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The ability to predict transport properties of fluids, such as the self-diffusion coefficient

and viscosity, has been an ongoing effort in the field of molecular modelling. While there

are theoretical approaches to predict the transport properties of simple systems, they are

typically applied in the dilute gas regime and are not directly applicable to more complex

systems. Other attempts to predict transport properties are done by fitting available experi-

mental or molecular simulation data to empirical or semi-empirical correlations. Recently,

there have been attempts to improve the accuracy of these fittings through the use of Ma-

chine Learning (ML) methods. In this work, the application of ML algorithms to represent

the transport properties of systems comprising spherical particles interacting via the Mie

potential is investigated. To this end, the self-diffusion coefficient and shear viscosity of

54 potentials are obtained at different regions of the fluid-phase diagram. This data set is

used together with three ML algorithms, namely k-Nearest Neighbours, Artificial Neural

Network and Symbolic Regression, to find correlations between the parameters of each

potential and the transport properties at different densities and temperatures. It is shown

that ANN and KNN perform to a similar extent, followed by SR, which exhibits larger

deviations. Finally, the application of the three ML models to predict the self-diffusion

coefficient of small molecular systems, such as krypton, methane and carbon dioxide is

demonstrated using molecular parameters derived from the so-called SAFT-VR Mie equa-

tion of state [J. Chem. Phys. 139, 154504 (2013)] and available experimental vapour-liquid

coexistence data.
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I. INTRODUCTION13

Accurate representation of thermodynamic and transport properties of molecular systems is14

key for the design and optimization of chemical and biochemical processes and plays an important15

role in several areas of science and technology1,2. For many decades, most attention has been16

drawn to the development of robust thermodynamic models of fluids based on activity coefficient17

models3, cubic equations of state4,5, and molecular-based models6–9. The development of models18

for the description of transport properties has also been reported in recent years, particularly for19

high-density liquids. Many of these approaches are based on kinetic theory, mode-coupling theory,20

free-volume theory, and friction theory10–13.21

Molecular dynamics is a powerful technique to determine the transport properties of molecular22

systems using either Green-Kubo or Einstein relations14,15, provided a suitable force field is avail-23

able. The simulations can be used to test theoretical predictions of transport properties. However,24

molecular simulations can be computationally expensive and not suitable for fast property predic-25

tion required in many industrial applications. For this reason, simple empirical and semi-empirical26

correlations are still commonly used for many engineering calculations, but these equations have27

a limited range of applicability making them unreliable for the design of novel technologies.28

There have been previous attempts to obtain theoretical or semi-empirical expressions for the29

self-diffusion coefficients of simple systems, such as hard spheres, Lennard-Jones, WCA, and30

molecular and atomic species16–27. Still, large amounts of data are required for fitting the expres-31

sions that typically have complicated functional forms with multiple fitting parameters. A similar32

situation has been observed in the developments of semi-empirical equations for the viscosity28–31,33

however, new advances in the use of equations of state coupled with methods such as the free-34

volume, kinetic, and friction theories to predict shear viscosity of complex molecular systems35

have been reported, particularly for the prediction of the shear viscosity32–34.36

To facilitate the way the predictions about the behaviour of transport properties are made, at-37

tention has been turning to machine learning (ML) methods. These methods are able to take the38

large amounts of data available and explore possible correlations between the system parameters39

and properties of interest. This change towards ML methods has already been taking place in40

similar fields, such as in the prediction of physicochemical properties35–54. For a recent account41

on this topic, the reader is directed to the recent reviews by Schmidt et al.55, Moud et al.56 and42

Ihme et al.57 The use of ML to predict transport properties, such as the self-diffusion coefficient,43
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has been studied to a much lesser extent58. ML algorithms to study transport properties have been44

used to predict diffusion in binary hydrocarbons59, water mixtures60, polar and non-polar binary45

gases61, organic molecules62,63, and CO2
64. Recently, the application of ML algorithms to study46

the self-diffusion coefficient of Lennard-Jones systems has been reported65–68, where the accuracy47

of the predictions was increased by more than one order of magnitude compared to semi-empirical48

equations.49

In this work, ML methods are applied to predict the transport properties, particularly self-50

diffusion coefficient and viscosity, of spherical particles interacting via the Mie potential69. The51

Mie potential is a generalized form of the Lennard-Jones potential but with the advantage that52

the repulsive and attractive contributions can be tuned to represent accurately the properties of53

real molecular systems. This potential has been used to study successfully the behaviour of small54

molecular systems (H2O, CO2, SF6, and CF4)70–73, and is also the underlying intermolecular55

potential used in several force fields and molecular-based theories for the description of properties56

of complex molecular systems9,74,75. The different combinations of the repulsive and attractive57

contributions impart a large variability of the potential, which also means that there is not a large58

amount of published data, especially of transport properties, that can be used in this approach59

using ML methods. Only a small amount of published research in the literature report data on60

many different types of Mie potentials since most reports concentrate on modelling real particles61

using a specific combination of potential parameters, hence only a fraction of the potential space62

is explored and published in the literature. Therefore, in this work, the data required to fit the ML63

models are also determined.64

This paper is organised as follows. In Sec. II, the simulation methods employed to obtain the65

self-diffusion coefficient and shear viscosity data required for the ML algorithms are described.66

In the same section, the different ML algorithms applied in this work are discussed. In Sec. III,67

the performance of the ML algorithms in each of the cases studied is reported, and the appli-68

cation of the methods to describe the self-diffusion coefficient of three quasi-spherical systems,69

namely krypton Kr, methane CH4, and carbon dioxide CO2 is discussed. Finally, in Sec. IV, the70

conclusions of the work are presented.71
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II. METHODS72

A. Molecular-dynamics simulations73

The molecular model consists of spherical particles interacting via the Mie potential given by69
74

φ(r) = C ε

[(
σ

r

)n
−
(

σ

r

)m]
, (1)

where r is the interparticle distance, ε is the potential well-depth, σ is the diameter of the particles,75

and the exponents n and m describe the range of the repulsive and attractive contributions of the76

potential, respectively. The coefficient C in Equation 1 is given by77

C ≡
(

n
n−m

)( n
m

) m
n−m

, (2)

and is defined such that the minimum of the potential is set at −ε . The Mie(n,m) potential is a78

generalised form of the well-known Lennard-Jones (LJ) potential, which is obtained when n = 1279

and m = 6. It has been demonstrated that the use of different repulsive and attractive exponents80

results in a much better description of the intermolecular interactions of complex systems9,70,71,75.81

While there is freedom in selecting arbitrary values of (n,m) to represent a particular molecular82

system, it has been shown that there are different combinations of exponents that can lead to the83

same critical point, albeit different triple points76. In particular, Ramrattan et al. showed that84

combinations of exponents with the same cohesive parameter α , which is defined as85

α ≡ C

(
1

m−3
− 1

n−3

)
, (3)

exhibit identical critical points76. In other words, fluids with the same cohesive parameter are86

conformal. Due to this observation, it is hypothesised that pair of exponents (n,m) with the same87

cohesive parameter α should also exhibit the same transport properties in the fluid region akin to88

the principle of corresponding states for transport properties77,78. To determine the critical point89

and fluid phase diagram associated with a particular combination of exponents (n,m), the SAFT-90

VR Mie equation of state (EoS) is employed9. This EoS has been shown to represent the critical91

region accurately due to the high-order terms considered in the Barker and Henderson perturbation92

theory79.93

Throughout this work, reduced units are employed to describe thermodynamic and trans-94

port properties using the Mie potential parameters: number density ρ∗ = Nσ3/V , tempera-95

ture T ∗ = kBT/ε , pressure p∗ = pσ3/ε , time t∗ = t[ε/(mσ2)]1/2, self-diffusion coefficient96
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D∗ = D[m/(σ2ε)]1/2, and viscosity η∗ = ησ2/(εm)1/2, where N is the total number of parti-97

cles, V is the volume of the system, T is the absolute temperature, kB is the Boltzmann constant, p98

is the absolute pressure, t is the time, m is the mass of a spherical particle, D is the self-diffusion99

coefficient, and η is the shear viscosity. Similarly, all distances are given in units of σ . To deter-100

mine the transport properties of the Mie potential, molecular-dynamics simulations are performed101

in systems comprising N = 104 particles in the canonical NV T ensemble using the Nosé-Hoover102

thermostat80. For the simulations, the Mie potential is truncated and shifted to zero using a cut-off103

of r∗c = 6. All the simulations are performed using the LAMMPS package81. The equations of104

motion are integrated using the velocity-Verlet algorithm with a time step of ∆t = 0.001τ . For105

each state point, five independent simulations of 107 time steps are performed to collect averages.106

The self-diffusion coefficient has been calculated using the Einstein equation given by107

D∗ =
1

6t∗
⟨∆r∗2(t∗)⟩, (4)

where ⟨∆r∗2(t∗)⟩ is the ensemble average of the mean-square displacement (MSD) given by108

⟨∆r∗2(t∗)⟩= 1
N

〈 N

∑
j=1

[r∗j(t
∗)− r∗j(0)]

2
〉
, (5)

and r∗j(t∗) is the position of particle j at time t∗. The trajectories used to calculate the MSD are109

considered independent when the system enters the diffusive regime from the ballistic, i.e., when110

⟨∆r∗2⟩ ∝ t∗2 changes to ⟨∆r∗2⟩ ∝ t∗. In this systems, the diffusive regime starts at t∗ ≈ 1, meaning111

at least 1000 timesteps are required to reach the change in regime. To ensure our trajectories are112

uncorrelated, new simulations are started after 105 timesteps have elapsed, which is 100 times113

longer than the average time to decorrelation.114

The shear viscosity is calculated through the Green-Kubo relation of the time-correlation of the115

off-diagonal elements of the pressure tensor given by15,82,83
116

η
∗ =

V ∗

T ∗

∫
∞

0
⟨p∗

αβ
(t∗)p∗

αβ
(t∗0)⟩dt∗ (6)

where p∗
αβ

(t∗), with α ̸= β , is the off-diagonal component of the pressure tensor at time t∗.117

The training data for the ML models have been collected from 54 different Mie(n,m) potentials.118

For each potential, 9 state points are sampled in the supercritical region, 5 state points in the liquid119

phase, and also 5 states in the vapour phase. The state points for the supercritical phase are taken120

at temperatures of T ∗/T ∗
c ={1.05,1.25,1.5} and densities of ρ∗/ρ∗

c ={0.2,1,2} for each potential,121

where Tc and ρc are the critical temperature and critical density obtained using the SAFT-VR Mie122
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EoS9, respectively. For liquid and vapour phases, 5 state points per potential are chosen at random123

to ensure that there is no bias in the data collection. For the liquid phase, the state points are124

chosen by taking random points in the liquid side of the VLE, in the range of T ∗/T ∗
c = 0.8−0.95125

and ρ∗/ρ∗
c = 1.7− 2.5, while ensuring that the resulting points are at least 5% away from the126

saturated liquid density. A similar approach is employed to study the vapour phase using the127

same temperature range (T ∗/T ∗
c = 0.8− 0.95) for densities ρ∗/ρ∗

c < 0.7, and ensuring that the128

selected density is ρ∗ > 0.005 and at least 5% away from the saturated vapour density. Note129

that the shear viscosity is only computed and analyzed for the liquid-state region. The following130

combinations of Mie exponents are studied: {n = 12−14,m = 6−8}, {n = 15−17,m = 6−11}131

and {n = 18−20,m = 6−14}. These combinations ensure that at least n−m ≥ 4 and also cover132

enough parameter space for the study of real molecular systems. All the transport properties of133

the Mie potentials determined in this work as well as the ML model files are reported in the134

Supplementary Information (SI) and are available on GitHub.135

B. Machine Learning136

In this work, three algorithms to predict the transport properties of Mie fluids are assessed: k-137

nearest neighbours (KNN), artificial neural network (ANN), and symbolic regression (SR). These138

algorithms are chosen due to their different levels of complexity and interpretability. KNN and139

ANN are both “black box” methods, which makes them very difficult to interpret, without studying140

the resulting algorithm in depth, whereas SR provides a straightforward correlation equation. For141

all the algorithms, 80% of the data are used to train the model and 20% to test the model. For142

the case of ANN and KNN, the data is normalized to be in the interval [-1,1]. Before training143

any model, the self-diffusion coefficient and the shear viscosity are normalized using Chapman-144

Enskog expressions for the self-diffusion coefficient D∗
0 and the shear viscosity η∗

0 of a dilute gas145

of hard spheres, respectively, given by10,20
146

D∗
0 =

3
8

(
T ∗

π

)1/2 1
ρ∗ (7)

and147

η
∗
0 =

5
16

(
T ∗

π

)1/2

(8)

In other words, all ML methods explored in this work are trained in D/D0 for the self-diffusion,148

and in η/η0 for the viscosity. This semi-empirical approach has also been used by other authors to149
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study systems such as hard spheres19 and Lennard-Jones fluids84. The quantification of errors and150

accuracy of the models, however, are reported with respect to D∗ and η∗. The heat maps of the151

errors observed using the three different ML in the phase space are presented in the Supplementary152

Information, as well as the prediction of our method to predict available transport properties of LJ153

particles.154

The performance of the ML algorithms with respect to the testing data has been quantified155

using the coefficient of determination R2 as well as the absolute average relative deviation (AARD)156

defined as157

AARD =
1
n

n

∑
i=1

|(yi − ŷi)|
yi

×100%, (9)

where n is the number of samples, and yi and ŷi indicate the true and predicted values of the sample158

i, respectively. Both AARD and R2 are used in assessing the performance of ML algorithms and,159

in the case of ANN and KNN, are also used in determining the accuracy of a learning method in160

itself. The calculation of method-training accuracy is done using 10-fold cross-validation (CV10),161

which entails dividing the test data into 10 different randomly selected and equal-sized sections,162

training the model with 9 of the sections and validating with the 10th section. This process is163

repeated until the algorithm uses all sections as validation data, thus allowing for the calculation164

of the performance using AARD. Both ANN and KNN methods have been implemented in Python165

3 using the scikit-learn library version 1.2.285.166

The complexity and performance of the ANN are largely influenced by the number of hidden167

layers and the number of neurons each layer has. Additional layers provide the ability for the168

ANN to capture more complex input/output dependencies but require more time and data to train.169

Additionally, more complex ANN architectures may lead to data over-fitting if the underlying170

correlations are less complex, so the choice of architecture needs to be optimized. In this work,171

the performances of networks with different numbers of hidden layers and numbers of neurons172

in the hidden layers are quantified using AARD as the metric for comparison. It is found that173

a neural network with a single hidden layer consisting of 28 nodes is sufficient and increasing174

the complexity does not significantly improve the performance. The activation function used is175

the reLU function, the training is done for 1000 epochs and the lbfgs solver is used for back-176

propagation.177

The KNN algorithm can be used for both classification and regression, and uses a number of178

k nearest neighbours to perform interpolation to predict a new state. In classification, the method179
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uses the distances to these k neighbours to classify the test point, while in regression problems, the180

values of the neighbours are weighted by the distances to the neighbours to predict the value of181

the test point. The hyperparameters of the KNN algorithm play a primary role in the performance182

and efficiency of the algorithm. To select the most appropriate hyperparameters, CV10 is used183

to find the combination of hyperparameters that lead to the lowest AARD. The hyperparameters184

validated are the value of k, the weights assigned to the data points, the algorithm to find the185

closest points, and the power parameter for the Minkowski metric. During the validation, none186

of the hyperparameters tested shows a significant drop in performance in both quality and speed,187

with the largest difference in performance only observed when changing the value of k. The188

hyperparameters that provide the best performance are k= 4, the neighbouring points weighted189

by distance, and the power parameter of 4 in the Minkowski metric. The algorithm used for the190

closest search point does not make any appreciable difference as long as the brute-force search is191

not used.192

SR is a very different ML algorithm compared to KNN and ANN. Rather than learning the193

connections between outputs and inputs in the traditional ML sense, it attempts to find a mathe-194

matical expression that correlates the behaviour of the output given the inputs by building a binary195

tree, in which leaves are constants or inputs and branches are mathematical operations. To find196

the most appropriate equation, the method starts with naive random guesses and uses evolution197

and mutations to obtain more accurate equations. In this work, the SR implementation from the198

gplearn library version 0.4.1 is used86. The hyperparameter space for SR is very large, as the mu-199

tation and evolution steps can be changed to allow for more or less variability between different200

members of the population and between parents and offspring equations. Other hyperparameters201

control the population size, the number of generations of evolution, the types of functions that can202

be used to connect the nodes, the parsimony coefficient, which is a measure of the ’complexity’203

of the final equation, and the metric by which the performance of each member of the population204

is evaluated. Each hyperparameter needed to be checked individually not only for accuracy but205

also for variability in obtained equations in different random states and the length of the evolution.206

After some initial testing, it is found that a population size of 5000, 50 generations, the AARD207

metric and a parsimony coefficient of 0.3 are the hyperparameters that affect the algorithm the208

most. The operation set used in this work comprises additions, subtractions, multiplications, di-209

visions, exponential, square roots of the absolute values and the natural logarithm of the absolute210

values.211
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III. RESULTS212

A. Self-diffusion coefficient213

1. Selection of relevant features for the ML methods and conformality of the Mie potential214

The correct selection of features is critical in ML. For fluids comprising spherical particles215

interacting via the Mie potential, the obvious features that can be used are temperature T ∗ and216

density ρ∗ to define the thermodynamic state, and both repulsive n and attractive m exponents to217

define the intermolecular potential. Neither σ nor ε is needed since all the properties are expressed218

in reduced units. However, as discussed in Section II A, it has been demonstrated that Mie poten-219

tials with different pairs of exponents (n,m) that lead to the same value of the cohesive parameter220

α (Equation 2) are conformal and exhibit the same critical points and, potentially, should lead to221

the same transport properties in the fluid phase. To corroborate this hypothesis, the self-diffusion222

coefficients obtained from the MD simulations of three triplets of Mie potentials are studied. Here,223

each triplet has the same value of the cohesive parameter α corresponding to α = 0.899, 0.585,224

and 0.254 but within each set, the repulsive and attractive exponents differ considerably from one225

another. These sets of potentials have been studied at a subcritical isotherm (T ∗/T ∗
c = 0.95) and at226

a supercritical isotherm (T ∗/T ∗
c = 1.2) for a wide range of densities, and the results are presented227

in Figure 1. Despite the small deviations observed at very high densities near the freezing points,228

the agreement of the self-diffusion coefficient within a set of potentials with an identical value of229

the cohesive parameter is remarkable, particularly for densities corresponding to ρ∗ < 0.7, which230

is to the region in which most of the simulation data has been collected.231

The predictive power of the cohesive parameter α to describe the self-diffusion coefficient of232

different potentials reaffirms the need to use it as a feature in the ML algorithm training rather than233

using the individual exponents n and m. The relation between the cohesive parameter α and the234

exponents is non-linear, as shown in Equation 3, hence using the individual exponents introduces a235

layer of complexity between inputs and outputs, that may result in a lower ability of ML algorithms236

to predict transport properties.237
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FIG. 1. MD simulation results of the self-diffusion coefficient D∗ as a function of the density ρ∗ obtained

for three triplets of potentials with different cohesive parameter α . The results for the subcritical isotherm

T ∗/T ∗
c = 0.95 are presented in the main figure, while the results for the supercritical isotherm T ∗/T ∗

c = 1.2

are shown in the inset.

2. k-Nearest Neighbours and Artificial Neural Networks238

The training of the ANN and KNN algorithms using the MD results for the self-diffusion co-239

efficient has been performed first according to three regions in the phase diagram, namely the240

subcritical vapour phase, the subcritical liquid phase and the supercritical fluid phase, and then241

analysed the entire set as a whole. As explained in the previous section, the features used in both242

algorithms are the temperature T ∗, the density ρ∗, and the cohesive parameter α and the output is243

the Chapman-Eskog regularised self-diffusion coefficient (D∗/D∗
0).244

First, the application of the ANN and KNN algorithms on the vapour phase data set is discussed.245
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TABLE I. Summary of the AARD and R2 descriptors of different ML methods applied in this work.

Property State KNN ANN SR

AARD R2 AARD R2 AARD R2

D∗ Vapour phase 0.42% 0.9998 0.87% 0.9998 3.5% 0.995

D∗ Liquid phase 3.3% 0.988 1.8% 0.998 3.5% 0.992

D∗ Supercritical phase 3.4% 0.989 8.4% 0.977 7.7% 0.970

D∗ All phases 2.8% 0.9997 6.4% 0.998 30% 0.995

η∗ Liquid phase 2.8% 0.977 3.3% 0.988 6.3% 0.964

The results are presented in Figure 2(a) in the form of parity plots. It is evident from this Figure246

that in the vapour phase the ANN algorithm performs very similarly to KNN as seen from the247

summary of the AARD and R2 presented in Table I. The AARD and R2 for the ANN are 0.87% and248

0.9998 for the vapour phase, respectively, compared to 0.42% and 0.9998 obtained using KNN.249

The algorithms differ in the accuracy of the prediction, to which AARD is more sensitive. The fact250

that KNN has a lower AARD may be explained by the fact that KNN uses interpolation to learn251

points to predict new points, rather than predicting the values based on inputs. The differences are252

minor, however, showing a good ability of both methods to predict the self-diffusion coefficient.253

For the liquid phase, the algorithms do not predict D∗ as well as for the vapour phase, with all254

metrics decreasing for both methods. The results are presented in Figure 2(b). The decrease in255

accuracy of the methods is contributed by an increased variation of the range of D∗/D∗
0 in the liquid256

phase. Since the magnitude of D∗ in the liquid phase is about two orders of magnitude smaller257

than in the vapour phase, the values of AARD are larger due to the amplification of the errors. It258

is observed that R2 also decreases for the liquid phase, which is likely due to the normalization259

of D∗/D∗
0 between [-1,1] where any deviations in the prediction of the methods will be amplified260

due to the increased range of the data used (D∗/D∗
0 = [0.08− 0.56] for liquid phase compared261

to D∗/D∗
0 = [0.59− 0.77] for the vapour phase). Additionally, it is observed that the decrease in262

accuracy is larger for KNN, particularly in the region of of low values of D∗ and around D∗ ≈ 0.1263

where data points are further away from the main diagonal in the parity plots.264

The MD simulation data for the supercritical fluid phase has been collected at specific values265

of T ∗/T ∗
c and ρ∗/ρ∗

c . While the value of T ∗
c varies greatly with the cohesive parameter α , the266

critical density remains mostly constant87. Therefore, the ranges of the self-diffusion coefficient267
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FIG. 2. Parity plots describing the performance of the ANN (red circles) and KNN (blue triangles) on

the testing set of the self-diffusion coefficient for three different regions in the phase diagram, as well as

for the entire data set as a whole. The results correspond to (a) subcritical vapour, (b) subcritical liquid,

(c) supercritical fluid, and (d) all states. D∗ (MD) denotes the self-diffusion coefficients obtained from MD

simulations, while D∗ (ML) denotes the predictions using machine learning.

are much more well-defined. The performance of ANN decreases for the supercritical phase with268

respect to the liquid phase, while KNN performs similarly, as shown Table I. It is worth noting269

that the performance of the methods fitting D∗/D∗
0 is slightly lower than when trained on D∗ alone270

only for the supercritical phase (data not shown).271

Finally, the application of both ANN and KNN algorithms to describe the entire data set in272
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the three regions of interest is discussed. Taking the entire data set vastly increases the amount273

of training data available to the algorithms, while increasing the range of output values as well.274

The performance of the methods is observed in the parity plot in Figure 2(d), where it can be275

observed that both KNN and ANN are able to similarly predict the value of D∗ with KNN slightly276

outperforming the ANN algorithm.277

3. Symbolic Regression278

Symbolic regression produces an equation, i.e., a correlation, by applying different mathemat-279

ical operations to the training data. This methodology produces a good fitting of a mathematical280

expression, but the drawback is that the algorithm can generate correlations without any physical281

meaning. Therefore, the use of Chapman-Enskog to normalize the data in the form D∗/D∗
0 allows282

the obtained correlation to be semi-empirical and the correlations obtained from SR simply quan-283

tify the deviation of D∗ with respect to the value of this property for a reference dilute gas of hard284

spheres.285

The correlations obtained from the SR of the vapour, liquid, and supercritical states, as well as286

for the entire data set are presented in Table II. The performance of these correlations is shown287

in the parity plots presented in Figure 3, and the summary of the values of AARD and R2 are288

presented in Table I. The equation for the self-diffusion coefficient of the vapour phase, Equation289

10, is the simplest of all models and indicates that D∗ is approximately 65% of the value of D∗
0,290

which makes sense since D∗
0 is derived for fluids of infinite dilution. Moreover, the correlation291

does not include any dependence on the cohesive parameter α , meaning that the expression is292

independent of the intermolecular potential. Despite the simplicity, this expression is sufficient to293

predict the self-diffusion coefficient to great accuracy as observed in Figure 3(a), in which both294

training and testing data sets lie on top of the diagonal in the parity plot. The AARD for this model295

is 3.5% and R2 = 0.995. The simplicity of the equation is due to the small range in D∗/D∗
0 that is296

observed in the vapour phase.297

Contrary to the equation obtained for the vapour phase, the one for the liquid phase, Equation298

11, is complex and introduces new additional terms. One important distinction, however, is the299

appearance of the cohesive parameter α in the expression suggesting the relevance of the shape300

of the intermolecular potential in this high-density region and at low temperatures where particle-301

particle correlations are important. This expression performs equally well when compared to302
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FIG. 3. Parity plots describing the performance of the equations obtained from symbolic regression (SR)

for the description of the self-diffusion coefficient for three different regions in the phase diagram, as well

as for the entire data set as a whole. The results correspond to (a) subcritical vapour, (b) subcritical liquid,

(c) supercritical fluid, and (d) all states. Training data are shown in red circles while the testing data are

shown in blue triangles. D∗ (MD) denotes the self-diffusion coefficients obtained from MD simulations,

while D∗ (SR) denotes the predictions using symbolic regression.

the KNN algorithm but underperforms in comparison to the ANN algorithm when considering303

the performance metrics. The strength of the SR algorithm is its interpretability, as the obtained304

equation is very simple to implement, whereas the inner working of the ANN and KNN algorithms305

are ‘black boxes’.306
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TABLE II. Semi-empirical equations obtained from the symbolic regression of the self-diffusion coefficient

D∗ and the viscosity η∗ at different states.

Property State Equation

D∗ Vapour phase
D∗

D∗
0
= 0.649 (10)

D∗ Liquid phase
D∗

D∗
0
= [T ∗(1+ exp(−α)−0.694]

exp(−ρ∗)√
α

(11)

D∗ Supercritical phase
D∗

D∗
0
=

√
(0.664−ρ∗2)

√
2
3

T ∗ (12)

D∗ All states
D∗

D∗
0
= exp(−ρ

∗/T ∗)exp(−|0.273log(log(1/ρ
∗))|) (13)

η∗ Liquid phase
η∗

η∗
0
=

exp(ρ∗) [exp(ρ∗)+ log(α)]

T ∗−0.405
(14)

η∗ Liquid phase η∗ = 0.892αρ∗
(

1+
ρ∗

T ∗(T ∗−0.381)

)
(15)

The performance of the equation obtained for the supercritical phase is shown in Figure 3(c)307

and the expression is presented in Equation 12. This expression is relatively simple compared to308

the equation for the liquid phase. Due to the lack of very high-density state points in the data309

set, this equation is only valid for ρ∗ <
√

0.664 to ensure that the square root function produces a310

real value. The lack of high-density state points is also a contributing factor to the absence of any311

dependence on the cohesive parameter α . In comparison to the algorithms discussed previously312

for this data set, SR is outperformed by the KNN algorithm, but exhibiting nearly equivalent313

performance to ANN.314

Finally, the performance of the SR equation obtained for the entire data set can be observed315

in Figure 3(d) and is given by Equation 13. This expression exhibits a very good value of R2,316

but a poor AARD. While it is clear that the equation is unphysical, it has very good predictive317

power, having a value of R2 equivalent to the black box ML methods. Much of the error in this318

equation comes from the overprediction of low values of D∗ as can be seen in Figure 3(d), which319

is the location of the self-diffusion coefficients obtained from the liquid phase simulations. As the320

SR equation for all phases does not take into account the cohesive parameter α of the potential,321

the liquid self-diffusion coefficients are not predicted accurately, where the value of the cohesion322

parameter has a larger influence on the diffusion coefficient due to the large proximity of particles323

and low temperature of the system. Additionally, the liquid phase data only makes 25% of the324

full data set, which makes the effects of the cohesion parameter more difficult to be captured for325
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the SR algorithm. The lack of accuracy at low self-diffusion coefficients is balanced by the high326

precision of high-self diffusion coefficients, which are not as susceptible to changes in the cohesive327

parameter of the potential.328

It is also important to note that depending on the value of the initial seed set in the random329

number generator used in the SR algorithm, there is a larger variability of the expression obtained330

(except for the vapour phase). The expressions presented in Table II are only a subset of the331

expressions found by the algorithm.332

B. Shear viscosity333

As for the case of the self-diffusion coefficient, the ANN and KNN algorithms, as well as SR,334

have been applied to represent the shear viscosity η∗ of particles interacting via the Mie potential.335

However, only the liquid region is analysed in this work as it is the main region of interest for336

fluid flow applications. The performance of both ANN and KNN algorithms is shown in Figure337

4(a). Similar to the case of the self-diffusion coefficients, the ANN exhibits a better performance338

to predict the shear viscosity of the liquid region with AARD of 3.3% and R2 = 0.988. In contrast,339

the AARD and R2 for the KNN algorithm are 2.8% and 0.977, respectively. This difference in340

predicting power between the measurements shows that KNN is more accurate for low values of341

η∗, while ANN is more accurate for high values. Interestingly, both methods improve when they342

are trained using non-normalised data, that is, when the models are train with respect to D∗ instead343

of trained with respect to D∗/D∗
0. This enhacement in their performance is shown in Figure 4(b),344

especially for ANN, with AARD= 2.21% and R2 = 0.996. KNN receives a smaller improvement345

with AARD= 2.6% and R2 = 0.977.346

For the case of the SR applied to the shear viscosity, the performance of the methodology also347

follows a similar behaviour as in the case of the self-diffusion coefficient. The semi-empirical348

equation obtained for SR has been obtained by fitting η∗/η∗
0 , Equation 14, and the results are349

presented in Figure 5(a) and in Table I. It is clear from these results that the SR performs worse350

than the KNN and ANN algorithms, in terms of both R2 and AARD. Furthermore, the equation351

is complex and has a dependency on the cohesion parameter α , mirroring the equation obtained352

for the predictions of the self-diffusion coefficient for the liquid phase. This shows that at high353

densities there is a more pronounced effect of the exact inter-particle potential and, hence, the354

requirement for the inclusion of cohesion parameter becomes more apparent. For higher values of355
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FIG. 4. Parity plot describing the performance of the ANN (red circles) and KNN (blue triangles) on the

testing set of the shear viscosity η∗ of the liquid phase for (a) normalised and (b) non-normalised (right).

η∗ (MD) denotes the shear viscosity obtained from MD simulations, while η∗ (ML) denotes the predictions

using machine learning.

η , it is observed that there is an increase in deviations of the data from the parity line. While this356

semi-empirical equation performs well, it can be observed in Figure 5(a) that the slope of the data357

at low values of η∗ also deviate from the main diagonal, implying that there are missing factors in358

the equation. For comparison, the SR algorithm has also been trained with respect to η∗ instead359

of η∗/η∗
0 to obtain a fully empirical equation, given by Equation 15, for the shear viscosity and360

the results are presented in Figure 5(b). This equation exhibits an AARD=3.8% and a R2 = 0.987,361

which shows that the empirical model has slightly better performance in both metrics compared to362

the semi-empirical equation, with the value of R2 outperforming the value for KNN and equaling363

the values of ANN. The shape of the points on the fully empirical equation also follows the parity364

line more closely, especially at low viscosity values.365

C. Application to real fluids366

In this section, the application of the ML models to predict the self-diffusion coefficients of367

real fluids is demonstrated. The selected systems correspond to krypton Kr, methane CH4 and368

carbon dioxide CO2. These systems have been chosen as they can be represented approximately369
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FIG. 5. Parity plots describing the performance of the equations obtained from symbolic regression for the

description of the shear viscosity η∗ for the liquid phase. The results correspond to (a) the semi-empirical

equation (Equation 14) and (b) the empirical equation (Equation 15). Training data are shown in red circles

while testing data are shown in blue triangles. η∗ (MD) denotes the shear viscosity obtained from MD

simulations, while η∗ (SR) denotes the predictions using symbolic regression.

by a single coarse-grained sphere and exhibit a wide variety of intermolecular interactions that the370

Mie potential can capture. The representation of CO2 as a single coarse-grained sphere has been371

previously demonstrated71 and is used in this work. To find the best Mie potential parameters that372

describe the other fluids (Kr, CH4), the highly accurate SAFT-VR Mie EoS is used9. This equation373

is based on a high-order Barker and Henderson perturbation theory and is able to represent with374

high accuracy the vapour-liquid equilibria, including an excellent representation of the critical375

region.376

The methodology to predict the self-diffusion coefficients of these systems is as follows. First,377

experimental vapour-liquid equilibria and vapour pressures have been obtained from the NIST378

Chemistry WebBook88 and fitted to the SAFT-VR Mie EoS to find the intermolecular parameters379

of the Mie potential, i.e. σ , ε , n and m, that best represent the vapour and liquid saturation380

densities, as well as the vapour pressure. Using the calculated cohesive parameter α from the381

optimized exponents, the ML algorithms optimized for all the fluid regions in the phase diagram382

can be deployed to predict the self-diffusion coefficient at any temperature and density. Finally,383
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TABLE III. Results for the optimized Mie intermolecular parameters ε , σ , n and m obtained using the

SAFT-VR Mie EoS9. The cohesive parameter α is obtained from Equation 2.

System ε/(kB/K) σ/Å n m α

Kr 176.34 3.663 14.28 5.98 0.795

CH4 160.53 3.754 14.15 5.98 0.800

CO2 353.55 3.741 23.0 6.66 0.358

the optimized values of σ and ε are used to convert from reduced units to real units and the results384

are compared with experimental data collected recently by Allers et al.63.385

The optimized Mie intermolecular parameters obtained from the fitting of the SAFT-RV EoS,386

and the values used for CO2 from Avendaño et al.71, are presented in Table III, and the corre-387

sponding prediction of the saturated vapour and liquid densities are shown in Figures 6(a,c,e) for388

Kr, CH4, and CO2, respectively. As can be observed in these Figures, the SAFT-VR Mie provides389

an excellent representation of the saturated densities when compared to the experimental results390

reported in NIST88. Using the parameters reported in Table III, the self-diffusion coefficients for391

the three substances are predicted using, for example, the optimized ANN model and can be com-392

pared with available experimental data63. The results of this comparison are presented in the parity393

plots shown in Figures 6(b,d,f) for Kr, CH4, and CO2, respectively. The calculated metrics AARD394

and R2 for the three substances are also reported in Table IV. The predictions using KNN and SR395

are also presented in the SI.396

For KNN and ANN the predictions are equivalent for all three fluids. The predictions are best397

for CO2 in both metrics. When studying the parity plots presented in Figure 6, the parity plot398

of CO2 looks the most accurate over the range of values studied, while for CH4 and Kr there399

are strong deviations at low values of D∗. These deviations may be attributed directly to the400

lack of training data in very dense liquids, where the intermolecular forces play a larger role.401

Additionally, the coarse-graining applied to the fluid particles treats them as perfect spheres. For402

example., CO2 is neither spherical nor can be represented by simple dispersion forces due to the403

strong quadrupolar moments of the molecule. The same effect has been reported by Aimoli et404

al. in their study of transport properties of CO2 using the same coarse-grained model71,73. The405

deviations at low values of D∗ are more pronounced in the SR predictions, where the cohesion406

parameter is ignored entirely.407
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FIG. 6. Results for the vapour-liquid equilibria and self-diffusion coefficients of (a,b) krypton Kr, (c,d)

methane CH4, and (e,f) carbon dioxide CO2. In figures (a, c, d), the blue circles correspond to the experi-

mental results obtained from NIST88 while the dashed curves are the predictions using the SAFT-VR Mie

Eos9 using the parameters reported in Table III. The parity plots shown in Figures (b,d,f) show the compar-

ison of the prediction of the ANN developed in this work with the experimental results collected by Allers

et al.63.
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TABLE IV. The results for the metrics AARD and R2 obtained from the prediction of the self-diffusion

coefficient using the ML methods optimized for all states.

KNN ANN SR

System AARD R2 AARD R2 AARD R2

Kr 26.6% 0.970 23.4% 0.968 45.8% 0.906

CH4 24.7% 0.970 24.9% 0.971 40.6% 0.902

CO2 22.9% 0.972 22.7% 0.977 24.1% 0.944

IV. CONCLUSION408

In summary, the ability of three different ML algorithms to predict transport properties of409

spheres interacting via the Mie potential has been investigated. The main transport property stud-410

ied in this work is the self-diffusion coefficient, which has been obtained from the calculations411

of the mean-squared displacement from MD simulations. It has been found that KNN and ANN412

perform equivalently over all the fluid phases considered, with KNN having slightly better perfor-413

mance in general, especially in terms of AARD. This is attributed to the interpolation used in the414

KNN method, which allows for a more accurate prediction of small D∗ values. The region stud-415

ied in the supercritical regime was trained on a biased data set, resulting in reduced performance416

from all methods employed. The SR model performs slightly worse, in general, than the methods417

discussed previously. The worst performance from SR is the high AARD in the all-phase data set,418

where the lack of the cohesion parameter in the SR expression leads to reduced performance in419

the low D∗ region. Additionally, for all the ML methods used, viscosity was better predicted when420

training without the use of η0.421

The equations obtained from applying the SR algorithm have shown an unexpected result,422

where the cohesive parameter, which defines the potential’s fluid phase diagram, is absent for423

all the fluid phase regions except for the liquid phase. The prediction of the shear viscosity has424

reaffirmed the comparisons for the performance of the algorithms, as the same trends have been425

observed. To increase the generalization and applicability of the ML models, the all-phase models426

have been applied to predict the self-diffusion coefficients of krypton, methane and carbon dioxide.427

To that end, the Mie potential parameters for each fluid have been calculated using SAFT-VR Mie428

equation of state using available vapour-liquid experimental data. These parameters have been429
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used along with the previously presented models to predict the self-diffusion coefficient of the430

three selected systems. While a good overall agreement has been observed, the results have shown431

some deviations that are attributed to the lack of training data at very high liquid density regime432

as well as the simplicity of single-sphere coarse-grained representation.433

V. SUPPLEMENTARY INFORMATION434

The supplementary information contains a discussion on the uncertainties in the calculation of435

the transport properties, heat maps representing the accuracy of the models in the phase space,436

prediction of self-diffusion coefficients of Lennard-Jones particles from published literature, and437

the predicted results of the self-diffusion coefficient for Kr, CH4, and CO2 using the three ML438

models.439
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