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1. Introduction and main result

In this paper, we present for the first time in the literature a non-existence result for periodic solutions
for the forced pendulum equation with relativistic acceleration

!/

xl

= + kz' 4+ asinz = p(t) (1.1)
!
i
where ¢ > 0 is the speed of light in the vacuum, k& > 0 is a possible viscous friction coeflicient, a > 0 and p
is a continuous and T-periodic forcing term with mean value p = % fOT p(t)dt = 0.

The classical forced pendulum equation
2’ + kx' + asinz = p(t), (1.2)

has been a fundamental source of inspiration for researchers working on Dynamical Systems for many
years [1,2]. Concerning the existence of periodic solutions, the history comes back one century ago when
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Hamel [3] in 1922 proved that there exists at least one T-periodic solution when k = 0 and p(t) = bsint.
The proof is of variational nature. The general proof for any forcing term with zero mean value was given
independently by Dancer [4] and Willem [5]. A conjecture by J. Mawhin [6], asking if a topological approach
may be useful to prove the existence of periodic solutions in the presence of friction, generated considerable
interest in the community. By the time, many specialists expected a positive answer to Mawhin’s conjecture
for a good reason: by Massera’s theorem, if there are no periodic solutions then all the solutions must be
unbounded, but then the addition of a friction term would turn a periodic motion into unbounded, which
seems counter-intuitive. In spite of this consideration, Ortega [7] devised a remarkable example of Eq. (1.2)
without periodic solutions. A second example was constructed in [8] by using a different idea. Finally, [9]
provided the most general result for non-existence in the Newtonian case. From now on, let us denote by
Cr the Banach space of the continuous and T-periodic functions and by Crp the space of the functions of
Cr with zero mean value.

Theorem 1 ([9)). Given positive constants a,k and T, there exists p € Cp such that Eq. (1.2) has no
T-periodic solutions.

In the relativistic case, this result is not true: it was proved in [10] that if 2¢T < 1, Eq. (1.2) has at least
one T -periodic solution for any values a, k and for any p € Cp. Other sufficient conditions for existence can
be found in [11-16], but non-existence results are not available in the literature up to the date. Our main
result partially fills this gap.

Theorem 2. Let p € Cr be such that (1.2) has no T-periodic solutions. Then, there exists ¢, > 0 such that
(1.1) (with the same choice of k,a,p) has no T-periodic solutions for any ¢ > c..

The proof relies on a priori bounds of solutions not depending on ¢ and a pass to the limit via
Ascoli-Arzela Theorem.

2. Proof of the main result

et |||, be the usual norm of the supremum. Any periodic solution of (1.1) has a natural bound
lz'|| ., < c. A key point of the proof is a different priori bound for the derivative given in the next lemma.

Lemma 1. Any T-periodic solution of (1.1) satisfies the bound

2]l < llplly VT + aT. (2.3)

Proof. Suppose that z(t) is a given T-periodic solution. Eq. (1.1) can be written as

I’H

2\ 3/2
(1-=)

Multiplying by 2’ and integrating, a basic application of Cauchy-Schwarz inequality gives

+ k2’ + asinz = p(t). (2.4)

T 11\2 T

2 X .

o3 < [ = [0 — asinayatdr < (ol + aVT) "l
o (1_ #) 0

from where

=" |ly < [lplly + aV/'T.
2
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Now, taking ¢y € [0,T) such that z'(to) = 0,

t
|2’ (t)| = ’/ ' (s)ds| < |||l < VT ||2" ||y < |plly VT + aT
to

for any t € [0,7]. O

Let us prove now the main result. By a contrapositive argument, let us assume that there exists a sequence
¢n — +00 and corresponding T-periodic solutions z,(¢) of (1.1) with ¢ = ¢,. By the 2m-periodic character
of the nonlinearity, it is not restrictive to assume that x,(0) € [—m,n]. Then, we can derive the uniform
bound

t
) = a0 =| [, (6)i5] < Tl < Ioll, VT 47
0

Hence, the sequence of z,(t) and its derivatives are uniformly bounded, so Ascoli-Arzela Theorem implies

that a subsequence of x,(t) (not necessarily x,(¢) itself, but we keep the notation for convenience) is
uniformly convergent in Cr. Besides, the sequence of !/ are also uniformly bounded because the nonlinearity
and the forcing term are bounded, therefore z,, is uniformly convergent to a certain z,(t) in Ck, the space
of T-periodic functions with continuous derivatives. Note that all the derived bounds are independent of ¢,.

The final step is to write the equation as an integral equation and a pass to the limit. Starting from (2.4),
we write

2\ 3/2
2 —x= (1 - ) (p(t) — kz’ — asinzx) — z, (2.5)

then to find a T-periodic solution of (1.1) is equivalent that to find a T-periodic solution of the integral
equation

c2

T 2'2(s 3/2
x = / G(t, s) l(l _ = )) (p(s) — k2'(s) — asinxz(s)) — x(s)‘| ds, (2.6)
0

where G(t, s) is the Green function of the linear operator 2" — x with periodic conditions. Consequently, z,,
verifies

T 2'2(s 3/2
Ty = / G(t, s) l(l - "2( )> (p(s) — kal,(s) — asinz,(s)) — xn(s)] ds. (2.7)
0

Cn

The Green function G(t, s) has an explicit expression, but for our purposes is it enough to know that it is
uniformly bounded on the square [0,T] x [0,7T]. Taking limits when n — 400, the uniform boundedness of
G(t,s) implies that the limit can pass inside the integral and we get

Zoo = /OT G(t,5) [(p(s) — kz'(s) — asinx(8)) — Too(8)] ds,
or equivalently, x(t) is a T-periodic solution of the Newtonian Eq. (1.2). This concludes the proof.
Data availability
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