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a b s t r a c t

It is proved that if the damped periodically forced Newtonian pendulum does not
have periodic solutions, the same happens for the relativistic version of the problem
for high values of the parameter c representing the speed of light in the vacuum.
© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under

the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction and main result

In this paper, we present for the first time in the literature a non-existence result for periodic solutions
for the forced pendulum equation with relativistic acceleration⎛⎝ x′√

1 − x′2
c2

⎞⎠′

+ kx′ + a sin x = p(t) (1.1)

here c > 0 is the speed of light in the vacuum, k ≥ 0 is a possible viscous friction coefficient, a > 0 and p

is a continuous and T -periodic forcing term with mean value p = 1
T

∫ T

0 p(t)dt = 0.
The classical forced pendulum equation

x′′ + kx′ + a sin x = p(t), (1.2)

as been a fundamental source of inspiration for researchers working on Dynamical Systems for many
ears [1,2]. Concerning the existence of periodic solutions, the history comes back one century ago when
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amel [3] in 1922 proved that there exists at least one T -periodic solution when k = 0 and p(t) = b sin t.
he proof is of variational nature. The general proof for any forcing term with zero mean value was given

ndependently by Dancer [4] and Willem [5]. A conjecture by J. Mawhin [6], asking if a topological approach
ay be useful to prove the existence of periodic solutions in the presence of friction, generated considerable

nterest in the community. By the time, many specialists expected a positive answer to Mawhin’s conjecture
or a good reason: by Massera’s theorem, if there are no periodic solutions then all the solutions must be
nbounded, but then the addition of a friction term would turn a periodic motion into unbounded, which
eems counter-intuitive. In spite of this consideration, Ortega [7] devised a remarkable example of Eq. (1.2)
ithout periodic solutions. A second example was constructed in [8] by using a different idea. Finally, [9]
rovided the most general result for non-existence in the Newtonian case. From now on, let us denote by
T the Banach space of the continuous and T -periodic functions and by C̃T the space of the functions of
T with zero mean value.

heorem 1 ([9]). Given positive constants a, k and T , there exists p ∈ C̃T such that Eq. (1.2) has no
-periodic solutions.

In the relativistic case, this result is not true: it was proved in [10] that if 2cT ≤ 1, Eq. (1.2) has at least
ne T -periodic solution for any values a, k and for any p ∈ C̃T . Other sufficient conditions for existence can
e found in [11–16], but non-existence results are not available in the literature up to the date. Our main
esult partially fills this gap.

heorem 2. Let p ∈ C̃T be such that (1.2) has no T -periodic solutions. Then, there exists c∗ > 0 such that
1.1) (with the same choice of k, a, p) has no T -periodic solutions for any c > c∗.

The proof relies on a priori bounds of solutions not depending on c and a pass to the limit via
scoĺı–Arzela Theorem.

. Proof of the main result

Let ∥.∥∞ be the usual norm of the supremum. Any periodic solution of (1.1) has a natural bound
x′∥∞ < c. A key point of the proof is a different priori bound for the derivative given in the next lemma.

emma 1. Any T -periodic solution of (1.1) satisfies the bound

∥x′∥∞ < ∥p∥2
√

T + aT. (2.3)

Proof. Suppose that x(t) is a given T -periodic solution. Eq. (1.1) can be written as

x′′(
1 − x′2

c2

)3/2 + kx′ + a sin x = p(t). (2.4)

ultiplying by x′′ and integrating, a basic application of Cauchy–Schwarz inequality gives

∥x′′∥2
2 <

∫ T

0

(x′′)2(
1 − x′2

c2

)2/3 dt =
∫ T

0
(p(t) − a sin x)x′′dt ≤ (∥p∥2 + a

√
T ) ∥x′′∥2 ,

rom where
∥x′′∥ < ∥p∥ + a

√
T .
2 2

2
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ow, taking t0 ∈ [0, T ) such that x′(t0) = 0,

|x′(t)| =
⏐⏐⏐⏐∫ t

t0

x′′(s)ds

⏐⏐⏐⏐ ≤ ∥x′′∥1 ≤
√

T ∥x′′∥2 < ∥p∥2
√

T + aT

or any t ∈ [0, T ]. □

Let us prove now the main result. By a contrapositive argument, let us assume that there exists a sequence
n → +∞ and corresponding T -periodic solutions xn(t) of (1.1) with c = cn. By the 2π-periodic character
f the nonlinearity, it is not restrictive to assume that xn(0) ∈ [−π, π]. Then, we can derive the uniform
ound

|xn(t) − xn(0)| =
⏐⏐⏐⏐∫ t

0
x′

n(s)ds

⏐⏐⏐⏐ ≤ T ∥x′∥∞ ≤ ∥p∥2 T
√

T + aT 2.

ence, the sequence of xn(t) and its derivatives are uniformly bounded, so Ascoli-Arzela Theorem implies
hat a subsequence of xn(t) (not necessarily xn(t) itself, but we keep the notation for convenience) is
niformly convergent in CT . Besides, the sequence of x′′

n are also uniformly bounded because the nonlinearity
nd the forcing term are bounded, therefore xn is uniformly convergent to a certain x∞(t) in C1

T , the space
f T -periodic functions with continuous derivatives. Note that all the derived bounds are independent of cn.

The final step is to write the equation as an integral equation and a pass to the limit. Starting from (2.4),
e write

x′′ − x =
(

1 − x′2

c2

)3/2

(p(t) − kx′ − a sin x) − x, (2.5)

then to find a T -periodic solution of (1.1) is equivalent that to find a T -periodic solution of the integral
equation

x =
∫ T

0
G(t, s)

[(
1 − x′2(s)

c2

)3/2

(p(s) − kx′(s) − a sin x(s)) − x(s)
]

ds, (2.6)

where G(t, s) is the Green function of the linear operator x′′ − x with periodic conditions. Consequently, xn

verifies

xn =
∫ T

0
G(t, s)

[(
1 − x′2

n (s)
c2

n

)3/2

(p(s) − kx′
n(s) − a sin xn(s)) − xn(s)

]
ds. (2.7)

The Green function G(t, s) has an explicit expression, but for our purposes is it enough to know that it is
uniformly bounded on the square [0, T ] × [0, T ]. Taking limits when n → +∞, the uniform boundedness of
G(t, s) implies that the limit can pass inside the integral and we get

x∞ =
∫ T

0
G(t, s) [(p(s) − kx′

∞(s) − a sin x∞(s)) − x∞(s)] ds,

or equivalently, x∞(t) is a T -periodic solution of the Newtonian Eq. (1.2). This concludes the proof.

Data availability
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