT/AD[0:1]<5) filter was removed. This allowed us to remove more 
germline variants from tumor samples (see below). 

Variants were merged and left-aligned using: 

bcftools merge -F x -m none |\ 
bcftools norm -f ${REF_PATH} -m - |\ 
bcftools norm -d none 

Then, variants were annotated using ANNOVAR in the same way as for the 
paired analysis. Finally, extensive filters were applied to remove as many 
germline or false-positive variants. In addition to the filters used for the paired 
analysis, variants detected in at least one normal sample were filtered out. 

3.2.8. Comparisons between variant files 

To compare VCF files from different analyses or cohorts, first they were 
restricted to the unpadded sequencing targets using tabix. Then, pairs of 
VCF files were compared using bcftools stats. Variants reported in 
only one of the two files were extracted using bcftools isec. 
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3.2.9. Driver discovery analyses 

Driver discovery was performed using two tools which, to our knowledge, are 
the state-of-the-art tools for driver discovery in non-coding regions in 
targeted sequencing data (Rheinbay et al., 2020). Their methods for 
identifying positive selection differ: 

• OncoDriveFML searches for features that are enriched in variants 
predicted to have a high functional impact based on some external 
score (Mularoni et al., 2016).  

• OncoDriveCLUSTL searches for clustered variants within features 
(Arnedo-Pac et al., 2019). Variant clusters are scored based on the 
number of variants that they contain and the shape of the smoothed 
distribution of variant density.  

Further details on how both tools work were provided in Section 1.5.4. 
Because the tools rely on fundamentally different criteria to identify positive 
selection, they were considered complementary to one another.  

Driver discovery was performed separately on each type of genomic feature: 
CDSs, non-coding RNA exons, promoters, UTRs, and splice sites. This was 
necessary because the distribution of variants in each trinucleotide context 
and the functional impact scores were expected to differ between types of 
genomic features (Arnedo-Pac et al., 2019; Mularoni et al., 2016). Therefore, 
before driver discovery, our sequencing targets were split and reannotated as 
described below. 

3.2.9.1. Reannotation of targets 

For driver discovery analyses, our sequencing targets were split into the 
different types of features, accounting for overlaps between features of 
different types based on criteria from the PCAWG Consortium (Campbell et 
al., 2020). During this process, feature annotation was updated to GENCODE 
v29. Each feature type was defined as follows (Figure 11): 
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Figure 11. Reannotation of sequencing targets. See main text for a description 
of the criteria. PCG: protein coding gene; lncRNA: long non-coding RNA; UTR: 
untranslated region; CDS: coding sequence. 

• CDSs were always assigned the highest priority. 
• For UTRs, the nucleotides that overlapped CDSs of other transcripts 

were removed. 
• Splice regions were defined as the first 10 bp at both ends of each intron 

of GENCODE basic transcripts. Nucleotides that overlapped CDSs 
were removed. 

• For lncRNA exons, nucleotides that overlapped CDSs, splice donor 
sites, or splice acceptor sites were removed. The following biotypes 
were considered as lncRNAs: “lincRNA”, “antisense”, “TEC”, 
“processed_transcript”, “non_coding”, “sense_intronic”, 
“3prime_overlapping_ncRNA”, “bidirectional_promoter_lncRNA”, 
“sense_overlapping”, and “macro_lncRNA”. 

• For miRNA genes, miRBase 21 annotation was used. Nucleotides that 
overlapped CDSs, splice donors, or splice acceptors were removed. 

• Promoters were defined as TSSs ± 200 bp, and then CDSs were 
subtracted. 
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Genes whose remaining features were (in total) shorter than 50 nt were filtered 
out. They originated either from spurious overlaps between our sequencing 
targets and genes that were not intended to be sequenced, or from non-coding 
features that mostly overlapped CDSs. Filtering these features out improved 
driver discovery because it reduced the number of hypotheses for multiple 
testing corrections. 

3.2.9.2. OncoDriveFML 

CADD scores were used to annotate the functional impact of variants. The 
following options were changed from the default configuration file template: 

[genome] 
build = 'hg38' 
 
[score] 
file = <path_to_cadd_file> 
format = 'tabix' 
chr_prefix = 'chr' 

Then, OncoDriveFML was run as: 

oncodrivefml \ 
-i <variants_file> \ 
-e <targets_file> \ 
-s targeted \ 
-o <out_dir> \ 
-c <config_file> 

Other functional impact scores, including phyloP and RNAsnp, were also 
explored. However, few or no hits were found by these methods, even for 
CDSs. 

3.2.9.3. OncoDriveCLUSTL 

In a first attempt at running OncoDriveCLUSTL, we noticed that the tool may 
not handle multi-nucleotide variants (MNVs, two or more consecutive 
variants in the same sample) correctly because it seemed to consider them as 
independent (Section 3.3.6). Therefore, we modified our input to only keep 
the first nucleotide of MNVs, as if they were SNVs. 
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Optimal parameters for OncoDriveCLUSTL were found empirically based on 
the methodology described in the original publication (Arnedo-Pac et al., 
2019). For each combination of parameters, OncoDriveCLUSTL was run in 
our paired dataset in CDSs. All possible combinations of the following 
parameter values were tested: 

• --smooth-window: from 5 to 60, increments of 5. 
• --cluster-window: from 5 to 60, increments of 5. 
• --simulation-window: from 30 to 60, increments of 5. 

Then, the Kolmogorov-Smirnov test was performed to evaluate the deviation 
of the non-significant p values (p > 0.1) from a uniform distribution. Next, the 
combinations of parameters that had the minimum Kolmogorov-Smirnov 
statistics (in absolute value) were selected, allowing for a 10% margin. Finally, 
out of these candidate combinations of parameters, the one that yielded the 
highest overlap of drivers with genes from the Cancer Gene Census was 
selected (Sondka et al., 2018).  

OncoDriveCLUSTL was run with optimal parameters as follows: 

oncodriveclustl \ 
-i <variants_file> 
-r <targets_file> \ 
-o <out_dir> \ 
-sim region_restricted \ 
--genome hg38 \ 
--concatenate \ 
--smooth-window 45 \ 
--cluster-window 15 \ 
--simulation-window 40 \ 
--qqplot 

By default, OncoDriveCLUSTL filters out clusters and features harboring 
fewer than 2 mutations in the cohort. 
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3.2.10. Curation of candidate drivers 

3.2.10.1. Analyses performed on all feature types 

The following features were studied in all candidate drivers regardless of their 
type of genomic feature: 

• BAM files were explored on Integrative Genomics Viewer (IGV) to 
rule out mapping and sequencing artifacts and to visualize the 
distribution of variant alleles. 

• Genomic regions were explored in the UCSC Genome Browser to 
study their genomic characteristics, the distribution of the variants, and 
the presence of nearby or overlapping genes. 

• Presence of the candidate in external collections of cancer-related 
PCGs or lncRNAs was assessed from the Cancer Gene Census (CGC) 
and the Cancer LncRNA Census (CLC), respectively (Tate et al., 2019; 
Vancura et al., 2021). 

• Mappability of the nucleotide positions affected by the variants was 
assessed by Umap (Karimzadeh et al., 2018). 

• Presence of recurrent somatic copy number alterations across 
multiple cancer types was determined from a previous reanalysis of 
TCGA (Athie et al., 2020). 

• Regulatory elements (promoters and enhancers) were retrieved from 
GeneHancer (Fishilevich et al., 2017). 

• Conservation of the mutated nucleotide across 100 vertebrates was 
assessed using phyloP (Pollard et al., 2010). Scores from phyloP 
measure the rate of evolution of the nucleotide compared to a 
background model of neutral evolution. Higher positive values mean 
slower evolution (higher conservation). 

• Presence of the variant in a pan-cancer collection of non-coding 
somatic variants from COSMIC (Tate et al., 2019). 

• Functional impact prediction by FATHMM-MKL. FATHMM-MKL 
predicts the deleteriousness of non-coding variants by combining 
multiple features (Shihab et al., 2015). Scores range from 0 to 1. Higher 
scores mean higher deleteriousness. Variants were considered 
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deleterious if score > 0.7. The script to annotate variants using 
FATHMM-MKL was retrieved from https://github.com/HAShihab/
fathmm-MKL and the database of pre-computed FATHMM-MKL 
scores was downloaded from http://fathmm.biocompute.org.uk/
database/fathmm-MKL_Current_zerobased.tab.gz. 

• Functional impact prediction by CADD. CADD also combines 
multiple features to predict the functional impact of variants (Kircher 
et al., 2014). Scores are expressed in Phred scale. Higher scores mean 
higher deleteriousness. 

3.2.10.2. Analyses for specific feature types 

lncRNA exons 

• Expression. Expression data in normal tissues was retrieved from the 
Genome Tissue Expression (GTEx) Consortium (de Goede et al., 2021) 
and from normal samples in TCGA-LUAD. Expression data in tumor 
tissues was retrieved from TCGA-LUAD.  

• Survival. Survival of TCGA-LUAD patients based on the expression 
levels of the candidate lncRNAs was also explored (Section 3.2.13).  

• Structural impact of variants. The impact of SNVs on RNA structure 
was predicted using RNAsnp (Sabarinathan et al., 2013). Nucleotide 
sequences and annotations of the lncRNAs affected by the variants 
were retrieved from Ensembl v95. Then, the relative positions of the 
variants within the mature lncRNAs were inferred. Indels were not 
included in the analysis because they are not accepted as input by 
RNAsnp. Next, the RNAsnp command line tool was run in “mode 1”.  

• Disruption of miRNA binding sites was evaluated using miRcode 
(Jeggari et al., 2012) and miRDB (http://mirdb.org/mirdb/
custom.html). 

To obtain background distributions for RNAsnp, FATHMM-MKL, CADD, 
and phyloP scores in lncRNA exons, 10 000 SNVs were randomly generated 
within our target lncRNA exons. Both the positions and the nucleotide 
changes were randomly selected.  
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miRNAs 

Due to their complexity, the methods for analyzing miRNA variants are 
detailed in a separate section (Section 3.2.11). In brief, miRNA variants were 
reannotated using an in-house pipeline to determine: 

• Whether they affected miRNA seeds, mature miRNAs, pre-miRNAs, 
or pri-miRNAs. 

• Whether they created or disrupted DROSHA processing motifs. 

Splice regions 

The effect of variants in splice regions on RNA splicing was evaluated in the 
TCGA-LUAD dataset using matched RNA-Seq data. The MAJIQ software was 
used as previously described (Andrades et al., 2022). MAJIQ estimates local 
splicing variations, i.e., it analyzes each splice junction separately and it does 
not report full transcripts. First, a database of known and novel local splicing 
variations was built using majiq build and GENCODE v29 annotation in 
GFF3 format, filtered so that it only contained our genes of interest: 

majiq build -j 4 \ 
-c <config_file> \ 
-o <output_dir> \ 
--minreads 3 --minpos 2 --min-denovo 3 \ 
--irnbins 0.1 --min-experiments 1 \ 
<gencode_v29.gff3> 

The configuration file specified the location of the RNA-Seq BAM files, the 
version of the human genome (hg38), and the strandedness of the RNA-Seq 
data (None). 

Next, the degree of usage of each splice junction in the mutant samples was 
estimated by: 

majiq psi <input_files> -o <output_dir> \ 
-n psi –minreads 3 –minpos 2 --min-experiments 1 

The splicing alterations were visualized using voila and IGV. By design, 
majiq is unable to detect “partial intron retention” events, and therefore these 
events were only detected using IGV. 
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Promoters 

• Association of promoter variants and gene expression. For hits in cell 
lines, expression data from the CCLE were analyzed. The expression 
data were restricted to 36 LUAD cell lines from our experiments 
(LC319 was missing from CCLE). For primary tumors, transcriptome 
profiling data from TCGA-LUAD were used, restricted to the 59 
tumors included in our analysis. Association between promoter 
variants and changes in the expression of nearby genes was determined 
using Student’s t-tests on the log2-transformed TPMs. For bidirectional 
promoters, the genes in both directions were studied. 

• Changes in transcription factor binding sites. Sequence-based 
prediction of transcription factor binding sites was performed using 
PROMO (v3.0.2) (Messeguer et al., 2002).  

UTRs 

• Structural impact. The structural impact of variants in UTRs was 
assessed using RNAsnp in “mode 1”. The input RNA sequences were 
retrieved using the genomic ranges defined in our reannotation of 
targets (Section 3.2.9.1). Ranges shorter than 200 nt were not analyzed. 
Indels were not analyzed because they are not accepted by RNAsnp. 

• Correlation with expression. Changes in mRNA expression in cis were 
assessed in CCLE data. TCGA-LUAD data were not used because we 
found no UTR hits in the dataset. 

• miRNA binding. The miRNAs that may bind to the wild type and 
mutant 3’-UTRs were predicted using miRcode (Jeggari et al., 2012) 
and miRDB (Chen and Wang, 2019). Input sequences for miRDB were 
obtained by querying the hg38 human genome using the ranges of the 
targets that we defined for driver discovery. 
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3.2.11. miRNA-centric reannotation of variants 

Although ANNOVAR annotation was useful for initial data exploration, it was 
insufficient for an in-depth analysis of miRNA variants. Therefore, 
reannotation of miRNA variants was performed to include the following 
information: 

• Whether each variant affected the pri-miRNA, pre-miRNA, mature 
miRNA, or seed. 

• Additional information from external resources. 
• Whether each variant disrupted or created DROSHA processing 

motifs.  

3.2.11.1. Mapping variants to miRNA genes 

All variants, regardless of how they were annotated by ANNOVAR, were 
intersected with a miRNA gene annotation derived from miRBase (version 
21). The miRBase annotation file contained the genomic coordinates of 1881 
miRNA genes and most of their mature miRNAs, although for 949 genes the 
5p or the 3p mature miRNAs were missing due to lack of experimental 
support. MicroRNA gene sequences were padded by 200 nt upstream and 
downstream, and positions that overlapped CDSs from GENCODE were 
removed. Seed sequences were defined as nucleotides 2-7 of the mature 
miRNAs. Variants outside mature miRNAs but within miRNA genes were 
annotated as “pre-/pri-miRNAs”, and those flanking miRNA genes were 
annotated as “pri-miRNA / intergenic”. These ambiguities arose because 
miRNA gene annotation is not consistent: annotated miRNA genes contain, 
at minimum, the stem-loop sequence from the pre-miRNA, which is often 
(but not always) flanked by a variable number of nucleotides from the pri-
miRNA. Therefore, most annotated miRNA genes do not represent the full 
primary transcripts (pri-miRNAs), which may or may not span more 
nucleotides outside of the annotated genes. 

 



Chapter 3. Non-coding mutations in lung adenocarcinoma. 

 
95 

3.2.11.2. Annotation of miRNA variants using external 
resources 

The variants that affected miRNA gene regions were further annotated using 
the same external resources as for lncRNAs (Section 3.2.10.2), except for 
RNAsnp, which is not recommended for sequences shorter than 200 nt 
(Sabarinathan et al., 2013).  

3.2.11.3. Mapping miRNA variants to DROSHA motifs 

We developed a novel pipeline to identify miRNA variants that disrupt or 
create DROSHA processing motifs (basal UG, mGHG, apical UGUG, and 
downstream CNNC). DROSHA motifs can be predicted based on “positional” 
or “structural” criteria, and both criteria can be informative (Section 1.7). Our 
pipeline, which implemented both criteria using in-house R scripts, was based 
on the following steps: 

(i) Retrieve the sequences of the transcripts originating from miRNA genes, 
padded by 30 nt at 5’ and 3’. 

(ii) Define the positions of the 5p and 3p mature miRNAs within the 
sequences. 

(iii) Predict the secondary structures of the sequences. 
(iv) If the predicted structures are stem-loops, predict the basal and apical 

junctions of the pri-miRNA stems. 
(v) Use the information from (ii) to predict the locations where motifs may 

be present based on “positional” criteria. 
(vi) Use the information from (ii)-(iv) to predict the locations where motifs 

may be present based on “structural” criteria. 
(vii) Intersect the positions of the variants with the positions defined in (v) 

and (vi), and use the positions and the sequences of the variants, as well 
as the regions from (v) and (vi), to determine whether each variant 
creates or disrupts a motif. 

Below we detail each step. 
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Retrieval of pri-miRNA sequences 

Usually, annotated miRNA genes do not contain the full pri-miRNA and, 
therefore, they may not contain the full stem and important motifs such as the 
downstream CNNC. Therefore, the coordinates of miRNA genes were padded 
by 30 nt at both ends and the sequences of these regions were retrieved using 
the BSgenome.Hsapiens.UCSC.hg38 R package. The padding length of 
30 nt was selected after extensive testing and it is supported by previous 
reports (Roden et al., 2017). 

Definition of the positions of 5p and 3p mature miRNAs 

In miRBase 21, only 932/1881 miRNAs had fully annotated 5p and 3p mature 
miRNAs. To increase the number of fully annotated miRNAs, miRBase 
annotation was complemented with that from MirGeneDB v2.0 (Fromm et al., 
2020). Only canonical miRNAs from MirGeneDB were used. This increased 
the number of fully annotated miRNA genes to 1012.  

Although previous reports have predicted the position of “missing” mature 
miRNAs based on the positions of the “non-missing” ones by assuming that 
DROSHA produces a 2-nt staggered cut (Kim et al., 2021; Urbanek-Trzeciak 
et al., 2020), we deemed these predictions to be too error-prone based on our 
observations. In particular, we observed many examples of pri-miRNAs whose 
distance between the 5p and 3p DROSHA cleavage sites was different from       
2 nt. Moreover, our 1012 fully annotated pri-miRNAs already contained 
275/295 (93%) of the human high-confidence pri-miRNAs defined by 
miRBase, and only 20/869 (2%) of the incomplete pri-miRNAs were high-
confidence. Therefore, we preferred to work with the 1012 miRNAs that had 
a complete annotation rather than to add error-prone annotations for the 
remaining, mostly low-confidence miRNAs. 

Secondary structure predictions 

Secondary structures of the padded miRNA gene sequences were predicted 
using RNAfold with the --no-LP option (Lorenz et al., 2011). Output “.ct” 
files were used for downstream analyses. 
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Prediction of pri-miRNA stems 

The method of prediction of pri-miRNA stems was largely based on previous 
reports (Roden et al., 2017), with modifications that improved performance 
(Figure 12): 

1. Filter out “non-hairpin-like” structures. If <50% of the nucleotides from 
the 5p and 3p mature miRNAs are paired to each other, discard the 
structure. 

2. Roughly define the 5p and 3p arms. An approximate position of the apical 
loop and the 5p and 3p arms was necessary at this point to define which 
direction was “basal” and which direction was “apical”. As a rough 
approximation, the apical loop was defined as the stretch of unpaired 
nucleotides most equidistant to the two DICER cleavage sites. The 5p arm 
was defined as all nucleotides upstream of the apical loop, and the 3p arm 
was defined as all nucleotides downstream of the apical loop. 

3. Define the apical junction. 
3.1. For each arm of the hairpin, if the DICER cleavage site is unpaired, 

find the first paired nucleotide towards the basal direction. Otherwise, 
keep the position of the DICER cleavage site. 

3.2. From the two positions defined in the previous step, keep the most 
apical one. 

3.3. Starting at the position defined in the previous step, search for the first 
mismatch affecting ≥2 nt (counting both arms) in the apical direction. 
Define the apical end of the stem as the last paired position before this 
mismatch. 

4. Define the basal junction. From the apical junction, start moving towards 
the basal direction. Stop at the basal end, defined by either of these 
conditions: 
4.1. A stretch of ≥12 unpaired nucleotides (counting both arms) if the stem 

length up to this point is <30 nucleotides. 
4.2. A stretch of ≥6 unpaired nucleotides (counting both arms) or an 

unstable lower stem if the stem length up to this point is ≥30 
nucleotides. Unstable lower stems were defined as: the next two 
nucleotides in either arm are unpaired, and no more than 2 of the next 
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6 nucleotides in the affected arm are paired. Stable lower stems are 
critical for DROSHA processing (Kim et al., 2021). 

4.3. The beginning of a multi-branched junction: a point in which one arm 
pairs to itself. 

4.4. Otherwise, the last paired nucleotide towards the basal end of the 
sequence. 

The length of the stem was defined as the minimum distance between the 
apical and the basal ends of the stem. 

5. Final filtering. Filter out stems that do not contain the DROSHA cleavage 
sites within them. 

Stems could be successfully predicted for 842/1012 pri-miRNAs.  

 

Figure 12. Workflow for predicting pri-miRNA stems. The workflow consists 
of five main steps (see main text for details): 1) Removal of non-stem-loop 
structures. 2) Location of the apical loop. 3) Location of the apical junction.        
4) Location of the basal junction. 5) Removal of stems that do not contain the 
DROSHA cleavage sites. MBJ: multi-branched junction; LS: lower stem. 
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Prediction of motif positions 

The positions where DROSHA motifs may be were retrieved using the criteria 
from Table 8. The criteria were mostly based on previous reports (Table 2), 
with slight modifications for the structural criteria, which have been less 
researched to date and which we thoroughly assessed and optimized (Section 
3.3.7.2). The sequences at the defined positions were also retrieved. 

Table 8. Key DROSHA recognition features in pri-miRNAs as defined by 
positional and by structural criteria according to our method. 

Feature Positional definition Structural definition 

Basal UG -14 nt from 5p DCS. UG at basal junction. 

mGHG  -7...-5 nt from 5p DCS, and 
opposite nt in 3p arm. 

Same as positional. 

Apical UGUG  UGU/GUG at +21...+25 nt 
from 5p DCS. 

UGU/GUG at -2...+1 
from apical junction. 

Downstream 
CNNC 

+16...+18 nt from 3p DCS. +5...+9 from 3p basal 
junction. 

mGHG: “mismatched GHG”. DCS: DROSHA cleavage site. Distances are 
expressed in nucleotides (nt) and they express the range where the first 
nucleotide of the motif may start. See also Figure 7 and Table 2. 

Mapping of variants to motifs 

We intersected the positions of the variants with the positions where 
DROSHA processing motifs could be. Then, for basal UG, apical UGUG, and 
downstream CNNC motifs, we determined if the motif was present in the wild 
type pri-miRNA. If it was present, we assessed if the variant disrupted the 
motif.  If it was not present, we predicted if the variant created a motif.   

For mGHG motifs, we retrieved the normalized mGHG scores for each 
possible pair of trinucleotides from the Supplementary Table S1 of (Kwon et 
al., 2019). We assigned scores as follows: 
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1. For each pri-miRNA whose hairpin prediction was successful, retrieve 
the nucleotides at positions -7...-5 from the 5p DROSHA cleavage site. 

2. If none of the selected nucleotides are paired to the 3p arm, stop. 
3. Otherwise, retrieve the three nucleotides of the 3p arm that should be 

“opposite” of the selected nucleotides (regardless of whether they are 
paired or not). 

4. Stop if the selected nucleotides are not facing each other. This can occur 
if: 

a. The nth nucleotide in the 5p arm is paired to a nucleotide other 
than the nth nucleotide in the 3p arm, or vice versa. 

b. There is a bulge in one of the arms. 
5. Otherwise, at this stage we had two trinucleotides facing each other in 

opposite arms, from which the mGHG score was retrieved. 

In this way, we assigned mGHG scores to wild type and mGHG-mutant pri-
miRNAs, predicting the impact of the variants on DROSHA processing 
efficiency. For analyses that required a binary classification of the mGHG 
motif (present vs. absent), we considered a mGHG motif to be present if     
score ≥38 as previously defined (Kim et al., 2021).  

3.2.12. Prediction of miRNA targets 

Two online resources were used to predict the targets of wild type and mutant 
miRNAs based on their sequence: 

• TargetScan: release 5.2 is the latest one that allows for custom input 
sequences (https://www.targetscan.org/vert_50/seedmatch.html). It 
only uses the seed sequence for its predictions. 

• miRDB: it uses machine learning to predict miRNA targets based on 
the sequence of the full mature miRNA (Chen and Wang, 2019). To 
select targets, we used the recommended threshold of score ≥80. 

The sequence-based predictions were complemented by the following 
analyses, which could only be performed for wild type miRNAs: 

• TarBase (version 8.0): database of experimentally validated miRNA 
targets.  
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• Correlation analyses. Correlation between miRNA and target mRNA 
or protein expression was assessed in LUAD samples from two 
datasets: TCGA-LUAD (mRNA only) and Gillette et al (mRNA and 
protein). Correlation was quantified by Kendall’s tau (τ). Statistical and 
biological significance were defined as FDR < 0.05 and τ < -0.2. 

Because gene symbols change over time, Ensembl IDs were used to compare 
sets of genes. Conversion between gene symbols and Ensembl IDs was 
performed using the biomaRt R package. For each source of gene symbols, 
the closest archived version of Ensembl was searched for. Because TargetScan 
v5.2 uses an annotation that is no longer archived by Ensembl, ~5% of its 
predicted targets were lost during the conversion. 

3.2.13. Survival analyses 

Survival analyses based on gene expression were performed using the R 
packages survival and survminer. For Kaplan-Meier curves, patients 
were stratified in “high” and “low” expression subgroups using the median 
expression as a cutoff, and logrank p values were calculated. For univariate and 
multivariate Cox analyses, the exact gene expression values were used. 
Covariates for multivariate analyses were selected by backward elimination. 
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3.3. Results 

3.3.1. Power analysis 

To detect novel non-coding mutations in LUAD, we performed targeted 
sequencing of genomic DNA from an in-house collection of 70 LUAD 
primary tumors, 27 matched normal samples, and 37 LUAD cell lines. The 
sequencing was targeted towards all human miRNA genes from miRBase 
(release 21) and exons of 908 lncRNA genes and 1307 PCGs. First, we did a 
post hoc analysis to determine our statistical power for detecting drivers at 
different frequencies in our cohort of 70 LUAD primary tumors (Figure 13). 
We analyzed each type of genomic feature separately because they had 
different sequence properties and mutational patterns. 

The highest statistical power was associated with splice regions and miRNAs 
(Figure 13). Even in our relatively small cohort, we predicted 80% power to 
detect driver mutations at frequencies ≥7% above background for splice 
regions in lncRNAs and ≥9% for miRNAs and for splice regions in PCGs. Due 
to their short lengths and high conservation, it is unlikely for splice regions 
and miRNAs to be highly mutated by random chance, and therefore an excess 
of mutations over the BMR can be detected more easily. The next highest 
power was associated with promoters of both PCGs and lncRNAs, for which 
we predicted 80% power to detect driver mutations at frequencies ≥12% above 
background. This high power was also in part because promoters were defined 
as ~400 nt regions, which were shorter than most CDSs and lncRNA exons. 
Next, for lncRNA exons we predicted 80% power to detect driver mutations at 
≥14% frequency above background; and for UTRs and CDSs, at ≥15% above 
background. The higher predicted power to detect driver mutations in 
lncRNA exons seemed to be mostly due to the lower number of features, which 
led to a less restrictive multiple testing correction (Table 7). In summary, our 
power analysis suggested a relatively low power to detect an excess of 
mutations over the background in most features of interest. 
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Figure 13. Power analysis in our cohort of 70 LUAD primary tumors. For each 
type of feature, we estimated the probability (“Power”) of detecting mutations at 
different frequencies above the background. For protein-coding genes (PCGs), 
“exon” refers exclusively to coding sequences, excluding untranslated regions 
(UTRs). lncRNA: long non-coding RNA; miRNA: microRNA. 

3.3.2. Quality control of DNA-seq data 

3.3.2.1. Raw FASTQ files 

Quality of all raw FASTQ files was considered acceptable as assessed using 
FASTQC. Base detection quality was consistently high (>30 in Phred scale) 
along all nucleotide positions of the reads (Figure 14A) and across all physical 
positions in the sequencing cells (data not shown). In addition, average base 
detection quality was high across all reads (Figure 14B).  
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Figure 14. Quality metrics of a sequencing file from a representative tumor 
sample. A. Distribution of base quality scores at different positions along the 
reads. B. Distribution of mean base quality scores of all reads. For a given p 
value, the Phred score is calculated as Phred = -10·log10p. 

3.3.2.2. Alignment BAM files 

The median number of reads per sample was ~13.0 million (IQR = 11.8-14.4 
million) (Figure 15A). Across all samples, a median of >98% of the nucleotides 
targeted by our gene capture design were covered by at least one read. In 
addition, >92% of the target nucleotides were covered by at least 10 reads, 
>78% by at least 30 reads, and >63% by at least 50 reads (Figure 15B-D).  

3.3.2.3. TCGA WGS data 

The median number of reads per sample in our target regions was ~4.0 million 
(IQR = 3.4-4.8 million). The median percentage of target bases covered at 
≥10X depth was 98.0% (IQR = 95.3%-99.1%); at ≥30X depth, 68.8% (IQR = 
47.0%-82.1%); at ≥50X depth, 13.7% (IQR = 2.9%-40.1%).  
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Figure 15. Quality metrics on the alignment BAM files. A. Distribution of 
number of reads per sample. B-D. Percentage of target bases that were covered 
by at least 10, 30, or 50 reads, respectively. 

3.3.3. Evaluation of the variant calling 
pipelines 

Objectively evaluating the performance of our variant calling pipelines in real 
data was challenging because there was no set of “ground truth” somatic 
variants. As an alternative, we compared the sets of variants detected by 
orthogonal methods in the same datasets, and then we thoroughly assessed the 
discrepancies. We restricted the analyses to the unpadded sequencing targets. 

To evaluate our paired variant calling pipeline, we compared the variants 
detected by our pipeline with those detected by PCAWG in WGS data from 
TCGA-LUAD (N = 38). PCAWG used a “wisdom of the crowd” approach 
similar to our rationale, but their variant calling tools were different from ours, 
except for MuTect2 (Campbell et al., 2020; Rheinbay et al., 2020). The 
agreement between our pipeline and PCAWG’s was high (84%) (Figure 16A). 
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We inspected a random selection of the discrepancies on the IGV software. 
Among the variants detected by our paired pipeline but not by PCAWG, ~33% 
seemed to be true positives at high depth (≥20% variant allele frequency, 
VAF), ~47% were subclonal (VAF < 20%), and ~20% were unclear or possibly 
germline (Figure 16B). On the other hand, among the variants detected by 
PCAWG but not by us, ~10% seemed to be true positives at ≥20% VAF and 
~90% were subclonal. Overall, none of the two pipelines could be considered 
as “ground truth”, but we deemed our pipeline to be acceptable. 

 
Figure 16. Number of variants detected by different somatic variant calling 
methods in the same datasets. A. Comparison of our paired variant calling 
pipeline (“Paired”) and the paired variant calling pipeline of the PCAWG 
Consortium in whole-genome sequencing (WGS) data from the TCGA-LUAD 
dataset (N = 38). B. Analysis of the discrepancies between the “Paired” and 
“PCAWG” pipelines in TCGA-LUAD data. TP: true positive; FP: false positive 
(germline variant or artifact); VAF: variant allele frequency. “High VAF” means 
VAF ≥ 20%; “Low VAF” means VAF < 20%. C. Comparison of our “Paired” 
pipeline and our “Unpaired” variant calling pipeline in our own paired DNA 
sequencing data (N = 27). D. Analysis of the discrepancies between the “Paired” 
and “Unpaired” pipelines in our paired DNA sequencing data.  
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To evaluate our unpaired variant calling pipeline, we compared the variants 
detected by our unpaired and paired pipelines in our own paired DNA-Seq 
data (N = 27). The agreement was high (>70%) (Figure 16C). We used IGV to 
inspect a random selection of discrepancies. Among the variants detected by 
the unpaired pipeline but not by the paired pipeline, ~20% seemed to be true 
somatic variants at high depth, ~30% were subclonal, and ~50% seemed to be 
germline variants (Figure 16D). Therefore, the rate of germline variants in the 
unpaired analysis was ~4% (0.5 · 173/2025), which we considered acceptable. 
On the other hand, among the variants detected by the paired pipeline but not 
by the unpaired pipeline, ~3% looked like true somatic variants at high depth 
and ~97% were subclonal.  

To compare the performance of our paired and unpaired pipelines in 
additional external cohorts, we applied both of them to TCGA-LUAD WGS 
data. In a first approach, we only used 23 of the 59 normal samples to construct 
our germline variant resource for the unpaired pipeline to maintain a similar 
proportion to that of our cohort (27/70 normal samples). Here, the agreement 
between the paired and unpaired pipelines was only ~43%, mostly because the 
unpaired pipeline detected a large number of germline variants. In a second 
approach, we used all 59 normal samples to construct the germline resource 
for the unpaired analysis. As a result, the agreement rose to ~69% and most 
germline variants were successfully removed in the unpaired analysis. We 
concluded that using such a low number of normal samples to construct a 
germline variant resource for the unpaired pipeline was only successful in our 
cohort, which was relatively homogeneous (all patients were from the Basque 
Country region in Spain), and therefore a small proportion of normal samples 
could capture a high proportion of the germline variability of the population. 
However, the TCGA-LUAD cohort was more heterogeneous, as samples were 
acquired across many countries, and the subset of 23 normal samples failed to 
capture the germline variability of the cohort. 

In conclusion, both our paired and unpaired variant calling pipelines were 
acceptable for the purposes for which they were used. Discrepancies between 
pipelines mostly involved subclonal variants, which were likely to be less 
relevant for driving cancer than high-VAF variants. 
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3.3.4. General variant statistics 

The burden of variants per sample was mostly within the range of ~5-10 
variants/Mb (Figure 17 and Table 9). In primary tumors from our cohort, the 
number of variants per sample was higher in the unpaired analysis than in the 
paired analysis, possibly because the unpaired pipeline detected a small 
proportion of germline variants (Section 3.3.3). TCGA-LUAD WGS data had 
the lowest number of variants, which can be explained by the lower depth of 
the dataset compared to ours (Section 3.3.2.3). Finally, cell lines had the 
highest burden of variants, most of them surpassing 10 variants/Mb, which is 
a usual threshold to consider a tumor as hypermutated (Campbell et al., 2017).  

Table 9. Burden of variants in our analyzed datasets. 

Dataset N 
Median number of variants per 

Mb per sample (IQR) 

Primary tumors, paired 27 5.38 (2.02-11.1) 

Primary tumors, unpaired 70 8.67 (6.07-11.5) 

Cell lines 37 16.8 (11.0-22.6) 

TCGA-LUAD WGS 59 2.76 (1.35-6.05) 

IQR: interquartile range. WGS: whole genome sequencing. 

 
Figure 17. Variants per megabase (Mb) across the analyzed cohorts. Each 
point represents one sample. 
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The higher variant burden of cell lines compared to primary tumors was 
expected for various reasons: 

• Cell lines are more genetically homogeneous than primary tumors, 
which facilitates variant calling. 

• Removal of germline variants was less effective in cell lines than in the 
other datasets due to the lack of matched normal samples. 

• Cell lines accumulate variants during their immortalization and cell 
culture (Domcke et al., 2013; Kim et al., 2017). 

• Approximately half of our cell lines were metastatic. Metastatic tumors 
usually have higher burden of certain types of variants, such as MNVs 
and indels, when compared to primary tumors (Priestley et al., 2019). 
However, the frequency of SNVs in metastatic tumors is generally not 
significantly different from that of primary tumors, and therefore this 
may not have contributed to the higher variant burden of cell lines in a 
major way (Priestley et al., 2019). 

Next, we classified the variants based on their biological effects (Figure 18). 
For this initial data exploration, we used the annotation reported by 
ANNOVAR. The largest number of variants was detected in PCGs, followed 
by ncRNAs and by intergenic regions. In PCGs, variants most frequently 
affected introns, followed by CDSs and by UTRs. Although we had only 
sequenced the first and last ~200 bp of each intron, introns had the highest 
mutation rate because their sequences are mostly under low constraint 
(Ulitsky, 2016). On the other hand, variants at splice sites of PCGs were rare 
because splice sites are short and highly conserved (Sibley et al., 2016). In 
contrast to PCGs, lncRNAs had more exonic than intronic variants, possibly 
because exonic nucleotides in lncRNAs are less constrained than those in 
CDSs and because some non-coding RNAs lack introns (Ulitsky, 2016). 
Finally, the reported intergenic variants were within 200 bp from the 5’ and 3’ 
ends of the targeted genes, as expected from our targeted sequencing design. 
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Figure 18. Distribution of variants in the analyzed cohorts according to the 
affected type of gene and gene region. Variants were annotated using 
ANNOVAR. All types of non-coding RNAs (ncRNAs: miRNAs, lncRNAs, and 
others) are grouped in a single category. For protein-coding genes (PCGs), 
“exonic” refers to coding sequences, excluding untranslated regions (UTRs).  

3.3.5. Most lncRNA variants were passengers 

Before performing driver discovery analyses, we wondered if variants in 
lncRNA exons, as a set, had high predicted impact. To this end, we compared 
the distribution of various structural and functional impact metrics in the 
observed variants across all datasets with that of randomly drawn variants 
from the target lncRNA exons. The observed variants did not have higher 
structural impact (RNAsnp), functional impact (FATHMM-MKL or CADD), 
or conservation (phyloP) scores than random variants (Figure 19). In fact, 
although differences between distributions were statistically significant for all 
scores but RNAsnp p values due to the large number of data points (Anderson-
Darling tests, p < 0.05), average functional impact and conservation scores 
were actually lower for observed variants than for random variants, but the 
magnitude of the differences was small. No differences between datasets were 
observed by analyzing each dataset separately (data not shown). 
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Driver variants are sometimes recurrent across cohorts and cancer types. 
Therefore, we wondered if our variants in lncRNA exons had been reported in 
external pan-cancer WGS datasets from COSMIC (Tate et al., 2019). However, 
only 4/1224 (0.3%) variants in cell lines, 3/568 (0.5%) in paired primary 
tumors, 8/991 (0.8%) in unpaired primary tumors, and 10/548 (1.8%) in 
TCGA-LUAD were present in COSMIC. 

In summary, the vast majority of lncRNA exon variants were likely passengers, 
in agreement with the notion that <1% of the variants in a tumor are drivers 
(Campbell et al., 2020). Therefore, we needed more sophisticated methods to 
find drivers, if present, among the overwhelming majority of passengers. 

 
Figure 19. General features of lncRNA variants. Variants in lncRNA exons 
were annotated by: A. Predicted structural impact (RNAsnp; p values were 
transformed as 1 - p); B. FATHMM-MKL; C. CADD; and D. Conservation 
(phyloP 100-way). Higher values mean higher impact or conservation. In blue, 
values for all variants across all analyzed cohorts (primary tumors, patients, and 
TCGA-LUAD WGS); in grey, values for 10 000 randomly generated variants 
within our target lncRNA exons. 
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3.3.6. Driver discovery 

To identify putative LUAD drivers in our datasets (cell lines, unpaired and 
paired primary tumors, and TCGA-LUAD WGS), we applied OncoDriveFML 
and OncoDriveCLUSTL to each dataset and to each type of genomic feature 
covered by our targeted sequencing: CDSs, lncRNA exons, miRNAs, 
promoters, splice regions, and UTRs. Whereas OncoDriveFML searches for 
enrichment in high functional impact scores (in our case, CADD scores), 
OncoDriveCLUSTL searches for clusters of variants (Arnedo-Pac et al., 2019; 
Mularoni et al., 2016). Here, we first provide a general overview of our results 
across all feature types. Then, we explore each result in each feature type in 
greater detail. 

3.3.6.1. General performance of driver discovery tools 

OncoDriveFML and OncoDriveCLUSTL performed quite differently in our 
data. At q < 0.25, OncoDriveFML detected a 54 drivers across all feature types 
and all cohorts (Table 10). In addition, the quantile-quantile plots of p values 
were acceptable for CDSs, with only slight inflation in some cohorts (Figure 
21), but p values were deflated for lncRNA exons (Figure 23). On the other 
hand, in a first approach, OncoDriveCLUSTL predicted 353 drivers across all 
feature types and all cohorts and p values were heavily inflated (data not 
shown). About half of these predicted drivers (“hits”) contained multi-
nucleotide variants (MNVs), and we hypothesized that MNVs were being 
considered as independent events, biasing cluster detection. Indeed, when we 
modified our input to only keep the first mutated position of MNVs, the 
number of hits decreased to 185 (48% reduction) (Table 11). However, 
quantile-quantile plots of p values were still mostly inflated, suggesting that 
other factors were still causing a high false positive rate (Figure 22 and Figure 
24). Nevertheless, the hits from both OncoDriveFML and OncoDriveCLUSTL 
were significantly enriched in known cancer-related PCGs from the Cancer 
Gene Census (CGC) and in known cancer-related lncRNAs from the Cancer 
LncRNA Census (CLC) in, at least, some analyses, confirming that both 
methods were detecting genuine cancer genes (Figure 20). In the sections 
below, we detail our analyses of hits from different feature types. 
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Table 10. Number of hits in the OncoDriveFML analysis. 

Feature 
Cell lines  
(N = 37) 

TCGA, 
WGS 

(N = 59) 

Tumors, 
paired 

(N = 27) 

Tumors, 
unpaired 
(N = 70) 

PCG, CDS 5 11 6 4 

PCG, splice 2 6 2 4 

PCG, UTR 4 0 0 0 

PCG, prom. 0 0 1 2 

lncRNA, exon 0 0 0 0 

lncRNA, splice 0 0 0 0 

lncRNA, prom. 0 1 1 1 

miRNA 3 0 0 1 
WGS: whole-genome sequencing. PCG: protein-coding gene. CDS: coding 
sequence. UTR: untranslated region. Prom.: promoter. lncRNA: long non-
coding RNA. miRNA: microRNA. Threshold: q < 0.25. 

Table 11. Number of hits in the OncoDriveCLUSTL analysis. 

Feature 
Cell lines  
(N = 37) 

TCGA, 
WGS 

(N = 59) 

Tumors, 
paired 

(N = 27) 

Tumors, 
unpaired 
(N = 70) 

PCG, CDS 13 2 2 46 

PCG, splice 1 0 0 0 

PCG, UTR 5 0 0 63 

PCG, prom. 2 0 0 8 

lncRNA, exon 1 1 0 24 

lncRNA, splice 0 0 0 0 

lncRNA, prom. 5 0 0 9 

miRNA 0 0 0 3 
WGS: whole-genome sequencing. PCG: protein-coding gene. CDS: coding 
sequence. UTR: untranslated region. Prom.: promoter. lncRNA: long non-
coding RNA. miRNA: microRNA. Threshold: analytical q < 0.25. 
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Figure 20. Overlap of driver hits with the Cancer Gene Census (CGC) or the 
Cancer LncRNA Census (CLC). Black dots represent the expected number of 
CGC/CLC hits based on the proportion of CGC/CLC genes among our targets. 
The observed vs. expected numbers of CGC/CLC and non-CGC/CLC hits were 
compared using Fisher’s exact tests and p values were adjusted to control the 
false discovery rate (*q < 0.05; **q < 0.01; ***q < 0.001). TCGA: The Cancer 
Genome Atlas. PCG: protein coding gene. CDS: coding sequence; lncRNA: long 
non-coding RNA; UTR: untranslated region; ex.: exon; pr.: promoter. 
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3.3.6.2. Driver discovery in CDSs 

To test OncoDriveFML and OncoDriveCLUSTL, we first applied them to 
CDSs of PCGs. As a first performance metric, we studied the quantile-quantile 
plots of p values. Both tools perform one statistical test for each mutated 
feature that passes their internal thresholds (Section 3.2.9). Assuming that 
most of the tests are expected to be non-significant, most p values should 
follow a uniform distribution. Therefore, in a quantile-quantile plot of 
observed vs. expected p values under a uniform distribution, most points 
should be along the diagonal, and the few significant findings should be 
noticeably above the diagonal. Indeed, this behavior was roughly observed for 
OncoDriveFML, although slight inflation of p values was detected in the 
paired datasets (Figure 21). On the other hand, OncoDriveCLUSTL 
consistently reported inflated p values, which caused a large number of 
significant findings (Figure 22 and Table 11). Therefore, the results of 
OncoDriveCLUSTL were likely to contain a large proportion of false positives.  

Importantly, the analyses shown here had already been optimized within the 
constraints of each tool. Regarding OncoDriveFML, we had tested it using 
functional impact scores from other sources, including phyloP (conservation), 
and FATHMM-MKL (machine learning-based). However, they either failed 
to detect any cancer genes or they reported similar findings to the analyses that 
used CADD scores (data not shown). Regarding OncoDriveCLUSTL, its 
parameters had been optimized as suggested in the original manuscript, and 
therefore other combinations of parameters performed even worse (Arnedo-
Pac et al., 2019). Furthermore, input of OncoDriveCLUSTL had already been 
modified to remove MNVs, which we had identified as a major source of false 
positive findings. 
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Figure 21. Driver discovery in coding sequences of protein-coding genes using 
OncoDriveFML. Quantile-quantile plots of observed vs. expected –log10(p) 
values are shown. The red dashed line represents the theoretical uniform 
distribution. The top 10 results are highlighted. In red: q < 0.01. In green:                   
q < 0.25. Cohorts: A. Cell lines (N = 37); B. TCGA-LUAD, WGS (N = 59);            
C. Primary tumors, paired (N = 27); D. Primary tumors, unpaired (N = 70). 

Next, we evaluated the overlap of our hits with the set of known cancer driver 
genes from the CGC. For OncoDriveFML, most of the hits were CGC genes 
(20/26, 77%) (Figure 20). These included well-known major LUAD driver 
genes, such as TP53, STK11, ARID1A, SMARCA4, KEAP1, CDKN2A, and NF1 
(Collisson et al., 2014). For OncoDriveCLUSTL, the overlap with the CGC was 
lower (32/63, 51%), which was consistent with a higher false positive rate. 
However, the clustering-based approach detected key LUAD drivers that were 
missed by OncoDriveFML, such as KRAS (Collisson et al., 2014). KRAS is an 
oncogene that recurrently harbors mutations at its twelfth codon, making this 
mutational pattern more easily detectable by clustering-based methods. Both 
driver discovery tools found a proportion of CGC genes that was higher than 
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expected by chance (Fisher’s exact test, q < 0.05) in all cohorts except for 
OncoDriveCLUSTL in the paired cohorts. Overall, both OncoDriveFML and 
OncoDriveCLUSTL successfully detected known LUAD drivers in CDSs, but 
OncoDriveCLUSTL likely had a high false positive rate. 

 

Figure 22. Driver discovery in coding sequences of protein-coding genes using 
OncoDriveCLUSTL. Quantile-quantile plots of observed vs. expected –log10(p) 
values are shown. The red dashed line represents the theoretical uniform 
distribution. The top 10 results are highlighted. In red: q < 0.01. Cohorts: A. Cell 
lines (N = 37); B. TCGA-LUAD, WGS (N = 59); C. Primary tumors, paired        
(N = 27); D. Primary tumors, unpaired (N = 70). 

 

 

 



Chapter 3. Non-coding mutations in lung adenocarcinoma.  

 
118 

3.3.6.3. Driver discovery in lncRNA exons 

Selection of candidate drivers 

 

Figure 23. Driver discovery in lncRNA exons using OncoDriveFML. 
Quantile-quantile plots of observed vs. expected –log10(p) values are shown. The 
red dashed line represents the theoretical uniform distribution. The top 10 
results are highlighted. In red: q < 0.01. Cohorts: A. Cell lines (N = 37);                     
B. TCGA-LUAD, WGS (N = 59); C. Primary tumors, paired (N = 27);                    
D. Primary tumors, unpaired (N = 70). 

In lncRNA exons, OncoDriveFML did not detect any drivers in any of the 
datasets (Figure 23). However, in contrast to the analysis in CDSs, here p 
values looked deflated, especially in the unpaired analyses. This suggested an 
underperformance of OncoDriveFML in lncRNA exons. Moreover, the issue 
persisted when using other functional impact scores, including FATHMM-
MKL, RNAsnp, and phyloP (data not shown). On the other hand, p values 
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from OncoDriveCLUSTL were inflated, suggesting a high false positive rate 
(Figure 24). Nevertheless, the hits from OncoDriveCLUSTL were significantly 
enriched in CLC lncRNAs in unpaired primary tumors (9/24, 38%) (Vancura 
et al., 2021) (Figure 20). The CLC hits were HEIH, TUSC7, CAMTA1-DT, 
SOX2-OT, ZEB2-AS1, DHRS4-AS1, NEAT1, HOTAIR, and EGFR-AS1. 

 

Figure 24. Driver discovery in lncRNA exons using OncoDriveCLUSTL. 
Quantile-quantile plots of observed vs. expected –log10(p) values are shown. The 
red dashed line represents the theoretical uniform distribution. The top 10 
results are highlighted. In red: q < 0.01. Cohorts: A. Cell lines (N = 37);                     
B. TCGA-LUAD, WGS (N = 59); C. Primary tumors, paired (N = 27);                       
D. Primary tumors, unpaired (N = 70). 

To select candidate drivers for downstream analyses, considering the poor 
performance of both driver discovery tools, we explored the top 10 most 
significant hits and the CLC hits from OncoDriveCLUSTL in each cohort, 
keeping in mind that most of them were likely to be false positives. For each 
of the 18 analyzed hits, we explored its genomic region, the distribution of its 
variants, and the predicted functional impact of its variants (Supplementary 
Table 1). Only 3/18 (17%) of the hits had at least one variant with moderate-
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to-high predicted functional impact: TUSC7, SOX2-OT, and ZEB2-AS1 
(CADD score ≥ 15 and FATHMM-MKL score ≥ 0.9). All of them were cancer-
related lncRNAs according to the CLC. Next, we further explored each of the 
three lncRNAs to determine if their variants might be LUAD drivers. 

Detailed analysis of candidate drivers 

TUSC7 

TUSC7 is an intergenic lncRNA with two annotated isoforms (Supplementary 
Figure 1). One primary tumor from our paired analysis had a high-impact 
somatic SNV affecting a conserved region in the last exon of both isoforms 
(chr3:116716439_T/A) (Table 12). The VAF was 31% which, accounting for 
tumor purity, suggested that the SNV was heterozygous or subclonal. The 
SNV did not affect any known regulatory elements. However, because most of 
the exonic sequence of TUSC7 is not conserved, and intronic parts are highly 
conserved, it cannot be ruled out that the function of the TUSC7 locus, if any, 
may be RNA-independent, and that it may contain as-yet uncharacterized 
regulatory DNA elements. In agreement with this, a small RNA gene 
(RF01879) is immediately downstream of the mutated region in TUSC7. 
Regulatory DNA elements are pervasively transcribed, and therefore RF01879 
may originate from such a type of element (Ibrahim et al., 2018).  

Remarkably, external evidence suggests that TUSC7 is a tumor suppressor 
locus in multiple cancer types. In particular, the TUSC7 locus is recurrently 
deleted in three non-LUAD cohorts from TCGA: adrenocortical carcinoma, 
uterine carcinosarcoma, and uterine corpus endometrial carcinoma (Athie et 
al., 2020) (Supplementary Figure 1). TUSC7 is the only gene within the 
recurrently deleted region (besides the overlapping RF01879), suggesting that 
the locus may be a bona fide tumor suppressor, at least in those cancer types. 
Furthermore, TUSC7 has been reported as a TP53-regulated tumor suppressor 
lncRNA in various cancer cell lines, including the A549 LUAD cell line (Liu et 
al., 2013). Moreover, another study reported that TUSC7 downregulation is 
associated with poor prognosis in TCGA-LUAD and that TUSC7 has a tumor 
suppressor role in LUAD cell lines (Zhou et al., 2019). Both reports 
experimentally supported an RNA-dependent function of TUSC7. 
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Table 12. High-impact variants in candidate driver lncRNAs. 

lncRNA Variant MKL CADD Struc VAF 

TUSC7 chr3:116716439_T/A 0.98 18.3 0.24 31% 

SOX2-OT chr3:181741757_CC/AG 0.99 17.6 0.05 29% 

SOX2-OT chr3:181741840_G/A 0.99 16.7 0.30 50% 

ZEB2-AS1 chr2:144518562_A/T 0.92 17.4 0.20 19% 

ZEB2-AS1 chr2:144519646_A/G 0.90 16.0 0.15 21% 

ZEB2-AS1 chr2:144520222_A/G 1.00 22.0 0.10 55% 

ZEB2-AS1 chr2:144520355_G/C 1.00 19.9 0.10 24% 

Genomic coordinates use the hg38 reference genome. The following functional 
impact scores are reported: “MKL”: FATHMM-MKL (range = 0-1, higher score 
means higher impact); CADD (Phred scale, higher score means higher impact); 
“Struc”: RNAsnp p-value (lower score means higher impact). The variant allele 
frequency (VAF) in the affected sample is also included. For variants affecting 
multiple nucleotides or multiple transcripts, the most deleterious impact scores 
were selected. 

To confirm the previously described roles of TUSC7 in LUAD, first we 
determined the expression of TUSC7 in external RNA sequencing (RNA-Seq) 
datasets. Median TUSC7 expression in normal lung samples from the 
Genotype Tissue Expression (GTEx) project was 0 (de Goede et al., 2021). 
Median TUSC7 expression was also 0 in tumor and matched normal lung 
samples from TCGA-LUAD (Figure 25A). Only 51/537 (9%) TCGA-LUAD 
samples had detectable expression of TUSC7. No survival analysis was 
performed because of the mostly undetectable expression of TUSC7. We 
noticed that the previous report from Zhou et al had excluded the ~91% of 
TCGA-LUAD samples that had undetectable TUSC7 expression, thus gravely 
biasing the results of their survival analysis (Zhou et al., 2019).  
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Figure 25. Expression of four candidate driver long non-coding RNAs 
(lncRNAs) in: A. Lung adenocarcinoma and paired normal lung tissue samples 
from The Cancer Genome Atlas (TCGA-LUAD); B. Normal lung samples from 
the Genome Tissue Expression (GTEx) Project. TPM: transcripts per 
million.Although TUSC7 RNA expression was not detected in external RNA-
Seq datasets, it was detected by previous studies in LUAD using quantitative 
polymerase chain reaction (qPCR) (Liu et al., 2013; Zhou et al., 2019). In a 
preliminary analysis from our group, we detected TUSC7 RNA in our cohort 
of LUAD primary tumors and matched normal samples by qPCR, and we 
found that TUSC7 is downregulated in LUAD primary tumors compared to 
normal samples, in agreement with previous reports (data not shown).  

If TUSC7 has low expression, it is unlikely to act as a ceRNA. Nevertheless, 
according to the online tool miRcode, the variant disrupted a binding site for 
the miR-27abc/27a-3p family of oncomiRs, a disruption that, if functional, 
might promote oncogenesis (Jeggari et al., 2012; Zhang et al., 2019).  

In conclusion, although TUSC7 may be a tumor suppressor locus in some 
cancers, it is unclear whether it has an RNA sequence-dependent role in 
LUAD. Critically, evidence of TUSC7 expression in LUAD is inconsistent, and 
future work should clarify the discrepancies between RNA-Seq and qPCR and 
determine the number of copies per cell of TUSC7 in our LUAD cohort.  
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SOX2-OT 

SOX2-OT is a lncRNA that overlaps the SOX2 PCG in the same strand 
(Supplementary Figure 2 and Supplementary Figure 3). Over 20 SOX2-OT 
isoforms are annotated in GENCODE v29, and some of them span over          
800 kb. Two exonic variants affecting SOX2-OT in our cohort of primary 
tumors had high functional impact (Table 12). Both affected a highly 
conserved ~500 bp region located ~26 kb downstream of SOX2. One of them 
was a dinucleotide variant (chr3:181741757_CC/AG) with VAF = 29%, 
suggesting that it was heterozygous or subclonal. The second one was a SNV 
(chr3: 181741840_G/A) with VAF = 50%, and therefore its zygosity was 
unclear. If the tumor sample had low contamination with normal DNA, the 
variant may be heterozygous. However, if contamination with normal tissue 
was high, the tumor was not diploid, or the variant was subclonal, the variant 
may have been present in more than 50% of the DNA molecules in the cells 
that harbor it. Finally, because we did not sequence the matched normal 
sample, the variant may have been germline heterozygous. Both variants only 
affected some SOX2-OT isoforms, as they were located near the 3’ ends of only 
the longest isoforms. None of the variants affected any known regulatory 
elements or miRNA binding sites, and no recurrent somatic copy number 
alterations affected the region in TCGA. Interestingly, cap analysis of gene 
expression data suggested that there was a transcription start site ~250 bp 
upstream of the mutated region, and it could not be associated with any 
annotated genes (Andersson et al., 2014) (Supplementary Figure 3).  

SOX2-OT had low median expression in normal lung (0.05 TPM both in GTEx 
and in TCGA-LUAD) and in LUAD (0.07 TPM in TCGA-LUAD) (Figure 25). 
Median expression of SOX2 mRNA was also low in normal lung (0.6 TPM in 
GTEx; 5.6 TPM in TCGA-LUAD) and moderate-low in LUAD (10.7 TPM in 
TCGA-LUAD). SOX2-OT expression and SOX2 mRNA expression had a 
moderate-strong non-linear correlation in LUAD and in normal lung samples 
(Kendall τ range = 0.5-0.62; Figure 26). Despite being correlated to each other, 
high SOX2-OT expression was associated with a favorable prognosis in 
TCGA-LUAD (logrank p = 0.038, Figure 27A), but SOX2 mRNA expression 
was not (logrank p = 0.19, Figure 27B).  
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Figure 26. Correlation between expression of lncRNA hits and the mRNA of 
their overlapping PCGs. Two correlations were explored: SOX2-OT/SOX2 (A, 
C, E) and ZEB2/ZEB2-AS1 (B, D, F). Three datasets were studied: A, B: lung 
adenocarcinoma (LUAD) samples from The Cancer Genome Atlas (TCGA); C, 
D: normal lung from TCGA-LUAD; E, F: normal lung from the Genome Tissue 
Expression (GTEx) Project. Correlations were estimated by Kendall’s tau (τ). 
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SOX2 is recurrently amplified and may act as an oncogene in small cell lung 
cancer (Rudin et al., 2012). In addition, previous reports have suggested that 
SOX2-OT is upregulated and has an oncogenic role in NSCLC (Chen et al., 
2022; Hou et al., 2014). According to our reanalysis of TCGA-LUAD,        
SOX2-OT was significantly overexpressed in LUAD samples compared to 
normal lung samples, but the fold change was low (fold change = 1.04; t-test,        
p = 1.5·10-4; Figure 25). In previous reports, fold changes were ~3 times higher 
than in ours (Hou et al., 2014). However, because basal expression of          
SOX2-OT is extremely low, small differences in mean SOX2-OT expression 
due to statistical noise can result in large differences in the fold change (Love 
et al., 2014). Moreover, whereas previous reports found an association 
between high SOX2-OT expression and poor prognosis in a different NSCLC 
cohort, we found the opposite trend in TCGA-LUAD, which contradicts its 
previously proposed oncogenic role (Hou et al., 2014) (Figure 27A). However, 
Hou et al combined various NSCLC subtypes whereas we focused exclusively 
on LUAD. Moreover, due to the low basal expression of SOX2-OT, assignment 
of patients to the “SOX2-OT high” and “SOX2-OT low” expression groups may 
be more dependent on statistical noise than on real biological differences. 

Overall, the relevance of the SOX2-OT in LUAD is unclear, and its recurrent 
variants only affected the terminal nucleotides of some of its isoforms. 
Furthermore, the variants affected a ~500 bp highly conserved region that had 
a transcription start site immediately upstream, suggesting that the region may 
contain a currently unannotated transcript. Finally, the mechanistic and 
functional relationship between SOX2-OT and SOX2 remains to be elucidated. 

ZEB2-AS1 

ZEB2-AS1 (previously known as ZEB2 natural antisense transcript) is an 
antisense lncRNA that overlaps the ZEB2 PCG (Supplementary Figure 4). 
ZEB2-AS1 is located within a ~5 Mb region that is recurrently deleted in 
diffuse large B cell lymphoma (Athie et al., 2020). The only CGC gene within 
the recurrently deleted region is ACVR2A, which is a tumor suppressor gene.  

Moderate-to-high-impact variants in ZEB2-AS1 exons overlapped with the 
first intron, the 5’-UTR, and upstream regions of ZEB2 (Table 12). The 
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variants did not affect any predicted miRNA binding sites. All VAFs but one 
were <25%, which was consistent with the variants being heterozygous and/or 
subclonal. The exception was a recurrent variant in two tumor samples 
(chr2:144520222_A/G) whose VAF was 55%. Because we had not sequenced 
the matched normal sample, we could not rule out that the variant was 
germline heterozygous. Furthermore, an intronic ZEB2-AS1 variant was 
predicted to have a high functional impact similarly to the exonic variants 
(chr2:144519379_G/T: FATHMM-MKL score = 0.97, CADD score = 19.5), 
which suggested that the putative effect of the variants may be independent of 
the ZEB2-AS1 RNA sequence.  

In lung cancer, ZEB2-AS1 has been reported as overexpressed and it has been 
suggested to be oncogenic (Guo et al., 2018). However, in TCGA-LUAD, we 
found no significant differences in ZEB2-AS1 expression between LUAD and 
normal lung (t-test, p = 0.51) (Figure 25). Furthermore, high expression of 
ZEB2-AS1 was associated with high overall survival in TCGA-LUAD (logrank 
p = 0.01; Figure 27C), whereas ZEB2 was borderline significant (logrank p = 
0.08, Figure 27D). These observations contradict the previously proposed 
oncogenic role of both genes, but they are consistent with the fact that the loci 
are deleted in some cancers (Athie et al., 2020). The discrepancies between 
TCGA-LUAD and Guo et al’s report could not be evaluated further because 
Guo et al did not specify the lung cancer subtypes of their patients. 

Previous reports have proposed a mechanistic relationship between ZEB2 and 
ZEB2-AS1. In particular, ZEB2-AS1 promotes ZEB2 translation by binding to 
its first splice donor site, causing intron retention that exposes an internal 
ribosomal entry site in the ZEB2 mRNA (Beltran et al., 2008). The resulting 
increase in ZEB2 expression has been linked to epithelial-mesenchymal 
transition in various cancer cell lines (not including LUAD) (Beltran et al., 
2008). In agreement with this, we found that expression of ZEB2-AS1 and of 
ZEB2 mRNA were weakly and positively correlated in LUAD and in normal 
lung (Kendall τ range = 0.17-0.39; Figure 26). However, a significant 
correlation is not enough evidence to prove that ZEB2-AS1 modulates ZEB2. 
In fact, the stoichiometry of ZEB2 mRNA and ZEB2-AS1 in lung samples casts 
doubts on a biologically relevant interaction between both RNAs. In primary 
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tumors from TCGA-LUAD, median expression of ZEB2 was ~150x higher 
than that of ZEB2-AS1: 8.8 TPM vs. 0.06 TPM, respectively (Figure 25). ZEB2 
expression was also at least an order of magnitude higher than that of          
ZEB2-AS1 in normal lung: 24.1 TPM vs. 1.67 TPM in GTEx, and 39.5 TPM vs. 
0.13 TPM in normal samples from TCGA-LUAD. Therefore, in lung tissue, 
ZEB2-AS1 may have too few molecules per cell to modulate ZEB2 in vivo. 

In conclusion, it is unclear whether ZEB2-AS1 has an RNA sequence-
dependent function in LUAD and whether it acts via ZEB2. Experiments will 
be required to test the functions and the mechanisms of ZEB2-AS1 in LUAD. 

 

Figure 27. Survival analyses on candidate driver long non-coding RNAs and 
their overlapping protein coding genes: A. SOX2-OT; B. SOX2; C. ZEB2-AS1; 
D. ZEB2. Data from lung adenocarcinoma patients from The Cancer Genome 
Atlas (TCGA-LUAD). Patients were split in two expression groups using the 
median as a threshold. Logrank p values are shown. 
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3.3.6.4. Driver discovery in miRNAs 

OncoDriveFML predicted four driver miRNAs: MIR3153 (in our primary 
tumors), MIR4725, MIR4650-1, and MIR4712 (in our cell lines). In addition, 
OncoDriveCLUSTL detected 3 driver miRNAs: MIR3153, MIR8064, and 
MIR3689F (all of them in our primary tumors). 

To further characterize miRNA variants, we developed an in-house pipeline 
to annotate, prioritize, and predict the functional impact of variants in a 
miRNA-centric manner. We reasoned that, because miRNAs are short and 
highly conserved, we may not be able to detect biologically active miRNA 
variants based on recurrence alone. Therefore, we did not only study the 
recurrent variants detected by the driver discovery tools, but also the non-
recurrent ones. The results are detailed in Sections 3.3.7-3.3.8.3. 

3.3.6.5. Driver discovery in splice regions 

In splice regions of PCGs, OncoDriveFML found 14 hits (Table 10) and 
OncoDriveCLUSTL found 1 (Table 11). No hits were detected in splice 
regions of lncRNAs. The PCG hits from OncoDriveFML were enriched in 
CGC genes (Figure 20). The hits affected 11 unique genes, as some of them 
were identified in more than one cohort. In particular, TP53 was a hit in our 
primary tumors and in our cell lines. In addition, STK11 was a hit in our paired 
and unpaired primary tumors and in TCGA-LUAD. Moreover, RB1 was a hit 
in our paired and unpaired primary tumors. Other hits included NF1, MET, 
and RBM10 (all three in TCGA-LUAD). All of these genes are known LUAD 
drivers that undergo recurrent splice site mutations in LUAD (Bailey et al., 
2018; Collisson et al., 2014; Shiraishi et al., 2018).  

Next, we focused on the hits from TCGA-LUAD because they had matched 
RNA-Seq alignment files, which allowed us to evaluate the impact of the splice 
site variants on mRNA processing. The TCGA-LUAD hits were STK11, NF1, 
MET, RBM10, MUC16, and COL3A1. We used the MAJIQ tool to identify 
alterations in splice junctions in mutant samples (Vaquero-Garcia et al., 2016), 
and then we confirmed the results by inspecting the RNA-Seq reads on IGV.  
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Figure 28. Impact of splice site mutations on RNA splicing in TCGA-LUAD. 
Mutations were identified in whole-genome sequencing data, and their effect on 
RNA splicing was evaluated in matched RNA sequencing data. Splice site 
mutations are classified based on their effect on RNA splicing. For each effect, 
an example of how they may affect a hypothetical RNA is depicted. Brown 
arrows denote the position of the hypothetical mutation. For each aberration, 
the identifier of the affected patient and the position of the affected exon or 
intron is shown. Transcripts used as a reference for counting exons and introns 
were: ENST00000326873.11 (STK11), ENST00000356175.7 (NF1), 
ENST00000397752.7 (MET), and ENST00000377604.7 (RBM10). PSI: 
“percentage spliced in”, proportion of transcripts that were estimated to undergo 
a splicing event. NA: not available (the aberration was not detected by MAJIQ, 
but it was detected on IGV). IpA: intronic polyadenylation. 
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In STK11, four samples were mutated at splice sites in the TCGA-LUAD WGS 
dataset (Supplementary Figure 5). Using the transcript ENST00000326873.11 
as a reference, the variants affected introns 3, 5, 6, and 7. All four variants 
affected mRNA processing (Figure 28). In particular, one at the splice acceptor 
site of intron 3 caused exon 4 skipping in some transcripts and intron 3 
retention in others; one at the splice acceptor site of intron 5 caused usage of 
a cryptic splice site within exon 6 that led to a 35 nt deletion, as well as intron 
retention in other transcripts; one at the splice acceptor site of intron 6 caused 
intron 6 retention, as well as some minor skipping of exon 7 in other 
transcripts; and one at the splice donor site of intron 7 caused exon 7 skipping. 
STK11 is a recurrently inactivated tumor suppressor gene in LUAD (Collisson 
et al., 2014). Remarkably, its kinase activity is mapped to more than half of the 
protein sequence (amino acids 49-309 out of 433, UniProt ID: Q15831), and 
therefore truncating variants at most of the STK11 coding sequence are likely 
to disrupt its function. 

In NF1, two somatic variants affected splice sites in TCGA-LUAD WGS data 
(Supplementary Figure 6). Using the transcript ENST00000356175.7 as a 
reference, the variants affected introns 37 and 38. The variants caused skipping 
of exons 37 and 38, respectively (Figure 28). NF1 is a recurrently inactivated 
tumor suppressor gene in LUAD, and its mutations are not clustered in any 
specific parts of the gene (Collisson et al., 2014). 

In MET, two variants affected splice regions (Supplementary Figure 7). Using 
transcript ENST00000397752.7 as a reference, one variant affected the splice 
donor site in intron 11, causing exon skipping as well as partial intron 
retention in other transcripts (Figure 28). Here, we define “partial intron 
retention” as an event in which some reads span the exon-intron junction, all 
or most of them harboring the splice site variant, but the whole intron is not 
retained: instead, coverage drops to zero or near zero within the intron. Such 
patterns have been attributed to intronic polyadenylation (Zhao et al., 2021b). 
In the case of our identified MET variant, the first ~300 nt in intron 11 were 
expressed, and then coverage dropped to nearly zero (Supplementary Figure 
11). Although we did not find a canonical AAUAAA polyadenylation signal 
within the expressed intronic region, we found two instances of the second 
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most frequent polyadenylation signal in humans, AUUAAA (Beaudoing et al., 
2000), supporting that the variant may have caused intronic polyadenylation 
(Supplementary Figure 11). On the other hand, one variant affected the third 
nucleotide of intron 14, causing skipping of exon 14 in all reads (Figure 29). 
Skipping of exon 14 of MET is a recurrent driver event in LUAD and it has 
special clinical relevance because two drugs, capmatinib and tepotinib, have 
been approved for the treatment of LUAD tumors that harbor these alterations 
(Frampton et al., 2015; Mathieu et al., 2022). Importantly, the variant 
discussed here was located 1 bp downstream from the canonical “GT” splice 
donor sequence, but it still affected splicing. Therefore, our results highlight 
that variants at splice regions beyond the canonical splice donor and acceptor 
sequences can cause clinically relevant aberrations in splicing. 

 
Figure 29. Skipping of MET exon 14 associated with a somatic variant in the 
third position of intron 14 in a TCGA-LUAD primary tumor.A. Genomic 
position of the variant (highlighted in yellow). Figure generated in the UCSC 
Genome Browser. B. RNA sequencing data shows that exon 14 is skipped. Figure 
modified from the Integrative Genomics Viewer.  
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Regarding RBM10, two WGS samples from TCGA-LUAD had somatic 
variants in splice regions (Supplementary Figure 8). Using the transcript 
ENST00000377604.7 as a reference, one variant affected the third nucleotide 
of intron 2 and another one affected the fifth nucleotide of intron 9. Both 
variants were associated with aberrations in mRNA splicing (Figure 28): the 
one at intron 2 caused exon 2 skipping, whereas the one at intron 9 caused 
exon 9 skipping (Figure 30). RBM10 is recurrently inactivated in LUAD and 
its mutations do not cluster in any specific parts of its sequence (Collisson et 
al., 2014). Although RBM10 has been consistently detected as one of the top 
LUAD driver genes, its role in LUAD is still unclear (Bailey et al., 2018; 
Collisson et al., 2014). RBM10 modulates splicing, mainly by promoting exon 
skipping, and inactivation of RBM10 may cause transcriptome-wide changes 
in splicing patterns (Seiler et al., 2018). However, further research is needed to 
fully elucidate how RBM10 is involved in tumorigenesis in LUAD. 

MUC16 harbored three somatic variants in splice regions, one of which 
affected a splice site (Supplementary Figure 9). They affected introns 3, 22, 
and 78 of transcript ENST00000397910.8. However, we found no evidence of 
any of the variants causing splicing aberrations. MUC16 harbored a large 
number of variants along the whole gene, which encodes the second largest 
human protein, being ~14 500 amino acids long (Lawrence et al., 2013). 
Previous studies have also detected a high mutation rate in MUC16, but it is 
usually considered a false positive hit from driver discovery methods that do 
not account for gene length or BMR heterogeneity (Lawrence et al., 2013). 
Although the tools employed in our work should have accounted for both 
confounding factors, our low sample size may have impaired the construction 
of an accurate background, and this may have caused MUC16 to be detected 
as a false positive hit.  

Finally, COL3A1 had two variants in splice regions: one at the splice donor site 
of intron 2 (reference transcript: ENST00000304636.7), and one at the 9th last 
nucleotide of intron 24 (Supplementary Figure 10). However, neither of them 
were associated with detectable aberrations in mRNA splicing. This, together 
with the lack of evidence for driver mutations in COL3A1 in external studies, 
suggested that it may be a false positive hit. 
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In conclusion, in the TCGA-LUAD dataset, we have found 4 PCGs that 
accumulate splice-altering driver mutations at their intronic splice regions: 
STK11, NF1, MET, and RBM10. All of them are known LUAD driver genes, 
and targeted therapies for MET exon 14 skipping are clinically available 
(Bailey et al., 2018; Collisson et al., 2014; Mathieu et al., 2022). Importantly, 
variants beyond the 2-nt splice donor and acceptor sites caused splicing 
aberrations, highlighting the importance of analyzing wider regions, especially 
the third and fifth intronic nucleotides (Shiraishi et al., 2018). In future work, 
it may be of interest to experimentally analyze the RNA of our primary tumors 
that harbored mutations in splice regions of genes such as TP53 and RB1 to 
confirm whether the variants caused splicing aberrations.  

 
Figure 30. Skipping of RBM10 exon 9 associated with a somatic variant in 
the fifth position of intron 9 in a TCGA-LUAD primary tumor. A. Genomic 
position of the variant (highlighted in yellow). Figure generated in the UCSC 
Genome Browser. B. RNA sequencing data shows that exon 9 is skipped. Figure 
modified from the Integrative Genomics Viewer. 



Chapter 3. Non-coding mutations in lung adenocarcinoma.  

 
134 

3.3.6.6. Driver discovery in promoters 

OncoDriveFML reported 3 hits in PCG promoters and 3 hits in lncRNA 
promoters (Table 10). On the other hand, OncoDriveCLUSTL found 10 hits 
in PCG promoters and 14 hits in lncRNA promoters (Table 11). Only the 
PLAUR promoter was detected by both tools (in our unpaired primary 
tumors). No OncoDriveFML hits were in the CGC or CLC (Figure 20). 
Regarding the OncoDriveCLUSTL hits, only one promoter modulated a CGC 
PCG: PIK3CA (in primary tumors). In addition, two modulated CLC 
lncRNAs: FENDRR (in cell lines and in primary tumors) and MYCNUT (in 
primary tumors).  

Three promoter variants had high predicted impact (Table 13). We tested if 
they affected transcription factor binding using PROMO (Messeguer et al., 
2002). First, in PRMT5, chr14:22929753_G>T was predicted to disrupt a GR-
alpha binding site and introduce a FOXP3 and a GR-beta binding site. It also 
overlapped with a splice site of the lncRNA PRMT5-DT, which may explain 
its high impact (Supplementary Figure 12). Although the variant affected a 
repetitive region, no mapping issues were observed. Second, also in PRMT5, 
chr14:22929717_G>A was predicted to disrupt a TFII-I binding site and 
introduce an HNF-1B binding site. Finally, in NKX3-2, chr4:13544981_C>A 
was predicted to disrupt an RXR-alpha binding site and introduce one for 
USF2. No artifacts were detected (Supplementary Figure 13). 

Table 13. High-impact variants in candidate driver promoters. 

Dataset Variant Genes MKL CADD VAF 

Tumors, p. 
+ unp. 

chr14:22929717_G/A PRMT5, 
PRMT5-DT 

1.0 22.6 15% 

Tumors, 
unpaired 

chr14:22929753_G/T PRMT5, 
PRMT5-DT 

1.0 32.0 29% 

Tumors, 
unpaired 

chr4:13544981_C/A NKX3-2, 
LINC01096 

1.0 20.3 35% 

Genomic coordinates use the hg38 reference genome. The following functional 
impact scores are reported: “MKL”: FATHMM-MKL (range = 0-1, higher score 
means higher impact); CADD (Phred scale, higher score means higher impact). 
VAF: variant allele frequency; “p. + unp.”: paired and unpaired analyses. 
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To further test the functional impact of variants in all promoter hits, we 
determined whether they were associated with expression changes in cis. For 
bidirectional promoters, we studied the genes in both directions. For the hits 
in cell lines, we used transcriptome expression data from the Cancer Cell Line 
Encyclopedia (CCLE). We found no significant associations between variants 
in any of the promoter hits and changes in gene expression (Figure 31). 
However, the association between variants in the PDCD6 promoter and 
PDCD6 mRNA expression was borderline significant (t-test, p = 0.08). The 
PDCD6 promoter had one variant, chr5:271495-271495_G>A, in two cell 
lines, H1437 and H2122. The variant was predicted to disrupt a p53 binding 
site (Messeguer et al., 2002). However, the position had very low evolutionary 
conservation (phyloP score = -2.9) and the variant had moderate-low 
predicted functional impact (CADD score = 5.8; FATHMM-MKL score = 
0.86). Our only hit in TCGA-LUAD, AP001107.2, was not expressed in any of 
the 59 samples from TCGA-LUAD. Finally, we could not test the hits in our 
primary tumors because we lacked gene expression data from them. Overall, 
we could not find any strong hits among promoters using available data. 

 
Figure 31. Association between variants in promoter hits and gene expression 
in cell lines. Transcriptome expression data were retrieved from the Cancer Cell 
Line Encyclopedia (CCLE) for our LUAD cell lines. Red points and lines show 
the mean and the standard deviation. “Mut”: mutant; “WT”: wild type. 



Chapter 3. Non-coding mutations in lung adenocarcinoma.  

 
136 

3.3.6.7. Driver discovery in UTRs 

While OncoDriveFML only detected 4 driver UTRs, all of them in cell lines 
(Table 10), OncoDriveCLUSTL reported 68 driver UTRs, 63 of which were in 
unpaired primary tumors (Table 11). Again, OncoDriveFML performed 
acceptably and OncoDriveCLUSTL had highly inflated p values (Figure 32). 
Out of the 72 total hits, 16 (22%) were CGC genes, but the enrichment of CGC 
genes was not significant (Figure 20). The CGC hits included PPM1D, 
SMARCE1, LRP1B, and FGFR1, among others.  

 

Figure 32. Representative quantile-quantile plots of observed vs. expected p 
values from driver analyses in untranslated regions of protein-coding genes:  
A. OncoDriveFML in our cell lines. B. OncoDriveCLUSTL in our unpaired 
dataset of primary tumors. The red dashed line represents the theoretical 
uniform distribution. The top 10 results are highlighted. In red: q < 0.01. 

We further evaluated the 4 hits from OncoDriveFML, the top 5 hits from each 
OncoDriveCLUSTL analysis, and the CGC hits. Setting the thresholds 
RNAsnp p < 0.1, CADD score ≥ 15, and FATHMM-MKL score ≥ 0.9, three 
variants in our UTR hits had high predicted functional and structural impact 
(Table 14). One of them, chr12:48716738_G/A, affected the 5’-UTR of CCNT1 
in the A549 cell line (Supplementary Figure 14). Its VAF was 100%. The 
affected nucleotide is part of the 5’-UTR of only one out of three isoforms, 
whose 5’-UTR is longer than the rest. Nevertheless, the variant may affect the 
promoter of the other isoforms. The second variant, chr3:181712310_G/C, 
affected the 5’-UTR of SOX2 in two primary tumors (VAFs = 38% and 45%) 
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(Supplementary Figure 15). Finally, chr3:181714021_G>T affected the             
3’-UTR of SOX2 in a primary tumor and its VAF was 48% (Supplementary 
Figure 15).  

Table 14. High-impact variants in candidate driver untranslated regions 
(UTRs). 

Dataset Variant 
Gene 
(UTR) 

MKL CADD Struc 

Cell lines chr12:48716738_G/A CCNT1   
(5’-UTR) 

0.97 21.3 0.02 

Tumors, 
unpaired 

chr3:181712310_G/C SOX2      
(5’-UTR) 

0.91 18.1 0.06 

Tumors, 
unpaired 

chr3:181714021_G/T SOX2      
(3’-UTR) 

0.94 16.4 0.05 

Genomic coordinates use the hg38 reference genome. The following functional 
impact scores are reported: “MKL”: FATHMM-MKL (range = 0-1, higher score 
means higher impact); CADD (Phred scale, higher score means higher impact); 
“Struc”: RNAsnp p value (lower score means higher impact). 

Next, we determined if the SNVs in the UTRs were associated with changes in 
gene expression in cis. We were only able to perform this analysis in cell lines, 
which had available transcriptome profiling data from the CCLE, as no hits 
were found in TCGA-LUAD. Only 3’-UTR variants in SP1 were associated 
with lower mRNA expression, but the significance was lost after p value 
correction to control the false discovery rate (unadjusted p = 0.044, q = 0.44) 
(Figure 33). One 3’-UTR variant in SP1 was recurrent in H322 and in 
HCC4006 (chr12:53416182_G/A) and it was predicted to have a moderate-
high functional impact (CADD score = 17.9; FATHMM-MKL score = 0.92) 
but low structural impact (RNAsnp p = 0.29). 
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Figure 33. Association between variants in UTR hits in LUAD cell lines and 
mRNA expression according to CCLE data. The 36 LUAD cell lines from our 
study that had expression data in CCLE are plotted. Mut: mutant; WT: wild 
type; CPM: counts per million. The p values shown here are not corrected for 
multiple hypothesis testing. 

MicroRNAs typically downregulate gene expression by binding to 
complementary sequences in 3’-UTRs (Bartel, 2004, 2009). Therefore, we 
predicted whether any of the high-impact SNVs in 3’-UTRs created or 
disrupted miRNA binding motifs. We tested the 3’-UTR variant in SOX2, 
which was identified in the functional impact analysis, and 3’-UTR variants in 
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SP1, which was identified in the expression analysis. For SP1, we also included 
a recurrent variant identified in two of our primary tumor samples 
(chr12:53414765_C/T). Although we were unable to evaluate whether the 
variant affected SP1 expression, it was predicted to have a high functional 
impact (CADD score = 19.8; FATHMM-MKL score = 0.98). Using miRcode, 
we found that none of the tested variants affected any miRNA binding sites 
(Jeggari et al., 2012). To confirm our negative findings, we used the “Custom 
Prediction” tool from miRDB (http://mirdb.org/mirdb/custom.html). 
According to miRDB, the largest change in predicted miRNA binding was 
induced by the chr12:53414765_C/T variant in SP1, which changed the 
binding score of miR-1277-5p from 70 to 80. However, despite being the 
largest predicted change, it was still a relatively small difference, and median 
miR-1277-5p was <1 TPM in external LUAD miRNA sequencing (miRNA-
Seq) datasets from TCGA and from Gillette et al (Gillette et al., 2020). As a 
result, the variant may not have a meaningful impact on SP1 levels. Overall, 
we failed to identify any meaningful changes in predicted miRNA binding 
caused by the high-impact 3’-UTR variants.  

In summary, different criteria to prioritize the hits in UTRs yielded different 
top candidates, but none of them had clear biological impact according to 
available data. However, we were unable to evaluate expression changes in our 
primary tumors due to lack of data. Finally, other criteria not explored here, 
such as disruption or creation of protein binding motifs, may help explain the 
effect of the high-impact UTR variants. 

3.3.7. Annotation of miRNA motifs 

To determine whether miRNA variants disrupted or created DROSHA 
processing motifs, we implemented two novel methods for annotating 
DROSHA motifs using two different criteria: distance from DROSHA 
cleavage sites (“positional” method) and distance from structural features 
(“structural” method) (Section 3.2.11.3). Before annotating the variants, we 
tested whether our methods successfully predicted pri-miRNA stems and 
DROSHA processing motifs. 
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3.3.7.1. Performance of the stem prediction workflow 

The structural method for predicting DROSHA processing motifs, as well as 
the prediction of mGHG motifs, required the structures of pri-miRNA stem-
loops. Using our method, we successfully predicted 842/1881 stems from 
miRBase 21 miRNAs. The remaining stems could not be predicted for two 
main reasons:  

• Lack of a complete annotation of the 5p and 3p miRNAs (932 
failures). When either the 5p or the 3p mature miRNAs are missing 
from the annotation, they can be predicted by assuming that DROSHA 
produces a cut staggered by 2 nt (Kim et al., 2021; Urbanek-Trzeciak et 
al., 2020). However, we chose not to follow this approach because we 
found numerous exceptions to this rule in miRBase, and because most 
(275/295, 93%) human high-confidence miRNAs (as defined by 
miRBase) had complete annotations in either miRBase or MirGeneDB. 

• RNAfold did not predict a stem-loop structure that contained one 
mature miRNA in each arm (107 failures). Wrong predictions could 
arise because: (i) the input was incorrect; or (ii) the algorithm failed. 
Currently, it is not possible to retrieve complete pri-miRNA sequences 
from gene annotations. Instead, miRNA genes must be padded by an 
arbitrary number of nucleotides (in our case, 30 nt) in hopes of 
spanning the full stem-loop of the pri-miRNA (Kim et al., 2021). We 
tried padding miRNA genes by different lengths, but results were 
similar or worse than those obtained by our final approach. We also 
tried using mfold for secondary structure predictions (Zuker, 2003), 
but results were similar to those of RNAfold. Therefore, we deemed our 
RNAfold approach as acceptable within current limitations. 

After optimizing secondary structure predictions, we used them to predict pri-
miRNA stem-loops. To test our stem-loop predictions, first we examined the 
distribution of stem lengths. When calculated as the shortest length among the 
two arms, optimal stem lengths are within the range of 33-39 nt (Roden et al., 
2017). Indeed, 468/842 (56%) of our predicted stems were within the optimal 
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range (Figure 34A). Our predictions were biased towards short stems, as 
216/842 (26%) were shorter than 33 nt, whereas 158/842 (19%) were longer 
than 39 nt. To determine the source of this bias, we examined the secondary 
structure predictions and our stem annotations in a selection of stems below, 
within, and above the optimal length range. While most stem predictions 
outside the optimal range looked correct, some were shorter than expected 
because RNAfold had predicted a multi-branched junction within the stem. 
These secondary structures were likely to be incorrect, and they could 
especially impact the predictions of basal junctions. This was likely to cause 
structural motif predictions to be less reliable than positional predictions. 

An additional test for our stem prediction method was the distribution of 
distances between the 5p DROSHA cleavage sites and the predicted basal 
junctions (Figure 34B). The optimal distance in our predictions was 13 nt, 
which agrees with previous reports (Auyeung et al., 2013; Kim et al., 2021). 
However, a significant number of basal junctions were 1-2 nt away from the 
optimum. Such deviations from the optimal distance have also been described 
(Kwon et al., 2019), and they can be attributed to either pri-miRNAs that 
harbor a strong mGHG motif at the -7 position, stems with an unusual 
number of mismatches and bulges, or incorrect predictions. Overall, we 
concluded that our stem predictions were mostly correct. 

 

Figure 34. Quality tests of our stem prediction method. A. Length distribution 
of predicted stems. Lengths are expressed in nucleotides (nt). In yellow, optimal 
range of 33-39 nt proposed by (Roden et al., 2017). B. Distances between basal 
junctions and 5p DROSHA cleavage sites. The optimal distance of -13 nt is 
highlighted with a red dashed line (Auyeung et al., 2013).  
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3.3.7.2. Optimal ranges for DROSHA motifs 

To confirm whether the positions of DROSHA motifs reported in the 
bibliography (Table 2) matched our data, we studied the occurrence of each 
sequence motif as a function of its distance to DROSHA cleavage sites (for 
positional predictions) or to structural features (for structural predictions). As 
expected, we found a peak of UG sequences at position -14 from 5p DROSHA 
cleavage sites (Figure 35A) and at basal junctions (Figure 35B) (Auyeung et 
al., 2013). We also detected a peak of UGU/GUG sequences within the range 
of 21-25 nt from 5p DROSHA cleavage sites (Figure 35C) and at apical 
junctions (Figure 35D), as previously described (Auyeung et al., 2013). 
Furthermore, we observed a high proportion of CNNC sequences at 16-18 nt 
from 3p DROSHA cleavage sites (Figure 35E) and at 5-6 nt from basal 
junctions in the 3p arm (Figure 35F), as previously reported (Auyeung et al., 
2013; Roden et al., 2017). Finally, we found a strong increase in mGHG scores 
at position -7 from 5p DROSHA cleavage sites (Figure 36), in agreement with 
previous reports (Kwon et al., 2019). 

Whereas positional definitions of motifs have been thoroughly studied, 
structural definitions are mostly based on indirect evidence. For example, 
because basal UG motifs are enriched at position -14 from 5p DROSHA 
cleavage sites and basal junctions are enriched at position -13, UG motifs 
should be at basal junctions (Auyeung et al., 2013). However, direct evidence 
linking DROSHA cleavage motifs and structural features is scarce (Kwon et 
al., 2019; Roden et al., 2017). In this context, we aimed to optimize the 
structural definitions of motifs based on our own observations (Table 8). Basal 
UG motifs were indeed enriched at basal junctions, although some may be       
1-2 nt upstream (Figure 35B). On the other hand, apical UGUG motifs were 
frequent within the range of -2...+1 from the apical junction, which suggested 
that they may not have to be located strictly at apical junctions (Figure 35D). 
Finally, for downstream CNNC motifs, Roden et al defined a “strict” range of 
5-6 nt from the 3p basal junction and a “permissive” range of 3-11 nt (Roden 
et al., 2017). Based on our observations, we used a “middle ground” range of 
5-9 nt (Figure 35F). 
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Figure 35. Occurrence of UG, UGUG, or CNNC motifs as a function of the 
distance from structural features or DROSHA cleavage sites. The analysis was 
performed in the 842 pri-miRNAs whose stem-loop structures could be 
predicted. A. Occurrence of UG sequences as a function of the distance from 5p 
DROSHA cleavage sites. The red dashed line marks the known optimal position 
of the basal UG motif (Auyeung et al., 2013). B. Occurrence of UG sequences as 
a function of the distance from the basal junction. The red dashed line marks 
the known optimal position of the basal UG motif (Auyeung et al., 2013).              
C. Occurrence of UGU or GUG sequences as a function of the distance from the 
5p DROSHA cleavage site. The yellow rectangle marks the optimal range of the 
apical UGUG motif (Auyeung et al., 2013). D. Occurrence of UGU or GUG 
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sequences as a function of the distance from the apical junction. The red dashed 
line marks the apical junction. E. Occurrence of CNNC sequences as a function 
of the distance from the 3p DROSHA cleavage site. The yellow rectangle marks 
the optimal range of the downstream CNNC motif (Auyeung et al., 2013).             
F. Occurrence of CNNC sequences as a function of the distance from the basal 
junction. The yellow rectangle marks the optimal range of the downstream 
CNNC motif (Roden et al., 2017). 

 

Figure 36. Median mGHG score across human pri-miRNAs as a function of 
the distance (in nucleotides) to the 5p DROSHA cleavage site. The mGHG 
scores were normalized between 0 and 100 (Kwon et al., 2019). In pink: number 
of pri-miRNAs to which no mGHG score could be assigned, which could happen 
because: 1) none of the nucleotides at the GHG position in the 5p arm were 
paired with nucleotides in the 3p arm; or 2) the two trinucleotides at the mGHG 
position were not facing each other. n = 842 successfully predicted pri-miRNA 
hairpins. 

3.3.7.3. DROSHA motif predictions 

After defining the optimal ranges for DROSHA motifs according to both the 
positional and the structural methods, we used both methods to predict 
DROSHA motifs in all pri-miRNAs and then we compared the predictions. 
The highest agreement between the structural and positional methods was 
reached for apical UGUG motifs (Jaccard similarity index = 0.73; Figure 37), 
followed by downstream CNNC motifs (Jaccard similarity index = 0.53). The 
lowest agreement was reached for basal UG motifs (Jaccard similarity index = 
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0.31), which could be explained by the stricter definition of basal UG motifs 
compared to the other motifs. We thoroughly evaluated the discrepancies 
between both methods by examining the predicted positions of the motifs, the 
annotations of mature miRNAs, and the RNAfold predictions. Generally, the 
structural method was less reliable than the positional method because it 
depended on secondary structure and stem predictions that sometimes failed, 
as detailed in previous sections. However, despite its limitations, the structural 
method complemented the positional method in cases in which plausible 
motifs were not exactly located at their positional optima (Kwon et al., 2019). 
For these reasons, we used both methods for annotating variants. 

 

Figure 37. Similarity between DROSHA motif prediction methods. The 
Jaccard similarity index was used to measure the agreement between the sets of 
miRNAs predicted to have each motif according to structural (str) and 
positional (pos) methods. 

We also determined the co-occurrence of different combinations of motifs 
across all analyzed pri-miRNAs (Figure 38A-B). The most frequent motifs 
were downstream CNNC motifs, followed by mGHG, apical UGUG, and basal 
UG. Roughly ~21% of the pri-miRNAs lacked all DROSHA motifs. Most 
frequently, motifs occurred either alone (~35-39%) or in combination with 
only one other motif (~30-31%). Co-occurrence of all four motifs was rare, 
affecting only ~1-2% of all pri-miRNAs.  
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Figure 38. Co-occurrence of DROSHA processing motifs in human pri-
miRNAs. The analysis includes the 842 pri-miRNAs for which stems could be 
predicted successfully. Predictions of motifs were made by two methods:                 
A. Based on distance to DROSHA cleavage sites (“positional”); B. Based on 
distance to structural features (“structural”). 
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3.3.8. Annotation of miRNA variants 

Using our novel framework, we annotated all variants that affected miRNA 
genes or their 200 bp flanking regions in all LUAD datasets. Here, we also 
included WES variants of 582 patients from TCGA-LUAD. Although WES 
was not useful for our lncRNA analysis because its exome capture design 
(Agilent SureSelect Human All Exon v4) did not cover most lncRNAs, it did 
cover 1676/1881 miRNA genes from miRBase 21.  

3.3.8.1. Usefulness of WES, WGS, and targeted 
sequencing: differences in coverage of miRNA genes 

Although the WES dataset of TCGA-LUAD included more samples than its 
WGS dataset and our targeted sequencing, it covered most miRNA genes at 
very low depths. Indeed, median sequencing depth in miRNA genes ±200 
flanking bp was only ~2X in TCGA-LUAD WES data, in contrast to ~30X in 
our targeted sequencing and ~42X in TCGA-LUAD WGS. The reason for the 
markedly low coverage of WES was not a lack of baits, as WES baits covered 
~90% of miRNA genes. Still, up to ~45% of the nucleotides of miRNA genes 
had zero coverage in WES samples (Figure 39A). This percentage was as low 
as ~4% in some samples, but even then the coverage of most nucleotides in 
miRNA genes did not reach 10X. The lower depth of TCGA-LUAD WES 
compared to the other datasets was reflected in a lower number of detected 
variants per sample (Figure 39B). On the other hand, the number of variants 
in miRNA genes and flanking regions was the highest in TCGA-LUAD WES 
data because the cohort was the largest (Figure 39C). In conclusion, WES did 
not cover miRNA genes at a high enough depth for a comprehensive 
mutational analysis per sample, but the large size of the TCGA-LUAD cohort 
compensated for its shallow sequencing depth. 
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Figure 39. General statistics on miRNA variants. A. Cumulative frequency 
distribution of the coverage of miRNA genes ±200 bp for four selected samples 
from three analyzed cohorts: TCGA-WGS (whole genome sequencing data from 
TCGA-LUAD); TCGA-WES (whole exome sequencing data from TCGA-
LUAD); and our targeted sequencing cohort of primary tumors. For TCGA-
WES, two samples were selected: one in which ~45% of the miRNAs had zero 
coverage (“low”), and one in which ~4% of the miRNAs had zero coverage 
(“high”). B. Mean number of variants per sample in miRNA genes ±200 bp in 
the analyzed cohorts. C. Classification of the variants in miRNA regions based 
on the type of affected sequence. D. Distribution of phyloP 100-way scores for 
the variants that affected each type of sequence in miRNA regions. Here, all 
cohorts were grouped together. 

3.3.8.2. Variants in mature miRNAs are rare 

Variants in miRNA genes were rare, as expected from their short length and 
high conservation (Figure 39B-C). Excluding flanking regions, we only found 
~1 variant in miRNA genes per sample in our cohort of primary tumors and 
~3.5 variants per sample in our cell lines. In mature miRNAs, we only found 
one variant for every ~2.5 primary tumors; in seeds, one variant for every ~9 
primary tumors. Only 11 variants were recurrent, and none of them affected 
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mature miRNAs. Overall, our results support a low mutation rate of miRNA 
genes in LUAD. 

To assess the functional relevance of the detected variants in miRNAs, we first 
evaluated the conservation (phyloP 100-way scores) of the nucleotides affected 
by the variants (Figure 39D). Most variants had phyloP scores centered 
around zero, even those in mature miRNAs and in seeds, suggesting that the 
affected sequences were under neutral evolution. However, there was an 
increase in the density of phyloP scores approximately at score ≥4, especially 
in mature miRNAs and seeds. The variants with phyloP score ≥4 included 
~2% of the variants in flanking regions, ~6.4% of the variants in pre-miRNAs, 
~17% of the variants in mature miRNAs, and ~15% of the variants in seeds. 
Overall, the conservation of mutated nucleotides in miRNAs was a mixture of 
two distributions: a major distribution of nucleotides under neutral evolution, 
and a minor distribution of highly conserved nucleotides.  

Next, we aimed to select variants with high putative functional impact for 
further studies. In a first approach, we analyzed the hits from OncoDriveFML 
and OncoDriveCLUSTL (Section 3.3.6.4). Almost all of their variants affected 
poorly conserved positions outside of the mature miRNAs, and therefore their 
significance was unclear. The only exception was miR-4712-5p: one variant 
affected its seed in the H1373 cell line and another one affected the mature 
miRNA in the SKLU-1 cell line. However, both positions were poorly 
conserved and mir-4712 is not considered a high-confidence miRNA by 
neither miRBase nor MirGeneDB, casting doubts on its functional relevance 
(Fromm et al., 2015; Kozomara and Griffiths-Jones, 2014).  

Due to our limited success among the hits from the driver analysis, we 
extended our study to all variants in miRNA seeds. We focused on seed 
variants from our cohorts that either affected a highly conserved nucleotide 
(phyloP ≥ 4) or that were detected in TCGA-LUAD or in COSMIC. Only five 
variants met these criteria: three in primary tumors and two in cell lines 
(Supplementary Table 2). Out of these, a somatic variant in the seed of        
miR-133b affected the most conserved nucleotide (phyloP score = 7.2) and it 
was predicted to be highly deleterious by FATHMM-MKL (score = 0.99) and 
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by CADD (score = 19.42). Therefore, we selected the miR-133b variant for 
further studies. 

3.3.8.3. Seed variant in miR-133b: a case study 

We selected a variant in the seed of miR-133b (chr6:52148992_G>T), detected 
in one of our primary tumor samples from the paired analysis, for further in-
depth characterization. The VAF of the variant was 53%, which implied that 
it was present in a high percentage of tumor DNA molecules in the sample.  

The MIR133B locus is located in chromosome 6, overlapping the lncRNA gene 
LINCMD1 in its opposite strand (Figure 40). Mature miR-133b originates 
from the 3p arm of the mir-133b pre-miRNA. On the other hand, the 5p arm 
does not generate a detectable mature miRNA according to high-throughput 
sequencing data (Fromm et al., 2015; Kozomara and Griffiths-Jones, 2014). 
Therefore, miR-133b is a synonym for hsa-miR-133b-3p. 

Recurrence in external datasets of somatic variants 

Next, we evaluated whether MIR133B is mutated in external cancer cohorts 
and in non-cancer human populations. For cancer, we searched for pan-
cancer somatic variants from COSMIC and from the International Cancer 
Genome Consortium (ICGC). ICGC reported variants in the seed of             
miR-133b in a chronic lymphocytic leukemia sample (ICGC sample ID: 
DO7172) and in a colon adenocarcinoma sample (DO8730) (Figure 40). 
Furthermore, ICGC found a variant in mature miR-133b in a glioblastoma 
sample (DO13270) and 15 more variants in the rest of the MIR133B gene, one 
of them in a LUAD sample (DO24692). COSMIC did not report any new 
somatic variants not described by ICGC. Regarding general populations, 
remarkably, we found no germline polymorphisms in miR-133b in non-
cancer samples from gnomAD v3.0 (N = 71 702 WGS samples), dbSNP, or the 
1000 Genomes Project (Figure 40). In conclusion, miR-133b is somatically 
mutated across multiple cancers, and germline polymorphisms in its seed are 
rare in healthy individuals.  
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Figure 40. The MIR133B locus and its pan-cancer variants. The 5p mature 
miRNA is not abundant according to high-throughput experiments, and hence 
it is marked with an asterisk. The highlighted yellow region marks the seed of 
mature miR-133b-3p. The variant found in our lung adenocarcinoma (LUAD) 
primary tumor is labeled as “Our_LUAD”. The rest of the variants were reported 
by the International Cancer Genome Consortium (IGCG) across multiple 
cancers: LICA/LINC: liver cancer; UCEC: uterine corpus endometrial 
carcinoma; MELA: melanoma; LUSC: lung squamous cell carcinoma; BRCA: 
breast cancer; GBM: glioblastoma; GACA: gastric cancer; LGG: low grade 
glioma; COAD: colon adenocarcinoma; CLLE: chronic lymphocytic leukemia. 
Screenshot from the UCSC Genome Browser. 

Expression of miR-133b in LUAD and in normal lung 

Even if the seed of a miRNA is mutated, the variant may not be functionally 
relevant if the miRNA is not expressed in the affected sample at biologically 
meaningful levels. Therefore, we determined whether miR-133b is expressed 
in normal lung and in LUAD samples. We used two independent miRNA-Seq 
datasets: one from TCGA-LUAD (N = 513 tumors and 46 normal samples) 
and one from Gillette et al (N = 100 normal samples and 107 LUAD tumors) 
(Gillette et al., 2020). All normal samples were from solid lung tissue adjacent 
to the tumors.  
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In both datasets, miR-133b was expressed in normal lung (Figure 41A-B). In 
particular, miR-133b expression was in the 88th percentile in normal samples 
from TCGA-LUAD and in the 84th percentile in normal samples from Gillette 
et al. In addition, miR-133b was downregulated in LUAD compared to normal 
lung both in TCGA-LUAD (fold change (FC) = -2.75, two-sample t test               
p = 9.5·10-19) and in Gillette et al (FC = -6.66, two-sample t test p = 5.6·10-31) 
(Figure 41A-B). In TCGA-LUAD, 24% of the tumor samples but none of the 
normal samples had undetectable expression of miR-133b. Furthermore,   
miR-133b was moderately expressed in LUAD cell lines from the CCLE 
(Figure 41C). The downregulation of miR-133b in LUAD suggested that it 
may be a tumor suppressor miRNA. Nevertheless, absolute expression of   
miR-133b in most samples across all cohorts was within the range of ~1-15 
RPM, which may not be sufficient for a meaningful biological activity 
(Kilikevicius et al., 2022; Mullokandov et al., 2012).  

Finally, we tested if miR-133b expression was associated with overall survival 
of patients from the TCGA-LUAD cohort. Although there was a trend for 
lower overall survival of “miR-133b low” patients compared to “miR-133b 
high” patients, it was not statistically significant (logrank p = 0.12) (Figure 
41D). Furthermore, the trend was completely lost in a multivariate analysis 
that incorporated patient age and tumor stage as clinical covariates (Cox 
proportional hazards model: hazard ratio = 0.95 [95% CI: 0.78-1.18]; p = 0.65). 
Taken together, these results suggest that miR-133b is expressed in normal 
lung and that it is downregulated in LUAD, but there is no decisive evidence 
that its downregulation is associated with patient survival. 
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Figure 41. Expression analyses of miR-133b. A. Differential expression of    
miR-133b between tumor and normal samples in TCGA-LUAD; B. Differential 
expression of miR-133b between tumor and normal samples in data from 
Gillette et al (2020). C. Histogram of miR-133b expression in LUAD cell lines 
from the Cancer Cell Line Encyclopedia. The red line displays the median 
expression of all miRNAs in all cell lines. D. Univariate survival analysis in 
TCGA-LUAD. Patients were split in two groups based on whether miR-133b 
expression was above or below the median. CPM: counts per million. TPM: 
transcripts per million. 
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Predicted targets of miR-133b 

Next, we predicted how the variant in the seed of miR-133b may affect the 
targets of the miRNA. The variant changed the seed from UUGGUC to 
UUGUUC. Because seeds are the main determinants of miRNA targets, the 
variant was expected to radically change the targets of miR-133b. Indeed, two 
independent target prediction tools (TargetScan and miRDB) estimated that 
the overlap between the targets of wild type and mutant miR-133b was <5% 
(Figure 42A-B). However, the agreement between both tools was modest: 30% 
for wild type and 14% for mutant miR-133b (Figure 42C-D). To prioritize the 
predicted targets, we focused on CGC genes in the intersection between the 
two prediction methods. We hypothesized that, if miR-133b has a tumor 
suppressor role, wild type miRNA should target oncogenes or, alternatively, 
mutant miR-133b should target tumor suppressor genes. Indeed, oncogenes 
such as EGFR were predicted targets of wild type, but not mutant, miR-133b 
(Table 15). Furthermore, tumor suppressor genes such as DICER1 were 
predicted targets of mutant, but not wild type, miR-133b. 

 
Figure 42. Agreement between target predictions for wild type (WT) and 
mutant (mut) miR-133b. A. miRDB predictions, WT vs. mutant. B. TargetScan 
predictions, WT vs. mut. C. miRDB vs. TargetScan predictions for wild type 
miR-133b. D. miRDB vs. TargetScan predictions for mutant miR-133b. 
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 Table 15. Target predictions for mutant and wild type miR-133b. 

Targeted by... TSGs OGs Others 

WT but not mut MYH9 
PML 
PRDM1 

PTPRD 
PTPRK 
SMARCD1 

EGFR 
FGFR1 
IDH1 
SGK1 
XPO1 

EPHA7 
FOXL2 
JAZF1 
LASP1 

LHFPL6 
MLLT3 
MSN 
THRAP3 

Mut but not WT ARHGEF12  
DICER1 
TSC1 

JAK2 - 

Only genes from the Cancer Gene Census predicted by both TargetScan and 
miRDB are included. Shaded cells highlight the genes that are consistent with a 
tumor suppressor role of wild type (WT) miR-133b or an oncogenic role of 
mutant (mut) miR-133b. TSG: tumor suppressor gene. OG: oncogene.  

To obtain further support for the target predictions, we tested the correlation 
between expression of wild type miR-133b and its putative targets at mRNA 
and protein levels. We used the two independent cohorts of TCGA-LUAD 
(mRNA data only) and Gillette et al (mRNA and protein data). We focused on 
CGC targets predicted by both TargetScan and miRDB. Only SMARCD1 
mRNA expression and EGFR protein expression were significantly and 
negatively correlated with miR-133b expression (Kendall τ < -0.2, q < 0.05), 
and only in Gillette et al’s dataset (Figure 43). Although PTPRK was the only 
experimentally confirmed predicted target according to the TarBase database, 
it was not supported by the correlation analysis. Unexpectedly, DICER1 
protein expression was negatively correlated with miR-133b expression in 
Gillette et al’s dataset (data not shown), even though it was predicted as a target 
of the mutant, but not of the wild type, miRNA. Among non-CGC targets, 
EIF4A1 was the only one that was both experimentally validated according to 
TarBase and supported by the correlation analysis, in particular at the protein 
level in Gillette et al’s dataset (Figure 43).  
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Figure 43. Correlation between miR-133b expression and mRNA or protein 
expression of three predicted targets. Data were obtained from LUAD samples 
from Gillette et al (Gillette et al., 2020). Kendall correlation coefficients (τ) and 
q values (p values adjusted for false discovery rate) are shown. 

In conclusion, a somatic SNV in a highly conserved nucleotide of the seed of 
miR-133b was predicted to change its targets in a major way. Based on 
multiple independent methods, the highest confidence CGC targets of wild 
type miR-133b were SMARCD1 and EGFR, and the highest confidence non-
CGC target was EIF4A1. Importantly, mutant miR-133b was predicted to lose 
the ability to target the oncogene EGFR, which is consistent with a cancer-
promoting role of the mutation. In future work, it should be experimentally 
determined whether miR-133b is expressed in our cohort at enough copies for 
it to have biological activity. 

Do miR-133a-3p and miR-133b have redundant functions? 

In the genome, miR-133b is located in a cluster (miR-206/133b) that shares its 
seed sequences with those of the miR-1/133a cluster, which has two copies in 
different chromosomes (Kozomara and Griffiths-Jones, 2014). In particular, 
miR-133b shares its seed with miR-133a-3p, and both mature miRNAs only 
differ in their last nucleotide, which has little impact on target specificity 
(Bartel, 2009). This raises the possibility that both miRNAs have redundant 
functions, and that miR-133a-3p may compensate a loss of of miR-133b.  

In skeletal muscle, both miR-1/133a and miR-206/133b are highly expressed 
and they control cell growth and differentiation (Cesana et al., 2011; Chen et 
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al., 2006). However, miR-206/133b is not essential for this role in mice because       
miR-1/133a can compensate the loss of miR-206/133b (Boettger et al., 2014).  

To determine whether miR-133a-3p and miR-133b functions are redundant 
in LUAD as well, we compared the expression of both miRNAs as well as their 
predicted targets. In both TCGA-LUAD and the dataset of Gillette et al,      
miR-133a-3p was more expressed than miR-133b in tumors and in normal 
samples (Figure 44). In particular, in LUAD samples, precursor mir-133a was 
expressed 4.18 times more than mir-133b in TCGA-LUAD (Student’s t test,    
p = 3.9·10-18), whereas mature miR-133a-3p was expressed 10.8 times more 
than miR-133b in the dataset of Gillette et al (Student’s t test, p = 2.5·10-22). 
Furthermore, expression of the top predicted targets of miR-133b, except for 
EGFR, was negatively correlated with miR-133a-3p expression as well (Figure 
45A-C). More generally, the correlations between miR-133a-3p and proteome 
expression were highly similar to the correlations between miR-133b and 
proteome expression, suggesting that both miRNAs have highly similar 
activity in LUAD (Kendall τ = 0.76, p < 2·10-16) (Figure 45D). 

 

Figure 44. Expression of miR-133a-3p, miR-133b, and their precursors in 
LUAD primary tumors and normal samples. A. In TCGA-LUAD. For each 
sample, expression values of both mir-133a precursors were added in the natural 
scale before taking the logarithm. CPM: counts per million. B. In Gillette et al 
(2020). TPM: transcripts per million. 
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Figure 45. Correlation analyses between miR-133a-3p expression and 
protein or mRNA expression in the dataset of Gillette et al (2020). A-C. 
Correlation analyses for the top miR-133b targets as in Figure 43. Median-
centered miR-133a-3p expression was averaged across its two loci. Correlation 
coefficients (τ) and FDR-adjusted q values are shown for a Kendall correlation 
analysis. D. Correlation of the Kendall τ correlation coefficients: (i) between 
miR-133b expression and proteome expression, versus (ii) between                     
miR-133a-3p expression and proteome expression. 

Taken together, our observations support that loss of function of miR-133b 
may be compensated by miR-133a-3p in LUAD. However, miR-133a-3p may 
not modulate EGFR as strongly as miR-133b. In addition, the miR-133b 
variant may generate a gain of function, for example by causing mutant miR-
133b to target tumor suppressor mRNAs. In such a case, wild type miR-133a-
3p would be unable to compensate for the new functions of mutant miR-133b.  
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3.3.8.4. Variants may cause major changes in DROSHA 
processing motifs 

Besides variants within miRNA seeds, variants in DROSHA processing motifs 
may also have major functional consequences. Therefore, we determined 
which variants created or disrupted DROSHA processing motifs in our 
targeted sequencing samples (Supplementary Table 3) and in TCGA-LUAD 
WES and WGS data (Supplementary Table 4). In our samples, 9 variants 
affected DROSHA processing motifs in cell lines and 4 in primary tumors. The 
most recurrently affected motif was the mGHG motif (7 variants). Most 
importantly, in a primary tumor, a somatic variant in the mGHG motif of    
mir-139 was predicted to decrease DROSHA processing efficiency by ~12x 
(mGHG score from 86 to 6.9) (Figure 46A). In cell lines, mGHG variants in 
were found in mir-7-1 (~18x reduction of DROSHA processing efficiency) 
and in mir-7-2 (~28x reduction). Conservation of the positions affected by the 
three variants mentioned above was high (phyloP score ≥ 3.8). Variants also 
disrupted other types of DROSHA processing motifs, but their conservation 
was low, casting doubts on their functional relevance. 

In TCGA-LUAD, 25 variants were found in DROSHA processing motifs 
(Supplementary Table 4). Again, they most frequently affected mGHG motifs 
(14 variants). The mGHG variant that had the highest predicted functional 
impact affected mir-551b. It was predicted to decrease DROSHA processing 
efficiency by 5.9x and the affected nucleotide was highly conserved (phyloP 
score = 5.9). Regarding other DROSHA processing motifs, most remarkably 
we found a variant disrupting a highly conserved CNNC motif in mir-301a 
(phyloP score = 6.93) (Figure 46B). In addition, two variants created basal UG 
motifs and two others created apical UGUG motifs. Overall, our method 
successfully annotated motif-disrupting and motif-creating variants, although 
the functional relevance of many of the motif variants was questionable. 

Even if a variant affects a highly conserved DROSHA processing motif, it may 
not be functional if the affected miRNA gene is not expressed at biologically 
relevant levels in LUAD. In fact, only 12/38 (32%) of the miRNAs affected by 
motif mutations were expressed, on average, above 10 reads per million (RPM) 
in LUAD tumors from either the cohort of Gillette et al or TCGA-LUAD 
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(Supplementary Table 3 and Supplementary Table 4). All but one (mir-551b) 
of our main candidates mentioned above were expressed at >10 RPM in at 
least one of the two external cohorts. Overall, expression and conservation 
data suggest that most of the variants that affect DROSHA processing motifs 
may not be functional, as only 6/38 (16%) variants affected highly conserved 
nucleotides (phyloP score > 3.8) in miRNAs expressed at moderate or high 
levels (>10 TPM) in LUAD tumors. 

 

Figure 46. Representative examples of variants in DROSHA processing 
motifs in pri-miRNAs. A. Somatic variant disrupting the mismatched GHG 
(mGHG) motif of mir-139 in one of our primary tumors. B. Somatic variant 
disrupting a CNNC motif in mir-301a in a primary tumor from TCGA-LUAD. 
Secondary structures were predicted using RNAfold. Mature miRNAs are 
highlighted in green. DROSHA cleavage sites are marked with brown arrows.   
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3.4. Discussion 

The non-coding genome may be viewed as a potential source of yet-to-be-
discovered cancer-related alterations. Accordingly, thanks to the increasing 
viability of large-scale WGS projects, great efforts have been recently made to 
systematically search for cancer drivers within the non-coding genome 
(Fujimoto et al., 2016; Nik-Zainal et al., 2016; Rheinbay et al., 2020; Rheinbay 
et al., 2017). However, WGS projects have analyzed few primary LUAD 
samples so far, limiting their statistical power to detect non-coding drivers in 
the disease. In this work, we aimed to search for non-coding drivers in LUAD 
cohorts, expanding upon previous efforts, albeit using targeted sequencing 
with special focus on miRNAs, lncRNAs, and splice regions. 

This Discussion is organized as follows. First, we comment on sequencing 
study and its limitations in the context of currently available datasets and 
algorithms. Second, we outline the past, present, and expected future of driver 
research in the non-coding genome. Third, we discuss our results in lncRNAs 
within the context of the challenges of studying lncRNA function. Fourth, we 
highlight the relevance of our findings at splice regions. Finally, we examine 
our contributions regarding the annotation of miRNA variants and the 
prediction of DROSHA processing motifs, and we contextualize our findings 
on miR-133b. Brief discussions on the rest of the individual candidate drivers 
were already included in the Results section. 
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3.4.1. Our targeted sequencing in LUAD: 
strengths and limitations 

3.4.1.1. Cohort size, sequencing depth, and power for 
driver discovery 

In this work, we have performed targeted DNA sequencing, with special focus 
on miRNAs, lncRNAs, and intronic splice regions, in 70 LUAD primary 
tumors and 37 LUAD cell lines. Our LUAD cohort was nearly twice as large 
as that of PCAWG (N = 70 vs. 38, respectively), and our sequencing depth in 
target regions was also higher (78% vs. 69% target nucleotides covered by at 
least 30 reads, respectively). However, PCAWG performed WGS and, 
therefore, it was overwhelmingly more comprehensive than our targeted 
sequencing. In addition, WES datasets from TCGA-LUAD (N = 582) included 
miRNA genes, but their coverage was mostly low or even zero. TCGA-LUAD 
WES data also included splice regions of PCGs, which have been analyzed 
elsewhere (Shiraishi et al., 2018). Overall, we have considerably increased the 
amount of sequencing data in non-coding RNAs in LUAD. 

Despite our best efforts, our sample size was relatively low and, as a 
consequence, our statistical power for driver discovery was limited. For 
example, we only had 80% power to detect driver mutations at frequencies of 
≥14% for lncRNA exons and ≥15% for CDSs of PCGs. Although we were more 
powered to detect driver mutations at splice sites, miRNAs, and promoters, 
this did not translate into a larger number of hits. There are several reasons for 
this. First, they are all short genomic features, and therefore it is unlikely for 
them to reach mutation frequencies of even ≥5% (Andrades et al., 2022). 
Notable exceptions include the TERT promoter and the MIR142 gene in 
lymphoma (Rheinbay et al., 2020). Second, every single miRNA modulates a 
wide range of target mRNAs, thus possibly limiting the selective advantage of 
permanent sequence changes in miRNAs (Bartel, 2004). Third, promoters 
often have low sequencing coverage, in part due to their high GC content. For 
example, researchers from PCAWG estimated that, in their WGS dataset of 
2658 tumors, they had <10% power for detecting drivers in nearly 10% of the 
promoters of cancer genes (Rheinbay et al., 2020). Fourth, in our work, neither 
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promoters nor splice regions were explicitly included among our sequencing 
targets, and instead we relied on the fact that regions adjacent to the targets 
also get sequenced, albeit with lower coverage. These last two factors were not 
considered in our power analysis, and as a result our power estimates for non-
exonic regions were probably overoptimistic. In summary, power analyses for 
driver discovery must be interpreted within the context of technical 
limitations and the biological properties of the analyzed genomic regions. 

As an example of our low statistical power, EGFR was not predicted as a driver 
in any of our analyses, even though it is one of the most mutated driver genes 
in LUAD (Bailey et al., 2018). The CDS of EGFR had non-synonymous 
variants in 3/39 cell lines (8%), 0/27 paired primary tumors (0%), 3/70 
unpaired primary tumors (4%), and 4/59 TCGA-LUAD WGS samples (7%). 
These percentages were lower than previously reported in LUAD (~14%) 
(Bailey et al., 2018; Collisson et al., 2014). Although our low frequency of 
EGFR mutations could be due to differences between our cohort and TCGA-
LUAD, it can also be a consequence of sampling variability in our relatively 
small cohort. This highlights the need for large cohort sizes to obtain 
comprehensive driver catalogs, as even the top driver genes may not be 
mutated with enough recurrence in small cohorts.  

3.4.1.2. The problems with indels 

A major limitation of driver discovery efforts from us and others has been the 
difficulty of working with indels (Campbell et al., 2020). Because indels insert 
or delete nucleotides, they usually have stronger functional impact than SNVs. 
However, indels pose several technical challenges that are currently 
unresolved and that, taken together, prompted us to discard indels longer than 
1 bp for downstream analyses: 

• Indel calling is not robust. Current variant calling tools strongly 
disagree in their indel calls, which limits the effectiveness of consensus-
based variant calling in indels. For example, in their consensus-based 
approach, PCAWG only achieved ~60% sensitivity for indel calling, in 
contrast to their ~95% sensitivity for SNV calling (Campbell et al., 
2020). We observed a similar issue in our datasets. 
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• Variable number tandem repeats. Human genomes are highly 
repetitive (Nurk et al., 2022). Many repetitive sequences, such as 
microsatellites and minisatellites, occur in tandem, and the number of 
times each sequence is repeated can vary across individuals. In our 
experience, a large proportion of the >1 bp indels detected by our 
consensus-based approach were short sequences repeated in tandem a 
variable number of times. We found these events to be prone to 
alignment artifacts that prompted variant calling algorithms to wrongly 
call them as somatic. In other cases, the difference between a tumor and 
its matched normal sample was the number of times the sequence was 
repeated. Finally, even if matched normal samples had not been 
sequenced, the affected region was often littered with indel 
polymorphisms in normal population datasets, but the exact indel 
present in the tumor was not present in the germline dataset and 
therefore it was not filtered out (Karczewski et al., 2020). In conclusion, 
indels longer than 1 bp were mostly artifacts that would have biased 
driver discovery analyses. 

• Driver discovery methods in indels are limited. The discovery tools 
used in our work are mostly built for the analysis of SNVs (Arnedo-Pac 
et al., 2019; Mularoni et al., 2016). Although short indels could be re-
coded as SNVs so that they are accepted by driver discovery tools, 
indel-generating background mutational processes are still poorly 
understood, and they cause artifacts in driver discovery (Imielinski et 
al., 2017; Rheinbay et al., 2020). 

3.4.1.3. Benchmarking variant calling pipelines 

Ideally, to benchmark a variant calling method, a high-confidence “ground 
truth” set of variants is required. However, acquiring such a dataset is 
challenging. As an alternative, we compared our pipelines to other pipelines 
applied to the same datasets. Each pipeline was expected to have a certain 
proportion of false positives and false negatives and, therefore, there was no 
“ground truth” set of variants. However, by thoroughly examining the 
discrepancies between pipelines, the biases and errors of each pipeline could 
be better understood. 
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There are other alternatives for benchmarking variant calling pipelines. For 
example, PCAWG performed targeted deep sequencing of a subset of their 
samples (Campbell et al., 2020). However, the process is costly, and it could be 
argued that certain biases of variant calling pipelines may still happen at high 
sequencing depths, and therefore the set of variants detected by deep 
sequencing may not be 100% true. Alternatively, tools such as BAMSurgeon 
simulate tumor BAM files by introducing known artificial variants in a BAM 
file obtained from a real non-tumor sample (Ewing et al., 2015). However, to 
simulate mutations reliably, the underlying mechanisms that generate 
mutations in real tumors must be firmly understood, and current knowledge 
is incomplete. Still, simulation can be a useful approximation. 

We tested BAMSurgeon by simulating 1000 random SNVs and indels within 
our targets of interest using a normal BAM file from our cohort as input. We 
simulated homozygous and heterozygous variants, assuming a diploid 
genome with 80% tumor purity and Gaussian noise affecting the distribution 
of VAFs. We simulated indel lengths using Zipf’s distribution with exponent 
2. In our simulation, our paired variant calling pipeline achieved 78% 
sensitivity and 99.9% precision for SNVs and 63% sensitivity and 99.1% 
precision for indels. In contrast, PCAWG achieved a sensitivity of 95% (90% 
confidence interval: 88-98%) and a precision of 95% (71-99%) for SNVs, and 
a sensitivity of 60% (34-72%) and a precision of 91% (73-96%) for indels 
(Campbell et al., 2020). Although PCAWG’s methods for benchmarking were 
different from ours, the benchmarks reflect that, in contrast to PCAWG, we 
prioritized precision over sensitivity, especially for SNVs. Importantly, most 
of the false negative variants missed by our pipeline were subclonal. We 
reasoned that, for our purposes of driver discovery, we preferred working with 
high-confidence somatic variants at the expense of missing a small proportion 
of subclonal variants, which were unlikely to be biologically relevant.   

In summary, no method for benchmarking variant calling is completely 
accurate because it is currently not possible to obtain a set of “ground truth” 
variants that are faithfully representative of a real tumor sample. However, 
within this limitation, we successfully validated our pipelines by independent 
approaches. 
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3.4.2. Driver discovery in non-coding DNA 

3.4.2.1. Methods for driver discovery and their limitations 

Identifying non-coding cancer drivers in targeted sequencing data of small 
cohorts is a challenging task. In this work, we applied two state-of-the-art 
driver discovery tools that, in theory, were applicable to targeted sequencing 
data: OncoDriveFML and OncoDriveCLUSTL (Arnedo-Pac et al., 2019; 
Mularoni et al., 2016). However, we encountered performance issues with 
both tools.  

Regarding OncoDriveFML, whereas it performed acceptably for CDSs, it 
underperformed for non-coding features such as lncRNA exons. Because non-
coding regions are usually more weakly conserved than coding regions, the 
differences in functional impact scores between driver and passenger variants 
may be smaller in non-coding regions than in coding regions, and this could 
limit the sensitivity of tools that rely on such scores. Furthermore, non-coding 
regions may be harder to sequence than coding regions. For example, 
promoters usually have a high GC content, and non-coding RNAs often 
contain repetitive sequences (Rheinbay et al., 2020). This may have limited our 
power to detect variants in non-coding regions, which in turn may have 
limited our power for driver discovery. Taken together, these facts could 
explain the lower performance of OncoDriveFML in non-coding regions 
compared to coding regions. 

Regarding OncoDriveCLUSTL, it consistently reported inflated p values, even 
though we had optimized its parameters. In agreement with this, in its original 
publication, OncoDriveCLUSTL also obtained inflated distributions of p 
values for some WES datasets from TCGA (Arnedo-Pac et al., 2019). This 
suggested that p value inflation may be a general issue of OncoDriveCLUSTL, 
at least under certain conditions. Indeed, we observed that MNVs biased 
cluster detection. When two or more consecutive nucleotides are mutated in 
the same sample, they have likely originated from a single mutational process, 
and therefore they should not be considered as independent events. 
OncoDriveFML handles MNVs correctly (Mularoni et al., 2016). However, 
based on our observations, OncoDriveCLUSTL seemed to consider MNVs as 
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multiple independent events, detecting about twice as many hits in our 
datasets compared to an analysis that considered MNVs as single events. To 
our knowledge, this behavior has not been documented. The bias may not be 
evident in large cohorts, such as the ones analyzed in the original publication, 
because MNVs may become “diluted” among a large number of SNVs 
(Arnedo-Pac et al., 2019). However, in our small datasets, two variants close 
enough to each other were usually sufficient for a genomic feature to be 
considered a significant hit. As a consequence, the effect of MNVs was more 
evident in our datasets than in previous work. 

Although MNVs explained more than half of the likely false positive hits of 
OncoDriveCLUSTL, our final analysis that corrected for the MNV bias still 
had a large number of false positives. One possible explanation is that our 
cohorts were too small, and therefore any fortuitous occurrence of two or 
more variants at nearby genomic positions could be identified as a significant 
cluster. In addition, most hits from OncoDriveCLUSTL were detected in 
unpaired samples, especially those from our Basque cohort, suggesting that 
some germline SNPs specific to the Basque population may not have been 
removed by our unpaired variant calling pipeline. Importantly, even a small 
proportion of germline SNPs in the input data can bias driver discovery. 
Finally, localized hypermutation processes are still poorly understood, and 
they might generate SNVs at nearby but non-adjacent positions, which may 
also bias cluster detection even if MNVs are handled correctly. This bias may 
be partially mitigated if the cluster scoring algorithm accounts for variant 
phasing, i.e., whether two nearby variants from the same patient occur in the 
same copy or in different copies of the chromosome (Tewhey et al., 2011). 
However, only some variant calling algorithms, such as MuTect2, report 
variant phasing in short-read sequencing data. 

In conclusion, although recent efforts such as PCAWG have greatly boosted 
the development of driver discovery methods for non-coding regions, there is 
still room for improvement (Campbell et al., 2020). Most importantly, future 
improvements should better account for localized hypermutation processes, 
which are still poorly understood for non-coding regions.  
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3.4.2.2. Rare non-coding drivers and the future of non-
coding driver research 

Our results are consistent with previous reports in that non-coding driver 
mutations are extremely rare, and that current driver discovery methods 
report many false positives in non-coding regions (Rheinbay et al., 2020). 
Beyond splice sites, the TERT promoter, and cancer-specific examples such as 
MIR142, few driver point mutations have been found in non-coding DNA 
(Elliott and Larsson, 2021). Importantly, statistical power in recent WGS 
efforts should have been enough to detect moderately or highly recurrent non-
coding drivers in many cancer types (Fujimoto et al., 2016; Nik-Zainal et al., 
2016; Rheinbay et al., 2020; Rheinbay et al., 2017). Although cohort sizes in 
LUAD (including our own cohorts) have been low, results in other cancer 
types are discouraging. On the other hand, technical and methodological 
limitations have prevented the discovery of some recurrent non-coding 
drivers. For example, promoter regions such as TERT are difficult to sequence 
at high depth due to their high GC content (Rheinbay et al., 2020). In another 
example, recurrent mutations in the U1 small non-coding RNA were missed 
by PCAWG because U1 has multiple copies and hundreds of pseudogenes in 
the human genome, complicating mutational analyses (Shuai et al., 2019; 
Suzuki et al., 2019). Despite these counterexamples, non-coding driver 
mutations are probably rare for mainly biological reasons, as most point 
mutations in non-coding DNA are expected to have little or no functional 
impact. Therefore, many researchers propose that the landscape of non-
coding driver mutations is unlikely to change drastically from what PCAWG 
and previous studies have already revealed (Elliott and Larsson, 2021; 
Rheinbay et al., 2020). 

Major recent WGS studies have not searched for non-coding drivers beyond 
the TERT promoter, reflecting that methods for detecting non-coding drivers 
may still be immature, or that there may be little hope of finding novel non-
coding drivers using current methodologies. Most remarkably, the Hartwig 
Medical Foundation performed WGS on 2520 metastatic tumors and matched 
normal tissue, but they restricted driver analyses to CDSs, splice sites of PCGs, 
and the TERT promoter (Priestley et al., 2019). Similarly, WGS studies in 
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pediatric cancers have either limited their driver analyses to coding regions 
(Ma et al., 2018) (N = 651) or only found the TERT promoter as a non-coding 
driver (Gröbner et al., 2018) (N = 547). For now, and until better driver 
discovery methods are developed or more encouraging non-coding drivers are 
discovered, WGS information on non-coding regions is being mostly used for 
purposes other than driver discovery, such as studying genome-wide 
mutational patterns (Priestley et al., 2019). 

In the future, as more whole tumor genomes are sequenced and cohort sizes 
increase to thousands or tens of thousands, very few (if any) novel drivers are 
expected to be found at moderate or high mutation frequencies (>5-10%). 
However, even the most comprehensive pan-cancer studies have failed to 
identify any driver events in at least 5% of tumors, and the driver catalog may 
be incomplete in at least part of the remaining 95% of tumors (Rheinbay et al., 
2020). This raises the question of where these “missing” drivers are. Some 
researchers propose that the current definition of driver is too restrictive, and 
that it should be extended to incorporate epigenetic alterations and alterations 
that are not cell-autonomous (Alizadeh et al., 2015). Alternatively, the answer 
may reside within the long tail of variants at low or very low frequencies (<5%, 
or even <1%). In fact, the effect of low-frequency non-coding variants in 
different genomic features can converge on a single gene or pathway, a 
phenomenon that has been described for certain mutations in enhancers 
(Corona et al., 2020; Kim et al., 2016; Zhou et al., 2020). In addition, even if 
the functional impact of individual non-coding variants is low, cancer 
genomes may accumulate multiple low-impact variants so that their additive 
effects converge in an observable phenotype (Castro-Giner et al., 2015). Thus, 
there may be a large number of undiscovered, low-frequency, and mostly weak 
driver mutations in non-coding DNA, and even studies such as PCAWG 
would still be underpowered to detect many of them (Kumar et al., 2020). In 
this context, while our detected mutations in non-coding RNA genes such as 
TUSC7 and MIR133B are certainly not highly recurrent, and they may even be 
tumor-specific, they may still be oncogenic in the tumor contexts where they 
have been discovered. 
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3.4.3. The challenges of studying lncRNA 
function in cancer 

In our work, we aimed to identify putative driver lncRNAs in LUAD cohorts. 
However, evidence supporting even the top candidates was mixed. The issues 
encountered by us are recurrent in lncRNA research, and they mostly stem 
from the low expression of lncRNAs and the uncertainty on whether the 
function of a given lncRNA, if any, is dependent on the lncRNA sequence, on 
the act of transcription or splicing, on regulatory DNA elements, or on more 
than one of these possibilities (Kopp and Mendell, 2018). 

Our top candidates had very low expression in external RNA-Seq datasets 
from LUAD and from normal lung samples. Most critically, TUSC7 had zero 
expression in most external samples. However, we and others have detected 
TUSC7 expression in LUAD and in normal lung by qPCR, thus contradicting 
RNA-Seq data (Liu et al., 2013; Zhou et al., 2019). Strong discrepancies 
between qPCR, RNA-Seq, and microarrays have been reported for other very 
lowly expressed lncRNAs (Seiler et al., 2017). More generally, while RNA-Seq 
and qPCR tend to agree for most transcripts, their discrepancies are enriched 
in lowly expressed RNAs (Everaert et al., 2017).  

Then, when RNA-Seq and qPCR disagree, which one should be trusted? A first 
consideration is the amount of input RNA and the limit of detection of both 
techniques. Moreover,  regarding qPCR, it should be confirmed that the 
lncRNA of interest was specifically amplified and that the signal did not arise 
from off-target amplification or from contamination with genomic or plasmid 
DNA (Seiler et al., 2017). On the other hand, RNA-Seq alignment and 
quantification tools may introduce biases, and the nature and the extent of 
such biases is not fully understood (Lahens et al., 2014; Robert and Watson, 
2015). Therefore, if experimental design and controls are appropriate, low-
throughput experiments may be more reliable than high-throughput ones for 
lowly expressed RNAs.  

Generally, if a lncRNA has very low expression, it is unlikely to have a 
meaningful biological effect. However, a counterexample is the lncRNA 
VELUCT, whose expression in lung cancer cell lines was below the limit of 
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detection of both RNA-Seq and qPCR, but whose knockdown reproducibly 
decreased cell viability (Seiler et al., 2017). In such a case, the authors argued 
that VELUCT must have a biological activity in cis. Thus, even if VELUCT 
were quickly degraded after its transcription and never left the chromatin-
associated RNA fraction, it could still modulate nearby genes, for example by 
directly binding to DNA. Intriguingly, whereas treatment of lung cancer cell 
lines with anti-VELUCT small interfering RNAs (siRNAs) and siRNA pools 
caused strong cellular phenotypes, VELUCT levels were unchanged upon 
siRNA treatment. In fact, the cellular machinery required for siRNA action is 
mostly active in the cytoplasm (Lennox and Behlke, 2015). Therefore, an open 
question is how, from a mechanistic point of view, cellular phenotypes were 
strongly and reproducibly affected by anti-VELUCT siRNAs. The answer to 
this question may have further implications in lncRNA research, as 
knockdown is a popular way of inferring whether a lncRNA of interest has 
biological activity, and some researchers use siRNAs for knocking down 
strictly nuclear and lowly expressed lncRNAs. 

Low expression of lncRNAs can also distort differential expression analyses 
and survival analyses. In particular, small differences in the expression of very 
low-abundance lncRNAs can result in large fold changes, which may lead to 
the wrong conclusion that a lncRNA is strongly overexpressed or silenced. 
Standard tools for differential expression analyses of transcriptomic data 
handle lowly expressed genes by shrinking their fold change estimates (Love 
et al., 2014). However, in single-gene analyses, such techniques cannot be 
applied. In addition, low expression values are highly sensitive to statistical 
noise, which undermines the reproducibility of differential expression 
analyses and of survival analyses that rely on the stratification of patients by 
their “high” (above median) or “low” (below median) expression of a lncRNA. 
These issues are widespread in the lncRNA literature, as exemplified by 
VELUCT, TUSC7, SOX2-OT, ZEB2-AS1, and others (Guo et al., 2018; Hou et 
al., 2014; Seiler et al., 2017; Zhou et al., 2019). As a consequence, the absolute 
expression of a lncRNA should always be considered in differential expression 
analyses and in survival analyses. 
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Analyses on the potential activity of lncRNAs can be further complicated 
when the lncRNA overlaps a PCG, as was our case for SOX2-OT and for          
ZEB2-AS1. In these cases, it is difficult to untangle the activity of the lncRNA 
from that of its overlapping PCG. For example, if expression of a lncRNA is 
correlated with that of its overlapping PCG, it does not necessarily mean that 
one modulates the other. Instead, it could mean that common mechanisms 
modulate both genes simultaneously (Cuadros et al., 2019). 

Because computational evidence on the driver role of our candidate lncRNAs 
is mixed, experiments will be needed to confirm whether the variants confer a 
competitive advantage to LUAD cells. An informative experiment is the 
competitive cell growth assay, in which cells overexpressing a wild type or 
mutant lncRNA as well as different fluorophores are co-cultured, and relative 
fluorescence intensity is tracked over time (Baliñas-Gavira et al., 2020). 
However, these systems are artificial because they express lncRNAs well above 
their endogenous levels, and their phenotypes may not represent real biology. 
Indeed, any proposed mechanism of action of a lncRNA must always take into 
account its number of copies per cell, more so for mutant lncRNAs, which 
only constitute a fraction of the total copies of a lncRNA in the cell. 

3.4.4. Variants in intronic splice regions may 
cause major RNA aberrations 

Variants that affect RNA splicing are expected to cause major aberrations in 
gene function, as they often disrupt open reading frames, remove entire exons, 
introduce or remove codons, or cause premature termination of transcription 
or translation (Andrades et al., 2022). To date, most research on variants that 
affect splicing has focused on the first and last two intronic nucleotides, which 
have the most conserved sequences. Here, we have explored deeper intronic 
regions. Importantly, this analysis has allowed us to identify a variant in the 
third position of intron 14 of MET that caused skipping of exon 14, a clinically 
actionable event in LUAD (Frampton et al., 2015; Mathieu et al., 2022). 
Moreover, we found splice-altering variants at the third and fifth intronic 
positions in RBM10, a LUAD driver gene whose biological role is yet to be fully 
elucidated (Bailey et al., 2018).  
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To our knowledge, few studies have searched for splice-altering mutations in 
cancer beyond the first and last two intronic nucleotides. Remarkably, 
Shiraishi et al performed such an analysis systematically in pan-cancer WES 
and matched RNA-Seq data from TCGA (Shiraishi et al., 2018). They found 
that ~37% of the intronic variants that affected splicing were not located at the 
first or last two nucleotides, and most of them were at the fifth or third 
positions in splice donor regions. In agreement with this, all of the splice-
altering mutations beyond the first and last two intronic positions in our study 
affected the fifth or the third intronic positions at splice donor regions.  

Finally, variants that are not located at proximal intronic splice regions may 
also cause aberrant splicing. In particular, splice-altering variants at the last 
nucleotide of exons may be roughly as frequent as or more frequent than those 
within introns (Jung et al., 2015; Shiraishi et al., 2018). Furthermore, 
synonymous variants within exons may also cause aberrant splicing (Supek et 
al., 2014). Moreover, splice-altering intronic variants may also affect the 
polypyrimidine tract and branch-site adenosines (Calabrese et al., 2020). In 
addition, variants located deep within introns may create novel splice sites, 
generating new exons (Calabrese et al., 2020; Shiraishi et al., 2018). Finally, 
variants may also affect splicing enhancers and silencers (De Conti et al., 
2013). However, an analysis of splice-altering exonic variants was beyond the 
scope of our work, and our targeted sequencing approach limited our ability 
to detect variants far away from exon-intron junctions. 

3.4.5.  MicroRNA variants in cancer 

3.4.5.1. Few variants affect miRNAs, and even fewer are 
cancer drivers 

In our cohorts, the mutation rate of miRNAs was low, in agreement with their 
short length and high sequence constraint (Bartel, 2004). Furthermore, the 
majority of the already few miRNA variants were likely to be passengers. Our 
observations agree with those from the PCAWG Consortium, who analyzed 
whole genomes of over 2600 pan-cancer tumors but only found evidence of 
positive selection in one miRNA locus, MIR142, in one cancer cohort, B-cell 
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non-Hodgkin lymphoma, confirming previous findings (Kwanhian et al., 
2012; Rheinbay et al., 2020). Although the low proportion of miRNA variants 
with high functional impact, even within mature miRNAs, might seem to 
contradict the high conservation of miRNA sequences, several factors can 
explain why many miRNA variants are not functional: 

• Annotation of miRNA genes is inaccurate. Currently, miRBase is the 
gold standard annotation resource for miRNAs, and it is used by gene 
annotation consortia such as GENCODE (Frankish et al., 2019). 
However, miRBase is plagued with false positives, which may constitute 
up to two thirds of its entries for humans (Fromm et al., 2015). Indeed, 
its goal is not to provide a curated set of miRNAs, but to catalog 
published miRNA sequences (Griffiths‐Jones, 2004). Although 
miRBase introduced a system to identify high-confidence miRNAs, 
complemented by public voting of which miRNAs its users believe to 
be “real” (Kozomara and Griffiths-Jones, 2014), this system has been 
questioned and improved by efforts such as MirGeneDB  (Fromm et 
al., 2015; Fromm et al., 2020).  

• A mutated miRNA may not be expressed at meaningful levels in the 
affected cells. Each cell type typically expresses a limited set of miRNAs 
(Landgraf et al., 2007). In addition, even if a cell expresses a miRNA, its 
levels may not be high enough for it to have biological activity 
(Mullokandov et al., 2012). More precisely, the relative levels of a 
miRNA and its target dictate whether the miRNA can effectively 
modulate its target (Kilikevicius et al., 2022). 

• Not all nucleotides within a miRNA may be required for its function. 
The targets of a miRNA are mostly dictated by the seed sequence and, 
often, by the nucleotides immediately adjacent to the seed (Bartel, 
2009). As a result, sequences within mature miRNAs but outside seeds 
may tolerate nucleotide changes. 

Although variants in miRNA seeds are rare, they can indeed cause disease, as 
exemplified by miR-142 in lymphoma (Kwanhian et al., 2012; Rheinbay et al., 
2020). In addition, rare germline variants in miRNA seeds have been 
associated with inherited diseases such as progressive hearing loss (miR-96), 
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retinal dystrophy (miR-204), and ocular syndromes related with cataract 
(miR-184) (Conte et al., 2015; Hughes et al., 2011; Iliff et al., 2012; Mencía et 
al., 2009).  

Other groups have performed miRNA-centric reanalyses of somatic variants 
in lung cancer and in pan-cancer WES cohorts from TCGA (Galka-Marciniak 
et al., 2019; Urbanek-Trzeciak et al., 2020). In TCGA-LUAD, 8 pri-miRNAs 
accumulated variants over the expected mutation rate under a simple 
background model (Galka-Marciniak et al., 2019), and only one when using 
OncoDriveFML in a similar manner to us (Urbanek-Trzeciak et al., 2020). 
However, it was unclear whether the affected miRNAs were actually functional 
in LUAD and which variants, if any, had a biological effect. Variants were 
evenly spread along the affected pri-miRNAs, with no differences in variant 
frequencies between the seeds, the rest of the mature miRNAs, and the 
flanking sequences. The authors argued that these variant patterns could be 
consistent with those of tumor suppressor genes, but an alternative and more 
likely explanation is that the vast majority of the variants were passengers and 
no positive selection was acting on them. In fact, fewer than a third of the 
cancer-specific overmutated miRNAs identified by Urbanek-Trzeciak et al. 
were expressed in the affected cancer type, and only 7 (12%) were expressed at 
medium or high levels (Urbanek-Trzeciak et al., 2020). In addition, not all 
nucleotides within functional pri-miRNAs are necessary for their function. 
These observations highlight the importance of annotating miRNA variants 
with complementary metrics, such as expression in the affected tissue and 
conservation of the mutated nucleotide. Furthermore, we have shown that 
TCGA WES data has low coverage of most miRNA genes, limiting the power 
to detect the full spectrum of variants in the miRNome in these datasets. In 
conclusion, although previous reports set the groundwork for analyses of 
somatic variants in miRNAs, further improvements were necessary. 
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3.4.5.2. A novel approach for annotating variants in 
DROSHA motifs 

To our knowledge, we have developed the first pipeline that annotates variants 
that create or disrupt DROSHA processing motifs in pri-miRNAs using exact 
positional and structural information, as well as the first that maps mutations 
in mGHG motifs to changes in mGHG scores. We are aware of two similar 
efforts to this end: miRNAmotif (Urbanek-Trzeciak et al., 2018) and ADmiRE 
(Oak et al., 2019). However, both approaches have critical limitations.  

Regarding miRNAmotif, it searches for sequence motifs along either whole 
pre-miRNAs or very broad regions of them, ignoring the strict positional 
requirements of DROSHA processing motifs (Auyeung et al., 2013; Kim et al., 
2021). Furthermore, miRNAmotif is limited to stem-loop sequences deposited 
in miRBase, which are often incomplete. Finally, miRNAmotif does not 
annotate mGHG motifs. Reports that use miRNAmotif share the same 
limitations (Galka-Marciniak et al., 2019; Urbanek-Trzeciak et al., 2020).  

On the other hand, ADmiRE annotates variants that disrupt basal UG, apical 
UGUG, and downstream CNNC motifs by non-specified methods (Oak et al., 
2019). Before developing our pipeline, we had initially applied ADmiRE to our 
data. However, its motif annotations in our data and in the supplementary 
material of ADmiRE’s publication were incorrect. In particular, the sequence 
motifs predicted by ADmiRE were not at their expected positions, and the 
nucleotide sequences at those positions did not match the sequences of the 
motifs. For example, some variants annotated to affect downstream CNNC 
motifs were found in non-CNNC sequences upstream of the 5p miRNA. The 
issue seemed to be caused by a source file of pre-annotated motifs, whose 
content is incorrect. However, because the authors did not specify how they 
generated the motif annotation file and we found no patterns in the 
annotation errors, we were unable to further explore the issue.  

The frequencies of our identified DROSHA processing motifs roughly agree 
with previous reports (Auyeung et al., 2013; Fang and Bartel, 2015; Kim et al., 
2021; Kwon et al., 2019; Roden et al., 2017). Despite having analyzed different 
sets of pri-miRNAs by different methods, most reports from us and others 
agree that the frequency of pri-miRNAs containing basal UG motifs is ~15%; 
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of apical UGUG motifs, ~30%; of downstream CNNC motifs, ~50%; and of 
miRNAs with no motif, ~20% (Table 16). Auyeung et al reported an unusually 
high frequency for the basal UG motif (24.3%), possibly because they analyzed 
a small set of high-confidence pri-miRNAs (Auyeung et al., 2013). Roden et al 
reported a very low frequency of apical UGUG motifs, possibly because they 
were the only ones (other than us) to rely on structural criteria and, in contrast 
to us, they required the UGU/GUG sequence to be strictly 1 nt after the apical 
junction, which may not be its optimal position (Roden et al., 2017). Finally, 
the frequency of mGHG motifs in recent reports is higher than initially 
described because the definition of mGHG was updated recently (Kwon et al., 
2019). Overall, our frequencies of DROSHA motifs agrees with previous work. 

Table 16. Frequencies of DROSHA processing motifs in our work and in 
previous reports. 

Report n UG UGUG mGHG CNNC None 

Auyeung et al 
(2013) 

204 24.3% 28.9% - 59.4% 21% 

Fang and 
Bartel (2015) 

186 - - 25% - - 

Roden et al 
(2017) 

1881 ~12% <10% - ~50% - 

Kim et al 
(2021) 

1816 13.8% 25.1% 35.6% - 28.9% 

Us, structural 842 14% 29% 42% 48% 20% 

Us, positional 842 17% 33% 42% 45% 22% 

n: number of analyzed pri-miRNAs. The sets of pri-miRNAs were: for Auyeung 
et al, miRBase 17 miRNAs conserved in mouse; for Fang and Bartel, curated 
miRBase 17 miRNAs conserved in mouse; for Roden et al, miRBase 21; for Kim 
et al, experimentally assayable pri-miRNAs from miRBase 21. For CNNC motifs 
from Roden et al, we report their permissive definition of 3-11 nt downstream of 
the 3p basal junction. Because Kim et al did not study CNNC motifs, the actual 
% of pri-miRNAs with no motifs in their dataset may be lower than reported. 
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3.4.5.3. Experimental reports of variants that affect 
DROSHA processing 

Before the discovery of DROSHA processing motifs, a somatic variant 5 nt 
upstream of miR-142-5p was described in a diffuse large B-cell lymphoma 
patient (Kwanhian et al., 2012). This variant led to incorrect processing of 
miR-142-5p, yielding a mature miRNA that was longer than expected, as 
confirmed experimentally by Northern blot (Kwanhian et al., 2012). The 
sequence of the aberrant miRNA and the impact on its targets were not 
determined. Now, we can map the identified variant to the mGHG motif of 
mir-142 (Fang and Bartel, 2015; Kwon et al., 2019). The variant decreased 
DROSHA processing efficiency by ~4.2x (mGHG score from 10.96 to 2.61).  

The finding in mir-142, reinterpreted under the lens of current knowledge, 
challenges current theories in two major ways. First, the mGHG score of wild 
type mir-142 is so low that the miRNA would be classified as lacking an 
mGHG motif. The fact that the mGHG variant altered the processing of the 
pri-miRNA raises the question of whether current methods for annotating 
mGHG motifs are accurate. Indeed, mGHG scores are based on experimental 
data on only three pri-miRNAs, which are then extrapolated to all human pri-
miRNAs, but this extrapolation may not always be correct. Second, current 
theories cannot fully explain how an mGHG mutation leads to a longer mature 
miRNA. mGHG motifs increase the efficiency and accuracy of DROSHA 
cleavage, and strong mGHG motifs can alone dictate where DROSHA cleaves 
the pri-miRNA (Fang and Bartel, 2015; Kwon et al., 2019). One possibility is 
that the mGHG of mir-142 is actually strong and, when it mutated to a weak 
mGHG, the DROSHA cleavage site was dictated by the basal junction, which 
is 1 nt upstream from its optimal position. This would shift the 5p DROSHA 
cleavage site in mutant mir-142 1 nt towards the basal direction. If the DICER 
cleavage sites did not change, the mature miRNA would be 1 nt longer than 
the wild type. However, it would then be necessary to explain why DICER, 
which is thought to act as an accurate “molecular ruler”, generated a longer 
mature miRNA instead of shifting its cleavage site by 1 nt (Park et al., 2011). 
In conclusion, further studies may be required to fully understand the role of 
DROSHA processing motifs and to quantify the strength of mGHG motifs. 
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SNPs that affect miRNA processing have been described in cancer and in other 
disease contexts. For example, rs2291418, which transforms an apical CGUG 
sequence in mir-1229 to UGUG, was associated with enhanced production of 
miR-1229-3p and with increased risk of Alzheimer’s disease (Ghanbari et al., 
2016). Other SNPs that have been linked to disease and that may affect 
DROSHA processing efficiency include rs2910164 (Shen et al., 2008), 
rs11614913 (Hu et al., 2008), rs2910164 (Jazdzewski et al., 2008), six SNPs 
associated with risk of schizophrenia (Sun et al., 2009), and a G>A SNP in the 
pri-miRNA of the human herpesvirus miRNA miR-K5 (Gottwein et al., 2006). 
None of these SNPs overlapped with any known motifs, but they often 
changed the secondary structure of the stem by introducing or removing 
mismatches. Therefore, DROSHA processing may not only be affected by 
sequence motifs, but also by structural features. However, more research is 
required to determine how mismatches, bulges, and loops affect the efficiency 
with which DROSHA cleaves pri-miRNAs. 

3.4.5.4. Limitations of our motif annotation pipeline 

Our pipeline for annotating DROSHA processing motifs in pri-miRNAs was 
an improvement upon previous methods (Oak et al., 2019; Urbanek-Trzeciak 
et al., 2018). However, it still suffered from many limitations: 

• Current methods for quantifying the strength of mGHG motifs are 
based on experimental data in only three pri-miRNAs and they may 
not be applicable to all human pri-miRNAs.  

• DROSHA processing efficiency may also be affected by structural 
features, such as bulges, mismatches, and loops. Although the RNAsnp 
software can evaluate the effects of SNVs on RNA secondary structure, 
it is not suitable for pri-miRNAs because it requires input sequences to 
be at least 200 nt long (Sabarinathan et al., 2013). Therefore, specific 
computational methods must be developed to predict the impact of 
variants on the structure of short (< 200 nt) non-coding RNAs.  

• Secondary structure predictions of pri-miRNAs are not always 
accurate, limiting our ability to reliably predict motifs based on 
structural features.  
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• The impact of motif mutations on DROSHA processing efficiency is 
not yet fully understood. For example, downstream DNNC and CNND 
sequences may partially retain SRSF3 binding capability, limiting the 
impact of mutations at CNNC motifs (Kim et al., 2021).  

• ~46% of the pri-miRNAs from miRBase 21 could not be analyzed due 
to their lack of annotated mature miRNAs.  

• The positions affected by more than 80% of our detected motif variants 
had either low expression or low conservation, suggesting a high rate 
of passenger mutations among our findings. However, expression data 
were averaged across cohorts, and it cannot be ruled out that a miRNA 
that has low average expression in a cohort may be highly expressed in 
a subset of tumors, or in a subset of mutant cells within a tumor.  

In conclusion, more research is required to fully understand which mutations 
affect DROSHA processing efficiency, and our method is expected to report 
many false positive findings and to miss false negatives that might be identified 
with improved knowledge in the future.  

3.4.5.5. miR-133b and its proposed tumor suppressor role 
in LUAD 

We detected a somatic variant in a conserved nucleotide in the seed of           
miR-133b that may affect its targeting to LUAD driver mRNAs such as EGFR. 
However, we were unable to determine if the variant had a biological effect 
using available data. Importantly, expression of miR-133b relative to its targets 
may be too low for it to meaningfully modulate them (Kilikevicius et al., 2022; 
Mullokandov et al., 2012). In addition, miR-133a-3p, which was expressed ~10 
times more than miR-133b in external LUAD cohorts, may compensate for 
loss of function of miR-133b (Boettger et al., 2014). Still, the miR-133b variant 
may cause a gain of function, such as targeting new tumor suppressor mRNAs, 
which miR-133a-3p may not be able to compensate. To explore the possibly 
oncogenic role of the miR-133b variant, first the relative levels of wild type and 
mutant miR-133b, miR-133a-3p, and any putative target mRNAs should be 
experimentally measured in the affected sample. 
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External high- and low-throughput studies have confirmed that miR-133b is 
a bona fide miRNA. In particular, in a meta-analysis of 28 866 human small 
RNA-Seq datasets, mir-133b precursors consistently showed read patterns 
characteristic of true miRNAs: 5’ end homogeneity, patterns of DICER 
processing, and detection of a clear mature miRNA within the precursor (Alles 
et al., 2019). In addition, exogenous mir-133b was efficiently processed by 
HEK 293T cells to generate mature miR-133b (Alles et al., 2019). 

Expression of miR-133b was downregulated in LUAD compared to normal 
lung in two independent cohorts, in agreement with previous reports (Chen 
and Ruan, 2019; Zhang et al., 2021). However, miR-133b downregulation was 
not reported in meta-analyses of microarray-based miRNA expression 
datasets in lung cancer (Guan et al., 2012; Võsa et al., 2013). This discrepancy 
may be explained by differences between cohorts, technical differences 
between microarrays and miRNA-Seq, and because expression of miR-133b 
in LUAD is low. In particular, both in LUAD and in most normal lung 
samples, miR-133b expression was <10 TPM. Although these expression levels 
are generally considered to be too low for a miRNA to have biological activity, 
it cannot be ruled out that miR-133b expression may be higher in a subset of 
LUAD cells (Kilikevicius et al., 2022; Mullokandov et al., 2012).  

Two previous reports claimed that low miR-133b expression is associated with 
poor survival in TCGA-LUAD (Chen and Ruan, 2019; Zhang et al., 2021). 
However, we failed to reproduce these findings. Both studies reported a 
smaller cohort size than that of TCGA-LUAD after excluding patients who 
lacked information on miRNA expression or survival (Chen and Ruan:               
N = 396; Zhang et al: N = 470; actual N = 513). None of the studies stated their 
sample inclusion criteria. In Chen and Ruan’s report, the authors had most 
likely excluded all samples whose miR-133b expression was undetectable. 
Indeed, when we removed those samples, we reproduced their results (data 
not shown). However, such an analysis is flawed, as values of zero are valid 
data points. Regarding Zhang et al’s report, we could not find or deduce how 
they performed the survival analysis. They may have used an older version of 
TCGA-LUAD that lacked information from some patients, which could 
explain their lower cohort size. In summary, there is no conclusive evidence 
that miR-133b expression is associated with LUAD patient survival. 
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Previous reports have explored the functional role of miR-133b in various 
cancers, including LUAD. A myriad of phenotypical effects and mRNA targets 
have been proposed for miR-133b, but little to none of them have been 
robustly validated. In LUAD, miR-133b may target EGFR, suppressing tumor 
phenotypes by inducing apoptosis, enhancing drug response, and inhibiting 
cell invasion (Liu et al., 2012). In agreement with this, we found EGFR to be a 
predicted target of miR-133b by multiple methods, and EGFR protein 
expression was negatively correlated with miR-133b expression. Other studies 
that link miR-133b to different cancer phenotypes and targets have been 
reviewed elsewhere (Li et al., 2017). 

To our knowledge, the report by Liu et al is the most rigorous attempt at 
characterizing miR-133b in LUAD. Nevertheless, it has major flaws that are 
highly recurrent in the non-coding RNA bibliography (Kilikevicius et al., 
2022; Liu et al., 2012). First, Liu et al measured miR-133b and EGFR mRNA 
expression in 27 LUAD patients, finding a negative correlation (Liu et al., 
2012). However, they did not justify why they exclusively measured this 
miRNA-mRNA pair. Next, they showed that miR-133b targets the 3’-UTR of 
EGFR by luciferase assays in which miR-133b was overexpressed in vitro. 
However, they did not report the relative endogenous levels of miR-133b and 
EGFR mRNA. Therefore, it was unclear whether miR-133b could modulate 
EGFR in vivo, as miR-133b expression may be too low relative to EGFR. 
Furthermore, they knocked down endogenous miR-133b using an antisense 
oligonucleotide, observing phenotypical effects. However, here we have shown 
that: (i) miR-133a-3p has a nearly identical sequence to miR-133b; (ii) both 
miRNAs may be functionally redundant; and (iii) miR-133a-3p expression is 
an order of magnitude higher than that of miR-133b in LUAD. Therefore, 
miR-133a-3p may be an off-target of anti-miR-133b, and knockdown of     
miR-133a-3p may have played a major role in the observed phenotype. We 
were unable to further explore this possibility because the sequence of                        
anti-miR-133b was not available. In summary, although numerous reports 
have associated miR-133b with tumor suppressor activity in LUAD and in 
other cancers, it is still unclear whether endogenous miR-133b has an actual 
function in LUAD. 
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Chapter 4. Non-coding mutations in diffuse 
large B cell lymphoma 

This Chapter addresses Objective 5, pertaining to the identification of cancer-
promoting splice site mutations in diffuse large B-cell lymphoma. The content 
of this Chapter has been published in “Andrades et al (2022). Recurrent splice 
site mutations affect key diffuse large B-cell lymphoma genes. Blood 139, 
2406-2410”. Here, we include the contents of the article, with editing and 
additions for further context. 

4.1. Background: diffuse large B-cell 
lymphoma 

Diffuse large B-cell lymphoma (DLBCL) is the most frequent lymphoid 
malignancy in adults. The most popular molecular classification of DLBCL is 
based on gene expression signatures, resulting in three major subtypes: 
germinal center B cell-like (GCB), activated B cell-like (ABC), and unclassified 
DLBCL (Reddy et al., 2017). Each DLBCL subtype has unique molecular and 
histological features: 

• GCB DLBCLs are most frequently mutated in genes involved in 
chromatin remodeling, such as KMT2D and EZH2 (Reddy et al., 2017; 
Schmitz et al., 2018; Young et al., 2019). Phenotypically, GCB DLBCLs 
resemble cells from the germinal center, a structure that is generated in 
lymph nodes when an organism is exposed to an antigen. In germinal 
centers, undifferentiated precursors of B cells experience somatic 
hypermutation to alter their repertoire of immunoglobulins (Igs) at 
their B cell receptors (BCRs) (Young et al., 2019). BCRs are composed 
of a membrane-bound immunoglobulin and a heterodimer of CD79A 
and CD79B, which mediates intracellular signaling and BCR 
degradation. The BCRs of most GCB DLBCLs contain IgG. 
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• ABC DLBCLs are most frequently mutated in genes involved in BCR 
signaling, such as CD79B and MYD88, because they rely on chronic 
active BCR signaling (Reddy et al., 2017; Schmitz et al., 2018; Young et 
al., 2019). Phenotypically, ABC DLBCLs resemble plasmablasts, which 
are the precursors of the antibody-secreting plasma cells (Young et al., 
2019). The BCRs of most ABC DLBCLs contain IgM.  

• Unclassified DLBCLs display intermediate gene expression patterns 
between GCB and ABC. 

The expression-based molecular classification of DLBCL is gradually being 
replaced by a novel classification based on mutational patterns (Schmitz et al., 
2018). Importantly, because each gene expression subtype has mutations in 
specific genes, there is a high correlation between both classifications. The new 
classification scheme proposes the following subtypes of DLBCL: 

• EZB, which is defined by EZH2 gain-of-function mutations and/or 
BCL2 translocations. It is mostly composed of GCB DLBCLs. 

• MCD, which is defined by gain-of-function mutations in MYD88 
and/or CD79B. It is mostly composed of ABC DLBCLs.  

• BN2, which is defined by BCL6 fusions and/or NOTCH2 mutations. It 
is a rare subtype and it mostly consists of ABC DLBCLs. 

• N1, which is defined by NOTCH1 mutations. It includes GCB, ABC, 
and unclassified DLBCLs. 

Recently, landmark multi-omic studies have provided comprehensive 
collections of molecular alterations in over 1700 DLBCLs (“Reddy et al”: N = 
1001; “Schmitz et al”: N = 574; “Chapuy et al”: N = 136) (Chapuy et al., 2018; 
Reddy et al., 2017; Schmitz et al., 2018). We previously reported that BCL7A, 
a tumor suppressor gene in DLBCL, is recurrently mutated at its first splice 
donor site in DLBCL (Baliñas-Gavira et al., 2020). Although these splice site 
mutations impaired the function of BCL7A, they had been overlooked by 
large-scale studies (Baliñas-Gavira et al., 2020). Importantly, Reddy et al 
provided the largest whole-exome sequencing dataset to date in DLBCL (N = 
1001), but they did not analyze splice sites (Reddy et al., 2017). Based on our 
experience, we wondered if other genes undergo recurrent but overlooked 
splice site mutations in DLBCL.  
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4.2. Materials and methods 

4.2.1. Variant calling 

To identify previously missed splice site mutations in Reddy et al’s dataset, we 
performed unpaired variant calling at splice sites followed by strict filtering.  
Due to the lack of data from matched normal samples, we performed unpaired 
variant calling. We used Mutect2 (GATK v4.1.4.0) providing the hg19 human 
genome, a germline resource (gnomAD v2.1.1) and a panel of normals from 
the GATK website (https://console.cloud.google.com/storage/browser/gatk-
best-practices/somatic-b37). All other Mutect2 options were left at their 
default values. The variant calling was restricted to all exon boundaries ±10 bp 
according to GENCODE v28lift37.  

We filtered Mutect2 calls using FilterMutectCalls after running 
GetPileupSummaries, both of them with default parameters.  

4.2.2. Variant annotation and filtering 

We annotated the Mutect2 filtered variants using vcf2maf 
(https://github.com/mskcc/vcf2maf) (Ensembl VEP 97). At this point, most 
gnomAD germline polymorphisms had already been removed by Mutect2. 
However, we noticed that ~0.5% of the mutations that passed Mutect2’s filters 
had a gnomAD frequency above 1% and ~0.4% had a gnomAD frequency 
above 10%. These observations prompted us to apply an additional 
conservative gnomAD-based hard filter. Thus, we restricted the output to 
splice site variants whose allele frequencies were ≤ 0.01% in gnomAD. To 
decide the optimal allele frequency threshold, first we studied the effect of 
different thresholds on the number of variants that passed the filters, and we 
found that thresholds within the range of 0.005%-1% yielded roughly similar 
results, whereas thresholds below 0.005% led to overfiltering. 

Still, the number of splice site mutations was almost 70,000, affecting over 
15,000 genes, and we reasoned that further filters were required to identify the 
truly somatic and biologically relevant mutations. Therefore, we only 
considered mutations in nucleotide positions where Schmitz et al or Chapuy 
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et al reported at least one somatic mutation. The filters retained 426 genes that 
had at least one splice site mutation in the dataset of Reddy et al. All analyses 
were performed using hg19 coordinates. 

Finally, we focused on the genes that had splice site mutations in at least 5 
patients from Reddy et al, resulting in a final set of 29 genes. 

4.2.3. Mutation frequencies per nucleotide in 
splice sites and in coding sequences 

The ratio between the frequency of splice site mutations per nucleotide and 
the frequency of coding sequence (CDS) mutations per nucleotide was 
estimated for the 29 recurrent splice site mutant genes from the dataset of 
Reddy et al. The number of CDS mutations was retrieved from the original 
study, whereas the number of splice site mutations was estimated in our 
reanalysis. The lengths of the CDSs, in nucleotides, were estimated by 
summing the lengths of all non-overlapping CDSs of all isoforms of the genes 
according to GENCODE v28lift37. The lengths of the splice sites, in 
nucleotides, were estimated based on all protein-coding isoforms of the genes 
according to GENCODE v28lift37.  

4.2.4. Analysis of RNA aberrations 

To detect RNA aberrations induced by splice site mutations in our 29 selected 
genes, three complementary approaches were combined: 

• MAJIQ deltapsi. In this approach, for each gene, we compared all 
samples mutated in splice sites against the rest of the samples. This 
allowed us to detect recurrent RNA aberrations induced by splice site 
mutations as long as there was a hotspot that accumulated most of the 
splice site mutations in the gene. However, it was not an appropriate 
approach when: (i) a gene had mutations in different splice sites and 
there was no clear hotspot; or (ii) mutations in the same splice site led 
to different RNA aberrations in different samples. 



Chapter 4. Non-coding mutations in diffuse large B cell lymphoma. 

 
187 

• MAJIQ psi. In this approach, we assessed RNA aberrations on a per-
sample basis. This allowed us to detect RNA aberrations that were 
unique to one or few samples. To minimize false positives (e.g., RNA 
aberrations that are also present in wild type samples), we thoroughly 
studied each aberration in a random selection of wild type samples and 
we confirmed our observations on Integrative Genomics Viewer (IGV; 
see below). 

• Manual curation on IGV. Each of the splice site mutant regions was 
observed on IGV. This allowed us to visually confirm the results from 
MAJIQ and to manually rescue events not detected by MAJIQ, which 
we labeled as “mutant splice site” (see “Classification of RNA 
aberrations” section below).  

Because the RNA-Seq BAM files from Reddy et al and from Schmitz et al had 
been generated by different methods and had different characteristics, the 
configuration of MAJIQ was different for each dataset. 

4.2.4.1. Reddy et al 

For MAJIQ configuration, we set strandedness=reverse. We 
considered each sample as a separate condition and we used Ensembl 74 
(GRCh37) as a transcript database, after removing non-coding transcripts, 
because it was the annotation database used by Reddy et al for their RNA-Seq 
alignment. 

Due to the relatively low depth of the data, we decided to set parameters for 
majiq build, majiq psi, and majiq deltapsi that were less strict than the default 
ones. 

For majiq build, we set --minreads 3 --minpos 2              

--min-denovo 3 --irnbins 0.1 --min-experiments 1. 

For majiq psi and majiq deltapsi, we set --minreads 3        

--minpos 2 --min-experiments 1. In the deltapsi analysis, we 
considered an event as significant if abs(E(dPSI)) > 0.1 and confidence > 0.95.  
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4.2.4.2. Schmitz et al 

Here, we set strandedness=none and the transcript database was 
GENCODE v22 (hg38), downloaded from the GDC Data Portal 
(https://gdc.cancer.gov/about-data/gdc-data-processing/gdc-reference-files), 
after which we removed non-coding transcripts. The rest of the parameters 
and criteria were the same as for Reddy et al’s dataset. 

We retrieved most of the splice site mutant patients for each gene of interest 
from the MAF files downloaded from Genomic Data Commons 
(https://gdc.cancer.gov/about-data/publications/DLBCL-2018). The only 
exception was BCL7A, for which we also incorporated the splice site mutations 
that we detected in our previous reanalysis of the dataset (Baliñas-Gavira et 
al., 2020). 

4.2.4.3. Classification of RNA aberrations 

RNA aberrations were classified in the following categories: 

• Intron retention. The full splice site mutant intron is retained. To 
avoid false positives due to unspliced pre-mRNA detection, we 
required the intron to be retained at a higher psi than wild type samples 
and than adjacent introns from the same sample. 

• Cryptic splice site. An alternative splice donor or acceptor site is used, 
leading to deletions (if the cryptic splice site is within an exon) or 
insertions (if the cryptic splice site is within an intron). There must be 
no canonical isoforms of the gene (in GENCODEv28lift37) that use 
these alternative splice sites. 

• Exon skipping. An exon that is adjacent to the splice site mutation is 
skipped. There must be no canonical isoforms of the gene (in 
GENCODEv28lift37) that skip the exon. 

• Alternative isoform. Increased usage of an isoform that should be 
unaffected by the splice site mutation. The isoform must be defined in 
GENCODEv28lift37. 
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• Mutant splice site. This term agglutinated two phenomena in which 
the intronic mutation was present at the RNA level, but read patterns 
did not suggest any of the other RNA aberrations described above: 

o Partial intron retention, as defined in Section 1.8.2.  
o Cases of full intron retention in which the mutant splice site was 

detected in the RNA, but intron retention also occurred at 
similar rates in wild type samples. 

o In both cases, we required the intronic splice site to have at least 
10% of the depth of the last adjacent exonic nucleotide. 

4.2.5. Statistical analyses 

Further statistical analyses were performed using R (version 4.0.2). 
Multivariate Cox survival analyses were performed using the coxph() 
function from the survival package. The cohort of Reddy et al had 
homogeneous treatment (rituximab-containing standard regimen) and all 
tumors were de novo, and therefore all patients who had available survival 
information were included. In the cohort of Schmitz et al, we limited the 
analysis to the patients that met the following criteria: (i) survival information 
was available; (ii) biopsy was acquired prior to any treatment; (iii) the patient 
was treated with standard chemoimmunotherapy. For a gene to be considered 
in the survival analyses, we required it to be mutated in more than 5 patients. 

In R syntax, the survival model was as follows: 

coxph(Surv(survival_time, event) ~ is_mutant + 
IPI_group) 

Where is_mutant was 0 if a particular gene of interest was wild type and 1 
if it was mutant, and IPI_group was categorized as “Low” (IPI = 0-1), 
“Intermediate” (IPI = 2-3) or “High” (IPI = 4-5). We considered all exonic 
mutations plus the splice site mutations that caused RNA aberrations 
according to our analysis. We did not include genetic subtypes or gene 
expression subtypes as covariates to avoid multicollinearity with the 
mutational status. However, we performed survival analyses on the GCB or 
ABC subsets of the cohorts. 
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4.2.6. Cell lines 

The ABC DLBCL cell lines U-2932 and Ri-1 were purchased from the Leibniz 
Institute DSMZ. They were grown in RPMI 1640 medium supplemented with 
10% FBS, 1% L-glutamine 2 mM, and 100U/ml streptomycin and penicillin. 

4.2.7. Plasmids 

HIV packaging (psPAX2) and VSV-G (pMD2.G) plasmids were provided by 
Didier Trono (Addgene plasmids #12260 and #12259 respectively). The 
packaging plasmid psPAX2 encodes gag, pol, tat and rev genes. The pMD.G 
plasmid encodes the vesicular stomatitis virus (VSV) G protein. The lentiviral 
vectors encoding the three versions of CD79B (CD79BWT, CD79BY196H and 
CD79BIR) were designed with Spleen focus-forming virus promoter driving 
CD79B expression and Human cytomegalovirus immediate early 
enhancer/promoter driving EGFP expression.  

4.2.8. Lentiviral production and titration 

Transfection of packaging cells was carried out by lipofection. Briefly, 
HEK293T cells, grown in DMEM (Cat #L0103-500, Biowest) supplemented 
with 10% fetal bovine serum (FBS), 100U/ml streptomycin and penicillin, 
were plated over a 10-cm tissue culture grade Petri dish (Cat #SIAL0167, 
Sigma-Aldrich) the day before transfection to ensure exponential growth and 
80% confluence. pUltra-Chili-Luc vector plasmid, together with packaging 
(psPAX2) and envelope (pMD2.G) plasmids (18µg total DNA; plasmid 
proportions of 3:2:1, respectively) were resuspended in 0.5 ml free-serum 
DMEM and mixed at room temperature for 20 min with 45µL LipoD293 (Cat 
#SL100668, Signagen Laboratories, Rockville, MD, USA) previously diluted in 
0.5 ml free-serum DMEM. The plasmid-lipoD293 mixture was added to cells. 
Transfection mixture was removed after 5h incubation and 7ml of total 
medium were carefully added. The viral supernatants were collected at 48 and 
72h, and filtered through a 0.45 mm filter (Cat #FPE404030, JET Biofil, 
Guangzhou, China), aliquoted and immediately frozen at -80ºC. 
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The percentage of transduced cells was determined on the basis of 
fluorescence increase due to the expression of GFP. Viral titers (transduction 
units/ml) were calculated on the basis of the percentage of GFP+ cells detected 
in the linear range of a serial dilution of the supernatant. Viral titers were 
estimated in a highly permissive cell line such as K-562. 

Transduction of U-2932 cells was carried out in three cycles of infection using 
1 mL of the supernatant containing lentiviral particles and 8 µg/mL polybrene 
in 12x multiwells. 

4.2.9. Immunoblot 

Lysates (106 cells) from untransduced cells as well as from the three cell pools 
generated by transduction of the different versions of CD79B were boiled in 
Laemmli sample buffer, electrophoresed through a 10% Tris-glycine 
polyacrylamide gel, and transferred to a PVDF membrane. Immunoblotting 
antibodies included: mouse anti-CD79B (B29/123) (Santa Cruz 
Biotechnologies, Cat #sc-53210), goat anti-Lamin B (C-20) (Santa Cruz 
Biotechnologies, Cat #sc-6216), mouse anti-β-Actin (Sigma, Cat #A5441), 
rabbit anti-phospho-NF-κB p65 (Ser536) (93H1) (Cell Signaling Technology, 
Cat #3033), rabbit anti-phospho-Akt (Ser473) (D9E) (Cell Signaling 
Technology, Cat #4060) and mouse anti-GAPDH (Santa Cruz 
Biotechnologies, Cat #sc-47724). 

4.2.10. Fluorescence-activated cell sorting  

Surface expression of IgM in transduced cells was evaluated by flow-cytometry 
and compared with that of untransduced cells. The ABC DLBCL lines U-2932 
and Ri-1 were transduced with CD79BWT, CD79BY196H mutant or CD79BIR and 
stained on ice with anti-human IgM-PE Monoclonal Antibody (SA-DA4) 
(eBioscience Catalog # 12-9998-42) and the viability marker 7AAD. Surface 
IgM expression was measured in transduced subpopulations gated by 
fluorescence-activated cell sorting to have equivalent GFP expression.  
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4.3. Results 

We found 29 genes that had likely somatic splice site mutations in at least 5 
patients from the cohort of Reddy et al (Figure 47A). Remarkably, the 
mutation frequency per nucleotide in these genes was a median of ~8x higher 
at splice sites than at coding sequences (Figure 47B). The accumulation of 
mutations at splice sites affected known DLBCL genes, such as BCL7A (19x), 
SGK1 (12x), CD79B (9x), and BCL6 (9x). The inclusion of splice site mutations 
increased the mutation frequency of BCL7A by ~44%, of SGK1 by ~22%, of 
CD79B by ~32%, and of BCL6 by ~18%. The mutation frequency of BCL7A 
was comparable to that from our previous report (Baliñas-Gavira et al., 2020). 
Our analysis also revealed novel genes that were not reported as mutated in 
the coding sequence by Reddy et al, including ZFP36L1, POU2AF1, GRHPR, 
PABPC1, CD74, LAPTM5, and MYO1E. Interestingly, ZFP36L1 had a 
mutation frequency of ~10% in the other two analyzed datasets (~3-4% if only 
considering splice site mutations) and it has been proposed as a tumor 
suppressor gene in germinal center-derived B cell lymphomas (Caeser et al., 
2019). The splice site mutation frequencies of our 29 selected genes in the 
dataset of Reddy et al correlated moderately with those from Schmitz et al 
(Kendall τ = 0.28, p = 0.04) and Chapuy et al (Kendall τ = 0.44, p = 0.002). 

To evaluate the significance of our findings, we analyzed clinically relevant 
features in the 29 recurrent splice site mutant genes (Figure 47A). Of the 29 
genes, 18 (62.1%) were known cancer genes according to the Cancer Gene 
Census (CGC) (Sondka et al., 2018). They included SGK1, BCL7A, CD79B and 
PIM1, among others. Three of the CGC genes had not been reported by Reddy 
et al: POU2AF1, PABPC1, and CD74. POU2AF1 is involved in the formation 
of germinal centers in mice, and splice site mutations in this gene may be 
related to the transformation of follicular lymphoma to DLBCL (González-
Rincón et al., 2019; Teitell, 2003). In addition, the 29 selected genes included 
5 of the 12 (42%) genes whose mutations are specific to the GCB DLBCL 
subtype and 5 of the 8 (63%) genes whose mutations are specific ABC DLBCL 
subtype according to Reddy et al (Reddy et al., 2017). Furthermore, exonic 
mutations and RNA-altering splice site mutations (see below) in CD79B and 
in PIM1 were associated with survival in both Reddy et al’s and Schmitz et al’s 
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cohorts according to our multivariate analysis (Table 17). Taken together, 
these results highlight the clinical relevance of splice site mutant genes. 

 

Figure 47. Splice site mutations in DLBCL. A. Genes recurrently mutated at 
splice sites according to our reanalysis of Reddy et al’s dataset (N = 1001). We 
only considered mutations that were confirmed as somatic by Schmitz et al 
(2018) or by Chapuy et al (2018). The genes shown here were mutated in at least 
5 patients. For each gene, the frequency of splice site mutant patients is shown 
in the vertical axis. The heatmap below shows the presence (green) or absence 
(grey) of relevant features for each gene. “Aberrant RNA evidence”: at least one 
splice site mutant patient had an RNA aberration that could be attributed to the 
mutation according to our analyses. “CGC”: the gene is part of the Cancer Gene 
Census. “Muts. predict survival”: genetic aberrations in the gene are associated 
with patient survival according to Reddy et al (2017). “GCB-/ABC muts.”: the 
gene is preferentially mutated in the germinal center B cell-like (GCB) or in the 
activated B cell-like (ABC) subtype according to Reddy et al (2017) or to Schmitz 
et al (2018). B. Ratio between the frequency of splice site mutations per 
nucleotide and the frequency of coding mutations per nucleotide for the 22 
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recurrent splice site mutant genes that had non-zero coding mutation frequency 
in Reddy et al (2017)’s dataset. C. Mutant CD79BIR increases surface IgM at a 
higher extent than CD79BY196H. The ABC DLBCL line U2932 was transduced 
with either CD79BWT, mutant CD79BY196H or mutant CD79BIR. Surface IgM is 
depicted gating on a co-transduced GFP marker to identify the subset of 
transduced cells with equivalent ectopic CD79B RNA expression. D. Surface 
IgM expression in U-2932 cells transduced with the indicated CD79B isoforms. 
U-2932 GFP-positive transduced cells are compared with untransduced cells. E. 
Western blot of CD79B, phosphorylated RELA/p65 (Ser536), and 
phosphorylated Akt (Ser473) in U-2932 cells after overexpression of mutant or 
wild type CD79B. The numbers indicate the fold change between each CD79B 
overexpression model and the parental cell line, previously normalized with 
GAPDH, according to a densitometry analysis using ImageJ. *Note that the 
epitope recognized by the anti-CD79B antibody is the region that is lost by 
CD79BIR, which is why overexpression cannot be detected by this method. 
However, we confirmed CD79BIR plasmid overexpression by flow cytometry 
(GFP+ signal). 

Table 17. Multivariate survival analyses on exonic or splice site mutations. 

Cohort Gene HR 95% CI p 

Reddy PIM1 1.36 0.99-18.6 0.056 

Reddy SGK1 0.43 0.22-0.85 0.015 

Reddy CD79B 1.61 1.02-2.55 0.043 

Schmitz TOX 3.35 1.59-7.07 0.002 

Schmitz PIM1 1.98 1.27-3.10 0.003 

Schmitz TBL1XR1 2.51 1.29-4.90 0.007 

Schmitz CD79B 2.08 1.16-3.74 0.015 

Schmitz DUSP2 1.90 1.06-3.39 0.030 

HR: hazard ratio. CI: confidence interval.  
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Next, we evaluated whether splice site mutations altered the splicing of the 
affected RNAs using RNA-Seq data from the Reddy and Schmitz cohorts. We 
used the MAJIQ tool followed by manual curation (Vaquero-Garcia et al., 
2016). In 27/29 (93%) genes, at least one splice site mutant patient had an RNA 
aberration (Supplemental Files 5-6, available online from (Andrades et al., 
2022)). Furthermore, in 14/29 genes (48%), at least half of the splice site 
mutant samples in both datasets had RNA aberrations. The most frequent 
aberration according to a sample-by-sample analysis was intron retention (110 
cases), followed by expression of the mutant splice site along with a few 
intronic nucleotides (94 cases), cryptic splice sites (92 cases), exon skipping 
(54 cases), and usage of alternative canonical isoforms (49 cases) (Figure 48). 
In BCL7A, mutations in the first splice donor site often led to the usage of a 
cryptic splice donor site in exon 1 that resulted in a loss of 27 aa, as we 
previously reported (Baliñas-Gavira et al., 2020). Overall, RNA-Seq data has 
allowed us to confirm the impact of splice site mutations in most genes. 

The most frequent RNA aberration affected CD79B (Figure 48), which 
accumulated 23 mutations in its fourth splice donor site, out of which at least 
18 caused retention of intron 4 (CD79BIR). The retained intron introduced a 
premature stop codon just before the immunoreceptor tyrosine-based 
activation motif (ITAM) (Figure 49). CD79B and CD79A form heterodimers 
that, together with immunoglobulins at the B cell membrane, constitute B cell 
receptors (BCRs) (Davis et al., 2010). The ITAMs of CD79A and CD79B are 
involved in BCR signaling and internalization. In DLBCL, the ITAMs of 
CD79A and, most frequently, CD79B recurrently undergo point mutations 
and deletions that prevent BCR internalization, increasing surface BCR levels 
and causing overactive oncogenic BCR signaling (Davis et al., 2010; Wilson et 
al., 2015). Indeed, when we overexpressed the most frequent CD79BIR variant 
in U-2932 and Ri-1 (Riva) cells, surface BCR levels increased compared to 
overexpression of wild type CD79B or of the most frequent exonic mutation, 
CD79BY196H (Figure 47C-D). Furthermore, CD79BIR and CD79BY196H, but not 
CD79BWT, increased phosphorylation of AKT and RELA/p65 in U-2932 cells, 
suggesting an increase in oncogenic signaling via AKT and NF-κB (Figure 
47E). Taken together, our results highlight the functional relevance of splice 
site mutations in CD79B in DLBCL. 
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Figure 48. Summary of RNA aberrations identified in splice site mutant 
genes. For each type of aberration, the top 6 most affected genes are shown. In 
addition, one illustrative example is represented schematically. Arrows mark the 
most recurrently mutated splice site in the gene. Exon numbering was based on 
the following transcripts from Ensembl v28: ENST00000006750.7 (CD79B), 
ENST00000396373.8 (ETV6), ENST00000261822.4 (BCL7A), 
ENST00000313708.10 (EBF1), ENST00000355740.6 (FAS, splice option 1), 
ENST00000355279.2 (FAS, splice option 2). In FAS, splice site mutant samples 
have a decreased usage of the “splice option 1” and an increased usage of the 
“splice option 2”. Note that our analysis estimates the differential usage of each 
splice junction, not the expression of whole transcripts. 
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Figure 49. Distribution of mutations in CD79B: A. In Reddy et al’s cohort, 
based on our reanalysis; B. In Schmitz et al’s cohort, based on their original 
report, which already included splice sites. We highlight the splice site mutations 
in intron 4 as well as the Y196 position. Figure generated using cBioPortal 
(http://www.cbioportal.org/mutation_mapper). 

 

Figure 50. Phenotypical assays on CD79B variants in Ri-1 cells. A. Western 
blot of the overexpression of wild type or mutant CD79B in Ri-1 cells. Note that 
the epitope recognized by the antibody is the region that is lost by CD79BIR, 
which is why overexpression cannot be detected by this method. However, we 
confirmed CD79BIR plasmid overexpression by flow cytometry (GFP+ signal). B. 
Changes in surface IgM expression in Ri-1 cells after overexpression of wild type 
or mutant CD79B. Mutant CD79BIR increases surface IgM at a higher extent 
than CD79BY196H. The ABC DLBCL line Ri-1 was transduced with either 
CD79BWT, mutant CD79BY196H or mutant CD79BIR. Surface IgM is depicted 
gating on a co-transduced GFP marker to identify the subset of transduced cells 
with equivalent ectopic CD79B RNA expression 
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4.4. Discussion 

Splicing is critical for generating correct mature mRNAs containing full-
length, in-frame coding sequences. Accordingly, genes contain highly 
conserved sequences that mark the boundaries between exons and introns 
(Sibley et al., 2016). Most of these sequences are intronic and, therefore, non-
coding, and for this reason they have been overlooked by previous mutational 
studies (Reddy et al., 2017). In this work, we have provided a comprehensive 
collection of recurrent non-coding mutations affecting splice donor and 
acceptor sites in 1711 DLBCL patients. In addition, we have evaluated whether 
the splice site mutations altered splicing patterns at the RNA level. 

Our analyses were limited by the availability of external data. Because the 
publicly available dataset of Reddy et al did not contain data from normal 
samples, we were forced to apply highly conservative filters when we 
reanalyzed it. As a result, we have most certainly excluded genuine somatic 
mutations from our report. We expect that an analysis that incorporates 
information from matched normal samples should reveal even more splice site 
mutant genes. In addition, more RNA-altering mutations may be discovered 
by analyzing intronic nucleotides beyond splice donor and acceptor sites, as 
well as the last exonic nucleotides and splice site-creating mutations (Shiraishi 
et al., 2018). 

In our analysis, the gene most recurrently affected by RNA-altering splice site 
mutations was CD79B. The mutations concentrated in the fourth intron, 
especially at the splice donor site, creating a truncated CD79B protein. To our 
knowledge, only one previous report had described splice site mutations at 
CD79B (Zhang et al., 2020). However, the previously reported mutations 
affected the fourth splice acceptor site, which was rare in our analyzed datasets. 

CD79B is one of the most clinically important genes in DLBCL because it is 
mutated in ~30% of ABC DLBCLs (Reddy et al., 2017; Schmitz et al., 2018). In 
addition, CD79B mutations, together with MYD88L265P mutations, define the 
MCD genetic subtype (Schmitz et al., 2018). MCD DLBCLs are characterized 
by a poor prognosis but good response to ibrutinib, a specific inhibitor of the 
Bruton's tyrosine kinase (BTK) (Schmitz et al., 2018; Wilson et al., 2015). The 
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degree of response to ibrutinib is largely dictated by whether only CD79A/B, 
only MYD88, both, or none are mutated (Wilson et al., 2015). However, 
clinical and phenotypical studies involving CD79B mutations have mostly 
focused on its point mutations at tyrosine 196 (Y196), which is its most 
recurrent mutational hotspot. Non-synonymous SNVs at Y196 inactivate an 
ITAM and, as a result, prevent BCRs from being internalized and degraded, 
causing overactive BCR signaling (Davis et al., 2010). 

According to our findings, splice site mutations at the fourth intron of CD79B 
are recurrent in DLBCL and they truncate the protein, removing its whole 
ITAM-containing domain. Therefore, an intriguing question is whether the 
splice site mutations have functional and clinical implications similar to the 
Y196 mutations. At a functional level, in agreement with our results, a deletion 
that removes a splice acceptor site immediately before the ITAM of CD79A 
increases BCR levels in the surface of DLBCL cells (Wilson et al., 2015). 
Moreover, we have shown that overexpression of ITAM-truncated CD79B 
increases phosphorylation of downstream signaling proteins from the two 
main oncogenic pathways that are activated by BCRs: NF-κB and AKT (Young 
et al., 2019).  

Then, how are BCRs containing ITAM-truncated CD79B able to transduce 
signals? Current evidence suggests that, within the CD79A/B heterodimer, 
CD79A is more important for signal transduction whereas CD79B has more 
of a regulatory role (Gazumyan et al., 2006). Therefore, BCRs containing 
ITAM-truncated CD79B may be able to transduce signals as long as CD79A 
remains functional. This would also explain why CD79B is overwhelmingly 
more mutated than CD79A in DLBCL (Reddy et al., 2017; Schmitz et al., 2018). 
Furthermore, because mutations in CD79A/B are heterozygous, mutant and 
wild type BCRs coexist in the same cell, creating complex interaction networks 
that act synergistically to promote oncogenesis (Phelan et al., 2018).  

Finally, at a clinical level, primary central nervous system lymphomas 
harboring CD79BY196 and CD79B splice site mutations show similar responses 
to ibrutinib, which agrees with both mutations having similar functional 
consequences (Lionakis et al., 2017; Wilson et al., 2015).  

 



Chapter 4. Non-coding mutations in diffuse large B cell lymphoma 

 
200 

In conclusion, splice site mutations recurrently affect key DLBCL genes, such 
as those related with disease subtype or with patient outcome. In particular, 
mutations in the fourth splice donor site of CD79B increase surface BCR levels 
similarly to the well-known oncogenic CD79BY196 mutations. Splice site 
mutations can have important clinical applications. In particular, splice site 
mutant genes may be targeted by anti-cancer drugs, such as the recently FDA-
approved capmatinib and tepotinib, which target MET exon 14 skipping in 
metastatic non-small cell lung cancer (Frampton et al., 2015; Mathieu et al., 
2022; Wolf et al., 2020). Furthermore, RNA aberrations caused by splice site 
mutations may generate neoepitopes for immunotherapy (Smart et al., 2018). 
Therefore, splice site mutations may be a major source of clinically relevant 
alterations in cancer. 
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Chapter 5. Conclusions 

Conclusions 

1. Our variant calling pipelines successfully detected high-confidence 
somatic variants in all analyzed datasets. 

2. State-of-the-art driver discovery methods did not perform adequately 
in our targeted sequencing datasets of limited size: whereas a functional 
impact-based method lacked sensitivity in non-coding regions, a 
clustering-based method had a high false positive rate. 

3. The lncRNAs TUSC7, SOX2-OT, and ZEB2-AS1 were the top driver 
candidates in lung adenocarcinoma primary tumors. However, the 
analysis of the biological effect of their variants was inconclusive, and 
these lncRNAs may not have RNA sequence-dependent functions. 

4. Somatic variants in mature miRNAs are rare in lung adenocarcinoma. 
5. A novel somatic variant in the seed of miR-133b in a primary tumor of 

lung adenocarcinoma alters its predicted targets, which include EGFR, 
SMARCD1, and EIF4A1.  

6. We have developed a computational pipeline that annotates cancer 
variants in a miRNA-centric manner, successfully predicting the 
variants that create or disrupt DROSHA processing motifs. 

7. Variants located at or beyond the first and last two intronic nucleotides 
may cause aberrant RNA splicing in cis in cancer genes, such as MET 
in lung adenocarcinoma and CD79B in diffuse large B cell lymphoma. 

8. In diffuse large B cell lymphoma, recurrent variants at the fourth splice 
donor site of CD79B generate a truncated protein that increases the 
number of surface B cell receptors, promoting oncogenic signaling.  
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Conclusiones 

1. Nuestras metodologías para la detección de variantes somáticas 
funcionaron satisfactoriamente en todos los conjuntos de datos 
analizados. 

2. Los métodos actuales para la detección de mutaciones conductoras no 
tuvieron un rendimiento adecuado en nuestros conjuntos de datos de 
secuenciación dirigida de tamaño limitado: mientras que un método 
basado en el impacto funcional tuvo baja sensibilidad en regiones no 
codificantes, un método basado en el agrupamiento de variantes tuvo 
una tasa elevada de falsos positivos. 

3. Los ARNs largos no codificantes TUSC7, SOX2-OT y ZEB2-AS1 fueron 
los principales candidatos a conductores en nuestra cohorte de tumores 
primarios de adenocarcinoma de pulmón. Sin embargo, el análisis del 
efecto biológico de sus variantes no fue concluyente, y estos ARNs 
largos no codificantes podrían tener funciones independientes de la 
secuencia de ARN. 

4. Las variantes somáticas en microARNs maduros son infrecuentes en 
adenocarcinoma de pulmón. 

5. Una mutación somática novedosa en la semilla de miR-133b en un 
tumor primario de adenocarcinoma de pulmón altera sus dianas 
predichas, que incluyen EGFR, SMARCD1 y EIF4A1.  

6. Hemos desarrollado un método computacional que anota variantes de 
una manera microARN-céntrica, prediciendo las variantes que crean o 
destruyen motivos de procesamiento por DROSHA. 

7. Las variantes ubicadas en o más allá de los primeros y últimos dos 
nucleótidos intrónicos pueden causar corte y empalme aberrante de 
ARN en cis en genes relacionados con el cáncer, tales como MET en 
adenocarcinoma de pulmón y CD79B en linfoma difuso de células B 
grandes. 

8. En linfoma difuso de células B grandes, variantes recurrentes en el 
cuarto sitio donador de corte y empalme de CD79B generan una 
proteína truncada que incrementa el número de receptores de células 
B en la superficie celular, promoviendo la señalización oncogénica. 
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Supplementary Figure 1. Genomic features of the TUSC7 locus. The position of the variant predicted to have high functional impact is 
highlighted in yellow.  
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Supplementary Figure 2. Genomic features of the SOX2-OT locus. The region of the variants predicted to have high functional impact is 
highlighted in yellow.  
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Supplementary Figure 3. Genomic features of the SOX2-OT locus (zoomed in). The region of the variants predicted to have high 
functional impact is highlighted in yellow.  
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Supplementary Figure 4. Genomic features of the ZEB2-AS1 locus. The positions of the variants predicted to have high functional impact 
are highlighted in yellow.  
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Supplementary Figure 5. Genomic features of the variants in splice regions of STK11. The positions of the variants in splice regions in 
whole-genome sequencing samples from TCGA-LUAD are highlighted in yellow. 
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Supplementary Figure 6. Genomic features of the variants in splice regions of NF1. The positions of the variants in splice regions in 
whole-genome sequencing samples from TCGA-LUAD are highlighted in yellow. 
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Supplementary Figure 7. Genomic features of the variants in splice regions of MET. The positions of the variants in splice regions in 
whole-genome sequencing samples from TCGA-LUAD are highlighted in yellow.  
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Supplementary Figure 8. Genomic features of the variants in splice regions of RBM10. The positions of the variants in splice regions in 
whole-genome sequencing samples from TCGA-LUAD are highlighted in yellow.  
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Supplementary Figure 9. Genomic features of the variants in splice regions of MUC16. The positions of the variants in splice regions in 
whole-genome sequencing samples from TCGA-LUAD are highlighted in yellow.  
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Supplementary Figure 10. Genomic features of the variants in splice regions of COL3A1. The positions of the variants in splice regions 
in whole-genome sequencing samples from TCGA-LUAD are highlighted in yellow. 
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Supplementary Figure 11. Putative intronic polyadenylation in exon 11 of MET. Reads containing a splice site variant (red rectangles 
at the splice junction) span the first intronic nucleotides. Coverage remains roughly constant for the first ~300 intronic nucleotides, and 
then drops to nearly zero. Less than 100 bp before the drop, two AUUAAA polyadenylation signals were found (red rectangles between the 
genomic coordinate axis and the coverage graph). Snapshot generated using Integrative Genomics Viewer. 
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Supplementary Figure 12. Genomic features of the PRMT5 promoter. The positions of the variants predicted to have high functional 
impact are highlighted in yellow.  
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Supplementary Figure 13. Genomic features of the NKX3-2 promoter. The position of the variant predicted to have high functional 
impact is highlighted in yellow.  
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Supplementary Figure 14. Genomic features of the CCNT1 5’-UTR. The position of the variant predicted to have high functional impact 
is highlighted in yellow.  
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Supplementary Figure 15. Genomic features of the SOX2 UTRs. The positions of the variants predicted to have high functional impact 
are highlighted in yellow.  
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Supplementary Table 1. Features of candidate driver lncRNAs from OncoDriveCLUSTL. 

Dataset lncRNA Genomic features Variant features 

Cell lines GAS6-AS1 Antisense overlapping GAS6 PCG. Variants are 
mostly within a GAS6 intron. 

Low FI. Recurrent variants in a low-mappability 
position (chr13:113842105). 

Tumors, unpaired AIRN Antisense overlapping IGF2R PCG. Two 
isoforms: (1) has three exons and (2) is a single 
~4kb exon fully overlapping (1). Variants affect 
intron 1 of the (1) isoform. 

Low FI. 

Tumors, unpaired AC087741.1 Antisense overlapping CARD14 PCG. Four 
isoforms, one of which is a single exon. Variants 
affect a region unique to the single-exon isoform.  

Low FI. 

Tumors, unpaired HEIH Antisense to LINC00847 lncRNA. Two isoforms: 
(1) does not overlap LINC00847, and (2) does. 
Variants affect a sequence unique to (2). 

Low FI. 

Tumors, unpaired TUSC7 Intergenic lncRNA. Variants affect exons 1 and 4. One variant in exon 4 has high FI.  

Tumors, unpaired AL132780.1 Antisense (non-overlapping) to PRMT5 PCG, 
and overlapping HAUS4 PCG. 

Low FI. 
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Dataset lncRNA Genomic features Variant features 

Tumors, unpaired CAMTA1-DT Antisense (non-overlapping) to CAMTA1 PCG.  Low FI. 

Tumors, unpaired ZFHX2-AS1 Antisense overlapping ZFNHX2 PCG. Variants 
affect a region that is intronic in most ZFHX2-
AS1 isoforms. 

Low FI. 

Tumors, unpaired LINC01391 Sense (non-overlapping) to FOXL2 PCG.  Low FI. 

Tumors, unpaired AC079313.1 >100 kb. Antisense overlapping multiple PCGs. 
Two variants, which affect its last exon, which 
overlaps intron 2 of GTSF1. 

Low FI. 

Tumors, unpaired AL135905.1 Antisense overlapping PTP4A1 PCG. Single-exon 
~1400 bp lncRNA. Variants overlap with an 
intron of PTP4A1. 

Moderate-low FI. 

Tumors, unpaired SOX2-OT >800 kb. Sense overlapping SOX2 PCG.  

>20 isoforms, inconsistent annotation of 3’ end. 

Four high-FI variants near 3’ end of some 
isoforms. A MNV may have biased cluster 
detection. 
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Dataset lncRNA Genomic features Variant features 

Tumors, unpaired ZEB2-AS1 Antisense overlapping ZEB2 PCG. Variants are 
scattered along the lncRNA gene, overlapping 
ZEB2 intron 1, 5’-UTR, and promoter. 

Moderate-high FI for variants overlapping ZEB2 
intron 1, 5’-UTR, and promoter. 

Tumors, unpaired DHRS4-AS1 Antisense overlapping DHRS4 PCG. Low FI. 

Tumors, unpaired NEAT1 Intergenic lncRNA. Variants are scattered along 
the whole gene. 

Moderate-low FI. 

Tumors, unpaired HOTAIR Antisense overlapping HOXC11 PCG. Variants 
affect its last exon. 

Low FI. 

Tumors, unpaired EGFR-AS1 Antisense overlapping EGFR PCG. Variants affect 
introns 19 and 20 of EGFR. 

Low FI. Localized hypermutation may have 
biased cluster detection. 

TCGA-LUAD C5orf66 >300 kb. Antisense overlapping PITX1 and 
MACROH2A1 PCGs.  

Low FI. 

Hits for which evidence of high functional impact (FI) was detected are highlighted. FI was assessed by phyloP, CADD, and FATHMM-
MKL. p.+unp.: the lncRNA was a hit in both the paired primary tumors and the unpaired primary tumors. PCG: protein coding gene. 
lncRNA: long non-coding RNA. TSS: transcription start site. MNV: multi-nucleotide variant.  
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Supplementary Table 2. Seed mutations in miRNAs in our cohorts affecting conserved positions or detected in external cohorts. 

Mutation miRNA Dataset Sample phyloP 
FATHMM-
MKL 

CADD COSMIC? TCGA-LUAD? 

chr6:52148992_G>T miR-133b 
Tumors, 
paired 

16D00524 7.23 0.99 19.42 
Colon 
(COSN187839) 

No 

chr17:77089472_A>C miR-6516-3p 
Tumors, 
unpaired 

16D00528 5.93 0.97 21.4 No No 

chr19:10817486_A>C miR-199a-5p 
Tumors, 
unpaired 

16D01798 5.74 0.95 17.30 No No 

chr19:53712230_G>T miR-518b Cell lines H1734 0.32 0.07 2.81 
Lung  

(COSN8606333) 
No 

chr19:6416449_C>T miR-3940-3p Cell lines A427 0.13 0.15 2.31 
Pancreas 

(COSN7451488) 
No 

All genomic coordinates use the hg38 reference genome. “phyloP”: phyloP 100-way conservation score (higher values mean higher 
conservation); “FATHMM-MKL”: pathogenicity score from FATHMM-MKL (range 0-1, higher scores mean higher pathogenicity); CADD: 
pathogenicity score from CADD (phred scale, higher values mean higher pathogenicity); “COSMIC?”: is the miRNA mutant in independent 
samples from COSMIC?; “TCGA-LUAD?”: is the miRNA mutated in TCGA-LUAD (WES or WGS)?  
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Supplementary Table 3. Mutations in DROSHA processing motifs in our cohorts. 
Dataset Sample Mutation miRNA Motif (Effect) Method phyloP TPM (Gil.) RPM (TCGA) 

Cell lines H1734 chr19:51693346_C>G mir-125a CNNC (Disrupt) Both 0.66 10084.54 616.37 

Cell lines H2087 chr19:53787660_G>A mir-371b CNNC (Disrupt) Positional -1.23 1.25 0.06 

Cell lines H650 chr11:60209153_C>G mir-6503 UG (Disrupt) Positional 0.26 1.50 0.44 

Cell lines H1975 chr15:88611851_C>G mir-7-2 mGHG (88->4.9) - 3.87 389.72 2.94 

Cell lines H1648 chr7:67114329_G>T mir-4650-1 mGHG (17->2) - 0.54 0.38 0.00 

Cell lines H1573 chr7:74191206_C>T mir-590 mGHG (43->62) - 1.26 50.27 16.63 

Cell lines H1734 chr7:128207946_G>A mir-129-1 mGHG (34->23) - 1.89 2.53 1.73 

Cell lines LC319 chr9:83969839_G>C mir-7-1 mGHG (65->2.3) - 9.26 389.72 2.94 

Cell lines H1568 chrX:147272406_C>A mir-510 mGHG (86->28) - -0.76 0.49 0.02 

Tumors  16D01787 chr19:53680031_C>G mir-519e CNNC (Disrupt) Both -0.40 0.43 0.02 

Tumors 16D01765 chr14:101049652_C>T mir-655 CNNC (Disrupt) Both 0.48 13.72 1.08 

Tumors 16D01771 chrX:147259730_C>G mir-509-3 UG (Disrupt) Positional -0.52 4.24 1.73 

Tumors 16D01771 chr11:72615129_A>C mir-139 mGHG (86->6.9) - 5.68 97.36 40.93 

All genomic coordinates use the hg38 reference genome. “Effect”: for motifs other than the mismatched GHG (mGHG), whether the 
mutation creates or disrupts a motif; for mGHG, change in mGHG score. “Method”: was the motif predicted by the “positional” method, 
the “structural” method, or both? “phyloP”: phyloP 100-way conservation score for the mutated position. TPM (Gil.): transcripts per million 
in tumors from Gillette et al’s cohort. RPM (TCGA): reads per million in tumors from TCGA-LUAD. 
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Supplementary Table 4. Mutations in DROSHA processing motifs in TCGA-LUAD. 

Dataset Sample Mutation miRNA Motif (Effect) Method phyloP TPM (Gil.) RPM (TCGA) 

WGS TCGA-05-4432 chr9:136746931_C>T mir-6722 UGUG (Disrupt) Structural 0.30 0.09 0.00 

WGS TCGA-05-4420 chr18:39676783_G>A mir-5583 mGHG (29->33) - -0.94 0.41 0.00 

WES TCGA-91-6848 chr14:101065538_C>A mir-412 CNNC (Disrupt) Structural 2.93 4.13 2.03 

WES TCGA-L4-A4E5 chr17:59151127_G>T mir-301a CNNC (Disrupt) Structural 6.93 10.39 12.74 

WES TCGA-55-8616 chr19:53697623_C>CA mir-525 CNNC (Disrupt) Both 0.28 1.01 0.09 

WES TCGA-93-8067 chr14:101560306_G>A mir-1247 CNNC (Disrupt) Positional 1.14 21.01 10.39 

WES TCGA-86-8585 chr19:53686504_T>A mir-519c UGUG (Disrupt) Both 0.27 0.41 0.05 

WES TCGA-55-8089 chr19:53716633_G>T mir-521-2 UGUG (Disrupt) Both -0.63 0.31 0.07 

WES TCGA-55-7907 chr19:53787707_C>G mir-371a UGUG (Create) Structural -0.82 0.34 0.20 

WES TCGA-MP-A4TF chr4:20528325_C>T mir-218-1 UGUG (Create) Positional 2.27 356.05 22.26 

WES TCGA-55-A490 chr19:53690881_C>G mir-520a UG (Create) Structural -0.67 0.39 0.16 

WES TCGA-78-7220 chrX:145994352_C>A mir-890 UG (Create) Structural -0.74 0.59 0.01 

WES TCGA-17-Z014 chr10:54607881_G>T mir-548f-1 mGHG (39->8.1) - 0.33 0.48 0.03 

WES TCGA-17-Z059 chr11:64341909_A>C mir-7155 mGHG (49->12) - 0.30 0.92 0.22 

WES TCGA-95-7039 chr11:122099766_C>T mir-125b-1 mGHG (46->32) - 6.91 8778.97 239.52 

WES TCGA-55-8506 chr14:101044275_C>A mir-1185-2 mGHG (51->17) - -0.87 1.89 0.14 
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Dataset Sample Mutation miRNA Motif (Effect) Method phyloP TPM (Gil.) RPM (TCGA) 

WES TCGA-55-8089 chr14:101065372_G>T mir-409 mGHG (18->2.4) - 2.17 155.50 13.83 

WES TCGA-97-7937 chr15:31065056_T>A mir-211 mGHG (8->1.2) - 5.84 1.45 0.18 

WES TCGA-44-6777 chr19:53713355_T>A mir-519d mGHG (75->37) - 0.28 0.42 0.06 

WES TCGA-44-2656 chr19:53716672_C>A mir-521-2 mGHG (75->42) - -1.95 0.31 0.07 

WES TCGA-55-A48X chr3:168551937_G>T mir-551b mGHG (59->10) - 5.93 1.17 2.46 

WES TCGA-55-8094 chr7:128207871_T>A mir-129-1 mGHG (34->3) - 0.31 2.53 1.73 

WES TCGA-44-A4SU chrX:134170272_G>A mir-106a mGHG (11->17) - 4.59 189.02 10.31 

WES TCGA-44-6779 chrX:146027800_G>A mir-891a mGHG (31->41) - -0.39 1.43 3.11 

WES TCGA-17-Z010 chrX:152392226_C>A mir-105-1 mGHG (22->4.5) - 0.95 3.38 2.18 

WES: whole exome sequencing. WGS: whole genome sequencing. All genomic coordinates use the hg38 reference genome. “Effect”: for motifs 
other than the mismatched GHG (mGHG), whether the mutation creates or disrupts a motif; for mGHG, change in mGHG score. “Method”: 
was the motif predicted by the “positional” method, the “structural” method, or both? “phyloP”: phyloP 100-way conservation score for the 
mutated position. TPM (Gil.): transcripts per million in tumors from Gillette et al’s cohort. RPM (TCGA): reads per million in tumors from 
TCGA-LUAD 


