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Abstract: The diagnosis of different pathologies and stages of cancer using whole histopathology
slide images (WSI) is the gold standard for determining the degree of tissue metastasis. The use of
deep learning systems in the field of medical images, especially histopathology images, is becoming
increasingly important. The training and optimization of deep neural network models involve
fine-tuning parameters and hyperparameters such as learning rate, batch size (BS), and boost to
improve the performance of the model in task-specific applications. Tuning hyperparameters is a
major challenge in designing deep neural network models, having a large impact on the performance.
This paper analyzes how the parameters and hyperparameters of a deep learning architecture affect
the classification of colorectal cancer (CRC) histopathology images using the well-known VGG19
model. This paper also discusses the pre-processing of these images, such as the use of color
normalization and stretching transformations on the data set. Among these hyperparameters, the
most important neural network hyperparameter is the learning rate (LR). In this paper, different
strategies for the optimization of LR are analyzed (both static and dynamic) and a new experiment
based on the variation of LR is proposed (the relevance of dynamic strategies over fixed LR is
highlighted), after each layer of the neural network together with decreasing variations according
to the epochs. The results obtained are very remarkable, obtaining in the simulation an accurate
system that achieves 96.4% accuracy on test images (for nine different tissue classes) using the
triangular-cyclic learning rate.

Keywords: deep learning; convolutional neural network; WSI; cancer; hyperparameters; histopathology
images; discriminative fine tuning

1. Introduction

Colorectal carcinoma is one of the most common cancers, and its heterogeneous com-
position changes greatly as the cancer grows [1]. For this reason, it is of utmost importance
to know the different tissues that coexist with tumor cells during pathological colonoscopy
examination. This study was developed by applying multiresolution techniques based on
deep learning on WSI (Whole-Slide Images) on CRC tissue. Histological images (WSI) are
images of the microscopic structure of tissues. The pathologist usually uses a microscope
to view the stained sample on a slide. To better visualize the parts of the tissue that are of
interest to us, a technique known as hematoxylin–eosin staining is performed. After the
tissue is digitized, a WSI is created.

In recent years, machine learning algorithms for image analysis have evolved rapidly
with computing power and new image processing techniques. Thanks to the advancement
of histological slide scanners, the development and use of digital histopathology in cancer
diagnosis is becoming very relevant [2]. An overview of treatment options in classifying
histopathological images with machine vision learning models was recently provided
by Li et al. [3]. In recent years, the applications of deep learning in the diagnosis and
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treatment of histopathological classification mainly include studies based on classification
and recognition research. The use of deep learning systems in colorectal cancer has led to a
significant increase in the number of scientific publications. Figure 1 shows the evolution of
the number of papers indexed on the Web of Science platform (previously known as Web of
Knowledge), a platform that provides access to several databases of scientific journals and
conference proceedings in the field of colorectal cancer and deep learning models. Figure 2
shows an analysis of publications (2014–2022) by research area (a paper may be attributed
to more than one research area). However, as can be seen from [3], there are far fewer
studies that address the impact of changing hyperparameters in Deep Learning, although
adjusting them can drastically change the results obtained.

Figure 1. Evolution of the number of contributions (indexed in the ISI Web of Science for year 2014 to
2022) in the field of deep learning techniques applied to colorectal cancer.

Figure 2. Analysis of publications by research area, in the field of deep learning techniques applied
to colorectal cancer.

The learning rate is one of the most important hyperparameters in deep learning
training. It controls how much the model changes in response to the estimated error each
time the model weights are updated [4]. Choosing the learning rate is difficult because
too small a value can lead to a long training process that can become stuck, while too
high a value can lead to a suboptimal set of weights that are learned too quickly. There
are numerous contributions to the analysis and automation/optimization of the adaptive
learning rate and hyperparameter optimization, but this remains an open research problem
that depends heavily on the nature of the data and the problem to be solved [4–6].
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In most studies conducted in the field of classification systems for histopathological
images of colorectal cancer [7,8], the use of deep-learning systems usually involves the
use of standard parameters without a detailed analysis of the influence of the parameters,
hyperparameters, and preprocessing stages of histopathological images on the behavior of
the system. In this paper, we present a novel and comprehensive study on the influence
on the classification performance of a classification system (Deep Learning-VGG19) for
classifying histopathological images of colorectal cancer and show how an appropriate
choice of these parameters can have an important impact on the accuracy of the classifier.

In this paper, we compare the use of different methods to train a neural network
by varying the learning rate to perform classification of histopathological CRC images
with different experiments. Recently, more and more deep learning methods have been
proposed for WSI analysis. However, the study on the influence of LR variation is not so
well-known. Some studies compared the influence of not using a fixed LR in each epoch.
Anil et al. [9] proposed the use of a dynamic learning rate. Smith et al. [10] proposed cyclic
learning rates, a method that lets the learning rate vary cyclically between the appropriate
thresholds. Purnendu et al. [7] introduced another technique inspired by cyclic learning
rates and stochastic gradient descent with warm restarts. In this paper, we compare these
models and propose a new experiment based on the variation of LR after each layer of the
neural network, along with decreasing variations according to epochs.

2. Related Work

Several studies have investigated methods for CRC detection, classification, and
tissue segmentation by analysis of WSI. Kather et al. [11] presented a new dataset of
5000 histological images of human colorectal cancer that included eight different tissue
types. Ten anonymized H&E-stained CRC tissue slides were obtained from the pathology
archive at the University Medical Center Mannheim (Heidelberg University, Mannheim,
Germany). Contiguous tissue areas were manually labeled and tesselated, resulting
in 625 non-overlapping tissue tiles of size 150 × 150 pixels. The following eight tissue
types were selected for analysis: tumor epithelium, simple stroma, complex stroma, im-
mune cells, debris, normal mucosal glands, adipose tissue, and background (the resulting
625 × 8 = 5000 images together formed the training and testing set for the classification
problem). The authors used four classification strategies (1-nearest neighbor, linear SVM,
radial basis function SVM and decision trees) and found that the radial basis function (rbf)
support vector machine (SVM) performed the best (87.4% accuracy for multiclass tissue
separation).

Ciompi et al. [12] proposed a CRC tissue classification system based on convolutional
nets (ConvNets). They used data from two different sources, namely a cohort of images
of whole slides of rectal cancer samples (a set of 74 histological slides from 74 patients),
and a dataset of colorectal cancer images and patches (from 10 patients, using 5000 patches
of 150 × 150 pixel, the dataset of [11]). They investigated the importance of staining
normalization (applying staining normalization to training and test data removes most
sources of variability due to staining from the equation) in classifying CRC tissues in H&E
stained images and achieved 79.7% accuracy.

Bianconi et al. [13] used several data sets for experimental analysis of a novel method
called IOCLBP, which is based on a simple-to-implement yet highly discriminative local
descriptor for color images. The authors have demonstrated the superiority of IOCLBP
alone and/or in combination with LCC over related methods (LBP variants) for the classifi-
cation of binary and multiclass problems. One such problem is the so-called Epistroma:
histological images of colorectal cancer from 643 patients admitted to Helsinki University
Central Hospital, Finland, between 1989 and 1998. The tissue samples were stained with
diaminobenzidine and hematoxylin and divided into two classes: Epithelium (825 sam-
ples) and Stroma (551 samples). The size of the images varied from 172 × 172 pixels to
2372 × 2372 pixels. In this binary classification problem of colorectal cancer, the accuracy
achieved was 93.4%.
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Alinsaif et al. [14] used different deep learning models (SqueezeNet, MobileNet,
ResNet, and DenseNet) to present two different approaches: (1) generating features from
pre-trained models (i.e., without fine-tuning); and (2) fine-tuning the CNN from pre-trained
models. The second approach was effective and provided better classification results. When
training a SVM on deep features, the authors applied ILFS to obtain a reduced subspace of
features while achieving high accuracy. The authors used different problems or datasets
to analyze the results, including the data from Kather et al. [11] and that from Epistroma
(previously discussed in Bianconi et al. [13]). Based on SVM classification using the best-
scoring deep features from different pre-trained models, the best results obtained for the
Kather problem, with 1000 features, were an accuracy of 95.4% and an AUC of 0.906. For
the Epistroma problem (simpler since it is biclass ), an accuracy of 99.06% and an AUC of
0.997 were obtained with 250 features, using DenseNet in both datasets.

However, neither study worked with a data set of nine different CRC tissue classes
(presented in [15] and used in this paper). Figure 3 shows a typical classification model
pipeline, presenting common techniques such as data acquisition/split, image preprocess-
ing, whole slide image (WSI) tiling, and evaluation with a test set for the multiclass problem
presented in this paper.

Figure 3. Block diagram for pathology WSI classification with VGG19 deep learning model, in a
multi-class problem.

3. Materials and Dataset

The proposed model with hyperparameter investigation was developed and trained
using a publicly available dataset of hematoxylin and eosin (HE)-stained histological
images of digital WSI of human colorectal cancer (CRC) and normal tissue. These images
were manually extracted from 86 H&E-stained human cancer tissue slides. It is a set of
100,000 training and 7180 test images that do not overlap and are 224 × 224 pixels (px)
at 0.5 micrometer per pixel (MPP). There are nine different tissue classes: Adipose tissue
(ADI), background (BACK), debris (DEB), lymphocytes (LYM), mucus (MUC), smooth
muscle (MUS), normal intestinal mucosa (NORM), cancer-associated stroma (STR), and
colorectal adenocarcinoma epithelium (TUM). The tissue samples included CRC slides
from primary tumors and tumor tissue from CRC liver metastases; the normal tissue
classes were supplemented with non-tumorous regions from gastrectomy specimens to
increase variability. The dataset is available and was constructed by J.K Kather et al. [15].
For training the deep learning model, code was generated to balance all classes (mainly
based on data augmentation of the class with the lower number of patches, more detail in
Section 5, Experiments and Results), because as shown in Figure 4, the number of patches
is different for each tissue.
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Figure 4. Number of patches in each tissue class.

Automatic recognition of different tissue types in histologic images is an essential
component of digital pathology diagnosis. Although histological images often contain
multiple tissue types, few studies have addressed the problem of different classes. As
shown in our study, homogenization of the different tissues is crucial in classifying them
into multiple classes. In this dataset, the images with and without color normalization are
used. Figure 5 shows an example of the dataset used.

Figure 5. Example of 9 tissue classes in our dataset. The top row shows the images with Macenko
filter. In the bottom row, no color normalization was applied to these images.

Neural network preprocessing, training and deployment was performed in Python
(version 3.9.0) on one workstation with CPU 11th Gen Intel(R) i7-11700 K, 3.6 GHz, with
128 GB RAM and Nvidia RTX30-60 GPU.

4. Method

In this paper, a new methodology is proposed to determine and analyze the behavior
of deep learning systems by optimizing the hyperparameters that determine it, focusing on
the problem of classifying histopathological images (9 different tissues, including colon
cancer). In this section, we first present our baseline network, an improved VGG19. Then,
we describe our proposed framework, which consists of the training scheme and the study
of the parameters and hyperparameters of our model. In addition, this section presents the
metrics used in the analysis of the classification results for each method.

4.1. VGG19: Parameters and Hyperparameters

The use of VGG19 has been very successfully applied in the literature for the classifi-
cation of histopathological images [16,17] and also specifically for the analysis of colorectal
cancer with digital pathology images [18].

VGG19 is a deep convolutional neural network (CNN), a supervised learning artificial
neural network that processes its layers by mimicking the visual cortex of the human eye
to recognize various features of the inputs. The CNN contains specialized hidden layers
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with a hierarchy in which the first layers can recognize lines and curves and specialize
in deeper layers that recognize structures as complex as body tissue. The VGG19 model
consists of 19 layers [19]: Sixteen convolutional layers to detect features in an image, three
fully connected layers to process data in a neural network, five MaxPool layers to correct
distorted images, and one SoftMax layer. We need to add several final layers for our
dataset, such as flattening to convert the image to an appropriate representation, and a
dropout layer to prevent overfitting. In addition, we add regularization techniques to avoid
overfitting and feature selection (Figure 6). In our model, we use ridge regression (L2),
which adds the squared magnitude of the coefficient as a penalty value to the loss function.
We also add the activation function ReLu to smooth the picture and make the boundaries
clear. This function is very fast in terms of training, so it is common to use the activation
function for the hidden layers of the model and use the Softmax function on the last layer,
since it is more complex and therefore slower.

Figure 6. Architecture of the VGG19. Figure showing the convolutional layers in blue, the Maxpool
layers in orange, and the final 6 designed layers added to the typical VGG19 neural network. The
flatten layers are shown in yellow, the dense layers in dark blue, the green color represents dropout
and finally the red dense sigmoid layer to classify the 9 different tissues.

In CNNs, it is important to distinguish between parameters and hyperparameters.
Parameters refer to the weights of the neural network, which are automatically adjusted
by the training algorithm. Hyperparameters, on the other hand, refer to the configuration
of the architecture to be used. Moreover, they are not updated by the model according
to the optimization strategy, so manual configuration is always required. Some of them
are, for example: the number of layers, the number of neurons per layer, the batch size,
the momentum, and the weight decay, to name a few. Optimizing the hyperparameters in
deep neural networks is a crucial task for the final performance of a network. Some of the
hyperparameters that we have considered in our model are as follows:

• The batch size defines the number of samples used in an epoch to train the model.
• An optimizer is a function that modifies neural network attributes, such as weights and

learning rate, to reduce the overall loss and improve accuracy. A typical optimization
method is gradient descent, where three types of gradient descent can be distinguished
in terms of batch size: In batch gradient descent, all samples of the training set are used
in each epoch. In stochastic gradient descent (SGD), a random sample from the training
set is selected in each epoch. Finally, in mini-batch gradient descent, a specified number
of samples from the training set are given in an epoch. In our training, we will use a
(SGD) [20] with momentum that descends directly by optimizing the expected risk,
since the samples are drawn randomly from the ground truth distribution.
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• The number of steps or training iterations is the number of forward or backward steps,
where each step uses a number of stack-size images.

• The number of epochs determines how often the network trains the entire dataset.
This parameter should be adjusted according to your learning curve. In our project
with Transfer Learning, we will see how our model learns in just a few epochs.

• The weights that connect the layers are the parameter of a neural network that trans-
forms the input data into the hidden layers of the network. The concept of weights is
of paramount importance because they are the variables to be found when training
the network, and they gradually adjust the network to try to obtain the correct output
for all inputs.

In the case of CNNs, an important hyperparameter is the learning rate (LR). The LR
may be the most important hyperparameter in the configuration of our model. The learning
rate is the rate at which an algorithm converges to a solution when updating weights
during training.

4.2. Evaluation Metrics

In this part, we present some evaluation metrics commonly used in histopathological
classification. The analysis of these metrics is sufficient, although we have a multiclass
problem [21].

We can define True Positive (TP) if the prediction is correct and refers to the predicted
label. True Negative (TN) indicates the number of times the model correctly classified a
negative sample as negative. True is defined by the correct match between the predicted
label and the actual label. False represents a mismatch between the predicted and actual
labels. False Positive (FP) means that the model incorrectly classifies a negative sample as
positive, and False Negative (FN) means that a positive sample is classified as negative. In
a multi-class classification, Positive and Negative refer to the individual label classes.

• The Confusion Matrix shows the classification performance of the model in validating
the data sets.

• Accuracy represents the proportion of the true number of classified samples among
all samples.

Accuracy =
TP + TN

Total
(1)

where Total represents the sum of TP, TN, FP and FN.
• Precision measures how high the proportion of samples classified as positive is that

are actually positive.

Precision =
TP

TP + FP
(2)

• Recall indicates how many positive samples are classified as positive.

Recall =
TP

TP + FN
(3)

• F1-Score is the harmonic average of precision and recall.

F1Score =
2

1
Precision + 1

Recall
(4)

• Receiver Operating Characteristic Curve (ROC curve) is a commonly used evaluation
metric to assess the quality of a classifier. The classifier can also be evaluated by
the area under the ROC curve, called Area Under Curve (AUC). It represents the
rate of true positives versus the rate of false positives. The higher the value, the
greater the discriminatory capacity of the model. AUC is defined by the rate of true
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positives (TPR) and the rate of false positives (FPR). The TPR and FPR are given by
TPR = TP/(TP + FN) and FPR = FP/(FP + TN). Thus, AUC can be computed by

AUC =
∫ 1

x=0
TPR(FPR−1(x))dx = P(X1 > X0) (5)

where X1 is the score for a positive instance and X0 is the score for a negative instance.
• Loss Function defines a method for evaluating how well the learning algorithm models

the data set in terms of prediction. Categorical cross-entropy is a loss function used in
classification tasks with multiple classes since it can consider a sample as belonging to
one category with probability 1 and to other categories with probability 0. The loss for
N classes, of which 9 classes are used in our work, is calculated as follows:

Loss = −
N

∑
i=1

ltilog(Wi) (6)

The loss is calculated as a categorical cross-entropy between the ground true label lti
and Wi labels (Softmax is then applied to these labels, producing the values of the Wi
predictions).

5. Experiments and Results

In this section, we present extensive experiments of the different methods of variation
of the learning rate to which we add cutting-edge methods. The results (error indexes and
computational time) of each training session is presented.

We have trained a CNN for the classification of nine different histological tissues.
During training, some parameters should be considered to obtain the best performance
of the proposed network with respect to the problem. If we don’t have enough data,
convolutional neural networks may overfit. Increasing the amount of data improves the
generalizability of these networks by transforming images to make the network robust.
Data augmentation is commonly used [22,23] to improve performance and avoid the
problem of bias and overfitting. The effectiveness of data augmentation using simple
techniques such as cropping, rotating, and flipping input images has been demonstrated in
the literature [24,25], and has been used in this paper.

Figure 7 shows a representative sample of the different tissues from our dataset with
random augmentation.

Normalization improves convergence speed and performance. We randomly flipped
the images horizontally and vertically, and also applied a random rotation. In addition, the
data were normalized by dividing each value by 255. The values of the images are between
0 and 255 and we want them to be between 0 and 1 for classification. In addition, for
overcoming many of the known inconsistencies in the staining process in the preparation
of histology slides, all images are color-normalized using Macenko’s method [26]. After
the pre-processing, different experiments have been carried out.

1. Finding the right LR significantly influences the CNN’s ability to learn patterns. Given
the importance of finding a suitable CNN architecture and the LR tuning, the influence
of the LR range for fast convergence is analyzed.

2. Once the optimal learning rate range has been found, the influence of a constant
learning rate in different training modes of the network has been studied.

3. An exhaustive and detailed study has been carried out with different non-constant
learning rates.

5.1. Optimal Learning Rate

To obtain a good LR, the first step is to find the range that best fits our network, as
this will lead the parameters of our model to optimal solutions at a reasonable pace. If
the model is trained with very high or very low learning rate values, the model responds
with very low accuracy and a huge loss [27]. To this end, the SGD batch is trained with
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increasing LR and investigates when the model deviates. Plotting LR against loss, one can
find the region of LR where the loss decreases most rapidly, as this is the steepest part of
the graph. The training of the entire network consists of a range of learning rates 10−5 and
10−2 in 4 epochs. According to the slope of Figure 8.

We see that the optimal values are between 10−4 and 10−3.

Figure 7. Dataset examples of the different tissues with random augmentation.

Figure 8. On the left is a graph of learning rate vs. loss to find the range of optimal values of LR; on
the right, the iterations vs. learning rate.

5.2. Training from Scratch, Transfer Learning and Frozen Layers

Deep learning can be approached by building an architecture from scratch (by setting
up different types of layers and connections), by using an existing network (Transfer
Learning), and by Transfer Learning with frozen layers. In this section, we show the results
obtained by training our model in these three ways using the LR found in the previous
section. In this section, the simulations are performed with a LR = 5 · 10−4.

Learning from scratch means creating a completely new model and starting with
random values in the weights of the neural model. In this first experiment, we train our
model, with the parameters of Table 1, imposing the condition of non-pretrained weights
with ImageNet, where we obtain an accuracy of 88%.
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In transfer learning, there are a large number of convolutional networks that are
trained by default with a set of images and focus on machine vision. In this process,
information learned from one problem is used and applied to a related problem. This
process usually involves training the final layers of the network or adding new ones,
resulting in a reduction in the time required to train the network. We trained our VGG19
model using ImageNet pre-trained weights and re-trained all the layers. It is observed that
the accuracy and training speed improve compared to training from scratch, obtaining an
accuracy of 94%.

In the process of frozen layers, the aim is to slightly adjust the weights of some of the
intermediate layers of the network in order to fine-tune the new problem to which Transfer
Learning is applied. When the new model is initialized, the first layers are "frozen" so as
not to change their weights, as these are more general feature extraction layers, and the
remaining layers are trained with the new database [28]. In this part of the experiment, we
freeze 15%, 25% and 50% of the 27 layers that complete our model, obtaining an accuracy
of 87%, 83% and 49%, respectively. With this method of freezing layers, the model needs to
be trained with fewer parameters and therefore takes less time to train, but the results are
worse than with the transfer learning process without freezing layers. Table 2 shows the
results obtained in this section, the Precision, Recall, F1 score for each tissue class, Accuracy,
Training time and the parameters that can be trained.

Table 1. List of parameters and hyperparameters for our framework.

Parameters and Hyperparameters Value

Input shape 224 × 224

Bach size 64

Number of layers 27

Momentum 0.9

Learning rate 10−5–10−1

Epochs 10

Loss function Categoricall cross entropy

Optimizer SGD

Weights Scratch- ImageNet

Dropout 0.5

L2 10−3

Activation ReLu/Softmax

Dense 5000

Since the best results are obtained with the Transfer Learning training, all subsequent
training with our model will follow this strategy.

5.3. Cyclical Learning Rate

This method is based on the fundamental idea that the learning rate varies within
a range of values, rather than assuming a fixed value. The learning rate varies cyclically
between fixed limits [10]. A short run of only a few epochs in which the learning rate
increases linearly is sufficient to estimate the boundary learning rates for the cyclic learning
rate (CLR). In this section, we test several adapted synchronization cycles and training
iterations (the results are in Table 3). We fit the strategies to our dataset and model. To
this end, we experimented with different cyclic functions to test the performance of our
model for classifying histopathological images. The features discussed in this work are
the following, illustrated in Figure 9. For these experiments a range of LR has been taken
between the base value 10−4 and a maximum LR value of 10−3.
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1. Triangular: The LR adopts a triangular window linearly increasing and then linearly
decreasing on a regular basis. Obtaining an accuracy of 96%.

2. Triangular drop: The difference with the previous method is that the upper and lower
limits are halved after each cycle without affecting the predefined learning rates. In
this case, the metrics are almost unchanged from the previous method.

3. Exponential: The learning rate varies between the minimum and maximum limits
and each value of the limit decrease by an exponential factor gamma. This means the
learning rate difference drops after each cycle. In this case, this factor is equal to unity
and for Exponential 2, gamma is 0.9. This method achieves an accuracy of 95% and
94%, respectively.

4. Sine: The strategy based on a sine function decay is based on a cyclic triangular decay
with a sinusoidal amplitude, where the learning rate of the iterations decreases by a
fixed amount. With this strategy, the accuracy decreases by up to 92%.

Table 2. Results obtained in the training and validation process from scratch, with transfer learning
and frozen different percentages of the model layers.

Model: VGG19

Metrics Class Scratch Transfer Learning
Transfer Learning + Frozen Layers

15% Frozen 25% Frozen 50% Frozen

Precision

ADI
BACK
DEB
LYM
MUC
MUS

NORM
STR

TUM

0.98
0.95
0.53
0.94
0.96
0.69
0.74
0.72
0.95

0.90
0.99
0.94
0.99
1.00
0.84
0.89
0.88
0.99

0.97
0.96
0.57
0.93
0.98
0.64
0.80
0.67
0.88

0.99
0.97
0.24
0.90
0.95
0.61
0.75
0.40
0.96

0.93
0.87
0.04
0.16
0.31
0.26
0.46
0.00
0.36

Recall

ADI
BACK
DEB
LYM
MUC
MUS

NORM
STR

TUM

0.96
1.00
0.62
0.99
0.83
0.85
0.94
0.30
0.92

1.00
1.00
1.00
1.00
0.85
0.92
0.99
0.70
0.93

0.98
1.00
0.48
0.94
0.91
0.83
0.83
0.46
0.88

0.97
1.00
0.25
0.98
0.95
0.48
0.89
0.55
0.78

0.89
1.00
0.03
0.23
0.15
0.06
0.02
0.00
0.90

F1- Score

ADI
BACK
DEB
LYM
MUC
MUS

NORM
STR

TUM

0.97
0.98
0.57
0.97
0.89
0.76
0.83
0.43
0.94

0.95
1.00
0.97
0.99
0.92
0.88
0.94
0.78
0.96

0.98
0.98
0.52
0.94
0.95
0.72
0.81
0.54
0.88

0.98
0.99
0.24
0.94
0.95
0.54
0.81
0.46
0.86

0.91
0.93
0.03
0.19
0.20
0.10
0.05
0.00
0.51

Accuracy
Train
Test

0.91
0.88

0.99
0.94

0.83
0.87

0.82
0.83

0.39
0.49

Training time 157 m 6 s 155 m 47 s 128 m 26 s 109 m 37 s 72 m 21 s

Trainable params 170,519,393 170,519,393 170,480,673 170,259,233 164,653,857
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Figure 9. Different learning rate strategies versus training iterations. In the upper left corner, the
Triangular LR strategy is depicted, and in the upper right corner, the Triangular 2 adaptation. In the
lower-left corner, the LR strategy with the sinusoidal function and in the lower right corner is the
Inverse Time Decay strategy.

5.4. Scheduler Learning Rate

In this section, we present a predefined framework, where different LR decay strategies
are used without specifying the cyclic values. The results are in Table 4.

1. Decay 1: In this case, we examine how the learning rate changes after the entire epoch
rather than for individual steps, using functions that take as input the number of
epochs and the current learning rate to provide a new learning rate. This experiment
achieves 93% accuracy, where in the first epoch the learning rate is LRinitial = 0.001, so
in each epoch the current LR is divided by 3. In Decay 2, LR is divided by a value of
1.5 to observe a smoother decay, in which case the accuracy is improved to nearly 95%.

2. Step decay: We train our network using SGD and a scheduler with inverse time decay.

The following formula LRstep = LRinitial/(1+
DR·Step

DS ) is used to calculate the learning
rate at each step. Here, DR is the decay rate with a value of 0.5, LRinitial = 0.001
and DS is the decay step and defines the number of steps after which the learning
rate decays. In our case, it is 1000, which gives an accuracy almost equal to the
previous one.

3. Polynomial decay [7]: In this part, our network is trained using SGD with polynomial
decay. With an initial training and final learning rate between the computed bounds
in the optimal convergence region for training. This method improves the accuracy a
little by achieving an accuracy of 95%.

4. Piecewise Constant Decay: In this last experiment of this section, we train our network
using SGD with a piecewise constant decay scheme. In this process, LR decreases by
a few steps. We give LR values for each step, with a constant learning rate every 1000
steps. An accuracy of 95% is achieved.
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5.5. Discriminative Fine Tuning

So far, a comparison has been made with different ways of working the LR while
keeping it constant for all layers of the network. In this section, a novel technique is pro-
posed. Howard et al. proposes a novel method for the classification of texts. Discriminative
fine-tuning [29] allows us to tune each layer with different learning rates. Different layers
capture different types of information [30], so a tuning according to the capacity of each
layer gives good results.

This method is based on the fact that the SGD update with discriminative fine-tuning
is then the following:

θl
t = θl

t−1 − ηl∇θl J(θ) (7)

where η is the learning rate and ∇θ J(θ) is the gradient with regard to the model’s objective
function. For discriminative fine-tuning, θl is replaced by {θ1, . . . , θL}, where θl contains
the parameters of the model at the l-th layer. Similarly η is replaced by {η1, . . . , ηL}, where
ηl is the learning rate of the l-th layer and L is the number of layers of the model.

Table 3. The impact of using different methods of cyclical variation of the LR with respect to epochs
on the training and validation of our model.

VGG19

Metrics Class
Cyclical Learning Rate

Triangular Triangular2 Exponential Exponential2 Sine

Precision

ADI
BACK
DEB
LYM
MUC
MUS

NORM
STR

TUM

0.99
1.00
0.98
0.99
1.00
0.84
0.94
0.78
0.97

0.99
1.00
0.95
0.99
0.98
0.87
0.92
0.81
0.97

0.95
1.00
0.95
0.99
0.99
0.87
0.96
0.75
0.95

0.99
1.00
0.91
0.99
0.98
0.83
0.93
0.69
0.97

0.99
1.00
0.98
0.99
1.00
0.59
0.90
0.90
0.99

Recall

ADI
BACK
DEB
LYM
MUC
MUS

NORM
STR

TUM

0.98
1.00
1.00
1.00
0.98
0.85
0.97
0.77
0.97

0.99
1.00
0.99
1.00
0.98
0.84
0.98
0.76
0.96

0.99
1.00
0.99
1.00
0.92
0.82
0.96
0.77
0.98

0.97
1.00
1.00
0.96
0.98
0.72
0.96
0.82
0.96

0.82
1.00
0.99
1.00
0.97
0.95
0.99
0.65
0.94

F1-Score

ADI
BACK
DEB
LYM
MUC
MUS

NORM
STR

TUM

0.98
1.00
0.99
0.99
0.99
0.84
0.96
0.78
0.97

0.99
1.00
0.97
1.00
0.98
0.86
0.95
0.78
0.97

0.97
1.00
0.97
0.99
0.96
0.84
0.96
0.76
0.97

0.98
1.00
0.95
0.97
0.98
0.77
0.95
0.75
0.97

0.90
1.00
0.99
0.99
0.99
0.73
0.94
0.75
0.96

Accuracy
Train
Test

0.99
0.96

0.99
0.96

0.99
0.95

0.99
0.94

0.99
0.92

Training time 158 m 9 s 155 m 7 s 157 m 40 s 156 m 59 s 173 m 52 s

We decrease the learning rate with the increasing depth of the layers and are thus in the
optimal range for convergence. The LR factors for the different layers assigned a name to
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specify this value were chosen per layer bundle, i.e.: The first ten layers have a factor of 0.01,
the next thirteen layers have a factor of 0.001, the last four layers reduce their factor to 0.0001.

In multiclass problems, it is important to obtain the so-called confusion table to analyze
the behavior of the system. The Figure 10 shows the behavior of the model when using
discriminative fine-tuning with a decreasing LR in epochs. Both the confusion matrix and
the confidence matrix are shown. The confidence matrix is similar to a confusion matrix,
but we are instead measuring the average probability of each decision. AUC-ROC is shown
as the precision measure. The evolution of the accuracy of the system and the loss function
with the number of epochs (indicating the evolution of learning) is also shown.

Table 4. The impact of using different methods of scheduler variation of the LR with respect to epochs
on the training and validation of our model

VGG19

Metrics Class
Learning Rate Scheduler

Decay 1 Decay 2 Step Decay Polinomial Decay Piece Cte Decay

Precision

ADI
BACK
DEB
LYM
MUC
MUS

NORM
STR

TUM

0.99
0.99
0.96
0.98
0.93
0.82
0.94
0.68
0.94

0.99
1.00
0.97
0.99
0.96
0.85
0.93
0.69
0.96

0.99
1.00
0.99
0.99
0.96
0.85
0.91
0.73
0.96

0.99
1.00
0.97
0.99
0.99
0.83
0.93
0.75
0.98

0.99
1.00
0.98
0.99
0.98
0.87
0.91
0.72
0.97

Recall

ADI
BACK
DEB
LYM
MUC
MUS

NORM
STR

TUM

0.98
1.00
0.96
0.99
0.98
0.78
0.90
0.69
0.94

0.98
1.00
0.99
0.99
0.98
0.77
0.95
0.73
0.96

0.98
1.00
0.99
0.99
0.99
0.80
0.94
0.69
0.95

0.97
1.00
1.00
1.00
0.98
0.80
0.97
0.80
0.96

0.99
1.00
1.00
1.00
0.98
0.77
0.95
0.78
0.95

F1-Score

ADI
BACK
DEB
LYM
MUC
MUS

NORM
STR

TUM

0.98
1.00
0.96
0.99
0.96
0.80
0.92
0.69
0.94

0.99
1.00
0.98
0.99
0.97
0.81
0.94
0.71
0.96

0.99
1.00
0.99
0.99
0.97
0.83
0.92
0.71
0.95

0.98
1.00
0.99
0.99
0.98
0.82
0.95
0.77
0.97

0.99
1.00
0.99
0.99
0.98
0.82
0.93
0.75
0.96

Accuracy
Train
Tests

0.94
0.93

0.98
0.95

0.98
0.95

0.9895
0.9532

0.9830
0.9494

Training time 155 m 22 s 153 m 5 s 156 m 7 s 153 m 29 s 153 m 23 s

5.6. Comparison with Other Methodologies

Table 5 summarizes the relevant methods that appear in the bibliography, which use
deep learning models for multiclass classification. In Table 5, there are strategies for dynamic
modification of the learning rate, such as cyclical learning rates (Smith et al. [10]), polynomial
learning rates (Purnendu et al. [7]) or dynamic learning rates (Anil et al. [9]). There are also
static learning rate methods, such as that of Anil et al. [8], and methodologies based on transfer
learning (such as that of Alinsaif et al. [14]). The proposed method achieves high accuracy in
test images by performing an in-depth study of the optimal strategy for the learning rate. We
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believe that the proposed methodology provides excellent accuracy results through a detailed
and comprehensive study of the optimal strategy for the learning rate.

Figure 10. Results obtained by applying discriminative fine tuning with a decreasing LR in epochs.
The confusion matrix, the Receiver Operating Characteristic Curve (ROC curve) and the Area Under
the Curve (AUC), the confidence matrix and, in the lower right corner, the accuracy and the training
loss function versus epochs are shown. In this example, a larger number of epochs has been considered
to appreciate the graph.

Table 5. Comparative analysis of related work available in the literature on the study of the learning
rate and multi-class data-set classification.

Year Paper Methodology ACC (%) AUC

2016 Kather et al. [11]
Lower-order and higher-order histogram features

Local binary patterns
Gray-level co-occurrence matrix

87.4 % 0.968

2017 Ciompi et al. [12] Stain normalization and ConvNet 79.66% -

2017 Wang et al. [31] Convolutional neural networks bilinear (BCNN) 92.6% 0.985

2017 Bianconi et al. [13] Variation of LBP with point-to-average thresholding 93.4 % -

2017 Smith et al. [10] Cyclical learning rates 82.2% -

2018 Cascianelli et al. [32] Reduction strategy based on the cross-correlation 84.8% -

2019 Purnendu et al. [7] Polynomial learning rate 94.54% -

2020 Alinsaif et al. [14] Reduced Deep Features
Fine-Tunning

95.40%
95.02%

0.9961
0.9976

2020 Anil et al. [8] Fixed learning rate 92.8% 0.97

2021 Anil et al. [9] Dynamic learning rates 91.84% 0.97

Proposed method Transfer Learning Test: 94.4% 0.98

Proposed method Schedule Learning Rate (Polynomial decay) Test: 95.3% 0.98

Proposed method Cyclical Learning Rate (Triangular) Test: 96.4% 0.99
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6. Conclusions

This paper systematically analyzes various parameters, hyperparameters and methods
for training and optimizing deep learning systems for multiclass classification. The dataset
used for training and testing includes various healthy tissues and colorectal cancer. It is
important to note that gradient descent is widely used in large-scale optimization problems
in machine learning; in particular, it plays an important role in computing and tuning
the connection weights of deep learning models. Gradient-based optimization methods
have hyperparameters that require infinite possibilities for configuration. Determining the
values and optimization methodology of the hyperparameters of a deep-learning system
is currently a challenge that is important for the behavior and precision of the system.
Moreover, these hyperparameters also affect the computation time and cost. In this paper,
the performance of a deep learning model based on the well-known VGG19 structure
was evaluated, using three different methods for its training: learning from scratch (i.e.,
all parameters composing the different levels of the neural network, including the CNN
levels, are tuned thanks to the learning phase), transfer learning (using a VGG19 system
previously optimized in other classification problems, all parameters are optimized/tuned
with the images of the new problem), and transfer learning associated with frozen layers
(only a subset of the parameters belonging to the last layers is optimized).

It was analyzed (obtaining different error metrics) how these different strategies have
a different behavior in the time necessary for the training of the neural system and to the
accuracy of the system. The system that requires the most time is learning from scratch. The
system that learns the fastest (less than half the time for learning from scratch) is transfer
learning + frozen layers (with a total of 50% of the original layers frozen or not modified). In
terms of precision, transfer learning produced the best results. Therefore, this strategy was
used for the following analysis in this article: the effect of the learning rate. The learning
rate is one of the most important hyperparameters in a neural network and, of course, in
deep learning models.

In this article, various strategies for LR optimization, both static and dynamic, have
been analyzed in depth. Different dynamic cyclic functions (triangular, triangular drop,
exponential, sinusoidal) were used to test the performance of our model for classification of
histopathological images. Four different frameworks for LR decay were also used: Decay
1 (decay after a complete epoch), step decay, polynomial decay and piecewise constant
decay. There is no significant impact of using different methods of scheduler variation of
LR in terms of computation time required, but from the point of view of accuracy, the best
method is polynomial decay.

Finally, discriminative fine-tuning is also analyzed as a novel technique proposed in
this paper in conjunction with dynamic LR strategies. Discriminative fine-tuning allows
tuning layers of the deep learning model with different learning rates.

The results obtained are very remarkable since in the simulation an accurate system
that achieves an accuracy of 96.4% and a value close to 1 for the AUC in test images is
obtained (for nine different tissue classes), using the triangular-cyclic learning rate.

As future work, the LR strategy and deep learning model can be trained and tested on
other cancer data-sets for classification, but taking into account the possible adaptation and
restrictions of the new problem.
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