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A B S T R A C T

Without question, we are now living in the era of data. It may
surprise some people to learn that humans have been utilizing

data to inform decisions since the dawn of time. Every day, we use data
to judge seemingly uncomplicated things like what to dress depending
on the current weather and how to go to work based on traffic reports.
As a result of ongoing technological advancements, a vast quantity
of data is currently being generated, gathered, stored, and analyzed.
Furthermore, technology has also advanced over the years to provide us
with the means and tools we need to collect, store, display, comprehend,
and apply data to develop valuable forecasts that will aid in resolving
real-world problems. Additionally, machine Learning, a field that has
grown so fast recently, relies on computers to analyze and understand
the data given to them to predict results.
The financial distress forecast problem is essential in the financial sector
because it has consequences on banks, companies, and organizations
and is the primary subject of this thesis. Poor financial distress projec-
tions may result in significant financial losses. Thus, major attempts
have been made to create prediction models to aid in improving such
activities by assisting decision-makers in foreseeing incidents prior to
they happen and preventing the company from going bankrupt.
From a machine learning perspective, financial distress forecasting is
viewed as a binary classification issue, where the data is usually highly
imbalanced, meaning that the vast majority of companies are solvent,
while only a tiny number are insolvent, making it a challenging task.
As a result, various algorithms and techniques have been created in
the past years to classify imbalanced datasets. Three main techniques
for learning from imbalanced data may be recognized: data-level tech-
niques, also known as external methods that modify the distributions
of the instances and maybe exclude problematic samples. Techniques
that modify existing learning algorithms, sometimes called internal
techniques, to mine data with skewed distributions and lessen their bias
towards majority instances. Furthermore, hybrid strategies combine
the advantages of the two earlier techniques.
In this thesis, we tackled external methods and internal methods sep-
arately. In the case of external methods: We attempt to improve the
financial distress prediction models’ ability to forecast failure by ad-
dressing the uneven distribution issue. We specifically concentrate on
implementing and contrasting eleven advanced resampling techniques
to preprocess the data to lower their imbalance ratio. Following the
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xvi abstract

data balance, we create the decision trees to forecast financial distress
using the C4.5 classifier. For this study, a real dataset that was gathered
from the Spanish market was used. Due to the dataset’s extremely
imbalanced distribution, where insolvent cases make up only 2% of
the entire sample, it is thought to be exceedingly tricky. We observed a
substantial improvement regarding the evaluated evaluation measure-
ments, hence a decrease in the misclassification of positive occurrences,
which is thought to be the most significant risk factor.
In contrast, regarding internal methods, artificial neural networks based
on metaheuristic optimization have shown impressive results in various
applications, including classification problems. More thought has yet
to be devoted to using a metaheuristic optimization-based artificial
neural network with a cost-sensitive fitness function to address the
challenge of predicting a financial crisis. This thesis proposes a novel
ENS_PSONNcost and ENS_CSONNcost; metaheuristic optimization-
based artificial neural networks that utilize the particle swarm optimizer
and competitive swarm optimizer with a cost-sensitive fitness function,
using five of these as the foundation for a majority-voting ensemble
learning approach. In order to prevent dataset bias, three extremely
imbalanced datasets of Polish, Taiwanese, and Spanish enterprises were
considered. The g-mean (geometric mean of sensitivity and specificity)
measure and the f1-score (harmonic mean of precision and sensitivity)
measure demonstrated considerable improvement in the findings while
retaining sufficient accuracy.



R E S U M E N

Actualmente vivimos en la era de los datos. Puede que a algunos les
sorprenda saber que el ser humano lleva utilizando datos para tomar
decisiones desde la noche de los tiempos. Todos los días utilizamos
datos para juzgar cosas aparentemente sencillas, como qué ropa elegir
en función del tiempo que hace o cómo ir al trabajo en función del
tráfico.
Gracias a los continuos avances tecnológicos, actualmente se genera,
recopila, almacena y analiza una enorme cantidad de datos. Además,
la tecnología también ha avanzado a lo largo de los años para propor-
cionarnos los medios y las herramientas que necesitamos para recopilar,
almacenar, mostrar, comprender y aplicar datos para desarrollar predic-
ciones que ayuden a resolver problemas del mundo real. Además, el
aprendizaje automático, un campo que ha crecido tan rápidament e en
los últimos tiempos, se basa en el análisis de datos computacionalmente
para predecir resultados.
El problema de la predicción de la quiebra financiera es esencial en
el sector empresarial porque tiene consecuencias en bancos, empresas
y organizaciones, siendo el tema principal de esta tesis. Una mala
previsión de las dificultades financieras puede acarrear importantes
pérdidas económicas. Por ello, se han hecho grandes intentos de crear
modelos de predicción que ayuden a mejorar los resultados, ayudando
a los responsables de la toma de decisiones a prever incidentes antes
de que ocurran y evitando que la empresa entre en quiebra.
Desde el punto de vista del aprendizaje automático, la predicción de
dificultades financieras se considera un problema de clasificación bi-
naria, en el que el conjunto de datos suele estar muy desequilibrado,
lo que significa que la gran mayoría de las empresas son solventes,
mientras que sólo un número ínfimo son insolventes. Esto lo convierte
en un problema muy difícil. Por ello, en las últimas décadas se han
creado diversas técnicas y algoritmos para clasificar conjuntos de datos
desbalanceados. Se pueden reconocer tres técnicas principales para
el aprendizaje a partir de datos desbalanceados: Técnicas a nivel de
datos, también conocidas como métodos externos que modifican las dis-
tribuciones de las instancias y pueden excluir muestras problemáticas;
técnicas que modifican los algoritmos de aprendizaje existentes, a veces
denominadas técnicas internas, para extraer datos con distribuciones
sesgadas y disminuir su sesgo hacia las instancias mayoritarias; y por
último, estrategias híbridas combinan las ventajas de las dos técnicas
anteriores.
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xviii resumen

En esta tesis abordamos los métodos externos y los métodos internos
por separado. En el caso de los métodos externos se busca mejorar la
capacidad de los modelos de predicción de quiebra empresarial para
predecir la quiebra abordando el problema de la distribución desigual.
En concreto, nos centramos en aplicar y contrastar once técnicas avan-
zadas de remuestreo para preprocesar los datos con el fin de reducir
su ratio de desbalanceo. Tras el balanceo de los datos, creamos los
árboles de decisión para predecir la quiebra empresarial utilizando
el clasificador C4.5. Para este estudio se utilizó un conjunto de datos
reales procedentes del mercado español. Debido a la distribución ex-
tremadamente desbalanceada del conjunto de datos, en el que los casos
insolventes representan sólo el 2% de toda la muestra, se considera que
es un problema muy complicado. De los resultados obtenidos observa-
mos una mejora sustancial con respecto a las medidas de evaluación,
que significa una disminución del error en clasificación de ocurrencias
positivas, lo que supone el factor de riesgo más significativo.
Por otra parte, en el caso de los métodos internos, las redes neuronales
artificiales basadas en la optimización metaheurística han mostrado
notables resultados en diversas aplicaciones, incluidos los problemas
de clasificación. Aún no se ha reflexionado más sobre el empleo de
una función de adecuación sensible a los costes en las redes neuronales
artificiales basadas en la optimización metaheurística para abordar el
reto de predecir la quiebra empresarial.
En esta tesis se proponen dos nuevos modelos predictivos complejos,
llamados ENS_PSONNcost y ENS_CSONNcost. Específicamente se trata
de redes neuronales artificiales basadas en la optimización metaheurís-
tica que utilizan el optimizador de enjambre de partículas (particle
swarm optimizer, PSO) y el optimizador de enjambre competitivo
(competitive swarm optimizer, CSO) con una función de adecuación
sensible al coste. Cada conjunto de predictores (”ensemble”) está com-
puesto por cinco modelos en un paradigma de aprendizaje de votación
mayoritaria.
Para evitar sesgos en los conjuntos de datos se consideraron tres conjun-
tos de datos extremadamente desbalanceados de empresas españolas,
taiwanesas y polacas. Usando las medidas g-mean (media geométrica
de la sensibilidad y la especificidad) y f1-score (media armónica de la
precisión y la sensibilidad) se ha conseguido una mejora considerable
en los resultados obtenidos.
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Machine learning has been extensively used in solving the problem
of forecasting corporate financial distress since it significantly

influences the future of business, which is an actual example of real-
world problem-solving. As a result, this Ph.D. thesis investigates the
challenge of forecasting the financial distress of organizations and
suggests fresh ideas to enhance the accuracy and general efficiency of
machine learning algorithms in tackling it. Notably, the primary barrier
to addressing this issue is the rarity of financial distress in firms, which
presents a significant hurdle for the classifiers in determining the actual
financial situation of the firms (i.e., insolvent or solvent) and ensuring
a high level of validity accordingly.

In the literature, the terms bankruptcy and insolvency are commonly
used synonymously [1]. In a legal-financial process known as bankruptcy,
a person or business declares that it cannot meet its financial commit-
ments. This legal stance has the result that part of the obligations will
be paid off by selling off the debtor’s assets, while the remaining debts
will be disregarded [2].

Therefore, predicting financial distress (i.e., insolvency or bankruptcy)
is a crucial application in the financial sector that helps make intelligent
business decisions [3]. A more comprehensive picture of the business’s
health will be provided by successfully forecasting this problem, which
will also help decision-makers foresee events before they occur.

3
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1.1 context and motivation

Because of its repercussions on banks, businesses, and a wide range of
stakeholders, including employees, customers, vendors, and ultimately
whole countries, the importance of enterprises’ financial distress pre-
diction problem is apparent in today’s world. Due to poor judgment
and analysis, there may be significant financial losses.

Giving a specific approach to deal with financial data is, therefore, a
challenging task because there is typically a high degree of imbalance
in the distribution of financial data; that is, the number of companies
in financial distress is much lower than that of successful ones, and
the occurrence of the financial distress of companies is rare compared
to solvency in the real world. In other words, there is a significant
bias in the firm’s financial data, which shows the urgent need to apply
resampling methodologies to address the issue since the asymmetric
distribution of the data has a detrimental impact on the accuracy and
overall performance of classifiers in predicting the financial collapse of
firms. A classifier is a piece of software or programming that represents
an algorithm’s processing of data observations or samples to identify
the class of new ones [4].

Datasets about financial distress present a challenge because of their
extreme imbalance. The dataset is unbalanced if samples from one
class are much more numerous than samples from the other classes.
Classifiers may have excellent accuracy for the majority class but infe-
rior accuracy for the minority class due to the stronger majority class’s
impact on traditional training criteria. Reducing the error rate or the
percentage of incorrect class label predictions is the main objective of
most novel classification algorithms [5].

Given the importance of financial distress prediction and the imbal-
anced nature of the data, this doctorate thesis aims to make relevant
contributions to improving machine learning algorithms in predicting
companies’ financial distress by first evaluating the effect of oversam-
pling techniques. Second, develop a new cost-sensitive metaheuristic-
optimized artificial neural network and then assess the impact of en-
semble learning on the newly developed framework.



1 .2 objectives 5

1.2 objectives

The thesis aims to make valuable contributions to enhancing machine
learning algorithms’ overall prediction capability in predicting com-
panies’ financial distress, considering the critical factors outlined in
the previous Sect. 1.1; the specific key goals are listed in further detail
below.

1.2.1 Evaluate advanced oversampling methods

The external technique is the one that is most typically employed to
address the imbalanced aspect of financial distress prediction datasets.
Boosting the minority class number, known as Oversampling, or lower-
ing the majority class ones, referred to as Undersampling, modifies the
distribution of the class labels [6].

In this Ph.D. thesis, we experimentally assess and contrast eleven
advanced oversampling techniques for predicting financial distress. For
this study, an actual dataset that was gathered from the Spanish market
was used.

1.2.2 Develop a new cost-sensitive metaheuristic-optimized artificial neural
network

Cost-sensitive learning and metaheuristic-optimized artificial neural
networks have demonstrated promising outcomes for classification
problems. Despite this, the impacts of integrating the cost-sensitive
fitness function with a metaheuristic-optimized artificial neural network
on financial distress prediction have received relatively little attention.

A subset of Artificial Neural Networks (ANNs) known as Metaheuristic
Optimized Artificial Neural Networks (MHOANNs) uses metaheuristic
optimization techniques to choose its weights and biases [7]. Swarm-
based algorithms have been designed as a robust collection of opti-
mization methods, and they were motivated by social animals’ group
dynamics. A group of particles that navigate through the parameter
space, creating paths based on their own and their peers’ optimal per-
formances, is how Particle Swarm Optimization (PSO) describes the
gathering of possible solutions to the optimization problem, referred to
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as the particle model[8]. In contrast, Competitive Swarm Optimization
(CSO) is a more contemporary form of PSO that incorporates a compe-
tition mechanism that involves two particles, where the looser particle
learns from the winning particle and adjusts its position accordingly
[9].

We suggest employing a cost-sensitive MHOANN to do this in order
to enhance the predictions of the minor class in the financial distress
dataset. The cost-sensitive component is utilized to enhance the minor-
ity class prediction. PSO and CSO were the two optimization methods
that were selected. PSO and CSO were chosen as the optimization
strategies in this thesis because, in contrast to other metaheuristic ap-
proaches algorithms, PSO only needs a few parameters and hence
requires fewer iterations [10]. Moreover, CSO is a more modern form
of PSO intended as a solution for large-scale optimization issues due
to the fact that each iteration only updates 50% of the particles [11].

1.2.3 Apply ensemble learning on the new cost-sensitive Metaheuristic-
optimized artificial neural network

Combining multiple learning algorithms to achieve a higher level of
predicted performance than what could be achieved by any single
learning algorithm is what ensemble methods in statistics and machine
learning are all about. Even while a machine learning ensemble merely
consists of a tangible, limited set of distinct models, it often permits a
significantly more adaptable framework within those alternatives. The
fundamental tenet of ensemble learning is that by combining many
models, the shortcomings of one model will almost certainly be offset
by those of others [12].

The primary idea behind ensemble learning is that when integrating
several models, the deficiencies of a single model can be made up for
by the remaining models, producing one powerful learner from several
weak ones. to accomplish this, the ensemble’s weak learners should be
diverse and accurate [12]. This thesis evaluated: if the Metaheuristic-
optimized artificial neural network is accurate and diverse enough to
be applied with an ensemble learning paradigm.
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1.3 thesis structure

• Chapter 1. Introduction: In this chapter, we presented this thesis’s
context, motivation, and objectives.

• Chapter 2. Background: This chapter provides a comprehensive
description and explanation of the algorithms used in this thesis.

• Chapter 3. Literature Review: In this chapter, we review the
state-of-the-art machine learning methods used in the literature
to handle imbalanced classification problems in general and fi-
nancial distress prediction in specific.

• Chapter 4. Methodology: This chapter details the datasets, ma-
chine learning methods, experiments’ setup, results, and analysis.

• Chapter 5. Conclusions and future works: This chapter summa-
rizes the conclusions reached based on the findings and contribu-
tions of this Ph.D. thesis. Additionally, the suggested upcoming
work is also revealed.
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2.1 imbalanced datasets classification methods

Learning from imbalanced data is still a significant study area after
more than two decades of advancement. This issue has developed well
beyond its original notion as an issue of unbalanced distributions in
binary tasks since we have obtained a greater understanding of the
nature of unbalanced learning because of the development of machine
learning and data mining and the emergence of the era of big data
while confronting new obstacles [13].

According to traditional machine learning techniques, the count of
occurrences in the classes under consideration is often comparable.
However, the distribution of samples is occasionally distorted since
individuals from particular groups occur much more frequently in
actual situations. There will be a problem since learning algorithms will
be skewed in favor of the majority group. From the perspective of data
mining, the minority class is often the one that is more important since,
despite its rarity, it may contain essential and pertinent information
[13].

Classifying unbalanced data usually challenges these conventional clas-
sification methods, even though machine learning techniques have been
widely employed to create classification models to support administra-
tive and commercial decision-making. Generally, there are five reasons
for this [14]:

• Balanced training sets work well with standard classifiers like
logistic regression, SVM, and decision trees. When faced with un-SVM: Support

Vector Machine balanced circumstances, these models frequently produce subpar
classification results, i.e., they cover the majority class well while
distorting the minority ones.

• Even though the forecast model attains a high overall accuracy,
the training process is inclined towards the more prevalent class
when global performance measures like prediction accuracy drive
it.

• The learning model could consider rare minority examples as
noise. On the other hand, noise could be mistakenly classified as
minority occurrences since both patterns are uncommon in the
data space.

• Minority instances typically overlap with other areas where the
initial probability of both classes is nearly the same, despite the
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fact that unbalanced sample distributions are not necessarily
challenging to learn (such as in situations where the classes can
be differentiated).

• Additionally, difficulties with unbalanced learning, such as tiny
disjuncts, an insufficiency of concentration, and limited sample
sizes with high feature complexity, frequently result in learning
models failing to discover unusual patterns.

Over the last few decades, a number of machine-learning techniques
have been created to cope with imbalanced data categorization. These
tactics primarily rely on ensemble approaches, cost-sensitive learn-
ing, and sampling procedures. A simple solution to this problem is
the resampling strategy, which involves either raising the number of
records in the minority class or lowering the number in the majority
class. Two resampling techniques that are frequently employed include
oversampling and undersampling [15].

Sampling-based approaches offer the data-level solution by evenly
distributing the samples among the classes. The two basic sampling
techniques, undersampling and oversampling, involve taking fewer
samples from the majority class or including more samples from the
minority class [16]. In this Ph.D. thesis, we will study the oversampling
technique by evaluating eleven oversampling methods.

On the other hand, cost-sensitive classification works at the algorithm-
level. It aims to reduce misclassification in the minority class by con-
sidering that the costs caused by different kinds of misclassifications
are not considered equal [7]. This thesis used an MHOANN as our
classifier based on PSO and CSO optimizers with a cost-sensitive fitness
function. Then, utilizing ensemble learning with homogenous majority
voting, we enhanced the capabilities of our model.

2.2 oversampling methods

Methods of oversampling replicate instances in the minority class or
create new instances using examples from the minority class in order to
to reduce the imbalanced distribution of a given dataset. The following
is a succinct explanation of the oversampling techniques evaluated in
this Ph.D. thesis.
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2.2.1 Random Over-Sampling (ROS-I)

ROS-I is a simple over-sampling technique that is comparable to more
advanced over-sampling methods. By randomly replicating existing
data points, ROS-I is a non-heuristic method for balancing an unbal-
anced data set by raising the proportion of minority class members.
Furthermore, the average increase in the mean number of induced
rules is often the least compared to other oversampling methods. More-
over, it yields valuable results and is computationally less costly than
alternative approaches. Though straightforward and practical, this strat-
egy is highly susceptible to overfitting because it produces identical
duplicates of the minority class instances [17].

2.2.2 Synthetic Minority Oversampling Technique (SMOTE)

The technique most frequently used for producing new examples is
SMOTE. It is preferable to synthesize fresh instances from the minority
class as opposed to using examples from the same class repeatedly.
SMOTE increases the diversity of the training data by incorporating
additional instances, which helps to even out any irregular concentra-
tions of data points. It does this by randomly selecting the k closest
instances from the minority class. The process then calculates the gap
between the minority class samples and its closest neighbor, scales it
by a random factor within the range of 0 and 1, and then incorporates
it into the feature vector. It generates synthetic samples on the line
connecting any or all of the k minority class nearest neighbors.

The approach is effective as it creates authentic synthetic samples
from the minority class that are close in feature space to existing
minority class instances. However, the synthetic samples are generated
independently of the majority class, which could lead to confusing
examples if the two classes have a high degree of overlap which has
been highlighted in [18].

2.2.3 Synthetic Minority Oversampling Technique and Tomek’s Links (SMOTE-
TL)

SMOTE-TL is a sophisticated oversampling method designed to address
the overfitting issue and eliminate noisy examples on the incorrect area
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of the boundary of the decision. It cleans the data using the "Tomek
links" technique. In the beginning, SMOTE is used to replicate minor
class instances. After that, Tomek links are found and deleted for
instances from both the minor and the major classes. The following is a
definition of Tomek links: If two samples are from separate classes and
are the closest to one another, they are said to have a Tomek link [17].

2.2.4 Synthetic Minority Oversampling Technique and Edited Nearest Neigh-
bor (SMOTE-ENN)

SMOTE-ENN employs SMOTE to generate synthetic examples, and
then it will clean the data by reducing the noisy samples to improve the
classifiers’ generalization capacity. The cleanup procedure is described
as follows: If two or more of the three closest neighbors, for an instance
E, are from a minority class and E belongs to the majority class, then E
is deleted and contrariwise applied to instances from the majority class
[17].

2.2.5 Borderline SMOTE

Most classification methods attempt to distinguish the boundaries for
every class during the training phase. In general, borderline cases
are usually instances that are frequently incorrectly classified. Conse-
quently, this technique concentrates on these instances. This technique
operates in the following manner: for each instance E belongs to the
minority class, it locates its k nearest neighbors; if they all belong to
the majority class, the sample is treated as noise and is not taken into
account. The instance is regarded as safe and also disregarded if there
are fewer instances of the majority class in the k nearest neighbors than
there are of the minority class. The rest, which have more neighbors
who are members of the majority class, are deemed dangerous, and
these are the examples that are artificially repeated [19].

2.2.6 Safe-Level SMOTE

Solely seeks to produce artificial instances in safe areas. It operates as
follows: It calculates the safe level ratio s for minor instance p, described
as the number of minority class instances within the k nearest neighbor.



14 2 background

After that, it divides the safe level by the safe level of the nearest
neighbors n to get the safe level ratio for the instance p. There will be
five different scenarios:

• When s is ∞, and p’s safe level equals 0, p and n are both treated
as noise and disregarded.

• When s is ∞, and p’s safe level does not equal 0, n is considered
noise, and a synthetic sample is created away from it.

• When s equals 1, a synthetic sample is generated between p and
n.

• When the safe level is more than 1, p is considered safer than n.
Hence a synthetic sample is generated near p.

• On the contrary, when s is less than 1, the synthetic sample will
be created close to n as it is considered safer than p [20].

2.2.7 Adaptive Synthetic Sampling (ADASYN-I)

ADASYN-I employs weights to assess unpredictable minority class
occurrences. This method calculates the density distribution by the
k nearest neighbors for each instance in the minority class identified.
The number of cases in the k nearest neighbors that correspond to the
majority class is then divided by k to determine the density distribution.
This assessment of weight distribution for various minority classes is
considered to calculate the required number of synthetic examples,
which lessens prejudice. It moves the classification decision boundary
to the challenging samples [21].

2.2.8 Adjusting the Direction Of the synthetic Minority class examples
(ADOMS)

It uses the principal component analysis approach, concentrating on
the dataset’s fluctuations and regularities. Altering the orientation of
the artificially generated minority class samples generates synthetic
samples that are well-aligned with the true distribution of the dataset.
The first principal component of the feature space that captures the
most significant proportion of the variance in the local data distribution
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will be utilized to generate synthetic examples. This axis is a linear com-
bination of all features with the most significant variation concerning
all other linear combinations. It effectively reduces the experimental
classifier’s classification performance in class imbalance scenarios and
aids in lowering problems brought on by freshly created synthetic
samples for the minority class [22].

2.2.9 Selective Preprocessing of Imbalanced Data (SPIDER)

A method for selectively preparing unbalanced data, it divides in-
stances into two categories—safe and noisy—based on their inherent
characteristics. A built-in classifier will classify safe samples correctly,
but noisy examples have a high possibility of misclassification, necessi-
tating preprocessing. By combining HVDM with NNR, the sample is HVDM: Heteroge-

neous Value

Distance Metric

NNR: Neural

Network Regression

classified as either safe or noisy [23].

2.2.10 SPIDER-II

This technique, which distinguishes between safe, borderline, and
noisy samples, makes the same argument as SPIDER that the pres-
ence of marginal and noisy examples hinders the learning process for
algorithms. The SPIDER-II method utilizes a two-step preprocessing
technique for examples that are a part of the minor and major classes, in
contrast to the SPIDER method, which processes the minority and ma-
jority examples simultaneously, which could result in extreme changes
in certain areas of the examples that are a part of the majority class
[24].

2.2.11 Agglomerative Hierarchical Clustering (AHC)

AHC is a technique employed in data mining for grouping similar
examples together. The technique starts by treating each sample as
an individual cluster, then successively calculates the closest distance
between two clusters, combines them, and continues this process for all
data points. This process will be continued until the desired number of
clusters is reached. The resulting clusters are used to create synthetic
data points to address imbalances in the original dataset. This technique
helps to improve the sensitivity of various classification algorithms.
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Specifically, it works by removing the initially combined clusters from
the dataset, adding the new cluster, and repeating the procedure [25].

2.3 cost-sensitive learning

By imposing higher penalties for improperly classifying examples from
the minority class instances relative to majority class instances, cost-
sensitive learning may be implemented at both the algorithmic level
and the data level (such as resampling and feature selection) [26].

The costs are sometimes expressed as cost matrices, where Cij stands
for the misclassification cost of allocating instances to class i when
they should be in class j. Cost matrices can be established for a given
domain using expert judgment. In scenarios involving data streams,
they can fluctuate for each record or vary in a dynamic unbalanced
condition [27].

Cost-sensitive learning is less computationally demanding than resam-
pling techniques, making it potentially more appropriate for massive
data streams. However, compared to resampling procedures, this tech-
nique is far less used. There may be two possible causes, one of which
is that setting values in the cost matrix is challenging. Most of the
time, an expert cannot estimate the cost of misclassification since it
cannot be determined from the data. However, another approach may
be used to solve this problem. It involves setting the majority class
misclassification cost to 1 and the penalty minority class value to the
IR [28]. Resampling is a popular option for researchers with limitedIR: Imbalance Ratio

domain knowledge. The second cause is that resampling techniques are
significantly more straightforward to use in single and ensemble mod-
els than cost-sensitive learning, which frequently necessitates changing
the learning algorithm [14].

2.4 metaheuristic optimized artificial neural networks

(mhoanns)

ANNs are machine learning algorithms influenced by human brain
function and structure. They are made of interconnected nodes known
as neurons arranged in layers and are trained to perform various tasks
by adjusting the strengths of the connections (or weights) between the
nodes. ANNs have been widely used in various applications, including
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pattern recognition, data classification, and function approximation
[29].

One of the challenges in training ANNs is finding the optimal set
of weights that will give the best performance on a given task. This
problem is often referred to as the training or optimization problem.
It can be challenging due to a large number of weights that need to
be adjusted, the complex and non-linear nature of the relationships
between the weights and the performance of the ANN, and the presence
of local minima in the error surface [30].

A subset of ANNs known as MHOANNs uses metaheuristic optimiza-
tion techniques to choose its weights and biases [7]. Swarm-based
algorithms have been created as a powerful collection of optimization
techniques, and they were inspired by the group behavior of social ani-
mals. A swarm of particles that can move through the parameter space
and create trajectories motivated by their own and their neighbors’ best
performances is how PSO describes the collection of potential solutions
to the optimization problem [8], which is referred to as the particle
model. A mechanism that involves competition between pairs is used
in CSO, a more contemporary form of PSO, where the losing particle
learns from the winning particle and adjusts its position [9].

In addition to these traditional metaheuristics, more recent studies have
been dedicated to creating hybrid methods that combine metaheuristics
with other optimization techniques, such as gradient-based methods
and particle swarm optimization [31, 32]. These hybrid algorithms are
particularly effective at finding reasonable solutions to the optimization
problem in a relatively short time while still being able to avoid getting
stuck in local minima and cover a large area of the search space.

Overall, metaheuristics-based optimization algorithms have proven to
be a valuable tool for training ANNs and have been widely used in
various applications. As research in this area continues to evolve, we
will likely see the development of even more effective and efficient
metaheuristics-based optimization algorithms for ANNs in the future.

2.4.1 Metaheuristic optimization algorithms

There are numerous essential applications for optimization, and the
methods used to do it are diverse and have a wide variety of practi-
cal uses. Modern metaheuristics are gaining popularity among these
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optimization techniques, giving rise to a new subfield known as meta-
heuristic optimization.

Metaheuristic optimization algorithms are a set of algorithms that are
used to solve complex optimization problems. These algorithms are
designed to be flexible and adaptable and can be applied to various op-
timization problems in various fields, including engineering, computer
science, and finance [33]. Metaheuristic algorithms are often used when
traditional optimization methods, such as gradient descent or linear
programming, are insufficient to find a problem’s optimal solution.
They are beneficial for solving problems that are large, complex, or
noisy or that involve multiple objectives or constraints.

One of the main advantages of metaheuristic algorithms is their ability
to find reasonable, near-optimal solutions quickly. They are also rela-
tively easy to implement and can be applied to problems with little or
no prior knowledge of the problem domain [34].

Most metaheuristic algorithms, including ant colony optimization, sim-
ulated annealing, particle swarm optimization, and cuckoo search, are
derived from natural phenomena. Since the advent of swarm intelli-
gence algorithms such as PSO in the 1990s, over a dozen new meta-
heuristic algorithms have been created. These algorithms have been
applied in various fields, such as optimization, data mining, machine
intelligence, and many other domains. Numerous books and countless
research articles have been published [33]. In this Ph.D. thesis, we used
PSO and CSO as the optimization methods for the MHOANN.

However, metaheuristic algorithms have some limitations, and they
may only sometimes find the optimal global solution to a problem and
require more computational resources than traditional optimization
methods. Overall, metaheuristic optimization algorithms are a valuable
tool for solving complex optimization problems and can be an effective
alternative to traditional optimization methods in many cases [35].

2.4.1.1 Particle Swarm Optimization (PSO)

PSO is an optimization method that works incredibly well for issues
where the parameter’s best solution is a point in a multidimensional
space. The social interaction and communication found in fish schools
and flocks of birds served as inspiration (real-valued optimization).
The characteristic of the particles being described by a position and
a velocity, as well as having the ability to change their place in the
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search space, is translated from inspiration from natural analogs, such
as schooling or flocking [8].

A collection of potential solutions, referred to as particles or agents, are
first generated at random by the algorithm. A mathematical formula
that regulates the position and velocity of the particles directs how
they move throughout the search space over a series of iterations that
make up the optimization process. The most advantageous solution
that each particle has discovered affects the direction that particle is
moving in. They are directed toward the search space’s known optimal
places, which are updated when other swarm particles find new, more
advantageous sites. As a result, the entire swarm gradually moves in
the direction of the ideal solution [36].

The velocity of every particle is computed in every iteration as stated by
equation 2.1, where the particle Pi’s velocity in dimension d = 1, ..., n
at time step t is denoted by vid(t), w defined as inertia keeps track of
the prior flow direction to stop the particle from abruptly changing
direction, r1, and r2 are two randomly chosen numbers ∈ [0, 1] within
a uniform distribution. Positive constants called acceleration constants
are c1 and c2, pid(t) is the ith particle best position known for this
particle recorded since the first iteration in dimensions d at t time. The
best global particle location is donated by pg.

After that, each particle’s position is updated in accordance with equa-
tion 2.2, where xid(t) represents the particle’s position and vid(t + 1)
represents the velocity of the ith particle in dimension d at time step
t + 1 [36]. Figure 2.1 shows the pseudocode for the standard PSO
algorithm.

vid(t + 1) = w . vid(t)

+ r1c1 . [pid(t)− xid(t)]

+ r2c2 . [pg − xid(t)]

(2.1)

xid(t + 1) = xid(t) + vid(t + 1) (2.2)

2.4.1.2 Competitive Swarm Optimizer (CSO)

It is a PSO-based technique, but it differs significantly from PSO. In
CSO, the particles are not updated using either the particle’s best
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Figure 2.1: Pseudocode of the standard PSO algorithm [37].

position or the global best position. Rather, a pair-by-pair competi-
tion process is used, in which the losing particle changes its position
by learning from the winning particle. Despite its straightforward ap-
proach, the CSO exceeds the most recent metaheuristic algorithms in
terms of overall performance [9]. A diagram that explains the CSO
mechanism is shown in Figure 2.2.

Each particle in CSO stands for a potential answer to the optimization
problem. Let a swarm of m particles is represented by P(t) where m is
the number of the particles, and t represents the index of iteration or
generation. Until all particles have participated in at least one competi-
tion, two particles are chosen randomly from P(t) in each generation,
assuming that m is an even number.

In each generation of CSO, two particles are picked at random from
the current population P(t) and compared by calculating their fitness.
If the number of particles in the swarm is even, this process continues
until all particles have competed at least once. The winning particle is
carried over to the following generation, P(t + 1), and is the one with
the highest fitness. In contrast, the losing particle is carried over after it
updates its position based on the winner’s knowledge.
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Figure 2.2: A diagram that explains the general idea of CSO. Particles
from the current swarm are pairwise and randomly chosen during
each generation to compete. The winner is immediately carried over
to the swarm of the subsequent generation. At the same time, the one
with the low fitness value is improved by gaining knowledge from the
winner after each competition.

Learning from the winner is simply updating the losing particle’s posi-
tion according to equation 2.3, where xl,i(t + 1) is the losing particle’s
position in the next generation, xl,i(t) is the current losing particle’s
position of and vl,i(t + 1) is the updated velocity after learning from
the winner particle.

Equation 2.4 explains updating the velocity of the losing particle, where
xw,i(t) is the winner particle’s position in the i-th round of competition
in iteration t, xl,i(t) is the loser particle’s position in the i-th round
of competition in generation t, vw,i(t) is the winner particle’s velocity
in the i-th round of competition in generation t, vl,i(t) is the loser
particle’s velocity in the i-th round of competition in generation t,
i ∈ 1, 2, ..., m/2, m is the number of particles or the population size,
r1(i, t), r2(i, t) and r3(i, t) ∈ [0, 1] are three randomly generated vectors
at the i-th competition and learning process in generation t, x̄(t) is the
mean position value of all particles, which is considered the center of
the swarm in generation t, and φ is a parameter used to control the
effect or influence of x̄(t) [9].

xl,i(t + 1) = xl,i(t) + vl,i(t + 1) (2.3)
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vl,i(t + 1) = r1(i, t)vl,i(t)

+ r2(i, t)(xw,i(t)− xl,i(t))

+ φ r3(i, t)(x̄(t)− xl,i(t))

(2.4)

2.5 ensemble learning

By training several models and combining their predictions, ensemble
learning is frequently regarded as the most sophisticated solution to
various machine learning problems. It is a general term for techniques
that combine different inducers to get a conclusion and is widely
applied in supervised machine learning scenarios. A model (such
as a classification or a regression model) is built using an inducer
approach, also known as a base learner, which accepts a collection
of labeled instances as input. Recent samples without labels may be
predicted using the constructed model. As ensemble inducers, a variety
of machine learning approaches may be applied (e.g., neural network,
random forest, Logistic regression). The underlying tenet of ensemble
learning is the ability to compensate for the shortcomings of one model
by the rest of the models in the ensemble, enhancing the ensemble’s
overall performance in terms of prediction [38].

There are several types of ensemble learning methods, including bag-
ging, boosting, and bootstrapping. Bagging entails training several
models on various subsets of the training data and averaging their
forecasts to arrive at the final forecast. Boosting entails successively
training several models, each of which tries to fix the mistakes caused
by the one before it. On the other hand, Bootstrapping entails using
various subsets of the training data to train different models drawn
with replacement and averaging their predictions to make the final
prediction [39].

Members of an ensemble might be of the same type or different kinds,
and they could or might have been trained using a different training
dataset. It is considered homogenous if each learner in an ensemble
belongs to the same kind. For instance, a "neural network ensemble"
consists solely of neural networks [40].

Combining the results of all base learners can be done in the classifica-
tion case by three different methods of majority voting: (1) unanimous
voting, where all classifiers agree on the prediction; (2) simple majority,
where at least one greater than 50% of the number of models predicted
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the same label; (3) plurality voting, the forecast with the most votes
wins [41]. Figure 2.3 shows a graphical abstraction of an ensemble
diagram that includes five different decision trees in a majority voting
scheme.

Ensemble learning has been demonstrated to be particularly useful
in enhancing the performance of machine learning models in various
tasks, including classification, regression, and clustering. For example,
in the area of classification, ensemble learning is effective in improving
the performance of decision trees, neural networks, and support vector
machines [39]. In the area of regression, ensemble learning has been
shown to improve the performance of linear and nonlinear regression
models. Moreover, ensemble learning proved to be effective in enhanc-
ing the performance of clustering methods, k-means, and hierarchical
clustering, for example [42].

For several reasons, ensemble approaches frequently enhance predic-
tion performance. Some of the reasons can be summarized as follows:
Avoiding overfitting, when there is limited data, a learning algorithm is
more likely to develop a variety of hypotheses that accurately predict
well for the training data while producing inaccurate predictions for
unobserved cases. Averaging different hypotheses improves overall
prediction performance since it reduces the possibility of choosing a
wrong hypothesis. By combining many learners, ensemble techniques
lessen the likelihood that the overall model will get trapped in local
minima. The perfect hypothesis could exist outside of the scope of any
specific model. Moreover, combining several models can improve the
fit to the data space, which broadens the search space [43, 44].
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Figure 2.3: An ensemble of five classification trees: For the input x, each
tree offers its classification, and instance x should be classified as "1"
using majority voting, as three of the five trees voted for it.
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This chapter presents a literature review of various machine learning
methods used to tackle the imbalance classification problem and

companies’ financial distress prediction.

Many scholars focus on the crucial problem of financial distress pre-
diction since an incorrect assessment of a company’s financial health
might result in significant losses [45]. Predicting financial distress is
difficult since the information is typically heavily skewed, meaning
that the number of insolvent enterprises is far lower than the number
of solvent ones leading to an imbalanced binary classification problem
[46].

27



28 3 literature review

3.1 oversampling methods

The oversampling technique is prevalent in tackling the class imbalance
problem in binary classification and, indeed, in financial distress pre-
diction. For instance, García et al. [47] compared the effectiveness and
performance of several undersampling and oversampling procedures
used prior to categorizing various unbalanced credit datasets. Then
they utilized four categorization techniques that are frequently used
to forecast credit risk (KNN, MLP, RBF, and SVM). Five real-worldKNN: K-Nearest

Neighbors

MLP: Multi Layer

Perceptron

RBF: Radial Basis

Function

credit datasets with different balance ratios have been considered to
assess the resampling procedures and classification. The findings of
this study demonstrate that the (SMOTE-ENN algorithm and SVM
classifier) produce the best outcomes.

Later, Jose et al. [48] proposed using resampling with filtering criteria to
neglect borderline and noisy samples. In [49], Liang et al. investigated
how the Financial Ratios (FRs) and Corporate Governance Indicators
(CGIs) together affected the performance of the classifiers in forecasting
the financial health of Taiwanese enterprises. A stratified sampling
approach was used to choose a balanced subset and resolve the issue
of uneven data distribution. The chosen subset included 239 records
for firms that had gone bankrupt and another 239 records for still
viable enterprises. Consequently, five classifiers—namely, SVM, KNN,
CART, MLP, and Naïve Bayes—were compared. The performance ofCART: Classifica-

tion And Regression

Trees

the classifiers was then enhanced by merging the FRs and CGIs with
Stepwise Discriminant Analysis (SDA) feature selection technique and
SVM, yielding the best outcomes.

ADASYN-I and SMOTE-ENN were used by Le et al. [50] to address
the issue of categorizing very unbalanced datasets. They used several
classifiers, including SVM, MLP, Random Forest, and Decision Trees.
The authors’ highly unbalanced dataset, which includes 120048 solvent
and 307 bankrupt enterprises, was obtained from a Korean financial
company. The findings of this study demonstrated that oversampling
strategies might enhance bankruptcy prediction performance. The most
remarkable findings for the Area Under the Curve (AUC) measurement
came from SMOTE-ENN utilized as the random forest preprocessing
step. Additionally, a novel sampling method to tackle the imbalance
problem was introduced by González et al. [51], in which sampling is
done inside monotonic chains.

Then, using a highly imbalanced dataset, Islam et al. [52] examined 13
classification algorithms to forecast bankruptcy. Data was prepossessed
using SMOTE, and the evaluation metrics showed an increase in the
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performance of the classification algorithms. In a recent study, a new
method called Selective Oversampling Approach (SOA) was proposed
by Gnip et al. [53] that distinguishes the most representative samples
from minority groups using an outlier detection approach. Then, ar-
tificial oversampling is done with these samples. The results of the
experiments showed that this method outperforms synthetic minority
oversampling and adaptive synthetic sampling.

3.2 cost-sensitive learning

It is also quite common in the literature to use cost-sensitive learning to
resolve the unbalanced classification problem. For example, the issue
of estimating the likelihood of bankruptcy from an unbalanced dataset
was addressed by Kim et al. [54]. They suggested an AdaBoost variation AdaBoost: Adap-

tive Boostingcalled the Geometric Mean-Based Boosting algorithm (GMBoost). The
researchers took into account data gathered from a Korean commercial
bank. In order to compare the generated findings with and without
utilizing SMOTE, they divided the dataset into five subgroups. In
contrast to AdaBoost, GMBoost produced the most significant results
regarding prediction and learning capabilities.

Recently, Mienye et al. proposed in [55] that reliable cost-sensitive clas-
sifiers could be created when objective functions of algorithms like ran-
dom forest, logistic regression, Extreme Gradient Boosting (XGBoost),
and decision tree are updated. Then, accurate medical diagnoses are
predicted using these algorithms. The research findings demonstrate
that cost-sensitive methods outperform traditional algorithms.

Moreover, to address the binary classification of unbalanced class
datasets. Hazarika et al. [56] conducted experimental analyses on sev-
eral unique imbalanced synthetic and real-world datasets. Their effec-
tiveness is evaluated using the geometric mean and the area under
the curve. The outcomes are contrasted with SVM, fuzzy SVM, en-
hanced fuzzy least squares SVM, fuzzy SVM using affinity and class
probabilities, and fuzzy least squares SVM using entropy. Similar or
superior generalization outcomes demonstrate the effectiveness and
applicability of the suggested methods.
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3.3 ann

Many researchers have used ANNs to predict financial failures. For
example, a study by Pompe and Feelders [57] showed that ANNs
performed better than Linear Discriminant Analysis (LDA) and classifi-
cation trees for this case. Additionally, Baek and Cho [58] developed a
training technique to enhance the effectiveness of an auto-associative
neural network in predicting the financial collapse of organizations.
They used a sample dataset that included bankrupt and solvent compa-
nies to train the network, which improved the network’s performance
compared to when it was trained on a dataset of only solvent compa-
nies.

Later, Bose and Pal [59] conducted research evaluating several financial
forecasting techniques. They found that neural networks have a higher
accuracy rate than SVMs.

After that, the effectiveness of various strategies in foretelling the
financial disasters of Taiwanese publicly traded industrial companies
was thoroughly addressed by Lin [60]. Multiple Discriminate Analysis
(MDA) and ANNs, Probit, and Logit were the techniques that the study
examined. The Taiwan Economic Journal dataset of public industrial
businesses in Taiwan from 1998 to 2005 was used to train the classifiers.
ANN, Probit, and Logit models produced outstanding findings in
relation to prediction accuracy. The rest of the classifiers evaluated in
that research outperformed Probit, demonstrating the most significant
and consistent performance.

In a more recent study, Mansouri et al. [61] evaluated the effectiveness
of three-layer ANNs and Logit in foretelling the collapse of firms
financially registered on the Stock Exchange of Tehran one, two, and
three years in advance. In order to anticipate a company’s financial
failure forecasted one, two, and three years ahead, the team stated that
ANN surpassed Logit concerning accuracy.

3.4 mhoann

Since the 1980s, training ANNs with evolutionary algorithms has
gained much popularity. The Genetic Algorithm (GA) was employed by
Montana et al. [62] to train an ANN for image categorization. How to
train an ANN utilizing metaheuristic algorithms has also been widely



3 .5 ensemble learning 31

studied to overcome the drawbacks of gradient-based approaches, par-
ticularly back-propagation techniques.

The metaheuristic techniques employed in ANN training for binary
classification tasks like bankruptcy prediction were the subject of a
plethora of studies in the early 2000s. Mendes et al. [63] used the PSO
method to train an ANN, and the findings showed that PSO has a
substantial capacity to handle search spaces with many local minima.

Moreover, according to Ansari et al. [64], metaheuristic methods out-
perform gradient-based algorithms in terms of performance. Also, Al-
Badarneh et al. [65] explore the impact of fitness functions in MHOANN
while working on unbalanced data. In another research, Mousavi et
al. [66] thoroughly compared 15 population-based optimization tech-
niques when applied to training ANNs. According to the findings
of the experiments on eight classification tasks, PSO outperforms al-
ternative population-based metaheuristic algorithms according to the
benchmark.

Recently, a metaheuristic Artificial Bee Colony (ABC) algorithm-trained
artificial neural network was suggested by Ali et al. [67]. The experi-
mental results demonstrate that ABC is suitable to be an optimization
method for ANNs for bankruptcy prediction. The model was then
tested for its ability to predict corporate bankruptcy and compared to
an ANN trained using the widely used back-propagation (BPNN) and BPNN: Back-

Propagation Neural

Network

the MDA model.

3.5 ensemble learning

In recent years, ensemble learning has been successfully used in credit
scoring and financial distress prediction. Alfaro et al. [68] evaluated the
performance of ensemble classifiers against a neural network classifier
and found that utilizing AdaBoost resulted in a 30% reduction in
test error as opposed to using a single neural network. Additionally,
Sun et al. [69] considered combining several statistical and machine
learning predictors, namely: SVM, MDA, decision tree, Logit, and ANN,
using weighted majority voting, and it was noted that the ensemble
outperformed utilizing a single classifier alone in terms of performance.

After that, Krawczyk et al. [70] implemented an ensemble of Deci-
sion Trees using cost-sensitive learning to address the issue of imbal-
anced classification, proving that the suggested method is a beneficial
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method for the classification of unbalanced datasets and frequently
outperforms current state-of-the-art ensembles.

Additionally, Ziba et al. [71] recommended using XGBoost, a novel
method for bankruptcy prediction. It is employed in the training of a
group of decision trees. They also provide a unique approach called
synthetic features to generate higher-order statistics in data. The finan-
cial data for Polish businesses were collected between 2000 and 2012
for those still in business and between 2007 and 2013 for those who
had filed for bankruptcy. The authors’ methodology yielded superior
results compared to the appropriate listed methodologies, including
J48, random forest, SVM, and AdaBoost.

Recently, Pisula and Tomasz [72] built a scoring model based on en-
semble classifiers for the early prediction of bankruptcy risk for Polish
enterprises and showed the effectiveness of utilizing ensemble classi-
fiers to forecast bankruptcy.

3.6 hybrid methods

Numerous studies have been done to study the imbalance classification
problem in the literature utilizing a range of tools and approaches in
various combinations. Three approach combinations have been put
out to forecast the financial distress of Korean enterprises by Hu et
al. [73]. The suggested models were Self-Organizing Feature Maps
(SOFM), decision trees, and MDA + ANNs. According to the authors,
hybrid neural network models delivered on their promise of accuracy
in forecasting a company’s financial health.

After that, Min et al. [74] dedicated the GA to enhancing the capability
of SVM when forecasting the financial situation of Korean enterprises.
The primary purposes of the genetic algorithms were to enhance the
SVM technique parameters and the feature subset. The novel approach
outperformed stand-alone SVM and Logit in terms of performance.
A modified form of SVM was also used by Tang et al. [75] to address
the problem of class imbalance. The SVM was modified using various
"rebalance" strategies, including oversampling, undersampling, and
cost-sensitive methods. On the other hand, To forecast the financial
collapse of dotcom enterprises, Chandra et al. [76] integrated several
potent classifiers, including CART, SVM, Logit, MLP, and random
forest.
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Additionally, ensemble approaches and cost-sensitive methods were
merged by Ghatasheh et al. [77] to forecast firms’ financial situation. The
effectiveness of three cost-sensitive techniques—cost-sensitive learning,
cost-sensitive classification, and MetaCost—was evaluated in combina-
tion with various ensemble classifiers. This combination surpassed the
other ensemble and cost-sensitive techniques analyzed in that study
regarding type I error, type II error, and accuracy.

Moreover, Faris et al. [6] suggested a combined strategy to forecast
organizations’ financial state, which was based primarily on many steps,
including data normalization, oversampling, feature selection, and then
classification. They examined the effectiveness of utilizing basic and
ensemble classifiers in their investigation. Compared to other basic
and ensemble classifiers, they discovered that combining AdaBoost,
SMOTE, and ensemble techniques using reduced error pruning tree
showed good outcomes.

Most recently, Yotsawat et al. [78] employed a cost-sensitive Neural Net-
work Ensemble for credit scoring, and the comparison findings show
that the recommended technique surpassed the benchmark individ-
ual and ensemble models. Moreover, By employing tree-ensemble as a
boosting approach, Zou et al. [79] improved the performance of the firm
failure prediction. The weighted cross-entropy goal function is added
to the boosted tree design to address the class imbalance problem in
financial distress datasets. As a result, the weighted XGBoost may be
used to forecast company failure while considering the cost.
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4.1 datasets

Three distinct datasets were chosen to test the suggested strategies’
viability in forecasting the financial distress of enterprises. Despite the
fact that the independent and independent factors changed amongst
the datasets, this study nevertheless regarded this task as a classifica-
tion problem. In the case of external methods (oversampling), only the
Spanish companies dataset was used. On the other hand, for the inter-
nal technique, the proposed methods were evaluated individually for
every dataset to accurately evaluate the suggested internal technique’s
significance. A summary of each dataset is provided below:

4.1.1 Spanish companies’ dataset

This dataset for Spanish enterprises contains many financial and non-
financial factors that we consider. In this case, we attempted to catego-
rize the occurrences per class by using the label for each sample to be
the dependent variable, Bankruptcy. Noting that the dependent variable
bankruptcy is defined as three years of continuous losses [80].

The dataset was collected from the Infotel website1. Over the course
of six years, the data was collected from 470 firms (from 1998 to 2003).
There are 2860 samples in total, and 62 of them relate to bankrupt
businesses. Therefore just 2% of the sample is made up of insolvent
companies.

The dataset initially consisted of rows, with each row containing 37
independent variables and one dependent variable labeled Bankruptcy.
This set of factors was altered in a previous attempt in [80] by eliminat-
ing unnecessary ones (those without relevance, for example, internal
database business code), leading to 33 independent variables. There-
fore, each record in the dataset utilized for this study comprises 33
characteristics, a mixture of non-financial and financial information.
Both qualitative and quantitative (numerical) values can be assigned to
a feature.

Table 4.1 presents the independent variables, together with a descrip-
tion of their nature, after any extraneous variables have been removed.
The non-financial information that has a category value includes the
firm’s size, type, and provincial code (where it is located), and it also

1 Bought from http://infotel.es
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includes the auditor’s opinion. In contrast to the norm, where the size
of the firm is usually a number, the size of the firm in this dataset is
either small, medium, or big. In addition, we employed all 33 features
in this study without using feature selection since, as noted by the
authors in [6], incorporating a feature selection phase did not enhance
the outcomes.

Table 4.1: The Spanish companies’ dataset’s independent variables,
including financial and non-financial factors.

Financial Variables Description Type

Debt Structure Long-Term Liabilities / Current Liabilities Number
Debt Cost Interest Cost / Total Liabilities Number
Debt Paying Availability Operating Cash Flow / Total Liabilities Number
Debt Ratio Total Assets / Total Liabilities Number
Working Capital Working Capital / Total Assets Number
Warranty Financial Warrant Number
Operating Income Margin Operating Income / Net Sales Number
Return on Operating Assets Operating Income / Average Operating Assets Number
Return on Equity Net Income / Average Total Equity Number
Return on Assets Net Income / Average Total Assets Number
Stock Turnover Cost of Sales / Average Inventory Number
Asset Turnover Net Sales / Average Total Assets Number
Receivable Turnover Net Sales / Average Receivables Number
Asset Rotation Asset allocation decisions Number
Financial Solvency Current Assets / Current Liabilities Number
Acid Test (Cash Equivalent + Marketable Securities

+ Net receivables) / Current Liabilities Number

Non-financial Variables Description Type

Year Corresponding to the sample Integer
Size Small|Medium|Large Categorical
Number of employees Integer
Age of the company Integer
Type of company Public|Limited Liability|Others Categorical
Linked to a group If the firm is part of a group holding Binary
Number of partners Integer
Province code Location of the firm Categorical
Number of changes of location Integer
Delay If the company has submitted its annual accounts on time Binary
Historic number of Since the company was established Integer
judicial incidences
Number of judicial incidences Last year Integer
Historic amount of money Since the firm was established Real
spent on judicial incidences
Amount of money spent on Last year Real
judicial incidences
Historic number of strikes, accidents... Integer
serious incidences
Audited If the firm has been audited Binary
Auditor’s opinion Favorable|Exceptions|Unfavorable Categorical

4.1.2 Taiwanese Companies’ Dataset

The Taiwan Economic Journal was used to generate this dataset, which
totals 6819 entries for the ten-year period (1999–2009). Of these, 6599
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records (or 97% of the total) are related to non-bankrupt enterprises,
while the remaining 220 records (or 3% of the total sample) are related
to bankrupt firms.

This dataset comprises 95 economic features. The companies in this
dataset were selected based on two specific conditions: availability of
three years of financial information and comparable size to a significant
group of companies. The evaluation of a company’s financial health is
primarily established on the restrictions of the Taiwan Stock Exchange.
For more details, refer to [49].

4.1.3 Polish companies’ dataset

This dataset contains data regarding the possibility of a Polish firm
filing for bankruptcy. The data on developing markets was collected
from the Emerging Markets Information Service, a worldwide database.
While the still-operational businesses were evaluated from 2007 to 2013,
the bankrupt companies were investigated from 2007 to 2012.

This dataset is highly imbalanced, with only 203 instances of insolvent
companies, representing approximately 2% of the entire sample of
around 10000 records. The dataset comprises 64 financial features, all
of which are numerical. More information regarding this dataset is
available in [71], which is available for download from the Kaggle ML
community website. 2

4.2 assessment of advanced oversampling techniques

This section presents the study discussed in the published paper "Em-
pirical evaluation of advanced oversampling methods for improving
bankruptcy prediction [81]". We empirically evaluated and compared
11 oversampling methods for bankruptcy forecasting in this approach.
The oversampling methods are ROS-I, SMOTE, SMOTE-TL, SMOTE-
ENN, Borderline SMOTE, Safe-Level SMOTE, ADASYN-I, ADOMS,
SPIDER, SPIDER-II, and AHC. A brief description of each oversam-
pling method can be found in section 2.2. We only used the Spanish
companies’ dataset in this approach.

2 https://www.kaggle.com/competitions/companies-bankruptcy-forecast/data
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Table 4.2: The confusion matrix

Predict positive Predict negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

4.2.1 The classifier

All experiments make use of the C4.5 Decision Tree as the classification
algorithm. The C4.5 classifier is an extension of the ID3 algorithm. It
has improvements for managing absent values, continuous attribute
value distribution, and the option to select the best attribute selection
metric [82]. Decision trees are generally preferred for this application
because they provide comprehensible and straightforward models for
decision-makers to explain.

4.2.2 Evaluation measurements

We used the 2X2 confusion matrix displayed in Table 4.2 to evaluate
the classifier’s performance along with the oversampling techniques.

Four performance measures are calculated: False Negative Rate (FNR)
is expressed as a proportion and is defined in equation 4.1, False
Positive Rate (FPR) is expressed as a proportion and is defined in
equation 4.2, the average geometric mean is defined in equation 4.3 and
accuracy defined in equation 4.4. Where TN and TP donate properly
classified negative and positive cases, respectively, and positive and
negative instances incorrectly classified are denoted as FP and FN,
respectively [83].

FNR =
FN

TP + FN
(4.1)

FPR =
FP

FP + TN
(4.2)

TPrate =
TP

FN + TP
(4.3a)
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TNrate =
TN

FP + TN
(4.3b)

g − mean =
√

TPrate × TNrate (4.3c)

accuracy =
TP + TN

TP + FP + FN + TN
(4.4)

4.2.3 Experiments and results

We generated separate datasets for training and testing using stratified
sampling and 5-fold cross-validation, which involves dividing the train-
ing dataset into different equivalent (or nearly equivalent) segments,
using one segment as the testing dataset and the remaining segments
as the training dataset. In other words, at every cross-validation stage,
every partition will serve as a test set. The average accuracy of each
test partition is calculated as the last step in this method. Additionally,
stratified sampling is employed to maintain and replicate the propor-
tion of both classes in the train and validation segments as closely as
feasible.

The process starts by normalizing the bankruptcy data and then using
oversampling methods to balance the class distribution. The final step
is to use the C4.5 classifier to classify the processed dataset.

We investigated several k values, ranging from 3 to 19 with an increment
of 2, for the techniques that use the k closest neighbors method to
provide additional minor class samples.

Without using oversampling techniques, the C4.5 classifier was evalu-
ated as the experiment’s first phase. Table 4.3 presents the findings of
this evaluation. We notice that the classifier performs poorly in terms
of FNR error and g-mean due to the severe imbalance in the data
distribution.

Table 4.4 displays the evaluation measurements (FNR, FPR, Accuracy,
and g-mean) outcomes for all oversampling methods. Only the results
of the best k per method are displayed. Our major attention went
to FNR since it is extra significant in a financial distress forecasting
scenario, even though FPR increased when different oversampling
approaches were applied [84].
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Table 4.3: The prediction results obtained without applying any over-
sampling techniques.

Algorithm FNR FPR Accuracy G-Mean

C4.5 77.40% 0.46% 98.78% 0.46

Table 4.4: The evaluation results of the various oversampling techniques
when used in combination with the C4.5 classification algorithm. Bold-
face denotes the best outcome for each metric.

Oversampling Technique k Value FNR FPR G-Mean Accuracy

ROS N/A 54.84% 2.00% 0.65 96.85%

SMOTE 5 24.19% 6.79% 0.84 92.82%

SMOTE-TL 15 17.74% 11.55% 0.85 88.32%

SMOTE-ENN 13 12.90% 12.37% 0.87 87.61%

Borderline SMOTE 19 48.39% 2.86% 0.70 96.15%

Safe Level SMOTE 13 27.41% 20.02% 0.76 79.81%

ADASYN 5 30.65% 6.76% 0.80 94.78%

ADOMS 5 38.70% 4.76% 0.75 94.51%

SPIDER 3 53.23% 2.03% 0.67 96.85%

SPIDER-II 11 48.39% 1.82% 0.63 97.17%

AHC N/A 48.38% 2.40% 0.70 96.53%
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From the results, we noticed that SMOTE-ENN was the best oversam-
pling method to be used with the C4.5 classifier, with the lowest FNR of
12.90% and the highest g-mean score of 0.87. Additionally, it is worth
noting that SMOTE-based oversampling methods (SMOTE, SMOTE-
TL, and SMOTE-ENN) produced the best results regarding g-mean
and FNR. The observable improvements achieved by SMOTE-based
techniques can be explained by the fact that these resampling method-
ologies create instances of minor classes based on their neighbors.

4.3 ensemble of cost-sensitive mhoanns

This section presents the study discussed in the published paper "Cost-
Sensitive Metaheuristic Optimization-Based Neural Network with En-
semble Learning for Financial Distress Prediction [85]". Which dis-
cussed the novel technique for insolvent firms prediction using a
homogeneous majority-voting ensemble learning, in which the base
learners are MHOANNs, optimized using PSO and CSO algorithms
while applying a cost-sensitive fitness function (ENS_PSONNcost and
ENS_CSONNcost).

Figure 4.1 shows the architecture of a single base learner. In this ar-
chitecture, the weights and biases of the neural network are generated
using one of the metaheuristic optimizers (PSO or CSO). And then, the
weights and biases will be used to construct the neural network that is
used to generate the predictions. The cost-sensitive fitness function is
used once the predictions have been computed and the best solution
is stored. The maximum number of iterations will be reached by re-
peating these procedures. The optimal set of weights and biases will
be utilized to create a neural network to categorize the samples in the
testing dataset. Then, all metrics are computed and identified.

The whole framework design of an MHOANN in a majority-voting
ensemble learning system is demonstrated in Figure 4.2. Here, sam-
pling with replacement is used to generate n unique training datasets
from the original training dataset. One of the resultant training datasets
will be used to train every MHOANN. The output predictions are then
supplied to the majority-voting component to compute the final predic-
tions. Next, every trained MHOANN is utilized to create predictions on
the same test dataset. The component diagram for the recommended
approach is shown in Figure 4.3.
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Figure 4.1: Diagram of the neural network architecture based on meta-
heuristic optimization featuring a cost-sensitive fitness function.
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Figure 4.3: Component diagram of ENS_PSONNcost and
ENS_CSONNcost. This diagram illustrates the main components of our
framework, including MHOANNs with PSO or CSO as the optimizers
for the neural networks and a custom, cost-sensitive fitness function.
The outputs of these MHOANNs are then combined using the majority
voting method to produce the final prediction.
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4.3.1 The framework

In this section, we will discuss the suggested framework and explain
how to apply the optimizers to compute the weights and biases of the
neural networks. Describe the implementation of the different fitness
functions and the suggested evaluation metrics. Also, how to apply all
this in ensemble learning using majority voting.

4.3.1.1 ANN Classifier

ANNs [86–89] are among the most popular methods for solving classi-
fication problems, and they are algorithms modeled after the human
brain designed to mimic how people learn. Due to the nonlinear struc-
ture of ANNs and their uncertain optimal set weights and biases, they
have an extremely challenging learning process. An ANN’s learning
process significantly impacts how effective it is. Figure 4.4 displays a
structural blueprint of a typical ANN.
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Figure 4.5: Solution illustration of particles by a vector.

4.3.1.2 The optimizer

In order to surmount the drawbacks of traditional training techniques,
optimization algorithms were used to compute the weights and biases
in the ANN. State-of-the-art PSO and CSO metaheuristic algorithms
were used in this approach as the ANN optimization strategies.

In this approach, we have the input layer, one hidden layer, and the
output layer. Let n be the input features count, m be the hidden neurons
count, and k be the output neurons count. We have (w11 − wnm) as the
set of weights between the input layer and the hidden layer, (w11 −wmk)
as the set of weights between the hidden layer and the output layer,
(β1 − βm) as the set of biases of the hidden layer, and (β1 − βk) is the set
of biases of the output layer. Each particle in the swarm is represented
by a vector. Figure 4.5, and each vector represents a solution. The
length of the vector (ls) is determined by equation 4.5. Since we have a
binary classification task in this work, the output layer contains a single
neuron, and the equation can be simplified by setting the value of k to
1, as shown in equation 4.6.

ls = (n ∗ m) + (m ∗ k) + m + k (4.5)

ls_binary = (n ∗ m) + (2 ∗ m) + 1 (4.6)

4.3.1.3 Fitness Functions

According to the chosen fitness function in evolutionary computing,
the population develops in an attempt to improve its fitness function
score [90]. In this approach, the suggested cost-sensitive fitness function
was tested against the Mean Square Error (MSE) and accuracy fitness
functions. Below is a description of each fitness function:
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• MSE: is a widely used fitness function in MHOANNs, and Evolu-
tionary Neural Networks (ENNs) [91, 92]. It calculates the average
difference between the predicted and actual values, as shown in
equation 4.7. In the equation, i ranges from 1 to n, where n is the
number of samples, yi represents the actual value, and ŷi is the
predicted value.

costMSE =
1
n

Σn
i=1(yi − ŷi)

2 (4.7)

• Accuracy: is the proportion of accurately anticipated cases to
all instances. In this case, the cost is calculated as 1 minus the
accuracy, as seen in equation 4.8. The equation uses four terms,
True Positive (TP), True Negative (TN), False Positive (FP), and
False Negative (FN), to calculate the accuracy.

costaccuracy = 1 − (
TP + TN

TP + TN + FP + FN
) (4.8)

• Cost-Sensitive: A cost matrix is used to take into account the
expenses of misclassifying. It is an n-by-n matrix, with n being the
labels count, and it resembles a confusion matrix. Each element
in this matrix corresponds to the cost of the misclassified element
in the confusion matrix.

To calculate the cost for a cost-sensitive fitness function, we define
C as the cost matrix and A as the confusion matrix. The matching
weight in the cost matrix is multiplied by each member in the
confusion matrix to get the updated confusion matrix A′. The
accuracy is then calculated using this updated confusion matrix.
To obtain the final cost, we subtract this accuracy from 1. The
steps for this calculation are shown in equation 4.9.

A =

[
TP FP
FN TN

]
(4.9a)

C =

[
WTP WFP
WFN WTN

]
(4.9b)

A′ =

[
WTP × TP WFP × FP
WFN × FN WTN × TN

]
=

[
TP′ FP′

FN′ TN′

]
(4.9c)

CostSensitiveAccuracy =
TP′ + TN′

TP′ + TN′ + FP′ + FN′ (4.9d)
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costcost_sensitive = 1 − CostSensitiveAccuracy (4.9e)

4.3.1.4 Majority Voting Ensemble Learning

As described in Sect. 2.5 ensemble learning is a technique that uses
multiple models, called inducers or basic learners, to make predictions.
Each inducer is a machine learning algorithm trained on labeled exam-
ples to create a model that can generate predictions for new, unlabeled
samples. The predictions of the multiple inducers are then combined to
create a final prediction. The idea behind ensemble learning is that by
using various models, the weaknesses of an individual inducer may be
compensated for by other inducers, resulting in a more robust overall
model [38].

In this technique, we use sampling with replacement to create five dif-
ferent datasets and then train a homogeneous ensemble learning model
on the resulting datasets. Where MHOANNs with a cost-sensitive fit-
ness function are the ensemble members. The plurality voting technique
is then used to get the final predictions for the test dataset.

4.3.2 Evaluation measurements

An imbalanced dataset presents a clear problem for binary classifica-
tion since the trained model favors the instance from the major class,
producing high accuracy but an unsuccessful prediction of minority
class samples. Hence, we will consider the following evaluation metrics
in this approach to focus on both majority class and minority class
prediction effectiveness: The accuracy is computed using the confusion
matrix shown in equation 4.10. G-mean is the sensitivity and speci-
ficity’s geometric mean, as determined by equation 4.13. The f1-score
is the harmonic mean of the precision and sensitivity specified in equa-
tion 4.14, where beta is a real positive factor selected to make sensitivity
beta times more significant than precision. In this study, we employed
the formula beta = 1, which equally weights sensitivity and precision.

Accuracy =
TP + TN

TP + FP + FN + TN
(4.10)
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Sensitivity =
TP

TP + FN
(4.11)

Speci f icity =
TN

FP + TN
(4.12)

g − mean =
√

Sensitivity × Speci f icity (4.13)

f 1 − score =
(1 + β2).sensitivity.precision

sensitivity + β.precision
(4.14)

where
β ≥ 0

4.3.3 Experiments and Results

The experimental setup, benchmarks, and procedures are presented
in this part, along with the experiment’s outcomes and an analysis of
them.

4.3.3.1 Environment and Experiments Setup

An eight-core, 2.3 GHz and 16 GB of RAM laptop was used to conduct
the trials. We implemented the ANN powered by PSO and CSO as opti-
mization methods with a cost-sensitive fitness function using Evolopy-
NN [93]. Evolopy-NN, a Python 3.7-based open-source optimization
framework inspired by nature, uses evolutionary and metaheuristic
methods to train neural networks. All datasets were divided into a 34
percent testing dataset and a 66 percent training dataset, respectively
[94, 95].

To keep the proportion of minor to major classes in the generated
datasets, we employed stratified sampling. Therefore, following sam-
pling, the minor class makes up 2% of both the training and test datasets
for the Spanish enterprises. Similarly, the minor class makes up 3%
of Taiwanese enterprises’ training and test datasets. Additionally, the
minor class makes up 2% of both the training and test datasets for
Polish enterprises.
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Each experiment was conducted five times for a total of 100 iterations,
with the population size set to 50. Five weak learners were utilized in
the ensemble learning process, and the final prediction was determined
by a majority vote.

We suggest utilizing two optimization methods, PSO and CSO, as well
as three fitness functions, MSE, accuracy, and cost-sensitive. We created
six different versions of the MHOANN for this experiment, as follows:

1. MSE fitness function in a PSO-optimized ANN.

2. Accuracy fitness function in a PSO-optimized ANN.

3. Cost-sensitive fitness function in a PSO-optimized ANN.

4. MSE fitness function in a CSO-optimized ANN.

5. Accuracy fitness function in a CSO-optimized ANN.

6. Cost-sensitive fitness function in a CSO-optimized ANN.

4.3.3.2 Effect of fitness function

By constructing a cost-sensitive fitness function based on the confusion
matrix as stated in Sub-Sect. 4.3.1.3, we enhanced the MHOANN to
add a cost for a misclassified instance during model training. We are
attempting to avoid FN for the issue we are addressing, which is when
the model forecasts a firm will be financially sound even if it is in a
financial crisis. As a result, we give the FN a weight cost. The dataset
and technique employed determine the appropriate weight for the
FN. To do this, we experimented with various weights while keeping
an eye on the metrics to find the most effective weight to utilize. We
were able to experiment with the entire datasets in this study since the
datasets were relatively modest in size. However, in practical situations,
when the dataset is larger, we advise utilizing a sample of the dataset
to determine the appropriate weight to employ in order to minimize
computing expenses.

For the following experiments, we took into account the weight that
produced the greatest g-mean score. See Table 4.5 for the Spanish
companies’ dataset with the PSO optimizer, Table 4.6 for the Spanish
companies’ dataset with the CSO optimizer, Table 4.7 for the Taiwanese
companies’ dataset with the PSO optimizer, and Table 4.8 for the
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Table 4.5: Impact of False Negative Weight on evaluation measures
applying PSO-optimized neural network on the Spanish Companies’
Dataset. Boldface denotes the best outcome for each metric.

FN Weight Accuracy Sensitivity Specificity F1-Score G-Mean

1 0.98 0.05 1.00 0.09 0.22

25 0.91 0.48 0.92 0.19 0.66

50 0.82 0.81 0.82 0.16 0.81

75 0.77 0.81 0.77 0.13 0.79

100 0.75 0.95 0.75 0.14 0.84

125 0.81 0.81 0.81 0.15 0.81

150 0.71 0.81 0.71 0.11 0.76

175 0.72 0.86 0.72 0.12 0.79

200 0.72 0.86 0.72 0.12 0.79

Taiwanese companies’ dataset with the CSO optimizer, Table 4.9 for the
Polish companies’ dataset with the PSO optimizer, and Table 4.10 for
the Polish companies’ dataset with the CSO optimizer.

These experiments led us to conclude that FN’s ideal weight is 100
when applying PSO while using the Spanish companies’ dataset, as
illustrated in Figure 4.6. Additionally, 75 when the same dataset was
analyzed using CSO, as shown in Figure 4.7. On the other hand, as
illustrated in Figure 4.8, we found that the ideal weight of FN when
applying PSO on the dataset of Taiwanese enterprises is 50. Moreover,
the results are the same when CSO is applied to the same dataset, as in
Figure 4.9. Additionally, as demonstrated in Figure 4.10, the optimal
weight of FN while using PSO on the dataset of Polish enterprises is
175. Similar results were obtained when CSO was applied to the same
dataset, as shown in Figure 4.11.

The MHOANN was trained using a cost-sensitive fitness function after
applying the appropriate FN weight and applied to classify the testing
sample. This process involved establishing the ideal FN weight for
a specific optimization technique for each dataset. The severe data
imbalance in the datasets under consideration may be used to explain
why the cost of FN is so expensive, ranging from 50 up to 175.

We contrasted our findings with references to determine the impact
of the cost-sensitive fitness function. To track the evaluation metrics
without employing cost-sensitive learning, we trained the ANN on
both datasets using each optimizer (PSO and CSO) and two different
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Table 4.6: Impact of False Negative Weight on evaluation measures
applying CSO-optimized neural network on the Spanish Companies’
Dataset. Boldface denotes the best outcome for each metric.

FN Weight Accuracy Sensitivity Specificity F1-Score G-Mean

1 0.98 0.05 0.99 0.06 0.24

25 0.91 0.61 0.92 0.23 0.75

50 0.86 0.72 0.86 0.18 0.79

75 0.77 0.82 0.77 0.13 0.79

100 0.73 0.78 0.73 0.12 0.76

125 0.69 0.86 0.68 0.11 0.77

150 0.73 0.80 0.72 0.11 0.76

175 0.68 0.85 0.68 0.10 0.76

200 0.67 0.86 0.66 0.10 0.75

Table 4.7: Impact of False Negative Weight on evaluation measures
applying PSO-optimized neural network on the Taiwanese Companies’
Dataset. Boldface denotes the best outcome for each metric.

FN Weight Accuracy Sensitivity Specificity F1-Score G-Mean

1 0.97 0.06 1.00 0.11 0.24

25 0.88 0.78 0.88 0.30 0.83

50 0.82 0.85 0.82 0.24 0.83

75 0.83 0.83 0.83 0.24 0.83

100 0.77 0.88 0.76 0.20 0.82

125 0.75 0.91 0.74 0.19 0.82

150 0.76 0.87 0.76 0.19 0.81

175 0.77 0.83 0.77 0.21 0.79

200 0.77 0.83 0.77 0.21 0.79
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Table 4.8: Impact of False Negative Weight on evaluation measures
applying CSO-optimized neural network on the Taiwanese Companies’
Dataset. Boldface denotes the best outcome for each metric.

FN Weight Accuracy Sensitivity Specificity F1-Score G-Mean

1 0.97 0.05 1.00 0.09 0.21

25 0.86 0.77 0.86 0.27 0.82

50 0.81 0.89 0.81 0.24 0.85

75 0.78 0.87 0.77 0.20 0.82

100 0.76 0.88 0.76 0.20 0.82

125 0.76 0.88 0.75 0.20 0.81

150 0.63 0.94 0.62 0.14 0.77

175 0.72 0.90 0.71 0.17 0.80

200 0.70 0.91 0.70 0.17 0.79

Table 4.9: Impact of False Negative Weight on evaluation measures
applying PSO-optimized neural network on the Polish Companies’
Dataset. Boldface denotes the best outcome for each metric.

FN Weight Accuracy Sensitivity Specificity F1-Score G-Mean

1 0.97 0.01 0.99 0.02 0.12

25 0.89 0.38 0.90 0.12 0.58

50 0.82 0.46 0.83 0.10 0.62

75 0.74 0.52 0.75 0.08 0.62

100 0.76 0.65 0.76 0.10 0.70

125 0.73 0.71 0.73 0.10 0.72

150 0.74 0.87 0.74 0.11 0.78

175 0.79 0.90 0.79 0.15 0.84

200 0.71 0.83 0.70 0.10 0.76

225 0.65 0.75 0.65 0.08 0.70
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Table 4.10: Impact of False Negative Weight on evaluation measures
applying CSO-optimized neural network on the Polish Companies’
Dataset. Boldface denotes the best outcome for each metric.

FN Weight Accuracy Sensitivity Specificity F1-Score G-Mean

1 0.97 0.01 0.97 0.02 0.12

25 0.71 0.46 0.71 0.06 0.57

50 0.70 0.48 0.71 0.06 0.58

75 0.64 0.62 0.64 0.07 0.63

100 0.61 0.77 0.61 0.07 0.68

125 0.62 0.81 0.62 0.08 0.71

150 0.73 0.84 0.72 0.11 0.78

175 0.79 0.91 0.79 0.15 0.85

200 0.71 0.84 0.70 0.10 0.77

225 0.65 0.77 0.65 0.08 0.71

Figure 4.6: Sensitivity, Specificity, and G-Mean scores from employing
Cost-Sensitive-PSO-Optimized-ANN on the Spanish firms’ data for
different False Negative weights.
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Figure 4.7: Sensitivity, Specificity, and G-Mean scores from employing
Cost-Sensitive-CSO-Optimized-ANN on the Spanish firms’ data for
different False Negative weights.

Figure 4.8: Sensitivity, Specificity, and G-Mean scores from employing
Cost-Sensitive-PSO-Optimized-ANN on the Taiwanese firms’ data for
different False Negative weights.
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Figure 4.9: Sensitivity, Specificity, and G-Mean scores from employing
Cost-Sensitive-CSO-Optimized-ANN on the Taiwanese firms’ data for
different False Negative weights.

Figure 4.10: Sensitivity, Specificity, and G-Mean scores from employing
Cost-Sensitive-PSO-Optimized-ANN on the Polish firms’ data for dif-
ferent False Negative weights.
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Figure 4.11: Sensitivity, Specificity, and G-Mean scores from employing
Cost-Sensitive-CSO-Optimized-ANN on the Polish firms’ data for dif-
ferent False Negative weights.

fitness functions, MSE, and accuracy. We ran four trials for each dataset,
employing an ANN with a PSO optimizer and MSE as the fitness
function in the first, a PSO optimizer and accuracy in the second, a
CSO optimizer and MSE in the third, and a CSO optimizer and accuracy
in the fourth. Each metric’s mean, standard deviation, and maximum
score were recorded.

The outcomes of every fitness function applied using the Spanish com-
panies’ dataset are displayed in Table 4.11. The results of every fitness
function when the dataset of Taiwanese firms was used are presented
in Table 4.12. Additionally, the results of all fitness functions when
the dataset of Polish firms was used are shown in Table 4.13. There
was a negative impact on the accuracy. However, the cost-sensitive
MHOANN showed a significant improvement in predicting the minor-
ity class samples, significantly influencing the g-mean and a reasonable
enhancement on the f1-score.

Comparing ANN with PSO as a classifier with a cost-sensitive-fitness-
function to the identical classifier but with MSE-fitness-function using
the dataset of Spanish companies, we observed a significant improve-
ment in g-mean: MSE-fitness-function g-mean was 0.211 while the
cost-sensitive fitness function g-mean was 0.842, also, an increase in the
f1-score: MSE-fitness-function f1-score was 0.104 while cost-sensitive-
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Table 4.11: The evaluation metrics outcomes of all fitness functions
per optimization algorithm used on the dataset of Spanish companies.
Boldface denotes the best average outcome for each metric.

Fitness Function Optimizer Accuracy G-Mean F1-Score

Avg. Best Std. Avg. Best Std. Avg. Best Std.

MSE PSO 0.978 0.980 0.002 0.211 0.309 0.126 0.104 0.174 0.071

Accuracy PSO 0.979 0.979 0.001 0.131 0.218 0.120 0.054 0.091 0.049

Cost-Sensitive PSO 0.749 0.750 0.001 0.842 0.843 0.001 0.141 0.142 0.001

MSE CSO 0.980 0.981 0.001 0.211 0.309 0.126 0.104 0.174 0.071

Accuracy CSO 0.980 0.981 0.000 0.062 0.308 0.138 0.032 0.160 0.072

Cost-Sensitive CSO 0.768 0.771 0.001 0.793 0.801 0.001 0.134 0.150 0.001

Table 4.12: The evaluation metrics outcomes of all fitness functions per
optimization algorithm used on the dataset of the Taiwanese Compa-
nies. Boldface denotes the best average outcome for each metric.

Fitness Function Optimizer Accuracy G-Mean F1-Score

Avg. Best Std. Avg. Best Std. Avg. Best Std.

MSE PSO 0.968 0.970 0.001 0.332 0.415 0.069 0.186 0.257 0.061

Accuracy PSO 0.967 0.969 0.001 0.244 0.365 0.074 0.110 0.220 0.049

Cost-Sensitive PSO 0.824 0.830 0.001 0.834 0.835 0.001 0.242 0.243 0.001

MSE CSO 0.967 0.969 0.001 0.290 0.346 0.079 0.147 0.198 0.065

Accuracy CSO 0.968 0.969 0.001 0.207 0.305 0.095 0.087 0.163 0.070

Cost-Sensitive CSO 0.808 0.810 0.002 0.845 0.846 0.001 0.237 0.239 0.002
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Table 4.13: The evaluation metrics outcomes of all fitness functions
per optimization algorithm used on the dataset of Polish Companies.
Boldface denotes the best outcome for each metric.

Fitness Function Optimizer Accuracy G-Mean F1-Score

Avg. Best Std. Avg. Best Std. Avg. Best Std.

MSE PSO 0.970 0.971 0.001 0.118 0.118 0.000 0.019 0.020 0.001

Accuracy PSO 0.967 0.969 0.001 0.118 0.118 0.000 0.018 0.019 0.001

Cost-Sensitive PSO 0.792 0.792 0.001 0.842 0.849 0.007 0.149 0.151 0.002

MSE CSO 0.970 0.971 0.001 0.118 0.118 0.000 0.020 0.020 0.000

Accuracy CSO 0.967 0.969 0.001 0.117 0.118 0.001 0.017 0.019 0.001

Cost-Sensitive CSO 0.790 0.794 0.003 0.848 0.850 0.001 0.150 0.152 0.002

fitness-function f1-score was 0.141, and a decrease in the accuracy: MSE-
fitness-function accuracy was 0.978 while cost-sensitive-fitness-function
accuracy was 0.749, and, similar results were seen when comparing
ANN with PSO as a classifier using a cost-sensitive-fitness function
to the exact classifier with the accuracy-fitness-function. G-mean sig-
nificantly increased: accuracy-fitness-function g-mean was 0.131 while
cost-sensitive-fitness-function g-mean was 0.842, also f1-score improved:
accuracy-fitness-function g-mean was 0.054 while cost-sensitive-fitness-
function g-mean was 0.141, and the accuracy decreased: cost-sensitive-
fitness-function accuracy was 0.979 while accuracy-fitness-function
accuracy was 0.749. Likewise, when comparing ANN with CSO as
a classifier with a cost-sensitive-fitness-function to the exact classi-
fier but with MSE-fitness-function, the g-mean increased significantly:
MSE-fitness-function g-mean was 0.211 while the cost-sensitive-fitness-
function g-mean was 0.793, f1-score increased: MSE-fitness-function
f1-score was 0.104, while cost-sensitive-fitness-function f1-score was
0.134, and the accuracy decreased: MSE-fitness-function accuracy was
0.980, while cost-sensitive-fitness-function accuracy was 0.768. Addi-
tionally, when comparing ANN with CSO as a classifier while using
the cost-sensitive-fitness-function to the exact classifier but using the
accuracy-fitness-function, we observed a significant improvement in
g-mean: accuracy-fitness-function g-mean was 0.062 while the cost-
sensitive-fitness-function was 0.793. Also, an increase in the f1-score:
accuracy-fitness-function f1-score was 0.032, while the cost-sensitive-
fitness-function f1-score was 0.134. However, we noticed a decrease in
the accuracy: the accuracy-fitness-function accuracy score was 0.980,
while the cost-sensitive-fitness-function accuracy was 0.768.
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Using the dataset of Taiwanese enterprises, we also found compara-
ble findings. In other words, when comparing ANN with PSO as a
classifier using the cost-sensitive fitness function to the exact classifier
using the MSE fitness function, we observed a significant improvement
in the g-mean: MSE-fitness-function g-mean score was 0.332 while
the cost-sensitive-fitness-function g-mean was 0.834, an increase in the
f1-score: MSE-fitness-function f1-score was 0.186 while cost-sensitive-
fitness-function f1-score was 0.242. However, accuracy dropped from
0.968 to 0.824. Additionally, when comparing ANN with PSO as a clas-
sifier while using cost-sensitive fitness function to the exact classifier
while using accuracy as a fitness function, we noticed a significant
improvement in g-mean: accuracy-fitness-function g-mean was 0.244
while cost-sensitive-fitness-function g-mean was 0.834, an improve-
ment in the f1-score: accuracy-fitness-function f1-score was 0.110 while
cost-sensitive-fitness-function f1-score was 0.242, but a decrease in the
accuracy score: accuracy-fitness-function accuracy was 0.967 while cost-
sensitive-fitness-function accuracy was 0.824. Similarly, when ANN us-
ing CSO as a classifier was compared to the exact classifier with MSE fit-
ness function, we observed an improvement in the g-mean: MSE-fitness-
function g-mean was 0.290 while cost-sensitive-fitness-function g-mean
was 0.845; the improvement in the f1-score: MSE-fitness-function f1-
score was 0.147 while cost-sensitive-fitness-function g-mean was 0.237,
but a decrease in accuracy: MSE-fitness-function was 0.967 while cost-
sensitive-fitness-function was 0.808. Similarly, when ANN with CSO
was used as a classifier with a cost-sensitive fitness function compared
to the same classifier with accuracy as the fitness function, the g-mean
increased: accuracy-fitness-function g-mean was 0.207, while the cost-
sensitive-fitness-function was 0.845. the f1-score increased: accuracy-
fitness-function f1-score was 0.087 while cost-sensitive-fitness-function
was 0.237, but the accuracy decreased: accuracy-fitness-function accu-
racy was 0.968 while cost-sensitive-fitness-function was 0.808.

Additionally, we found the same thing while utilizing the dataset of
Polish enterprises. In other words, when comparing ANN with PSO as
a classifier while using the cost-sensitive fitness function with the exact
classifier using the MSE fitness function. We observed a significant im-
provement in the g-mean: MSE-fitness-function g-mean was 0.118 while
cost-sensitive-fitness-function was 0.842, an increase in the f1-score:
MSE-fitness-function f1-score was 0.019 while cost-sensitive-fitness-
function g-mean was 0.149, but decrease in the accuracy: MSE-fitness-
function was 0.970 while cost-sensitive-fitness-function was 0.790. Sim-
ilarly, when comparing ANN with PSO as a classifier while using
the cost-sensitive fitness function to the exact classifier using accuracy
as a fitness function, we observed an improvement in the g-mean:
accuracy-fitness-function g-mean was 0.118 while cost-sensitive-fitness-
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function g-mean was 0.842, an improvement in the f1-score: accuracy-
fitness-function f1-score was 0.018 while cost-sensitive-fitness-function
f1-score was 0.149, but a drop in accuracy: accuracy-fitness-function
accuracy was 0.967 while cost-sensitive-fitness-function accuracy was
0.790. Moreover, in the comparison between ANN using CSO as a
classifier and the exact classifier using MSE fitness function, we no-
ticed an increase in g-mean: MSE-fitness-function g-mean was 0.118.
In contrast, cost-sensitive-fitness-function g-mean was 0.848, also an
improvement in f1-score: MSE-fitness-function f1-score was 0.020 while
cost-sensitive-fitness-function f1-score was 0.150, but a drop in accuracy:
MSE-fitness-function accuracy was 0.970 while cost-sensitive-fitness-
function accuracy was 0.790. Similarly, when ANN with CSO was
used as a classifier with a cost-sensitive fitness function compared
to the exact classifier with an accuracy fitness function, we observed
an increase in g-mean: accuracy-fitness-function g-mean was 0.117,
while cost-sensitive-fitness-function g-mean was 0.848. Also, the f1-
score increased: the accuracy-fitness-function f1-score was 0.017 while
cost-sensitive-fitness-function f1-score was 0.150. On the other hand,
accuracy dropped: accuracy-fitness-function accuracy was 0.967 while
cost-sensitive-fitness-function accuracy was 0.790.

Adding the cost to the FN instances increases the count of TP cases,
which explains the improvement in f1-score and g-mean metrics. Never-
theless, it leads to higher FP occurrences, explaining why the accuracy
score dropped. Then, while retaining the number of TP instances, we
utilized majority-voting ensemble learning to reduce the count of FP
cases.

Interestingly, a simple optimizer like CSO, which uses a straightforward
method to update particles in the search space, can perform similarly
to more complex optimizers when used with an MHOANN.

Although these tests demonstrated that PSO and CSO produced compa-
rable outcomes when employing equivalent fitness functions, CSO was
quicker; in particular, CSO performed 22.4% quicker using the dataset
of Spanish companies, 34.4% faster using the dataset of Taiwanese
companies, and 48.3% faster using the dataset of Polish enterprises,
this was done with a population size of 50 and 100 iterations, Table 4.14

shows the actual execution times in seconds.

We observed a strong correlation between FN’s weight and the mea-
sures evaluated in this study, as mentioned in Sub-Sect. 4.3.3.2. How-
ever, the choice of weight for this method can impact the specific metric
the user chooses to focus on. A lower weight may result in a higher
specificity score, while a higher weight may result in a higher sensitiv-



62 4 methodology

Table 4.14: Execution times for the PSO and CSO algorithms.

Optimizer Dataset Execution Time (s)

Avg. Best Std.

PSO Spanish 197 189 5.7

CSO Spanish 153 151 2.3

PSO Taiwanese 1260 1213 58.7

CSO Taiwanese 827 798 19.7

PSO Polish 1778 1732 50.3

CSO Polish 919 820 59.4

ity score. In this case, we opted to choose the weight that yields the best
g-mean score, which is a balance between sensitivity and specificity.

4.3.3.3 Effect of ensemble learning framework

While the MHOANN with cost-sensitive fitness function greatly de-
creased the frequency of FN occurrences and significantly improved
minor class instances prediction, there was an increase in FP. It is crucial
to maintain high accuracy in the classification model, even though in
these particular datasets, the minority class is more important and valu-
able than the majority class; to put it differently, incorrectly identifying
a financially distressed company as solvent incurs a much greater cost
than mistakenly identifying a financially stable company as being in
distress [96].

The fundamental idea behind ensemble learning is that by combining
many models, the shortcomings of one model will almost certainly be
offset by those of other models, as explained in Sect. 4.3. Therefore, we
created five training sets per dataset using sampling with replacement,
trained the cost-sensitive MHOANN on each new dataset, produced the
forecast on the test dataset already existing, and then utilized majority
voting to get the final predictions.

The results of the cost-sensitive MHOANN on the dataset of Spanish
enterprises are compared with the results of employing a cost-sensitive
MHOANN in a majority voting ensemble learning system on the same
dataset in Table 4.15. A comparison of the cost-sensitive MHOANN
and cost-sensitive MHOANN in a majority voting ensemble learning



4 .3 ensemble of cost-sensitive mhoanns 63

Table 4.15: Evaluation measurements comparison on the Spanish com-
panies’ dataset.

Algorithm Optimizer Accuracy Sensitivity Specificity F1-Score G-Mean

Cost-Sensitive PSO 0.749 0.952 0.745 0.141 0.842

Ensemble Learning PSO 0.851 0.905 0.850 0.207 0.877

Rate of change 13.6% −5.0% 14.1% 46.8% 4.2%

Cost-Sensitive CSO 0.768 0.819 0.767 0.134 0.793

Ensemble Learning CSO 0.883 0.905 0.882 0.251 0.893

Rate of change 15.0% 10.5% 15.0% 87.3% 12.6%

Table 4.16: Evaluation measurements comparison on the Taiwanese
companies’ dataset.

Algorithm Optimizer Accuracy Sensitivity Specificity F1-Score G-Mean

Cost-Sensitive PSO 0.824 0.848 0.823 0.242 0.834

Ensemble Learning PSO 0.910 0.840 0.912 0.376 0.875

Rate of change 10.4% −1.0% 10.8% 55.4% 4.9%

Cost-Sensitive CSO 0.808 0.888 0.806 0.237 0.845

Ensemble Learning CSO 0.876 0.920 0.874 0.324 0.897

Rate of change 8.4% 3.6% 8.4% 36.7% 6.2%

system on the dataset of Taiwanese enterprises is shown in Table 4.16.
The same comparison is also shown for the dataset of Polish enterprises
in Table 4.17. Reviewing the findings, we found that most assessment
measures had improved; in particular, the accuracy score had increased,
ranging from 8.4% to 15.0%, the g-mean had increased, ranging from
4.2% to 12.6%, and the f1-score had significantly improved, ranging
from 36.7% to 87.3%.

The primary goal of ensemble learning is to develop strong prediction
abilities that, at the very least, go beyond those of the individual
techniques that make up the ensemble. To do this, the ensemble’s
weak learners must be accurate and diversified, as noted by [12]. The
improvement in all measures demonstrates that PSO-optimized and
CSO-optimized neural networks are diverse and accurate. Hence they
are suitable to be used in a homogenous ensemble learning system.
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Table 4.17: Evaluation measurements comparison on the Polish compa-
nies’ dataset.

Algorithm Optimizer Accuracy Sensitivity Specificity F1-Score G-Mean

Cost-Sensitive PSO 0.792 0.899 0.789 0.149 0.842

Ensemble Learning PSO 0.898 0.913 0.898 0.261 0.905

Rate of change 13.4% 1.6% 13.8% 75.2% 7.5%

Cost-Sensitive CSO 0.789 0.913 0.787 0.150 0.848

Ensemble Learning CSO 0.888 0.928 0.887 0.269 0.907

Rate of change 12.5% 1.6% 12.7% 79.3% 7.0%

4.3.4 Analysis and discussion

The imbalanced nature of many real-world datasets can pose a chal-
lenge for machine learning algorithms, as they may often be biased
towards the majority class, resulting in poor performance on the mi-
nority class. This can have significant implications in applications such
as financial distress prediction, where the minority class is the most
important to identify. In light of this, the proposed method in our
experiments demonstrated a solid ability to address the issue of class
imbalance. When using a cost-sensitive approach, the algorithm gives
more weight to the minority class, effectively shifting the bias away
from the majority class. This is reflected in the improved g-mean score,
which considers the classification performance for both the majority
and minority classes. Additionally, ensemble learning helped decrease
the adverse side effects that may result from the bias shift while main-
taining a high accuracy score. This suggests that the proposed method
is a promising solution for addressing imbalanced datasets and has the
potential to significantly improve the performance of machine learning
algorithms in a variety of real-world applications.

Our hypothesis stated that applying a cost on misclassified positive
class instances would increase the number of TP predictions and de-
crease the number of FN predictions. This was supported by the results
of the experiments, which showed that the sensitivity score, or the
ability to identify the minority class correctly, improved significantly.
However, as expected, this came at the cost of an increase in the num-
ber of FP predictions and a decrease in the number of TN predictions.
Despite this trade-off, the overall g-mean score, which measures the
balance between sensitivity and specificity, improved in all experi-
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ments. This can be attributed to the highly imbalanced nature of the
dataset, where the number of instances belonging to the minority class
(TP + FN) is much smaller than the number of instances belonging to
the majority class (FP + TN). As a result, the improvement in sensitiv-
ity had a more significant impact on the g-mean score, outweighing the
decrease in specificity. Overall, these results support the effectiveness
of the proposed method for handling imbalanced datasets.

In addition to the positive impact of the cost-sensitive approach, the ap-
plication of ensemble learning also resulted in an overall improvement
in all evaluation measurements used. This demonstrates the diversity of
the proposed method and, more specifically, the use of an MHOANN
and its potential for use in a homogeneous ensemble learning system.
Ensemble learning combines the predictions of multiple models, result-
ing in a stronger learner that can make more accurate predictions. In
this case, ensemble learning resulted in a slight improvement in the
g-mean score, as the number of FN was approximately maintained.
In contrast, the number of FP decreased. This significantly improved
the accuracy score, as the overall number of incorrect predictions was
reduced. Overall, these results suggest that ensemble learning, in combi-
nation with the proposed cost-sensitive approach, is an effective method
for addressing imbalanced datasets and improving the performance of
machine learning algorithms.

Concerning execution performance, CSO demonstrated faster execution
time compared to PSO. This can be attributed to the fact that only half
of the population is updated in CSO, while the entire population is
updated in PSO. As a result, CSO can complete the optimization process
more efficiently and in less time. Overall, the results of the experiments
indicate that CSO is a promising optimization method for addressing
ANN. Its faster execution time and ability to find high-quality solutions
make it a valuable tool for many real-world applications. Moreover, an
interesting observation from the experiments is that a light optimizer
with a simple mechanism, such as CSO, can achieve similar results to
a more complex optimizer like PSO when used as an optimizer for
MHOANN. This suggests that the simplicity and efficiency of CSO
make it a viable alternative to more complex optimizers, especially
when combined with the proposed method for addressing imbalanced
datasets.

In Appendix B, we presented the convergence (learning) curve graphs
for a sample run of both PSO and CSO on each dataset, using each of
the fitness functions evaluated. These graphs provide a visual repre-
sentation of the learning process, showing how the performance of the
algorithms improves over time. Upon analyzing the charts, we observed
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that the MSE and accuracy fitness functions had the lowest fitness val-
ues, demonstrating the model’s remarkable accuracy, supported by the
already-mentioned data. As was already noted, it is skewed in favor of
the dominant class and inaccurately predicts the minority class. On the
other hand, the cost-sensitive fitness function results in a greater fitness
value, which is expected given that this function multiplies the number
of FN by the cost. Additionally, in every experiment, the fitness score
stabilizes at around 100 iterations, suggesting that additional training
will not significantly impact the model’s performance.

4.3.5 Comparison to other approaches

In previous research [6] using the same Spanish companies’ dataset,
the authors suggested a hybrid technique that combined ensemble
strategies with oversampling. The authors employed five feature se-
lection procedures to select the most prevalent features of insolvency
forecast. Foremost, the authors likened four oversampling techniques
and then used the C4.5 decision tree classifier to decide on the most
useful oversampling technique. SMOTE delivered the best outcomes.
After that, the authors experimented with various primary and ensem-
ble well-known classification methods as the reference for the research.
In Table 4.18, we presented the g-mean score of the standard classifiers
from [6] compared with the g-mean scores of the two methods sug-
gested in this thesis. Notice that the structure of the ensemble technique
names is stated in the table: "Ensemble method/inducer/(iterations
best number)". The results show that the suggested methods have a
higher g-mean score than all other classifiers in the related study.

Then, the authors applied the same classification algorithms on an
oversampled dataset using SMOTE to see the best-performing classifier,
and the AB-Rep tree classifier was the best. In the last step, various
feature selectors for feature selection and oversampling employing
SMOTE and classification using the AB-Rep tree algorithm were used.
The best outcomes based on the two strategies suggested in this study
and the g-mean score in [6] are shown in Table 4.19. It is obvious that
the suggested strategy considerably raises the g-mean score. This work
revealed the advantages of employing ensemble learning to enhance
financial distress prediction and the benefits of applying cost-sensitive
learning to MHOANN.

As mentioned, the authors in [6] and we used the exact dataset. Still,
some differences are worth noting: (1) 10-fold cross-validation was used
in the related study, while we used a 66% to 34% split for the train
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and test datasets. In the related research, 90% of the data was used for
model training, but still, the proposed approach showed better results.
(2) Number of runs is different; we executed five different runs, while
in the related research, it was ten different runs.

On the other hand, a study published in [49] used the dataset of Tai-
wanese companies to investigate the potential for improving classifiers’
performance in forecasting financial health by integrating FRs and CGIs.
After combining these two types of features, the authors evaluated five
different feature selection methodologies to reduce the dimensionality
of the data. They found that the combination of FRs and CGIs achieved
the best results when used with SVM and SDA feature selection method.
This study did not use the g-mean as an evaluation metric; instead, the
authors used FPR and FNR as their evaluation metrics.

FPR is also represented as 1 - Specificity as shown in equation 4.15 [97].

FPR =
FP

TN + FP
= 1 − Speci f icity (4.15)

FNR is also represented as 1 - Sensitivity as shown in equation 4.16

[97].

FNR =
FN

TP + FN
= 1 − Sensitivity (4.16)

Therefore, the g-mean score can be computed using equation 4.17.

g − mean =
√
(1 − FPR)× (1 − FNR) (4.17)

Table 4.20 presents the best results based on the g-mean computed from
FNR and FPR in [49] and the two methods suggested in this thesis.
The table shows that both of the proposed methods have a higher g-
mean squared. These results are based on the analysis of the Taiwanese
companies’ dataset.
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Table 4.18: The g-mean score for standard classifiers used in the related
research compared to the two methods suggested in this thesis using
the Spanish companies’ dataset. Boldface denotes the best outcome for
g-mean per classification approach.

Classification algorithm G-Mean

Simple classifiers k-Nearest Neighbors [6] 0.367

Multi-layer Perceptron [6] 0.427

Random tree [6] 0.602

Naïve Bayes [6] 0.402

J48 [6] 0.583

Rep tree [6] 0.336

Ensemble classifers Bagging/J48/(10) [6] 0.488

AdaBoost/J48(20) [6] 0.609

Decision Tree/J48/(10) [6] 0.549

Random Forest/J48(80) [6] 0.509

Bagging/Rep tree/(80) [6] 0.315

AdaBoost/Rep tree (90) [6] 0.602

Decision Tree/Rep tree/(10) [6] 0.414

Random Forest/Rep tree (10) [6] 0.094

Bagging/Random tree/(100) [6] 0.491

AdaBoost/Random tree/(10) [6] 0.574

Decision tree /Random tree/(20) [6] 0.532

RtF/Random tree/(30) [6] 0.518

Random Forest/(50) [6] 0.464

Proposed ENS_PSONNcost 0.877

ENS_CSONNcost 0.893
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Table 4.19: Best results based on the g-mean score from the hybrid
method used in the related research contrasted to the two methods
suggested in this thesis on the Spanish companies’ dataset. Boldface
denotes the best outcome for g-mean per each approach.

Classifier Oversampling Feature Selection G-Mean

Random tree [6] No No 0.602

AdaBoost/J48(20) [6] No No 0.609

Random tree [6] Yes No 0.696

AdaBoost/Rep tree/(90) [6] Yes No 0.730

AdaBoost/Rep tree/(90) [6] Yes Yes 0.720

ENS_PSONNcost No No 0.877

ENS_CSONNcost No No 0.893

Table 4.20: Best g-mean computed from the related research contrasted
to the two methods suggested in this thesis on the Taiwanese Compa-
nies’ Dataset. Boldface denotes the best outcome for g-mean.

Classifier G-Mean

SVM+SDA+FC [49] 0.814

ENS_PSONNcost 0.875

ENS_CSONNcost 0.897
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As discussed, this thesis aims to improve machine learning algo-
rithms’ ability to predict companies’ financial distress in two

separate ways accurately, first, by comparing the effect of using eleven
different oversampling methods, and second, by creating a new frame-
work to tackle the imbalance problem in the used datasets by using
an MHOANN with cost-sensitive fitness function as the base-learners
in ensemble learning. Hence, in this chapter, we discuss the signifi-
cant findings aligned with the objectives outlined in Chapter 1. It also
discusses upcoming research that will progress in this field.

71
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5.1 conclusions based on the external method

Oversampling techniques are a type of data preprocessing that can
be used to enhance the performance of machine learning methods
on unbalanced datasets. These methods generate artificial minority
class samples, increasing the data’s overall proportion. In this research,
we used eleven oversampling techniques to sample a real dataset for
bankruptcy prediction and evaluated their performance using a C4.5
Decision Tree classifier. The SMOTE-ENN method yielded the best
results, with an FNR of 12.9% and a g-mean value of 0.87. Additionally,
the decision tree produced by this method had the smallest number of
leaf nodes, indicating that it could effectively classify the data with a
more straightforward and interpretable model. Overall, our findings in-
dicate that oversampling methods can be a valuable tool for enhancing
the predictive capability of machine learning algorithms in the context
of bankruptcy prediction.

Our study found that all the oversampling techniques we applied re-
sulted in improved performance in terms of FNR compared to using
the raw imbalanced dataset. This suggests that these methods can ef-
fectively reduce the number of false negatives, which can be especially
important in situations where the negative class is more costly to miss
(e.g., in fraud detection or bankruptcy prediction). Furthermore, our
analysis showed that some oversampling methods improved perfor-
mance more effectively than others. For example, the SMOTE-ENN
method had the best FNR of all the techniques we tested, indicating
that it was the most successful at correctly identifying instances of the
minority class.

Overall, our findings demonstrate the potential of oversampling tech-
niques to enhance the performance of machine learning algorithms on
imbalanced datasets, particularly in the context of bankruptcy predic-
tion. These methods can be beneficial for reducing the number of false
negatives and improving the overall prediction capability of the model.

A potential reason for the solid performance of SMOTE-based methods
in our study could be because of how these techniques generate syn-
thetic minority samples. Specifically, SMOTE-based algorithms replicate
instances of the minority class based on their neighbors in the feature
space, with the number of neighbors serving as a critical parameter
that can influence the resulting synthetic samples. We found that using
k = 13 neighbors yielded the best results for the SMOTE-ENN method
on the dataset we analyzed. It is important to note that the selection of
the number of neighbors can be a complex and task-dependent issue,
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as it can affect both the quality and diversity of the synthetic samples
produced by the algorithm. In general, larger values of k may lead to
the more accurate reproduction of the local structure of the minority
class. Still, they may also result in less diversity among the synthetic
samples and potentially overfitting the training data.

On the other hand, smaller values of k can introduce more variety
into the synthetic samples but may also reduce their fidelity to the
actual minority class distribution. Overall, our results suggest that
SMOTE-based methods can effectively address imbalanced datasets in
machine learning tasks, particularly when coupled with an appropriate
choice of the number of neighbors. Further research could investigate
the impact of this parameter on the performance of SMOTE and other
oversampling methods in a broader range of datasets and tasks.

5.2 conclusions based on the internal method

In order to deal with the unbalanced distribution of financial distress
datasets and improve the prediction of minor class instances, this thesis
suggested using an MHOANN with a PSO or CSO as the optimization
strategy and a cost-sensitive fitness function within a majority-voting
ensemble learning system. Data from firms in Poland, Taiwan, and
Spain were used in the tests. After that, the results of the recommended
approach were compared to those obtained using the same MHOANN
with a PSO or CSO but with accuracy or MSE fitness functions.

By minimizing prejudice regarding the minority class instances, our
suggested strategy for forecasting financial crises performed better. Our
tests’ findings demonstrated that adopting a cost-sensitive fitness func-
tion significantly influenced the minority class’s ability to be accurately
predicted in unbalanced datasets. The g-mean showed a significant im-
provement, and the f1-score also saw a modestly good impact. Higher
values suggest greater performance in both courses. The g-mean met-
ric assesses the balance between the True Positive and Negative rates.
The g-mean score in our investigation considerably increased when a
cost-sensitive fitness function was used, indicating that this strategy
significantly raised the model’s accuracy for both minority and major-
ity classes. Another statistic that takes into account a model’s recall
and precision is the f1-score, with higher values indicating greater
performance. In our scenario, using a cost-sensitive fitness function had
a promising impact on the f1-score, demonstrating that this strategy
enhanced the model’s overall precision-to-recall balance. Overall, these
findings imply that the suggested technique can handle unbalanced
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datasets in the context of predicting financial distress. Using a cost-
sensitive fitness function and a PSO or CSO-optimized MHOANN, it is
possible to achieve improved performance and avoid biased results.

Ensemble learning is a machine learning technique that combines
the predictions of multiple models to create a more accurate and
robust forecast. The majority-voting ensemble learning system works
by training various models on the same dataset and then using their
predictions to make a final prediction. In this case, the majority voting
system involved training multiple models and then using the majority
vote of their predictions as the final prediction. Using this system
allowed the model to take advantage of the strengths of each model
and make more accurate predictions. This ultimately resulted in an
improvement in the accuracy and g-mean scores of the model and
a significant increase in the f1-scores. Overall, the majority-voting
ensemble learning system proved to be a valuable addition to the model,
significantly improving its performance and making it more reliable
for many applications. The improvement in all metrics indicates the
versatility and accuracy of PSO- and CSO-optimized neural networks.

One of the main limitations of this work was the need for more access
to a domain expert who could provide insights into the appropriate
weights to assign to FN, which is very common in the context of cost-
sensitive learning [98]. In many cases, obtaining the input of a domain
expert can be crucial in determining the most effective approach to
a given problem, which was unfortunately not possible in this case.
Despite this limitation, the proposed method for assigning weights
to FN instances could still achieve good results. However, it would
have been beneficial to have the opportunity to compare the proposed
approach to the recommendations of a domain expert to determine the
best possible weight for FN instances.

5.3 future work

Several avenues for future research could build upon the findings of
our study. One possibility would be to investigate alternative classi-
fication methods beyond C4.5, which may be more sensitive to the
impact of oversampling techniques on imbalanced datasets. This could
involve testing various methods, like support vector machines, random
forests, or neural networks, to see how they compare to C4.5 in terms
of performance and sensitivity to resampling. Another area of poten-
tial investigation could be evaluating other oversampling methods on
different datasets. Overall, there are many directions in which this re-
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search could be extended to enhance further our understanding of how
to classify imbalanced datasets in machine learning tasks effectively.
By continuing to explore the use of other oversampling methods and
different classification methods, we can make valuable contributions to
this vital area of study.

Moreover, regarding the internal approach, there are several directions
in which we aim to develop further and apply the proposed method.
One key area of focus is expanding the technique to other bankruptcy
datasets. While the process has shown promising results on the current
datasets, it is essential to fully determine its generalizability to other
datasets to understand its capabilities and limitations. In addition to
exploring the use of the approach with other bankruptcy datasets, we
also want to investigate its potential for use in other imbalanced classi-
fication problems. Imbalanced classification is a familiar challenge in
machine learning, and developing practical approaches for addressing
it can have broad applications across a range of domains. Also, we are
targeting alternative techniques for hyperparameter tuning, including
using techniques such as AutoML [99] to find the costs of misclassi-
fied instances. Hyperparameter tuning is essential in developing any
machine learning model, and finding the most effective approach can
significantly impact the model’s performance. By investigating a range
of hyperparameter tuning methods, we aim to identify the most effec-
tive strategy for improving the performance of the proposed method.
Overall, our goal is to continue advancing the proposed method and
making it a valuable tool for addressing imbalanced classification prob-
lems in various domains.
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B
L E A R N I N G C U RV E G R A P H S

In this appendix, we present learning (convergence) curve graphs for
a sample run of MHOANN on each dataset, using each of the fitness

functions evaluated and the PSO and CSO optimizers. The convergence
curve graphs provide a visual representation of the learning process,
showing how the fitness of the algorithms improves over time.

81



82 b learning curve graphs

Figure B.1: MOHANN’s (with MSE fitness function and PSO optimizer)
learning curve on the Spanish firms’ data.

Figure B.2: MOHANN’s (with accuracy fitness function and PSO opti-
mizer) learning curve on the Spanish firms’ data.
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Figure B.3: MOHANN’s (with cost-sensitive fitness function and PSO
optimizer) learning curve on the Spanish firms’ data.

Figure B.4: MOHANN’s (with MSE fitness function and CSO optimizer)
learning curve on the Spanish firms’ data.
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Figure B.5: MOHANN’s (with accuracy fitness function and CSO opti-
mizer) learning curve on the Spanish firms’ data.

Figure B.6: MOHANN’s (with cost-sensitive fitness function and CSO
optimizer) learning curve on the Spanish firms’ data.



85

Figure B.7: MOHANN’s (with MSE fitness function and PSO optimizer)
learning curve on the Taiwanese firms’ data.

Figure B.8: MOHANN’s (with accuracy fitness function and PSO opti-
mizer) learning curve on the Taiwanese firms’ data.
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Figure B.9: MOHANN’s (with cost-sensitive fitness function and PSO
optimizer) learning curve on the Taiwanese firms’ data.

Figure B.10: MOHANN’s (with MSE fitness function and CSO opti-
mizer) learning curve on the Taiwanese firms’ data.
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Figure B.11: MOHANN’s (with accuracy fitness function and CSO
optimizer) learning curve on the Taiwanese firms’ data.

Figure B.12: MOHANN’s (with cost-sensitive fitness function and CSO
optimizer) learning curve on the Taiwanese firms’ data.
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Figure B.13: MOHANN’s (with MSE fitness function and PSO opti-
mizer) learning curve on the Polish firms’ data.

Figure B.14: MOHANN’s (with accuracy fitness function and PSO
optimizer) learning curve on the Polish firms’ data.



89

Figure B.15: MOHANN’s (with cost-sensitive fitness function and PSO
optimizer) learning curve on the Polish firms’ data.

Figure B.16: MOHANN’s (with MSE fitness function and CSO opti-
mizer) learning curve on the Polish companies’ data.
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Figure B.17: MOHANN’s (with accuracy fitness function and CSO
optimizer) learning curve on the Polish firms’ data.

Figure B.18: MOHANN’s (with cost-sensitive fitness function and CSO
optimizer) learning curve on the Polish firms’ data.
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