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A B S T R A C T   

Modelling quality depletion of oils and establishing their shelf life (or ageing rate) remains a challenge for food 
industry. A persistent issue in the control of lipid oxidation is deciding which oxidation products are the most 
suitable to be monitored. Several attempts have been done in this regard, however, the number of parameters 
that can be considered to assess oil shelf life is excessively wide and the proposed univariate models have proven 
to be extremely dependent on experimental conditions. For this reason, the methodology for carrying out a 
multivariate kinetic model is presented, combining physico-chemical and sensory parameters from experimental 
analytical determinations, and chemometric data processing tools. The main objective is to develop a multi-
variate shelf life model that allow predicting the number of months in which an extra virgin olive oil complies 
with the requirements of its commercial category when ageing takes place under standard trading conditions.   

1. Introduction 

Edible olive oil is a food commodity marketed under different des-
ignations referring to different categories, being the extra virgin olive oil 
(EVOO) the highest quality which is determined by threshold values of 
physico-chemical and sensory characteristics which in the latter case 
requires that must be free of defective organoleptic attributes (European 
Commission, 2019). In addition, EVOO, defined as a juice obtained from 
the fruit of the olive tree (Olea europea L.) which has not undergone any 
treatment other than milling, washing, decanting, centrifuging and 
filtering, is found at the base of the ’Mediterranean Diet’ pyramid and 
has proven considerable beneficial effects on human health (Sánchez 
Quesada et al., 2020). 

However, sensory characteristics and the most of physico-chemical 
properties of EVOO are not stable through the time. Among the deteri-
oration processes that EVOO could undergo from the moment it is 
produced, they can be grouped into three general mechanisms: (i) 
enzymatic oxidation, (ii) photo-oxidation, (iii) autoxidation; favoured 
by the incidence of various factors, all of which oxygen, temperature and 
light are the most important (Morales & Przybylski, 2013; Talbot, 2011). 

Once EVOO is extracted, filtered and packaged, or stored in suitable 
containers, and provided that it is kept away from direct sunlight and 
heat, the main alteration is due to autoxidation, also known as rancidity. 
During the autoxidation reaction, a number of new compounds are 
formed, while minor components are degraded, causing off-flavours, 
loss of nutritional value and finally consumer rejection. 

The concept of stability of vegetable edible oils is generally accepted 
as the shelf life of the product until rancidity becomes evident 
(Moschopoulou, Moatsou, & Drosinos, 2019). Current legislation de-
mands that producers must indicate a best-before date on the label of 
EVOO, which is usually set at around 18–24 months by agreement 
(Government of Spain, 2021). After this period, an EVOO could be 
consumed, but its sensory attributes and healthy attributes are diluted 
over time and there may be an associated risk with human health and 
safety concerns. Therefore, it is easy to find olive oils in the market 
labelled as a higher-quality product than it really is. These edible oils 
would be engaging in non-conformity food fraud. Consumers increas-
ingly appreciate food quality and, consequently, it is necessary to pro-
vide advance analytical information, with scientific support, for the 
quality characterisation of oils and other high fat food products. 
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One question that persists in lipid oxidation control is deciding 
which oxidation products are the most suitable to be monitored. There 
are a lot of advances and research papers in this topic (Pignitter & 
Somoza, 2012), however, the number of parameters that could be 
considered for assessing the shelf life of EVOO is excessively wide: total 
phenol content (Psomiadou & Tsimidou, 2002), pyropheophytins trend 
(Aparicio, Roca, & Gandul Rojas, 2012), changes and evolving of the 
fatty acid composition, volatile compounds, ultraviolet absorbance or 
peroxide value (Guillaume & Ravetti, 2016), among others; so that, in 
practice, it is not feasible acquire a clear idea of their behaviour by 
examining separately the evolution of each one. 

In recent years, relying on multiparametric kinetic studies and 
modelling approaches by applying specific data mining methods, which 
formally referred to as ’chemofoodmetrics’, progress has been made in 
the understanding of complex food quality-related reactions such as 
EVOO. Formally, ’chemofoodmetrics’ could be defined as the science 
that relates measurements of chemical or physico-chemical parameters 
to the quality features of a food by applying mathematical or statistical 
methods. Multiparametric kinetic and shelf life models are often more 
generically applicable than single-parameter models and could be more 
easily applied to other products or processes (Grauwet, Vervoort, Colle, 
Van Loey, & Hendrickx, 2014). A detailed review of multivariate ap-
proaches applied on vegetable oil stability studies monitoring wide se-
lection of parameters have been recently reported (Cui et al., 2023; 
Martín Torres, Ruiz Castro, Jiménez Carvelo, & Cuadros Rodríguez, 
2022). Although a wide number of studies dealing with EVOO stability 
are available in the literature, both single-parameter monitoring models 
and multiparametric models, they often do not allow shelf life data to be 
obtained due to lack of a clearly defined acceptability limit. 

For this reason, this paper deals with explanation and discussion of 
fundamental and framework for carrying out a multivariate shelf life 
model that allows an estimation of the shelf life of the vegetable oil 
under consideration. EVOO oxidation kinetics and shelf life results, 
when oxidised under standard storage conditions simulating super-
market shelves, are reported. 

2. Methodology 

2.1. EVOO samples 

83 freshly produced and filtered EVOO samples were supplied by 
different producers during 2019/2020 harvest season just after milling, 
so that its ageing time could be initially considered as zero. Several olive 
varieties, degree of ripeness and geographical regions (mainly from 
Spain, but also Morocco and Portugal) were considered in the aim of 
being representative of the product variability found on the market. 

2.2. Storage 

As mentioned above, oxygen, temperature and exposure to light are 
the main causes of the oxidation of vegetable oils. So that, the control of 
storage conditions for shelf life studies is a critical step. Two different 
strategies can be pursued: (i) actual shelf life testing, that mimics the 
expected real storage conditions carefully chosen to realistically simu-
late storage and which must be kept constant until the end of the study; 
(ii) accelerated shelf life testing, under forced light and temperature 
conditions capable of increasing the rate at which food quality is lost. 

In this study, seven batches were considered, consisting of the 83 
different EVOOs, which were packaged in transparent food-grade PET 
60 mL bottles (labelled from A to H) and were stored in a temperature- 
controlled room (20 ± 5 ºC) exposed to 12 h of cold white LED light 
(6200 K), simulating standard supermarket store conditions during 14 
months. The first lot (A), it was analysed at the beginning of the study, 
consider as zero month of ageing. After 2 months of storage, lot (B) was 
analysed. Consecutively, every two months, an aliquot of each oil 
sample was analysed (up to lot (H) after 14 months of ageing) for 

physico-chemical and sensory parameters. 

2.3. Analytical equipment 

Refractive indexes were obtained using an Abbe refractometer 
ORT1RS. Spectroscopic UV absorption values were measured on Gen-
esys 10SUV-Vis while anisidine value was determined using Agilent 
8453 spectrophotometers. Oxidative stability was performed on Meth-
rom 892 Professional Rancimat. Varian 3800 gas chromatographer 
equipped with a flame ionisation detector (Varian 450 GC) and an RXI- 
5HT capillary column was used to the quantification of the relative 
amounts of 1,2- and 1,3-diglycerides. Same equipment with Agilent HP- 
INNOWAX column was used to acquire the volatile compound finger-
prints. The analytical determination of tocopherols was performed on 
Agilent 1100 Series liquid chromatograph equipped with a G1321A 
fluorescence detector using Ultrabase Sil column. Zorbax eclipse plus 
C18 and Agilent 1260 multiple wavelength detector were used for 
pyropheophytin a content measurement. Polar (phenolic) compounds 
quantification was performed on Agilent 1260 equipped with G7111B 
diode array detector. 

2.4. Testing 

Once samples and storage conditions are selected, is then necessary 
to carefully chosen quality indicators to monitor the changes as a 
function of time. It is advisable to considerer primary and secondary 
oxidation analytical parameters to have a clearer picture of the on-going 
oxidation situation together with sensory evaluation in order to identify 
off-flavours that are easily appreciable by the consumer’s senses. In 
order to carry out a multivariate-based estimation of the EVOO shelf life, 
the following parameters were monitored. 

2.4.1. Physico-chemical analyses 
Refractive index was determined according to ISO 280 standard (ISO 

280, 1998). Spectroscopic UV absorptivity values, K232, K270 and ΔK 
were determined in compliance with COI/T.20/Doc. No 19 standard 
(COI/T.20/Doc. No 19/ Rev.5, 2019). The oxidative stability was 
measured by using the Rancimat method at 120 ºC as described in ISO 
6886 standard (ISO 6886, 2016). Both peroxide and anisidine values were 
determined according to the recognised methods described in COI/-
T.20/Doc. No 35 (COI/T.20/Doc. No 35/ Rev.1, 2017) and ISO 6885 
standards (ISO 6885, 2016) respectively. 

2.4.1.1. Chromatographic profiling. The quantification of the relative 
amounts of 1,2- and 1,3-diglycerides was performed by gas chroma-
tography as described in the ISO 29822 standard (ISO 29822, 2009). 
Total, α-, β-, γ- y δ-tocopherols were quantified after high performance 
liquid chromatography (HPLC) and subsequent fluorescence detection 
according to ISO 9936 standard (ISO 9936, 2016). ’Pyropheophytin a′

content was determined in accordance with ISO 29841 standard (ISO 
29841, 2009). 

The extraction, separation and subsequent detection of polar 
(phenolic) compounds by HPLC-DAD were carried out following the 
principles outlined in COI/T.20/Doc No29 method (COI/T.20/Doc. No 
29, 2009) with slight modifications (previously published) (Cuadros 
Rodríguez et al., 2021). Ratio of areas of phenolic alcohols, phenolic 
acids, secoiridoids, lignans and flavonoids, referred to the total bio-
phenols area, was expressed as a percentage. 

2.4.1.2. Chromatographic fingerprinting. Volatile compounds were 
characterised by headspace solid-phase microextraction followed by GC- 
FID analysis. A more detailed explanation of both sample preparation 
and chromatographic conditions are described in a previous paper 
(Ortega Gavilán, Valverde Son, Rodríguez García, Cuadros Rodríguez, & 
Bagur González, 2020). After volatile fingerprints acquisition, 
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chromatograms were exported from the instrument software and 
embedded in a vector of data, and further pre-processed: (i) selection of 
region of interest; (ii) alignment using an average chromatogram as 
reference; and (iii) normalisation of intensities with respect to the in-
ternal standard. Each data vector containing the related chromato-
graphic fingerprint of an EVOO sample consisted of 8391 elements, each 
of which is a single variable indicating a normalised signal intensity. 
When fingerprinting methodology is applied, the compounds referred to 
are neither identified nor quantified in the conventional way. It is 
therefore necessary to apply a process of selection of the variables that 
best define the evolution of the oil. This issue will be suitably explained 
later. 

2.4.2. Sensory analyses 
EVOO samples were sensory evaluated of rancidity. Rancidity value 

was agreed by a panel of 2–3 trained and experienced tasters in ’open- 
tasting’ sessions, following the procedure described in COI/T.20/Doc 
No15 (COI/T.20/Doc. No 15/Rev. 10, 2018). It should be noted that the 
tasters are part of a sensory panel authorised by the IOC and accredited 
by the ISO 17025 standard. 

2.5. Kinetic modelling and shelf life estimation 

The availability of large data set does not mean at the immediate 
time availability of information promptly accessible. A properly use of 
chemometric tools that allow the interpretation of the hidden and non- 
evident information embodied within the data is necessary. All che-
mometric treatments were carried out using MATLAB (R2017b version, 
The Mathworks Inc. Natik, MA) and PLS_Toolbox (version 8.7, Eigen-
vector Research Inc., Wenatchee, WA). 

Two approaches could mainly be differentiated regarding multivar-
iate data analysis of foodstuff stability data: unsupervised and super-
vised multivariate pattern recognition methods. 

Principal component analysis (PCA) is aimed at finding the simplest 
mathematical model able to describe the data set satisfactorily. PCA 
looks for a smaller number of underlying factors, named principal 
components (PCs), that explain most of the variability exhibited by the 
larger number of measurements made on the objects/samples. It is an 
unsupervised method because it does not require training input to find 
the output: no additional knowledge (e.g., y-variable) besides raw data 
(x-variable) is needed to describe the data set. Models work on its own to 
improve understanding and accessibility of the intrinsic features of the 
data. PCA model was built in order to detect the presence or absence of 
outlier samples and to evaluate relationships between samples and 
variables, and between variable themselves. After that, PCs scores were 
used to model kinetic of EVOO oxidation. 

Partial least-squares regression analysis (PLS) is aimed at detecting 
cause-effect relationships. PLS is a supervised multivariate method 
because, apart from the information on the x-variables measured, the 
available knowledge on a dependent response y-variable (usually, 
storage time) is applied to obtain a latent variable (LV) model that 
optimally describes the response variable. PLS computes a partial least- 
squares regression model to predict a dependent y-variable from a set of 
independent x-variables. PLS regression was used to evaluate impor-
tance of individual variables in the quality depletion of EVOO using 
loading plot of the variable’s importance in projection (VIP) scores in 
the PLS model. The VIP formulation as originally proposed is a param-
eter varying in a fixed range since the sum of squared VIP for all vari-
ables sum to the number of variables. A variable with a VIP value close 
to or greater than one can be considered important in a given model. 
Variables with VIP values significantly less than one are less important 
and might be good candidates for exclusion from the model. Note that 
this criterion is suitable for discarding non-relevant variables, but may 
have drawbacks if used to assess the feature importance (Cocchi, Bian-
colillo, & Marini, 2018). After that, LV scores were used to obtain a 
multivariate equation of EVOO quality depletion and, therefore, to 

evaluate shelf life time. 
PCA may be more responsive to other sources of variation whereas a 

PLS prediction model based on ageing months will in general behave 
more robustly as PLS only takes into account the covariance between 
spectral profiles and predicted values and which may provide the 
advantage of being more flexible for future validations. 

2.5.1. Acceptability limit 
Shelf-life studies require the identification of an acceptability limit; 

this is what makes it different from a stability study. This is a very hard 
decision to make when selecting the cut-off value of a critical attribute, i. 
e., the attribute that has the highest impact on the quality depletion of 
the oil, or shows the most change over the shortest time period. Nor-
mally it is referred to legal or regulatory requirements. When multi-
variate shelf life model is conducted, acceptability limit vector includes 
all the attributes that show change over time and gives rise to a single 
scalar coefficient, Qc, which is traduced to shelf life time. 

Once the PLS regression model of shelf life is built, loading matrix is 
necessary to calculate QC, defined as follows: 

QC = max(QA⋅L)

where QA is the autoscaled acceptability limit vector and L the loading 
matrix of the time related latent variable of the model. QC is then 
interpolated into shelf life model equation to obtain cut off criteria, tC, or 
shelf life time. 

3. Result and discussion 

3.1. Experimental data matrix of ageing 

Firstly, data were arranged in a 664 × 30 matrix: each row corre-
sponds to each sample at specific storage time batch (0, 2, 4, …, 14 
months). Each column corresponds to the value of a single determined 
parameter. Table S1 (supplementary material) shows all parameters or 
variables, and a brief description of them, which have been monitored 
over 14 months. 

In order to carry out the previous selection of the volatile variables, 
all volatile fingerprints were integrated into a data matrix. A table 
showing all the parameter results at the beginning of the study (month 
zero of storing) has been included in the supplementary material (Table 
S2). 

Then, a preliminary PLS regression model against storage time was 
built and the VIP coefficients were calculated. Variables (linked to 
retention times) showing an absolute VIP coefficient exceeding the 
threshold value of 1.00 were selected as relevant influential ones and the 
corresponding chromatographic intensity (height) was considered.  
Table 1 shows the nine selected volatile variables and the corresponding 
retention times for each one. 

3.2. Modelling of EVOO ageing 

Experimental data were processed by multivariate analysis 

Table 1 
Influential volatile variables, related to the volatile chromatographic finger-
print, on the storage time.  

Name Variable number VIP scores for Y1 Retention time interval (min) 

Volat1  19  1.34 1.89–2.36 
Volat2  36  1.04 2.39 – 2.42 
Volat3  55  1.01 2.50 – 2.51 
Volat4  83  1.04 2.71 – 2.75 
Volat5  142  1.22 2.95 – 3.06 
Volat6  178  1.04 4.86 – 5.11 
Volat7  203  1.02 5.33 – 5.34 
Volat8  254  1.06 7.27 – 7.30 
Volat9  280  1.09 8.25 – 8.37  
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procedures to select significant parameters on stability of our EVOO lots. 
All data were mean-centred and the variables were weighed by their 
standard deviation to give them equal variance (autoscaled). 

A multidimensional map of the 83 EVOO samples in relation to the 
30 physicochemical parameters and sensory characteristics was ob-
tained by PCA. 6 PCs were selected that explain 75% of the total data 
variability. The PC1 (40.6% of variance) seemed to grouped and order 
the samples according to the ageing of storing (Fig. 1) showing the 
higher scores a greater number of months stored oils. In order to inspect 
for ’outlier’ samples by checking the residual values and the leverage 
effect they generate in the model, a Q-T2 screening plot is shown on 
figure S1 (supplementary material). The particular data for three 
possible outliers are reviewed. No reason for outliers was detected. It 
was concluded that these must be measurement experimental errors and 
it was decided to continue without excluding any sample. 

3.2.1. Selection of significant variables 
A preliminary PLS model, considering all the variables, was then 

applied to evidence possible relationships between storage time (y- 
variable) and the potentially significant dependent variables (x-vari-
ables). 4 LV were selected; LV1 explained 91% of the cumulative vari-
ance of the y-variable which stated a high correlation between among 
influential analytical parameters and storage time. Fig. 2 shows that 
samples were linearly distributed with a correlation coefficient of 0.95. 
This leads to the option of using PLS (instead of PCA) to estimate the life 
time. In addition, figure S2 (supplementary material) shows VIP co-
efficients for the PLS model. 

Clearly γ-tocopherol and δ-tocopherol, total biophenols, phenolic 
acids, secoridoids, lignans+flavonoids, and anisidine value variable do 
not contribute with relevant information to the model and were not 
further considered (VIP coefficient <0.5). K232, ΔK, oxidative stability, 
phenolic alcohols and refractive index are questionable. On the con-
trary, pyropheophytin a, 1,2-diglycerides, 1,3-diglycerides, volat1, 
volat2, volat3, volat4, volat5 and volat8 are the variables with the 
highest correlation with ageing. 

Pearson’s correlations between pair of variables included in the 
model were evaluated. Highly correlated variables (Pearson correlation 
coefficient >0.70) provide similar information and there is a risk of 
overfitting the model. Table 2 shows a summary of excluded and 
selected variable on the multivariate models for the rest of the study. 

3.2.2. Kinetic parameters 
A new PCA model was built but considering only selected relevant 

variables (664 ×17 data matrix). On this occasion, 6 PCs were selected 
increasing both the total cumulative variance explained (>80%) and the 
variance explained by PC1 (>50%) with respect to the former model. It 
clearly shows that PC1 is time-structured, making it suitable for esti-
mating the kinetic parameters. 

Typically, degradation reactions could follow a zeroth-order, first- 
order or second-order kinetics, as well as the cumulative form of the 
Weibull model which has proven useful in numerous studies that 
improved the fit of experimental observations to various quality indices 
as a function of time due to its extreme flexibility (Amodio, Derossi, 
Mastrandrea, & Colelli, 2015). 

Zeroth order kinetics 

− dQ
dt

= k; Q = Q0 − k⋅t 

First order kinetics 

− dQ
dt

= k⋅Q; lnQ = lnQ0 − k⋅t 

Second order kinetics 

− dQ
dt

= k⋅[Q]
2
;

1
Q
=

1
Q0

+ 2k⋅t 

Weibull kinetics 

Q(t) = Q0⋅e[− bm(T)nm(T)]

where Q (or Q(t)) is a variable which collects the PC1 scores of the 
samples as a function of time, and Q0 the score of the fresh sample, i.e., a 
parameter representative of initial conditions at time zero. In all cases, k 
is the oxidation kinetic constant. 

The best model fitting was obtained when the logarithm of PC1 
scores is plotted vs. the storage time (coefficient of determination, R2 =

0.894; root mean square error, RMSE = 0.0489) so we can stay that the 
data follow pseudo-first order degradation kinetics with Q0 = 1.165 and 
k = 0.031. 

3.3. Shelf life modelling 

A subsequent PLS model, considering just the selected variables, was 
set up with 3 LVs (the first variable explains more than 90% of the 

Fig. 1. PC1 scores for the 83 EVOO samples: storage time is used only as class marker.  
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cumulative variance of the y-variable, i.e., storage time) considering 
only relevant x-variables. The LV1-LV2 scores plot was evaluated. It can 
be perceived that the samples were ordered from negative scores for LV1 
in the youngest oils, to positive values when storage time increases. It 
can be also seen how the biggest differences were found after month 10 
of ageing, showing a wider dispersion of the samples, with most of the 
samples being outside the confidence region (95%) of the LV1-LV2 plot 
(see figure S3a, supplementary material). Moreover, within the samples 
of the same class, a greater data scatter is found as ageing time pro-
gresses, i.e., the samples degraded during 10 months show a greater 
variability between them than the samples aged 2 months; this suggests 
unequal ageing rates of the different samples under study. The greatest 
differences in the score values appear between months 8 and 10; where 
the slope of growth of LV1 scores changes (see figure S3b, supplemen-
tary material). 

Finally, a linear regression model is established between predicted 
and known values of the storage time, obtaining a good fit R2 = 0.94, 
RMSE = 0.004; (as it is shown on figure S4, supplementary material). 

LV1 is time-structured (as it can be seen on figure S3b) and accord-
ingly, LV1 scores were used to establish a linear model (Q(t) = a + b⋅t) 
of the autoscaled values of the experimental data vs. the storage time (R2 

= 0.91; RMSE = 0.89). The estimated coefficients (95% confidence in-
terval) were: a = − 4.267 (− 4.393, − 4.141) and b = 0.6096 (0.5945, 
0.6247). 

In order to estimate the shelf-life or ’critical time’, tC, of EVOO, is 
necessary to define the acceptability limit vector collecting the regula-
tory threshold values of the monitored physico-chemical or sensory 
characteristics under study (AS 5264, 2011; European Commission, 
2019) beyond an olive oil can no longer be considered as EVOO: 
peroxide value ≤ 20; K232 ≤ 2.5; K270 ≤ 0.22; ΔK ≤ 0.01; median of 
rancid defect = 0; pyropheophytin a ≤ 17%; 1,2-diacylglycerols ≥ 35%. 

At this point the question that emerges was: what limit values should 
be set for those variables that have significance for the shelf life model but 
they are not covered by regulations? To solve that question, we decided to 
inspect for those scalars in ’unacceptable oils’, i.e., olive oils that has 
exceeded the compulsory limits in one or more physico-chemical or 
sensory analyses. Due to the unequal ageing (as expected) of the 83 
EVOO samples in this study, it was decided to average the data for each 
ageing time. The robust median statistics was applied to find a repre-
sentative value for all samples for each storage time. As a result, 14 
vectors were obtained providing the median of the 17 selected analytical 
parameters of the 83 samples in months 0, 2, 4,. up to 14 months. When 
those vectors were compared with the regulatory limits (where appli-
cable), it should note that the median intensity of the rancid attribute 
exceeds the regulatory parameter from month 10 onwards and conse-
quently may be considered that the half of the olive oils have lost EVOO 
category. 

The acceptability limit vector, QA, is then defined from the limit 
values for all the regulated parameters and the values obtained in the 
median vector of 10-month aged samples for the non-regulatory pa-
rameters. To this regard, the criteria for the definition of the shelf life 
acceptability limits for EVOO undergoing oxidation are based on (1) 
compliance to legal requirements, and (2) robust statistics mean values.  
Table 3 shows acceptability limit vector values. 

For estimating a descriptive value of the Qc scalar, QA vector was 
autoscaled and multiplied by L, the loading vector of LV1, which ex-
plains the largest variance of the y-variable, i.e., ageing time, regarding 
the PLS shelf life model. A value of 3.92 was obtained for QC. 

Finally, QC was interpolated in the regression equation of multivar-
iate shelf life model to obtain a tC value, i.e., the maximum ageing time 
at which an olive oil, provided it has been stored and analysed under the 
same experimental conditions, cannot be classified as EVOO anymore. 
13 months were finally estimated to be a representative shelf life time 
for EVOO stored under the experimental conditions described in this 
study. Notice that a two-month uncertainty in the predictions is taken 
into account; this corresponds to the time that elapses from two 

Fig. 2. Relationship between predicted and known values of the independent y-variable (ageing time) obtained from the PLS model considering all variables.  

Table 2 
Summary of both selected and excluded variables on the EVOO multivariate 
shelf life model.  

Selected variables Excluded variables 

Peroxide value 1,2-diglicerides Refractive indexa 1,3- 
digliceridesa 

K270 Volat1 Anisidine value Volat3a 

K232 Volat2 Total biophenols Volat4a 

ΔK Volat5 Secoridoides Volat6a 

Oxidative 
stability 

Volat7 Phenolic acids  

Rancidity Volat8 Lignans +
flavonoidsa  

Phenolic alcohols Volat9 Total tocopherolsa  

α-Tocopherol Pyropheophytin a γ-Tocopherol  
β-Tocopherol  δ-Tocopherol   

a Excluded variables for having correlation coefficients greater than 0.7 with 
any of the selected variables. 
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consecutive analytical controls (experimental work frequency). There-
fore, the shelf life time, given in months, should be rounded down to the 
nearest whole number to give each EVOO the benefit of the doubt and to 
ensure it complies with requirements. 

3.4. Shelf-life index and ageing rate 

Once the model is established, and tC is estimated, the equivalent 
ageing time, ti, of every single sample could be calculated as:  

Qi = Xi⋅L ⇒ Qi = − 4.267 + 0.6096⋅ti                                                     

where Xi symbolises the auto-scaled vector of the experimental data 
of each sample at a specific time, and L is the vector of loadings of the 
first latent variable, LV1, from the regression PLS model. Qi is interpo-
lated in the shelf life model to obtain ti. 

From this values, a ’Shelf Life Index’, ISL, is then defined as a cardinal 
reflecting the number of months in which an EVOO continues in 
compliance with the requirements of its category. It is calculated from: 

ISL = tC − ti  

where the value of tC is set to 13 months. 
Likewise, an ’Ageing Rate’, %Age, of the EVOO is calculated as 

follows: 

%Age =
ti

tC
⋅100  

3.5. Verifying the shelf life prediction ability 

In order test the reliability of the shelf life model and verify the 
reliability of the predicted critical times, 5 EVOO samples were 
randomly selected from among those included in the study:  

• VE003. ’Arbequina’ monovarietal EVOO from Granada (Andalusia, 
South of Spain). It lost the EVOO category after 8 months of storing, 
exceeding the regulatory value of K272 and rancid defect.  

• VE038. ’Hojiblanca’ monovarietal EVOO from Granada (Andalusia, 
South of Spain). It remained as EVOO throughout the study (14 
months), i.e., it did not exceed any of the regulated limit values.  

• VE040. ’Picual’ monovarietal EVOO from Jaen (Andalusia, South of 
Spain). It remained as EVOO until the 14th month, where it presence 
a rancid defect of 1.  

• VE053. ’Coupage’ blend EVOO from Seville and Jaen (Andalusia, 
South of Spain). It lost the EVOO category in 12 months, as from 
which the value of rancid organoleptic intensity is higher than 
threshold value.  

• VE075. ’Hojiblanca’ monovarietal EVOO from Seville (Andalusia, 
South of Spain). It reached a rancid intensity value higher than zero 
from the month 8 of ageing. 

For these, Qi, ti, ISL and %Age parameters were calculated at each 
ageing time (see Table 4). 

The predicted lifetime from the model, taking as a reference the state 
of each of the olive oils at months 2 and 6, is then compared with the 
actual date on which the olive oil loses EVOO category. The objective 
was to check whether the prediction ability about the predicted time of 
each EVOOs to meet the requirements when no oxidation (or minimal, i. 
e., 2 months of storage), and for the same EVOO when ageing is more 
evident (6 months of storage), was fulfilled. 

At month 2 of storage, VE003 is predicted to keep its quality pa-
rameters within accepted limits for 10 months. Provided that oil is kept 
under described ambient condition and analyses are conducted after 10 
months of storage, VE003 have just exceeded the acceptability limit and 
sample is considered non-conforming to the category. In a similar way, 
VE038, VE053 and VE075 are predicted to have almost 12 to be in 
compliance with requirements. From month 14 of ageing onwards, they 
could either remain acceptable for a few months or have just failed to 
meet the standard. VE040 is predicted to be suitable up to month 16 and 
at month 14 of storing, it is predicted to be within two months until 
reaching the end of its shelf life. 

Considering predictions at month 6 of storage, VE003 showed a shelf 
life index of 5 while it is non-compliant with the category in month 12 of 
storage. VE053 and VE075 are predicted to have shelf life indexes of 7 

Table 3 
Acceptability limit values used for building the scores vector to be applied to the 
EVOO shelf life model.  

Variable Acceptability limit Variable Acceptability limit 

Peroxide value 20.0 1,2-diglicerides 35.00 
K270 0.22 Volat1 0.870 
K232 2.50 Volat2 0.382 
ΔK 0.01 Volat7 0.045 
Oxidative 

stability 
11.10 Volat5 0.002 

Rancidity 1.0a Volat8 0.025 
Phenolic alcohols 4.90 Volat9 0.003 
α-Tocopherol 165.06 Pyropheophytin a 17.0 
β-Tocopherol 2.47    

a lowest rancid organoleptic intensity being considered perceptible and non- 
zero. 

Table 4 
Estimated shelf life index, ISL, and ageing rate, %Age, values for 5 randomly 
selected EVOO to be used as examples on the reliability of the predictions.  

Sample Ageing time Qi ti ISL %Age 

VE003 
a (Month 8) 

0 -3.98 0.47 12.5 4 
2 -2.61 2.72 10.3 21 
4 -0.89 5.54 7.5 43 
6 0.69 8.13 4.9 63 
8 1.97 10.24 2.8 79 
10 3.97 13.51 -0.5 104 
12 4.83 14.93 -1.9 115 
14 6.13 17.05 -4.1 131 

VE038 
a (Stable) 

0 -4.33 -0.10 13.1 -1 
2 -3.45 1.33 11.7 10 
4 -1.94 3.82 9.2 29 
6 -1.42 4.68 8.3 36 
8 -0.42 6.32 6.7 49 
10 0.44 7.72 5.3 59 
12 1.08 8.77 4.2 67 
14 1.03 8.70 4.3 67 

VE040 
a (Month 14) 

0 -5.84 -2.59 15.6 -20 
2 5.00 -1.20 14.2 -9 
4 -3.61 1.07 11.9 8 
6 -3.10 1.92 11.1 15 
8 -2.04 3.66 9.3 28 
10 0.74 8.22 4.8 63 
12 1.03 8.70 4.3 67 
14 2.41 10.95 2.0 84 

VE053 
a (Month 12) 

0 -4.99 -1.18 14.2 -9 
2 -3.72 0.90 12.1 7 
4 -1.82 4.01 9.0 31 
6 -0.83 5.64 7.4 43 
8 0.30 7.49 5.5 58 
10 2.37 10.89 2.1 84 
12 2.58 11.24 1.8 86 
14 4.78 14.84 -1.8 114 

VE075 
a (Month 8) 

0 -4.58 -0.51 13.5 -4 
2 -3.35 1.51 11.5 12 
4 -2.42 3.04 10.0 23 
6 -1.70 4.21 8.8 32 
8 0.28 7.46 5.5 57 
10 2.16 10.55 2.5 81 
12 2.76 11.52 1.5 89 
14 4.06 13.66 -0.7 105  

a The month in which the olive oil loses EVOO category when the regulatory 
parameters are monitored independently (univariate approach), is indicated in 
parentheses; "stable" specifies that the olive oil still retains the EVOO category at 
the end of 14 months. 
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and 8 months respectively. Measurements carried out in month 14 
predicted that both of them are already oxidised and have just exceeded 
the limit of acceptability fixed for its commercial category (note that 
these are true predictions taking into account the uncertainty). Finally, 
VE038 and VE040 showed indexes of 8 and 11 months to be in 
compliance with the legal requirements, and, at month 14 of storage 
(end of the study), they continue in accordance with the EVOO category. 

4. Conclusions 

The multivariate shelf life test was successfully applied to EVOOs. 
The results of the present study indicate that the actual shelf life of 
EVOO could be accurate predicted by measuring some key quality pa-
rameters, evaluating their significance and using multivariate data 
analysis tools to model real time EVOO degradation. Multivariate 
analysis is based in observation and analysis of more than one experi-
mental variable at a time and taking into account the effects of all var-
iables on the modelling of the feature of interest. The nature of 
multivariate approach is to reveal the inherent structure and meaning 
embedded within original set of variables through the application and 
interpretation of a variety of statistical methods. Conducting a multi-
variate study is not synonymous to applying multiple univariate ap-
proaches simultaneously, as people might think. Therefore, the shelf life 
of EVOO is predicted in 13 months by considering the changes it un-
dergoes as a whole, just as the value of a work of art (a painting) is 
measured not only by looking at each parameter (composition, colours, 
perspective,.) but also by looking at the sense of harmony of the whole 
artwork. 

Research is currently being carried out to verify the application of 
our multivariate modelling of kinetic and shelf life to directly predict the 
rate of oil degradation and remaining shelf life of any EVOO when stored 
under the experimental conditions described in this study. In our 
opinion, under the same storage conditions the same combination of 
stability/instability indices may result in an equal constant rate of ki-
netic degradation parameters. Under other storage conditions, such as 
different material bottling, the methodology for estimating a finite shelf 
life would be exactly the same, the same is not true for the results. 
Several studies focus on oil shelf life comparisons by changing external 
conditions (Caipo et al., 2021), which is outside the scope of this 
research. 
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