
Neurocomputing 544 (2023) 126228
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier .com/locate /neucom
Multi-step histogram based outlier scores for unsupervised anomaly
detection: ArcelorMittal engineering dataset case of study
https://doi.org/10.1016/j.neucom.2023.126228
0925-2312/� 2023 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

⇑ Corresponding author.
E-mail addresses: nacheteam@ugr.es (I. Aguilera-Martos), marta.garcia-barza-

na@arcelormittal.com (M. García-Barzana), djgarcia@decsai.ugr.es (D. García-Gil),
jacintocc@decsai.ugr.es (J. Carrasco), derwey@correo.ugr.es (D. López), julianlm@-
decsai.ugr.es (J. Luengo), herrera@decsai.ugr.es (F. Herrera).
Ignacio Aguilera-Martos a,b,⇑, Marta García-Barzana c, Diego García-Gil a,b, Jacinto Carrasco a,b,
David López a,b, Julián Luengo a,b, Francisco Herrera a,b

aDepartment of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain
bAndalusian Institute of Data Science and Computational Intelligence (DaSCI), Spain
cArcelorMittal Global R&D, New Frontier, Digital Portfolio, Spain

a r t i c l e i n f o
Article history:
Received 17 August 2022
Revised 27 January 2023
Accepted 22 April 2023
Available online 3 May 2023

Keywords:
Histograms
Anomaly detection
Unsupervised learning
Time series
a b s t r a c t

Anomaly detection is the task of detecting samples that behave differently from the rest of the data or
that include abnormal values. Unsupervised anomaly detection is the most common scenario, which
implies that the algorithms cannot train with a labeled input and do not know the anomaly behavior
beforehand. Histogram-based methods are one of the most approaches in unsupervised anomaly detec-
tion, remarking a good performance and a low runtime. Despite the good performance, histogram-based
anomaly detectors are not capable of processing data flows while updating their knowledge and cannot
deal with a high amount of samples.
In this paper, we propose a new histogram-based approach for addressing the aforementioned prob-

lems by introducing the ability to update the information inside a histogram. We have applied these
strategies to design a new algorithm called Multi-step Histogram Based Outlier Scores (MHBOS), includ-
ing five new histogram update mechanisms. The results have shown the performance and validity of
MHBOS as well as the proposed strategies in terms of performance and computing times.

� 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

When analyzing real-life processes, we can find instances or
samples that do not follow the expected behavior or pattern. These
are referred to as anomalies, usually defined as data that does not
behave like most of the samples, or the values they contain are not
normal or common [1,2]. The anomaly detection problem is widely
spread in several fields of knowledge such as healthcare [3], net-
work surveillance [4,5], IoT sensor monitoring [6,7] or industrial
anomaly detection [8].

Usually, the anomaly detection task is an unsupervised prob-
lem. Although semisupervised and supervised approaches can be
found, the cost of labeling the data is unaffordable in most situa-
tions. This means that the algorithms cannot use labels to learn a
border to separate the normal and anomalous data. In most cases,
the provided output from an anomaly detector is a score that needs
to be treated to perform the detection of anomalies.

Worsening the lack of labeled information, machinery and
monitoring applications of all kinds [9] serve the final data in time
series format, requiring algorithms capable of ingesting this kind of
information [10]. These applications often output a high load of
samples, requiring a fast response from the algorithms. This situa-
tion has created the necessity for fast and efficient algorithms, cap-
able of dealing with a lot of samples and updating their knowledge
while receiving new data.

The characteristics of unsupervised anomaly detection have led
to the popularization of tools such as histograms, used for example
in popular algorithms like Light Online Detector of Anomalies
(LODA) [11] or Histogram Based Outlier Scores or HBOS [12].
Histogram-based unsupervised anomaly detectors usually present
the following drawbacks:

� Incapacity for updating their internal status or knowledge. This
fact makes the usage of the algorithm impractical when facing
data flows.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2023.126228&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.neucom.2023.126228
http://creativecommons.org/licenses/by/4.0/
mailto:nacheteam@ugr.es
mailto:marta.garcia-barzana@arcelormittal.com
mailto:marta.garcia-barzana@arcelormittal.com
mailto:djgarcia@decsai.ugr.es
mailto:jacintocc@decsai.ugr.es
mailto:derwey@correo.ugr.es
mailto:julianlm@decsai.ugr.es
mailto:julianlm@decsai.ugr.es
mailto:herrera@decsai.ugr.es
https://doi.org/10.1016/j.neucom.2023.126228
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom

I. Aguilera-Martos, M. García-Barzana, D. García-Gil et al. Neurocomputing 544 (2023) 126228
� Lack of mechanisms for processing large amounts of samples
efficiently. This behavior pushes the practitioner to the use of
distributed computing with the included effort, consumption
and dedicated hardware.

Popular algorithms, such as HBOS, perform a fast anomaly
detection, covering the constraint of efficient execution and simple
methodology establishing a good base model, but with the already
mentioned drawbacks.

Thus, this paper aims to propose a new algorithm based on his-
tograms that tackle the two aforementioned drawbacks, called
Multi-step Histogram Based Outlier Scores (MHBOS). MHBOS is
oriented towards the fast and efficient update of the information
inside a histogram. It incorporates three update components for
conventional histograms and two for the Dynamic Histograms
introduced by the authors of HBOS [12], so it can adapt to all kinds
of scenarios. The five new mechanisms, discussed in depth in Sec-
tion 3, are as follows: a min–max strategy for datasets in which the
absolute minimum and maximum are known, addition of bins to
maintain the width of the bins, weighted frequency update for pre-
serving the original number of bins, dynamic limits to preserve the
width percentage of the original bins over the domain and dynamic
fusion to preserve the bin densities.

This paper also provides public access to the dataset1 owned by
ArcelorMittal. The datasets currently employed as a benchmark
within time series anomaly detection include most of the time syn-
thetic data with a reduced number of samples and features. The
released dataset can be used as a robust training and test dataset
as it has a large number of variables and samples and presents
labeled information.

In order to validate the quality and performance of MHBOS,
state-of-the-art algorithms in unsupervised anomaly detection
are compared using the Outlier Detection Datasets Library (ODDS)
[13] and widely used time series datasets: Falling People[14], IoT
Botnets[15], KDDCup99[16] and the Time Series with Anomalies
dataset from Kaggle.2 To further validate MHBOS, we also use a real
engineering dataset provided by ArcelorMittal to test the capabilities
of MHBOS to ingest time series data. MHBOS has achieved good
results, showing that the proposal can successfully and efficiently
detect anomalies in terms of precision, recall, F1, and ROC-AUC
metrics.

The rest of this paper is organized as follows: in Section 2 we
will describe in detail the anomaly detection problem. Section 3
proposes MHBOS and all the histogram updating mechanisms. Sec-
tion 4 discusses the experimental framework used to test the per-
formance of MHBOS over ODDS datasets and time series datasets.
Section 5 analyses the performance of MHBOS over a real engineer-
ing dataset provided by ArcelorMittal. Section 6 summarizes the
lessons learned from both experimental frameworks. Finally, Sec-
tion 7 sets out the conclusions from this paper. Appendices A
and B contain the full result tables from the experimental
frameworks.
2. Anomaly detection problem

In this section, we will review the anomaly detection problem
by describing the different types of anomalies and their application
scenarios (Section 2.1). In Section 2.2, the state-of-the-art in unsu-
pervised anomaly detection will be presented. Finally, Section 2.3,
explain HBOS in depth and the core concepts inherited by MHBOS.
1 https://github.com/ari-dasci/OD-TINA.
2 https://www.kaggle.com/datasets/drscarlat/time-series.

2

2.1. Anomaly detection

An anomaly is a sample that does not follow the main pattern of
the data. This problem can be caused by two different scenarios [2].
Extreme values when the samples are distant from the rest of the
data and abnormal patterns in which a batch or pattern is not
frequent.

There are three different types of problems when dealing with
anomaly detection [1]. The supervised scenario in which have
labeled data, equivalent to high imbalanced classification. The
semisupervised scenario in which only the normal data is labeled
or nearly all samples are normal, falling in the category of novelty
detection and finally the unsupervised scenario. In the unsuper-
vised case, no label is given and therefore they are not used in
the training routine, being the most common problem of all three.

Regarding the output of an anomaly detection algorithm, it can
typically be of two types. A score to quantify how anomalous or
normal a sample is, the bigger the score the more anomalous and
vice versa. Binary labels classify the samples as normal or anoma-
lous. The advantage of the score is that it is more informative than
the labels in this problem, as they explain the output.

2.2. Unsupervised anomaly detection

Most of the anomaly detection datasets and problems fall under
the unsupervised anomaly detection category, as it is not easy to
label the anomalies. By making no assumptions about the data
and working with no labels, the unsupervised algorithms are more
widely applicable and, therefore, more used in real problems.
Within the unsupervised anomaly detection algorithms, two types
can be found: modelling or model-generative algorithms and non-
modelling algorithms. The first type processes in a more complex
way the training data, even without labels, generating a complex
internal representation. On the other hand non-modelling algo-
rithms do not create a complex internal representation either just
storing the raw training data or modifying it in a simple fashion.
The modeling algorithms have as a priority to maximize the perfor-
mance obtained in the metrics. Non-modeling algorithms, on the
other hand, aim to maintain a balance between performance and
efficiency.

Among all modelling proposals for dealing with unsupervised
anomaly detection problems, we can remark the following algo-
rithms as the most popular and widely used:

� Isolation Forest (IForest) [17,18]: This algorithm is based on a
Random Forest schedule. The procedure selects a feature ran-
domly and tries to isolate it dividing the space into halves.
The length of the path until division will be taken as a normality
measure. If the value is an anomaly it will be easier to isolate it
and the path will be shorter. The main drawback of this algo-
rithm is the requirement of having a big number of trees to
obtain better results, increasing the time consumption.
� One-class Support Vector Machine (OCSVM) [19]: This model
uses Support Vector Machine to create a decision border of
the normal class. When new data arrives it will check if the
new point is inside the border or outside and it could be classi-
fied as normal or anomalous. Its main drawback is the time and
resource consumption.
� Principal Component Analysis (PCA) [20]: The PCA algorithm
takes the decomposition in eigenvalues and eigenvectors, the
bigger the eigenvalues the more variance the eigenvectors cover
or explain. The score is given in this algorithm by the distance
from the data sample to the projection in the hyperplane. This
algorithm can combine the anomaly knowledge from several

https://github.com/ari-dasci/OD-TINA
https://www.kaggle.com/datasets/drscarlat/time-series

I. Aguilera-Martos, M. García-Barzana, D. García-Gil et al. Neurocomputing 544 (2023) 126228
variables performing a more informed detection. The main dis-
advantage is the high resource consumption as the number of
samples increases.
� Autoencoder [21]: A fully-connected Autoencoder is a neural
network architecture that aims to create a lower-dimensional
representation of input data through the use of an encoder com-
ponent, which applies dimensionality reduction, and a decoder
component, which reverses the process. This model is employed
for anomaly detection by training it on mostly normal data. As a
result, the network exhibits low reconstruction error when pre-
sented with normal samples and high error when presented
with anomalous data.

Within the non-modelling algorithms we can highlight the
following:

� Histogram Based Outlier Scores (HBOS) [12]: For each of the
features, a histogram is drawn to model the underlying distri-
bution of that attribute. To evaluate a sample, the probability
of appearance of each feature is checked. The lower the proba-
bility the higher the score and vice versa.
� K-Nearest Neighbors (KNN) [22,23]: A point is surrounded by
other values and, therefore, the behavior of this point should
be close to its neighbors. This algorithm uses the distances from
a fixed point to its neighbors to compute an anomaly score. The
higher the distance metric the more anomalous. The main
inconveniences are the consumption of resources and the
dependency on setting the correct number of neighbors.
� Light Online Detector of Anomalies (LODA) [11]: This algorithm
is based on histograms to compute the anomaly scores. Random
one-dimensional projections of all features are computed and a
histogram of each of them is created. This histogram is used to
check how frequent the projected values are. This process is
repeated several times and then the score is averaged. One of
the main advantages of this algorithm is the explainability.
The main drawback is that it needs to repeat the random projec-
tion a large number of times to obtain good results.
� Local Outlier Factor (LOF) [24]: The algorithm analyses the local
density using the distance to its neighbors. The lower the den-
sity the more anomalous the sample is. This algorithm still
relies on the number of neighbors, being this value a critical
choice.

Among all the methods we have detailed, we may remark HBOS
for being one of the fastest and better-performing methods [25] in
the category of probabilistic detectors [2].

2.3. Histogram based outlier scores

Histograms are commonly used for describing the unknown
underlying distribution of experimental variables. The histograms
divide the space into bins described by an interval and count the
number of data points that have a value in that range. These two
characteristics inform us whether a value is more common than
others, as we can express the count or frequency in a probabilistic
way by scaling the histogram by the maximum value or the addi-
tion of all the absolute frequencies.

This perspective leads to a list of intervals describing the his-
togram bins and the frequency on each of those bins. The larger
the number of bins the smaller the intervals and, therefore, more
specific information about the values is obtained. In this case, a
dataset large enough to have a significant number of bins is
required. Otherwise, when the number of samples is not large
enough, a smaller number of bins should be used. By doing so,
we will be able to obtain an adequate amount of information. If
too many bins are applied a false approximation could be given
3

if the number of instances is not sufficient to cover this space as
the theoretical real distribution would do.

The HBOS algorithm [12] uses these histograms to extract infor-
mation about each of the features of the dataset. The algorithm
generates a histogram per feature, so we can obtain a simple
description of the dataset. As mentioned, the histograms represent
the underlying distribution of each of the features and can be
expressed as probabilities. To use this principle the histograms
are scaled. After this, the frequencies move in the range ½0;1�where
0 would mean that is very unlikely for the range of values to occur
and 1 that it is very likely to occur.

This way of extracting information concerns only one variable,
but the information should be mixed. For that purpose, the authors
of HBOS combined the set of histograms to quantify the outlierness
of each sample. In the case of histograms, this will show how likely
or unlikely a given value is to show up. As the combination func-
tion the base two logarithm function is chosen. At this stage, the
histograms for each feature are already built and scaled by dividing
by the highest count. By doing so, the histograms reach their max-
imum height at one.

For evaluating an instance p of a dataset Xd with d being the
number of features, the anomaly score is given by Eq. 1.

HBOSðpÞ ¼
Xd

i¼1
log2ð

1
histogramðpiÞ

Þ ð1Þ

where pi is the i-th feature of the sample p.
From Eq. 1, if the histogram is near zero then the quotient

would be a large number and the logarithm as well. If the his-
togram is near 1 then the quotient is near 1 and therefore the log-
arithm would be closer to zero. This reasoning shows that the
bigger the probability the smaller the anomaly score is and vice
versa.

If the histogram is zero this would not represent any theoretical
inconvenience as the limit from the left of the expression would be
infinity and therefore the logarithm as well. In the implementation
of the algorithm, this should be taken into account and sum up a
small constant to prevent this situation. The pseudocode can be
seen in Algorithm1.

Algorithm1: HBOS

1: Input: X the dataset with d features
2: Input: nbins the number of bins
3: Output: Anomaly scores for each data point
4: scores ½0;0; . . . ;0� d length
5: for i 0 until d do
6: hist histogramðXi; nbinsÞ
7: feature score ½�
8: for pi 2 Xi do
9: s log2ð 1

histðpiÞÞ
10: feature score appendðfeature score; sÞ
11: end for
12: scores scoresþ feature score
13: end for
14: return scores
2.3.1. Dynamic Histograms
The authors of HBOS proposed another alternative for comput-

ing the histogram, namely ‘‘Dynamic Histogram”. This modification
comes into place to mitigate some drawbacks that normal his-
tograms have.

In the traditional histogram, a fixed number of intervals of equal
width to divide the space and start counting the values are set. This

I. Aguilera-Martos, M. García-Barzana, D. García-Gil et al. Neurocomputing 544 (2023) 126228
can lead to unused bins, as no values might fall inside one of the
bins. In their proposal, the histogram creation procedure tries to
keep all bins with the same area, while the width will be the value
that moves. The data used to make the histogram is sorted and
divided into equal size chunks. These chunks will be the bins, so
they will have the same or approximately the same amount of
instances and different widths. If a repeated value is found the rou-
tine places these in the same bin so we have well-defined intervals
along the histogram.

With this variation, the focus is on the width of the bin and not
on the frequency or height. If a bin is smaller in width this means
that it concentrates a higher density of values and therefore those
are more common. If the bin width is larger then the density is
smaller and the probability as well.

The pseudocode to generate a dynamic histogram can be
viewed in Algorithm2.

Algorithm2: Dynamic histogram

1: Input: X array of single-feature values
2: Input: nbins the number of bins
3: Output: bins the intervals that define the bins
4: Output: counts the frequencies for each bin
5: bins ½�
6: counts ½�
7: Sort X ascending
8: Divide X in nbins chunks of equal size
9: If there are repeated values place them only in one bin
10: Update bins with the chunks limits
11: Update counts with the number of values in each bin
12: for i 0 until nbins do

13: counts½i� counts½i�
bins½iþ1��bins½i�

14: end for
15: return bins; counts

After explaining the algorithm in detail the road for improve-
ment becomes more visible. As seen, the algorithm follows a very
simple principle but has no mechanism for updating the internal
representation. Therefore this algorithm is not capable of adapting
to streaming data either able to be trained by batches to process a
large dataset. These limitations are solved by the proposal MHBOS.
3. Multi-step histogram based outlier scores

This section is devoted to fully describing the proposal MHBOS.
Histogram Update Mechanisms will be explained in Section 3.1.
Finally, the algorithm proposed incorporating such mechanisms
(MHBOS) will be presented and explained in Section 3.2.

3.1. Histogram update mechanisms

In this section, we will explain the mechanisms to update the
information inside a histogram. Five strategies have been designed
for working with histograms: min–max, addition of bins, weighted
frequency update, dynamic limits, and dynamic fusion. The first
three mechanisms are used for conventional histograms and the
last two are designed to be applied to Dynamic Histograms.

First, we will explain the proposed methods for the so-called
static histograms or traditional histograms. Three main methods
are proposed for this type of histogram.

3.1.1. Min-max strategy
This is the most direct approach at first stage. We may face the

possibility in which we cannot handle the data and we need to pro-
4

cess it in batches but we do know the lower and upper limits for
our variables. If we have such an information we can just make
the histogram with these limits dividing the space between the
maximum and minimum in equal size chunks. Having this infor-
mation could be unrealistic in a real problem but we will discuss
more uninformed methodologies in the next sections.

Since the new arriving values will not exceed the limits of the
histogram, updating the frequencies can be done adding the new
values in the corresponding bins as it can be seen in Algorithm3.

Algorithm3: Min–max

1: Input: X array of single-feature values
2: Input: bins the intervals that define the bins
3: Input: counts the frequencies for each bin
4: Output: binsnew the intervals that define the bins after the

update
5: Output: countsnew the frequencies for each bin after the

update 6: countnew counts
7: binsnew bins
8: for p 2 X do
9: b corresponding bin for value p in binsnew
10: countsnew½b� countsnew½b� þ 1
11: end for
12: return binsnew; countsnew

The min–max mechanism is considered to be the optimal
method for obtaining the true final histogram. This is due to the
fact that the bin limits remain constant, allowing for the exact
computation of frequency, resulting in a solid foundation for deter-
mining the ground truth. However, it is important to note that this
approach may not always be practical in real-world situations.

3.1.2. Addition of bins
This strategy assumes the algorithm to be fed with several

batches of data. With the first batch of data we will build up a his-
togram as you would normally do. This histogram will serve as a
base for the upcoming updates.

When new data comes as an input three possible situations
could happen:

� The data has a valid bin to fall inside of.
� The data has a lower value than the lowest bin of the histogram.
� The data has a higher value than the highest bin of the
histogram.

As a consequence, if a new value falls out it could only be
because it is smaller or bigger than any other observed value.

This strategy aims to cover the space unseen until a valid bin is
produced for the new data. In practice, we add as many bins to left
or right as we need to cover the new value. Increasing the number
of bins we maintain the granularity decided for the first batch for
all of the rest. The pseudocode is presented in Algorithm4.

Algorithm1: Addition of bins

1: Input: X array of single-feature values
2: Input: bins the intervals that define the bins
3: Input: counts the frequencies for each bin
4: Output: binsnew the intervals that define the bins after the

update
5: Output: countsnew the frequencies for each bin after the

update
6: countnew counts

I. Aguilera-Martos, M. García-Barzana, D. García-Gil et al. Neurocomputing 544 (2023) 126228
7: binsnew bins
8: bin width width of the bins
9: for p 2 X do
10: if p fits in bin b then
11: countsnew½b� countsnew½b� þ 1
12: else if p < binsnew½0� then
13: repeat
14: Append to the lower bound of binsnew a new interval

subtracting bin width
15: Append to the lower bound of countsnew a zero
16: until p has a valid bin
17: Update the corresponding bin frequency
18: else if p > binsnew½lengthðbinsnewÞ� then
19: repeat
20: Append to the upper bound of binsnew a new

interval adding bin width
21: Append to the upper bound of countsnew a zero
22: until p has a valid bin
23: Update the corresponding bin frequency
24: end if
25: end for
26: return binsnew; countsnew

The addition of bins mechanism is an effective method for
updating histograms when the underlying distribution contains
non-covered space. This approach preserves the granularity of
the initial histogram by keeping the size of the bins constant. How-
ever, it should be noted that this can result in empty bins being
present when the mechanism is applied. Despite this, the informa-
tion within the histogram is not diluted by larger intervals, and the
empty bins can aid in the detection of anomalies.

3.1.3. Weighted frequency update
The two aforementioned strategies are based on updating an

existing histogram without generating a new one. In this section,
the point of view shifts to a method that combines two existing
histograms. As in the strategy before, we will create a histogram
with the first batch of data as we normally do.

When new values are introduced, the algorithm will generate
another histogram with the new values. This results in handling
two histograms at the same time: the old histogram histogramold

and the current histogram histogramcurr .
A new histogram is made from histogramold and histogramcurr .

This histogram takes into account the new minimum and maxi-
mum which may have changed. Now that we have the new empty
histogram histogramnew we are filling the following way.

For each bin in the new histogram, we check if the old and cur-
rent histograms have bins overlapping the new generated one. If
so, the amount each histogram contributes with would be propor-
tional to the width of the overlap.

Let the histograms be: hold ¼ ½h0
old;h

1
old; . . . ;h

k
old�;

hcurr ¼ ½h0
curr;h

1
curr ; . . . ;h

k
curr� and hnew ¼ ½h0

new;h
1
new; . . . ;h

k
new�. For a

given bin of the new histogram ½hj
;hjþ1� we define the overlap ratio

for an intersecting bin of hcurr ½hi
curr ;h

iþ1
curr� by the Eq. 2.

hjþ1�hicurr
hjþ1�hj if hjþ1

> hi
curr and hj

< hi
curr and hjþ1

< hiþ1
curr

hjþ1�hj
hjþ1�hj if hj

> hi
curr and hjþ1

< hiþ1
curr

hiþ1curr�hj
hjþ1�hj if hj

< hiþ1
curr and hjþ1

> hiþ1
curr

8>>>><
>>>>:

ð2Þ

These cases correspond to the intersection from the lower
bound, the new bin is inside one from the current histogram, or
the intersection from the higher bound.
5

This way of measuring the overlap provides us a number in the
range ½0;1� for the bins of the old and current histogram. With this
number, we have the weighted frequency that will contribute to
the creation of the new histogram. The pseudocode is presented
in Algorithm5.

Algorithm5: Weighted frequency

1: Input: X array of single-feature values
2: Input: nbins the number of bins
3: Input: binsold the intervals that define the bins from the

original histogram
4: Input: countsold the frequencies for each bin from the

original histogram
5: Output: binsnew the intervals that define the bins after the

update
6: Output: countsnew the frequencies for each bin after the

update
7: binscurr ; countscurr histogramðX;nbinsÞ
8: binsnew; countsnew empty histogram with new minimum

and maximum
9: for bin; count in binsnew; countsnew do
10: for bold; cold in binsold; countsold do
11: overlap overlapðbin; boldÞ
12: if overlap > 0 then
13: count count þ overlap � cold
14: end if
15: end for
16: for bcurr ; ccurr in binscurr ; countscurr do
17: overlap overlapðbin; bcurrÞ
18: if overlap > 0 then
19: count count þ overlap � ccurr
20: end if
21: end for
22: end for
23: return binsnew; countsnew
The weighted frequency update mechanism is an effective
method for updating histograms when the data is uniformly dis-
tributed. The performance of this method is directly related to
the degree of intersection between the original and new his-
tograms. This is because the mechanism utilizes the ratio of the
intersection of the bins to update the frequencies. As such, the
higher the intersection between the original and new histograms,
the better the results provided by this method.

3.1.4. Dynamic limits
As stated earlier, the core component of the Dynamic His-

tograms are the width of each bin. This will inform us about the
density of values in each one of them. The core idea of this strategy
is preserving the width percentage over the total range of each of
the bins. That means that if a bin covers a 10% of the total width
range, we vary the corresponding limits of this bin on the updates
to preserve this 10% coverage.

For a given histogram h ¼ ½h0;h1; . . . ;hk� we compute the per-
centages with the Eq. 3.

p ¼ ½h1 � h0

hk � h0
;
h2 � h1

hk � h0
; . . . ;

hk � hk�1
hk � h0

�: ð3Þ

All these values are in the range ½0;1� and they sum up 1. As in
the other methods, this strategy creates a new histogram the first
time we train the model. When new data is fed to the algorithm, it
updates the already existing histograms. On each train epoch or
step, we will compute again the bin width percentages so we can
preserve them at the end of the training process. If repeated values

I. Aguilera-Martos, M. García-Barzana, D. García-Gil et al. Neurocomputing 544 (2023) 126228
show up in the input data those are set up on the corresponding
bins to maintain the philosophy of the Dynamic Histograms.

In case minimum and maximum of the histogram have chan-
ged, we will set them again. Starting from the minimum we com-
pute the new limits. The old histogram will be the h defined before
and the new histogram will be noted as hnew. The i-th position of
this new histogram will be defined with the Eq. 4.

hi
new ¼ hi�1

new þ pi�1 � ðmax�minÞ; ð4Þ
where max and min are the new maximum and minimum of the
histogram. Following this scheme we will complete the new limits
for the bins ending in the new maximum. The bin counts will then
be updated with new values to finish the procedure. All this scheme
can be seen in Algorithm6.

Algorithm6: Dynamic Limits

1: Input: X array of single-feature values
2: Input: nbins the number of bins
3: Input: binsold the intervals that define the bins from the

original histogram
4: Input: countsold the frequencies for each bin from the

original histogram
5: Output: binsnew the intervals that define the bins after the

update
6: Output: countsnew the frequencies for each bin after the

update
7: maxnew maxðbinsold;maxðXÞÞ
8: minnew minðbinsold;minðXÞÞ
9: binsnew ½minnew�
10: countsnew countsold
11: percentages ½�
12: for i 2 ½1; . . . ;nbins� do
13: percentages appendðpercentages; binsiþ1old �binsiold

bins
nbins
old
�bins1old

Þ
14: end for
15: for i 2 ½1; . . . ;nbins� do
16: limitnew binsi�1new þ percentagesi�1 � ðmaxnew �minnewÞ
17: binsnew appendðbinsnew; limitnewÞ
18: end for
19: Set last limit of binsnew to max
20: Update countsnew with the new values in X
21: return binsnew; countsnew
The dynamic limits mechanism is specifically designed for use
with dynamic histograms, which change the bin limits instead of
the frequency, thus eliminating the presence of empty bins. This
mechanism adjusts the width of the intervals in order to preserve
the frequency percentage of each bin. As a result of this approach,
empty bins are not present.

It is important to note that this mechanism may be considered
the most aggressive when updating the histogram and is therefore
more suitable when significant changes in the data have occurred
and the ground truth needs to be updated.

3.1.5. Dynamic fusion
As with the static histograms in the last section, we propose a

method to combine two existing Dynamic Histograms. By doing
so, we count on an already existing histogram and we will create
a new one with the input data which will be mixed with the old
one to update it.

This strategy preserves the density of the two histograms, that
is, the ratio between the frequencies and bin widths percentages.
After creating the second histogram, we compute the mean density
of both and create a new histogram that preserves this metric.
6

First, we compute the percentage of the whole space that each
bin occupies. Given a histogram h ¼ ½h0;h1; . . . ;hk� then each per-

centage would be computed as pi ¼ hi�hi�1
hk�h0 . Let the frequency count

of the histogram be c ¼ ½c1; . . . ; ck� then the density of each bin
would be di ¼ ci

pi
.

Once we have two density lists, we can compute the mean of
each one of them and then the mean of those two values ends
up with a mean density we will note as DM .

We know exactly the sum of the frequencies of the two his-
tograms we are working with and also the number of bins. We
can calculate the total frequency by adding those quantities and
dividing them equally for every bin to obtain the same height, as
this is the purpose of this type of histogram. Next, we create the
histogram bins, starting with the new minimum which is the min-
imum value between both histograms.

Then, for each step hi
new will be computed as

hi
new ¼ ni�1

new þ pi
new � ðmax�minÞ where max and min are the new

lower and upper limits of the histogram and pi
new is the percentage

of the corresponding bin. We have computed the density as
density ¼ frequency

percentage so we can now solve that percentage ¼ frequency
density .

Knowing the average density DM and the frequency of each bin
in the new histogram, so we can compute the percentage for each
bin in the new histogram.

Following this process, we calculate the limits of the new his-
togram and we will end up placing as the upper limit the newmax-
imum. This mechanism is presented in Algorithm7.

Algorithm7: Dynamic Fusion

1: Input: X array of single-feature values
2: Input: nbins the number of bins
3: Input: binsold the intervals that define the bins from the

original histogram
4: Input: countsold the frequencies for each bin from the

original histogram
5: Output: binsnew the intervals that define the bins after the

update
6: Output: countsnew the frequencies for each bin after the

update
7: maxnew maxðbinsold;maxðXÞÞ
8: minnew minðbinsold;minðXÞÞ
9: binscurr ; countscurr dynamicHistogramðX;nbinsÞ
10: pold compute the percentages for the old histogram
11: pcurr compute the percentages for the current

histogram
12: dold countsold

pold
(element-wise)

13: dcurr countscurr
pcurr

(element-wise)

14: DM meanðmeanðdoldÞ;meanðdcurrÞÞ
15: countsnew spread evenly the sum of countsold and

countscurr
16: percentagesnew countsnew

DM

17: binsnew ½minnew�
18: fori 2 ½1; . . . ;nbins� do
19: limitnew binsi�1new þ percentagesi�1new � ðmaxnew �minnewÞ
20: binsnew appendðbinsnew; limitnewÞ
21: end for
22: Replace last limit in binsnew with maxnew
23: return binsnew; countsnew

The dynamic fusion mechanism is an update technique
designed for use with dynamic histograms. This mechanism fuses
two dynamic histograms to update the information, in an effort

I. Aguilera-Martos, M. García-Barzana, D. García-Gil et al. Neurocomputing 544 (2023) 126228
to preserve the density of the bins in the original histogram, thus
not leaving any empty bins. This algorithm is particularly effective
when applied to uniform data, as it maintains the density and lim-
its of the bins in a similar manner to the original histogram, with
only slight changes. Therefore, this algorithm may be used when
empty bins are not desired, and the input data is nearly uniformly
distributed.

3.2. MHBOS: multi-step histogram based outlier scores

After presenting all the key components in the previous section,
the algorithm proposed to take advantage of all the novel compo-
nents, namely Multi-step Histogram Based Outlier Scores (MHBOS)
is presented here. MHBOS is an unsupervised anomaly detection
algorithm that tackles the two aforementioned drawbacks of
histogram-based methods. It uses the HBOS mechanism for gener-
ating the anomaly scores efficiently. Streaming update of his-
tograms has been previously tackled by some authors [26], but
not inside the anomaly detection problem. MHBOS is directly
applicable to streaming data and time series, incorporating new
ideas to update the content inside a histogram. MHBOS is capable
of handling larger loads of data compared to HBOS and upgrading
the information of the histograms.

Algorithm8: MHBOS

1: Input: X dataset with multiple features
2: Input: nbins the number of bins
3: Input: update mechanism used to update the histograms
4: Output: scores scores of the dataset, one per sample
5: histograms ½�
6: for Xi being the i-th feature array in X do
7: ifhistograms is empty then
8: histogrami £
9: histogrami histogramðXi;nbinsÞ
10: else
11: histogrami update mechanismðhistogrami;Xi;nbinsÞ
12: end if
13: histograms appendðhistograms;histogramiÞ
14: end for
15: scores generate HBOS scores from histograms
16: return scores
3 https://www.kaggle.com/datasets/drscarlat/time-series.
MHBOS iterates over the sliced data. This enable the algorithm
to create a first internal status from the input data. After this initial
fit of the model, it will be iteratively applied with newly arriving
data, updating the internal model using one of the previous strate-
gies. This way of proceeding is the principal design of MHBOS. Fit-
ting the algorithm multiple times translates into the capacity of
MHBOS of updating and upgrading the internal model. This is the
reason why MHBOS is capable of not only ingesting bigger loads
of data in batches compared to other methods but also having a
more general knowledge of the training data.

4. Outlier detection datasets and time series datasets:
experimental framework, results and analysis

In this section, we will detail the procedure we have followed to
validate MHBOS. For this purpose, we have used a widely used in
the literature set of benchmark datasets derived from the UCI
[27] repository, the Outlier Detection Datasets Library [13] and
publicly available time series datasets for anomaly detection.

Section 4.1 details the datasets used in this experimental
benchmark. Section 4.2 depicts the experimental framework and
7

used metrics. Finally, Section 4.3 and Section 4.4 discuss the results
obtained in ODDS datasets and time series datasets.
4.1. Datasets

The ODDS Library is a repository of datasets labeled for the
anomaly detection task. These datasets are taken from the UCI
repository and then they are labeled. The labeling process is done
based on a distance method for labeling. This means that if a data
point is far enough from the rest it is considered an anomaly.

We have used 23 datasets from this library, with a wide range of
instances and features to obtain more general conclusions. Table 1
shows the number of instances, number of features, and number of
anomalies that each dataset has. As can be observed the datasets
have a percentage of anomalies varying in the range between
1:2% and 36%. Also the sizes of the datasets have a wide set of
options going from as few as 129 instances up to 49;097. In terms
of the number of features it goes from 6 features up to 400.

To test the performance of MHBOS in time series datasets we
have included four specific datasets to compare with all the algo-
rithms, whose characteristics can be observed in 2. The time series
datasets selected for this experimental framework are: Falling Peo-
ple[14], IoT Botnets[15], KDDCup99[16] and the Time Series with
Anomalies dataset from Kaggle.3

The Falling People dataset is a dataset containing samples from
elderly people moving inside a smart home environment. The data-
set has 8 variables for monitoring the movement of the person in
all directions. The size of this dataset is 164;259 samples. The
IoT Botnets dataset, more precisely the GafGyt dataset, is a dataset
containing the information of a botnet of infected IoT devices. The
goal is to detect the samples with malicious network requests. This
dataset has 357;765 samples and 116 features. The KDDCup data-
set is a famous dataset proposed for the Third International Knowl-
edge Discovery and Data Mining Tools Competition in 1,999. The
dataset represents a military network environment with syntheti-
cally created events to be detected as anomalous. The dataset has
4;898;430 samples and 123 features. Finally, the Time Series with
Anomalies dataset is a dataset provided by Kaggle for anomaly
detection. The dataset has 509;632 samples and 12 features.

In this study, all datasets were standardized to have a mean of
zero and a standard deviation of one. This normalization step is
crucial in order to prevent errors caused by variations in the scale
of the variables. By standardizing the datasets, all variables are
brought to a common scale, thus allowing for more accurate and
consistent results across different algorithms.
4.2. Experimental framework

In order to validate the results obtained from MHBOS we have
chosen the state-of-the-art algorithms described in Section 2.
These algorithms have been used under the implementation avail-
able in the PyOD library [28].

For the ODDS datasets we have performed two types of tests:
one taking into account the exact percentage of anomalies for cal-
culating the metrics and one using an unsupervised strategy
assuming an estimate of 2, 5 and 10% of anomalies in each dataset.
This fact allows us to consider the evaluation of these classical
datasets adapted to anomaly detection as supervised and unsuper-
vised problems.

To explain the results in detail the set of algorithms is separated
in two: model-generative and non-modelling algorithms. The
modelling or model-generative algorithms are the ones capable
of creating a complex internal representation and learning from

https://www.kaggle.com/datasets/drscarlat/time-series

Table 1
Datasets descriptions from ODDS.

Name # Instances # Features # Anomalies (%)

annthyroid 7,200 6 534 (7.42%)
arrythmia 452 274 66 (15%)
breastw 683 9 239 (35%)
cardio 1,831 21 176 (9.6%)
glass 214 9 9 (4.2%)
ionosphere 351 33 126 (36%)
letter 1,600 32 100 (6.25%)
lympho 148 18 6 (4.1%)
mammography 11,183 6 260 (2.32%)
mnist 7,603 100 700 (9.2%)
musk 3,062 166 97 (3.2%)
optdigits 5,216 64 150 (3%)
pendigits 6,870 16 156 (2.27%)
pima 768 8 268 (35%)
satellite 6,435 36 2,036 (32%)
satimage-2 5,803 36 71 (1.2%)
shuttle 49,097 9 3,511 (7%)
speech 3,686 400 61 (1.65%)
thyroid 3,772 6 93 (2.5%)
vertebral 240 6 30 (12.5%)
vowels 1,456 12 50 (3.4%)
wbc 278 30 21 (5.6%)
wine 129 13 10 (7.7%)

Table 2
Time series datasets details.

Name # Instances # Features # Anomalies (%)

Falling People 164,259 8 8,183 (4.98%)
GafGyt 357,765 116 5,560 (1.55%)
Mirai 304,792 116 4,737 (1.55%)
KDDCup 4,898,430 123 1,040 (0.02%)
TS with Anomalies 509,632 12 443 (0.08%)

I. Aguilera-Martos, M. García-Barzana, D. García-Gil et al. Neurocomputing 544 (2023) 126228
the data. Those would be OCSVM, Isolation Forest, PCA and the
Autoencoder as these algorithms learn and transform their internal
status in a more complex manner. On the other side the non-
modelling algorithms are the ones that do not have a training
phase of they just store the training data using raw data or simpli-
fied strategies such as MHBOS, HBOS, KNN, LODA and LOF.

For the time series datasets only the unsupervised strategy is
applied as these problems are originally designed as so. Regarding
the time series datasets chosen, the evaluation procedure is to split
the time series into train and test, considering a 20% length of the
total data for testing. From the 80% of the data, we consider
another 80% as training for Optuna optimization (see below) and
the 20% remaining of the training data to validate the hyperparam-
eter optimization. When the final parameters are obtained the
model is trained with all the training data and tested on the non-
seen remaining samples.

To evaluate and compare the algorithms in a fair scenario, an
optimization procedure has been applied to each one of them.
For this purpose we have used the Optuna Optimization Frame-
work [29]. This framework search among a certain number of com-
binations of parameters to test and obtain the best model. To
perform a fair comparison, 100 trials have been given to each algo-
rithm per parameter, so the final number of trials would be 100
times the number of free parameters to optimize.

For the state-of-the-art algorithms we have optimized all avail-
able parameters. In the case of MHBOS we will detail which param-
eters have been considered for optimization:

� Number of bins: this parameter controls how many bins do the
histograms have for each of the features.
8

� Epsilon: constant to prevent zero division in Dynamic
Histograms.
� Alpha: constant to prevent a histogram bin with zero frequency
in classic histograms.
� Histogram Update Mechanism: desired mechanism to perform
the update of the histograms.
� Histogram type: weather dynamic or static histograms should
be applied.

Finally MHBOS performs a slicing of the datasets. In order to
enable MHBOS to use the Histogram Update Mechanisms, the data-
sets are sliced and the algorithm is fed with them sequentially. The
slices are always performed in the same way, slicing the samples in
order to obtain reproducible results.

Five main metrics have been used to test the performance of the
algorithms in the 23 datasets: precision, recall, F1 score, ROC-AUC,
and computing time using the optimized hyperparameters for all
datasets. The maximum precision, recall, F1 score, and AUC for
each algorithm is 1, as for each dataset the value is between 0
and 1. For the ODDS datasets the value ‘‘Time” shows the added
times of the best models in all algorithms, being the value ‘‘OT”
the total optimization time used by Optuna.

Regarding precision, recall, and F1 score, here we outline the
formulas for these metrics:

precision ¼ TP
TP þ FP

; recall ¼ TP
TP þ FN

; F1 ¼ 2 � precision � recall
precisionþ recall

:

Where we note:

� True Positive (TP): an anomaly that we have detected.
� False Positive (FP): a normal sample classified as an anomaly.
� False Negative (FN): an anomaly classified as a normal sample.
� True Negative (TN): a normal sample classified as normal.

Precision and recall provide information about how good are
the algorithms at identifying the TP in the dataset. In our problem,
identifying correctly the anomalies is the key, while balancing the
predictions and avoiding large values of FP or FN. An FP in anomaly
detection could mean that a bank loan is being denied to someone
who deserves it, or alerting that a machine is failing when there is
no reason to. An FN can be more dangerous, as those are samples
that are being classified as normal while being anomalies. The F1
score is a metric that merges the information given by precision
and recall, doing a harmonic mean of these values.

In addition to F1 score Area Under the Receiver Operating Char-
acteristics curve [30] is also considered as it is a standard metric in
binary classification. The ROC curve is the curve formed by oppos-
ing the recall to specificity while changing the decision threshold.
The bigger the ROC-AUC the better our algorithm distinguishes
between TP and TN. The ROC-AUC metric is a better option when
dealing with non-supervised problems, as it can be computed
directly with the anomaly scores. The anomaly decision threshold
is unknown and therefore the ROC-AUC score results in an ade-
quate metric to incorporate. If the threshold is known beforehand,
then the F1 score might be a more informative metric.

4.3. Outlier detection datasets: results and analysis

In this section the results and analysis derived from the ODDS
datasets is performed. First the non-modelling results will be dis-
cussed, followed by the results of the modelling algorithms.

4.3.1. Non-modelling algorithms
As we have indicated in the previous section, 23 datasets have

been used from the ODDS Library. The goal of these experiments

I. Aguilera-Martos, M. García-Barzana, D. García-Gil et al. Neurocomputing 544 (2023) 126228
is to check how well the algorithms work in a general-purpose sce-
nario. The datasets present a wide variety regarding the number of
samples and features so they can give a good overview of the
performance.

In Table 3, we can see the results obtained for each algorithm
for all the datasets. Full results can be found in A. For each algo-
rithm, we compute the six metrics in each dataset, the average
and the standard deviation to form a general metric for each of
the algorithms. From these results, we can draw the following
conclusions:

� MHBOS surpasses HBOS in all metrics. In precision, the algo-
rithm is 12 points over HBOS, and in recall and F1 score more
than six points over. This means that MHBOS outperforms the
model used as inspiration HBOS.
� Regarding precision we observe that KNN achieves the best
result. What this means is that KNN is good at predicting real
TP and mitigating the FP. The next algorithm in terms of preci-
sion is MHBOS. Nevertheless, we can also see in the table that
the standard deviation for MHBOS is lower than for KNN, which
means that our proposal is more consistent over all datasets.
� In recall we observe that the best algorithm is MHBOS. In this
case, recall is adding information over precision by indicating
how good or bad are the algorithms mitigating FN. Precision
and recall give a needed balance to qualify the performance of
the algorithms. HBOS is the second best performing method in
terms of recall.
� Considering F1 score, and knowing the previous metrics, we can
remark that MHBOS is the best algorithm as it is a balanced
method over both. As we may observe, KNN is now out of the
comparison, as the precision was at a good point but recall is
showing an unacceptable value.
� In the ROC-AUC metric we can note that the best algorithm is
KNN, followed by MHBOS by a small difference.
� In terms of computing time we can see that only HBOS is faster
than MHBOS, staying one of the fastest methods in the
comparison.

In general terms, MHBOS outperforms the rest of the algorithms
in all metrics except for KNN in precision. In terms of the con-
sumed time, it can be observed that HBOS is faster than MHBOS
but less performant in all the metrics. After HBOS, the table shows
that MHBOS is the fastest method. We can remark from these
numbers that the MHBOS algorithm is better at mitigating FN
rather than FP, but it maintains a good balance between both, with
very competitive computing times.

We have performed a more detailed comparison between
MHBOS and HBOS in terms of F1 score and ROC-AUC for all data-
sets to assess the differences and similarities in the performance
of these two algorithms due to their close nature. In Table 4, a com-
parison between the original algorithm HBOS and our improved
proposal MHBOS is shown. As we can observe, MHBOS achieves
better performance overall compared to HBOS, performing better
in F1 score. In ROC-AUC both algorithms tie on average, but
MHBOS wins in more datasets than HBOS (13 and one tie). In the
F1 score, MHBOS outperforms HBOS in 16 out of 23 datasets, ties
in 3, and HBOS only wins in 4.

From Table 4 we can strongly conclude that MHBOS is superior
to HBOS in F1 and ROC-AUC results. Nevertheless, HBOS wins in
four datasets. Lympho and arrythmia datasets have a small number
of instances but a high number of features compared to their num-
ber of instances. Having a high number of features may be a disad-
vantage when dealing with anomaly detection as high dimensional
datasets are more likely to have all instances spaced by distance. In
annthyroid and thyroid HBOS shows superior performance but
without a relevant difference compared with MHBOS.
9

To validate the differences in performance between HBOS and
MHBOS, a Bayesian Signed Rank test [31] has been performed over
the F1 scores and ROC-AUC obtained from the 23 datasets for both
algorithms. These results are showed in Figs. 1a and 1b. In both fig-
ures, most of the points fall on the left side of the triangle, while
this difference is especially remarkable in the F1 scores. Therefore
the test observes a significant difference between both of the algo-
rithms, meaning that MHBOS performs significantly better than
HBOS. This statistical test is extended to the rest of algorithms
and our proposal. These tests can be seen in Appendix E.

Finally we depict the ROC curves for all the datasets for MHBOS
and HBOS in Figs. 2a and 2b. Each of the lines in the graphic shows
the ROC curve for a dataset in ODDS. We can appreciate that
MHBOS performs better in general terms, having a worse ROC
curve in just three of them. From the figures, some datasets in
which the algorithms behave worse than a randomized algorithm
can be found. As discussed in the explanation of the datasets, these
are synthetically generated and may contain anomalies that are
not real. This type of generation can affect some smaller datasets
or datasets that do not present this anomalous behavior.

4.3.2. Non-supervised thresholding
In the discussed experimental results we have used an exact

threshold for the ODDS datasets as the anomaly percentage is
known beforehand. In this section, we will be discussing the
obtained results by changing the anomaly threshold considered
from 2% to 5% to 10%. The full content tables are shown in C.

From Table 5 we observe that KNN wins in precision, HBOS in
recall and F1 score, and KNN in ROC-AUC. A 2% threshold is a very
tight restriction as our datasets have a higher number of anomalies
in a general term.

Table 6 maintains the ranking from Table 5. Precision values
have been reduced by increasing the percentage considered,
whereas recall and F1 numbers have increased. Thus using a 2%
threshold forced the methods to reduce the false positives and by
increasing the threshold we appreciate that the number of false
positives is increased and the number of false negatives reduced.
We may deduce that the 2% threshold is not high enough to cover
most anomalies in the datasets.

In Table 7, where 10% threshold results are depicted, KNN
excels in precision, HBOS in recall, and MHBOS in F1 score. In the
progression from 5% to 10%, precision reduced again and recall
increased in general terms.

As a general note, we may conclude that KNN is better in preci-
sion in all cases. The recall is increased when the threshold is larger
and this benefits the most MHBOS and HBOS. HBOS wins in F1
score for the 2% and 5% thresholds. For the 10% threshold, MHBOS
is the winner in the F1 score.

These experimental results show that the 10% threshold repre-
sents better the anomaly detection problem in these datasets. The
winner in the F1 score still is MHBOS in this threshold and it can be
observed that HBOS takes advantage of this thresholding strategy
in the results over recall.

4.3.3. Model-generative algorithms
First, the results of the four compared algorithms are intro-

duced and compared in Table 8. Full result tables can be found in
B. The same aggregation than Table 3 has been performed over
these results. As can be observed from Table 8, OCSVM is the best
algorithm in terms of precision, recall, F1 score and ROC-AUC,
standing over the rest of the algorithms.

In Table 8, MHBOS has achieved better results in precision,
recall and F1 score than IForest and PCA despite their more sophis-
ticated training routine. Observing the ROC-AUC metric, IForest
obtains a similar result than MHBOS, being both of themmuch bet-
ter than PCA in terms of ROC-AUC. The Autoencoder algorithm

Table 3
Results of each algorithm with all datasets aggregated. Precision, recall, F1 and AUC are represented by mean/standard deviation. Time and Optimization Time (OT) in seconds.
Best value is stressed in bold.

Algorithms Precision Recall F1 score AUC Time(sec) OT(sec)

Mean Stdv Mean Stdv Mean Stdv Mean Stdv

HBOS 0.4935 0.3046 0.4922 0.3033 0.4930 0.3039 0.7852 0.1893 2.81 842.61
MHBOS 0.6187 0.2956 0.5422 0.2956 0.5422 0.2829 0.8 0.1859 10.09 5,064.97
KNN 0.6921 0.3206 0.2687 0.2648 0.3261 0.2806 0.8191 0.1694 83.74 25,120.54
LODA 0.5187 0.3015 0.4282 0.3015 0.4282 0.3015 0.7965 0.1960 13.43 2,685.38
LOF 0.4791 0.2300 0.3391 0.2109 0.3709 0.2165 0.7313 0.1703 28.52 5,704.56

Table 4
Results for each dataset for MHBOS and HBOS. Best values are stressed in bold.

F1 AUC

Dataset HBOS MHBOS HBOS MHBOS

annthyroid 0.7004 0.6667 0.9722 0.9697
arrythmia 0.5303 0.5151 0.8146 0.8010
breastw 0.9373 0.9498 0.9850 0.9936
cardio 0.4943 0.7841 0.8283 0.9365
glass 0.1111 0.4444 0.7057 0.7274
ionosphere 0.3571 0.5714 0.5634 0.6869
letter 0.10 0.18 0.5842 0.6370
lympho 0.8333 0.6667 0.9965 0.2964
mammography 0.2808 0.3769 0.8534 0.8740
mnist 0.1571 0.2571 0.6224 0.8557
musk 1 1 1 1
optdigits 0.2933 0.1133 0.8996 0.6610
pendigits 0.3589 0.5560 0.9354 0.9130
pima 0.5458 0.5560 0.7074 0.7078
satellite 0.6537 0.6719 0.8108 0.8340
satimage-2 0.7606 0.8592 0.9844 0.9821
shuttle 0.9687 0.9687 0.9907 0.9950
speech 0.0491 0.0656 0.4712 0.4676
thyroid 0.8280 0.8065 0.9922 0.9910
vertebral 0.0333 0.1 0.3056 0.5487
vowels 0.18 0.2 0.6903 0.6990
wbc 0.6667 0.7143 0.9506 0.9604
wine 0.5 0.5 0.8639 0.8622

Average 0.4930 0.5401 0.8055 0.8

I. Aguilera-Martos, M. García-Barzana, D. García-Gil et al. Neurocomputing 544 (2023) 126228
demonstrates a slight improvement in precision and recall com-
pared to PCA, however, it surpasses it widely in terms of AUC.
Despite this, the results obtained by this network do not reach
the level of OCSVM or our proposed method.

One of the main advantages of the proposal is the low runtimes
when processing the data. PCA is the fastest algorithm, but it
obtains the worst results of the four algorithms in the comparison.
Table 8, show two columns referring to computing times. The first
column refers to the time consumed by the best parameters of the
model in all the 23 datasets in ODDS, whereas the second column
Fig. 1. Bayesian Sig

10
contains the consumed time for the optimization performed with
Optuna. We can safely indicate that MHBOS is faster than IForest.
The time consumption of OCSVM is more than double of the time
consumed by MHBOS, making MHBOS much more suitable to use
when a time constraint is required. The computational cost of the
Autoencoder model is greater than that of the other models
included in the comparison, rendering it less favorable in terms
of efficiency.

We have performed a more detailed comparison between
MHBOS and OCSVM in terms of F1 score and ROC-AUC for all data-
sets in order to assess the differences and similarities in perfor-
mance of these algorithms.

In Table 9, the datasets are sorted by number of instances, their
characteristics and the F1 score for OCSVM and MHBOS. From
these results, it can be seen that OCSVM performs better in some
datasets. This can be explained due to the difference in complexity
of both methods, being OCSVM a more complex algorithm that
consumes much more computing time. In spite of these differ-
ences, MHBOS shows better performance in certain situations.
The datasets in which MHBOS outperforms OCSVM are those with
more instances, where the ability of learning from a sliced dataset
gives an important performance enhancement, encouraging the
use of MHBOS in larga data environments.

In order to assess if the differences are significant between
MHBOS and OCSVM, a Bayesian Signed Rank Test [31] has been
applied as before with MHBOS and OCSVM over the F1 score as
it can be seen in Figs. 3a and 3b. In these tests most of the points
fall on the right side of the triangle, leading to the conclusion that
the differences between OCSVM and MHBOS are significant.

Regarding to the ROC-AUC metric, MHBOS wins over OCSVM
more frequently regarding to the F1 score. Thus, in the datasets
where MHBOS looses in F1 score and wins in ROC-AUC, the distinc-
tion made by MHBOS of the TP and TN is better than the one made
by OCSVM. This metric reinforces our conclusion that MHBOS is
superior when performing over a dataset with many samples.

As performed with the non-modelling algorithms the ROC
curves for all datasets for OCSVM and MHBOS are shown in
ned Rank tests.

Fig. 2. ROC curves for MHBOS and HBOS. Each line represents one dataset.

Table 5
2% threshold results (mean/standard deviation) for all datasets. Best values are stressed in bold.

Algorithms Precision Recall F1 score AUC

Mean Stdv Mean Stdv Mean Stdv Mean Stdv

HBOS 0.5341 0.3622 0.2267 0.2344 0.2780 0.2415 0.8055 0.1893
MHBOS 0.5473 0.3592 0.2138 0.2366 0.2604 0.2340 0.7999 0.1858
KNN 0.5640 0.3942 0.1354 0.2152 0.1756 0.2459 0.8191 0.1694
LODA 0.4835 0.3642 0.2166 0.2290 0.2353 0.2238 0.7968 0.1962
LOF 0.5595 0.2874 0.1549 0.1906 0.2020 0.1785 0.7322 0.1697

Table 6
5% threshold results (mean/standard deviation) for all datasets. Best values are stressed in bold.

Algorithms Precision Recall F1 score AUC

Mean Stdv Mean Stdv Mean Stdv Mean Stdv

HBOS 0.4445 0.3139 0.3849 0.3232 0.3450 0.2525 0.8055 0.1893
MHBOS 0.4642 0.3329 0.3512 0.2960 0.3259 0.2258 0.7999 0.1858
KNN 0.5387 0.3701 0.2068 0.2899 0.2051 0.2253 0.8191 0.1694
LODA 0.4245 0.3187 0.3411 0.3007 0.3089 0.2249 0.7969 0.1962
LOF 0.4148 0.2457 0.2507 0.2103 0.2589 0.1410 0.7322 0.2149

Table 7
10% threshold results added for all datasets. Best values are stressed in bold.

Algorithms Precision Recall F1 score AUC

Mean Stdv Mean Stdv Mean Stdv Mean Stdv

HBOS 0.3449 0.2866 0.5003 0.3399 0.3343 0.2169 0.8055 0.1893
MHBOS 0.3822 0.2962 0.4828 0.3121 0.3489 0.2191 0.7999 0.1858
KNN 0.4796 0.3689 0.2968 0.3179 0.2200 0.2016 0.8191 0.1694
LODA 0.3510 0.2953 0.4763 0.3282 0.3262 0.2016 0.7669 0.1962
LOF 0.3161 0.2177 0.3567 0.2500 0.2740 0.1324 0.7322 0.1697

Table 8
Results of each algorithm with all datasets aggregated. Precision, recall, F1 and AUC are computed by mean/standard deviation. Time and Optimization Time (OT) in seconds. Best
value is stressed in bold.

Algorithms Precision Recall F1 score AUC Time(sec) OT(sec)

Mean Stdv Mean Stdv Mean Stdv Mean Stdv

MHBOS 0.6187 0.2956 0.5422 0.2956 0.5422 0.2829 0.8 0.1897 10.09 5,064.97
IForest 0.5965 0.3076 0.4226 0.3076 0.4226 0.3076 0.8065 0.1878 17.29 5,189.26
OCSVM 0.6974 0.2463 0.6535 0.2675 0.6539 0.2737 0.8635 0.1563 22.88 13,726.06
PCA 0.4461 0.2915 0.4457 0.2907 0.4461 0.2907 0.6330 0.1855 2.07 829.54
Autoencoder 0.4408 0.3115 0.4425 0.3075 0.44 0.2521 0.7958 0.1668 925.3245 87643.32

I. Aguilera-Martos, M. García-Barzana, D. García-Gil et al. Neurocomputing 544 (2023) 126228
Figs. 4a and 4b. Regarding the ROC curves these algorithms per-
form well in most datasets, showing only poor results in three of
them.
11
To validate that the differences between all the algorithms and
our proposal are significant we have performed several bayesian
signed rank tests by pairs. These tests can be seen in E.

Table 9
Results for each dataset for MHBOS and OCSVM. Best values are stressed in bold.

F1 AUC

Dataset # I # F OCSVM MHBOS OCSVM MHBOS

wine 129 13 1 0.5 1 0.8622
lympho 148 18 1 0.6667 1 0.2964
glass 214 9 0.4444 0.4444 0.6455 0.7274
vertebral 240 6 0.6 0.1 0.9111 0.5487
wbc 278 30 0.7143 0.7143 0.8478 0.9604
ionosphere 351 33 0.8810 0.5714 0.9382 0.6869
arrythmia 452 274 0.5758 0.5151 0.7992 0.8010
breastw 683 9 0.9558 0.9498 0.9567 0.9936
pima 768 8 0.6119 0.5560 0.7717 0.7078
vowels 1,456 12 0.66 0.2 0.9221 0.6990
letter 1,600 32 0.5 0.18 0.9308 0.6370
cardio 1,831 21 0.7955 0.7841 0.9604 0.9365
musk 3,062 166 1 1 1 1
speech 3,686 400 0.1148 0.0656 0.5716 0.4676
thyroid 3,772 6 0.8172 0.8065 0.9970 0.9910
optdigits 5,216 64 0.3545 0.1133 0.8971 0.6610
satimage-2 5,803 36 0.9296 0.8592 0.9944 0.9821
satellite 6,435 36 0.6361 0.6719 0.7520 0.8340
pendigits 6,870 16 0.6218 0.5560 0.9491 0.9130
annthyroid 7,200 6 0.2978 0.6667 0.7056 0.9697
mnist 7,603 100 0.5614 0.2571 0.9331 0.8557
mammography 11,183 6 0.0153 0.3769 0.3898 0.8740
shuttle 49,097 9 0.9567 0.9687 0.9915 0.9950

Average 0.6541 0.5401 0.86 0.8

I. Aguilera-Martos, M. García-Barzana, D. García-Gil et al. Neurocomputing 544 (2023) 126228
4.3.4. Non-supervised thresholding
In the discussed experimental results we have used a exact

threshold for the ODDS datasets as the anomaly percentage is
known for them. In this section we will discuss the obtained results
by changing the anomaly threshold considered from 2% to 5% to
10%. The full content tables are shown in D. These results have
been obtained using the optimised parameters from the experi-
mental framework before for each algorithm.

In Table 10 OCSVM outstands over all algorithms as well as in
Table 8. The second best algorithm is MHBOS, outperforming all
algorithms except OCSVM.

From Table 11 it is clear that OCSVM still ourperforms all algo-
rithms. If we relate these results to Table 10 we can see that preci-
sion has lowered its value and recall has increased. This behavior
also occurred with the non-modelling algorithms. This shows that
5% threshold is closer to the exact threshold than 2% as it captures
more anomalies, minimizing the number of false negatives. In
Table 11 MHBOS still is the second algorithm after OCSVM but
the margin is lower than before, being IForest close in metrics like
F1 score.

Table 12 shows OCSVM as the best algorithm in all metrics,
agreeing with previous thresholds. Recall has yet increased again,
revealing that 10% threshold captures better the true number of
anomalies than the 5% threshold. MHBOS still is the second best
performing algorithm after OCSVM.

From this experimentation with modelling algorithms we can
conclude that OCSVM is the most performant algorithm (by being
more complex and consuming more time) and MHBOS is the sec-
ond most performant option. In terms of the thresholding, the
10% threshold is a better guess for the true amount of anomalies
(by measuring recall) of our datasets and therefore is the best
percentage.

4.4. Time series datasets: results and analysis

The procedure followed to present the results is the same as
with the ODDS datasets in which the metrics are calculated assum-
ing 2, 5, and 10 percent anomalies in the data. This will ensure that
the results cover a non-supervised scenario as all the datasets and
12
algorithms have been treated from this perspective. The AUC-ROC
values are independent of the anomaly percentages as they are
computed using the anomaly scores obtained from the algorithms.
Due to the size of the datasets, PCA cannot be trained with a num-
ber large enough to be considered for this experimental results and
therefore is not included in the comparison.

Table 13 enable us to observe that MHBOS outperforms the rest
of algorithms. It should be taken into account that a 2% threshold is
a restrictive number, as the datasets have usually more anomalies
and therefore the metrics tend to increase in the following tables.
MHBOS is the best algorithm in terms of F1 score in all datasets but
IoT Botnets, where the Autoencoder obtains better results. In a
general picture, MHBOS is the best algorithm as it is more balanced
than the rest. The TS Anomalies dataset case is especially difficult
as all algorithms are below a 0.1 F1 score.

In Table 14 an increase in the performance is observed. MHBOS
outperforms in all datasets but TS Anomalies, where HBOS obtains
a slightly better result in terms of F1 scores. In the rest of the data-
sets, MHBOS has improved the metrics obtained.

Finally, in Table 15 MHBOS outperforms all the algorithms in
terms of F1 score. In three cases MHBOS is not the best performing
algorithm in terms of precision or recall but still has the highest F1
score. This is due to a better balance between precision and recall
which affects a higher F1 score. When compared to the 5% thresh-
old table, in some datasets, the results are hindered while in others
they are improved. This is dataset-dependent as is influenced by
the original anomaly percentage of each dataset.

From the tables analyzed we may conclude that MHBOS is the
most balanced algorithm of all and outperforms the rest in the
comparison in general terms. The fact that this algorithm is capable
of ingesting a larger number of samples in the training phase is
shown with better results than the rest.

The results presented are only restricted to three different
thresholds in terms of anomaly percentages. The ROC-AUC score
provides a better picture of the results as it contemplates a general
threshold scenario opposing true and false positive rates.

In Table 16 the ROC-AUC scores of each algorithm in each data-
set are presented. MHBOS outperforms in 3 of 4 datasets the rest of
the algorithms. The only dataset where MHBOS is not better is TS

Fig. 3. Bayesian Signed Rank tests.

Fig. 4. ROC curves for MHBOS and OCSVM. Each line represents one dataset.

Table 10
2% threshold results. Best values is stressed in bold.

Algorithms Precision Recall F1 score AUC

Mean Stdv Mean Stdv Mean Stdv Mean Stdv

MHBOS 0.5473 0.3673 0.2138 0.2419 0.2604 0.2393 0.7999 0.1900
OCSVM 0.7403 0.2636 0.2800 0.2540 0.3487 0.2473 0.8633 0.1598
PCA 0.5074 0.3720 0.1986 0.2271 0.2416 0.2298 0.7834 0.1897
IForest 0.5263 0.3645 0.2065 0.2377 0.2520 0.2349 0.8063 0.1920
Autoencoder 0.4933 0.3647 0.1922 0.2323 0.2337 0.2279 0.7844 0.1819

Table 11
5% threshold results. Best values is stressed in bold.

Algorithms Precision Recall F1 score AUC

Mean Stdv Mean Stdv Mean Stdv Mean Stdv

MHBOS 0.4642 0.3404 0.3512 0.3027 0.3259 0.2308 0.7999 0.1900
OCSVM 0.6441 0.2950 0.4788 0.3248 0.4497 0.2445 0.8636 0.1598
PCA 0.4257 0.3384 0.3348 0.3048 0.3036 0.2318 0.7834 0.1897
IForest 0.4519 0.3369 0.3578 0.3265 0.3251 0.2474 0.8064 0.1920
Autoencoder 0.4283 0.3295 0.3295 0.2877 0.3027 0.2209 0.7938 0.1630

Table 12
10% threshold results. Best values is stressed in bold.

Algorithms Precision Recall F1 score AUC

Mean Stdv Mean Stdv Mean Stdv Mean Stdv

MHBOS 0.3822 0.3028 0.4828 0.3192 0.3489 0.2240 0.7999 0.1900
OCSVM 0.5097 0.3125 0.6033 0.3142 0.4373 0.2200 0.8636 0.1598
PCA 0.3571 0.3123 0.4624 0.3292 0.3229 0.2098 0.7834 0.1897
IForest 0.3611 0.3065 0.4727 0.3356 0.3273 0.2048 0.8064 0.1920
Autoencoder 0.3585 0.2988 0.4639 0.3104 0.3234 0.1905 0.8041 0.1620

I. Aguilera-Martos, M. García-Barzana, D. García-Gil et al. Neurocomputing 544 (2023) 126228

13

Table 13
2% threshold results for all time series datasets. Best values is stressed in bold.

Algorithms Falling People KDDCup TS Anomalies IOT Botnets

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

HBOS 0.0933 0.0347 0.0506 0.9990 0.02367 0.04626 0.0124 0.2676 0.0237 0.0009 0.0004 0.0005
MHBOS 0.3450 0.1285 0.1873 0.6731 0.3247 0.4380 0.0157 0.3380 0.0300 0.5647 0.2472 0.3439
KNN 0.1316 0.0490 0.0714 0.0039 0.00009 0.0001 0.0117 0.2535 0.0225 0.0270 0.0118 0.0164
LODA 0.0716 0.0267 0.0389 0.8749 0.0207 0.0451 0.0094 0.2042 0.0181 0.6840 0.2995 0.4166
LOF 0.0 0.0 0.0 0.0317 0.0007 0.0014 0.0010 0.2323 0.0206 0.9673 0.4235 0.5891
IForest 0.0816 0.0304 0.0443 0.9992 0.0236 0.0462 0.0147 0.3169 0.0281 0.4962 0.2173 0.3022
OCSVM 0.0 0.0 0.0 0.9999 0.0236 0.0463 0.0 0.0 0.0 0.8434 0.3693 0.5136
Autoencoder 0.0016 0.0006 0.0009 0.0040 0.0009 0.0018 0.0062 0.1338 0.0187 0.6328 0.9992 0.7748

I. Aguilera-Martos, M. García-Barzana, D. García-Gil et al. Neurocomputing 544 (2023) 126228
Anomalies, where HBOS is the best algorithm. The results tell us
that MHBOS is the best algorithm of all tested in this benchmark
of time series datasets, both regarding F1 scores and ROC-AUC
scores.
5. ArcelorMittal engineering case of study

The provided problem by ArcelorMittal states a real case sce-
nario, where genuine and unknown anomalies are found. The data-
sets used in Section 4 had anomalies obtained synthetically by
distance-based methods, thus being prone to induce false annota-
tions that may artificially hinder the results. AcelorMittal dataset
constitutes a complex and interesting problem that will prove
the capability of the proposed method in terms of performance,
internal status update, and treatment of large data flows in a real
problem.

In this section, the experimental framework followed with the
engineering dataset provided by ArcelorMittal is explained and
discussed. In Section 5.1 we will detail the characteristics of the
ArcelorMittal dataset. In Section 5.2 the experimental framework
will be explained. Finally, in Section 5.3 the results obtained will
be discussed.
4 https://github.com/ari-dasci/OD-TINA.
5.1. ArcelorMittal dataset

The company ArcelorMittal has a wide variety of machinery for
the task of processing the raw materials to manufacture different
metals. These machines tend to work on a non-stop schedule to
maximize the yield of production in the factories. For ArcelorMit-
tal, it is very important to keep these machines up and running
as much time as possible. When a machine breaks it represents a
problem for their production pipeline, as they need to stop for sev-
eral minutes, hours, or even days if they need to repair or replace
some parts of the machine.

Predictive maintenance gains a lot of importance when it could
potentially reduce the time the machine is out of service and max-
imize the profit for the company and increase production by reduc-
ing errors. Any industrial company, such as ArcelorMittal, would
greatly benefit from accurate anomaly detection algorithms for
timed data. In this section, we tackle a very large dataset from
ArcelorMittal.

The dataset has the sensor records from a production machine.
This machine has more than 100 sensors with records from almost
two years, which yields nearly 40 million samples. This huge data-
set is a very tough task for classic algorithms, which normally deal
with a lower amount of samples.

The dataset is labeled, having temporal labels in the mainte-
nance events and alarms. A maintenance event is a serious prob-
lem that covers a large gap in time and requires the machine to
stop working whether an alarm is not that serious and may be
resolved on the go without stopping the machine. The goal is to
14
detect the maintenances before they happen, as they are the events
that stop the machine.

As part of the contribution along with this paper, this dataset is
released4 under the acronym TINA or Time series Industrial Anomaly
dataset. The lack of labeled real time series data is very relevant for
the community, especially in time series anomaly detection where
the scarcity of quality public data is very important.
5.2. Experimental framework

The ArcelorMittal dataset has a specific evaluation methodology
to check when an algorithm is detecting an anomaly, directly
inspired in ArcelorMittal’s procedures. We consider as a successful
maintenance detection if we provide a warning in the time win-
dow corresponding to six hours before the maintenance. In our
methodology, a sliding window goes through the data and checks
if the anomaly scores are bigger than a threshold. The size of this
sliding window is two hours, as it is an adequate time interval
for our possible failures to be detected according to the machinery
experts in ArcelorMittal. If it is the case, the sample is marked as an
anomaly. If a certain percentage of anomalies in the sliding win-
dow is exceeded, we conclude we have a warning in this sliding
window.

Therefore, we have labeled the six hours before a maintenance
as anomalies and the rest as normal. We will test how many cor-
rect windows the algorithms obtain. The perfect behavior in an
algorithm would be to mark all the sliding windows in the six
hours before a maintenance as anomalous and the rest as normal.
The choice of a six hours time interval has been indicated from the
company due to their expertise in the problem. It is wide enough to
stop the machine and repair it, and close enough to the possible
failure event to associate it with the labeled maintenance.

We need to take into account that this is a challenging problem,
as it is weakly labeled. We do not have a solid ground truth to eval-
uate each sample independently as anomalous or normal. For test-
ing purposes, we have used the last 30 days of the dataset to
measure the performance. In these 30 days, we have 25 mainte-
nance and represent 2:5 million samples in total.

The strategy followed with the ArcelorMittal dataset is
algorithm-dependent. The huge amount of samples simply yields
some algorithm implementations unable of training. The samples
that are not maintenances are considered normal points and we
have used these samples to train the models. For each algorithm,
an adequate amount of samples has been chosen to make them
able to fit in memory. For some algorithms this quantity is nearly
half a normal day, some algorithms could handle one normal
day. MHBOS can train with as many samples as desired. This exper-
imentation limited to 30 days (2.5 million samples) to obtain nim-
ble results.

https://github.com/ari-dasci/OD-TINA

Table 14
5% threshold results for all time series datasets. Best values is stressed in bold.

Algorithms Falling People KDDCup TS Anomalies IOT Botnets

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

HBOS 0.1179 0.1099 0.1137 0.9996 0.0592 0.1118 0.0090 0.4859 0.0177 0.2021 0.2213 0.2113
MHBOS 0.3457 0.3223 0.3336 0.8375 0.5128 0.6361 0.0073 0.3943 0.0143 0.7780 0.8601 0.8169
KNN 0.1472 0.1372 0.1420 0.4190 0.0248 0.0468 0.0083 0.4507 0.0164 0.0182 0.0199 0.0190
LODA 0.0486 0.0453 0.0469 0.9456 0.0560 0.1057 0.0049 0.2676 0.0097 0.2767 0.3029 0.2892
LOF 0.0179 0.0167 0.0173 0.0151 0.0008 0.0016 0.0086 0.4647 0.0169 0.6705 0.8437 0.7471
IForest 0.0946 0.0881 0.0912 0.9997 0.0592 0.1118 0.0073 0.3943 0.0143 0.3212 0.3517 0.3358
OCSVM 0.0179 0.0167 0.0173 0.9516 0.0563 0.1064 0.0 0.0 0.0 0.3423 0.3748 0.3578
Autoencoder 0.0073 0.0068 0.0070 0.4602 0.0272 0.0514 0.0024 0.1338 0.0048 0.2532 0.8035 0.3850

Table 15
10% threshold results for all time series datasets. Best values is stressed in bold.

Algorithms Falling People KDDCup TS Anomalies IOT Botnets

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

HBOS 0.0845 0.1577 0.1101 0.9998 0.1184 0.2118 0.0069 0.7464 0.0137 0.1493 0.3270 0.2050
MHBOS 0.1988 0.3708 0.2588 0.9119 0.4356 0.5895 0.2042 0.4577 0.2824 0.6524 0.5529 0.5985
KNN 0.1425 0.2658 0.1855 0.7095 0.0840 0.1503 0.0056 0.6126 0.0127 0.0300 0.0659 0.0413
LODA 0.0436 0.0813 0.0567 0.9245 0.1095 0.1959 0.0034 0.3732 0.0068 0.1948 0.4266 0.2674
LOF 0.0249 0.0465 0.0325 0.4274 0.0506 0.0905 0.0060 0.6478 0.0119 0.3893 0.8526 0.5346
IForest 0.0902 0.1683 0.1174 0.9998 0.1184 0.2118 0.0045 0.4859 0.0089 0.1709 0.3744 0.2347
OCSVM 0.0249 0.0465 0.0325 0.9758 0.1156 0.2067 0.0004 0.0492 0.0009 0.1711 0.3748 0.2350
Autoencoder 0.0099 0.0186 0.0130 0.7301 0.0865 0.1547 0.0016 0.1760 0.0032 0.1266 0.8456 0.2202

Table 16
AUC-ROC score for the time series datasets. Best values is stressed in bold.

Dataset HBOS MHBOS KNN LODA LOF IForest OCSVM Autoencoder

Falling People 56.4956 61.2744 58.8785 56.1810 50.0 45.7676 50.0 54.5973
KDDCup99 57.8884 73.4875 69.8482 55.1755 56.3331 68.5648 72.8406 54.4525
TS Anomalies 91.3943 80.7307 90.3340 66.2188 87.3785 69.7894 55.5462 60.2581
IOT Botnets 73.3231 91.6223 49.2649 87.9093 87.1129 64.0100 68.4157 90.7383

I. Aguilera-Martos, M. García-Barzana, D. García-Gil et al. Neurocomputing 544 (2023) 126228
To validate the performance in this dataset compare the pro-
posal to the state-of-the-art algorithms considered in previous sec-
tions. These algorithms will be used in a train-test fashion, being
trained with temporally sorted data and tested with unseen data.

For each algorithm, we have carried out a hyperparameter tun-
ing with Optuna [29], in a similar fashion as we did with the ODDS
datasets. The number of trials is proportional to the number of free
parameters being the number 100 trials per free parameter. The
same parameters are kept for each algorithm including the MHBOS
parameters. After this tuning, the evaluation metrics of the sliding
window are passed and we obtain the F1 score to sort the different
optimization trials. In this datasets, we will use precision, recall, F1
and ROC-AUC as metrics to compare the performance.
5.3. Results and analysis

In this section, we describe the results obtained by the algo-
rithms in the ArcelorMittal dataset. It should first be noted that
LODA is not available in this comparison, as the algorithm wasn’t
capable of training with enough samples to be considered.

Table 17 shows the results obtained by each algorithm. The
Autoencoder and OCSVM achieve the best results in terms of pre-
cision and recall, respectively. However, attending to the F1 score,
MHBOS achieves the best performance, being the most balanced
algorithm among all. This places MHBOS as the most balanced
algorithm in terms of detecting TP and mitigating FN and FP.

Comparing HBOS with MHBOS in this dataset, we may indicate
that MHBOS improves the performance significantly in this scenar-
io, thank to its new mechanisms. MHBOS achieves the best results
15
in precision and ROC-AUC but for recall. The balance obtained
between precision and recall by our proposal enables it to achieve
a better F1 score.

The F1 scores and ROC-AUC obtained are not very high for any
of the algorithms. This is a consequence of the difficulty of the
problem exposed in the section before. Nevertheless, MHBOS has
shown better results in the metrics.

In terms of the number of samples ingested by each of the algo-
rithms, most of the classic algorithms are able of processing one
day of data, which is approximately 80 K samples. In the case of
MHBOS, it can process data without limitations but for this exper-
imental study, we have limited the number of training instances to
2:5 million samples.

In Fig. 5a, we can depict the ROC curve obtained by the algo-
rithm MHBOS compared to the one obtained with HBOS in
Fig. 5b. The ROC curves remark that MHBOS performs better than
the original proposal HBOS.

In Figs. 6a and 6b we may appreciate the ROC curves for OCSVM
and MHBOS. The performance shown in the ODDS Library by
OCSVM is not held in this real engineering dataset when compared
with MHBOS in terms of F1 score or ROC-AUC, which serves as an
important support evidence for MHBOS.
6. Lessons learned

In this section, we summarize the lessons learned from the two
different experimental frameworks. The former consisted of a
benchmark over a set of synthetically generated sets of data
extracted from the ODDS library. The second one has constituted

Table 17
Results over ArcelorMittal dataset. Best values is stressed in bold.

Algorithms Precision Recall F1 score AUC Training Samples

HBOS 0.3785 0.9406 0.5398 0.5093 80 K
MHBOS 0.4931 0.70 0.5786 0.6354 2.5 M
KNN 0.3898 0.6832 0.4964 0.4113 80 K
LODA - - - - -
LOF 0.4080 0.7030 0.5164 0.4451 80 K
IForest 0.3605 0.5248 0.4274 0.5579 80 K
OCSVM 0.3855 0.9505 0.5486 0.3291 80 K
PCA 0.7455 0.4059 0.5256 0.5216 40 K
Autoencoder 0.7734 0.4032 0.5301 0.3723 40 K

Fig. 5. ROC curves of MHBOS and HBOS.

Fig. 6. ROC curves of MHBOS and OCSVM.

I. Aguilera-Martos, M. García-Barzana, D. García-Gil et al. Neurocomputing 544 (2023) 126228
a complex real engineering problem with a time series format
dataset, under a predictive maintenance environment.

After analyzing the shown results, we may conclude that:

� MHBOS obtains good results in precision, recall, F1 score, and
ROC-AUC compared with the algorithms in the state-of-the-
art for unsupervised anomaly detection over ODDS benchmark
datasets.
16
� MHBOS achieves better performance than the inspirational
algorithm HBOS. These results have been confirmed in preci-
sion, recall, F1 score and ROC-AUC, being tested with a Bayesian
Test showing that MHBOS is significantly better than HBOS.
� The results obtained in the experimentation with the ODDS
Library show that MHBOS obtains the best results among the
non model-generative algorithms. When compared with more
complex and time-consuming modelling algorithms we can
see that MHBOS is only surpassed by OCSVM.

I. Aguilera-Martos, M. García-Barzana, D. García-Gil et al. Neurocomputing 544 (2023) 126228
� MHBOS has shown lower execution times, being faster than
most of the algorithms including OCSVMwhich consumedmore
than double the time consumed by MHBOS.
� MHBOS obtains the best results both for the time series data-
sets, establishing itself as the best option for this kind of data.
� MHBOS is able to deal with a real engineering problem provided
by ArcelorMittal, facing a difficult dataset with a big amount of
samples and features without needing to reduce the training
set.
� The performance of MHBOS in the dataset proposed by
ArcelorMittal is above all of the compared methods including
OCSVM. These results have been achieved over the F1 score
and ROC-AUC metrics.
� MHBOS has proved the capability of training with as many sam-
ples as desired, being the only algorithm able to process a con-
siderable slice of the dataset provided by ArcelorMittal.

7. Conclusions

This paper presents a new algorithm, namely Multi-step His-
togram Based Outlier Scores, based on histograms, applying it to
the anomaly detection problem. Multi-step Histogram Based Out-
lier Scores includes on several methods specifically devised to
update the information inside an histogram as depicted in Sec-
tion 3, allowing to update them by processing the data in batches.
This strategy has allowed us to extend and solve the drawbacks of
one of the fastest yet well-performing histogram-based algorithms
in anomaly detection: Histogram Based Outlier Scores.

This paper also releases an open dataset of a real engineering
problem for the practitioners to include as a benchmark, presented
in Section 5. The general scenario of time series anomaly detection
datasets is not that diverse and normally contains synthetic data.
The contribution of this dataset is a step toward improving the
quality of future experimentation.

This new proposal has been applied to the anomaly detection
problem extending and solving the drawbacks from an algorithm
based on histograms. As a remark, our defined method not only
Table A.18
Precision in all datasets, range ½0;1�. Best values is stressed in bold.

Dataset HBOS MHBOS

annthyroid 0.7004 0.6667
arrythmia 0.5303 0.4848
breastw 0.9372 0.9498
cardio 0.4943 0.7841
glass 0.1111 0.1111
ionosphere 0.3571 0.5714
letter 0.10 0.18
lympho 0.8333 0.1667
mammography 0.2808 0.3769
mnist 0.1571 0.3957
musk 1 1
optdigits 0.2933 0.0467
pendigits 0.3590 0.5
pima 0.5468 0.5560
satellite 0.6537 0.6719
satimage-2 0.7606 0.8592
shuttle 0.9782 0.9687
speech 0.0492 0.0492
thyroid 0.8280 0.7204
vertebral 0.0333 0.2667
vowels 0.18 0.16
wbc 0.6667 0.7143
wine 0.5 0.5

17
applies to this concise algorithm or the anomaly detection task,
but it can be applied to any Machine Learning algorithm which
uses histograms. The Histogram Update Mechanisms designed
enable extending classical algorithms adapting them to work with
data flows, potentially achieving a performance improvement with
respect to their base design as portrayed in Section 4.

Funding

This work has been partially supported by the Ministry of
Science and Technology under project PID2020-119478 GB-I00,
the Contract UGR-AM OTRI-4260 and the Andalusian Excellence
project P18-FR-4961. J. Carrasco was supported by the Spanish
Ministry of Science under the FPU Programme 998758-2016.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgement

aaa

Appendix A. Non model-generative algorithm result tables

See Tables A.18–A.21.

Appendix B. Model-generative algorithm result tables

See Tables B.22–B.25.

Appendix C. Unsupervised Thresholding Results No modelling
methods

See Tables C.26–C.37.
KNN LOF LODA

1 0.2519 0.2846
0.5090 0.4923 0.4697
0.9770 0.5 0.8996
0.7879 0.3450 0.5455
0.2 0.5 0
1 0.8559 0.7460
0.6667 0.6949 0.1
1 1 0.6667
0.2829 0.2590 0.3692
0.6667 0.4122 0.4686
1 0.3077 0.9794
0.2231 0.0690 0
1 0.5 0.3590
0.7407 0.5301 0.3881
0.8938 0.5065 0.5761
1 0.7536 0.9014
0.7452 0.1540 0.8884
0.1111 0.6 0.0164
1 0.3563 0.3763
0.0476 0.1154 0.0333
1 0.7273 0.2
0.5714 0.6471 0.6667
0.5 0.4444 0.4

Table A.19
Recall in all datasets, range ½0;1�. Best values is stressed in bold.

Dataset HBOS MHBOS KNN LOF LODA

annthyroid 0.7004 0.6667 0.001 0.2453 0.2846
arrythmia 0.5303 0.4848 0.4242 0.4848 0.4697
breastw 0.9372 0.9498 0.3556 0.4854 0.8996
cardio 0.4943 0.7841 0.1477 0.3352 0.5454
glass 0.1111 0.1111 0.1111 0.2222 0
ionosphere 0.3571 0.5714 0.6905 0.8016 0.7460
letter 0.1 0.18 0.06 0.41 0.1
lympho 0.8333 0.1667 0.6667 0.5 0.6667
mammography 0.2808 0.3769 0.2808 0.25 0.3692
mnist 0.1571 0.3957 0.0914 0.4057 0.4686
musk 1 1 1 0.1237 0.9794
optdigits 0.2933 0.0467 0.18 0.0533 0
pendigits 0.3590 0.5 0.0192 0.0064 0.3590
pima 0.5448 0.5560 0.0746 0.5261 0.3881
satellite 0.6537 0.6719 0.3846 0.4980 0.5761
satimage-2 0.7606 0.8592 0.3662 0.7324 0.9014
shuttle 0.9596 0.9687 0.1450 0.1487 0.8883
speech 0.0492 0.0492 0.0164 0.0492 0.0164
thyroid 0.8280 0.7204 0.0215 0.3333 0.3763
vertebral 0.0333 0.2667 0.0333 0.1 0.0333
vowels 0.18 0.16 0.04 0.16 0.2
wbc 0.6667 0.7143 0.5714 0.5238 0.6667
wine 0.5 0.5 0.5 0.4 0.4

Table A.20
F1 score in all datasets, range ½0;1�. Best values is stressed in bold.

Dataset HBOS MHBOS KNN LOF LODA

annthyroid 0.7004 0.6667 0.0374 0.2486 0.2846
arrythmia 0.5303 0.5151 0.4628 0.4885 0.4697
breastw 0.9372 0.9498 0.5215 0.4926 0.8996
cardio 0.4943 0.7841 0.2488 0.3401 0.5454
glass 0.1111 0.4444 0.1429 0.3077 0
ionosphere 0.3571 0.5714 0.8169 0.8279 0.7460
letter 0.1 0.18 0.1101 0.5157 0.1
lympho 0.8333 0.6667 0.8 0.6667 0.6667
mammography 0.2808 0.3769 0.2819 0.2544 0.3692
mnist 0.1571 0.2571 0.1608 0.4089 0.4686
musk 1 1 1 0.1765 0.9794
optdigits 0.2933 0.1133 0.1993 0.0602 0
pendigits 0.3590 0.5560 0.0377 0.0127 0.3590
pima 0.5458 0.5560 0.1356 0.5281 0.3881
satellite 0.6537 0.6719 0.5378 0.5022 0.5761
satimage-2 0.7606 0.8592 0.5361 0.7429 0.9014
shuttle 0.9687 0.9687 0.2427 0.1513 0.8884
speech 0.0491 0.0656 0.0286 0.0909 0.0164
thyroid 0.8280 0.8065 0.0421 0.3444 0.3763
vertebral 0.0333 0.1 0.0392 0.1071 0.0333
vowels 0.18 0.2 0.0769 0.2623 0.2
wbc 0.6667 0.7143 0.5714 0.5789 0.6667
wine 0.5 0.5 0.5 0.4211 0.4

Table A.21
ROC-AUC score in all datasets, range ½0;1�. Best values is stressed in bold.

Dataset HBOS MHBOS KNN LOF LODA

annthyroid 0.9722 0.9697 0.6123 0.7606 0.7442
arrythmia 0.8146 0.8010 0.8074 0.8068 0.7944
breastw 0.9850 0.9936 0.9790 0.6528 0.9521
cardio 0.8283 0.9365 0.6442 0.6478 0.9314
glass 0.7057 0.7274 0.8092 0.4325 0.7290
ionosphere 0.5634 0.6869 0.9248 0.8956 0.8868
letter 0.5842 0.6370 0.9234 0.9116 0.6154
lympho 0.9965 0.2964 0.9742 0.9636 0.9836
mammography 0.8534 0.8740 0.8553 0.7859 0.8726
mnist 0.6224 0.8557 0.8025 0.8112 0.84
musk 1 1 1 0.5211 0.9995
optdigits 0.8996 0.6610 0.9376 0.5694 0.4268
pendigits 0.9354 0.9130 0.9007 0.5535 0.9479
pima 0.7074 0.7078 0.5419 0.6879 0.5648

I. Aguilera-Martos, M. García-Barzana, D. García-Gil et al. Neurocomputing 544 (2023) 126228

18

Table B.22
Precision in all datasets, range ½0;1�. Best values is stressed in bold.

Dataset MHBOS OCSVM PCA IForest Autoencoder

annthyroid 0.6667 0.2978 0.2491 0.5131 0.2434
arrythmia 0.4848 0.5758 0.4242 0.5 0.4242
breastw 0.9498 0.9619 0.9407 0.9540 0.9330
cardio 0.7841 0.7955 0.6648 0.4943 0.6079
glass 0.1111 0.4444 0.1111 0 0.1111
ionosphere 0.5714 0.8809 0.6190 0.6905 0.7301
letter 0.18 0.5 0.09 0.19 0.18
lympho 0.1667 1 0.6667 0.8333 0.8333
mammography 0.3769 1 0.3038 0.2885 0.2538
mnist 0.3957 0.5614 0.3971 0.3129 0.4242
musk 1 1 0.9897 0.9381 1
optdigits 0.0467 0.3557 0 0.0470 0
pendigits 0.5 0.6218 0.3718 0.3205 0.2692
pima 0.5560 0.6119 0.5037 0.5448 0.5
satellite 0.6719 0.6361 0.5074 0.5894 0.5471
satimage-2 0.8592 0.9296 0.8310 0.8732 0.8309
shuttle 0.9687 0.9567 0.9510 0.9530 0.9538
speech 0.0492 0.1148 0.0328 0.0328 0.0327
thyroid 0.7204 0.8172 0.3978 0.5484 0.3333
vertebral 0.2667 0.6 0.1 0 0.1
vowels 0.16 0.66 0.24 0.24 0.16
wbc 0.7143 0.7143 0.5714 0.6190 0.5714
wine 0.5 1 0.3 0.2 0.1

Table B.23
Recall in all datasets, range ½0;1�. Best values are stressed in bold.

Dataset MHBOS OCSVM PCA IForest Autoencoder

annthyroid 0.6667 0.2978 0.2491 0.5131 0.2434
arrythmia 0.4848 0.5758 0.4242 0.5 0.4242
breastw 0.9498 0.95 0.9289 0.9540 0.9330
cardio 0.7841 0.7955 0.6648 0.4943 0.6079
glass 0.1111 0.4444 0.1111 0 0.1111
ionosphere 0.5714 0.8810 0.6190 0.6905 0.7301
letter 0.18 0.5 0.09 0.19 0.18
lympho 0.1667 1 0.6667 0.8333 0.8333
mammography 0.3769 0.0769 0.3038 0.2884 0.2538
mnist 0.3957 0.5614 0.3971 0.3129 0.4242
musk 1 1 0.9897 0.9381 1
optdigits 0.0467 0.3533 0 0.0467 0
pendigits 0.5 0.6218 0.3718 0.3205 0.2692
pima 0.5560 0.6119 0.5037 0.5448 0.5
satellite 0.6719 0.6361 0.5074 0.5894 0.5471
satimage-2 0.8592 0.9296 0.8310 0.8723 0.8309
shuttle 0.9687 0.9567 0.9510 0.9530 0.9538
speech 0.0492 0.1148 0.0328 0.0328 0.0327
thyroid 0.7204 0.8172 0.3979 0.5484 0.3333
vertebral 0.2667 0.6 0.1 0 0.1
vowels 0.16 0.66 0.24 0.24 0.16
wbc 0.7143 0.7143 0.5714 0.6190 0.5714
wine 0.5 1 0.3 0.2 0.1

Table A.21 (continued)

Dataset HBOS MHBOS KNN LOF LODA

satellite 0.8108 0.8340 0.8088 0.6854 0.7022
satimage-2 0.9844 0.9821 0.9905 0.9921 0.9945
shuttle 0.9907 0.9950 0.8286 0.5215 0.9836
speech 0.4712 0.4676 0.5007 0.5924 0.4622
thyroid 0.9922 0.9910 0.9306 0.9650 0.9674
vertebral 0.3056 0.5487 0.3562 0.4919 0.3154
vowels 0.6903 0.6990 0.8691 0.7 0.7457
wbc 0.9506 0.9604 0.9497 0.9461 0.9596
wine 0.8639 0.8622 0.8941 0.9294 0.9092

I. Aguilera-Martos, M. García-Barzana, D. García-Gil et al. Neurocomputing 544 (2023) 126228

19

Table B.24
F1 score in all datasets, range ½0;1�. Best values are stressed in bold.

Dataset MHBOS OCSVM PCA IForest Autoencoder

annthyroid 0.6667 0.2978 0.2491 0.5131 0.2434
arrythmia 0.4848 0.5758 0.4242 0.5 0.4242
breastw 0.9498 0.95 0.9289 0.9540 0.9330
cardio 0.7841 0.7955 0.6648 0.4943 0.6079
glass 0.1111 0.4444 0.1111 0 0.1111
ionosphere 0.5714 0.8810 0.6190 0.6905 0.7301
letter 0.18 0.5 0.09 0.19 0.18
lympho 0.1667 1 0.6667 0.8333 0.8333
mammography 0.3769 0.0769 0.3038 0.2884 0.2538
mnist 0.3957 0.5614 0.3971 0.3129 0.4242
musk 1 1 0.9897 0.9381 1
optdigits 0.0467 0.3533 0 0.0467 0
pendigits 0.5 0.6218 0.3718 0.3205 0.2692
pima 0.5560 0.6119 0.5037 0.5448 0.5
satellite 0.6719 0.6361 0.5074 0.5894 0.5471
satimage-2 0.8592 0.9296 0.8310 0.8723 0.8309
shuttle 0.9687 0.9567 0.9510 0.9530 0.9538
speech 0.0492 0.1148 0.0328 0.0328 0.0327
thyroid 0.7204 0.8172 0.3979 0.5484 0.3333
vertebral 0.2667 0.6 0.1 0 0.1
vowels 0.16 0.66 0.24 0.24 0.16
wbc 0.7143 0.7143 0.5714 0.6190 0.5714
wine 0.5 1 0.3 0.2 0.1

Table B.25
ROC-AUC in all datasets, range ½0;1�. Best values are stressed in bold.

Dataset MHBOS OCSVM PCA IForest Autoencoder

annthyroid 0.9697 0.7056 0.6873 0.9061 0.6806
arrythmia 0.8010 0.7992 0.7749 0.8173 0.7751
breastw 0.9936 0.9567 0.9591 0.9951 0.9704
cardio 0.9365 0.9604 0.9617 0.8946 0.9449
glass 0.7274 0.6455 0.6043 0.4304 0.6048
ionosphere 0.6869 0.9382 0.8016 0.8607 0.8934
letter 0.6370 0.9308 0.5228 0.7061 0.6929
lympho 0.2964 1 0.9859 0.9977 0.9964
mammography 0.8740 0.3898 0.8893 0.8283 0.7957
mnist 0.8557 0.9331 0.8518 0.7997 0.8790
musk 1 1 0.9999 0.9996 1
optdigits 0.6610 0.8971 0.5079 0.6101 0.5190
pendigits 0.9130 0.9491 0.9458 0.9364 0.9081
pima 0.7078 0.7717 0.6297 0.7066 0.6600
satellite 0.8340 0.7520 0.6286 0.7538 0.6524
satimage-2 0.9821 0.9944 0.9765 0.9958 0.9771
shuttle 0.9950 0.9915 0.9899 0.9967 0.9919
speech 0.4676 0.5716 0.4693 0.4478 0.4691
thyroid 0.9910 0.9970 0.9550 0.9795 0.9563
vertebral 0.5487 0.9111 0.4308 0.3460 0.5312
vowels 0.6990 0.9221 0.6878 0.7911 0.7226
wbc 0.9604 0.8478 0.9321 0.94 0.9343
wine 0.8622 1 0.8235 0.8084 0.7487

Table C.26
Precision in all datasets, 2% threshold. Best values are stressed in bold.

Dataset HBOS MHBOS KNN LOF LODA

annthyroid 0.8263 0.8263 1 0.3169 0.4166
arrhythmia 0.6 0.6 0.5714 0.7 0.6
breastw 1 1 0 0.8461 1
cardio 0.7297 0.9459 0.7878 0.4722 0.7567
glass 0 0.2 0 0.5 0
ionosphere 0.375 0.875 0 1 1
letter 0.0937 0.1562 0.6666 0.9 0.125
lympho 1 0 1 1 0.6666
mammography 0.3258 0.4241 0.3214 0.2844 0.3839
mnist 0.1437 0.5098 0.6944 0.6688 0.6928
musk 1 1 1 0.5217 1
optdigits 0.3142 0.0576 0.1739 0.0740 0
pendigits 0.3768 0.5579 1 1 0.3695

I. Aguilera-Martos, M. García-Barzana, D. García-Gil et al. Neurocomputing 544 (2023) 126228

20

Table C.27
Recall in all datasets, 2% threshold. Best values are stressed in bold.

Dataset HBOS MHBOS KNN LOF LODA

annthyroid 0.2228 0.2228 0.0018 0.0842 0.1123
arrhythmia 0.0909 0.0909 0.0606 0.1060 0.0909
breastw 0.0585 0.0585 0 0.0460 0.0585
cardio 0.1534 0.1988 0.1477 0.0965 0.1590
glass 0 0.1111 0 0.1111 0
ionosphere 0.0238 0.0555 0 0.0317 0.0634
letter 0.03 0.05 0.02 0.18 0.04
lympho 0.5 0 0.5 0.5 0.3333
mammography 0.2807 0.3653 0.2769 0.2384 0.3307
mnist 0.0314 0.1114 0.0357 0.1442 0.1514
musk 0.6391 0.6391 0.5670 0.1237 0.6391
optdigits 0.22 0.04 0.0266 0.04 0
pendigits 0.3333 0.4935 0.0192 0.0064 0.3269
pima 0.0447 0.0485 0 0.0261 0.0074
satellite 0.0599 0.0574 0.0049 0.0343 0.0525
satimage-2 0.8591 0.9014 0.8169 0.8732 0.9577
shuttle 0.2762 0.2668 0.1449 0.0914 0.2571
speech 0.0491 0.0491 0.0163 0.0491 0.0327
thyroid 0.6881 0.6021 0.0215 0.2473 0.3225
vertebral 0 0.0333 0 0 0
vowels 0.12 0.14 0.02 0.1 0.14
wbc 0.3333 0.3809 0.3333 0.3333 0.3809
wine 0.2 0 0.1 0.1 0

Table C.28
F1 score in all datasets, 2% threshold. Best values are stressed in bold.

Dataset HBOS MHBOS KNN LOF LODA

annthyroid 0.3510 0.3510 0.0037 0.1331 0.1769
arrhythmia 0.1578 0.1578 0.1095 0.1842 0.1578
breastw 0.1106 0.1106 0 0.0873 0.1106
cardio 0.2535 0.3286 0.2488 0.1603 0.2629
glass 0 0.1428 0 0.1818 0
ionosphere 0.0447 0.1044 0 0.0615 0.1194
letter 0.0454 0.0757 0.0388 0.3 0.0606
lympho 0.6666 0 0.6666 0.6666 0.4444
mammography 0.3016 0.3925 0.2975 0.2594 0.3553
mnist 0.0515 0.1828 0.0679 0.2373 0.2485
musk 0.7798 0.7798 0.7236 0.2 0.7798
optdigits 0.2588 0.0472 0.0462 0.0519 0
pendigits 0.3537 0.5238 0.0377 0.0127 0.3469
pima 0.0845 0.0915 0 0.0492 0.0140
satellite 0.1127 0.1080 0.0097 0.0647 0.0988
satimage-2 0.6489 0.6844 0.8 0.6666 0.7234
shuttle 0.4317 0.4170 0.2427 0.1435 0.4019
speech 0.0444 0.0444 0.0285 0.0857 0.0296
thyroid 0.7573 0.6627 0.0421 0.2857 0.3550
vertebral 0 0.0571 0 0 0
vowels 0.15 0.175 0.0392 0.1785 0.175
wbc 0.4827 0.5517 0.4827 0.4827 0.5517
wine 0.3076 0 0.1538 0.1538 0

Table C.26 (continued)

Dataset HBOS MHBOS KNN LOF LODA

pima 0.75 0.8125 0 0.4375 0.1250
satellite 0.9457 0.9069 0.9090 0.56 0.8294
satimage-2 0.5213 0.5517 0.7837 0.5391 0.5811
shuttle 0.9877 0.9541 0.7452 0.3343 0.9195
speech 0.0405 0.0405 0.1111 0.3333 0.0270
thyroid 0.8421 0.7368 1 0.3382 0.3947
vertebral 0 0.2 0 0 0
vowels 0. 0.2333 1 0.8333 0.2333
wbc 0.875 1 0.875 0.875 1
wine 0.6666 0 0.3333 0.3333 0

I. Aguilera-Martos, M. García-Barzana, D. García-Gil et al. Neurocomputing 544 (2023) 126228

21

Table C.29
ROC-AUC in all datasets, 2% threshold. Best values are stressed in bold.

Dataset HBOS MHBOS KNN LOF LODA

annthyroid 0.9722 0.9696 0.6122 0.7605 0.7442
arrhythmia 0.8146 0.8009 0.8073 0.8068 0.7943
breastw 0.9849 0.9936 0.9789 0.6528 0.9521
cardio 0.8282 0.9364 0.6442 0.6541 0.9314
glass 0.7056 0.7273 0.8092 0.4325 0.7289
ionosphere 0.5633 0.6869 0.9248 0.8955 0.8868
letter 0.5841 0.6369 0.9233 0.9115 0.6154
lympho 0.9964 0.2963 0.9741 0.9636 0.9835
mammography 0.8533 0.8740 0.8553 0.7859 0.8726
mnist 0.6224 0.8556 0.8025 0.8112 0.8399
musk 1 1 1 0.5210 0.9999
optdigits 0.8996 0.6610 0.9376 0.5694 0.4268
pendigits 0.9354 0.9130 0.9006 0.5647 0.9478
pima 0.7074 0.7077 0.5419 0.6878 0.5647
satellite 0.8107 0.8340 0.8088 0.6862 0.7021
satimage-2 0.9843 0.9821 0.9905 0.9920 0.9945
shuttle 0.9907 0.9949 0.8285 0.5214 0.9835
speech 0.4711 0.4675 0.5006 0.5923 0.4621
thyroid 0.9922 0.9899 0.9305 0.9649 0.9674
vertebral 0.3055 0.5487 0.3561 0.4919 0.3153
vowels 0.6902 0.6990 0.8691 0.6999 0.7457
wbc 0.9506 0.9603 0.9497 0.9461 0.9595
wine 0.8638 0.8621 0.8941 0.9294 0.9092

Table C.30
Precision in all datasets, 5% threshold. Best values are stressed in bold.

Datasets HBOS MHBOS KNN LOF LODA

annthyroid 0.7527 0.7388 1 0.2784 0.3333
arrhythmia 0.6521 0.5652 0.6190 0.6086 0.6521
breastw 0.9428 1 1 0.8235 1
cardio 0.5543 0.8804 0.7878 0.3636 0.6304
glass 0.0909 0.0909 0.1666 0.3333 0
ionosphere 0.2222 0.8888 0 0.9285 1
letter 0.0875 0.1625 0.4 0.7555 0.0875
lympho 0.75 0.125 0.8 0.6 0.5
mammography 0.1985 0.2285 0.1741 0.1626 0.2303
mnist 0.1574 0.3569 0.7460 0.5253 0.5853
musk 0.6298 0.6298 0.6298 0.2463 0.6298
optdigits 0.2413 0.0383 0.2231 0.0445 0.0076
pendigits 0.2180 0.2412 1 0.1072 0.2529
pima 0.6923 0.8717 0 0.5128 0.3333
satellite 0.9472 0.9068 0.9560 0.6384 0.8447
satimage-2 0.2268 0.2268 0.3544 0.2377 0.2371
shuttle 0.9888 0.9751 0.7452 0.1865 0.8822
speech 0.0324 0.0216 0.0416 0.1081 0.0216
thyroid 0.4603 0.4550 1 0.3111 0.3492
vertebral 0 0.1666 0 0.1111 0
vowels 0.1232 0.1369 1 0.5333 0.1643
wbc 0.6842 0.6842 0.5789 0.6250 0.7368
wine 0.5714 0.2857 0.1666 0.5 0.2857

I. Aguilera-Martos, M. García-Barzana, D. García-Gil et al. Neurocomputing 544 (2023) 126228

22

Table C.31
Recall in all datasets, 5% threshold. Best values are stressed in bold.

Datasets HBOS MHBOS KNN LOF LODA

annthyroid 0.5074 0.4981 0.0018 0.1835 0.2247
arrhythmia 0.2272 0.1969 0.1969 0.2121 0.2272
breastw 0.1380 0.1464 0.0041 0.1171 0.1464
cardio 0.2897 0.4602 0.1477 0.1818 0.3295
glass 0.1111 0.1111 0.1111 0.2222 0
ionosphere 0.0317 0.1269 0 0.1031 0.1428
letter 0.07 0.13 0.02 0.34 0.07
lympho 1 0.1666 0.6666 0.5 0.6666
mammography 0.4230 0.4923 0.3730 0.3384 0.4961
mnist 0.0857 0.1942 0.0671 0.2814 0.3185
musk 1 1 1 0.1752 1
optdigits 0.42 0.0666 0.18 0.06 0.0133
pendigits 0.4807 0.5320 0.0192 0.1602 0.5576
pima 0.1007 0.1268 0 0.0746 0.0485
satellite 0.1498 0.1434 0.1389 0.0962 0.1335
satimage-2 0.9295 0.9295 0.9436 0.9577 0.9718
shuttle 0.6550 0.6818 0.1449 0.1261 0.6166
speech 0.0983 0.0655 0.0163 0.0655 0.0655
thyroid 0.9354 0.9247 0.0215 0.6021 0.7096
vertebral 0 0.0666 0 0.0333 0
vowels 0.18 0.2 0.08 0.16 0.24
wbc 0.6190 0.6190 0.5238 0.4761 0.6666
wine 0.4 0.2 0.1 0.3 0.2

Table C.32
F1 score in all datasets, 5% threshold. Best values are stressed in bold.

Datasets HBOS MHBOS KNN LOF LODA

annthyroid 0.6062 0.5950 0.0037 0.2212 0.2684
arrhythmia 0.3370 0.2921 0.2988 0.3146 0.3370
breastw 0.2408 0.2554 0.0083 0.2051 0.2554
cardio 0.3805 0.6044 0.2488 0.2424 0.4328
glass 0.1 0.1 0.1333 0.2666 0
ionosphere 0.0555 0.2222 0 0.1857 0.25
letter 0.0777 0.1444 0.0380 0.4689 0.0777
lympho 0.8571 0.1428 0.7272 0.5454 0.5714
mammography 0.2702 0.3121 0.2374 0.2197 0.3146
mnist 0.1110 0.2516 0.1231 0.3665 0.4125
musk 0.7729 0.7729 0.7729 0.2048 0.7729
optdigits 0.3065 0.0486 0.1992 0.0511 0.0097
pendigits 0.3 0.332 0.0377 0.1285 0.348
pima 0.1758 0.2214 0 0.1302 0.0846
satellite 0.2586 0.2476 0.2427 0.1673 0.2307
satimage-2 0.3646 0.3646 0.5153 0.3809 0.3812
shuttle 0.7880 0.8025 0.2427 0.1505 0.7259
speech 0.0487 0.0325 0.0235 0.0816 0.0325
thyroid 0.6170 0.6099 0.0421 0.4102 0.4680
vertebral 0 0.0952 0 0.0512 0
vowels 0.1463 0.1626 0.1481 0.2461 0.1951
wbc 0.65 0.65 0.55 0.5405 0.7
wine 0.4705 0.2352 0.1250 0.3750 0.2352

Table C.33
ROC-AUC in all datasets, 5% threshold. Best values are stressed in bold.

Datasets HBOS MHBOS KNN LOF LODA

annthyroid 0.9722 0.9696 0.6122 0.7605 0.7442
arrhythmia 0.8146 0.8009 0.8073 0.8068 0.7943
breastw 0.9849 0.9936 0.9789 0.6528 0.9521
cardio 0.8282 0.9364 0.6442 0.6541 0.9314
glass 0.7056 0.7273 0.8092 0.4325 0.7289
ionosphere 0.5633 0.6869 0.9248 0.8955 0.8868
letter 0.5841 0.6369 0.9233 0.9115 0.6154
lympho 0.9964 0.2963 0.9741 0.9636 0.9835
mammography 0.8533 0.8740 0.8553 0.7859 0.8726
mnist 0.6224 0.8556 0.8025 0.8112 0.8399
musk 1 1 1 0.5210 0.9999
optdigits 0.8996 0.6610 0.9376 0.5694 0.4268
pendigits 0.9354 0.9130 0.9006 0.5647 0.9478
pima 0.7074 0.7077 0.5419 0.6878 0.5647

(continued on next page)

I. Aguilera-Martos, M. García-Barzana, D. García-Gil et al. Neurocomputing 544 (2023) 126228

23

Table C.34
Precision in all datasets, 10% threshold. Best values are stressed in bold.

Datasets HBOS MHBOS KNN LOF LODA

annthyroid 0.6055 0.5833 1 0.2457 0.2472
arrhythmia 0.6086 0.4782 0.5121 0.5 0.5
breastw 0.9710 1 1 0.6428 1
cardio 0.4782 0.7608 0.7878 0.3444 0.5326
glass 0.0454 0.0454 0.0714 0.2222 0.0909
ionosphere 0.1111 0.6944 0 0.9130 1
letter 0.1125 0.1375 0.5555 0.4745 0.1
lympho 0.4 0.0666 0.3333 0.2857 0.4
mammography 0.1370 0.1438 0.1258 0.1038 0.1411
mnist 0.1563 0.4113 0.6470 0.3989 0.4507
musk 0.3159 0.3159 0.3255 0.1065 0.3159
optdigits 0.1877 0.0478 0.2237 0.0525 0.0057
pendigits 0.1688 0.1251 1 0.1072 0.1688
pima 0.7272 0.7532 0 0.4861 0.2857
satellite 0.9472 0.8897 0.9560 0.6429 0.8804
satimage-2 0.1153 0.1153 0.1250 0.1216 0.1204
shuttle 0.7028 0.7054 0.4508 0.1217 0.6867
speech 0.0189 0.0189 0.0379 0.0825 0.0135
thyroid 0.2433 0.2433 1 0.2316 0.2301
vertebral 0 0.25 0 0.0909 0
vowels 0.0753 0.0958 1 0.2727 0.1232
wbc 0.4210 0.4473 0.4166 0.4054 0.3947
wine 0.3846 0.4615 0.4615 0.4166 0.3846

Table C.35
Recall in all datasets, 10% threshold. Best values are stressed in bold.

Datasets HBOS MHBOS KNN LOF LODA

annthyroid 0.8164 0.7865 0.0018 0.3239 0.3333
arrhythmia 0.4242 0.3333 0.3181 0.3333 0.3484
breastw 0.2803 0.2887 0.0167 0.1882 0.2887
cardio 0.5000 0.7954 0.1477 0.3522 0.5568
glass 0.1111 0.1111 0.1111 0.2222 0.2222
ionosphere 0.0317 0.1984 0 0.1666 0.2857
letter 0.18 0.22 0.15 0.56 0.16
lympho 1 0.1666 0.6666 0.6666 1
mammography 0.5846 0.6192 0.5384 0.4307 0.6076
mnist 0.17 0.4471 0.0942 0.4257 0.49
musk 1 1 1 0.1855 1
optdigits 0.6533 0.1666 0.54 0.14 0.02
pendigits 0.7435 0.5512 0.0192 0.1602 0.7435
pima 0.2089 0.2164 0 0.1305 0.0820
satellite 0.2996 0.2814 0.1389 0.1999 0.2784
satimage-2 0.9436 0.9436 0.9577 0.9718 0.9859
shuttle 0.9746 0.9866 0.5608 0.1651 0.9604
speech 0.1147 0.1147 0.0491 0.1475 0.0819
thyroid 0.9892 0.9892 0.0215 0.9139 0.9354
vertebral 0 0.2 0 0.0666 0
vowels 0.22 0.28 0.18 0.24 0.36
wbc 0.7619 0.8095 0.7142 0.7142 0.7142
wine 0.5 0.6 0.6 0.5 0.5

Table C.33 (continued)

Datasets HBOS MHBOS KNN LOF LODA

satellite 0.8107 0.8340 0.8088 0.6862 0.7021
satimage-2 0.9843 0.9821 0.9905 0.9920 0.9945
shuttle 0.9907 0.9949 0.8285 0.5214 0.9835
speech 0.4711 0.4675 0.5006 0.5923 0.4621
thyroid 0.9922 0.9899 0.9305 0.9649 0.9674
vertebral 0.3055 0.5487 0.3561 0.4919 0.3153
vowels 0.6902 0.6990 0.8691 0.6999 0.7457
wbc 0.9506 0.9603 0.9497 0.9461 0.9595
wine 0.8638 0.8621 0.8941 0.9294 0.9092

I. Aguilera-Martos, M. García-Barzana, D. García-Gil et al. Neurocomputing 544 (2023) 126228

24

Table C.36
F1 score in all datasets, 10% threshold. Best values are stressed in bold.

Datasets HBOS MHBOS KNN LOF LODA

annthyroid 0.6953 0.6698 0.0037 0.2794 0.2838
arrhythmia 0.5 0.3928 0.3925 0.4 0.4107
breastw 0.4350 0.4480 0.0329 0.2912 0.4480
cardio 0.4888 0.7777 0.2488 0.3483 0.5444
glass 0.0645 0.0645 0.0869 0.2222 0.1290
ionosphere 0.0493 0.3086 0 0.2818 0.4444
letter 0.1384 0.1692 0.2362 0.5137 0.1230
lympho 0.5714 0.0952 0.4444 0.4 0.5714
mammography 0.2220 0.2335 0.2040 0.1672 0.2291
mnist 0.1629 0.4284 0.1645 0.4118 0.4695
musk 0.4801 0.4801 0.4911 0.1353 0.4801
optdigits 0.2916 0.0744 0.3164 0.0763 0.0089
pendigits 0.2752 0.2040 0.0377 0.1285 0.2752
pima 0.3246 0.3362 0 0.2058 0.1275
satellite 0.4552 0.4276 0.2427 0.3049 0.4231
satimage-2 0.2055 0.2055 0.2211 0.2163 0.2147
shuttle 0.8167 0.8227 0.4998 0.1401 0.8008
speech 0.0325 0.0325 0.0428 0.1058 0.0232
thyroid 0.3906 0.3906 0.0421 0.3695 0.3694
vertebral 0 0.2222 0 0.0769 0
vowels 0.1122 0.1428 0.3050 0.2553 0.1836
wbc 0.5423 0.5762 0.5263 0.5174 0.5084
wine 0.4347 0.5217 0.5217 0.4545 0.4347

Table C.37
ROC-AUC in all datasets, 10% threshold. Best values are stressed in bold.

Datasets HBOS MHBOS KNN LOF LODA

annthyroid 0.9722 0.9696 0.6122 0.7605 0.7442
arrhythmia 0.8146 0.8009 0.8073 0.8068 0.7943
breastw 0.9849 0.9936 0.9789 0.6528 0.9521
cardio 0.8282 0.9364 0.6442 0.6541 0.9314
glass 0.7056 0.7273 0.8092 0.4325 0.7289
ionosphere 0.5633 0.6869 0.9248 0.8955 0.8868
letter 0.5841 0.6369 0.9233 0.9115 0.6154
lympho 0.9964 0.2963 0.9741 0.9636 0.9835
mammography 0.8533 0.8740 0.8553 0.7859 0.8726
mnist 0.6224 0.8556 0.8025 0.8112 0.8399
musk 1 1 1 0.5210 0.9999
optdigits 0.8996 0.6610 0.9376 0.5694 0.4268
pendigits 0.9354 0.9130 0.9006 0.5647 0.9478
pima 0.7074 0.7077 0.5419 0.6878 0.5647
satellite 0.8107 0.8340 0.8088 0.6862 0.7021
satimage-2 0.9843 0.9821 0.9905 0.9920 0.9945
shuttle 0.9907 0.9949 0.8285 0.5214 0.9835
speech 0.4711 0.4675 0.5006 0.5923 0.4621
thyroid 0.9922 0.9899 0.9305 0.9649 0.9674
vertebral 0.3055 0.5487 0.3561 0.4919 0.3153
vowels 0.6902 0.6990 0.8691 0.6999 0.7457
wbc 0.9506 0.9603 0.9497 0.9461 0.9595
wine 0.8638 0.8621 0.8941 0.9294 0.9092

I. Aguilera-Martos, M. García-Barzana, D. García-Gil et al. Neurocomputing 544 (2023) 126228
Appendix D. Unsupervised Thresholding Results modelling
methods

See Tables D.38–D.49.
Table D.38
Precision in all datasets, 2% threshold. Best values are stressed in bold.

Datasets MHBOS OCSVM PCA IForest Autoencoder

annthyroid 0.8263 0.3125 0.4375 0.8194 0.3888
arrhythmia 0.6 0.7 0.6 0.5 0.6
breastw 1 1 1 1 1
cardio 0.9459 0.9729 0.7027 0.6216 0.6486
glass 0.2 0.6 0 0 0
ionosphere 0.875 1 1 1 1
letter 0.1562 0.5 0.0937 0.1875 0.1562

(continued on next page)

25

Table D.39
Recall in all datasets, 2% threshold. Best values are stressed in bold.

Datasets MHBOS OCSVM PCA IForest Autoencoder

annthyroid 0.2228 0.0842 0.1179 0.2209 0.1048
arrhythmia 0.0909 0.1060 0.0909 0.0757 0.0909
breastw 0.0585 0.0585 0.0585 0.0585 0.0585
cardio 0.1988 0.2045 0.1477 0.1306 0.1663
glass 0.1111 0.3333 0 0 0
ionosphere 0.0555 0.0634 0.0634 0.0634 0.0555
letter 0.05 0.16 0.03 0.06 0.05
lympho 0 0.5 0.5 0.5 0.5
mammography 0.3653 0.0076 0.2961 0.2807 0.25
mnist 0.1114 0.1228 0.1385 0.1028 0.1271
musk 0.6391 0.6391 0.6391 0.6391 0.6391
optdigits 0.04 0.22 0 0.0266 0
pendigits 0.4935 0.5641 0.3653 0.3141 0.2756
pima 0.0485 0.0410 0.0261 0.0485 0.0223
satellite 0.0574 0.0613 0.0633 0.0515 0.0633
satimage-2 0.9014 0.9718 0.8732 0.9436 0.9718
shuttle 0.2668 0.2571 0.2651 0.2794 0.2645
speech 0.0491 0.1147 0.0327 0.0327 0.0327
thyroid 0.6021 0.6989 0.3440 0.4623 0.3118
vertebral 0.0333 0.1 0 0 0
vowels 0.14 0.5 0.2 0.22 0.18
wbc 0.3809 0.3333 0.2857 0.2380 0.2857
wine 0 0.3 0 0 0

Table D.40
F1 score in all datasets, 2% threshold. Best values are stressed in bold.

Datasets MHBOS OCSVM PCA IForest Autoencoder

annthyroid 0.3510 0.1327 0.1858 0.3480 0.1651
arrhythmia 0.1578 0.1842 0.1578 0.1315 0.1578
breastw 0.1106 0.1106 0.1106 0.1106 0.1106
cardio 0.3286 0.3380 0.2441 0.2159 0.2253
glass 0.1428 0.4285 0 0 0
ionosphere 0.1044 0.1194 0.1194 0.1194 0.1052
letter 0.0757 0.2424 0.0454 0.0909 0.0757
lympho 0 0.6666 0.6666 0.6666 0.6666
mammography 0.3925 0.0152 0.3181 0.3016 0.2685
mnist 0.1828 0.2016 0.2274 0.1688 0.2086
musk 0.7798 0.7798 0.7798 0.7798 0.7798
optdigits 0.0472 0.2598 0 0.0326 0
pendigits 0.5238 0.5986 0.3877 0.3333 0.2925
pima 0.0915 0.0774 0.0492 0.0915 0.0422
satellite 0.1080 0.1154 0.1191 0.0969 0.1191
satimage-2 0.6844 0.7340 0.6595 0.7127 0.7340
shuttle 0.4170 0.4019 0.4144 0.4366 0.4135
speech 0.0444 0.1037 0.0296 0.0296 0.0296
thyroid 0.6627 0.7692 0.3786 0.5088 0.3431
vertebral 0.0571 0.1714 0 0 0
vowels 0.175 0.625 0.25 0.275 0.225
wbc 0.5517 0.4827 0.4137 0.3448 0.4137
wine 0 0.4615 0 0 0

Table D.38 (continued)

Datasets MHBOS OCSVM PCA IForest Autoencoder

lympho 0 1 1 1 1
mammography 0.4241 1 0.3437 0.3258 0.2901
mnist 0.5098 0.5620 0.6339 0.4705 0.5816
musk 1 1 1 1 1
optdigits 0.0576 0.3173 0 0.0421 0
pendigits 0.5579 0.6376 0.4130 0.3550 0.3115
pima 0.8125 0.6875 0.4375 0.8125 0.375
satellite 0.9069 0.9689 1 0.8139 1
satimage-2 0.5517 0.5897 0.5299 0.5726 0.5897
shuttle 0.9541 0.9195 0.9480 0.9989 0.9460
speech 0.0405 0.0945 0.0270 0.0270 0.0270
thyroid 0.7368 0.8552 0.4210 0.5657 0.3815
vertebral 0.2 0.6 0 0 0
vowels 0.2333 0.8333 0.3333 0.3666 0.3
wbc 1 0.875 0.75 0.625 0.75
wine 0 1 0 0 0

I. Aguilera-Martos, M. García-Barzana, D. García-Gil et al. Neurocomputing 544 (2023) 126228

26

Table D.41
ROC-AUC in all datasets, 2% threshold. Best values are stressed in bold.

Datasets MHBOS OCSVM PCA IForest Autoencoder

annthyroid 0.9696 0.7055 0.6872 0.9060 0.6723
arrhythmia 0.8009 0.7991 0.7748 0.8173 0.7751
breastw 0.9936 0.9566 0.9590 0.9951 0.9758
cardio 0.9364 0.9603 0.9616 0.8945 0.9464
glass 0.7273 0.6455 0.6043 0.4303 0.6102
ionosphere 0.6869 0.9382 0.8061 0.8607 0.8845
letter 0.6369 0.9307 0.5228 0.7061 0.7020
lympho 0.2963 1 0.9859 0.9976 0.9964
mammography 0.8740 0.3898 0.8893 0.8283 0.7916
mnist 0.8556 0.9330 0.8517 0.7996 0.8966
musk 1 1 0.9999 0.9996 1
optdigits 0.6610 0.8970 0.5079 0.6101 0.5707
pendigits 0.9130 0.9490 0.9458 0.9364 0.8831
pima 0.7077 0.7716 0.6296 0.7066 0.6574
satellite 0.8340 0.7519 0.6285 0.7537 0.6398
satimage-2 0.9821 0.9943 0.9765 0.9958 0.9942
shuttle 0.9949 0.9914 0.9898 0.9966 0.9911
speech 0.4675 0.5715 0.4692 0.4477 0.4691
thyroid 0.9899 0.9969 0.9550 0.9795 0.9557
vertebral 0.5487 0.9111 0.4307 0.3459 0.5165
vowels 0.6990 0.9221 0.6878 0.7911 0.7567
wbc 0.9603 0.8478 0.9321 0.9399 0.9345
wine 0.8621 1 0.8235 0.8084 0.4210

Table D.42
Precision in all datasets, 5% threshold. Best values are stressed in bold.

Datasets MHBOS OCSVM PCA IForest Autoencoder

annthyroid 0.7388 0.3250 0.3138 0.6250 0.2944
arrhythmia 0.5652 0.6956 0.5217 0.5217 0.5217
breastw 1 1 1 1 1
cardio 0.8804 0.9673 0.6521 0.6086 0.6304
glass 0.0909 0.3636 0.0909 0 0.0909
ionosphere 0.8888 1 1 1 1
letter 0.1625 0.4750 0.0750 0.2250 0.2
lympho 0.125 0.75 0.625 0.75 0.625
mammography 0.2285 1 0.2142 0.1803 0.1821
mnist 0.3569 0.5511 0.4488 0.3884 0.5984
musk 0.6298 0.6298 0.6298 0.6298 0.6298
optdigits 0.0383 0.2183 0 0.0533 0.0038
pendigits 0.2412 0.3343 0.25 0.2325 0.2267
pima 0.8717 0.8205 0.5384 0.7948 0.5384
satellite 0.9068 0.9037 1 0.8291 1
satimage-2 0.2268 0.2371 0.2199 0.2371 0.2199
shuttle 0.9751 0.9661 0.9751 0.9967 0.9714
speech 0.0216 0.0540 0.0216 0.0216 0.0216
thyroid 0.4550 0.4920 0.3280 0.3862 0.2910
vertebral 0.1666 0.75 0 0 0
vowels 0.1369 0.4931 0.1643 0.1917 0.1369
wbc 0.6842 0.7894 0.5789 0.5789 0.5263
wine 0.2857 1 0.1428 0.1428 0.1428

Table D.43
Recall in all datasets, 5% threshold. Best values are stressed in bold.

Datasets MHBOS OCSVM PCA IForest Autoencoder

annthyroid 0.4981 0.2191 0.2116 0.4213 0.1985
arrhythmia 0.1969 0.2424 0.1818 0.1818 0.1818
breastw 0.1464 0.1464 0.1464 0.1297 0.1464
cardio 0.4602 0.5056 0.3409 0.3181 0.3295
glass 0.1111 0.4444 0.1111 0 0.1111
ionosphere 0.1269 0.1428 0.1428 0.1428 0.1428
letter 0.13 0.38 0.06 0.18 0.16
lympho 0.1666 1 0.8333 1 0.8333
mammography 0.4923 0.0076 0.4615 0.3884 0.3923
mnist 0.1942 0.3 0.2442 0.2114 0.3257
musk 1 1 1 1 1

(continued on next page)

I. Aguilera-Martos, M. García-Barzana, D. García-Gil et al. Neurocomputing 544 (2023) 126228

27

Table D.44
F1 score in all datasets, 5% threshold. Best values are stressed in bold.

Datasets MHBOS OCSVM PCA IForest Autoencoder

annthyroid 0.5950 0.2617 0.2527 0.5033 0.2371
arrhythmia 0.2921 0.3595 0.2696 0.2696 0.2696
breastw 0.2554 0.2554 0.2554 0.2296 0.2554
cardio 0.6044 0.6641 0.4477 0.4179 0.4328
glass 0.1 0.4 0.1 0 0.0999
ionosphere 0.2222 0.25 0.25 0.25 0.25
letter 0.1444 0.4222 0.0666 0.2 0.1777
lympho 0.1428 0.8571 0.7142 0.8571 0.7142
mammography 0.3121 0.0152 0.2926 0.2463 0.2487
mnist 0.2516 0.3885 0.3163 0.2738 0.4218
musk 0.7729 0.7729 0.7729 0.7729 0.7729
optdigits 0.0486 0.2773 0 0.0617 0.0048
pendigits 0.332 0.46 0.344 0.32 0.312
pima 0.2214 0.2084 0.1368 0.2019 0.1368
satellite 0.2476 0.2468 0.2731 0.2264 0.2731
satimage-2 0.3646 0.3812 0.3535 0.3812 0.3535
shuttle 0.8025 0.7951 0.8025 0.8203 0.7995
speech 0.0325 0.0813 0.0325 0.0325 0.0325
thyroid 0.6099 0.6595 0.4397 0.5177 0.3900
vertebral 0.0952 0.4285 0 0 0
vowels 0.1626 0.5853 0.1951 0.2276 0.1626
wbc 0.65 0.75 0.55 0.55 0.5
wine 0.2352 0.8235 0.1176 0.1176 0.1176

Table D.45
ROC-AUC in all datasets, 5% threshold. Best values are stressed in bold.

Datasets MHBOS OCSVM PCA IForest Autoencoder

annthyroid 0.9696 0.7055 0.6872 0.9060 0.7026
arrhythmia 0.8009 0.7991 0.7748 0.8173 0.7751
breastw 0.9936 0.9566 0.9590 0.9951 0.9812
cardio 0.9364 0.9603 0.9616 0.8945 0.9525
glass 0.7273 0.6455 0.6043 0.4303 0.5978
ionosphere 0.6869 0.9382 0.8061 0.8607 0.8812
letter 0.6369 0.9307 0.5228 0.7061 0.6924
lympho 0.2963 1 0.9859 0.9976 0.9964
mammography 0.8740 0.3898 0.8893 0.8283 0.7992
mnist 0.8556 0.9330 0.8517 0.7996 0.9068
musk 1 1 0.9999 0.9996 1
optdigits 0.6610 0.8970 0.5079 0.6101 0.5780
pendigits 0.9130 0.9490 0.9458 0.9364 0.9374
pima 0.7077 0.7716 0.6296 0.7066 0.6586
satellite 0.8340 0.7519 0.6285 0.7537 0.6637
satimage-2 0.9821 0.9943 0.9765 0.9958 0.9772
shuttle 0.9949 0.9914 0.9898 0.9966 0.9891
speech 0.4675 0.5715 0.4692 0.4477 0.4691
thyroid 0.9899 0.9969 0.9550 0.9795 0.9571
vertebral 0.5487 0.9111 0.4307 0.3459 0.5480
vowels 0.6990 0.9221 0.6878 0.7911 0.7602
wbc 0.9603 0.8478 0.9321 0.9399 0.9345
wine 0.8621 1 0.8235 0.8084 0.7285

Table D.43 (continued)

Datasets MHBOS OCSVM PCA IForest Autoencoder

optdigits 0.0666 0.38 0 0.0733 0.0066
pendigits 0.5320 0.7371 0.5512 0.5128 0.5
pima 0.1268 0.1194 0.0783 0.1156 0.0783
satellite 0.1434 0.1429 0.1581 0.1311 0.1581
satimage-2 0.9295 0.9718 0.9014 0.9718 0.9014
shuttle 0.6818 0.6755 0.6818 0.6969 0.6792
speech 0.0655 0.1634 0.0655 0.0655 0.0655
thyroid 0.9247 1 0.6666 0.7849 0.5913
vertebral 0.0666 0.3 0 0 0
vowels 0.2 0.72 0.24 0.28 0.2
wbc 0.6190 0.7142 0.5238 0.5238 0.4761
wine 0.2 0.7 0.1 0.1 0.1

I. Aguilera-Martos, M. García-Barzana, D. García-Gil et al. Neurocomputing 544 (2023) 126228

28

Table D.46
Precision in all datasets, 10% threshold. Best values are stressed in bold.

Dataset MHBOS OCSVM PCA IForest Autoencoder

annthyroid 0.5833 0.2555 0.2097 0.4427 0.2125
arrhythmia 0.4782 0.6304 0.4347 0.5652 0.4347
breastw 1 1 1 1 0.9855
cardio 0.7608 0.7717 0.6630 0.4863 0.5573
glass 0.0454 0.1818 0.0454 0 0.0454
ionosphere 0.6944 1 0.9722 0.9722 0.9714
letter 0.1375 0.4125 0.0812 0.15 0.15
lympho 0.0666 0.4 0.4 0.4 0.4
mammography 0.1438 1 0.1492 0.1260 0.1349
mnist 0.4113 0.5703 0.3902 0.2982 0.3587
musk 0.3159 0.3159 0.3159 0.3159 0.3159
optdigits 0.0478 0.1130 0.0019 0.0404 0.0076
pendigits 0.1251 0.1906 0.1630 0.1615 0.1426
pima 0.7532 0.8311 0.5064 0.6883 0.5324
satellite 0.8897 0.8074 0.9689 0.8307 1
satimage-2 0.1153 0.1204 0.1135 0.1204 0.1187
shuttle 0.7054 0.6983 0.6887 0.7022 0.6877
speech 0.0189 0.0379 0.0189 0.0135 0.0189
thyroid 0.2433 0.2460 0.2010 0.2354 0.2063
vertebral 0.25 0.7083 0.0833 0 0.125
vowels 0.0958 0.2671 0.1027 0.1301 0.1369
wbc 0.4473 0.3947 0.3947 0.3947 0.3947
wine 0.4615 0.7692 0.3076 0.2307 0.3076

Table D.47
Recall in all datasets, 10% threshold. Best values are stressed in bold.

Datasets MHBOS OCSVM PCA IForest Autoencoder

annthyroid 0.7865 0.3445 0.2827 0.5936 0.2865
arrhythmia 0.3333 0.4393 0.3030 0.3939 0.3030
breastw 0.2887 0.2887 0.2887 0.2887 0.2845
cardio 0.7954 0.8068 0.6931 0.5056 0.5795
glass 0.1111 0.4444 0.1111 0 0.1111
ionosphere 0.1984 0.2857 0.2777 0.2777 0.2698
letter 0.22 0.66 0.13 0.24 0.24
lympho 0.1666 1 1 1 1
mammography 0.6192 0.0076 0.6423 0.5423 0.5807
mnist 0.4471 0.62 0.4242 0.3242 0.39
musk 1 1 1 1 1
optdigits 0.1666 0.3933 0.0066 0.1333 0.0266
pendigits 0.5512 0.8397 0.7179 0.7115 0.6282
pima 0.2164 0.2388 0.1455 0.1977 0.1529
satellite 0.2814 0.2554 0.3064 0.2627 0.3163
satimage-2 0.9436 0.9859 0.9295 0.9859 0.9718
shuttle 0.9866 0.9766 0.9632 0.9820 0.9618
speech 0.1147 0.2295 0.1147 0.0819 0.1147
thyroid 0.9892 1 0.8172 0.9569 0.8387
vertebral 0.2 0.5666 0.0666 0 0.1
vowels 0.28 0.78 0.3 0.38 0.4
wbc 0.8095 0.7142 0.7142 0.7142 0.7142
wine 0.6 1 0.4 0.3 0.4

I. Aguilera-Martos, M. García-Barzana, D. García-Gil et al. Neurocomputing 544 (2023) 126228

29

Table D.48
F1 score in all datasets, 10% threshold. Best values are stressed in bold.

Datasets MHBOS OCSVM PCA IForest Autoencoder

annthyroid 0.6698 0.2934 0.2408 0.5072 0.2440
arrhythmia 0.3928 0.5178 0.3571 0.4642 0.3571
breastw 0.4480 0.4480 0.4480 0.4480 0.4415
cardio 0.7777 0.7888 0.6777 0.4958 0.5682
glass 0.0645 0.2580 0.0645 0 0.0645
ionosphere 0.3086 0.4444 0.4320 0.4320 0.4223
letter 0.1692 0.5076 0.1 0.1846 0.1846
lympho 0.0952 0.5714 0.5714 0.5714 0.5714
mammography 0.2335 0.0152 0.2422 0.2044 0.2189
mnist 0.4284 0.5941 0.4065 0.3107 0.3737
musk 0.4801 0.4801 0.4801 0.4801 0.4801
optdigits 0.0744 0.1755 0.0029 0.0621 0.0119
pendigits 0.2040 0.3107 0.2657 0.2633 0.2325
pima 0.3362 0.3710 0.2260 0.3072 0.2376
satellite 0.4276 0.3880 0.4656 0.3992 0.4805
satimage-2 0.2055 0.2147 0.2024 0.2147 0.2116
shuttle 0.8227 0.8143 0.8032 0.8189 0.8020
speech 0.0325 0.0651 0.0325 0.0232 0.0325
thyroid 0.3906 0.3949 0.3227 0.3779 0.3312
vertebral 0.2222 0.6296 0.0740 0 0.1111
vowels 0.1428 0.3979 0.1530 0.1938 0.2040
wbc 0.5762 0.5084 0.5084 0.5084 0.5084
wine 0.5217 0.8695 0.3478 0.2608 0.3478

Table D.49
ROC-AUC in all datasets, 10% threshold. Best values are stressed in bold.

Datasets MHBOS OCSVM PCA IForest Autoencoder

annthyroid 0.9696 0.7055 0.6872 0.9060 0.6625
arrhythmia 0.8009 0.7991 0.7748 0.8173 0.7751
breastw 0.9936 0.9566 0.9590 0.9951 0.9818
cardio 0.9364 0.9603 0.9616 0.8945 0.9187
glass 0.7273 0.6455 0.6043 0.4303 0.5886
ionosphere 0.6869 0.9382 0.8061 0.8607 0.8884
letter 0.6369 0.9307 0.5228 0.7061 0.6947
lympho 0.2963 1 0.9859 0.9976 0.9964
mammography 0.8740 0.3898 0.8893 0.8283 0.7642
mnist 0.8556 0.9330 0.8517 0.7996 0.8777
musk 1 1 0.9999 0.9996 1
optdigits 0.6610 0.8970 0.5079 0.6101 0.5675
pendigits 0.9130 0.9490 0.9458 0.9364 0.9248
pima 0.7077 0.7716 0.6296 0.7066 0.6703
satellite 0.8340 0.7519 0.6285 0.7537 0.6768
satimage-2 0.9821 0.9943 0.9765 0.9958 0.9944
shuttle 0.9949 0.9914 0.9898 0.9966 0.9906
speech 0.4675 0.5715 0.4692 0.4477 0.4691
thyroid 0.9899 0.9969 0.9550 0.9795 0.9555
vertebral 0.5487 0.9111 0.4307 0.3459 0.5558
vowels 0.6990 0.9221 0.6878 0.7911 0.7821
wbc 0.9603 0.8478 0.9321 0.9399 0.9345
wine 0.8621 1 0.8235 0.8084 0.8252

I. Aguilera-Martos, M. García-Barzana, D. García-Gil et al. Neurocomputing 544 (2023) 126228

30

I. Aguilera-Martos, M. García-Barzana, D. García-Gil et al. Neurocomputing 544 (2023) 126228
Appendix E. Bayesian tests F1 score over ODDS datasets
References

[1] V. Chandola, A. Banerjee, V. Kumar, Anomaly detection: A survey, ACM
Comput. Surv. 41 (3).

[2] C.C. Aggarwal, Outlier Analysis, 2nd ed., Springer International Publishing,
2017.

[3] M. Zamini, S.M.H. Hasheminejad, A comprehensive survey of anomaly
detection in banking, wireless sensor networks, social networks, and
healthcare, Intell. Decis. Technol. 13(2) (2019) 229–270, publisher: IOS Press.

[4] G. Fernandes, J.J.P.C. Rodrigues, L.F. Carvalho, J.F. Al-Muhtadi, M.L. Proença, A
comprehensive survey on network anomaly detection, Telecommun. Syst. 70
(3) (2019) 447–489.

[5] N. Moustafa, J. Hu, J. Slay, A holistic review of network anomaly detection
systems: A comprehensive survey, J. Network Comput. Appl. 128 (2019) 33–
55.

[6] M. Fahim, A. Sillitti, Anomaly detection, analysis and prediction techniques in
iot environment: A systematic literature review, IEEE Access 7 (2019) 81664–
81681.

[7] F. Cauteruccio, L. Cinelli, E. Corradini, G. Terracina, D. Ursino, L. Virgili, C.
Savaglio, A. Liotta, G. Fortino, A framework for anomaly detection and
classification in multiple iot scenarios, Future Gener. Comput. Syst. 114
(2021) 322–335.
31
[8] D. Ramotsoela, A. Abu-Mahfouz, G. Hancke, A survey of anomaly detection in
industrial wireless sensor networks with critical water system infrastructure
as a case study, Sensors 18 (8).

[9] H. Ren, B. Xu, Y. Wang, C. Yi, C. Huang, X. Kou, T. Xing, M. Yang, J. Tong, Q.
Zhang, Time-series anomaly detection service at microsoft, in: Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery; Data
Mining, KDD ’19, Association for Computing Machinery, New York, NY, USA,
2019, p. 3009–3017.

[10] S. Ahmad, A. Lavin, S. Purdy, Z. Agha, Unsupervised real-time anomaly
detection for streaming data, Neurocomputing 262 (2017) 134–147, online
Real-Time Learning Strategies for Data Streams.

[11] T. Pevný, LODA: Lightweight on-line detector of anomalies, Mach. Learn. 102
(2) (2016) 275–304.

[12] M. Goldstein, A. Dengel, Histogram-based Outlier Score (HBOS): A fast
Unsupervised Anomaly Detection Algorithm, KI-2012: Poster and Demo Track.

[13] R. Shebuti, ODDS Library (2016). http://odds.cs.stonybrook.edu.
[14] B. Kaluža, V. Mirchevska, E. Dovgan, M. Luštrek, M. Gams, An agent-based

approach to care in independent living, in: International joint conference on
ambient intelligence, Springer, 2010, pp. 177–186.

[15] Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky, A. Shabtai, D. Breitenbacher, Y.
Elovici, N-baiot-network-based detection of iot botnet attacks using deep
autoencoders, IEEE Pervasive Comput. 17 (3) (2018) 12–22.

http://refhub.elsevier.com/S0925-2312(23)00351-X/h0010
http://refhub.elsevier.com/S0925-2312(23)00351-X/h0010
http://refhub.elsevier.com/S0925-2312(23)00351-X/h0010
http://refhub.elsevier.com/S0925-2312(23)00351-X/h0020
http://refhub.elsevier.com/S0925-2312(23)00351-X/h0020
http://refhub.elsevier.com/S0925-2312(23)00351-X/h0020
http://refhub.elsevier.com/S0925-2312(23)00351-X/h0025
http://refhub.elsevier.com/S0925-2312(23)00351-X/h0025
http://refhub.elsevier.com/S0925-2312(23)00351-X/h0025
http://refhub.elsevier.com/S0925-2312(23)00351-X/h0030
http://refhub.elsevier.com/S0925-2312(23)00351-X/h0030
http://refhub.elsevier.com/S0925-2312(23)00351-X/h0030
http://refhub.elsevier.com/S0925-2312(23)00351-X/h0035
http://refhub.elsevier.com/S0925-2312(23)00351-X/h0035
http://refhub.elsevier.com/S0925-2312(23)00351-X/h0035
http://refhub.elsevier.com/S0925-2312(23)00351-X/h0035
http://refhub.elsevier.com/S0925-2312(23)00351-X/h0055
http://refhub.elsevier.com/S0925-2312(23)00351-X/h0055
http://odds.cs.stonybrook.edu
http://refhub.elsevier.com/S0925-2312(23)00351-X/h0070
http://refhub.elsevier.com/S0925-2312(23)00351-X/h0070
http://refhub.elsevier.com/S0925-2312(23)00351-X/h0070
http://refhub.elsevier.com/S0925-2312(23)00351-X/h0070
http://refhub.elsevier.com/S0925-2312(23)00351-X/h0075
http://refhub.elsevier.com/S0925-2312(23)00351-X/h0075
http://refhub.elsevier.com/S0925-2312(23)00351-X/h0075

I. Aguilera-Martos, M. García-Barzana, D. García-Gil et al. Neurocomputing 544 (2023) 126228
[16] S. Hettich, S.D. Bay, The uci kdd archive, in: International joint conference on
ambient intelligence, University of California, Department of Information and
Computer Science, Irvine, CA, 1999.

[17] F.T. Liu, K.M. Ting, Z.-H. Zhou, Isolation Forest, in: Proceedings of the 2008
Eighth IEEE International Conference on Data Mining (2008) 413–422.

[18] F.T. Liu, K.M. Ting, Z.-H. Zhou, Isolation-Based Anomaly Detection, ACM Trans.
Knowl. Discovery Data 6(1) (2012) 3:1–3:39.

[19] B. Schölkopf, R. Williamson, A. Smola, J. Shawe-Taylor, J. Platt, Support vector
method for novelty detection, in: Proceedings of the 12th International
Conference on Neural Information Processing Systems (1999) 582–588.

[20] M.-L. Shyu, S.-C. Chen, K. Sarinnapakorn, L. Chang, A Novel Anomaly Detection
Scheme Based on Principal Component Classifier, Proceedings of International
Conference on Data Mining.

[21] G.E. Hinton, R.R. Salakhutdinov, Reducing the dimensionality of data with
neural networks, Science 313 (5786) (2006) 504–507, https://doi.org/
10.1126/science.1127647.

[22] S. Ramaswamy, R. Rastogi, K. Shim, Efficient algorithms for mining outliers
from large data sets (2000) 427–438.
32
[23] F. Angiulli, C. Pizzuti, Fast Outlier Detection in High Dimensional Spaces, in:
Proceedings of the Sixth European Conference on the Principles of Data Mining
and Knowledge Discovery 2431 (2002) 15–26.

[24] M.M. Breunig, H.-P. Kriegel, R.T. Ng, J. Sander, Lof: Identifying density-based
local outliers, SIGMOD Rec. 29 (2) (2000) 93–104.

[25] M. Goldstein, S. Uchida, A comparative evaluation of unsupervised anomaly
detection algorithms for multivariate data, PLOS ONE 11 (4) (2016) 1–31.

[26] Y. Ben-Haim, E. Tom-Tov, A streaming parallel decision tree algorithm, J. Mach.
Learn. Res. 11 (28) (2010) 849–872.

[27] D. Dua, C. Graff, UCI Machine Learning Repository (2017). http://archive.ics.
uci.edu/ml.

[28] Y. Zhao, Z. Nasrullah, Z. Li, PyOD: A Python Toolbox for Scalable Outlier
Detection, J. Mach. Learn. Res. 20 (96) (2019) 1–7.

[29] T. Akiba, S. Sano, T. Yanase, T. Ohta, M. Koyama, Optuna: A Next-generation
Hyperparameter Optimization Framework (2019).

[30] J.A. Hanley, B.J. McNeil, The meaning and use of the area under a receiver
operating characteristic (ROC) curve, Radiology 143 (1) (1982) 29–36.

[31] J. Carrasco, S. García, M. Rueda, F. Herrera, rNPBST: An R Package Covering
Non-parametric and Bayesian Statistical Tests, International Conference on
Hybrid Artificial Intelligence Systems (2017) 281–292.

http://refhub.elsevier.com/S0925-2312(23)00351-X/h0080
http://refhub.elsevier.com/S0925-2312(23)00351-X/h0080
http://refhub.elsevier.com/S0925-2312(23)00351-X/h0080
http://refhub.elsevier.com/S0925-2312(23)00351-X/h0080
https://doi.org/10.1126/science.1127647
https://doi.org/10.1126/science.1127647
http://refhub.elsevier.com/S0925-2312(23)00351-X/h0110
http://refhub.elsevier.com/S0925-2312(23)00351-X/h0110
http://refhub.elsevier.com/S0925-2312(23)00351-X/h0120
http://refhub.elsevier.com/S0925-2312(23)00351-X/h0120
http://refhub.elsevier.com/S0925-2312(23)00351-X/h0125
http://refhub.elsevier.com/S0925-2312(23)00351-X/h0125
http://refhub.elsevier.com/S0925-2312(23)00351-X/h0130
http://refhub.elsevier.com/S0925-2312(23)00351-X/h0130
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://refhub.elsevier.com/S0925-2312(23)00351-X/h0140
http://refhub.elsevier.com/S0925-2312(23)00351-X/h0140
http://refhub.elsevier.com/S0925-2312(23)00351-X/h0150
http://refhub.elsevier.com/S0925-2312(23)00351-X/h0150
http://refhub.elsevier.com/S0925-2312(23)00351-X/h0155
http://refhub.elsevier.com/S0925-2312(23)00351-X/h0155
http://refhub.elsevier.com/S0925-2312(23)00351-X/h0155

	Multi-step histogram based outlier scores for unsupervised anomaly detection: ArcelorMittal engineering dataset case of study
	1 Introduction
	2 Anomaly detection problem
	2.1 Anomaly detection
	2.2 Unsupervised anomaly detection
	2.3 Histogram based outlier scores
	2.3.1 Dynamic Histograms

	3 Multi-step histogram based outlier scores
	3.1 Histogram update mechanisms
	3.1.1 Min-max strategy
	3.1.2 Addition of bins
	3.1.3 Weighted frequency update
	3.1.4 Dynamic limits
	3.1.5 Dynamic fusion

	3.2 MHBOS: multi-step histogram based outlier scores

	4 Outlier detection datasets and time series datasets: experimental framework, results and analysis
	4.1 Datasets
	4.2 Experimental framework
	4.3 Outlier detection datasets: results and analysis
	4.3.1 Non-modelling algorithms
	4.3.2 Non-supervised thresholding
	4.3.3 Model-generative algorithms
	4.3.4 Non-supervised thresholding

	4.4 Time series datasets: results and analysis

	5 ArcelorMittal engineering case of study
	5.1 ArcelorMittal dataset
	5.2 Experimental framework
	5.3 Results and analysis

	6 Lessons learned
	7 Conclusions
	Funding
	Declaration of Competing Interest
	Acknowledgement
	Appendix A Non model-generative algorithm result tables
	Appendix B Model-generative algorithm result tables
	Appendix C Unsupervised Thresholding Results No modelling methods
	Appendix D Unsupervised Thresholding Results modelling methods
	Appendix E Bayesian tests F1 score over ODDS datasets
	References

