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R E S U M E N

En la actualidad, las técnicas de Big Data y aprendizaje profundo (Deep
Learning) están cambiando la forma en la que interactuamos con la tecnología.
Desde recomendadores de contenido hasta tecnologías capaces de crear arte,
la ubucuidad de las redes neuronales es evidente hoy día, y se preveé creciente
en el medio/largo plazo. Por ello, y ante la inmensidad de campos en los que
el Deep Learning es aplicable, resulta interesante extrapolar o “reutilizar”
el conocimiento generado en un problema para resolver otros problemas
relacionados con mayor eficacia y rapidez. Este procedimiento, conocido
como aprendizaje por transferencia (Transfer Learning), es una técnica muy
extendida en Deep Learning. En este sentido, un paradigma del aprendizaje
en el que la transferencia de conocimiento entre problemas ha demostrado
ser muy efectiva es el aprendizaje por refuerzo (Reinforcement Learning), ya
que atiende varias de las debilidades inherentes al proceso de entrenamiento
de un agente: la eficiencia de muestreo en la exploración del espacio de
soluciones, o la posibilidad de que el entrenamiento del agente se estanque en
políticas sub-óptimas. Además de las técnicas tradicionalmente empleadas
para paliar estos inconvenientes, como la utilización de múltiples agentes
o el uso de mecanismos de inducción de curiosidad comportamental, se ha
demostrado que la computación evolutiva puede dar lugar a procedimientos
híbridos de entrenamiento eficientes en tiempo para agentes de aprendizaje
por refuerzo en entornos de aplicación complejos.

En este contexto, la presente tesis doctoral estudia cómo la computación
evolutiva puede ayudar a que los modelos de aprendizaje por refuerzo basados
en Deep Learning sean capaces de adaptarse rápidamente a nuevos escenarios
merced a la reutilización del conocimiento generado en problemas precedentes.
Para ello, la investigación se centrará en el uso de una rama concreta de
reciente aparición en la computación evolutiva, denominados algoritmos
multifactoriales, que permiten resolver varios problemas de optimización de
manera simultánea, aprovechando las posibles sinergias existentes entre sus
espacios de búsqueda y/o soluciones. La tesis parte de la observación de
que el entrenamiento de un modelo de aprendizaje por refuerzo basado en
Deep Learning puede ser formulado como un problema de optimización y por
tanto, abordable mediante computación evolutiva. Esta observación abre la
posibilidad de que, en escenarios de aprendizaje por refuerzo con múltiples
tareas (multitask reinforcement learning), los algoritmos multifactoriales
anteriormente citados puedan ser empleados para automatizar el intercambio
de conocimiento modelado para cada una de las tareas entre los agentes que
atacan cada una de ellas.

Esta primera hipótesis de investigación abordada por la tesis se comple-
menta con una segunda idea: la generación de conocimiento generalizable a
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nuevas tareas de aprendizaje por refuerzo a partir del entrenamiento con-
junto de agentes en otras tareas previas. En particular la tesis se centra
en la casuística zero-shot, por la que no es posible conocer a priori nada
de las nuevas tareas, ni actualizar el modelo a posteriori con información
recolectada de dichas tareas. Este escenario, también abordado mediante
computación evolutiva y algoritmos multifactoriales, supone un paso más
allá hacia la capacidad de los modelos de Inteligencia Artificial para generar
conocimiento generalizable que le permita adaptarse autónoma y eficiente-
mente a nuevas tareas de aprendizaje, avanzando firmemente hacia un nuevo
paradigma del aprendizaje: GPAI (General-Purpose Artificial Intelligence).



A B S T R A C T

Currently, Big Data techniques and Deep Learning are changing the
way humankind interacts with technology. From content recommendation
to technologies capable of creating art, the ubiquity of neural networks
is evident today, and is expected to grow in the medium to long term.
Given the diversity of fields where Deep Learning is applied nowadays, it is
interesting to extrapolate or “reuse” the knowledge generated in one problem
to solve other related problems with proficiency, efficiency and speed. This
procedure, known as Transfer Learning, is widely used in modeling tasks
resorting to Deep Learning models. In this sense, a paradigm in which
knowledge transfer between tasks has been shown to be very effective is
Reinforcement Learning. Indeed, Transfer Learning addresses several of
the inherent weaknesses in the learning process of an agent: the sampling
efficiency when exploring the environment to be solved, or the possibility
that the agent’s training may get stuck in sub-optimal policies. Besides
traditionally used techniques to alleviate these drawbacks, such as the use
of multiple agents or mechanisms to induce behavioral curiosity, it has been
shown that evolutionary computation can give rise to efficient hybrid training
procedures for developing reinforcement learning agents suited to deal with
challenging environments.

In this context, this Thesis studies how evolutionary computation can
help Reinforcement Learning models based on Deep Learning to quickly
adapt to new scenarios through the reuse of knowledge generated in previous
modeling problems. For this purpose, the research focus is placed on the
use of a specific branch of recently appeared in evolutionary computation,
known as multi-factorial algorithms. Techniques belonging to this family of
evolutionary optimization methods allow solving several problem instances
simultaneously, taking advantage of possible synergies existing between their
search space and/or solutions. The Thesis departs from the observation
that the training process of a Reinforcement Learning model based on Deep
Learning can be formulated as an optimization problem, and therefore, is
feasible to be tackled by using evolutionary computation. This observation
paves the way towards the possibility that, in multitask Reinforcement
Learning scenarios, the previously mentioned multi-factorial algorithms can
be used to automate the exchange of knowledge modeled for each of the
tasks among the agents addressing each of such tasks.

This first research hypothesis addressed by the Thesis is complemented
by a second idea: the generation of generalizable knowledge to new Re-
inforcement Learning tasks from the simultaneous training of agents on
previous Reinforcement Learning tasks. In particular, the Thesis focuses on
the zero-shot assumption, by which it is not possible to know beforehand
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anything about the new tasks to be addressed, nor to update the model with
information collected from these tasks during inference time. This scenario,
also tackled through evolutionary computation and multi-factorial algo-
rithms, represents a step forward towards the ability of Artificial Intelligence
models to generate knowledge that allows them to adapt autonomously and
efficiently to new tasks, advancing steadily towards a new paradigm: GPAI
(General-Purpose Artificial Intelligence).
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Part I

I N T R O D U C T I O N





1
P R E L I M I N A R I E S , M O T I VAT I O N
A N D O B J E C T I V E S

“It’s dangerous to go alone, take this!”
− The Legend of Zelda

1.1. Context: Deep Learning and Knowledge Transfer

Nowadays there is overall consensus on the capital importance gained by Deep
Learning (DL) in the Artificial Intelligence field [1]. Initial results of DL date
back to the late 80’s, stepping on a history of preceding achievements in neural
computation [2]. However, it was not until years later when advances in high-
performance computing, new achievements in neural network training [3], and
the availability of massive datasets paved the way for the renowned success
of this family of learning models. Nowadays, plenty of application areas have
harnessed the superior modeling capabilities of DL models, including natural
language processing [4], speech and audio processing [5, 6], social network
analysis [7] or autonomous driving [8], to mention a few. As a result, DL
models such as Convolutional Neural Networks (CNNs) [9], Recurrent Neural
Networks (RNNs) [10] or Generative Adversarial Networks (GANs) [11] prevail
in many fields, including image classification, time series forecasting, visual
object generation or Reinforcement Learning (RL), being the latter of main
interest for this Thesis.

There are several properties of DL models that make them outperform
traditional shallow learning methods. Among them, DL models can automat-
ically learn hierarchical features from raw data, so that features organized
in higher levels of the hierarchy are composed by a combination of simpler
lower-level features. As a result of this capability, features with minimal
human effort and domain knowledge can be learned and fused together for a
manifold of tasks, such as classification, regression or representation learning
[12]. Furthermore, DL models comprise a large number of parameters to
represent such hierarchical features, which are adjusted (trained) as per
the task under consideration. In addition, DL approaches can model highly
non-linear mappings between their inputs and outputs [13, 14]. Finally,
decisions issued by these black-box models can be explained to non-expert
users, making these black-box models of practical use in domains where
explainability is a must [15].

3
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However, it is not just the continually growing levels of complexity of
DL models and the upsurge of new architectures stemming regularly from
the literature what confers DL its renowned potential to expand beyond
its own milestones. As the knowledge assembled in DL models and their
generalization skills are mandatory design goals pursued in this field, the
way in which that knowledge can be transformed and adapted to solve
new problems fast and efficiently has also grasped significant interest in
recent years. In fact, the ability to transfer the knowledge from a DL model
designed to solve a certain task to another that deals with a different
albeit related task has been widely used to speed up the training time and
reduce the quality data requirements in the destination task. More strictly,
Transfer Learning (TL [16]) refers to the way in which knowledge learned by
a model when addressing a certain task is reused as the starting point for
the construction of a model for another task, being of capital relevance in
fields like image classification or RL. Following this vein, other approaches
concentrate their efforts on the construction of powerful models that can
either solve multiple tasks (Multitask Learning or Multitasking [17]) or learn
how to adapt efficiently to previously unseen problems (i.e., Meta-learning
[18]).

1.2. Optimization Problems in Deep Learning

Under the scope of Artificial Intelligence we can find many evidences of
the benefits of combining and fusing different technologies to tackle complex
tasks better than using any of them in isolation. DL is not an exception to this
statement: the fact that the architectural design, hyper-parameter tuning
and training processes of DL can be formulated as optimization problems
has motivated a long history between these data-based models and the field
of bio-inspired optimization, particularly Evolutionary Computation and
Swarm Intelligence. This mixture of technologies, known as Evolutionary
Deep Learning (EDL)1, has been historically studied to optimize some hand-
designed parameters of neural networks, such as the number of layers,
their dimension and type of neurons, intermediate processing elements (e.g.
neural activation functions), and other structural parameters. In fact, the
optimization of those parameters can span a large solution space, demanding
search heuristics for their efficient exploration. Also, hyper-parameter tuning
in DL models can be approached via bio-inspired heuristic wrappers, whereas
their training process is essentially the minimization of a task-dependent
loss function with respect to all trainable parameters established in the
architecture of the network at hand.

It is widely known that a DL model can be seen as a black-box optimizer
where some parameters can be manually selected, so that the model behaves
in a different way depending on the values chosen for such parameters. In

1 Throughout this manuscript we embrace the term Evolutionary Deep Learning to refer to
the use of bio-inspired algorithms for solving optimization problems related to DL, no
matter if they belong to Evolutionary Computation or to Swarm Intelligence.
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fact, almost all parameters that can be tuned in a DL model can be treated as
a task to be optimized. Therefore, depending on the parameters to be solved,
we can differentiate various optimization problems. To define them properly,
we start from the mathematical formulation of a DL model as a composition
of N different functions (i.e. layers) that maps its input xn ∈ X n to an
output yn = fn(xn;Wn; Tn,θn) ≡ fTn,θn

n,Wn
(xn), where:

Tn ∈ T denotes the type of layer, with T denoting the set of possible layer
types (e.g. Convolutional, Long Short-Term Memory (LSTM)).

θn is the vector of structural hyper-parameters of the layer. The specific
parameters in this vector depend on the type Tn of the layer (e.g. θn will
specify the sizes of the convolutional filters only if Tn = convolutional).

Wn denotes the trainable parameters (weights/filter coefficients and biases)
of layer n, whose type and cardinality depend on Tn and θn. For instance,
if xn represents RGB images (3 channels), Tn = convolutional and θn

establishes that layer n comprises five 3× 3 convolutional filters, Wn will
comprise 3× 3× 5× 3 weights and 5 biases, yielding a total of |Wn| = 140
trainable parameters.

It is important to highlight that the values of the trainable parameters
Wn must be learned by the model to efficiently perform a given task. For
the sake of simplicity, in subsequent derivations we will assume that we deal
with a supervised learning task over a training dataset Dtr = {(xm

1 , ym
N )}Mtr

m=1,
with ym

N ∈ Y denoting the supervised output of input x1 ∈ X 1, and Mtr

representing the number of training instances. The trainable parameters of
a DL model are learned from Dtr by means of a training algorithm :

{Wn}N
n=1 = ALG(Dtr, {Tn,θn}N

n=1;ϑ), (1.1)

where we refer to ϑ as the set of training hyper-parameters of the training
algorithm. In general, the training algorithm is driven by the minimization
of a task-dependent loss function L(ŷm

N , ym
N ) that provides a measure of error

between the supervision ym
N of input xm

1 ∈ D and the corresponding output
of the DL model:

ŷm
N = fTN ,θN

N,WN
◦ f

TN−1,θN−1
N−1,WN−1

◦ . . . ◦ fT1,θ1
1,W1 (xm

1 ), (1.2)

where ◦ denotes composition of functions (i.e. f ◦g(x) = f(g(x))). Such a loss
computed for every training instance can be averaged to yield a numerical
estimation of the performance of the DL model when approximating the
supervised instances in Dtr:

L(F ;Dtr) = 1
Mtr

M∑
m=1

L(F (xm
1 ; {Wn}N

n=1; {Tn}N
n=1, {θn}N

n=1), ym
N) (1.3)

With this notation in mind, we define the following optimization problems
that underlie the construction process of DL models:
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Problem 1: Topological Optimization
Given a learning task defined on a training dataset Dtr, the topological
optimization of a DL model refers to the search for the topology of the
DL model that best solves the task at hand, wherein topology involves
the discovery of the optimal number of layers N and their types
{Tn}N

n=1. This problem assumes fixed values for {θn}N
n=1 (e.g. standard

values), and relies on a training algorithm ALG(Dtr, {Tn,θn}N
n=1;ϑ)

to optimize the trainable parameters {Wn}N
n=1. Mathematically:

min
N,{Tn}N

n=1

L(F ;Dtr) (1.4)

where the dependence of the aggregate loss function with respect to N
and {Tn}N

n=1 comes through Equation 1.3, and {Wn}N
n=1 are optimized

by means of Equation 1.1.

Topology optimization is rarely conceived in isolation with respect to the
rest of variables that define a DL model. Instead, topology is often optimized
along with the values of their structural hyper-parameters. However, we
define this second problem separately so as to allow for a fine-grained analysis
in subsequent elaborations throughout the Thesis:

Problem 2: Structural Hyper-parameter Optimization
Given a learning task defined on a training dataset Dtr, and a fixed
topology of the DL model (N and {Tn}N

n=1), the optimization of the
structural hyper-parameters of the DL model aims to find the best value
of θn (structural hyper-parameters) for each of their compounding
layers. Mathematically:

min
{θn}N

n=1

L(F ;Dtr) (1.5)

where the dependence of the aggregate loss function with respect
to variables {θn}N

n=1 comes through Equation 1.3, and {Wn}N
n=1 are

optimized by means of Equation 1.1.

Finally, the third optimization problem that can be formulated is the
training process itself, which aims at finding the values of the parameters
{Wn}N

n=1 that minimizes the loss in Equation 1.3. This is indeed the pur-
pose of Equation 1.1. However, we note at this point that two different
formulations of this problem can be made depending on whether variables
to be optimized include the set of training hyper-parameters ϑ or trainable
parameters {Wn}N

n=1 (i.e. weights):
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Problem 3: Training Hyper-parameter Optimization
Given a learning task defined on a training dataset Dtr, a fixed topology
of the DL model (N and {Tn}N

n=1), fixed values of their structural hyper-
parameters θn, and a training algorithm ALG(Dtr, {Tn,θn}N

n=1;ϑ), the
training hyper-parameter optimization problem of a DL model aims
to find the best value of ϑ (training hyper-parameters) as:

min
ϑ

L(F ;Dtr) (1.6)

where the dependence of the aggregate loss function with respect to ϑ
comes through the application of Equation 1.1 to solve for {Wn}N

n=1
as per Equation 1.3.

The last problem focuses on the optimization of trainable parameters (i.e.
weights). This entails a great challenge through the lenses of optimization,
mainly due to the high dimensionality of the search space (mainstream DL
models usually account for several millions of trainable parameters). The
problem can be summarized as:

Problem 4: Trainable Parameter Optimization
Given a learning task defined on a training dataset Dtr, a fixed topology
of the DL model (N and {Tn}N

n=1), and fixed values of their structural
hyper-parameters θn, the trainable parameter optimization problem
of a DL model seeks the best value of {Wn}N

n=1 (trainable parameters)
as:

min
{Wn}N

n=1

L(F ;Dtr) (1.7)

for which an optimization (training) algorithm (Equation 1.1) must
be utilized.

A visual summary of the above problems is sketched in Figure 1.1. The
above four optimization problems can represent the majority of contributions
that have proposed so far new algorithms to address them efficiently.

There are plenty of reasons to delegate problems 1 to 4 to approximate
solvers. However, the two main reasons can be summarized as follows: a)
parameters tuned by hand for problems 1, 2 or 3 is prone to errors and
tedious trial-and-improve processes, which may be prone to suboptima; and
b) optimal parameters for any of the problems may differ between instances of
the same problem characterized by different datasets Dtr. Furthermore, other
limitations appear when using optimization algorithms to overcome these
limitations, such as the cost of evaluating the quality of a given candidate
solution or the high dimensionality of the search space, especially in – yet
not limited to – Problem 4.

Considering these limitations, Problem 4 can be considered as an excep-
tionally complex optimization challenge. The use of optimization algorithms
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Figure 1.1: Optimization problems in Deep Learning for a generic model comprising,
among others, a convolutional layer, a max-pooling layer and a recurrent layer.

to solve them effectively is not conceived to alleviate the potential issues of
human-driven network architecture and/or hyperparameters configuration
steps, but rather to replace the gradient backpropagation algorithm that
is mostly used to tackle Problem 4. Solving Problem 4 by relying on back-
propagated gradients is also known to undergo severe limitations, such as
its vanishing/exploding behavior in networks of moderate to high depth. In
contrast, evolutionary algorithms (and in general, mmeta-heuristic optimiza-
tion algorithms) have demonstrated to effectively balancing exploration and
exploitation in complex search spaces, do not rely on any gradient-based in-
formation, and can be flexibly adapted to search not only for optimality, but
also for other objectives (e.g. complexity of the network or diversity among
several solutions to the problem under consideration). Therefore, evolution-
ary algorithms has been postulated as a potential replacement for gradient
backpropagation, being explored mostly for networks of small-to-medium
size.

Up to this point, DL problems usually tackled under the scope of EDL
have been introduced. The design of good solvers capable of facing them is
not trivial, and there are plenty of mmeta-heuristic optimization algorithms
that can yield similar outcomes for any instance of the above problems.
For this reason, in what follows Section 1.3 delves into the classification of
mmeta-heuristic algorithms based several different criteria.
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1.3. Bio-inspired Optimization: Evolutionary Computation and
Swarm Intelligence

The need for search algorithms capable of efficiently dealing with the
optimization problems arising from DL has stimulated an upsurge of litera-
ture proposing different solvers for this purpose. Here, a brief overview of
the optimization research area is provided, with a focus on meta-heuristic
algorithms that are inspired by biological sources of inspiration. For a more
detailed overview of developments and prospects in this research area we
refer to recent comprehensive reviews on this topic available in [19, 20].

As shown in the taxonomy shown in Figure 1.2, optimization methods
can be first grouped in three categories: exact methods, heuristics and
meta-heuristics. Exact methods are those that always solve a problem to
its optimality, either by exploring the entire space of solutions or by taking
advantage of specific characteristics of the problem at hand (e.g. linearity,
convexity). On the other hand, a heuristic search algorithm addresses a given
optimization problem by resorting to knowledge related to the domain where
the problem is formulated. By exploiting this domain-specific information
in its search algorithm, a heuristic explores the space of feasible solutions
efficiently, intensifying the search around the most promising areas as per
the objective(s) under consideration. Finally, the third category corresponds
to meta-heuristic algorithms (also referred to as mmeta-heuristics), which
are central to the research hypothesis of this Thesis.

Briefly explained, a meta-heuristic optimization algorithm solves a problem
using only general information and knowledge common to a wide variety
of problems with similar characteristics [21]. Meta-heuristic algorithms
explore the solution space by progressively learning how candidate solutions
should be modified towards optimality, with the aim of reaching increasingly
promising results disregarding the characteristics of the problem being
tackled. Given their self-learning nature and their abstraction from the
problem itself, meta-heuristic approaches are well-suited to deal with real-
world problems featuring complex search spaces and even non-analytically
defined objectives/constraints. This is in fact the reason why meta-heuristics
have taken a prominent role when addressing the optimization problems
underneath DL.

Deeper into the taxonomy of Figure 1.2, meta-heuristics can be further
divided into different groups depending on several criteria. To begin with, we
can distinguish between 1) single-point (also referred to as trajectory-based)
meta-heuristic methods, which rely on the progressive improvement of a
single solution to the problem by exploring its neighborhood under a set of
movement operators as in Tabu Search (TS [22]) or Simulated Annealing
(SA [23]); and 2) population-based techniques, which maintain a set of possible
solutions of the problem that interact with each other towards producing
new solutions of increased quality (e.g. Genetic Algorithm (GA [24, 25]), Ant
Colony Optimization (ACO [26]) or Particle Swarm Optimization (PSO [27])).
This last category can be broken down in 2.1) multi-population techniques,
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Figure 1.2: Taxonomy of optimization algorithms, with a focus on meta-heuristic opti-
mization algorithms as per the different criteria under which they can be classified. Some
examples of algorithms are also given.

where the population is divided into different subpopulations that evolve
separately, exchanging information periodically (for instance, the Imperialist
Competitive Algorithm [28]); 2.2) multi-agent methods, whose population
is composed by multiple diverse agents with different roles that interact
with each other towards reaching increasingly better solutions (e.g. Artificial
Bee Colony (ABC [29])); and 2.3) single-population approaches, such as the
aforementioned GA. At the same time, meta-heuristics can also be divided
as per its search behavior, yielding A) differential vector movement based
methods, which rely on the computation of a differential vector to move from
a reference solution towards a new candidate; and B) solution creation based
methods, which generate new solutions to explore the search space instead
of evolving existing ones incrementally. Other criteria can be adopted for
organizing the enormous corpus of literature related to optimization meta-
heuristics, such as the support of the optimization variables of problems that
can be tackled by the meta-heuristic at hand (discrete/continuous/mixed),
the scope of the search (global/local), or the stochastic/deterministic nature
of their search operators, among other criteria.
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Among these criteria, the inspiration underneath the search algorithm
itself has sprung a vast area of research widely known as bio-inspired op-
timization [30]. Over the last decades, a manifold of behavioral patterns
observed in biological systems have been emulated to yield intelligent algo-
rithms capable of mimicking the learning and adaptation capabilities of such
biological systems to address complex computational problems. Therefore, a
bio-inspired meta-heuristic algorithm can be categorized as such if its main
search strategy gets partially or fully inspired by biological phenomena, such
as the evolution of species, the echolocation of bats or the foraging behavior
of ant colonies. A plethora of inspiring metaphors can be found nowadays
in contributions dealing with new bio-inspired optimization algorithms, not
without an ongoing controversy on the value of the metaphor itself for the
novelty and scientific soundness of the reported methods [19].

Leaving such disputes aside, a research trend that has so far endured over
the years is the hybridization of bio-inspired algorithms with problem-specific
local search methods. The main reason behind this practice is to exploit
the advantages of bio-inspired solvers, and to overcome their disadvantages
when dealing with problems for which ad-hoc heuristics can be developed
and inserted into the overall search process. Arguably, Memetic Algorithms
[31] capitalize on this principle, with many application domains having so
far harnessed this synergy between global and local search algorithms [32].

1.4. Motivation and Hypothesis

In the last years the scientific community has reported outstanding re-
sults on the application of mmeta-heuristics for the hyperparameter tuning,
structural hyperparameter tuning, and architectural design problems intro-
duced in Section 1.2. Nonetheless, when it comes to trainable parameter
optimization (Problem 4), the literature falls short in providing evidences
that mmeta-heuristics are a viable choice for the purpose. Experimental
benchmarks are far from considering realistic network sizes and levels of
complexity, placing the starting point of the benchmarks in favor for the
adoption of meta-heuristic optimization algorithms. Furthermore, compar-
isons appear to be frequently biased by only focusing on statistics about
the quality of the produced solutions, without examining the implications of
their use in terms of computational effort. As a result, even if the interest in
training neural networks using mmeta-heuristics (namely, EDL) has raised
prominently in the last years, there remains an halo of doubt around the po-
tential of these solvers to replace well-established gradient-based techniques
for neural training.

There emerges the first motivational factor for this Thesis: to perform a
thorough inspection and critical analysis of the literature related to EDL,
and to experimentally assess the potential of this research area to undertake
the problems stated previously. The lack of prior studies covering this niche
in the community stimulates a first research effort to perform this analysis,
serving in turn as an informative stepping stone towards the ultimate goal
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of this Thesis: to showcase new trends in bio-inspired optimization that
can make a difference in modeling tasks involving training several neural
networks at once.

In this regard, a new optimization paradigm forged as Evolutionary Trans-
fer Optimization (ETO) has brought a fresh breeze to the community, analyz-
ing how the solutions evolved by evolutionary operators for a given problem
can be exploited to boost the convergence of the mmeta-heuristic search
processes of other different problems(s), transferring knowledge about the
search space and/or solutions either sequentially or simultaneously. Even
though classification and regression tasks formulated as optimization prob-
lems may not profit significantly from the use of ETO algorithms, this Thesis
exposes some scenarios that could lend themselves to a more beneficial and
synergistic mix of technologies between DL and ETO. This is the case of some
RL setups comprising different environments/tasks, including multitask RL
(i.e. knowledge transfer between tasks/models for the agents to solve them in
a better/faster fashion) or meta RL (i.e. knowledge transfer between models
facing different tasks through time). The hypothesis of the Thesis in this
matter is that the transfer of knowledge realized by ETO can be helpful to
expedite the convergence of the training processes of RL agents when they
tackle environment/tasks that are related to each other (multitask RL), or
to consolidate primal knowledge between agents, suited to generalize better
to unseen tasks over time (meta RL).

The Thesis elaborates on these motivations and hypothesis, unleashing
therefrom a number of objectives and pursued milestones that are enumerated
and described in the next section.

1.5. Objectives of the Thesis

In this section the main objectives of the Thesis are described. As antic-
ipated previously, the main target is to explore and study new synergies
between Evolutionary Computation and DL. This ultimate goal can be
broken down in a number of specific objectives, detailed as follows:

Objective 1 - Literature Review and Analysis of EDL and ETO

This specific goal is covered in Chapter 2 and Chapter 3, where exhaustive
studies of the state of the art in the field of EDL and ETO is carried out.
Together, these two first chapters comprise the second constituent part of
the Thesis (Part II), in correspondence to the first introductory part of
the Thesis (Part I, which spans the present chapter):
To begin with, the literature review in Chapter 2 is conducted by examining
different trends in EDL followed to solve the problems introduced in
Section 1.2. Based on the conclusions drawn from this analysis and the
weaknesses spotted in Section 2.3, two empirical experiments are carried
out to shed light over two questions derived from the analysis: i) How
does bio-inspired solvers perform when used to optimize the architecture
and hyperparameters of a multi-layered neural networks?; and ii) Is a
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bio-inspired algorithm specifically designed for Large Scale Optimization
(SHADE with Iterative Local Search (SHADE-ILS [33])) enough to train
neural networks formed by thousands of parameters? If not, is there any
scheduled or layer-wise way to decompose the problem and make it more
approachable by using?
On the other hand, the review in Chapter 3 gravitates on on different
methodologies under the ETO paradigm, stressing on their differences
regarding how knowledge is shared among the optimization problems at
hand. From the study of the literature, insights and critical aspects of
this recent optimization branch are offered. As a result, the reader will
get familiar with the mathematical notations and concepts underneath
multi-factorial algorithms that will be thereafter used in the contributions
of the Thesis presented in Part III.

Objective 2 - Expose the potential of ETO for knowledge transfer
in multitask and meta RL [Part III]
Nourishing from the findings learned from the literature reviews in the
preceding chapters, Part III shows that ETO can help certain modeling
tasks approached via DL when they involve transferring knowledge between
different modeling instances. This third part of the Thesis targets this
goal by addressing two different scenarios where this assumption holds:
• Objective 2.1 - Evolutionary Multitasking for RL [Chapter 4]

In this first scenario, a Multifactorial Optimization (Multi Factorial
Optimization (MFO)) algorithm coined as Multi Factorial Evolutionary
Algorithm (MFEA [34]) is used to simultaneously train multiple RL
tasks formulated as optimization algorithms. By means of an adapted
version of MFEA and a tailored design of the unified search space,
MFEA’s internal operators are used to leverage inter-task relationships
by transferring knowledge between such related tasks, mimicking the
well-known and widely used TL approach. This contribution proves
that MFEA can train efficiently multiple RL tasks, taking advantage of
the exploratory skills of mmeta-heuristics, and the capability of MFO
to exchange knowledge between related problems during the search.

• Objective 2.2 - Evolutionary Meta-learning for RL [Chapter 5]
A step beyond the multitask setup tackled in the previous chapter is
the one described in Chapter 5. Specifically, the knowledge evolved
by ETO is further manipulated and processed, to yield a set of models
capable of better solving unseen tasks. This is accomplished by a
methodology that permits to automatically define which tasks can
be merged together and the essential knowledge concepts prevalent in
the evolved models. To this end, models evolved by ETO are clustered
using a measure of distance between trained neural networks. Finally,
newly appearing tasks are tested over the representative models of such
concepts assuming zero- (no feedback from unseen tasks) and few-shot
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learning (restricted chance to update the models based on the feedback
from unseen tasks).

1.6. Methodology

This section describes the research methodology followed in the development
of the research lines integrated in this Thesis. The methodology lies on the
roots of the scientific method, slightly adapted to the specific requirements
of the Thesis. First, the conclusions conducted from an exhaustive analysis
of the literature are used to support or adapt initial hypotheses. Once
evidences are enough and robust to support the hypotheses, the development
of the technical contributions of the Thesis begins, presenting the results
to the community in high-impact conferences or journals. Replicability
and transparency are two principles of the Thesis: code to reproduce the
experiments herein reported are publicly available in renowned software
repositories, easily accessible for anyone.

1.7. Structure and Reading this Thesis

Figure 1.3 summarizes the structure and reading flow of the Thesis. Part I
has introduced the concepts of DL, bio-inspired mmeta-heuristic optimization,
and the synergies between these two paradigms. Additionally, the motivation
and objectives to pursue through the rest of the Thesis have been posed. The
first objective of the Thesis is approached in Part II, where an exhaustive
review of the state of the art and current trends on EDL (Chapter 2) and
ETO (Chapter 3) is performed. Then, objectives 2.1 and 2.2 are addressed in
Part III. Chapter 4 focuses on adapting MFEA to efficiently solve multiple RL
tasks simultaneously. Then, Chapter 5 builds upon its predecessor by facing
even more complex scenarios, where the objective is to perform meta-learning
over a set of RL tasks. Finally, Part IV summarizes the contributions of the
Thesis, details the publications derived from this work, and outlines future
research directions.

Part I
Introduction

Chapter 1: Preliminaries, Motivation 
and Objectives

Part II
Literature Review

Part III
Contributions

Objective 2.1
Objective 2.2

Part IV
Conclusions and Future work

Objective 1

Chapter 2: EDL Approaches and trends

Chapter 3: Evolutionary Multitasking

Chapter 4: A-MFEA for Multitask RL

Chapter 5: Zero and Few-shot Meta-RL
Chapter 6: Final remarks

Evolutionary Deep Learning

Figure 1.3: Diagram showing the structure and reading flow of the Thesis.
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2
E V O L U T I O N A RY D E E P
L E A R N I N G : A P P R O A C H E S A N D
C U R R E N T T R E N D S

“Be curious on your journey!”
- The Outer Wilds

2.1. Introduction

The purpose of this chapter is to perform a thorough assessment of
the potential of meta-heuristic algorithms for DL (i.e. Evolutionary Deep
Learning (EDL)), supporting an informed understanding of the current state
of the art of this research area. It is supported by an exhaustive critical
examination of the recent literature falling in this intersection, and a profound
reflection, informed with empirical results, on the lights and shadows of this
research avenue.

To this end, the contributions reported in this area over the years are cat-
egorized, comprehensively reviewed and critically examined based on three
axes: a) optimization and taxonomy, which comprises a historical perspective
on this fusion of technologies, connecting clearly with the optimization prob-
lems in DL defined in Chapter 1, and a taxonomy associated to an in-depth
analysis of the literature; b) critical analysis, informed by two case studies,
which altogether elicit a number of lessons learned and recommendations for
good practices, and c) challenges that motivate new directions of research
for the near future like the ones in Part III of the Thesis. These three axes
of this study aim to provide a clear response to four important questions
related to EDL, which are represented in Figure 2.1.

Throughout the rest of this chapter, Section 2.2 briefly overviews the
historical connection between DL and bio-inspired optimization. Next, Sec-
tion 2.3 presents the taxonomy and an analysis of the literature falling on
each of its categories. Section 2.4 exposes methodological caveats resulting
from the critical literature study. Section 2.5 present the two designed cases
of study, and discuss the results obtained therefrom. Section 2.6 enumerates
learned lessons and prescribes good practices to be followed by prospec-
tive studies. Section 2.7 outlines several challenges and research directions
that should drive future research efforts of the interested audience. Finally,
Section 2.8 points out the final outline and conclusions of this chapter.

17
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Figure 2.1: Diagram depicting the three axes and four fundamental questions on Evo-
lutionary Deep Learning tackled in this chapter, along with the specific aspects that
contributes to each question.

2.2. Evolutionary Deep Learning

Despite its relative youth, the current momentum of the synergy between
DL and bio-inspired optimization is founded on a set of historical milestones
that suggested the scientific community to combine these two branches of
Artificial Intelligence. Herein, the background that led into the literature
mainstream that motivates the current study is briefly revisited. Figure 2.2
summarizes graphically such milestones, arranging them in a timeline along
with the number of related publications reported in the last few years.

Although timid attempts at NeuroEvolution (NE) with bio-inspired solvers
had been reported in the late 90s [35], it was not until 2002 when Stanley
and Miikkulainen settled a major breakthrough in the research community
with their seminal work “Evolving neural networks through augmenting
topologies”. The NeuroEvolution of Augmenting Topologies (NEAT [36])
approach proposed in this work allowed connection and layer types of an
Artificial Neural Network (ANN) architecture to be optimized by means
of a meta-heuristic algorithm towards a progressively better precision of
the evolved model for a given task. NEAT embraces the main workflow of
population-based meta-heuristics, particularly genetic algorithms: a pop-
ulation of encoded candidates is generated representing several network
architectures, from which new candidate architectures are produced and eval-
uated on a given task (in the original work, a RL task). After all candidates
in the population have been evaluated, mutation and crossover operators
are applied, generating a new population by means of combining network
architectures, generating new layers or varying their hyper-parameters. This
iterative search process is stopped when a stopping criterion set beforehand
is met. As just stated, this algorithm was mainly proposed to solve reinforce-
ment learning tasks, keeping in mind the profit of applying meta-heuristics
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to such environments, such as getting interesting behaviours and not falling
in local optima in expense of precision.
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Figure 2.2: Timeline with main milestones in the history of Evolutionary Machine Learning,
and a bar diagram showing the number of publications reported in this research area
during the period 2013-June 2020. Data retrieved from Scopus by submitting the query
(EVOLUTIONARY OR SWARM INTELLIGENCE) AND DEEP LEARNING. (S) stands for Survey.

Shortly after its first publication, NEAT’s unprecedented results spurred a
flurry of new extensions and variants, not only in terms of new tasks and
applications, but also in what refers to its core algorithmic components.
Regarding the latter, the acknowledged importance of using good network
encoding strategies soon became a major research goal in this literature
strand, given the huge search space spawned by the evolution of architecture
and weights of ANN. In its original version, NEAT encoded candidates using
a direct encoding strategy, i.e. networks’ hidden units, connections and pa-
rameters (phenotype) were directly represented as an array representing each
point of the network (genotype). However, in 2009 Stanley et al. proposed
the so-called Hypercube-based NEAT, or HyperNEAT [37], which relies on a
generative encoding strategy to evolve large-scale neural networks using geo-
metric regularities of the task domain and compositional pattern producing
networks (namely, an ANN variant comprising multiple potentially hetero-
geneous activation functions that can be evolved via genetic algorithms).
Besides the optimization of the activation function of each neuron in the net-
work, HyperNEAT also proposed the use of an indirect encoding to represent
the networks to be evolved, inheriting other concepts from preceding NEAT
versions such as speciation and historical marking, which were also adopted
and extended in ES-HyperNEAT [38]. Years later, a new NEAT approach was
developed for CNNs, which was coined as CoDeepNeat [39]. Following the
NEAT design principles, CoDeepNeat was proved to excel at evolving layers,
parameters, topology and hyper-parameters of CNNs. To this end, it uses an
indirect encoding approach so that the network information can be encoded
as rules or processes for creating individuals, ultimately yielding a reduced
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representation of the search space that can be explored more efficiently by
the bio-inspired algorithm in use.

Since its first appearance, NE approaches (with NEAT at their forefront)
have been applied to multitude of tasks and problems. A major fraction
of them relate to RL, such as car controllers [60] or first-person agents
control [61]. Interestingly, years after these applications were reported, the
community shifted its research focus towards bio-inspired algorithms as an
efficient replacement to train Deep Reinforcement Learning methods [46],
showing up competitive results. Bio-inspired optimization was also applied
to other DL tasks at the time, particularly for CNNs [62], and showcased in
a diversity of applications including the classification of epileptic EEGs [63],
time series forecasting [64] or scheduling deicing tasks in airports [65].

As a result of these findings, a growing literature corpus started to ex-
plore the potential of neuro-evolution strategies for the topology and struc-
tural hyper-parameter optimization of different DL models, including Auto-
Encoder (AE), Deep Boltzmann Machine (DBM), and GANs. Naturally, the
research community soon flowed into a further use of bio-inspired algorithms:
the optimization of the trainable parameters of DL models [66]. An early
approach was explored in [67], where a genetic algorithm is used for archi-
tecture optimization, and differential evolution for weight optimization. The
main scientific interest of this work and those published thereafter is to assess
whether meta-heuristics can avoid the convergence limitations of gradient
descent methods when facing strongly non-convex search spaces as those
characterizing the problem of training complex DL architectures. Nonetheless,
most agreed on the dilated computation time and enormous computational
resources needed by meta-heuristic solvers, which outweigh in practice the
eventual convergence gains reported in experimental studies. As a result,
gradient back-propagation approaches have dominated as the DL training
solvers of choice over the years. Recently, this tendency is again emerging,
stimulated by advances in highly parallel computing paradigms (including
GPU and distributed asynchronous computation), prospecting new ways
to train DL models with bio-inspired algorithms appearing frequently as
promising alternatives.

Although it is still an incipient research field, some huge companies like
Google, Facebook or Uber have glimpsed the power of this hybridization, and
have started investing massively in software frameworks towards optimizing
their DL models with meta-heuristics. The research community has also joined
this momentum by open-sourcing software packages for this same purpose.
EvoDeep [50], AutoKeras [68] or Google Cloud AutoML are noteworthy
platforms used for autonomously optimizing DL models, which are collected
in Table 2.1 together with other alternatives from the literature.

The complexity of these problems, given by the cardinality of their search
spaces and/or the large number of variables to be optimized, has stimulated
an ever-growing corpus of literature that lasts to date. New terms such as
Neural Architecture Search (NAS) have been forged to collectively refer to
all techniques aimed at automating the design of neural networks. For this
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Table 2.1: Software frameworks to evolve Deep Learning models using meta-heuristics
and other search strategies.

Ref. Name Year DL models Optimization domains Optimization
algorithm

Program-
ming
Language

[40] EvoCNN 2017 CNN
Topology, structural

hyper-parameters, weight
initialization

GA Python

[41] ATM 2017 DBN (and
shallow)

Optimization of hyperparameters
and model selection Bayesian Opt. Python

[42] MetaQNN 2017 CNN
Topology, structural

hyper-parameters RL
Python,
Caffe

[43] DEvol 2017 CNN
Topology, structural

hyper-parameters GA
Python,
Keras

[44] CGP-CNN 2017 CNN
Topology, structural

hyper-parameters CGP
Python,
Chainer

[45] AdaNet 2017
Architectures

represented as a
DAG

Topology, structural
hyper-parameters, training
hyper-parameters, trainable

parameters

AdaNet
Python,
Tensor-
Flow

[46, 47] AI Labs NE
Algorithms

2017-
2018 CNN

Trainable parameters (weights
and biases) GA + NS

Python,
Tensor-
Flow

[48] Auto-
Pytorch 2018 CNN + shallow

Topology, structural
hyper-parameters, training

hyper-parameters

Random-forest-
based Bayesian
optimization

Python,
Pytorch

[49] DNF 2018 CNN
Trainable parameters (weights

and biases) PSO, HS and DE
Python,
Tensor-
Flow

[50] EvoDeep 2018 CNN
Topology, structural

hyper-parameters, training
hyper-parameters

EA
Python,
Keras,
Tensorflow

[51] ENAS 2018 CNN, RNN Topology

Policy
gradient-based

subgraph
selection

Python,
Tensorflow

[52] Auptimizer 2019
Interface for

multiple
architectures

Hyperparameter optimization
9 Methods (from

grid search to
NAS)

Python

[53] DENSER 2019 CNN
Topology, structural

hyper-parameters, training
hyper-parameters

GA, DSGE Python

[54]
Google
Cloud

AutoML
2019 CNN, RNN

Topology, structural
hyper-parameters, training

hyper-parameters
TL + NAS

Propri-
etary

[55] AutoKeras 2019 CNN, RNN Topology Hyperband,
Random, Greedy

Python,
Keras

[56] LEAF 2019 CNN, RNN
Topology, structural

hyper-parameters, training
hyper-parameters

CoDeepNEAT Python,
Pytorch

[57] Ludwig 2019
CNN, LSTM,

RNN,
Fully-Connected

Structural and training
hyper-parameters

Tree of Parzen
Estimators

Python,
Tensor-
Flow

[58] Keras-
CoDeepNEAT 2020 CNN, RNN

Topology, structural
hyper-parameters, training

hyper-parameters
CoDeepNEAT Python,

Keras

[59] EvoAAA 2020 AE Topology GA, ES, DE R



22 edl: approaches and current trends

Table 2.2: Recent overviews on Evolutionary Deep Learning and related topics.

Sur-
vey

Pe-
riod

#
reviewed

works
Taxonomy

Coverage
(DNN

models/tasks)

Empiri-
cal study Lessons learned and challenges

[69] 1987-
2016 ∼ 20

Yes
(optimization
domain of the

neural network∗)

CNN, RNN, RL,
DBN No

Relevance of data quality. Evolutionary
techniques good at exploration and
exploitation but no single method for all
optimization tasks.

[70] 2014-
2018 ∼ 50 No (temporal

analysis) CNN, RL No

High computational resources are required.
Special emphasis on ensembles, transfer
learning, multiobjective and modular
evolutionary approaches.

[71] 2011-
2018 ∼ 20

Yes (NN-based
or GP-based and

optimization
problem:

architecture,
training,

multi-objective)

CNN No

Lack of mathematical foundations,
computational costs, scalability, poor
generalization ability of the evolved model,
lack of interpretability

[72] 2011-
2019 ∼ 90

Yes (Evolution-
ary/Swarm

Intelligence and
DL model)

CNN, DBN,
RNN, AE

No Lack of rigurosity by the community. Costs
of implementation, run time and overfitting.

[73] 2012-
2019 ∼ 20

Yes
(meta-heuristic

and DL
Architecture)

CNN, DBM, DBN No Time, more efforts on enhancing convergence
speed and complexity (meta optimization)

[74] 2002-
2020 ∼ 30

Yes(Data
preparation,

Feature
engineering,

Model
generation and

Model
evaluation).
Completely

centered on NAS
approaches

CNN, GAN,
LSTM

No

NAS applied to more fields. Reproducibility
of the experiments, Interpretability and
Robustness as main objectives. Seek of a
Complete AutoML Pipeline.

[75] 1994-
2020 ∼ 130

Yes (NAS
encoding
strategy,

classification
criteria,

operators and
selection

strategy that
speed up the

evolution)

CNN, DBN,
RNN, AE

No

EC based NAS vs Random Search based.
Effectiveness of crossover and mutation over
just mutating. Acceleration in evaluation as
a challenge. A common platform for the
comparison needs to be built in the future.

This
The-
sis

1994-
2020 215

Yes (DL
model/task and

optimization
problem)

CNN, AE, DBM,
DBN, RNN,

GAN, RL
Yes See Sections 2.6, 2.7 and 2.8

end, Evolutionary Computation and Swarm Intelligence meta-heuristics have
been identified among the most interesting search strategies to be developed
in years to come, along with reinforcement learning, Monte Carlo Tree Search
and other assorted methods [76]. Advances in the use of these meta-heuristics
for problems related to DL have been reviewed in a number of surveys on this
topic, listed in Table 2.2. However, the critical inspection of the achievements
in this area reported over the years reveals poor methodological practices,
unsolved technical caveats and research challenges that deserve a detailed
analysis of where the community stand in this effervescent area. We now
delve into this matter in depth.
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2.3. Taxonomy

In light of the past history between bio-inspired optimization and DL,
a need arises for properly organizing contributions to date in a taxonomy
that covers which problems are addressed, which DL models are involved,
and which bio-inspired algorithms are in use. In this section this analysis
is performed, centering the discussion around a taxonomy that sorts the
literature according to the three aforementioned criteria. The main purpose
of this taxonomy and the literature analysis made over each of its categories
(Subsections 2.3.1, 2.3.2 and 2.3.3) is to highlight those areas where the com-
munity has so far placed most research efforts. This literature analysis settles
a firm stepping stone towards a critical discussion of poor methodological
practices and points of improvement observed in related contributions to
date: the shadows in which this field is held nowadays. Such a discussion
will be held in Section 2.4.

As has been stated in Section Section 1.2, four main optimization tasks
are distinguished: topological optimization (Problem 1), structural hyper-
parameter optimization (Problem 2), training hyper-parameter optimization
(Problem 3) and trainable parameter optimization (Problem 4). The taxon-
omy gathers Problem 2 and Problem 3 under the general hyper-parameter
tuning category, discriminating between them in a lower level of the taxon-
omy. The main reason for this special arrangement of the taxonomy is to
highlight that as per the reviewed literature, there is little explicit distinction
between structural hyper-parameter and training hyper-parameter optimiza-
tion in related contributions. The thorough examination of this corpus has
discriminated interesting research opportunities in the extrapolation of stud-
ies and frameworks, from training to structural hyper-parameter tuning and
vice versa. When it comes to Problem 4, a distinction is made between i)
bio-inspired algorithms that do not incorporate any problem-specific knowl-
edge in their design; and ii) bio-inspired solvers that are hybridized with
local search solvers or combined with gradient back-propagation techniques.

Figure 2.3 depicts graphically the taxonomy considered for the literature
analysis. The first level considers the type of optimization problem (topol-
ogy, hyper-parameter and trainable parameter optimization), followed by
contributions sorted as per the DL model and kind of bio-inspired solver (Sec-
tion 1.3) under choice. In what follows representative contributions classified
within each of these categories are discussed.

2.3.1. Topology Optimization
It is widely acknowledged that the topology or architecture of DL models

have a direct impact on their performance. For this reason researchers
have traditionally striven to develop automated methods for generating
topologically small yet well-performing network architectures. In this context,
the set of algorithms gathered under the NE label aim at progressively
augmenting the complexity of neural network topologies to attain increasingly
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Evolutionary
DL

Topology Optimization
(Problem 1)

Topology
CNN
• EC :
[77, 78, 79, 80]
[81, 82, 83, 84]
[85, 86, 87, 88]
[89, 90, 91, 92]
• SI :
[93, 94]
• Hybrid :
[95]
RNN
• EC :
[96, 97, 98]
[99, 100, 101]
[102]
• SI :
[103, 104, 105]
• Hybrid :
[106]
AE
• EC :
[107, 108, 109]
[110]
DBM
• EC :
[111]
DBN
• SI :
[112]
GAN
• EC :
[113, 114, 115]
RL
• EC :
[61, 116, 117, 118]
[119, 120, 121]

Topology +
hyper-parameters

CNN
• EC :
[40, 53, 56, 44]
[122, 123, 124]
[125, 126, 127]
[128, 129, 130]
[131, 132, 133]
[134, 135, 136]
[137, 138, 139]
[140, 141, 142]
[143, 144, 145]
[146, 147, 148]
[149, 150, 151]
[152, 153, 154]
[155, 156, 157]
[158, 159, 160]
[161, 162, 163]
[164, 165, 166]
[167, 168, 169]
[170, 171, 172]
[173, 174, 175]
• SI :
[176, 177, 178]
[179, 180, 181]
[182]
• Hybrid :
[183]
RNN
• EC :
[131, 184, 185]
[186, 125, 187]
[188, 163, 167]
[189]
• SI :
[190, 185]
AE
• EC :
[59, 191, 192]
[193, 194, 195]
• SI :
[196]
DBM
• EC :
[197, 198]
• SI :
[199, 200, 201]
[198]
DBN
• EC :
[202, 203, 204]
[205, 206]
• SI :
[207, 208, 209]
[210, 211, 212]
GAN
• EC :
[213, 214]

Hyper-parameter Tuning
(Problems 2 and 3)

Structural
hyper-parameters

CNN
• EC :
[122, 215, 216]
[217, 218, 219]
[220, 221]
• SI :
[222, 223]
RNN
• EC :
[224]
• SI :
[225, 226, 227]
AE
• EC :
[228]
DBN
• EC :
[202, 229, 230]
• SI :
[208, 231]

Training
hyper-parameters

CNN
• EC :
[215, 232]

• SI :
[233, 234, 235]
• Hybrid :
[236]
DBN
• EC :
[229, 202, 230]
[237]
• SI :
[207, 208, 231]
GAN
• EC :
[238]

Model Training
(Problem 4)

Hybrid
algorithms

CNN
• EC :
[62, 239, 240]
[241, 242, 243]
[146, 244, 245]
• SI :
[246, 247, 248]
RNN
• EC :
[249]
• SI :
[250]
AE
• EC :
[251, 252]
DBM
• EC :
[253]
DBN
• SI :
[254, 112]
GAN
• EC :
[255]
RL
• EC :
[116, 251, 256]
[257, 258, 259]

Naive
algorithms

CNN
• EC :
[62, 125, 131]
[239, 240, 260]
[261, 262, 263]
• SI :
[246, 247, 248]
[261]
RNN
• EC :
[125, 131, 186]
[264, 265, 266]
[267, 268, 269]
[270, 98, 99]
• SI :
[271, 272, 250]
• Hybrid :
[273]
AE
• EC :
[264, 274]
DBN
• SI :
[275]
GAN
• EC :
[276, 277, 278]
RL
• EC :
[61, 46, 279, 117]
[119, 118, 280]
[281, 282, 283]
[121]

Figure 2.3: Taxonomy of the reviewed literature on Evolutionary Computation and
Swarm Intelligence algorithms applied to the optimization of Deep Learning models. The
taxonomy is structured by the domain of the Deep Learning model under focus (topology,
hyper-parameters and trainable parameters), further discriminated by the specific Deep
Learning model under consideration and the type of bio-inspired algorithm in use (EC :
Evolutionary Computation; SI : Swarm Intelligence; Hybrid: a mixture of both).

better generalization properties while keeping its complexity to its minimum
required. Originally applied to ANN models, different NE variants have been
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applied in the last few years to optimize DL models, not only in terms of
their topology, but also jointly with their structural and training hyper-
parameters (e.g. kernel size, activation function, dropout and learning rate).
In some few cases, trainable parameters have also been considered in the
set of variables to be optimized via NE [62]. Furthermore, since they resort
to evolutionary algorithms at its core, NE approaches have stimulated over
the years a manifold of other bio-inspired approaches, in a way to assess
whether the same optimization problem can be tackled more effectively with
alternative search strategies and operators.

All in all, in terms of topological optimization CNNs are arguably the most
targeted DL models to date. CNNs’ topology optimization is faced by scientific
community in two ways; layer by layer or by blocks. In layer-wise optimization,
hyper-parameters are fixed and networks are fully evolved using bio-inspired
solvers, such as GA [79] and customized versions of other Evolutionary
Algorithms [77]. In this last work, the so-called AmoebaNet-A model settled
a state-of-the-art landmark score on the ImageNet dataset (83.9% accuracy),
including comparisons to other search strategies (random search and RL).
Another approach proposed in [94] resorts to PSO to optimize a block
formed by dense layers. Once optimized, this block is stacked along with
convolutional and pooling layers configured with fixed hyper-parameters, and
ultimately used to address an image classification task. This work exemplifies
a research trend focused on optimizing the topology of certain parts of the
entire DL architecture, in an attempt at reducing the cardinality of the
search space and speeding up the search process, at the cost of being much
less exploratory in terms of network configurations than other counterparts.
There is another important matter to be taken in account when performing
topological optimization: the encoding of solutions, which impacts directly
on the dimensionality of the search space. Actually, initial improvements of
NE approaches were achieved thanks to novel network encoding strategies,
which allowed for an easier exploration and less computational cost than
preceding alternatives.

Another strand of literature has elaborated on more complex problem
formulations by jointly addressing the optimization of the topology of the
network along with its hyper-parameters. Again, CNNs have become central in
related studies. An illustrative work is the one in [40], where an Evolutionary
Algorithm (EA) is used with different mutation operators operating on
topological variables, structural and training hyper-parameters such as the
filter size, the convolution stride, learning rate or the insertion/removal of
convolutional layers, among others. Studies in this field tend to be similar
to each other in terms of the complexity of the optimization problem under
consideration. Thus, new proposals are usually made by customizing the
operators (mutator, selector) of optimization algorithms or by developing
custom encoding strategies, as in [176] where a PSO variant is introduced
based on an IPv4 based codification scheme with varying length.

Despite the predominance of CNNs in topological optimization, RNNs
(and in particular, LSTM networks) have also been a subject of study in
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this research area, In [96] a Differential Evolution (DE) solver is proposed
for achieving this purpose and efficiently undertaking a wind forecasting
regression task. It is relevant to observe that when both architecture and
hyper-parameters are evolved for RNNs, certain hyper-parameters are recur-
rently considered in related studies, such as learning rate, dropping frequency
factor [190] or batch size [185, 184]. In general terms, the aforementioned DE
appears to be the most applied meta-heuristics in LSTM. A few exceptions
can be found, such as [190] (Bat Algorithm (BA)), [103] (ACO) and [185],
where a comparison is made between DE, PSO and SA, concluding that
DE reaches better performance levels. Hybrid approaches have been also
explored for the optimization of RNNs, as in [106] where the architecture
(i.e. connection pattern) is optimized by means of a hybrid PSO-GA solver.
An interesting point arises when inspecting in detail this set of studies:
the creation of custom objective functions to allocate different (usually
conflicting) optimization goals. The work in [96] is an example of how a
customized objective function can yield topologically optimized network
designs that achieve a balance between performance and model complexity,
being the latter of particular interest for the deployment of the model in
resource-constrained embedded devices.

Other DL models have grasped a remarkable attention in topological opti-
mization. AEs have been optimized topologically, often along with structural
hyper-parameters in those cases where convolutional layers are involved.
In their original formulation, AEs are composed by stacked dense layers
(encoder) producing a low-dimensional representation of the input, which is
reconstructed by another set of stacked dense layers (decoder). A contribution
from 2015 [108] presented a way to generate promising AE architectures by
mutating candidates by using a customized EA, whose mutation operator is
based on the reconstruction error achieved by the decoder. Also in this vein,
a mini-batch variant training method was proposed (evo-batches) aimed at
reducing the computational cost when a large number of candidate networks
have to be evaluated in large datasets. Decoder and encoder topologies of
studies related to AEs are often assumed to be symmetrical [108]. However,
in [107] a more flexible architecture was proposed, where the decoder is
evolved along with the encoder and does not have to mimic its architecture.
In this reference several operations were applied to topological variables, such
as layer addition (random number of neurons), layer removal, application
of Gaussian perturbation to the number of neurons, or layer swapping. To
wrap up the activity noted in AEs, some notorious works are [196] and [191],
where PSO and GA are respectively used to evolve topology and structural
hyper-parameters of AEs comprising convolutional layers.

Proceeding forward with the analysis, the attention is focused on DBMs,
whose architecture can be very similar to Deep Belief Network (DBN) in
terms of the structural hyper-parameters involved in the optimization pro-
cess. Given this similarity and the relative scarcity of studies related to
these models, in what follows they are jointly analyzed. The majority of
works related to the topological optimization of DBMs and DBNs pay special
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attention to the process of optimizing both architecture and some hyper-
parameters. Moreover, most of them rely on Swarm intelligence algorithms,
such as PSO or ACO. An exception can be found in [207] where ABC is used
to optimize DBNs’ structure, learning rate, momentum and weight decay.
The results are compared to those yielded by other bio-inspired solvers:
Firefly Algorithm (FA), Cuckoo search (CS) and Harmony Search (HS). FA
for 2- and 3-layered DBN, and ACO for single-layer DBN, resulted to yield
the best performing network architectures for the image reconstruction task
under consideration. The rest of contributions consider a combination of
all or some of learning rate, momentum or weight decay hyper-parameters,
focusing the application of the optimized model to different practical prob-
lems such as traffic flow prediction [208] or the detection of turbine failures
[210]. The work in [200] introduces a novel way to optimize structure and
hyper-parameters of DBMs, and compares the performance of DBMs for image
classification when optimized with different flavors of the PSO solver, random
search and several HS variants. They concluded that bio-inspired techniques
are suitable to optimize DBMs, beating Random Search in all considered
datasets. Nevertheless, network topologies optimized via PSO and HS solvers
scored similar performance levels. This last observation connects directly
with one of the points remarked in the critical analysis of Section 2.4.

In terms of algorithmic variants, some hyper-heuristic techniques like [202]
proposed an approach to optimise DBNs’ structural hyper-parameters, i.e.
number of hidden units, along with non-structural hyper-parameters like
learning rate, and some hyper-parameters related to the heuristic algorithm
(number of epochs or iterations). Hyper-heuristics have also been used to
optimize CNNs, [232] presents a method to select the best heuristics, where
batch size, number of epochs, neurons on the fully connected layer, dropout
and learning rates, rho and epsilon factors are evolved.

There are also a few works dealing with the topological optimization of
GANs. In [213], a meta-heuristic approach to evolve GANs’ discriminator and
generator is introduced. Specifically, a GA is used to evolve the architecture,
activation functions of each layer and initialization mode in both generator
and discriminator. Furthermore, an optimization of the loss function is done,
taking them from a bunch of well-known formulations. Besides, training
hyper-parameters are also mentioned in this work as potentially evolvable
variables (yet not optimized in practice), such as the gradient-based solver
used to learn the trainable parameters, the batch size and the number of
epochs. Shortly thereafter, Costa et al. [114] proposed an approach to opti-
mize the architecture and parameters of both the generator and discriminator
modules of a GAN. The approach was based on DeepNEAT and adapted
to the context of GAN optimization. Linear, convolutional and transpose
convolutional layers were directly mapped to a phenotype representing the
final network. In all layers the activation function was evolved, and in the
case of convolutional and transpose convolutional layers, the output channels
were also considered.
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Finally, in the field of RL, the tendency observed in the literature analysis
is to use NE approaches to optimize both topology and trainable parameter
(weights) of the neural network mapping the output of the environments
to the actions to be taken by the agent. Commonly, NEAT is used for this
purpose [119, 117, 116, 118], which becomes in charge of optimizing the
neural network involved in Deep RL approaches. A real-time adaptation of
NEAT was used in [61] to evolve agents for the NERO videogame, placing an
emphasis on the need for efficient workarounds to alleviate the complexity
of neuro-evolution methods.

On a summarizing note, the literature on bio-inspired algorithms applied
to architecture optimization has a long history departing from NE, which was
originally applied to evolve ANN architectures. Since then, many other meta-
heuristics have been applied to optimize architecture and hyper-parameters
of DL models. Given that networks can have variable-length topologies, a
good solution encoding strategy is essential to lessen computational costs and
the time of execution without hindering the representability of all network
configurations. Remarkably, modern bio-inspired solvers such as FA, BA and
CS have been lately used with competitive results with respect to classical
solvers (EA, PSO and ACO).

2.3.2. Hyper-parameter Optimization
Arguably, one of the optimization tasks where bio-inspired methods

have been traditionally applied within the Machine Learning field is hyper-
parameter tuning. It is well-known that hyper-parameter tuning usually
yields better performance levels than off-the-shelf model configuration. When
shifting the focus towards the hyper-parametric optimization of DL models,
two major fields are spotted. On the one hand, literature focused on opti-
mizing parameters related to the training algorithms, such as learning rate,
batch size or momentum. On the other hand, architectural hyper-parameters,
which are layer-type-dependent, e.g. filter size, number of kernels, activa-
tion functions or stride size in CNNs. Actually, given the high number of
structural hyper-parameters of convolutional layers, CNNs have protruded
as one of the most explored DL models for hyper-parameter optimization,
in many cases jointly with training hyper-parameters such as the learning
rate, momentum or weight decay of gradient solvers. Although there are
some contributions focused exclusively on the optimization of structural
hyper-parameters, the mainstream is to jointly address the optimization of
topology and hyper-parameters, as the literature on topological optimization
examined in the previous subsection has clearly revealed.

Let us start from 2016, when [233] proposed a set of bio-inspired meta-
heuristics (BA, FA and PSO) to optimize the aforementioned hyper-parameters
in a CNN used for Parkinson disease identification from image data. Likewise,
[215] proposed a DE-based approach to optimize filter sizes, number of
neurons in the fully-connected network end, weight initialization policy and
dropout rate for sentiment analysis. Comparisons were made to GA and PSO,
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achieving better results in terms of accuracy and computational efficiency.
The optimization of dropout probability is other common approach that
some authors have tackled using different solvers, including CS, BA, FA
and PSO [234] or hybrid GA and TS algorithms [236]. In this latter work
random search and Bayesian optimization were proven to perform worse
than the proposed hybrid meta-heuristic algorithm over the considered image
classification datasets. Batch size and learning rate were also regarded as
optimization variables.

Moving on to RNNs, very few papers are focused only on hyper-parameter
optimization, conforming to the general trend observed in the analyzed
literature. Dropout optimization is tackled for LSTM networks in [225] and
[226], where ACO is used for engines vibration prediction. The connections
between neurons are activated/deactivated to accomplish the task, which
is very similar to the approach carried out in [227]. However, the aspect to
be highlighted in this last reference is that a PSO is utilized to optimize the
output connections of an Echo State Network (ESN), a randomization-based
RNN model belonging to the family of Reservoir Computing models.

2.3.3. Trainable Parameter Optimization
In recent years the advent and progressive maturity of new parallel and

distributed computing paradigms have reignited the interest of the scientific
community in applying bio-inspired optimization algorithms to train DL
models. Although each model type is different in terms of topology, they share
some disadvantages resulting from the adoption of gradient back-propagation
training methods, such as gradient vanishing/exploding and proneness to
get stuck in local optima. Evidently, the complexity of the problem grows up
as the number of parameters involved in the optimization process increase,
yielding largely non-convex search landscapes. These acknowledged issues
have been extensively studied by the community by proposing different
workarounds. Nonetheless, an increasing trend towards the use of bio-inspired
solvers for this purpose can be noticed in recent literature, as their search
operators do not rely on gradient back-propagation anyhow, and therefore
avoid its drawbacks effectively. Based on this rationale, the debate will
delve into how the community has adapted different bio-inspired solvers for
training DL models.

A first examination of the literature exposes two main tendencies followed
by the community, which are reflected in the second level of the corresponding
taxonomy branch of Figure 2.3:

Approaches that combine bio-inspired solvers with traditional training
algorithms, which aim to overcome the disadvantages introduced before.
Almost the entirety of studies adopting this hybrid design strategy are
focused on CNNs, implementing the aforementioned combination in many
different ways. A straightforward way to overcome falling in local optima
is to evolve an initial set of values for the trainable parameters (weights,
bias) that sets the gradient back-propagation solver on a promising path
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towards the global minimum of the loss function. In [247] this approach
is adopted for training a CNN using the ABC algorithm. Other works
[239] combine GA and Stochastic Gradient Descent (SGD): GA evolves
new candidates through its search operators, but the fitness function is
evaluated after some training epochs of SGD. Similarly, in [248] PSO is used
to evolve the trainable parameters of the last layer of a CNN, while the
parameters of the rest of the layers are learned via SGD. Comparisons with
the CNN trained exclusively with SGD rendered an enhanced convergence
speed and final accuracy on image classification tasks. Last but not
least, in [250] the CS algorithm is used to train RNNs following two
strategies: one trained using only this solver, and the other combining
CS and gradient back-propagation. A benchmark comparison to networks
trained with conventional gradient back-propagation and different variants
of the ABC algorithm discovered that all models trained using bio-inspired
optimization techniques performed better than the RNN trained with
gradient back-propagation.

Approaches in which training is performed completely using bio-inspired
optimization methods. Most references embracing this second strategy
deal with RNNs and CNNs, and differ from each other mostly in the search
algorithm being considered. All in all, a common approach is to evolve
the trainable parameters of the model (via the search operators of the
bio-inspired solver at hand), and evaluate it in terms of loss value or
any other performance estimator linked to the task at hand. In this
line, in [260] and [262] two SA-based solvers are proposed and assessed
for optimizing the parameters of a CNN, achieving better performance
scores and better convergence speed than the same model trained via
gradient back-propagation. LSTM network training has also been tackled
by using different bio-inspired optimization techniques. A good exponent
is the work in [265], where HS, Gray Wolf Optimizer (GWO), Sine Cosine
Algorithm (SCA) and Ant Lion Optimization (ALO) were compared to
each other when used to learn the trainable parameters of different LSTM
model configurations. It should be emphasized that despite the diversity
of methods considered in this work, no comparisons to traditional training
solvers were reported, uncovering one of the critical points discussed in
Section Section 2.4.

Before proceeding with this critical analysis, some comments on Deep RL
models are provided. Bio-inspired algorithms have been lately postulated as
efficient alternatives to solve several optimization problems underlying these
models. A first approach is to train parts of the architecture via evolutionary
algorithms, and the rest using SGD. This is indeed what the study in [251]
proposes: a Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is
used to evolve weights for the behavior-generating network, while the rest of
the Deep RL architecture (a convolutional AE) is trained by using a gradient
based method. This work continued the research line started years before
in [280], where CMA-ES was used to train simpler RL networks. All in all,
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Evolutionary Algorithms have largely demonstrated to be efficient solvers to
train Deep RL models, as shown in renowned studies such as [46] (GA with
Novelty Search) and [282] (DE and Novelty Search). Recent works [281] have
also explored the capabilities of multitask optimization evolving multiple
related RL tasks at the same time, taking advantage of the transfer of genetic
information between tasks. In other works, NEAT is used to optimize the
trainable parameters and the topology of a Deep RL model [119, 117]. On
the other hand, in [256, 257] an hybrid EA algorithm is proposed, where
a population of networks is trained and periodically evolved, exploiting
Lamarckian transfer capabilities. This same procedure is used in [258] as
a way to inject information about the gradient in the population of indi-
viduals maintained by the evolutionary algorithm during the search. Other
hybridization techniques consist of the use of different networks in the same
architecture, where some of them are trained via SGD, and others evolved
with evolutionary operators. This is the case of [259], where the parameters
of an RNN used for determining the actions of an agent are evolved using
Cooperative Synapse Neuroevolution (CoSyNE), an evolutionary algorithm
that enforces subpopulations at the level of a single trainable parameter.
This work built upon the findings in [279] and extrapolated them to complex
Deep RL models, showcasing how evolutionary algorithms can evolve small
networks capable of reaching competitive performance levels.

2.4. Critical Methodological Analysis

The above corpus of reviewed literature sheds evidence on the vibrant
activity of the intersection between bio-inspired optimization and DL. So
far the community has reported interesting findings in what refers to hyper-
parameter optimization, topological search and small/medium-sized network
training. Notwithstanding this noted activity, the critical analysis of these
contributions has disclosed a number of poor practices and methodological
shortages that should be underlined to set them down in black and white. A
brief discussion about these issues is carried out next, settling the necessary
rationale for the experimental part of this chapter.

2.4.1. Lack of Benchmark Datasets and Tasks
A major problem observed in the literature is the heterogeneity of datasets

used to validate new algorithmic approximations for the optimization prob-
lems under analysis. Even when the task is clearly defined (e.g. image
classification or time series forecasting), the possibility to compare the re-
sults obtained by different studies becomes unfeasible since the considered
datasets are not the same.

For the community to gain verifiable evidence about the claimed gains of
upcoming proposals, consensus should be reached about the datasets/tasks
that should be utilized for comparison purposes in the future. Unfortunately,
the diversity of datasets/tasks over which some of the new contributions
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are assessed seem to go in the opposite direction, calling into question
whether the reported performance improvements can be extrapolated to
other learning problems.

2.4.2. Unrealistic Complexity of Deep Learning Models
Besides the heterogeneity of datasets/tasks discussed above, it is often the

case that the DL models under consideration do not meet the complexity
levels of the state of the art for the task under consideration. This is
particularly concerning in works related to model training (Problem 4),
where the cardinality of the search space faced by the meta-heuristic solver
is in the order of several thousands to millions of optimization variables
(trainable parameters). For instance, a recent work on image classification
using the well-known MNIST dataset has recently established a new record
in accuracy (0.1% test error rate) with a model comprising 57.02 millions
of trainable parameters [284]. However, most of the reviewed literature on
training via bio-inspired solvers rarely considers DL models that surpass a
few thousands of trainable parameters.

This issue again calls for a major reflection on whether research advances
are missing the real challenge underneath the use of bio-inspired algorithms
in such large search spaces (scalability, exploitation of the correlation among
decision variables).

2.4.3. Comparison Methodology
Even if addressing and effectively solving the preceding two issues, several

methodological aspects still remain often overseen when comparing among
different solvers for a given task/dataset/optimization problem scenario:

Baseline schemes: the literature analysis revealed a fraction of contribu-
tions discussed on extensive experiments with several new meta-heuristic
algorithms for a given optimization problem, without including in the
benchmark standard solvers utilized in the past for the same problem. This,
again, is particularly worrying in regards to Problem 4 (model training):
comparisons should compulsorily include gradient back-propagation based
solvers widely used for the same purpose (e.g. SGD, Adam). Overlooking
the analysis of whether bio-inspired algorithms perform competitively with
respect to established solvers for the same purpose is counterproductive
for the potentiality of this research area.

Solver’s complexity: in regards to the previous point, a major consensus
should be reached on the dimensions over which comparisons among
solvers should be made for conclusions to be fair and of practical value. It
is particularly concerning that no computational complexity assessment
has been made in almost all studies reported to date. Instead, the focus is
placed on the predictive performance gains yielded by the newly developed
solver with respect to its counterparts in the benchmark. Unless properly
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quantified, considered and eventually alleviated by virtue of new research
directions, the huge computation cost of EDL can be an obstacle for
benchmarks to lead to conclusions of practical relevance. Evolutionary
Computation and Swarm Intelligence algorithms rely on search space
sampling and model evaluation, both of which are not efficient strategies
for large-scale applications.

Objective function(s): it can be noticed that relevant divergences emerge in
how the optimization algorithms proposed over the years are guided when
attempting to solve a given optimization problem. For instance, a common
practice is to reserve a validation data subset over which a measure of
performance related to the task at hand is computed (e.g. accuracy in
image classification). This measure is used as the objective function guiding
the search of the proposed optimization algorithm. However, depending
on whether this validation subset is kept fixed or shuffled, a partition
bias might affect the generalization capabilities of the evolved network,
specially when dealing with small datasets.
On a similar reasoning, when dealing with imbalanced datasets the stan-
dard definition of accuracy is known to be not adequate to quantify
the performance of the model in the minority class, and could exacer-
bate further the aforementioned problems. In what refers to Problem 4
(trainable parameter optimization), this issue becomes even more serious
because derivatives of the loss function are not needed any longer, hence
widening the portfolio of possible objective functions. To date, there is
no clear answer whether differentiable loss functions should be selected
at the objective function of bio-inspired optimization algorithms used for
model training, or, instead, alternative task-dependent objectives should
be formulated.

Parameter tuning of solvers: additional issues arise in how different solvers
are compared to each other for a given optimization problem. To begin
with, it is often the case that no evidence is provided about the optimality
of the parameters controlling the behavior of the search algorithm itself.
In the research community working in bio-inspired optimization, it is
largely accepted that a good parameter tuning is crucial for ensuring
fair comparisons among algorithms [285]. Since the objective function
evaluation of candidates in problems related to DL is usually costly in
terms of computational effort, the parameters of the bio-inspired algorithm
are often set equal to values retrieved from past works, or conforming
to common practice. This unfairly biases the discussion, usually leaving
unclear whether the reported performance gaps are incidental. The research
record noted around the usage of hyper-heuristics [202, 232] avoids to an
extent this comparison bias, but the problem still prevails in most works
proposing new bio-inspired methods.

Assessing the impact of randomness on the results: another methodological
aspect that has not been properly considered in most related literature
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is the fact that several sources of randomness can collide into an opti-
mization problem. For instance, in Problems 1, 2 and 3 not only the
search algorithm comprises a number of stochastic operators, but the
training algorithm in use can also induce randomness in the obtained
results. For instance, the values of trainable parameters optimized by the
SGD solver depends on the composition of the mini-batches over which
gradient estimates are computed. Such mini-batches comprise a number
of examples from the training set, which are usually shuffled between
successive epochs. This source of randomness could justify training the
optimized network several times (runs) and aggregating the results for
a more reliable fitness computation. Otherwise, this should be conceived
as an additional factor motivating a proper statistical assessment of the
significance of performance gaps between different optimization algorithms,
adding to the randomness induced by their search operators.
Surprisingly, only a few exceptions have embraced the usage of statistical
tests for this purpose, leaving most of the experiments reported in this
field dubious and inconclusive. Furthermore, experiments with several
datasets, tasks and optimization algorithms should embrace the method-
ological practices for multiple comparisons deeply rooted on the scientific
community, such as critical distance plots [286] or Bayesian tests [287].

Reproducibility of results: although this is a claim that emerges in almost
any field of research, the need for reproducibility becomes particularly
pressing in this area. Reasons go far beyond the verification of the con-
tribution reported in emerging studies: the community can expedite the
achievement of novel advances in the field if the software and experimental
results of preceding works are shared within the community. The current
status in this matter is not that concerning, as many open-source soft-
ware frameworks exist with the functionalities required to develop new
approaches and experiments (see Table 2.1). Unfortunately, many contri-
butions published lately still do not provide any access to the software
implementing their proposals. When given, it is also frequent to see that
the source code is made ad-hoc for the problem at hand, thereby dilating
the time needed for building new proposals on top of existing ones.

2.4.4. Software Implementations of Limited Practical Utility
Nowadays, DL architectures scoring competitively in tasks defined over

real-world datasets are usually composed by millions of trainable parame-
ters. When addressing Problem 4 (trainable parameter optimization), the
huge search space faced by the optimization algorithm under consideration
requires intelligent means to exploit the relationships existing among the
optimization variables. Actually, gradient based solvers adopt this strategy
by the back-propagation of the gradients throughout all layers compounding
the DL model, which gives rise to an implicit mechanism to exploit the
correlations between the optimization variables. In this context, there is
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an entire research area dedicated to the large-scale global optimization,
plenty of algorithmic proposals where synergies among optimization vari-
ables are exploited by assorted means. Nonetheless, many works still revolve
on the naive application of standard bio-inspired solvers, neglecting such
interactions between variables.

Further along this line, it should be noted that the vibrant activity of
the area is not in accordance with the ultimate goal for which bio-inspired
algorithms are being proposed for training DL models. As told by the
currently available implementations in the literature, the computational
cost of population-based meta-heuristics is enormous, and yields far longer
training times than off-the-shelf gradient back-propagation approaches. Even
if the software implementation of algorithmic proposals reported to date may
have been restricted to experimental settings, a complexity analysis should
have been performed to accounting for both their benefits and drawbacks, so
that the community can delimit realistic boundaries for the practical utility
of these advances.

2.4.5. Metaphor-based Publication Series
Last but not least, we emphasize on the claims of recent studies about

the justification of new meta-heuristic algorithms just by the biological
metaphor in which it is allegedly inspired [19]. In the conducted literature
review there are several publication series in which the same optimization
problem were tackled by different bio-inspired solvers within a short time
period. By no means these contributions provide any scientific value for the
general knowledge of the field, even if publication workflows run at different
speeds.

Disregarding the reasons for these practices, results with optimization
algorithms inspired by different biological behaviors and phenomena should
not be shattered over different short-elapsed publications. They can provide
much more valuable insights when presented and discussed together.

2.5. Empirical Analysis of Evolutionary Algorithms for Training
and Designing Neural Networks

Complementing the critical literature analysis offered in the previous
section, we now pause at an experimental setup designed to unveil strengths
and weaknesses of EDL when faced with complex models and realistic network
sizes. Two cases of study are herein considered: one for achitecture and
hyperparameter optimization (Problem 1 and Problem 2), and another one
for training parameter optimization (Problem 4), covered in Sections 2.5.1
and 2.5.2, respectively.
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2.5.1. Case of study I: Architecture and Hyper-parameter
Optimization of Deep Learning Models with Bio-inspired
Algorithms

In this first case of study the aim is to optimize topology and structural
hyper-parameters of DL models. This, has been an open challenge in the last
few years. In particular, this experimental study focuses on finding the best
CNN architecture along with their structural hyper-parameters for solving
image classification problems. Two recent frameworks are considered:

EvoDeep [50], an evolutionary algorithm specially designed to optimize
both hyper-parameters and architecture of a DL model, selecting the type
and size of layers compounding the evolved architecture.

AutoKeras [55], is another modern AutoML system built on top of the
renowned Keras Python library, which is able to automatically generate
highly-optimized neural network.

Taking into account the recent activity noted in this area, herein a compar-
ison and discussion on the performance of these two consolidated frameworks
for topology and hyper-parameter optimization of DL models is carried
out. The comparison is made using three important measures: accuracy,
time and model complexity. In what follows, EvoDeep (Section 2.5.1.1) and
AutoKeras are introduced (Section 2.5.1.2) and the designed experimental
setup (Section 2.5.1.3) is presented. Finally, the outcomes are discussed in
Section 2.5.1.4.

2.5.1.1. EvoDeep: Evolutionary Computation for Deep Neural Network
Topology and Hyper-parameter Tuning

EvoDeep is an evolutionary framework based on an EA that follows a
(λ+µ) strategy, where λ indicates the number of new individuals produced at
each generation, and µ represents the number of individuals selected for the
next generation. Each individual of the population is a network architecture
with its respective hyper-parameters. The fitness for each individual is the
accuracy of the neural network when solving a classification problem. At
every generation, the recombination and mutation operators are applied to
generate a new individual for the next generation.

EvoDeep finds increasingly better neural network architectures for CNN us-
ing elementary convolutional and fully connected layers. Specifically, EvoDeep
evolves a network by using only the original data and an set of permitted
layers (i.e. Convolution2D, Flatten, MaxPooling2D, Reshape, Dense and
Dropout as per Keras notation). The number of layers represents the depth
of the evolved network, and its search range is set to [3, 20] with a step size
of 1 layer. Moreover, the training hyper-parameters can be also specified in
its configuration. These parameters are as follows:

Optimizer, chosen among Adam, SGD, Rmsprop, Adagrad, Adamax or Nadam.
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Number of epochs: an integer value in the range [2, 20], with a step size of
2 epochs.

Batch size: this value has a range of [100, 5000] with a step size of 100
examples.

In terms of data input, EvoDeep requires a two-dimensional matrix where
the number of rows matches the number of examples of the database and
the number of columns the size of the images (product of width, height and
channels).However, EvoDeep is mostly used to optimize grayscale images (one
channel) rather than RGB (three channels). Table 2.3 shows the configuration
of EvoDeep’s internal EA used for this experiment.

Table 2.3: Parameter configuration set for the EvoDeep framework.
Parameter λ µ cxpb, pc mutpb, pm newpb ngen, ngen

Description

Num. of newly
produced

individuals per
generation

Num. of selected
individuals for

the next
population

Crossover
probability

Mutation
probability

Probability of
adding a new
layer to the

network

Num. of
generations

Value 10 5 0.5 0.5 0.5 20

2.5.1.2. AutoKeras: an AutoML Reference

AutoKeras is a software that also allows to find the best neural network
architecture for a given data set and task [55], offering several search engines
for this purpose. In version 1.0.2 the following search methods are considered:

Random: it performs a random search of the models in relation to their
depth and layer type.

Greedy: it groups the parameters into several categories. For each category,
the tuner uses a greedy strategy to generate new values for the hyper-
parameters and to generate new values for one of the categories of hyper-
parameters. It uses the best trial so far for the rest of hyper-parameter
values.

Hyperband: departing from a given model, this bandit-based algorithm
searches the best hyper-parameter values for this model by running several
random configurations for a scheduled number of iterations, using earlier
results to retain good candidate configurations that are evaluated for
longer runs.

Bayesian optimization: the search space is explored using morphing. This
optimization method is based on the three basis of Bayesian optimization:
update, generation and observation.

Task-specific: AutoKeras tries with a task-specific tuner of the model, and
evaluates the most commonly used models for the task at hand, which in
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the case at hands is image recognition. This is the default configuration.
AutoKeras has two trial blocks: Vanilla and ResNet. The best model is
taken from one of these two.

2.5.1.3. Experimental Setup

For this experiment, 4 diverse and representative data sets are considered
according to their complexity: Horses or Humans (HORSEHUMAN [288]);
the vangogh2photo dataset from the so-called cycle_gan repository (VAN-
GOGH [289]), MNIST [290] and CIFAR-10 [291]. On the one hand, Horses
or Humans and Van Gogh or Photo have two classes, but Van Gogh or
Photo is unbalanced (only 400 images belonging to the minority class). On
the other hand CIFAR-10 and MNIST are more complex databases in terms
of number of examples and classes: both databases have 10 different classes.
Moreover, for this experiment both color (RGB) and grayscale versions of
these datasets are considered so as to assess the influence of the color space
in the complexity and performance of the models evolved by the compared
frameworks. Other contributions in the literature have considered datasets of
larger scales, such as CIFAR-100 [80, 136, 138, 292, 151, 146] or ImageNet [77,
172] (the latter transferring knowledge from models learned from CIFAR-10
and CIFAR-100 beforehand). Nevertheless, the datasets and experiments
designed in this first case of study are illustrative enough of the potential and
caveats that EDL still undergo when applied to the optimization of topology
and hyper-parameters.

Table 2.4: Datasets used in Case of Study I.

Dataset Shape #
classes

# Instances
(train/test) Characteristics

HORSEHUMAN 300× 300× 3 2 1,027 / 256 Balanced dataset, binary
classification, RGB

HORSEHUMAN-G 300× 300× 1 2 1,027 / 256 Balanced dataset, binary
classification, grayscale

VANGOGH 256× 256× 3 2 6,687 / 1,151 Imbalanced dataset, binary
classification, RGB

VANGOGH-G 256× 256× 1 2 6,687 / 1,151 Imbalanced dataset, binary
classification, grayscale

CIFAR-10 32× 32× 3 10 50,000 / 10,000 Balanced dataset, multi-class
classification, RGB

CIFAR-10-G 32× 32× 1 10 50,000 / 10,000 Balanced dataset, multi-class
classification, grayscale

MNIST 28× 28× 1 10 60,000 / 10,000 Balanced dataset, multi-class
classification, grayscale

In order to account for the statistical behavior of the frameworks under
comparison, 5 independent runs of AutoKeras are carried out, EvoDeep
and random models, from which the best model in terms of its accuracy in
validation is selected. Random models are obtained using EvoDeep without
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the evolutionary process. The number of tested individuals is the number
of evaluations that EvoDeep would make via its evolutionary strategy. The
training phase has been done by splitting the training set as follows: 80%
for training and 20% for validation. After that, the model is trained again
with the whole training set, and evaluated on the test set.

2.5.1.4. Results and Discussion

Table 2.5 shows the accuracy scores obtained for the models evolved with
EvoDeep, AutoKeras and random search over the color and grayscale datasets
under consideration. The best results for each dataset are highlighted in bold.
On the one hand, it is straightforward to observe that EvoDeep outperforms
random models over both train and test datasets. However, AutoKeras still
offers a better performance than EvoDeep. AutoKeras features the best
test results in each dataset. To sum up, the results of EvoDeep are close
to AutoKeras, which it is one of the best AutoML tools in this area. In
Vangogh or Photo and MNIST the difference between them is less than 1%
in test and 2% in Horses or Humans. Therefore, EvoDeep shows a great
performance on these databases.

When shifting the scope towards the results obtained for the grayscale
databases, similar conclusions can be drawn. In relation to the HORSEHU-
MAN dataset, the results issued by EvoDeep are similar to the previous ones
in terms of accuracy over test, whereas AutoKeras improves its performance
by 3%. The results for CIFAR-10-G are worse when compared to the color
ones. The exception in this trend is VANGOGH-G, due to the bad results
obtained by the random models and EvoDeep. The accuracy in test decreases
approximately 17% in EvoDeep and 27% in random models. By contrast,
the results obtained for this dataset by AutoKeras are similar to the ones
obtained for its colored counterpart.

Table 2.5: Results in terms of accuracy for color datasets and algorithms (in %).

Color
datasets

HORSEHUMAN VANGOGH CIFAR-10

Train Test Train Test Train Test

Random 89.19 89.06 98.10 92.96 73.06 53.63
EvoDeep 97.07 89.40 100.00 98.87 99.99 60.55

AutoKeras 100.00 91.40 100.00 99.48 95.28 73.26

Grayscale
datasets

HORSEHUMAN-G VANGOGH-G CIFAR-10-G MNIST

Train Test Train Test Train Test Train Test

Random 94.06 89.84 94.02 65.24 73.44 49.35 99.87 98.40
EvoDeep 100.00 89.84 96.66 81.58 85.52 56.79 100.00 98.69

AutoKeras 100.00 94.53 100.00 99.30 94.42 71.67 99.99 99.40

After the comparison of EvoDeep, AutoKeras and random models in
terms of accuracy, the execution time of the previous results, in minutes, are
examined (Table 2.6). A first inspection of the results in this table reveals that
AutoKeras has the best performance with lower times than EvoDeep. Note
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that EvoDeep stops if no improvement is made over 5 consecutive generations.
This is what occurs in MNIST: EvoDeep needs more computation time than
AutoKeras and random models, but its accuracy results lie in between. This
fact makes EvoDeep a reliable software because, even though it needs more
computation time, the quality of the models in terms of predictive accuracy
are close to those of AutoKeras in most cases. When it comes to grayscale
datasets, in general the computation time is lower than the time taken by the
experiments with color datasets. Runtimes of AutoKeras are almost the same
except for HORSEHUMAN-G, in which the time is approximately 2.6 times
faster than that of HORSEHUMAN. EvoDeep and random models require
less computation time in all the cases when compared to the colored ones.
For example, VANGOGH-G is around 2.25 times faster than the previous
experiments.

Table 2.6: Results in terms of time (minutes) for all datasets and frameworks.

Color HORSEHUMAN VANGOGH CIFAR-10-G

Random 5.5 11 92
EvoDeep 22.0 50 322

AutoKeras 13.5 14 110

Grayscale HORSEHUMAN-G VANGOGH-G CIFAR-10 MNIST

Random 3.08 7.14 43.44 46
EvoDeep 13.17 22.25 295.99 230

AutoKeras 5.19 13.98 109.98 262

Proceeding with the analysis of Table 2.7, where random, EvoDeep and
AutoKeras are compared in terms of resulting model complexity (i.e. Number
of layers and the number of trainable parameters of the best model). As
proven by the results included in this table, random model produces very
similar network architectures across the colored datasets: they all comprise
5 layers with varying size (between 103 and 2 · 106 trainable parameters).
EvoDeep beats AutoKeras in terms of number of layers for 3 datasets, and in
terms of the number of trainable parameters for 2 datasets (HORSEHUMAN
and MNIST). The best model for HORSEHUMAN is achieved by EvoDeep,
comprising a simple neural architecture with 3 layers and approximately
1.9 · 106 parameters. AutoKeras’ model for the VANGOGH dataset has 9
layers and fewer trainable parameters in comparison to the models produced
by the other frameworks. EvoDeep produces a model with only 5 layers
for CIFAR-10, but AutoKeras’ model has less parameters. Finally, for the
MNIST dataset, EvoDeep discovers a better model than AutoKeras in
terms of model complexity: fewer layers and parameters. To sump up, in
terms of model complexity EvoDeep can be declared to perform better than
AutoKeras in some of the considered colored datasets.
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Table 2.7: Results in terms of model complexity for all datasets and algorithms.

Color
datasets

HORSEHUMAN VANGOGH CIFAR-10

Layers Parameters Layers Parameters Layers Parameters

Random 5 179,922 5 1,158,402 5 2,270,100
EvoDeep 3 1,895,012 9 18,756,012 5 10,821,230

AutoKeras 194 23,566,856 10 31,944 10 144,849

Grayscale
datasets

HORSEHUMAN-G VANGOGH-G CIFAR-10-G MNIST

Layers Parameters Layers Parameters Layers Parameters Layers Parameters

Random 4 853,322 3 318,372 5 239,650 5 211,245
EvoDeep 7 129,182 6 783,352 12 1,883,220 8 5,409,980

AutoKeras 194 23,560,580 10 31,364 10 144,269 194 23,579,021

When analyzing the complexity of models discovered for the grayscale
datasets, the results in Table 2.7 unveil a huge improvement in the number
of parameters in random models and EvoDeep. Results by AutoKeras remain
very similar to those for the colored datasets, with minimal differences in
terms of the number of parameters. Regarding to the number of layers,
random models have almost the same amount as colored ones. However,
more remarkable changes are noticed for EvoDeep. The models discovered
for the HORSEHUMAN-G dataset has more layers, but significantly less
parameters. The same statement can be said for CIFAR-10-G. The results
for the VANGOGH-G dataset are the exception: the best model has fewer
layers and fewer parameters. These observations support the aforementioned
claims on the complexity of models produced by AutoKeras with respect to
EvoDeep and Random.

The previous experiments have shown some differences between the color
and the grayscale databases. In fact, when focusing the analysis on the best
model found by EvoDeep across all datasets, remarkable differences arise
between the test accuracy and the complexity of such models corresponding
to color and grayscale datasets. As summarized in Table 2.8, accuracy results
are similar in both cases. The accuracy achieved by the best EvoDeep model
over CIFAR-10 in higher than that of its grayscale version (CIFAR-10-G).
The case with the largest difference in terms of accuracy is VANGOGH, which
has a 17% gap. In terms of complexity, the best model of each grayscale
database has fewer neurons than the corresponding colored dataset. In
HORSEHUMAN-G, the model has approximately 14.69 times fewer neurons
than that of HORSEHUMAN. For VANGOGH and CIFAR-10, this ratio
gets close to 24 times and 5.75 times, respectively.

Table 2.8: Results in terms of accuracy and complexity for the best model encountered by
EvoDeep for both color and grayscale datasets.

HORSEHUMAN HORSEHUMAN-G VANGOGH VANGOGH-G CIFAR-10 CIFAR-10-G MNIST

Test acc. (%) 89.45 89.94 98.87 81.58 60.55 56.79 98.69
# of neurons 1,895 129 18,756 783 10,821 1,883 5,409
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Now, the main conclusions drawn from this discussion are summarized,
leaving a further elaboration on the general lessons learned in regards to
topology and hyper-parameter optimization for Section 2.6.2:

EvoDeep has similar results to AutoKeras in the color databases HORSE-
HUMAN, VANGOGH and CIFAR-10. Nevertheless, the computation time
that EvoDeep requires is much higher than the one taken AutoKeras dur-
ing its search. Considering the grayscale datasets, the difference between
AutoKeras and EvoDeep increases. In particular, accuracy gaps over the
VANGOGH dataset is particularly large: 81.58% in VANGOGH-G and
98.87% in VANGOGH. In terms of accuracy, EvoDeep performs better
with the colored databases.

Taking a closer look at the results in terms of accuracy and model com-
plexity, EvoDeep needs less computation time in the grayscale datasets.
Furthermore, this statement also holds in terms of model complexity.
Although there are some models that comprise more layers when dealing
with grayscale datasets, the number of total trainable parameters for all
the models is much lower. All these facts contribute to a better overall
performance of EvoDeep with grayscale databases.

To summarize, although AutoKeras has better performance in terms of
accuracy in all datasets, EvoDeep gives competitive results and requires less
computation time for simple datasets (i.e. MNIST). For several datasets,
EvoDeep produces models with fewer parameters, while AutoKeras yield
very complex models that may be unsuitable for application scenarios with
stringent memory restrictions. In other datasets, the simplicity of the layers
supported by EvoDeep enforces a higher number of neurons (and parameters)
than AutoKeras for the same performance level.

The empirical results reported in this first case of study underscore the po-
tential of Evolutionary Algorithms for the topological and hyper-parameter
optimization of CNN networks, suggesting several possible improvements to
frameworks appearing in the literature in forthcoming years. First, frame-
works should incorporate sophisticated layers at their core, so that they
become eligible for the evolutionary algorithm in use and ultimately lead to a
reduced overall complexity of the optimized models. The overly complex mod-
els encountered by EvoDeep in some of the considered image classification
datasets is a clear evidence that, for the sake of fair comparisons, all frame-
works should ensure that the search spaces explored by their optimization
engines are comparable to each other as well. Another possible improvement
is to formulate topological and hyper-parameter optimization as a multi-
objective problem, embracing as conflicting objectives the accuracy of the
model, and a measure of its complexity (layers, parameters, computation
time, etc). This output could allow the community to examine the behavior
of new frameworks and solvers in regards to the performance and complexity
of their produced solutions, making their output more flexible to implement
the discovered models by taking into account both objectives. Later in the
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chapter we will revolve on these research directions on Section 2.6 and
Section 2.7.

2.5.2. Case of Study II: Training Deep Learning Models with
Bio-inspired Algorithms

This second case of study aims to shed light on the performance of bio-
inspired optimization algorithms when applied to model training (Problem
4). The ultimate goal is to check whether bio-inspired algorithms can be a
competitive alternative to gradient-based methods when undertaking image
classification tasks over well-known datasets, ensuring that DL architectures
of realistic complexity are in use. To this end, the experimental setup is
designed to provide an informed response to the following research questions
(RQ):

RQ1: Should bio-inspired solvers exploit the layered structure of DL models
during the search?

RQ2: Do bio-inspired solvers perform competitively with respect to
gradient-based solver for trainable parameter optimization, in terms of
predictive accuracy and computational efficiency?

In the remainder of this second case of study, Section 2.5.2.1 introduces
the evolutionary algorithm selected for the experiments, underscoring several
changes made to its original definition to make it better suited to the
optimization of trainable parameters. Subsection Section 2.5.2.2 provides
further details on the experimental setup, including the DL models and
datasets under consideration. Subsections Section 2.5.2.3 and Section 2.5.2.4
discuss in depth on the results obtained from the experiments, with a focus
on RQ1 and RQ2, respectively.

2.5.2.1. SHADE-ILS: A Reference Evolutionary Algorithm for Large-Scale
Global Optimization

Given the large number of variables to be optimized, SHADE with Iterative
Local Search (SHADE-ILS) is selected as target evolutionary algorithm the ex-
periments. SHADE-ILS is a renowned large-scale global optimization algorithm
that has won recent international competitions in the field [33]. In particular,
SHADE-ILS resorts to the global exploration capability of an adaptive variant
of the DE algorithm (SHADE), which is helped by two local search methods,
namely, a limited-memory version of the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm, and multiple trajectory search that improve the candi-
date solutions encountered during the search. At every iteration, SHADE
applies evolutionary operators on a population of individuals, followed by
the application of one of the local search methods to the best individual
of the population. The selection of which local search to apply is driven
by the best expected relative improvement of each of the considered local
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search operator, which is given by the results produced by each local search
alternative during recent generations. Moreover, SHADE-ILS incorporates a
restart mechanism to avoid stagnation. These key algorithmic aspects and
the excellent results scored in benchmarks and competitions make SHADE-ILS
one of the baseline algorithms for large-scale global optimization problems,
just like the one addressed in this second case of study.

Several changes have been done to the original SHADE-ILS algorithm
to make it better suited to the optimization of the trainable parameters
of a DL model. The objective function to be minimized over the search
is the same than that used by gradient back-propagation approaches for
the same model, namely, binary cross-entropy for binary classification and
categorical cross-entropy for multi-class classification. Both are measured for
all examples belonging to the training set. Secondly, the layer-wise structure
of DL models is taken in account by devising several scheduling strategies.
Each strategy establishes the criteria, order and number of generations for
which the optimization variables (trainable parameters) belonging to each
layer are evolved via the global search operators and local search techniques
of SHADE-ILS. The design of the above strategies is motivated by RQ1, where
the focus is placed on whether the layered structure of DL models should be
exploited anyhow by the bio-inspired solver.
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Figure 2.4: Diagram showing the different scheduling strategies proposed for optimizing
Deep Learning models with the SHADE-ILS algorithm: (a) FULL-SHADE-ILS; (b)
DOWN-SHADE-ILS; (c) UP-SHADE-ILS; (d) A-DOWN-SHADE-ILS; (e) A-UP-SHADE-
ILS.

Specifically, the strategies considered in the simulations are as follows (see
Figure 2.4 for a visual explanation):

FULL-SHADE-ILS: all trainable parameters are optimized jointly, without
considering the layered structure of the model to be trained. This is actually
the strategy followed by most contributions to the literature dealing with
the application of bio-inspired optimization techniques for DL models. As
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will be later shown, this strategy only works for network architectures of
relatively limited size.

DOWN-SHADE-ILS: trainable parameters are optimized starting from
those belonging to the first layer of the network. Such parameters are
evolved via SHADE-ILS for a certain number of generations, keeping the
values of the remaining parameters fixed to their Glorot-based initialized
values. The optimization schedule is repeated in order from the first to
the last layer of the network for a maximum number of epochs.

UP-SHADE-ILS: this schedule is similar to the previous DOWN-SHADE-
ILS strategy, but departing from the last layer of the network, and pro-
ceeding upwards until the first layer of the network.

A-DOWN-SHADE-ILS: an automated variant in which after a first it-
eration of the DOWN-SHADE-ILS optimization strategy, a relative im-
provement ratio of the network predictive accuracy is computed for every
layer optimization step. This ratio is used to select which layer to op-
timize in subsequent epochs, so that layers whose optimization yielded
larger improvements in the last epoch are more likely to be selected for
optimization.

A-UP-SHADE-ILS: this last strategy is similar to A-DOWN-SHADE-ILS,
the difference being that the first layer-wise application of SHADE-ILS
is done from the last to the first layer of the network (namely, under
the DOWN-SHADE-ILS strategy). Once this initial stage is completed,
SHADE-ILS proceeds analogously to the previous strategy, automatically
selecting the layer with most potential margin of improvement.

When addressing RQ2, it is important to stress on the complexity of
ensuring a fair comparison between gradient back-propagation solvers and
bio-inspired optimization algorithms. The main reason is their essentially dif-
ferent search behavior. On one hand, gradient back-propagation approaches
maintain a single solution to the problem, which is enhanced over epochs by
exploit the mathematical relationships between the optimization variables
(trainable parameters) through the tailored computation of their gradients.
However, the search operator of gradient back-propagation techniques is
simple, yet effective (gradients are personalized for every single variable)
and efficient (gradient computations are highly parallelizable). By contrast,
most bio-inspired algorithms rely on a population of individuals, which are
evolved jointly by means of a series of search operators, so that the best
individuals survive between generations. In summary, comparisons between
both approaches should be fair not only in terms of accuracy performance,
but also in terms of computational complexity.

For ensuring fairness in these terms, a straightforward decision is to define
how epoch and generation relate to each other. First of all, it is clear that
both concepts indicate when a full update of the network’s parameters is
complete: in gradient back-propagation, an epoch implies the application of
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a number of gradient updates to the whole network parameters. The number
of updates depends on the size of the training set and the chosen batch
size. Given that an epoch is defined as the optimization of all parameters
composing the model, in SHADE-ILS an epoch corresponds to the optimization
of all layers of the network under any of the strategies described previously.
Assuming Neval evaluations of the network per layer and L layers, an epoch
for SHADE-ILS will comprise L ·Neval total evaluations of the network per
epoch. Each evaluation of the network involves predicting the entire Ntrain-
sized training set and computing the loss function. As a result, in general the
number of evaluated training instances per epoch differs between SHADE-ILS
(Ntrain · Neval · L) and gradient back-propagation (Ntrain). Nevertheless,
the experiments are conducted disregarding this issue, and is analyzed if
SHADE-ILS, even if endowed with more computational budget per epoch,
can beat the accuracy of networks optimized via Adam, one of the most
renowned gradient back-propagation solvers.

2.5.2.2. Experimental Setup

The above two questions are tackled by considering 6 datasets for image
classification: Hand gesture recognition (HANDS, [293]), Blood Cells classifi-
cation dataset (BCCD, [294]), MNIST [290], Fashion MNIST (F-MNIST)
[295], GTSRB [296] and CIFAR-10 [291]. Details of these datasets are given
in Table 2.9. Given the amount of computational resources required to com-
plete the experiments, a subset of the examples for each dataset is considered.
For the same reason and except for the WBC dataset, images have been
converted to grayscale to reduce the number of channels of the input image.
Even with these simplified datasets, experiments held within this second
experimental study shed light on where EDL currently stands when it comes
to the optimization of trainable parameters.

Table 2.9: Datasets used in Case of Study II.

Dataset Shape # classes # Instances
(Ntrain/Ntest)

# trainable
parameters

HANDS 30× 40× 1 10 10,000 / 10,000 3,854
BCCD 30× 40× 3 2 17,000 / 5,416 9,065
MNIST 28× 28× 1 10 10,000 / 5,000 19,063
F-MNIST 28× 28× 1 10 10,000 / 5,000 36,188
GTSRB 32× 32× 1 43 20,000 / 10,000 83,999
CIFAR-10-G 32× 32× 1 10 10,000 / 5,000 1,658,570

For each of these datasets a fixed DL architecture is considered, featuring
a realistic level of complexity (given by its number of trainable parameters),
and rendering a good prediction performance when trained via gradient
back-propagation (Table 2.10).

The layer type and structural hyper-parameters of every layer compound-
ing such models are also specified in the table. Thus, the aim of this section



2.5 empirical analysis of eas for nns 47

Table 2.10: Models utilized for the second case of study. C2DN,x×y denotes a convolutional
layer with N filters of n rows and m cols; DN represents a fully-connected (dense) layer
with N output neurons; ⊞ is a 2×2 max pooling layer;

⊙
is a 2×2 average pooling layer;

and Dropp is a dropout layer with rate p. Layers enclosed within (·)L are concatenated L
times.

Dataset Network topology and structural hyper-parameters

HANDS C2D8,4×4 −⊞− (C2D16,2×2 −⊞)2 − D20 − D10

BCCD C2D30,3×3 −⊞− (C2D16,3×3 −⊞)2 − D16 − Drop0.7 − D1

MNIST C2D28,3×3 −⊞− C2D14,3×3 −⊞− C2D7,2×2 −⊞− D128 − Drop0.2 − D80 − Drop0.3 − D10

F-MNIST C2D64,4×4 − Drop0.25 −
⊙−C2D16,4×4 − Drop0.25 −

⊙−Drop0.15 − D70 − D10

GTSRB C2D6,3×3 −
⊙−C2D16,3×3 −

⊙−D120 − D84 − D43

CIFAR-10-G C2D32,3×3 − Drop0.1 − C2D64,5×5 − Drop0.2 − D128 − Drop0.3 − D10

is not to evolve very precise, state-of-the-art networks, but to assess the
limitations faced by Evolutionary Algorithms when used for training these
deep neural networks. Table 2.11 summarizes the training hyper-parameters
utilized for all image classification tasks under study.

Table 2.11: Training hyper-parameters used in the experiments.
Adam SHADE-ILS

Dataset Batch size Learning rate Population size Neval Initializer Epochs

HANDS 128 0.01 10 200

Glorot 20

BCCD 64 0.02 10 200
MNIST 512 0.01 10 200

F-MNIST 512 0.01 10 200
GTSRB 64 0.02 10 200

CIFAR-10-G 256 0.01 10 200

2.5.2.3. Addressing RQ1: On the Importance of the Layered Neural Structure
in the Design of SHADE-ILS

Once the experimental setup has been described RQ1 is addressed, namely,
a quantitative analysis of the impact and viability of exploiting the layered
structure of DL models by SHADE-ILS, similarly to what gradient-based
solvers do when back-propagating the gradients. To this end, a evaluation
of the aforementioned scheduling strategies devised for SHADE-ILS over the
datasets and DL models under consideration is performed, and its perfor-
mance compared to that of a naive application of SHADE-ILS that does not
take into account any structure of the problem.

Table 2.12 summarizes the results obtained in regards to RQ1. Specifically,
the average loss and accuracy measured over train and test subsets are
reported for every dataset and SHADE-ILS schedule. Values are averaged over
5 independent runs of every (dataset,schedule) combination. In addition,
results corresponding to the Adam gradient-based solver are also included
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as a reference. The best results among those yielded by SHADE-ILS are
highlighted in bold.

Table 2.12: Average accuracy/loss (over 5 independent runs) corresponding to different
schedules of the SHADE-ILS algorithm over the datasets under consideration. Results
corresponding to the Adam gradient-based solver are also included as a reference.

Adam FULL
SHADE-ILS

DOWN
SHADE-ILS

UP
SHADE-ILS

A-DOWN
SHADE-ILS

A-UP
SHADE-ILS

Train Test Train Test Train Test Train Test Train Test Train Test

Acc
Loss

Acc
Loss

Acc
Loss

Acc
Loss

Acc
Loss

Acc
Loss

Acc
Loss

Acc
Loss

Acc
Loss

Acc
Loss

Acc
Loss

Acc
Loss

HANDS 0.9983
0.0082

0.9932
0.0296

0.9708
0.1082

0.9553
0.1589

0.7038
2.6608

0.6910
2.6894

0.7150
0.8194

0.7072
0.8705

0.6492
3.5419

0.6470
3.5750

0.5253
1.3179

0.5189
1.3533

BCCD 0.9611
0.1314

0.9815
0.0566

0.8558
0.3321

0.8489
0.3399

0.7499
0.5306

0.7400
0.5377

0.7527
0.5227

0.7439
0.5322

0.7852
0.4861

0.7768
0.4962

0.8212
0.4149

0.8087
0.4301

MNIST 0.9480
0.1672

0.9534
0.1534

0.9524
0.1590

0.9342
0.2326

0.9747
0.0851

0.9504
0.1685

0.9748
0.0856

0.9490
0.1798

0.9719
0.0938

0.9452
0.1828

0.9772
0.0764

0.9508
0.1627

F-MNIST 0.9636
0.1190

0.9672
0.1100

0.9265
0.2539

0.9196
0.2940

0.9489
0.1773

0.9384
0.2157

0.9422
0.2077

0.9311
0.2407

0.9561
0.1576

0.9447
0.1966

0.9435
0.2012

0.9336
0.2317

GTSRB 0.7437
0.6957

0.7046
0.7807

0.2329
3.0994

0.2355
3.1196

0.3636
2.4532

0.3473
2.4931

0.3596
2.4304

0.3504
2.4672

0.3956
2.2916

0.3868
2.3323

0.3204
2.6405

0.3133
2.6622

CIFAR-10-G 0.8347
0.4519

0.6542
1.2418

0.2628
2.0952

0.2602
2.1087

0.3696
1.7878

0.3612
1.8023

0.3708
1.7737

0.3642
1.7867

0.3806
1.7483

0.3790
1.7619

0.3765
1.7612

0.3681
1.7787

Several interesting observations can be made after inspecting the above
table. To begin with, for relatively small-sized DL models (i.e. those for the
HANDS and BCCD datasets), FULL-SHADE-ILS suffices for obtaining good
scores, even superior than those rendered by its scheduled counterparts. This
goes in line with the examination of the related literature (Section 2.3), in
which many contributions deal with model training using naive bio-inspired
solvers, without taking into account the structure of the network. The above
results confirm that when the number of network parameters is low, a
powerful optimization algorithm can effectively (albeit not efficiently) find
optimal values for the task at hand.

However, when increasing the complexity of the network, the trend changes,
and the exploitation of the layered structure of the DL model becomes
essential to maintain a good performance. This is specially remarkable in
the GTSRB and CIFAR-10-G datasets, in which the accuracy values of
FULL-SHADE-ILS degrade severely with respect to those attained by A-
DOWN-SHADE-ILS. For networks of moderate size (MNIST, F-MNIST),
accuracy differences between the scheduled and non-scheduled versions of
SHADE-ILS become neglibigle. Nevertheless, in terms of loss metric values the
difference results to be larger, showing evidence that SHADE-ILS performs
better in terms of optimized loss when endowed with the automated schedule
mechanism.

When comparing the accuracy and loss values measured over train and
test, a quick glimpse at the table confirms that in general, the trained models
do not overfit excessively. Pausing briefly at the case of the MNIST dataset,
arguably one of the most utilized databases in this field. If the average
loss values achieved by the Adam optimizer (0.1672 over train, 0.1534 over
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test) are compared to those of A-UP-SHADE-ILS (0.0764 over train, 0.1627
in test), one can state that A-UP-SHADE-ILS achieves lower loss values
than Adam, thereby concluding that this scheduled SHADE-ILS variant is
a better optimization algorithm for model training than Adam. However,
the final goal of predictive modeling is to provide models that generalize
nicely, namely, models that perform as expected when predicting unseen
data instances. When placing the attention in the losses measured over the
test set, networks evolved by A-UP-SHADE-ILS for the MNIST dataset
seems to overfit, thereby providing lower accuracy scores than expected.
A similar conclusion can be drawn in other datasets (e.g. F-MNIST), yet
at a lower extent than MNIST. This leads to an interesting insight on the
influence of overfitting that will be elaborated in depth in Section 2.6.

To conclude the discussion on this first set of results it should be remarked
that all SHADE-ILS variants achieve low scores when the complexity of the
network is very high (models corresponding to the GTSRB and CIFAR-10-G
datasets). In these cases the large gaps to the accuracy and loss scores
of the network optimized by the Adam solver indicate without doubts
that this meta-heuristic algorithm is of no practical use for this level of
complexity. Given that SHADE-ILS is specially tailored to deal with high-
dimensional optimization problems, it is fair to conclude that Evolutionary
Computation and Swarm Intelligence methods are still far from being a
realistic replacement for gradient-based solver. Instead, these empirical
findings should drive the interest of the community towards hybridizing
bio-inspired algorithms with gradient-based information and/or solvers.

2.5.2.4. Addressing RQ2: Comparing Bio-inspired Optimization Algorithms to
Gradient-based Solvers

Experiments discussed in the previous subsection have concentrated on the
performance comparison between different layer-wise optimization schedules
of the SHADE-ILS solver. In the analysis of results shown in Table 2.12 is also
highlighted the large gap between the gradient-based Adam solver and the
best performing SHADE-ILS schedule, specially for DL models of moderate-to-
high levels of complexity. Although this remark provides a partial answer to
RQ2, this second part of the study delves into the convergence of the training
process when undertaken via SHADE-ILS and Adam, aiming to discern the
reasons for these identified performance gaps.

This being said, the focus is placed on the results corresponding to MNIST
and F-MNIST, which are illustrative of the conclusions that can be drawn
from the overall set of performed experiments. The dual plots in Figure 2.5.a
to Figure 2.5.d depict the loss/accuracy convergence plots measured over
train and test subsets corresponding to Adam and the scheduled A-UP-
SHADE-ILS variant of the SHADE-ILS algorithm. Plotted lines depict the
average loss/accuracy over epochs computed over 5 experiments, whereas
the shaded overlay areas denote their standard deviation. Net loss values
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Figure 2.5: Accuracy and loss Convergence plots of Adam and A-UP-SHADE-ILS corre-
sponding to (a) MNIST, measured over train set; (b) MNIST, measured over test set; (a)
F-MNIST, measured over train set; (a) F-MNIST, measured over test set.

are indicated in the left axis of every plot, whereas accuracy score values
are indicated in the right axis.

This discussion departs from Figure 2.5.a and Figure 2.5.b, corresponding
to the convergence plots over the MNIST dataset over train and test subsets,
respectively. It is straightforward to observe that when measured over the
train dataset (Figure 2.5.a), both loss and accuracy scores of the A-UP-
SHADE-ILS approach are better than those rendered by Adam over all
epochs. This fact is conclusive in regards to the comparable or superior
performance of SHADE-ILS when optimizing the trainable parameters of
relatively small-sized networks. However, when shifting the focus on the test
set (which reflects the generalization capability the evolved DL models), the
curves plotted in Figure 2.5 reveal that A-UP-SHADE-ILS yields trainable
parameter values that are slightly overfitted, thus generalizing worse than
the model optimized via the Adam solver. This observation suggests that
the apparently worse performance of Adam as an optimization algorithm is
actually an advantage (a sort of implicitly regularization mechanism) that
yields models of better generalization properties.

When increasing the complexity of the network to be evolved, Figure 2.5.c
and Figure 2.5.d illustrate a rather different behavior of the convergence
plots. At this point it should be recalled that the model selected to deal with
the F-MNIST image classification problem has 36, 188 trainable parameters,
almost twice the complexity of the model designed for the MNIST dataset
(19, 063 trainable parameters). The convergence curves in these plots show
that although the accuracy and loss values of the networks evolved with both
solvers get close to each other after all epochs are completed, A-UP-SHADE-
ILS perform steadily worse than Adam over all intermediate epochs. In light
of the results for the rest of datasets with models of larger complexity (Table
2.12), the case of the F-MNIST dataset must be understood as an inflection
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point, beyond which SHADE-ILS fails to perform competitively with respect
to gradient-based methods. Furthermore, this worse performance occurs even
if SHADE-ILS is allowed to execute more network evaluations per epoch.

These experiments and the conclusions drawn therefrom reinforce even
further the initial belief that for the time being, current bio-inspired optimiza-
tion algorithms do not constitute a feasible replacement for gradient-based
solvers. In the next section the lessons learned through the literature analysis
and experiments are collected and summarized, also several good practices
and recommendations that should be followed to achieve significant advances
in EDL are prescribed.

2.6. Advantages and Drawbacks of Evolutionary Deep Learning

As it follows from the experiments and the performed literature analysis,
lights and shadows still remain in the application of Evolutionary Computa-
tion and Swarm Intelligence algorithms to the diverse optimization problems
arising from DL.

2.6.1. General Lessons
The first lesson to summarize at this point is in close accordance with the

general need for more methodological principles in meta-heuristic research
across all the application scenarios where these solvers are applied nowadays.
Unfortunately, the optimization problems tackled in this study are not an
exception to this claim. The guidelines and procedures to be followed to reach
solid and conclusive studies in the use of meta-heuristics are known to the
community, specially in regards to the identification of the novel aspects of
newly emerging algorithms and the proper design of comparison benchmarks.
In this latter research stage, the assessment of the statistical significance is
a must when dealing with problems related to DL topology and/or hyper-
parameter optimization. Since several sources of uncertainty may coexist
in the same problem statement (e.g. the operators of the search algorithm,
the initialization of weights, and the stochasticity of the gradient-based
training algorithm), reporting on the statistical significance via hypothesis
testing should be considered a necessary step. Despite not an exclusive
recommendation of the research area under study, leaving all code and
results available in public software repositories for the research community
is of utmost necessity, due to the dilated computation times usually required
to run experiments with DL models.

Another general lessons that stems from the study carried out is that the
goal in EDL is to yield models of improved generalization properties, namely,
to find models that perform better when fed with unseen data. To an extent,
in the conducted literature review it is noted that many contributions in
the recent past dismisses this target goal and conclude that the solver at
hand performs better since it achieves a more optimal objective value than
gradient-based methods. Statements alike should be avoided in prospective
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studies, as there is no practical value in a model that generalizes worse in
the wild, e.g. when predicting new data instances.

Another missing point in past contributions is a quantitative evaluation
of the complexity of the solver, not only a mere indication of the quality of
its produced output. As demonstrated through the cases of study, important
complexity gaps exist between the solvers under study. Neglecting to inspect
this important aspect of optimization solvers yields biased conclusions about
the practical value of new proposals. Convergence plots like the ones depicted
in the case of study II can provide a hint about the relationship between per-
formance (accuracy) and complexity (number of epochs) of the solvers being
compared. Along these plots, a clear definition of an epoch should be pro-
vided, so as to establish a reference and ensure fair complexity comparisons.
Furthermore, for topological and structural hyper-parameter optimization
the complexity of population-based meta-heuristic solvers is significantly
higher than other schemes from the literature, specially gradient-based NAS
search strategies such as DARTS [297], or RL-based NAS approaches [51].
Specifically, experiments with evolutionary NAS approaches such as those in
[77, 89] require 3,150 GPU-days to complete their optimization task on the
CIFAR-10 dataset, whereas DARTS only needs 4 GPU-days for the same
purpose.

Definitely, more efforts are needed to validate whether bio-inspired meta-
heuristics can reach the levels of computational efficiency of these alternative
solvers or, at least, attain solutions of higher quality that make their compu-
tational overhead worthwhile. In this line, recent advances in the development
of performance predictors of DL architectures [298, 299, 300, 301] can be
an efficient workaround to the heavy computational requirements of model
evaluation when population-based meta-heuristics are used for topological
and/or hyper-parametric DL optimization.

Furthermore, other optimization objectives beyond predictive performance
should also be considered in the future, such as the complexity of the opti-
mized model in topology and/or structural hyper-parameter optimization.
There are many reasons for considering such objectives in addition to pre-
dictive performance, ranging from an easier deployment of the optimized
models in constrained computation hardware (e.g. cell phones) or a poten-
tially more interpretable network structure [15]. However, most studies seem
to focus just on the predictive performance of the optimized model, leaving
unanswered relevant matters for model deployment such as the tradeoff
between model’s performance and complexity.

Finally, researchers should also work towards a global consensus on the
dimensions of realistic benchmark dataset and models. A DL model is not
just a layered structure of perceptrons, but rather a hierarchical composite of
neural layers of different nature. It is their capability to extract increasingly
specialized features from large-dimensional data what should bestow the
label DL. Unfortunately, there are many works where DL refers to a neural
network with very few trainable parameters and fed with already handcrafted
features. The same can be said about the datasets used for validation, which
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in many studies lack the complexity that could argue the adoption of DL
models. The community should agree on the minimum characteristics (task
difficulty, diversity of datasets, model complexity) of experimental setups
devised for reaching meaningful results and valuable conclusions.

2.6.2. Topology Optimization
Focusing now on the lessons learned from the literature that has so far

tackled the optimization of the topology of DL models. First of all, the first
case of study highlighted that the EvoDeep framework featured a diversity
of layer types lower than that of AutoKeras, which restricts the search
domain of the evolutionary algorithm that runs at its core. This fact can
imprint a subtle yet impacting bias in prospective comparisons between new
topology optimization frameworks. Such comparisons should ensure that the
counterparts in the benchmark should utilize the same number and diversity
of layer types when optimizing DL models for a given task. Otherwise, there
is no certainty whether gaps found among the compared frameworks are due
to the differences between their optimization algorithms or to the fact that
some of them are in unfair disadvantage. Similar recommendations can be
issued in regards to the formulation of the objective to be optimized, which
should be set the same among frameworks.

In what refers to the optimization algorithm, it has been shown that
bio-inspired solvers (in particular, evolutionary algorithms) are still far from
the performance offered by other ad-hoc methods. Actually, the default
optimization approach for the AutoKeras framework is a parameter-wise
greedy strategy, and no Evolutionary Computation nor Swarm Intelligence
methods are considered whatsoever. This observation implicitly suggests
that bio-inspired solvers are still far from performing competitively, as the
results in the first case of study have clearly shown. However, it is known that
in other application domains, greedy search methods usually fall into local
optima unless proper algorithmic countermeasures are included along the
search. This opens up an opportunity to hybridize such greedy methods with
global search heuristics or, alternatively, to design ad-hoc search algorithms
that incorporate any of the ingredients featured by such greedy methods.

Another aspect in which much research effort has been invested is in the
design of variable-size encoding strategies for the representation of evolved
network architectures. This has been a subject of intense research for years
since the advent of the first neuro-evolution frameworks, in particular the
adaptation of compositional pattern producing networks made by Hyper-
NEAT to represent and evolve neural networks. Despite the numerous works
on neural representation strategies published thereafter to date, in many
cases the selected encoding approach does not account for the validity of the
sequence of neural layers it represents. To this end, EvoDeep resorts to finite
state machines to model all possible transitions between layers, followed
by a two-part encoding to represent global (training) hyper-parameters
and layers’ types and structural hyper-parameters, respectively. Another
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intelligent strategy is to search for optimal neural topology and structural
hyper-parameter values over a continuous domain, allowing for the applica-
tion of simple gradient-based solvers [302, 297]. All in all, it is coherent to
belief that a key aspect for an efficient heuristic search is to tightly couple
the solution encoding strategy to the design of the search strategy.

Finally, some words of reflection are dedicated to the level of granularity
at which topology optimization should be performed. While in some recent
works DL models are optimized at the level of the computation graph,
namely, without assuming any particular type of neural layer. This extreme
is interesting should the goal be to trascend conventional layer types and
seek more diverse neural structures. At the other end of the scale, other
contributions have capitalized on the mixture of pretrained modules, aiming
to enhance the structure of the DL model while leveraging, at the same time,
high-level knowledge acquired in other related tasks. To the knowledge if
this study, there is no clear consensus on whether high-level or low-level
topological optimization strategies are more promising for DL topology
optimization.

2.6.3. Structural and Training Hyper-parameter Optimization
When it comes to the optimization of the hyper-parameters of the DL

model, a first recommendation to elicit is to clearly specify the hyper-
parameters to be optimized, as well as their search ranges. Echoing the
aforementioned need for fairness in comparison benchmarks, and following
the conclusions drawn from the Case of Study I (Section 2.5.1), it is crucial
to guarantee that the compared solvers explore search spaces of equal
complexity so as to remove any bias due to differences in this matter. A
good practice for this purpose is to include a table listing each parameter
with its corresponding search range, so that fairness can be guaranteed and
reproducibility eased for the interested audience.

Another recommendation in hyper-parameter optimization is to estimate
the impact of different hyper-parameter values in terms of the predictive
accuracy and overall complexity of the optimized model. By reporting
on the correspondence between different hyper-parameters values and the
overall performance and complexity of the model, the community can discern
potentially good search ranges for such hyper-parameters, thereby reducing
the time needed to perform new hyper-parametric optimization tasks.

Finally, the taxonomy of the existing literature shown in Figure 2.3
revealed that the number of works simultaneously tackling structural and
hyper-parameter optimization surpassed those dealing only with structural
or training hyper-parameter optimization in isolation. This fact calls into
question whether the results obtained so far for the latter cases are conclusive.
The selected topology for the DL model affects directly the search space
of a structural hyper-parameter optimization problem defined over it, so it
remains uncertain whether the conclusions drawn for the particular network
topology under choice can be extrapolated to any other network topology.
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This is why it is suggested to increase the number of experiments with
different network topologies and datasets when performing hyper-parameter
optimization. Otherwise, the claims delivered by prospective studies can be
in doubt due to the lack of enough empirical evidence.

2.6.4. Trainable Parameter Optimization
To end with, the optimization of the trainable parameters of DL models is

arguably the one grasping most interest from the community in recent times.
Several learned lessons and recommendations can be issued in this regard.

First of all, the research community should come to an agreement and
understand that currently, EDL is far from fully replacing gradient-based
solvers with bio-inspired optimization algorithms. The results discussed
in the Case of Study II (Section 2.5.2) buttress this statement with solid
findings: one of the most renowned and competitive algorithms for large-scale
global optimization (SHADE-ILS) has not been able to perform better than
the gradient-based Adam solver. Besides, when increasing the complexity
of the DL model, the performance of SHADE-ILS degrades severely even if
granted more computational budget (number of loss evaluations) than its
gradient-based counterpart. In summary, for the time being bio-inspired
optimization algorithms cannot rival the computational efficiency and the
quality of solutions produced by gradient-based methods.

The main reason for this conclusion can arguably be found in the struc-
ture of the DL model, which establishes relationships among the trainable
parameters of consecutive layers that should be exploited by the optimiza-
tion algorithm. This is actually what gradient back-propagation realizes in
a clever yet computationally efficient fashion, even though creating other
known issues (e.g. gradient vanishing). In the experiments conducted it
can be noticed that when adapting the search behavior of SHADE-ILS to
the layered structure of the network, simple layer-wise schedules of this
algorithm yields remarkable performance boosts, specially for networks of
relatively small size. This suggests that more sophisticated hybridization
strategies should be further investigated to embed problem-specific knowl-
edge (namely, the structure of DL models or gradient information) within
the search procedure of bio-inspired solvers.

Notwithstanding this noted performance gap, gradient-based solvers re-
strict the spectrum of loss functions to those for which derivatives can be
computed. Furthermore, However, bio-inspired algorithms do not impose any
requirement on the objective function to be optimized, nor do they require
it to be differentiable. This latter fact could tilt the scale towards the use
of bio-inspired algorithms in singular learning tasks that require a tailored
definition of the objective function, as in cases with severe class imbalance or
multilabel classification, or in network architectures with non-differentiable
learning modules (namely, those through which gradients cannot be back-
propagated).



56 edl: approaches and current trends

When it comes to computational efficiency, the higher complexity of
population-based meta-heuristics when compared to that of gradient-based
solvers should stimulate more parallel and distributed implementations of
Evolutionary Computation and Swarm Intelligence methods. There are
modern programming languages and frameworks that can be utilized to
accelerate bio-inspired search algorithms, even if still lagging behind the
typical runtimes of gradient-based techniques. Recent works aim indeed at
this direction, reviewing implementations available so far and prescribing
recommendations and guidelines for the implementation of meta-heuristics in
GPU [303, 304] and asynchronous distributed computing architectures [305].
Experiments with large datasets and realistic DL models should capitalize
on already available software packages that ease the seamless deployment of
meta-heuristics in massively parallel computing hardware, such as jMetalPy
[306] (Apache Spark and Dask) and libCudaOptimize [307] (CUDA for GPU).
Interestingly, Tensorflow (the computation engine that underlies well-known
software libraries for DL models) also provides a naive implementation of
Differential Evolution as one of its functionalities [308]. Parallel, federated
or distributed computation frameworks for DL models are also spreading
fast [86, 87, 309]. Definitely new studies should leverage the availability of
these tools to undertake experiments at realistic complexity scales.

The learned lessons on trainable parameter optimization ends by em-
phasizing several good methodological practices that should be followed in
prospective studies. First, the accuracy achieved by the optimized models
over the test set should be informed jointly with the usual objective func-
tion statistics reported in experiments with bio-inspired meta-heuristics.
This is particularly relevant in trainable parameter optimization to assess
whether performance gaps identified between solvers do not come along with
a penalty in the generalization of the evolved model. Furthermore, conven-
tional gradient-based solvers should be always included in the benchmark,
even if their lower complexity makes the comparison unfair in such terms.
Finally, the use of convergence plots such as the ones depicted in Figure 2.5.a
to Figure 2.5.b are recommended, as a visual tool to examine the relative
differences between algorithms over epochs. This information can be very
valuable for the deployment of the solvers in real hardware, as well as for
the detection of overfitting issues like the one identified in the experiments
conducted in this chapter.

2.7. Final Remarks and Opportunities

The exhaustive literature review and experiments performed have unveiled
several promising facts and unsolved caveats of Evolutionary Computation
and Swarm Intelligence algorithms when used for addressing optimization
problems related to DL. Nonetheless, many proposals have been contributed
to date for assorted learning tasks, not only supervised and unsupervised
learning, but also other paradigms relying on DL models (e.g. deep RL).
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Despite this noted activity, several research niches still remain uncharted or
insufficiently addressed in this fusion of technologies.
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Figure 2.6: Challenges and research directions envisioned for Evolutionary Computation
and Swarm Intelligence for the optimization of Deep Learning models. The challenges
highlighted with a gray background box are covered in this Thesis.

In this section several challenges and research directions are summarized,
which should be under the target of future efforts conducted in this area.
Such challenges are schematically depicted in Figure 2.6, and contribute to
the last two questions targeted by this chapter: what can be done in future
investigations on the confluence between bio-inspired optimization and DL,
and what future research efforts should be conducted for.

2.7.1. Large-Scale Optimization for Model Training
The design of bio-inspired algorithms capable of efficiently tackling large-

scale optimization problems seems to be one of the critical points that require
further developments to train DL models of realistic complexity levels. This
is the reason for the selection of SHADE-ILS as the search algorithm in the
second case of study. Indeed, SHADE-ILS remains nowadays as one of the most
competitive proposals for large-scale global optimization, and is regularly
considered as a baseline for competitions and benchmarks.

However, as in other research areas related to meta-heuristics, many
advances in large-scale global optimization are regularly contributed to the
community, featuring sophisticated ways to infer and exploit the correlation
between variables during the search process (interaction learning). Improving
this feature in large-scale solvers is often the main target of new proposals,
either in an implicit fashion (as in Estimation of Distribution Algorithms,
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and Bayesian Optimization) or explicitly via grouping, statistical correlation-
based methods, decomposition or other assorted means [310].

Unfortunately, the analysis conducted has revealed that most works related
to trainable parameter optimization have resorted to off-the-shelf variants
of bio-inspired solvers. Consequently, no consideration is made about the
interactions between variables (weights, biases) that are known to occur
due to the neural connections throughout the multiple neural layers. This
motivates a closer look to be taken at new advances in large-scale global
optimization, for both single- and multi-objective optimization problems
[311]. Given the upsurge of DL problems in which more than one objective
is established [78, 81, 80, 312, 313], the use of multi-objective solvers for
large-scale optimization seems to be a natural choice.

2.7.2. Evolutionary Multitasking
An interesting research area has revolved lately around the design of

evolutionary multitasking algorithms capable of simultaneously addressing
several optimization problems within a unique search process that exploits
the complementarities and synergies existing among such problems [17]. The
challenge in this area is to develop intelligent optimization methods that
not only promote the exchange of knowledge among candidate solutions
corresponding to related problems, but also prevents the convergence of the
search from being affected by counterproductive knowledge transfers among
unrelated tasks.

The adoption of large-scale evolutionary multitasking to optimize simulta-
neously different DL models can boost even further the possibilities foreseen
for the intersection between Transfer Learning and bio-inspired optimiza-
tion. For instance, the transfer of pretrained modules between tasks can
be conceived as a crossover strategy between networks partially evolved for
undertaking different tasks. Similarly, the exchange of the parameters values
between DL models can be also automated via evolutionary multitasking
towards evolving behavioral policies for different reinforcement learning
tasks [281]. Evolutionary multitasking has been also used to achieve modular
network topologies [314]. The relative youth and promising results shown
by evolutionary multitasking techniques are a sign of objective evidence
that optimization problems related to DL should be explored via these tech-
niques, e.g. by leveraging the straightforward exchange of knowledge among
networks allowed by their hierarchically layered structure. Results later
presented in this Thesis go in line with this observation, showcasing that
this research direction has a long road of opportunities ahead. Furthermore,
developments in multi-objective evolutionary multitasking [315, 316, 317]
open up further opportunities towards considering other objectives beyond
accuracy of relevance for DL, such as the complexity of evolved topologies.
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2.7.3. Optimization of New Deep Learning Architectures
Most of the reviewed literature on bio-inspired algorithms for DL has

focused on traditional forms of neural computation, including convolutional
filters and recurrent units. However, this major activity has set apart the
optimization of other neural network flavors, for which Deep (multi-layered)
versions have been proposed over the years. Such alternative deep archi-
tectures have fewer optimization variables, hence favoring the use of naive
bio-inspired solvers for the different problems that can be formulated on
them.

One of such neural families is Reservoir Computing, which comprises
a number of recurrent neural networks where only the parameters of the
output layer (the readout layer) are learned. The parameters of the rest of
recurrent neurons (the reservoir) are randomly initialized subject to some
stability constraints, and kept fixed while the readout layer is trained [318].
Some works have been reported in the last couple of years dealing with the
optimization of Reservoir Computing models, such as the composition of the
reservoir, connectivity and hierarchical structure of Echo State Networks via
Genetic Algorithms [319], or the structural hyper-parameter optimization of
Liquid State Machines [320, 321] and Echo State Networks [322] using an
adapted version of the Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) solver. The relatively recent advent of Deep versions of Reservoir
Computing models [323] unfolds an interesting research playground over
which to propose new bio-inspired solvers for topology and hyper-parameter
optimization.

Despite more scarcely, optimization problems related other families of
neural computation models have also been approached via Evolutionary
Computation and Swarm Intelligence. The most remarkable case is the
family of Spiking Neural Networks, in which topology and structural hyper-
parameters have been addressed by means of different bio-inspired solvers
[324, 325]. Training of synapses in spiking neural architectures has been
also tackled in [326, 327]. The prospects outlined in the recent overview on
training methods for Spiking Neural Networks [328] are also adopted for this
study: efficient large-scale training methods should be investigated for new
variants of these models, such as spiking deep belief networks and spiking
convolutional neural networks.

2.7.4. Multimodal Optimization for Deep Learning Ensembles
Another interesting research path stems from the adoption of niching

methods used in bio-inspired algorithms for multi-modal problems for the
construction of DL ensembles (also referred to as committees. Indeed, the
evolved population of candidate networks can be employed to retain near-
optimal yet diverse DL model configurations. Such a diversity can emerge
from different evolved topologies and/or values of their (hyper-)parameters.
Such retained network configurations can be assembled into a committee,
allowing for a robust fusion of their issued decisions.
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Work in this direction has been published recently in [329], where a niching
mechanism is used to penalize individuals that are more similar to others
in the population are penalized. Network configurations remaining in the
population after the search are then combined together via majority voting,
showing a significant improvement in performance with respect to the use of
a single evolved DL model. Multi-modal optimization methods can also be
combined with diversity induction techniques (e.g. Novelty Search [330]) to
promote an efficient exploration and discovery of multiple global optima over
strongly multi-modal search spaces, just like the ones known to characterize
DL optimization problems.

2.7.5. Exploitation of Problem-specific Knowledge During the
Search

In light of the experiments, it can be deducted that the research community
working on bio-inspired optimization should go memetic and exploit the rich
structural properties of neural networks when designing new algorithmic
approaches for any of the problems related to DL. A diversity of strategies can
be followed for this purpose, from simplest layer-wise search schedules as the
ones proposed in Case of Study I, to more sophisticated means like iterating
between meta-heuristic and gradient-based search, or the use of similarity
measures between neural layers [331] for controlling the behavior of search
operators in topology and/or structural hyper-parameter optimization.

By blending together the global search capabilities of bio-inspired meta-
heuristics and the problem-specific knowledge embedded in e.g. back-propagated
gradients, a major performance improvement can be obtained over the op-
timization domains (structure, hyper-parameters, trainable parameters)
under consideration, effectively overcoming known issues of gradient back-
propagation approaches, such as exploding/vanishing gradients that lead to
slow convergence. This is actually the approach followed in [49], yet validated
with small network sizes. Another problem-specific aspect hybridized with
bio-inspired algorithms can be found in [47]. In this work, the need for in-
ducing curiosity in reinforcement learning models (specially in environments
with sparse rewards) is realized by not driving the search of the learning
agent with the reward objective, but rather with a measure of the behavioral
novelty of the resulting policy. Other examples of hybrid methods are [332,
333, 244, 242].

This can be conceived as another example of the importance of considering
the particularities of the learning problem in the design of bio-inspired
algorithms. We firmly advocate for more proposals along this direction when
addressing optimization problems in DL.

2.7.6. Exploration of Alternative Optimization Domains
The taxonomy around which the literature analysis has been organized

considers three possible optimization domains on which a problem related
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to DL can be formulated: 1) topological variables, namely, the number and
type of layers that compose the model; 2) hyper-parameters, which establish
the details of the layers (structural hyper-parameters) and the optimization
algorithm chosen for training the model (training hyper-parameters); and
3) trainable parameters (weights and biases). This threefold categorization
collectively reflects most contributions reported to date in this research
area. However, there are more optimization domains related to DL that
can be tackled with bio-inspired solvers. One of them is pruning, e.g. the
selective removal of connections among neurons for different purposes, from
regularization against overfitting to a lower computational burden of gradient
back-propagation solvers. Different pruning strategies can be developed to
select which connections to drop at every layer of the DL model, which have
been reviewed in recent comprehensive surveys on this topic [334, 335]. To
the knowledge of this work, the use of Evolutionary Computation and Swarm
Intelligence for neural pruning has been only done at the level of optimizing
the dropout policy of the network [88]. When turning the focus on more
fine-grained pruning strategies, large-scale optimization algorithms can be
used to determine the subset of neural connections that must be discarded
to achieve a good trade-off between generalization performance and network
compactness. Recent findings in the application of genetic algorithms to
convolutional channel selection [336] should be followed by further studies
evaluating the scales at which network pruning with meta-heuristics can be
realized. Besides pruning, other forms of network compression can surely
benefit from the application of meta-heuristic algorithms, such as parameter
quantization and sharing between layers or structures [337].

Other optimization domains for which Evolutionary Computation and
Swarm Intelligence methods can be applied include the tailored design
of activation functions [217], or the fusion of decisions issued within DL
ensembles [127]. Definitely, these problems and other ones still to be proposed
lay a magnificent panorama for bio-inspired optimization.

2.7.7. Inclusion of Multiple Implementation-related Objectives
When evolving DL models, objectives and constraints related to the appli-

cation scenario on which they are to be deployed should be considered in the
optimization problem. For instance, many software libraries and embedded
electronic chips can be found nowadays in the market for the implemen-
tation and execution of neural network models in constrained computing
devices, such as Internet of Things (IoT) sensors [338]. Likewise, real-world
applications such as autonomous vehicular driving, remote precision surgery
or wearable sensors restrict severely which DL models can be rolled out in
their equipment. This suggests that a closer look should be taken at the
complexity of evolved DL models during the optimization of their topology
and hyper-parameters, among other domains.

A similar elaboration can be also made in regards to the progressive
maturity of new paradigms such as Federated Learning [339] and Edge
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Computing [340]. In these paradigms not only local models lack the amount
of computational resources needed to run complex DL models, but also addi-
tional objectives are imposed. Efficient (incremental) training algorithms,
energy consumed by the model [341], data privacy preservation [342, 343],
robustness against adversarial attacks [344], or the explainability and ac-
countability of decisions [15] are some illustrative examples of the eventual
confluence of multiple implementation-related objectives in DL optimization.
However, these factors are rarely taken into account in current approaches
for evolving DL models. Most of them rely just on accuracy or any other
measure of predictive performance.

This being said, DL models should be evolved by considering together sev-
eral objectives and constraints as the ones exemplified above. To this end, it
can be foreseen that bio-inspired algorithms for multi-objective optimization
[345] can play a differential role in the future of DL. This branch of bio-
inspired optimization, along with techniques devised to handle constraints
during the search [346], can catalyze the practical deployment of DL models
by addressing the improvement of the model’s generalization performance
together with implementation-related objectives and constraints.

2.7.8. Reuse of Learned Knowledge: Towards Modular Learning
The reutilization of pretrained modules between models corresponding

to related learning tasks is at the core of Transfer Learning [16], whose
most straightforward strategy is to reuse parts of a model developed for
a task as the starting point for a model devised for another task. Such
parts are often conceived as structural fragments of the network, particularly
those capturing high-level features from the input to the DL model. Features
corresponding to those parts are more easily reusable among tasks due to
their high-level nature. In image classification, for instance, features learned
by the first layers of the network are borders and broad shapes that could
be of help for many different tasks. Therefore, it is intuitive to think that
the output of such layers can be of help in other tasks for which annotated
data instances are scarce.

The availability of DL models trained on different datasets and the effec-
tiveness of just transferring layers between models corresponding to different
tasks suggest a very interesting research path: expanding further the search
space of topology and structural hyper-parameter search to also consider
pretrained modules. The inclusion of such modules in the alphabet of possi-
ble layers could yield a major boost of DL models, specially for those cases
with few labeled data. Furthermore, the flexibility of bio-inspired algorithms
when designing the encoding strategy that represents networks during the
search could allow achieving finer levels of granularity in the knowledge
imported from such pretrained modules, to the scales of convolutional filters
or recurrent units. A higher level of reuse can be achieved in the future with
the consideration of meta-learning, namely, Several studies [316, 317, 318,
319] combine meta-learning and NAS to solve this problem.
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There is a great opportunity to bring together transfer learning and
topology/structural hyper-parameter optimization around the same goal: to
evolve and discover DL models of superior performance.

2.8. Conclusions and Outlook

This chapter has presented a comprehensive and critical review on the
use of Evolutionary Computation and Swarm Intelligence approaches to the
topological, hyper-parametric and/or trainable parameter optimization of
DL models. As previously indicated, the chapter is focused on three axes:
a) definition of optimization problems in DL and taxonomy; b) a critical
methodological analysis of the related literature and two cases of study,
allowing to prescribe learned lessons and recommendations for good practices;
and c) an enumeration of challenges and new directions of research. It is
worth highlighting the aforementioned two cases of study, providing factual
results on the performance of bio-inspired optimization algorithms when
applied to the architectural design, hyper-parameter tuning and training of
DL models.

The elaborations made throughout these three axes have yielded informed
conclusions and insights about the four fundamental questions posed in the
introduction, which round up the critical review of the field targeted in this
chapter. The responses to such questions are synthesized below in the form
of reflections stemming from the aforementioned axes:

1. Why are bio-inspired algorithms of interest for the optimization of DL
models?
The increased scales and diversity of neural layers of modern DL ap-
proaches have lately reactivated the global interest in DL optimization
with bio-inspired algorithms, as a means to automate efficiently the pro-
cesses of designing their topology, tuning their hyper-parameters and
learning their parameters. Such processes can be formulated as complex
optimization problems, motivating the adoption of bio-inspired algorithms
for solving them efficiently. Furthermore, the renowned global search ca-
pability of Evolutionary Computation and Swarm Intelligence methods
makes them a suitable choice to deal with complex search spaces as those
characterizing DL problems. Finally, the flexibility of bio-inspired solvers
to be hybridized with problem-specific search methods is another reason
supporting the hypothesis that DL optimization can largely benefit from
them.
In conclusion, solid grounds for this synergistic fusion of technologies
can be observed, which has so far stimulated the community to tackle
optimization problems in DL using bio-inspired algorithms. However, it
must be recognized that this fusion has not yet achieved results that are
truly a step forward in terms of quality and objective achievement. This
is still a lost race of bio-inspired optimization algorithms with respect to
gradient-based solvers, which remain as the horse at the head of the race.
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2. How should research studies falling in the intersection between bio-
inspired optimization and DL be made?
The discussion on the results obtained in the cases of study suggest
that bio-inspired algorithms can be used for topological and/or hyper-
parameter optimization, yet performing worse than other methods when
comparisons are fair in terms of search space and complexity. Furthermore,
the experiments have also revealed that even competitive bio-inspired
solvers for large-scale global optimization are outperformed by conven-
tional gradient-based solvers for trainable parameter optimization. These
results, along with several issues detected in the literature (most no-
tably, the unrealistic scales of the evolved model and the dataset/task
under consideration), support the claims that there is a large space for
improvement in this research area.
On a prescriptive note, several learned lessons and recommendations
have been identified, which trace how research should be done to reach
solid conclusions and sound achievements. The most relevant ones are
highlighted below:

Good methodological practices when designing experiments and bench-
marks between different solvers, including realistic datasets and models,
fairness in terms of computational complexity, assessment of the sig-
nificance between performance gaps and reported performance scores
over test instances, among others.
A closer attention at encoding strategies for topology optimization that
account for the validity of the composition of layers that they represent.
A clear definition of the variable search ranges in structural and training
hyper-parameter optimization, so that differences emerging between
solvers can be attributed exclusively to their search efficiency.
The exploitation of problem-specific knowledge in trainable parameter
optimization: the interactions between trainable parameters imposed
by the hierarchical structure of neural connections should be exploited
further by bio-inspired solvers for them to step out from the shadows
of their application to the training of DL models.

3. What can be done in future investigations on this topic?
In this regard, it has been underscored the need for overcoming the
computational inefficiency observed in current bio-inspired optimization
algorithms with respect to gradient-based solvers. It is known that these
latter solvers have also their own drawbacks: they require differentiable
loss formulations, they are sensitive to vanishing and exploding gradients
and they are prone to local optima in non-convex search spaces. There are
well-founded reasons why bio-inspired solvers can be a firm alternative
to gradient-based methods, but more efficient designs and/or better
performing implementations of bio-inspired approaches should be under
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active investigation in the future for them to become a practical choice
for DL model training.
We have also stressed on other subareas in Evolutionary Computation
and Swarm Intelligence of utmost interest for their application to DL
optimization. Large-scale global optimization for training DL models
of realistic complexity, or multi-modal optimization for the automated
construction of DL ensembles, are just a few examples of the myriad of
research niches in bio-inspired optimization that have not been explored
yet. Evolutionary multitasking is another interesting direction to follow
when approaching several DL optimization problems at the same time,
mostly when such problems are related to each other and share a significant
degree of overlap in their solutions (as occurs in transfer learning). Finally,
optimization problems formulated on alternative DL models seem to have
received less attention to date, and unleash further opportunities for
bio-inspired optimization.
An additional research direction in this fusion of technologies has been
identified in the existence of other variables and domains in which opti-
mization problems can be formulated. Ensemble construction, network
pruning or selective dropout strategies can also be described as opti-
mization problems, favoring the adoption of bio-inspired optimization
algorithms for their efficient solving.

4. What should future research efforts be conducted for?
There is a strong incentive for which DL optimization should be approached
via bio-inspired algorithms in the future: the consideration of additional
objectives and constraints linked to the application scenario on which
the model is to be deployed. Aspects such as the available computational
resources, the need for periodically updating the model, or the time taken
by the model for issuing a prediction should be considered during the
design of the model for it to be of practical value.
Furthermore, new paradigms such as Edge Computing, explainable Arti-
ficial Intelligence and Federated Learning have underpinned the need for
taking into account other objectives beyond the accuracy of the model.
Aspects such as data privacy preservation, the explainability of decisions
issued by the model, the non-stationary nature of data at the edge, or
the complexity of the learning algorithm can be formulated as addi-
tional objectives for the design of the model, impacting on its topology,
hyper-parameter values and other optimization variables.
These arguments, combined with the flexibility of bio-inspired algorithms
to deal with multiple conflicting objectives, can be a primary what for?
driver for adopting them to evolve DL models in practical settings. Specific
scenarios and contexts that require ad-hoc designs to be evaluated with
multiple objectives can and should also open the door to EDL models
towards meeting imposed goals in terms of efficiency, performance and
other application-related objectives.
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All in all, there are promising evidences that Evolutionary Computation
and Swarm Intelligence can tackle optimization problems related to DL, but
they are not close to maturity yet, nor do they justify yet the replacement
of other solvers used for the same purposes. Nevertheless, this is the role
of research itself: to build upon the shadows of knowledge and bring light
through scientific achievements. This work has just lit a candle to illuminate
this path through the field of EDL.

Summarizing, this chapter has provided an in-depth overview of current
trends in EDL, its pros and cons, and recommendations that can be drawn
from the conducted literature study. In addition, two empirical cases of study
have been designed and analyzed, whose results support the conclusions
drawn throughout the review. In the next section, new trends in Transfer
Optimization (TO) and Evolutionary Transfer Optimization (ETO) will be
identified by following a similar literature study as the one performed in this
chapter.



3
T R A N S F E R O P T I M I Z AT I O N A N D
E V O L U T I O N A RY M U LT I TA S K
O P T I M I Z AT I O N

“The right man in the wrong place can
make all the difference in the world.”

- Half-life 2

3.1. Introduction

Traditionally, optimization problems have been solved by different methods,
part of which do not assume any a priori knowledge about the task under
consideration. Over the years, this approach has demonstrated to be highly
efficient in almost all real-world situations. Today, the scientific community
has realized that this traditional way of solving problems may undergo some
limitations. Indeed, the growing complexity of optimization problems and the
fact that real-world optimization problems hardly appear in isolation have
uncovered the need for exploiting knowledge gathered beforehand related to
the problems themselves. This is the main reason why the incipient research
area known as Transfer Optimization (TO [347]) has gained momentum
within the Artificial Intelligence research community [17]. The fundamental
aim of TO is to exploit the knowledge learned from the optimization of one
problem (task) when addressing another related (or unrelated) problems,
thus aligning much with the previously noted needs.

Up to now, three different conceptualizations of TO have been formulated
in the literature. The first one, coined as sequential transfer [348], aims at
solving problems that occur sequentially. To this end, the knowledge obtained
when tackling preceding tasks is employed as external information when
dealing with new problems/instances. The second one of these categories,
referred to as multitasking [349], is devoted to the simultaneous development
of different tasks by dynamically exploiting synergies existing among them.
Finally, multiform optimization relates to the discovery of a solution for a
single task found by using diverse alternative formulations.

Specifically, this chapter focuses on multitasking tackled through the
perspective of Evolutionary Multitasking (EM) [350], also referred as Evo-
lutionary Multitask Optimization. In short, EM seeks the development of
efficient multitasking methods by relying on search procedures and operators
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drawn from Evolutionary Computation [351, 19] and Swarm Intelligence [352].
A significant effort has been conducted by the community for solving a wide
variety of continuous, combinatorial, single-objective and multi-objective
optimization problems through the perspective of EM [276, 353, 354, 315].
Another research direction for dealing with multitasking in the context of TO
is multitask Bayesian optimization [355], which extends Bayesian optimiza-
tion approaches to multitasking environments [356, 357, 358, 359]. Despite
falling out of the focus of this chapter due to its non-evolutionary nature, it
should be noted that Bayesian solvers, along those within EM, constitute
the core of the contributions reported in the field of multitasking, with a
significantly higher presence of EM methods.

A closer inspection at the most reputed scientific databases unveils that
efforts carried out in EM are exponentially growing in recent times. This
upsurge of activity demands a reference material to summarize achievements
so far, detect and analyze research trends, perform a profound reflection on
them to identify current limitations, and prescribe future research directions
that push forward valuable advances in the field. This is the rationale for
this chapter, which motivates its ultimate goal: to offer the readership of
the Thesis a unified, self-contained and end-to-end outline of the activity
reported around EM, towards properly understanding the methodological
aspects that define this incipient field of knowledge, and how they have been
utilized in the technical contributions of Part III of the Thesis.

Starting with, [360] exposes the work already done around the generic
field of Evolutionary Transfer Optimization (ETO), providing an overview
of existing studies gravitating on different topics related to ETO, namely,
ETO for optimization in uncertain environments, ETO for multitask opti-
mization, ETO for complex optimization, ETO for multi/many-objective
optimization, and ETO for machine learning applications. The overview is
supplemented by a set of challenges in the generic ETO research field. Having
said this, this chapter takes a major step beyond [360] by elaborating on
different directions that make this study differential on its own: a) a study
fully focused on the stream known as Evolutionary Multitasking (ETO for
Multitask Optimization in [360]), stressing on the algorithmic perspective,
b) a manifold taxonomy based on three different pivotal axis: knowledge
sharing pattern adopted (implicit or explicit), dynamic nature of the solving
schemes (static or adaptive) and the design template of the search algorithm
(MFO and Multipopulation-based Multitasking (MM)), c) a critical analysis
of the methodological trends followed by researchers when designing and
implementing EM-based methods; and d) an insightful discussion around
challenges and opportunities fully focused on EM, in which topics ranging
from possible applications, algorithmic enhancements and benchmarking
issues are considered. Another review similar to the ones above can be
found in [361], which presents a brief overview of the work done in the last
five years in the field of multitask optimization and EM. Along with the
definition and basic concepts of multitask optimization, authors provide a
review of the field focusing on different concepts such as encoding schemes,
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parameterization strategies, knowledge sharing patterns, when and what
to transfer, and evaluation and selection strategies. After that, additional
aspects such as algorithm frameworks, many-tasking optimization problems
or similarity measures among tasks are reviewed. Finally, authors analyze
the main applications so far in the surveyed area, highlighting potential
future works in the field. More recently, research around EM in the last years
has been comprehensively examined in [362], orchestrating the literature
review, current research trends and possible challenges around the main
algorithmic components for designing EM methods.

Definition &
fundamentals

Literature
survey Taxonomy Methodological

analysis
Critical
analysis Challenges

[360] ✓ ✓ × × × ×
[361] ✓ ✓ × × × ✓

[362] ✓ ✓ × × × ✓

This chapter ✓ ✓ ✓ ✓ ✓ ✓

Table 3.1: Main contributions and differences among the literature study of this chapter
and previously published surveys.

Despite the detailed dissection of the area offered therein, studies reported
in [361] and [362] differ substantially from the one presented in this Thesis.
The literature study departs from an alternative pivotal criterion and a
taxonomy based on three axis that guides the critical discussion on EM. This
taxonomy allows us to examine the work done in an intuitive and homoge-
neous fashion. Furthermore, the taxonomy-guided structure also facilitates
the analysis of methodological trends followed by researchers, providing a
valuable reference material for newcomers and early researchers arriving at
the field. This chapter also includes a critical view of assumptions and core
issues still unaddressed in EM. Lastly, a prospective on the most urgent and
interesting challenges and opportunities in the area are offered, stimulating
the reader to think beyond conventional paradigms in EM. Table 3.1 sum-
marizes the similarities and differences among surveys published so far and
the one presented in this Thesis.

The remainder of this chapter is structured as follows: Section 3.2 briefly
poses the essential concepts of EM and introduces the reader to the main
approaches used so far to face this paradigm. After that, Section 3.3 is
dedicated to describe both followed bibliographic method and research
questions that have guide the literature analysis. Next, Section 3.6 delves
into the survey itself, departing from the presentation of the taxonomy
criteria, to arrive at a careful examination of the recent bibliography related
to EM. Equally important is the critical and methodological overview done
in Section 3.4 and Section 3.5, bringing to the fore some critical aspects of
the field and the main methodologies followed in the different phases of EM
algorithmic development. Section 3.6 gravitates on the current limitations
and discusses several challenges stemming therefrom. Finally, Section 3.7
concludes this chapter with a summary of the main conclusions and an
outline towards the future of this field.
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3.2. Definition and Essential Concepts

As introduced before, multitasking is devoted to the simultaneous solving
of different optimization problems or tasks. It is important to emphasize
at this point that the main goal of this paradigm is to find a promising
solution to each of the problems at hand. This specific TO category is
featured by an omni-directional knowledge sharing among tasks, potentially
reaching a synergistic push between the problems being tackled [347]. In
this way, multitask optimization sinks its roots in the premise that these
complementarities among tasks lead to a competitive advantage over the
case where the same problems are solved in isolation, either in terms of
the optimality of the discovered solutions, or in terms of convergence and
consumption of computational resources.

Mathematically, a multitask optimization scenario consists of K optimiza-
tion tasks {Tk}K

k=1, which are to be simultaneously solved. In this way, this
environment can be characterized by the existence of as many search spaces
X k as tasks. Furthermore, each k task has its own fitness function (objec-
tive) fk : X k → R, where X k is the search space over which fk(·) is defined.
Assuming that all problems should be maximized, the main objective of
multitask optimization is to discover a set of solutions {x∗

1, . . . , x∗
K} such

that x∗
k = arg maxx∈X k fk(x).

Two main characteristics have stimulated researchers to deal with multitask
optimization scenarios by means of evolutionary search operators. On the
one hand, the intrinsic parallelism that brings a population of individuals
which evolve together is well suited to deal with concurrent problems. In
fact, several papers have already highlighted the benefits of this structure
for dynamically unveiling synergistic relationships between tasks [17, 363].
On the other hand, the continuous exchange of genetic material along
the evolutionary search allows all tasks to benefit from each other [364].
Considering the formulation introduced above, there are several ways for
dealing with multitasking environments through the prism of EM, being two
the most used approaches in the state of the art (depicted in Figure 3.1):

The execution of a single search process over a unique population P =
{xp}P

p=1 that contains the solutions to all problems, and that fosters
the exchange of information among them through the application of
crossover operators (as in e.g. Multi Factorial Optimization (MFO)). In
this case, an aspect of paramount importance is that each solution xp in
the population should be evolved over an unified search space X U . Thus,
each independent search space X k belonging to task Tk can be translated
to X U by means of an encoding/decoding function ξk : X k 7→ X U . For
this reason, each individual xp ∈ X U in P should be decoded to yield
a task-specific solution xp

k for each of the K tasks. In this context, the
appropriate encoding strategy used for the individuals and the capability
of the designed unified search space to represent all solutions ∀X k is
crucial for an effective knowledge transfer between tasks. Specifically, the
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formulation of X U should be consistent with the level of overlapping
among problems being solved.

The deployment of several search processes that run in parallel, one for
every task under consideration, which exchange information periodically
as per a defined knowledge sharing policy (as in e.g. Multipopulation-
based Multitasking (MM)). In this case, each search process operates
on a task-specific population Pk = {xp

k}
Pk
p=1, whose size Pk and search

operators can be particular for task Tk and hence, differ from those used
for other concurrent tasks. In accordance with previous notation, xp

k ∈ X k

∀p ∈ {1, . . . , Pk}. In this case, the exchange of information is usually
made in terms of solutions eventually exchanged between populations
belonging to different tasks, so that a mapping function Γk,k′ : X k 7→ X k′

is needed to translate an individual xp
k to the search space of task Tk′ .

This mapping function can be defined and particularized per every task
pair or, instead, can rely on an intermediate unified search space, such
that Γk,k‘(xp

k) = ξ−1
k′ (ξk(xp

k)), with ξk(xp
k) ∈ X U .
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Figure 3.1: Schematic diagram showing the different ways Transfer Optimization can be
realized, along with the two main family of algorithms by which multitask optimization
can be approached using concepts from Evolutionary Computation.

Based on the work published by Ong and Gupta in [17], the overlap of
two problems can be measured based on the amount of variables in the
task-specific solution space which have the same phenotypical meaning.
Thus, three different superposition levels can be identified depending on
the amount of overlap in the phenotype space of the optimization tasks:
1) complete overlap, when tasks to solve are distinguished only on their
task-specific auxiliary variables; 2) partial overlap, when problems share
some characteristics, or tasks in which the distribution of variables is similar;
and 3) no overlap, when problems to be tackled do not share any aspect of
their structure. In any case, despite the relevance of the level of superposition
when designing EM approaches, it is important to be aware that in many
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real applications it is not possible to measure the level of complementarity
among tasks being solved without actually solving them [347].

Having introduced these concepts, it is appropriate to highlight that there
is a common point of agreement in the related community, which states that
EM was only materialized by means of MFO until late 2017 [365]. From that
moment on, this incipient branch of TO has gathered a growing amount of
contributions centered on the proposal of new EM solvers. Nowadays, it is
widely agreed that two are the most recurring approaches for dealing with
EM environments: MM and MFO, which conform to the two main design
trends described above.

On one hand, MM approaches can be defined in a generalist way as
techniques organized by different populations, in which each deme is devoted
to the resolution of one specific task. MM can be heterogeneous, giving rise to
different solving strategies relying on evolutionary and/or swarm intelligence
heuristics or knowledge sharing protocols. Among these strategies, the one
known as coevolutionary optimization (CoEV, [366]) is arguably the most
frequently used today, in which knowledge sharing among populations (in
terms of e.g., member migration or intra-deme crossovers) helps the evolution
of each task. Examples of MM techniques are the multitasking multi-swarm
optimization proposed in [367], the coevolutionary multitasking scheme
introduced in [368] or the coevolutionary variable neighborhood search
presented in [369].

On the other hand, the design of MFO techniques hinges on the definition of
four different albeit interrelated specific concepts for each solution xp ∈ X U

of the single population P over which the search is performed:

Concept 1 (Factorial Cost): the factorial cost Ψp
k ∈ R of an individual

xp ∈ P is equal to its fitness value fk(xp
k) for a given task Tk, which can be

computed after decoding xp to xp
k via ξk(·). Each member of the population

has a list {Ψp
1, Ψp

2, . . . , Ψp
K} of factorial costs, each one associated with an

optimization task Tk.

Concept 2 (Factorial Rank): the factorial rank rp
k ∈ N of an individual xp

for task Tk is the position of this member within the whole population
sorted in ascending order of Ψp

k. Every individual also counts with a
factorial rank list {rp

1, rp
2, . . . , rp

K}.

Concept 3 (Scalar Fitness): the scalar fitness φp of xp is computed
based on the best factorial rank among the optimization tasks, i.e.,
φp = 1/ mink∈{1...K} rp

k. This value is used for comparing individuals in a
MFO algorithm.

Concept 4 (Skill Factor): denoted as τ p, the skill factor is the task index
in which member xp performs best, that is τ p = arg mink∈{1,...,K} rp

k.

The above four concepts are the cornerstone on which all MFO techniques
rely. In fact, these definitions are used for different purposes, such as 1)
deciding how population individuals interact with each other; 2) determining
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which solutions survive in the population between successive generations;
3) assigning tasks to individuals; or 4) classifying and sorting the whole
population. With all this, these four concepts (either in their seminal form
or in modified formulations, such as those proposed in [370, 371]) have led
to several efficient MFO techniques for solving multitasking scenarios.

Furthermore, it is interesting to highlight here that two different knowledge
sharing strategies can be found in EM methods, which can be approached
as per the level of explicitness of the exchanged knowledge with respect to
the evolved solutions. As such, implicit transfer refers to those cases where
knowledge sharing is materialized through search operators, such as crossover
functions. An example of implicit genetic transfer is the assortative mating
used in most MFO techniques. By contrast, explicit knowledge transfer is
conducted by migrating complete solutions from one task to another, which
is often adopted in multipopulation schemes. Furthermore, it also be noted
that explicit transfer could also be materialized through the use of mapping
functions for transforming solutions before transferring, or by making use of
Estimation of Distribution Algorithms (EDAs [372]). These alternative paths
for knowledge transfer will be revisited when discussing the prospective on
the field in Section 3.6.

All in all, a general pattern that reflect on the literature contributed to date
can be discerned at this point. MM approaches lend naturally towards implicit
knowledge transfer due to the direct exchange (migration) of individuals
between subpopulations. Likewise, the unified search space of multifactorial
optimization and the application of search operators over solutions encoded
as such favors the interaction of tasks via mating strategies sensitive to
the specialization (skill factors) of individuals. In other words, the design
of the overall EM algorithm is tightly coupled with the explicitness of the
knowledge transferred between tasks.

Notwithstanding the proven efficiency of EM solvers (including those re-
lated to MFO), it is appropriate to finish this section by underscoring that
multitasking has been the focus of diverse debates questioning the efficiency
of techniques proposed to date. Today, it is a clear consensus regarding
the paramount relevance of the correlation among tasks to solve. The exis-
tence of these interrelationships is essential for positively capitalizing the
shared knowledge over the search. Many studies have analyzed from different
perspectives the similarities and possible synergies among problems [373].
However, in many practical environments it is not possible to quantify the
existing complementarity among tasks in a preemptive fashion, without any
knowledge of the optimal solution to each problem under consideration. This
noted fact creates a latent problem for multitasking solvers, as the sharing
of genetic material among non-related tasks is known to potentially lead
to performance downturns. This phenomenon is known by the community
as negative transfer [374], and has motivated a significant research upsurge
towards alternative EM methods capable of avoiding and/or counteracting
its effects in the convergence of the multitasking search. Such alternative
methods will be reviewed and discussed in Section 3.6.
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For the sake of understandability, it is convenient to clearly distinguish
among several concepts that have been introduced in this section, and
which are referred to throughout the rest of the survey: multi-population,
co-evolution and distributed evolutionary algorithms. First, multi-population
refers to all evolutionary algorithms whose population of individuals main-
tained over the search is structured into different groups or subpopulations.
These subpopulations have their own algorithmic characteristics, such as
different operators or parameters, allowing the search to be more diverse
and rich. Multi-population may also include migration strategies, so that
individuals can be shared between subpopulations under a certain criteria
or migration policy. Co-evolution, however, implies the definition of two or
more solving algorithms which communicate together so as to expedite the
convergence of the search process. The communication among co-evolved al-
gorithms is materialized through the sharing of valuable information obtained
during the search. Finally, distributed evolutionary algorithms collectively
denote those evolutionary solvers implemented in distributed processors.
This parallelization can be implemented under two different strategies [375]:
i) population-distributed models, which distribute an evolutionary task at
operation, individual or population levels; and ii) dimension-distributed
models, which focus on reducing the dimension of the search space tackled
by every distributed solver.

Additionally, for the sake of a solid understanding of the EM paradigm,
the following two sections clarify the main differences between multitask
optimization, multi-objective optimization (Section 3.2.1) and multitask
learning (Section 3.2.2).

3.2.1. Multi-objective Optimization Versus Multitask
Optimization

An insightful reader can immediately relate EM to Multi-objective Opti-
mization (MOO) paradigm which, when approached via evolutionary com-
putation, span the wide family of multi-objective evolutionary algorithms.
Indeed, it is possible to discern a conceptual overlap between both EM and
MOO, since both aim at the optimization of a set of objective functions.
However, as shown in Figure 3.2.a and Figure 3.2.b, these paradigms are
completely separated from each other. On the one hand, EM aims to leverage
the inherent parallelism enabled by a population of individuals for exploiting
the synergies among related or unrelated tasks defined in different domains,
each with its own solution space X k that potentially requires an encod-
ing/decoding function for knowledge transfer. Moreover, EM also pursues
the discovery of the best solution for every task. On the contrary, the goal
of MOO is to find a set of solutions that differently balances between several
conflicting objectives, defined over a single domain (and hence, over a single
search space). In other words, MOO assumes the existence of a Pareto trade-
off between the objectives, for which the devised MOO algorithm produces
an estimation in the form of a set of possible solutions. Therefore, there



3.2 definition and essential concepts 75

is no unique solution to each problem, but rather different solutions that
meet every objective to a certain degree. In fact, EM setups where the tasks
themselves are MOO problems can be found in the literature [315].
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Figure 3.2: Diagram showcasing the core differences between (a) multitask optimization;
(b) multi-objective optimization; and (c) multitask learning.

3.2.2. Multitask Learning Versus Multitask Optimization
Multitask learning and multitask optimization work on similar scenarios,

in which a set of solutions {x∗
1, . . . , x∗

K} is sought for a set of tasks {Tk}K
k=1.

However, they mainly differ in terms of the optimization target, and the
way in which the knowledge transfer is carried out. In multitask learning,
the goal is to yield a model Mθ (with θ representing the parameters of
the model) such that it can tackle the goal imposed by different tasks (e.g.
classification of images of diverse kind). Here, the challenge is to determine a
model structure and a value of their constituent parameters that best favors
not only a good performance on every task under consideration, but also the
exploitation of the synergies between modeling tasks. This dual functionality
sought in multitask learning underlies beneath the design of multi-headed
neural networks with shared losses trained via backpropagation, which are
arguably the most utilized approach in the field: on one hand, sharing part
of the neural architecture permits that part of the knowledge is common to
all tasks, whereas the definition of a shared loss function ensures that the
optimization of the parameters of the network is driven by the performance
over all tasks.

This being said, there is a clear connection between multitask learning and
multitask optimization, in the sense that multitask learning can be stated
as a multitask optimization problem, provided that 1) solutions {x∗

k}K
k=1

elicited by multitask optimization represent the parameters of a model, and
2) solutions are constrained to part of their genotype being shared among
tasks, so that they jointly embed a single model. This last constraint can
be overridden so as to produce a set of models that collaborate together
to solve several learning tasks more efficiently than in isolation. In this
case, weeach optimization task would aim to seek the parameters of the
model that best performs over the defined modeling problem for the task,
and implicit/explicit knowledge transfer mechanisms used in EM could be
effectively employed in place to transfer the knowledge learned in a certain
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task to another. All in all, multitask optimization must be conceived as
a possible way of approaching multitask learning, but not the only one
whatsoever.

3.3. Bibliographic Method and Guiding Research Questions

With the main intention of conducting a thorough and valuable survey,
this section is dedicated to describe the research methodology followed for
conducting this review. For properly gathering all the scientific material
published around this incipient research field, several searches have been iter-
atively conducted using the most reputed and well-known scientific databases:
the Clarivate Analytics Web of Science, Scopus and Google Scholar. At this
moment, it is interesting to mention that due to the fact that Evolutionary
Multitasking is a field that has not reached maturity, multiple terms have
been employed for a systematic discovery of the published papers. The main
reason for this situation is the non-existence of a general and well-accepted
terminology for certain related concepts. For this reason, the next terms
have been used for digging up all the produced material: "Transfer Optimiza-
tion", "Multitasking", "Evolutionary Multitasking", "Evolutionary Multitask
Optimization", "Multifactorial Optimization", "Multifactorial Evolutionary
Algorithm" and "Multipopulation-based Multitasking".

Furthermore, after carrying out a first sweep using these terms, an ex-
haustive analysis has been performed paper by paper, in order to identify
its adequacy for the present study. Once again, this situation is also a direct
consequence of the youth of this field, which is why there are articles that
using inaccurate terminology can lead to ambiguities. Having applied this
second filter, and after the final selection of the articles to review, each
manuscript has been categorized using the following criteria: knowledge
transfer strategy employed, capacity of the solving approach for analyzing
the negative knowledge and principal algorithmic scheme. Finally, and going
deeper into the bibliographic analysis carried out, the three main research
principles that have guided this investigation have been the following ones:

To determine which are the predominant methodological patters that
guide the current algorithmic developments, in terms of knowledge
sharing among solving tasks, and adaptation to negative transfer
phenomenon.

To clearly identify which are the principal used mechanisms and opera-
tors for the evolution of Evolutionary Multitask Optimization Methods,
both in MFEA and MM related schemes.

To establish a strong basis for a prescription of methodological improve-
ment areas and opportunities for future research, which are conducted
in Section 3.5 and Section 3.6.

Embracing the method described in these paragraphs, the next section
is devoted to presenting the taxonomy elaborated on the topic at hand,
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EM, and to outlining the main progresses conducted by researchers and
practitioners to date.

3.3.1. Review of Current Evolutionary Multitasking Trends
As mentioned in the introduction of this chapter, the research activity

produced around EM is growing at a remarkable path since the first for-
mulation of this vibrant paradigm. The main objective of this section is to
systematically review the most important works published to the date in
the field of EM.

In order to appropriately guide this section, the taxonomy is presented in
Figure 3.3 which covers all the studies contemplated in this review section.
For organizing this taxonomy, and subsequently this section, a two-level
approach is used to classify all the published material. First, the knowledge
transfer strategy employed by the proposed solving method is considered
(implicit or explicit). The second level regards to the capacity of the method
to proactively analyze the negative knowledge sharing among tasks and
dynamically react to this issue, seeking to reduce its impact in the algorithmic
search. On the one hand, if the solving approach does not include any
analyzing mechanism, it is considered static. On the other hand, an algorithm
is considered as adaptive if it not only employs this kind of analyzing
strategies but adapt its structure to the unveiled synergies among tasks
(by modifying the parameters of the algorithm, for example). Lastly, once
this categorization is conducted, articles are further classified taking as
reference the algorithmic approaches used and proposed by researchers and
practitioners. In this regard, MFO based schemes, MM based approaches and
other methods have been considered.

With all this, this taxonomy sorts the literature according to these algo-
rithmic schemes, being also valuable for distinguishing at a short glimpse
those areas in which the community has so far place most of their attention.
This literature overview, together with the methodological review conducted
in Section 3.5, settle a stepping stone towards the critical discussion that
will be held in Section 3.6 around the main limitations, opportunities and
challenges that bring this area.

3.3.2. Theoretical Studies on Multitask Optimization
As mentioned, this whole section will revolve around the systematic

overview of all the work done up to now on Evolutionary Multitask Opti-
mization. This overview has been conducted though the perspective of both
algorithm proposals and their knowledge sharing patterns. Nevertheless, it
would be a big mistake if one leave aside the large number of paramount
articles which have contributed in a crucial way to the establishing, ad-
vancement and understanding of this field. Specifically, these are theoretical
papers, which address the knowledge area from a less applied point of view,
in order to understand in an adequate way the ins and outs of the field.
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These works are essential for establishing in the community the main pillars
that make the research stream can advance in an orchestrated and efficient
way.
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Figure 3.3: Taxonomy of the literature related to Evolutionary Multitask Optimization
reviewed in this survey. A two-level classification has been made depending on the knowl-
edge transfer scheme used and the adaptability of the proposed methods. Furthermore,
solvers have been categorized into MFO and MM based ones, with an additional ’other’
classification.

Probably, the most valuable paper in this context is this published by
Ong et al. in [376], which is devoted to the introduction and presentation of
EM field. This work is a cornerstone in the research community, establishing
the basic concepts that have guided all the work conducted in last years.
Apart from this influential and pioneering contribution, several remarkable
theoretical works have been published on EM delving of different aspects
such as the influence of complementarities between function landscapes on
the search performance [377, 373], or just highlighting the main ingredients
that make this knowledge stream interesting for the research community
[349]. Further works on EM from a theoretical viewpoint can be found in
[378, 17].

It is interesting to mention again at this point the study published by
Gupta et al in [34]. That paper is not only significant for introducing to
the community the most important method to date, MFEA, but also for
establishing the principal wickers that make up MFO. As will be demonstrated
in Section 3.3.3 and Section 3.3.4, both MFO and MFEA have been the source
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of inspiration for an abundant number of valuable works. As part of the
work carried out, there are several published papers that have also delved
into theoretical aspects of these paradigms. In the recent [379], for example,
an analysis on the efficiency of MFEA is carried out. Main objectives of
that study are twofold: to theoretically unveil why MFEA based methods
perform better that classical techniques, and to provide some findings on
the parameter setup of MFEA algorithm. In the recent [380], the impact
of three different MFEA parameters is analyzed: probability of individual
learning, probability of intra-crossover and probability of inter-crossover. In
[381], a rigorous analysis is carried out on the relationship of MFEA and the
conceptually similar multipopulation evolution models. To do that, authors
make an in-depth comparison on their performance and working procedures.
A similar study is also proposed in [382], revolving around the idea of the
relationship among MFEA and island-based models. Interesting is also the
brief study proposed in [383], focused on presenting insights in the measure
of task relationship in MFEA. In [384], the efficiency of the binary tournament
selection criteria used in the multi-objective variant of the MFEA is studied,
proposing additional selection strategies. Further examples of theoretical
studies can be found in [385], focused on analyzing the influence of the order
of solution variables in multitasking environments; or in [386], devoted to
the analysis of convergence in evolutionary multitasking scenarios compared
to the conventional single task optimization.

Focusing on other theoretical aspects beyond those in MFEA, the position
paper published by Gupta and Ong in [387] has become largely influential in
the development of the field. The main objective of that research is to return
to the roots of Evolutionary Computation. From here, authors provide an
interesting review of the field for properly understand the inspirations of
what can be classified under the umbrella of multi-X evolutionary compu-
tation concept. Thus, multitasking is again analyzed in this paper from its
theoretical perspective. Also valuable is the recent work proposed in [388],
in which a novel problem known as Competitive Multitasking Optimization
is studied. In this new paradigm, solutions of solving tasks are compared to
each other, so that its optimal solution is declared to the best among the
optimal solutions of all the tasks under consideration.

Finally, it is interesting to mention in this category the studies described
in both [389] and [365]. These reports contribute to the EM field by in-
troducing some valuable test problems for both single-objective MFO and
multi-objective MFO. Main intention of the authors of that works it to present
to the community some heterogeneous benchmarks and baseline results, in
order to use them for subsequent studies.

3.3.3. Implicit Knowledge Transfer Based Static Solvers
As mentioned in the previous Section 3.2, implicit transfer is often ma-

terialized through the application of dedicated search operators such as
crossover functions. The principal standard-bearer for this type of transfer is
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known as assortative mating which is used in most of MFO techniques. The
first paper revolving around assortative mating procedure is the same work
which also introduces Multifactorial Optimization paradigm [34]. This paper
became instantly in a reference paper, not only because of the introduction
of MFO concept, but also for the formulation of the most used and influential
EM technique: the Multi Factorial Evolutionary Algorithm (MFEA). From
that moment on, many diverse adaptations and applications of the canonical
MFEA has been proposed in the literature. In [390], for example, first discrete
adaptation of MFEA is proposed, using as benchmarking problems four well-
known permutation-based combinatorial optimization problems: Traveling
Salesman Problem, Quadratic Assignment Problem, Job-Shop Scheduling
Problem and Linear Ordering Problem. After that pioneering study, multiple
additional discrete adaptations of the method have been proposed, such
as the one focused on solving the Capacitated Vehicle Routing Problem in
[391] or the series of works published principally by Thanh and Binh for the
facing of clustered shortest path tree problems [392, 393, 394, 395, 396, 397,
398].

The interest in MFEA has stimulated several adaptations of this algorithm
over the last years for efficiently dealing with real-world optimization prob-
lems. This is the case of the permutation-based MFEA proposed in [399]
with cloud computing service composition purposes. A quite related ap-
proach was presented in [400], devoted in that case to the efficient semantic
web service composition. In [401], authors develop a MFEA embedded with
a greedy-based allocation operator for solving large-scale virtual machine
placement problem in heterogeneous environment. An additional interesting
application of MFEA has been recently proposed in [281], with the main goal
of simultaneously evolving concurrent deep reinforcement learning models.

In addition to these adaptations, multiple advanced variants of the MFEA
have emerged recently. These variants are mainly characterized by the
adoption of novel mechanisms or operators, and they also rely on implicit
transfer strategies for sharing genetic material between tasks. In [402],
for example, authors introduced the named as Generalized MFEA. The
main reason for the formulation of this technique is that MFEA experiences
performance downturns when dealing with tasks with different dimensions,
or problems whose optima do not lie in the same region of the solution space.
The Generalized MFEA try to overcome these issues by implementing two
different mechanisms related to decision variable translation and shuffling.

Another interesting variant of MFEA is developed in [403]. The improved
MFEA proposed in this work explores the integration of a novel cross-task
implicit transfer operator, which is based on a search direction instead of an
individual. The main objective of this method is to accelerate the convergence
of the search process, especially in environments where the optima of tasks
are far from each other. Authors of [404] modeled an interesting hybrid
MFEA which combines both MFEA and the Linkage Tree Genetic Algorithm.
In [405], a variant of MFEA coined as polygenic evolutionary algorithm is
designed, which curtails the cultural issues of the evolutionary procedure in
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the models of multifactorial inheritance. The main objective of that work
is to understand the importance of both assortative mating and vertical
cultural transmission towards effective evolutionary multitasking.

Further interesting MFEA variants have been proposed in [406] by means
of the coined as (4+2) MFEA; in [407] introducing the MFEA with Individual
Gradient mechanism for enhancing knowledge transfer; and [408] with MFEA
with Priority-based Encoding. Furthermore, a variant coined as potential
individual-based MFEA is proposed in [409] for solving the problem of con-
structing the data aggregation tree for minimizing the energy cost of data
transmissions in a wireless sensor networks. A related problem is tackled
in [410], in which MFEA with a network random-keys representation, a
constraint-aware fitness function, and a novel crossover operator is proposed
for solving the problem of prolonging the lifetime of wireless sensor networks.
Further applications and variants of the MFEA can be found in [411] and
[412].

Soon after using MFEA for single-objective optimization tasks, the research
scope steered towards multi-objective optimization tasks, forging the so-
called Multi-Objective MFEA (MO-MFEA) [315]. It should be noted here that
this Multi-Objective MFEA also employs the assortative mating procedure
for implicit knowledge sharing purposes. Furthermore, this specific method
has been already used in a heterogeneous range of applications, such as
for dealing with the multi-objective pollution-routing problem [413] or for
the electric power dispatch [414]. A further application of MO-MFEA was
presented in [415] for solving operational indices optimization. Improved
variants of the referential MO-MFEA have been already proposed, such as the
one in [416]. In that paper, authors introduce a MO-MFEA with a two-stage
assortative mating method. This procedure introduced a preliminar division
of the decision variables into diversity-related variables and convergence-
related variables. After this first step, both types of variables undergo
the assortative mating. Another adaptation was developed in [417], coined
as decomposition-based MO-MFEA (MFEA/D-M2M). The main ingredient
that characterizes this method is the adoption of a M2M approach for
decomposing multi-objective optimization problems into multiple constrained
sub-problems. The main goal of this procedure is to enhance the diversity of
population and convergence of sub-regions. Also valuable is the study carried
out in [418], focused on the resolution of the well-known multi-objective
vehicle routing problem with time windows using an improved MO-MFEA by
integrating bone route and large neighborhood local search. Furthermore,
authors of [419] introduced a so-called Guided Differential Evolutionary
(DE) MO-MFEA. Two are the main novel ingredients of this method: a) an
improved crossover operator using guided differential evolution, and b) a
modified Powell mechanism for mutation operations.

An additional improved version of the MO-MFEA can be found in [420],
devoted to the solving of interval multi-objective optimization problems
(cases in which the coefficients in their objectives or/and constraint(s) are
intervals). The work in [421] also joins this profitable record of EM methods for
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multi-objective optimization tasks: in this recent work, a MO-MFEA method
based on improved dynamical decomposition is presented. This approach,
coined as MFEA/IDD, integrates the advantages of EM and decomposition-
based evolutionary solvers. More concretely, in IDD a bi-pivot mechanism is
implemented for providing an appropriate balance between convergence and
diversity. Moreover, a MFEA-based method embedding the IDD mechanism
is developed with the main objective of reducing the running time for
solving diverse multi-objective optimization problems. Finally, authors in
[422] present an enhanced version of the MO-MFEA, coined as IMO-MFEA.
This method differs from the basic variant by including a novel mechanism
for conducting more profitable crossover operators.

Quite differently to the aforementioned EM solvers, it is particularly inter-
esting to pause at the single- and multi-objective optimization multifactorial
evolutionary algorithm (S&M-MFEA) proposed in [423]. The main purpose
of that solving scheme is to combine in a single multitasking environment
the original single-objective MFEA formulation together with its associated
multi-objective reformulation. Finally, in [424] authors proposed a MFEA
with the incorporation of a prior-knowledge-based multiobjectivization via
decomposition, with the main goal of building strongly related meme helper-
tasks.

Despite the huge success and the contrasted efficiency of MFEA, researchers
have rapidly detected the main limitations inherent to the canonical scheme
of this method. As reported in previously published papers [374], the main
limitation of MFEA is its difficulty for facing potential incompatibilities
between different non-related tasks. For dealing with this issue, two principal
research streams have been followed by the community up to now. The first
one is the development of adaptive methods (as will be seen in Section 3.3.4
and Section 3.3.5). The other approach is the design of alternative solving
schemes. Within this last category, different techniques can be found in
the literature that address EM throughout the lenses of MFO but using a
different scheme than MFEA. Another limitation of MFEA is that it resorts
to non-structured populations, even though such a structure is assumed to
exists. Thus, a more advanced and sophisticated structures could favor the
design of alternative search operators, promoting a more controlled exchange
of knowledge between related and non-related tasks.

Therefore, to overcome these limitations, practitioners have taken a step
forward, proposing novel mechanisms which have led to the proposal of
numerous methods, based on the essential concepts of the MFO. The first
alternative MFEA scheme was proposed in [425], just some months later that
the seminal work presenting the canonical MFEA. The main motivation that
led the conduction of that work is to demonstrate that the practicality of
population-based bi-level optimization could be enhanced by deeming the
paradigm of EM within the search process. To do that, authors embedded
the principal MFO concepts into the scheme of the well-known Nested Bi-
Level Evolutionary Algorithm, giving rise to the coined as N-BLEA. Some
months later, Sagarna and Yew-Soon introduced in [426] a MFO method for
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search-based software test data generation. In an attempt of leveraging the
knowledge from different sources and enhance the search process, authors
of that work proposed a MFO algorithm which bases the complete search
procedure in mutation operations. Thus, authors evince that the selection
operator and the preference relation used to compare individuals allow to
inter-task knowledge transfer for an effective search.

Also proposed shortly after the introduction of MFEA, an interesting
work delving in the main concepts of MFO can be found in [427]. The
principal goal of that work is to explore the generality of the MFO paradigm,
employing different population-based schemes. To do that, authors proposed
the first multifactorial formulations of the hugely famous particle swarm
optimization (PSO, [27]) and differential evolution (DE, [428]). Regarding
the knowledge sharing strategies used in these DE- and PSO-based methods,
they also employ the widely used concept of assortative mating, adapted
to the mechanisms of the mmeta-heuristics at hand. Thus, they also rely
on implicit transfer mechanisms. Indeed, that interesting work has served
as guiding light for subsequent studies, such as the one conducted in [429],
in which the performance of different mutation strategies in the knowledge
transfer of multifactorial DE is studied. Furthermore, this same method
is used as base in the remarkable investigation carried out in [430], which
main goal is to identify the essential characteristics of tasks landscapes
through the implementation of an inter-task evolutionary mechanism in the
low-dimension subspace. Another example is the work proposed in [431], in
which a MFO based PSO is proposed for feature selection purposes.

Another example of this scientific trend is the Multifactorial Cellular Ge-
netic Algorithm (MFCGA, [371, 432]), which hybridizes the main concepts of
MFO with the structural design and behavior patterns of well-known Cellular
Genetic Algorithms. Main inspiration of that method is to have a more
controlled implicit mating process among different tasks, favoring in this
way the exploration and quantitative examination of synergies among the
problems being solved. Also interesting is the approach introduced in [433]
proposing a multifactorial particle swarm optimization - firefly algorithm
hybrid technique. Main feature of this method is that individuals of the
population can behave as a particle or a firefly, depending on the search per-
formance. In any case, despite each member of the population can eventually
move following each pattern, each individual maintains its nature along the
complete execution. Further alternative MFO schemes can be found in [434],
presenting a method for solving large-scale optimization problems called
as evolutionary multitasking assisted random embedding; in [435], which
introduces a MFO method hybridizing genetic transform and hyper-rectangle
search strategies; in [436], which proposed an unified framework of evolu-
tionary multitasking graph-based hyper-heuristic based on MFO concepts;
in [437], which presents a MFO variant of the teaching-learning-based op-
timization algorithm; and in [438], which presents a random inactivation
based batch many-task evolutionary algorithm, coined as IBMTEA-FCM.
Additional MFO inspired techniques can be found in [439, 440, 441, 442].
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Having analyzed alternative MFO schemes for dealing with single-objective
optimization problems, it is worth mentioning further schemes devoted to
solving multi-objective tasks. In this regard, the recent research conducted in
[443] by Shen et al. can be highlighted, which introduces a novel multitask-
ing multi-objective memetic algorithm for learning Fuzzy cognitive maps,
inspired by the principal concepts of MFO. Furthermore, in [444] a novel
multitasking method is proposed, which is fully devoted to the resolution
of the sparse reconstruction problem. The method developed on that work
was coined as multitasking sparse reconstruction (MTSR), and also relies
of MFO concepts such as skill factor, factorial rank and scalar fitness for
the multi-objective solving of the problem. It is also interesting to mention
the genetic transfer scheme developed for that MTSR method, which is an
enhanced variant of the assortative mating procedure coined as Within-Task
and Between-Task Genetic Transfer.

The end of this section is dedicated to implicit knowledge transfer-based
solvers by highlighting a few EM alternatives recently proposed which do not
fully embrace the MFO paradigm. On the contrary, they adopt previously
described MM schemes. A representative approach is presented in [367]. In
that work, authors develop a dynamic multi-swarm method for EM. In that
algorithm, the complete population is divided into as much swarms as task to
solve. Furthermore, each subpopulation is divided into different sub-swarm.
Thus, within each task subpopulation, a dynamic multi-swarm method is
conducted. Furthermore, the knowledge sharing is realized through proba-
bilistic crossover procedures with particles from other tasks groups, giving
way to the coevolutionary factor of the method. Moreover, a parallel DE is
proposed in [445], which introduces knowledge transfer patterns based on the
archives of each DE solver. Interesting is also the MM technique developed in
[446], focused on the multitasking adaptation of the well-known Fireworks
Algorithm [447]; or the method based on genetic programming introduced in
[448], in which tasks are solved in dedicated static subpopulations, allowing
the crossing among individuals of different demes. Lastly, worth-mentioning
is the multi-objective MM method proposed in [449], which adapts the
well-known multi-objective optimization evolutionary algorithm based on
decomposition (MOEA/D, [450]). In that algorithm, the implicit exchange of
genetic material is produced through crossover procedures among individuals
specialized on tackling different tasks. To do that, external neighborhoods
are generated for each solving problems. Further methods of this category
can be found in [451] and [452].

3.3.4. Implicit Knowledge Transfer Based Adaptive Solvers
As mentioned in Section 3.2 of this Thesis, a significant effort has been

conducted by the community for overcoming the problems related to the
so-called negative transfer. Examples of these alternative schemes are the
adaptive EM methods. These instruments are mainly conceived for dynami-
cally calculate the synergies among tasks, and subsequently measure how
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much knowledge should be transferred across different tasks. Thus, this
section outlines those MFO methods proposed up to now to dynamically
cope with the curse of negative transfers.

To start with, it is appropriate to mention the recently proposed MFEA-II
[374], conceived as the evolved version of the standard-bearer method of the
field: MFEA. Thus, two are the main ingredients embedded in the basic MFEA
for evolving it to its adaptive variant MFEA-II. First, the parameter which
dictates the extent of transfers (RMP) is now codified as a matrix, with a
dedicated value for each pair of tasks. Second, this matrix is continuously
adapted based on the performance of the multitasking search. It is also
noteworthy that this method has been already adapted to discrete problems
as can be seen in the recent work [453]. Furthermore, same authors that
developed the single-objective MFEA-II introduced also its multi-objective
version in [317]. As in the case of the static MFEA, these adaptive schemes
also base their knowledge sharing on implicit procedures based on genetic
crossover functions.

Another adaptive MFEA is proposed in [454]. In that paper, the method
is endowed with a self-regulation mechanism. The main objective of this
mechanism is to automatically capture the useful knowledge in common of
the tasks at hand. For materializing this goal, this approach introduces the
concept of ability vector, which substitutes the skill factor τ p, and which
reflects the solutions capability for tackling each of the optimizing tasks.
Furthermore, similar authors that proposed MFEA-II in 2019, introduced two
years before a Linearized Domain Adaptation MFEA (LDA-MFEA) [363].
This variant can be considered as an adaptive one, since it employs the
linear transformation strategy for mapping the landscapes of a simpler tasks
to the search space of complex ones. In that way, authors try to conduct
efficient knowledge transfer between the problems while being optimized
in concert. In the same year 2017, authors in [455] proposed a MFEA with
parting ways detection and resource reallocation mechanisms. The first
of this functionalities is in charge of detecting the occurrence of parting
ways at which the sharing of knowledge is being unproductive, while the
second mechanism reallocate fitness function evaluation on different types
of generated solutions by ceasing the knowledge transfer when parting ways.
Furthermore, in [456] a simple adaptive strategy for enhancing the resilience
of the basic MFEA is presented. The method proposed therein employs a
simulated binary crossover operator, followed by an adaptive mechanism
based on information entropy for adapting the parameters controlling the
MFEA evolutionary search.

Following this trend, a Group-Based MFEA (GMFEA) is modeled and
implemented in [457]. GMFEA divides tasks into different conceptual groups
depending on their proved synergy. Thus, GMFEA controls the implicit
genetic transfer between problems belonging to same group. The most
important feature is that the grouping is performed dynamically, without
the requirement of any prior knowledge. Also remarkable is the research
recently conducted in [458]. In that paper, authors first explore how diverse
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kind of crossovers impact on the implicit knowledge transfer in MFEA for
solving continuous optimization problems. After that, they introduce a
novel MFEA with adaptive knowledge transfer (MFEA-AKT), in which
the mating function used for the genetic material sharing is autonomously
adapted employing the information gathered on the complete search process.
Furthermore, authors in [459] proposed a simple Self-Adaptive MFEA, which
regulates the rmp parameter using a novel inter-task similarity measurement
mechanism. Authors used their Self-Regulated MFEA for solving reservoir
production optimization problems.

In addition to these single-objective MFEA variants, several works have
been recently published focused on adaptively dealing with multi-objective
optimization problems. Probably, the most remarkable work is [460], in which
authors introduced a further adaptive variant of the MO-MFEA [460], giving
rise to the canonical MO-MFEA-II. The specific method implemented in that
work is characterized for introducing two novel ingredients: a) the deeming
of a set of reference points to determine the diversity of current population
(instead of using the crowding distance), and the online adaptation of
the Random Mating Probability (RMP) with the intention of improving
the genetic transfer of high-similar tasks. A further interesting method of
this kind is developed in [316]. Specifically, this work is devoted to the
implementation of a so-called MO-MFEA with decomposition and dynamic
resource allocation strategy (MFEA/D-DRA). A further adaptive version
of the MO-MFEA is proposed in [461], devoted in that case for the optimal
operation of integrated energy systems.

Analogous to statirlc MFO algorithms, researchers and practitioner have
also proposed several adaptive multifactorial methods inspired by the main
concepts of this EM paradigm. As mentioned before, MFO methods are the
main exponents of implicit knowledge transfer-based approaches. It should
be highlighted first the adaptive multifactorial memetic algorithm proposed
in [462], which congregates a) the use of local search mechanisms influenced
by the knowledge learning among problems, b) a re-initialization procedure
for overcoming premature convergence issues and c) a self-adaptive parent
selection strategy based on search performance. Also valuable is the work
conducted in [370], which is focused on developing an adaptive variant of the
above mentioned MFCGA. The coined as Adaptive Transfer-guided MFCGA
introduces two dynamic ingredients: a) a dynamic reorganization of cellular
grids based on search performance and b) a self-adaptive multi-mutation
mechanism. A further MFO adaptive variant can be found in [463], devoted to
the presentation of a multifactorial PSO method with a self-adaption strategy
for adjusting the inter-task learning probability. Similar authors proposed
in [464] an additional adaptive method also based in the well-known PSO,
following in this case the MM philosophy and implicit knowledge transfer
pattern. Furthermore, in the recent [465], authors proposed an adaptive
variant of the MFEA coined as Adaptive MFEA for RL (A-MFEA-RL) for
simultaneously evolving multitasking reinforcement learning scenarios.
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As multi-objective alternatives, can be highlighted the adaptive multi-
objective and multifactorial DE algorithm (AdaMOMFDE) proposed in
[466], based on multiple mutation operators which are selected following and
adaptive strategy according to their search results. Also significant is the
multiobjective and multifactorial subspace alignment and self-adaptive DE
(MOMFEA-SADE) recently introduced in [467]. Principal ingredients of that
method are a) a mapping matrix get by subspace learning and employed for
modifying the search space and minimize the impact of negative transfers,
and b) a self-adaptive trial vector used on the DE, for generating new
solutions influenced by previous experiences. Also worth to highlight in
this category the method proposed in [468] based on horizontal cultural-
transmission mechanisms. Finally, the work conducted in [469] revolves
around the multitasking adaptive formulation of the MOEA/D.

Finally, it should be highlighted that, also in this category, several MM
solvers have been proposed in recent years in addition to those based on
MFO. In this line, it is worth to describe first the coevolutionary multitasking
framework proposed in [470], coined as evolution of biocoenosis through
symbiosis (EBS). Inspired by the symbiosis in biocoenosis, EBS is comprised
by multiple populations, running in each of them an independent Evolu-
tionary Algorithm. Furthermore, the information exchange among tasks
constitutes the so-called symbiosis, and it is conducted through an implicit
transfer procedure coined as Information Exchange through Concatenate
Offspring. Finally, this method introduces adaptive mechanisms for control-
ling information exchange, mainly based on the search performance. Further
works on this method can be found in [471] and [472]. In [473], an adaptive
solver based on genetic programming is proposed, devoted to the dealing
of image feature learning. More specifically, this method generates differ-
ent subpopulations in a dynamic way and the knowledge sharing happens
through crossover procedures among individuals of different tasks. Lastly,
[474] attempts at designing an efficient strategy for implicit knowledge trans-
fer based on multidirectional prediction mechanism. The method proposed
in this work divides the whole population into different classes based on
binary clustering, calculating after that the representative point for each
class. Once these points are calculated, the proposed algorithm generates
multiple prediction directions by point, which are employed for generating
new individuals through mutation strategies.

An additional remarkable co-evolutionary framework is proposed in [475],
labeled as many-task evolutionary algorithm (MaTEA). This framework is
similar to EBS in terms that it is also featured by having multiple populations
governed by an Evolutionary Algorithm, each one dedicated to the optimizing
of one tasks. Main characteristic of this MaTEA is an adaptive selection
mechanism for choosing suitable assisted task for a given problem based on
the accumulated rewards of positive knowledge sharing during the search.
Moreover, a genetic material transfer schema via crossover is used for sharing
information between problems for improving the efficiency of the search,
giving rise to the coevolutionary nature of the method.
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3.3.5. Explicit Knowledge Transfer Based Static Solvers
All the works mentioned in this chapter up to now clearly attest the impor-

tance that EM field has in the current scientific community. Furthermore, the
intense activity highlighted in previous Section 3.3.3 and Section 3.3.4 also
unveils the importance of MFO in this specific branch of kna travesowledge.
In any case, this success cannot overshadow the fact that researchers and
practitioners have proposed alternative schemes to MFO to deal with EM
environments. Most of these schemes are MM based approaches, principally
characterized by embracing explicit knowledge sharing strategies. This sec-
tion is intended to outline the main work conducted in last years around
explicit transfer based static solvers. As introduced in previous Section 3.2,
this kind of knowledge transmission is usually conducted by migrating com-
plete solutions among populations, namely from one task to another one.
Additionally, explicit transfer could also be capitalized through the use of
mapping functions or making use of EDA-style probabilistic models instead
of raw solutions.

Arguably, the most successful alternative trend to MFO paradigm is the
one related to MM approaches. Going deeper, most used MM methods fall
inside the category known as coevolutionary. These multitasking methods
are featured by being composed by multiple populations of individuals, which
are usually independently dedicated to the optimization of a single tasks.
Thus, the autonomous evolution of these subpopulations together with the
punctual sharing of genetic material or the sporadic collaboration among
them incurs in a better evolution of all of them in an unison way.

Some exponents of these methods can be found in the works [368], [369]
and [476]. All these three algorithms are multipopulation approaches, gov-
erned by separated Genetic Algorithms, Variable Neighborhood Search and
Bat Algorithms, respectively. These three methods have demonstrated a
promising performance, using a scheme in which each subpopulation is de-
voted to the solving of one single task. Furthermore, the genetic material
exchange is materialized through the punctual migration of complete solu-
tions among the multiple populations. The same trend is also adopted in
[477], in which a MM method named as Differential Evolutionary Multitask
Optimization is proposed, in which the knowledge sharing is conducted
through the migration of individuals among populations. A similar philoso-
phy is followed in the Multitasking Genetic Algorithm modeled in [478], in
which a population of solutions is created for each optimizing problem, and
the knowledge sharing is realized at each iteration through the transference
of different chromosomes among populations. The same paradigm is used in
[479] for solving multi-criteria hyperspectral images band selection problems.
More specifically, the subpopulations that compose the algorithm proposed
in that work communicate among them for merging the bands information
and accelerate the speed of searching promising bands.

Embracing the same research trend, in the research conducted in [480],
an EM algorithm with explicit genetic transfer is presented. Also known as
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EM via autoencoding, or Explicit EM Algorithm, this method is comprised
by as much independent populations as task being optimized. The knowl-
edge sharing is materialized along the search through the injection of good
solutions found by any of the subpopulations along their execution. For
appropriately conducting this genetic transfer, a multiplication operation
is used with a previously learned task mapping. Authors of this last work
extend their research in [481] by applying their EM via autoencoding to
the well-known Capacitated Vehicle Routing Problem. Further evolution of
this method is proposed in [482], with an algorithm coined as EMT/ET.
That enhanced technique explores a novel selection of transferred solutions,
based on the dominance of that solutions over the optimizing problems.
Additionally, in [483] described a generalist multipopulation optimization
scheme, based on similar concepts above described. Authors empirically
demonstrate the efficiency of their scheme using a DE algorithm as base,
giving rise to a so-called multipopulation multitask DE optimization. More
concretely, this method capitalizes the sharing of information by sporadically
creating overlapping populations.

Also interesting is the work proposed in [484]. In that work a specific
instantiation of a multitasking genetic fuzzy system is presented and devel-
oped: a multitasking evolutionary optimization algorithm for Mamdani fuzzy
systems with fully overlapping triangle membership functions (FOTMF-M-
MTGFS). Further MM schemes can be found in [485, 486, 487], introducing
surrogated-assisted mechanisms; in [488], which introduces a fast memetic
algorithm; or in [489], in which a memetic MM algorithm is proposed for
solving a capacitated vehicle routing problem.

Lastly, in [490] a multi-objective multifactorial immune algorithm is pro-
posed. That MM method works with different subpopulations, and bases
the knowledge transfer on an explicit mechanism coined as Dimensional
Information of Solutions (DIS). Thanks to this mechanism, subpopulations
exchange their individuals selecting tasks with similar iteration trends.

3.3.6. Explicit Knowledge Transfer Based Adaptive Solvers
To finish with this systematic review along the state of the art related to

EM delving on the last category that can be found in the literature: explicit
knowledge transfer based adaptive solvers. In this case, it is also interesting
to mention that the methods than can be framed in this last category mainly
embrace the above introduced MM philosophy.

In [491], an interesting adaptive version of the above described Explicit
EM Algorithm [480] is proposed. Specifically, authors explore the use of the
feedback gathered from the solutions transferred across tasks as guide for
tasks selection. This feedback is updated along the search process, being
able in this way to obtain the usefulness across tasks. An additional valuable
algorithm is the novel EM algorithm with dynamic resource allocating strat-
egy (MTO-DRA) introduced in [353]. The adaptive mechanism considered
in this EM method is similar to those presented in [455] or [316]. Main novel
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ingredients of MTO-DRA in comparison with those similar methods is its
multipopulation nature. More concretely, at each iteration, subpopulations
are generated from the overall main population, each one fully devoted to
the solving of one specific task. After this step, the resources are allocated
to every subpopulation based on the index of improvements of tasks. This
index is calculated online based on the performance feedback of previous
generations.

Authors in [492] propose an online similarity learning strategy, named as
adaptive model-based transfer (AMT). For demonstrating its good perfor-
mance, authors instantiate an EM algorithm, called AMT-enabled EA. Main
characteristic of the modeled AMT is its capability of dynamically learn and
exploit the similarities across black-box optimization problems, minimizing
negative transfers.

Interesting is also the recent work proposed by Lim et al. in [493]. In
that paper, a multi-objective probabilistic model-based transfer evolutionary
optimization technique is proposed, endowed with a solution representation
learning mechanism. More concretely, aligned solution representations are
learned through spatial transformations. Thus, the technique is capable of
tackling handle mismatches in search space dimensionalities among solving
tasks, and also of increasing the overlap between search distribution of tasks.
It is also interesting to mention that algorithms proposed in both [492] and
[493] count with a single population, not being classifiable as MFO nor MM.
Additional alternative adaptive EM schemes can be found in [494, 495, 496,
497].

Throughout this systematic literature review section, a deep analysis on
the efforts made so far in Evolutionary Multitask Optimization field has been
conducted. In the next sections, some critical aspects of the field are further
analyzed and discussed, also common methodological trends observed in the
literature are considered. This critical and methodological overview should
also serve as guidance for the upcoming challenges related to this promising
field.

3.4. Critical Aspects of Evolutionary Multitask Optimization

Before proceeding with the methodological analysis of the field, there are
several critical aspects that are often overseen in works related to the EM
paradigm that should be spotted. This identification of unaddressed issues
is supported by an exhaustive investigation of the existing literature, which
has led us to the identification of several major concerns:

To the knowledge of this study, no solid evidences have been given to
support that the need for simultaneously optimizing several optimization
problems is a task that occurs in practice over real-world scenarios. The
immense majority of research advances on EM are validated over syntheti-
cally generated problem instances that are assumed to hold concurrently.
Consequently, synergistic relationships between such problems can be
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modeled beforehand, laying a convenient yet not realistic playground for
EM methods. Experiments over purely real-world problems are still in
need for the field, informed together with a solid rationale of the plau-
sibility of solving the problems involved in the experimentation at the
same time with a single algorithmic approach. In short, is the concurrent
appearance of optimization tasks a circumstance that occurs in real-world
scenarios? What is a synergy between problems defined in the context
of EM? Does the exploitation of such synergies depend on how they are
defined? If so, can be estimated in advance whether such synergies exist,
so that one can decide to solve them simultaneously? Recent efforts have
been invested towards arguing that this research area has potential to
crystallize in real-world applications [498], including the neuroevolution
of robot controllers [374], unmanned aerial vehicle planning [407] or the
optimization of last-mile logistics [481]. Nonetheless, an informed response
to the above questions supported by real-world – rather than realistic –
use cases is urgently needed.

Some specific proposals – mainly those framed within the family of multi-
population EM methods – can be reduced to extensions of classical well-
known multi-population methods for single-objective optimization (e.g.
co-evolutionary algorithms). Such extensions are endowed with subtle
algorithmic adaptations to make them work within a multitasking scenario.
However, in most cases the algorithmic novelty of such adaptations can be
questioned, as they do not entail any innovative means to share knowledge
between optimization. Instead, they resort to the same steps described
when tackling single tasks, yet allocating dedicated resources (e.g., sub-
populations) to every task under consideration. Another risk observed
in the most recent contributions of the field is the use of biologically
inspired metaphors to conceal the lack of algorithmic innovation of newly
proposed EM methods. This aligns with the trend observed in other areas
of bio-inspired computation [19]. The use of a well-established terminology
to describe new EM proposals should be enforced to avoid ambiguities and
findings of dubious scientific relevance.

A growing number of studies focused on EM comprises biased experimen-
tal setups aimed at exclusively highlighting the benefits of knowledge
transfer favored by EM methods. Researcher and practitioners working
in this field should consider that the main challenge of the EM field is
not only to improve the performance of multitasking methods in terms
of exploiting commonalities between the problems in question. There is
a further need for clearly verifying that EM methods are also better at
solving the optimization problems at hand than using single-task compet-
itive solvers and solving them in isolation from each other. Furthermore,
most contributions related to EM neglect any prior knowledge about the
problems to be solved, hence restricting the exchange of knowledge to
that produced during the search. This assumption permits to gauge the
exploitation of synergies that lies at the core of EM approaches, but is
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unrealistic and counterproductive for the search itself. In other words, the
area may be losing sight on the final purpose of optimization research
(to efficiently solve a real-world problem), emphasizing on EM elements
(knowledge transfer) without assessing whether such ingredients provide a
competitive gain over already existing solvers.

In partial connection to the above, an interesting yet challenging possibility
relates to the possibility of facing several optimization tasks of different
nature by EM solvers, mixing together and exploiting synergies among, e.g.
multi-objective, multimodal and dynamic optimization problems. Solving
these heterogeneous tasks together could possibly increase the chances
of discovering synergies among them, potentially leading to performance
gains. However, studies addressing this research niche should depart from
an informed conclusion about its plausibility and cope with the increased
design complexity of the EM solver itself (e.g. appropriate solution encoding
strategies that favor positive knowledge transfer across search spaces of
very different nature). Most importantly, fair comparisons should be made
against competition-winning solvers in each of the subareas of the tasks
under consideration, so that the gains yielded by exploiting synergies
among tasks are not outgained by solving them in isolation from each
other (without exploiting any synergies), using optimization algorithms
designed specifically for each problem type.

There is little doubt about the fresh breeze blown by EM over the evolution-
ary computation field. Progress on the field is being fueled by competitions
organized at renowned conferences such as the IEEE Congress on Evolu-
tionary Computation1 or GECCO2. Although the number of contributions
related to EM is rising dramatically as a result of this growing momentum,
we definitely advocate for a close attention paid to the above crucial matters
to ensure that EM research leads to knowledge that is valuable in practical
settings.

Leaving aside this criticism and in accordance with the potential ac-
knowledged for the field, in Section 3.5 the discussion is focused on the
methodological trends identified after the inspection of the corpus of EM
studies reviewed in Section 3.6.

3.5. Current Methodological Trends in Evolutionary Multitask
Optimization

This section conducts a methodological overview of the current state of
EM research field. The studies already published in this area have been really

1 IEEE WCCI 2022, accepted competition on Evolutionary Multitask Optimization: https:
//wcci2022.org/accepted-competitions/, accessed on February 11th, 2022.

2 GECCO 2020 Competition on Evolutionary Multitask Optimization, http://www.bdsc.
site/websites/MTO_competition_2020/MTO_Competition_GECCO_2020.html, accessed
on February 11th, 2022.
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abundant up to date, giving rise to a significant amount of techniques which
share common practices, mechanisms and resources. The main reason of the
existence of these different research trends is because they are dedicated
to tackle some latent implementation challenges that should be addressed
when dealing with EM environments. Thus, the main goal of this section is
to briefly highlight the principal methodologies adopted by practitioners in
the different phases of algorithmic development. Such trends are summarized
graphically in Figure 3.4 and next described in detail:
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Figure 3.4: Main methodological trends identified in EM research as per the literature
study presented in this Thesis.

How to design the unified search space: One of the most important issues
when facing EM environments is the way in which solutions are encoded.
This is essential principally in approaches that fall inside MFO paradigm.
The main challenge at this point is that wide and generalist encoding
strategies will fall into superficial representations of solutions, not concrete
enough for scrutinize interesting regions of task-specific search spaces. On
the contrary, very specific representations can make impossible the genetic
sharing between tasks coming from different optimization problems. In
this sense, it should be taken into account that, depending on the type of
EM technique to be implemented, it is possible that generated individuals
are evaluated in different tasks throughout the whole search process. This
is common in methods in which the sharing of knowledge is conducted by
explicit transfer. In other cases, although individuals are dedicated to the
solving of an exclusive task, the existence of implicit transfer procedures
make essential that solutions devoted to the facing of different problems
are capable of sharing knowledge with each other. This situation unveils
the necessity of the existence of a unified search space, even more when
tasks to solve are not completely related or belong to different typology of
optimization problems. In the literature, many approaches for the efficient
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design of the unified search space can be found. If the tasks to solve
are encoded by continuous variables, the most used method for encoding
individuals is the well-known random-keys representation [499], as can be
seen in works such as [315, 433, 454, 17, 463]. Furthermore, for discrete
problems, two alternatives have been mainly followed by researchers: the
transformation of the discrete search space to a continuous one through
the random-keys representation, as mentioned in [34] and adopted in works
as [391]; or the use of discrete search spaces such as the one introduced
in [390] and used in works such as [370, 481]. Additional examples of
encoding strategies can be found in the literature, but mainly constructed
ad-hoc for a specific type of problems. Examples of this claim are the
codification used in [392, 394, 395] for solving clustered shortest path
tree problems; or the one employed in [369] for community detection over
graphs. More recently, the use of neural auto-encoders has been proposed
as a means to realize information transfer between tasks explicitly through
the exchange of problem solutions, rather than delegating this exchange
implicitly in the crossover operation over a unified search space [480, 481].

How to evolve the population(s) along the execution: As mentioned before,
Evolutionary Multitask Optimization refers to the design and implemen-
tation of multitasking solvers based on search procedures and operators
drawn from Evolutionary Computation and Swarm Intelligence. Thus, as
being population-based iterative methods, a crucial aspect that define this
type of methods is the selection of the chromosomes that survive from one
generation to another. In EM, several procedures have been proposed up
to date, being the scalar fitness based selection of MFEA the most often
employed one. Specifically, scalar fitness based selection is an elitist sur-
vivor function in which the best P individuals in terms of scalar fitness φp

among those in the current population and the newly produced offspring
survive for the next generation. Another alternative strategy is the coined
as local improvement selection, by which the newly generated solutions
can only substitute their direct parent if they improve it. This strategy is
followed in methods such as MFCGA [371, 432], or those based on PSO or
DE, as in [433, 354]. In another vein, in most of MM schemes, the survivor
selection is conducted within each subpopulation, following traditional
evolutionary computation or swarm intelligence selection operators.
Before proceeding further, at this point a pause is made to critically
incide on certain practices that have been lately noted in this area: the
derivation of new EM approaches in which the novelty exclusively resides
in the use of new search operators, without any other research contribution
to the EM area whatsoever. Despite the interest that the exploration of
new meta-heuristic operators may awake in the community, this uprising
corpus of literature should be appraised with care. As any other subarea
of Evolutionary Computation and Swarm Intelligence, many voices are
claiming to cease research efforts towards metaphor-based studies that lack
any algorithmic novelty when compared to well-established meta-heuristic
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approaches [19]. Given its relative infancy, EM research should escape from
these poor practices, and should focus strictly on algorithmic designs that
connect closely to the core functionalities expected for an EM approach:
new knowledge transfer mechanisms, unified solution encoding strategies,
negative transfer avoidance over the search, and other parts alike.

How to share knowledge between tasks: The effective genetic material
transfer is arguably the most important factor for EM methods to work
in an efficient way. This specific procedure is what makes a multitasking
technique to be superior to classical solving mmeta-heuristics and schemes.
In any case, the design of adequate knowledge sharing mechanisms is not
trivial, and it usually depends on several issues, such as the encoding
strategy employed, or the nature of the problems being solved. The main
challenge on this point is twofold: i) to share as much as valuable knowledge
among tasks and with an acceptable frequency, and ii) to define which
is the genetic material that should be shared among optimizing tasks.
Following these principles, the transference of knowledge can be capitalized
following several directions. Probably the most used strategy, having
shown great performance so far, is the generation of new individuals using
genetic material coming from solutions with different skill task. Example
of this specific trend is the well-known assortative mating, which can
be materialized through i) a common crossover operation as in MFEA,
MFEA-II and many other MFO techniques [34, 374, 370]; ii) based on
mutation strategies as in DE inspired techniques [466, 429, 430]; or iii)
the velocity based movements of PSO inspired methods [427, 433, 463].
Another commonly used mechanism for conducting intra-task knowledge
transfer is the one used by MM methods, in which multiple populations
coexists, each one devoted to the resolution of one specific task [368, 476,
478, 488, 369]. In that cases, the knowledge sharing is conducted mainly
by migrating solutions among subpopulations, modifying in this way the
optimizing task of individuals. Other less used genetic transfer scheme is
the one based on a single-layer denoising autoencoder, used in the coined
as EM via autoencoder [480, 481]; the generation of temporary overlapping
populations [483], or based on the archives of DE solvers [445].

How to adapt the algorithm to negative transfers: as has been seen in
previous Section 3.3.4 and Section 3.3.5, a common trend for overcoming
the curse of negative transfer is the design and implementation of adaptive
mechanisms. The main motivation that inspires the development of this
mechanism is also twofold: i) to share as much as valuable knowledge among
synergistic tasks and ii) to avoid the inefficient transfer of genetic material
among non-complementary tasks. In this regard, several promising alter-
natives have been proposed in the literature up to now. More concretely,
two methodological trends can be distinguished: i) soft negative transfer
avoidance mechanisms, which are devoted to discourage the knowledge
sharing among non-related tasks, and ii) hard negative transfer avoidance
mechanisms, aiming at prohibiting the transfer of genetic material among
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non-compatible tasks. Arguably, the most common used soft mechanism
is the on-line fine tuning of algorithm parameters. This is the focal point
of the model-based estimation of inter-task synergies embedded in the
influential MFEA-II algorithm [374] and its discrete and multi-objective
variants [453, 317], for example. Additional examples of this trend can be
found in [460, 462, 463], using similar mechanisms as MFEA-II, or in [458,
370, 466], in which the adaptation is not in the parameters, but in the
search operators used. Another common strategy is the resource allocation
[455, 353, 316]. This mechanism is in charge of dynamically analyze the
complementarities among tasks and allocating computational resources
based on them. Another soft strategies contemplate the reinitialization
of algorithm structures such as populations [370, 462] or the controlling
of the amount of genetic material exchanged among solutions [470, 471].
As hard mechanism, it can be highlighted the dynamic generation of
conceptual groups based on the arisen synergies [457, 475]. In any case, it
should be highlighted that hard are more complex to implement, since
they should be aware of the similarities among optimizing tasks (either
in a preliminary way, obtaining them dynamically, or by studying the
corresponding landscapes).

Despite these methodological trends, other great challenges and niches
persist in the field. Some of these research opportunities are very closely
linked to the trends discussed in this section, while others are devoted to
finding new methodological approaches or the application of EM technique to
new and more complex domains. These challenges are reviewed in Section 3.6,
along with an outline of several research opportunities that are bound to
attract much of the activity of the related community in the coming years.

3.6. Evolutionary Multitask Optimization: Challenges and
Research Directions

Considering the review of the activity so far discussed in preceding sec-
tions, there is little doubt that Evolutionary Multitasking has brought a
fresh breeze to the community working on Evolutionary Computation and
Swarm Intelligence. Advances so far in this area have been notable, exposing
the benefits of embracing multitasking in optimization problems close to
reality. However, the relative youth of this field has left several challenges
and research niches still insufficiently addressed. This section is devised to
enumerate a series of open research questions, and propose some research
paths that can be followed to tackle them effectively in years to come. Each
identified challenge is complemented by a brief explanation of its scope,
relevance and alignment with current research efforts made in other fields,
summarizing all this information in Figure 3.5 for a quick visual reference of
contents:
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3.6.1. On Measures of Similarity Between Tasks: Are They
Really Needed?

As discussed throughout the survey, so far the exchange of information
between tasks has been done either implicitly or explicitly. In both cases,
the similarity between tasks has been used to dictate which (and to a
point, how) different individuals have been mated with each other, or to
establish which tasks exchange explicit genotype information with each
other. Notwithstanding this general usage pattern, an open question remains
whether a priori assessment of the similarity between tasks is really needed in
the context of Evolutionary Multitasking. Adaptive approaches such as MFEA-
II- or ATMFCGA have exposed the capability of the evolutionary search
process itself to elicit a progressively better estimation of the similarities
between the problems being solved. However, there is no certainty whether
this estimation of the similarity between tasks effectively avoids counter-
synergies among them all along the process, particularly in early evolutionary
stages. The availability of a priori information on how tasks relate to each
other, by any means, should be exploited from the very beginning of the EM
approach for the initial evolution to be informed properly.
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Figure 3.5: Conceptual diagram summarizing the identified set of challenges and research
directions in evolutionary multitask optimization, together with the baseline issues that
still remain unaddressed to date. Challenges addressed in this Thesis have been highlighted
in orange.

Departing from this last intuition, it can be foreseen that further efforts
should be invested on advanced methods to estimate the similarity between
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optimization tasks without actually solving them. Clearly, a well-behaved
measure of similarity between optimization tasks should roughly depend on
the closeness of their optimal solutions. However, it is important to note that
in the context of EM, the similarity between optimization tasks has no unique
definition, and depends on the search and transfer operators being deployed.
For instance, small differences in the solutions of two tasks can be amplified
if the encoding strategy is not designed suitably, eventually leading to a
counterproductive exchange of knowledge. This possibility is often overseen
in the literature in favor of the design of unified representational strategies
for all tasks under consideration. Conversely, given certain search operators,
the tasks can be claimed to be related/similar to each other only in the
context of the encoding strategy and operators in use, and provided that
multitasking leads to faster convergence than in the case of isolated problem
solving. The same set of problems may lead to negative knowledge transfer
if different operators are used.

We definitely advocate for further research in this direction. A first research
direction to follow is the incorporation of meta-learning algorithms capable
of inferring the similarity between pairs of tasks based on meta-features
extracted from the problems (e.g. based on fitness landscapes or on solution
space sampling). This similarity estimation should be also complemented
by an encoding alignment between tasks that ensures maximally aligned
individuals in multi-population EM approaches. For this latter purpose, non-
linear methods from domain adaptation have been recently explored from the
transfer optimization perspective, leaving a door open to the consideration of
further ingredients from subspace learning. In any case, models to represent
and learn such synergies should account for the potentially fractional nature
of synergies over the genotype space handled by EM methods, which should
trigger major efforts towards synergy representation models that take into
account this particularity.

3.6.2. Solution Representation Learning: Blending Together
Encoding and Search Operators

Grounded on the two schools of thought about how to face information
transfer between tasks (explicit versus implicit), a further step should be
taken towards finding not only solutions to the problems, but also represen-
tation of the solutions for each problem that are more efficient for conveying
knowledge transfer among tasks. This resonates with the reflections made in
the previous subsection, by which similarity is strongly subject to the set
of operators and the encoding strategy in use. Indeed, knowledge exchange
between tasks can be beneficial only under appropriate solution represen-
tations. For instance, in graph coloring/community detection problems, a
permutation-invariant encoding approach has been noted to be of utmost
necessity for implicit information transfer through crossover [369]. Otherwise,
information transfer cannot lead to better convergence, even if the networks
to be clustered are rotated versions of the same network.
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Solution representation learning is therefore vital for effective knowledge
transfers. This is an exceedingly important topic for future research in
evolutionary multitasking: learning solution representations, either based
on prior data or adaptively during the course of the search, to enhance
positive transfers. This unleashes an interesting opportunity for learnable
encoding strategies, especially for those that can be evolved jointly with
the solution itself (e.g. genetic programming). Otherwise, when allowed by
the application domain where tasks are defined, tailored alignment methods
or flexible encoding approaches should be utilized instead, always coupled
tightly to the heuristic search operators in use.

3.6.3. Learning to Search using Generative Evolutionary
Multitasking

Most EM approaches reported to date are based on sampling the space
of possible solutions to the problem, without any attempt at learning the
distribution of good solutions. In other words, the space of possible solutions
is traversed by resorting to evolutionary and/or swarm operators, so that
new solutions stem from the application of such operators to one or multiple
populations of individuals. An additional degree of intelligence in how the
space is sampled could be achieved by creating synthetic solutions along the
search that reinforce and push forward the convergence of synergistically
related tasks. If two tasks were found to be related to each other during
the search, a generative machine learning model could progressively learn
the distribution of good solutions for both problems. Once learned, this
generative model could be queried over the search, replacing (fully or partly)
the application of evolutionary operators. As a result, synthetic solutions
that are potentially good for related tasks could be produced and fed to the
population, ultimately accelerating the convergence.

The adoption of latent generative models already underlies beneath
renowned EM methods, such as the probability mixture models used in
MFEA-II to model the relationships between tasks. It is our belief that a
profitable research path for EM remains in the long history of EDA algo-
rithms, which address the concept of generative modeling and sampling for
single-task optimization. It will be a matter of time when the EDA and EM
realms collide together to span a new generation of intelligent multitask
solvers, not only producing solutions, but also distributions that can be
exported for other EM setups comprising task instances of similar kind.

3.6.4. Scaling Up Evolutionary Multitasking: Is It Just a Matter
of Search Algorithms?

In reduced experimentation setups the use of EM methods has been shown
to yield benefits in terms of convergence with respect to single-task optimiza-
tion. However, when scaling up EM environments to realistic levels in terms
of the number and diversity of tasks, these observed benefits can be turned
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down due to several reasons. To begin with, the computational resources
required to scale up the search nicely with the number of tasks can become
not affordable if the search over all tasks is to be made in a centralized fash-
ion. An opportunity arises at this point for multipopulation schemes at the
expense of multifactorial approaches, as they naively allow for decentralized
implementations of the search and thereby, a more balanced share of the
computational cost among stakeholders. This alternative, however, would
come along with other aspects to be considered, such as the selection of a
synchronous/asynchronous knowledge transfer policy or the reliability of
the fitness evaluation made locally, among other issues noted in the field of
distributed evolutionary computation [375].

Even if the above matters become eventually solved by the advance in
research, definitely an additional question needs to be formulated: when and
where can it be beneficial to solve thousands (potentially, millions) of tasks
at once? Is there any realistic setup comprising these scales, in which several
problems are related to each other so that this synergy leads to quantifiable
performance gains? It is an undeniable truth that so far, experimental setups
utilized in the community working in EM have been restricted to a few
selected problem instances as per their relationship known beforehand. Non-
functional aspects inherent to a distributed setup are, therefore, left aside
in favor of a more focused pursuit towards algorithmic advantages. In real
settings, however, other aspects should be under study, which could imply
modifications at the core of EM approaches.

Among such aspects, promising paths have been lately traversed in what
regards to the scalability of EM approaches with respect to the number and
complexity of tasks [500]. In this work another important issue arising when
deploying EM approaches in large-scale settings was identified: the efficiency
of learning over the search how to transfer knowledge among a sparsity
of related tasks. This work should stimulate increasing attention of the
community in the need for a profound redesign of existing EM mechanisms
when the practical setup in which they are evaluated comprises a more
realistic mixture of related and unrelated tasks.

Privacy guarantees as those sought in affine modeling fields (e.g. federated
learning, differential privacy, homomorphic computation) could be another
aspect of relevance when scaling up EM frameworks. Delving into this matter,
federated optimization would aim to evolve jointly different distributed tasks,
without each task revealing each other their actual best solutions. A possible
approach would be to define an encrypted unified search space, so that only
each task could decipher its corresponding solution. The challenge in this
direction is how to include this encryption functionality without jeopardizing
the transfer of knowledge via implicit genetic transfer, or hindering the
overall multitasking search efficiency.
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3.6.5. Multidisciplinary Views on Evolutionary Multitasking:
Social Cognition and Game Theory

Echoing the thoughts yielded from this Thesis about the use of EM in
distributed environments, it can be concluded that there are other disciplines
of knowledge from where the research community can find inspirations for
new distributed mechanisms to share solutions to optimization problems.
Among them, the interesting opportunities that can be identified in the field
of social cognition should be highlighted, which in the field of psychology
and behavioral sciences, refers to the study of mechanisms and procedures
by which people process, store, and exploits information about other counter-
parts and the social contexts in which interactions with them are held [501].
In unregulated environments in which optimization tasks are addressed in a
distributed fashion, elements from social cognition can be leveraged to dictate
optimal ways to characterize the status of an agent (its search history), how
to communicate it to other agents, when to do it, how to make an agent’s
search robust against deliberately negative knowledge transfer attacks. In
essence, social cognition studies can give valuable hints towards establishing
efficient, privacy-preserving protocols by which different solvers dialogue
with each other to discover and eventually exploit positive commonalities.
Concepts that closely relate to social cognition such as intersubjectivity,
imitation, intentionality or confirmation bias can be extrapolated to the field
of distributed multitask optimization, and can surely inspire new mechanisms
to coordinate the transfer of knowledge among such tasks.

A similar line of reasoning can be followed in what refers to game theory.
Game theory devises cooperative strategies among action and communicative
tasks aimed to reach a mutual goal [502]. All in all, in EM the final goal is to
achieve a good solution for all the optimization tasks under consideration. The
essential role taken by the players’ beliefs in game theory (which is bounded
by the information it receives from other players and their observation of
the consequences of their actions) connects this field to social cognition,
and opens up new perspectives in the design of good strategies to endow
optimization agents with the capability to reason about good solutions
encountered by other agents during their search processes. Coalitions can
be formed over the search, so that solvers that find their solutions to keep
a degree of positive correlation over the variable and objective spaces can
cooperate and coordinate the application of their search operators to traverse
their solution spaces more effectively. The local exploration over the search
space made by a solver should be influenced by prior results arising from
the exploration of other agents belonging to the same coalition. This can
be regarded as a similar relationship of interdependence than that between
players in game theory, wherein every other players’ possible decisions or
strategies are taken into account when formulating a local strategy. Future
efforts in EM should probe into this research niche, particularly in those
scenarios where the tasks to be solved are distributed.
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3.6.6. On the Need for Diverse Benchmarks and Methodological
Experimentation Guidelines

One aspect of EM research that has been put to question is the quality
of experimental benchmarks designed to assess the performance of every
proposed approach. Most contributions to date have traditionally considered
experimental setups comprising a few tasks, at their best belonging to 4-5
problem formulations over which inter-task similarities and synergies can
be analyzed and discussed. Despite recent efforts in the heat of competi-
tions held in frontline conferences3, common methodological guidelines and
benchmarking tools are still to be agreed and widely adopted in prospective
contributions. Otherwise, there will be no clear grounds to ensure the fair
evaluation, replication and comparison of new advances in the field.

Therefore, new benchmarks, quantitative metrics and methodological
guidelines should be proposed, discussed and embraced by researchers work-
ing in EM. On the one hand, scores should relate to the quality of the
produced solutions for the tasks under consideration, as well as the compu-
tational efficiency of the joint search, the gains with respect to single-task
optimization, and the amount of positive/negative transfer episodes regis-
tered for every task pair. Finally, methodologically speaking all aspects that
impact on the obtained simulation outcomes should be reported, especially
those that are often overseen when describing the experimental setup (e.g.
parameter tuning of all solvers under comparison, the imposed convergence
criterion, and a solid justification why the selected parameters make the
comparison fair among solvers). Furthermore, the usual discussion among
approaches held on the basis of global performance statistics (e.g. average
fitness per task) should be informed with additional null hypothesis tests
[503] and/or a Bayesian characterization of the obtained results [287] to
guarantee the statistical significance of the gaps claimed to exist among dif-
ferent approaches. All in all, a major push towards crystal clear comparisons
in all measurable aspects of multitasking.

3.6.7. New Problems in Evolutionary Multitasking:
Multimodality, Meta-learning and Beyond

In the last couple of years, a growing corpus of literature has addressed EM
for tasks that go beyond real-valued single-objective optimization problems.
This is the case of permutation-based combinatorial and multi-objective
optimization, which have been tackled with EM approaches that incorporate
algorithmic ingredients suited to deal with these problems. However, other
flavors have been addressed more scarcely to date. This includes multimodal
optimization, where synergies emerge as per the number and inter-distance
between global optima shared by the tasks; dynamic optimization, partic-

3 Competitions on Evolutionary Multitask Optimization held at IEEE Congress on Evolu-
tionary Computation (CEC’2017 to CEC’2021) and Genetic and Evolutionary Computa-
tion Conference (GECCO’2020).
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ularly the case when changes undergone by two tasks occur in the same
direction yet at different instants over time; or multiparty optimization,
where several stakeholders participate, sharing part of the objectives and/or
the solutions of their related Pareto front approximations.
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Figure 3.6: Conceptual diagram showing how EM can be used for (a) auto-ML, in which
solutions represent the hyper-parameters of a ML model; (b) meta-reinforcement learning,
where solutions represent policies of an agent when facing a given task.

An application domain that deserves a separate mention at this point
is the confluence between Machine Learning (ML) and EM. Indeed, many
learning algorithms can be formulated as an optimization problem (e.g. loss
minimization in Deep Neural Networks), therefore unleashing an opportunity
for undertaking setups consisting of several interrelated ML problems with
EM approaches. For instance, it has been widely postulated that Evolutionary
Computation and Swarm Intelligence solvers can be used as an scalable
replacement for optimization problems related to Deep Neural Networks
[504, 505, 506]. Initial explorations have exposed that EM can be used in
multitask reinforcement learning environments to jointly train the neural
models and exploit synergies between them [281]. However, other avenues at
this crossroads are worth to be explored further, such as neural architecture
search, where the joint evolution can serve as a mutual guidance for avoiding
regions representing underperforming network configurations; and meta-
learning, where the paradigm resides in how to optimize models that can
perform well in unseen tasks (Figure 3.6). This is actually the main leit-
motiv of the technical contributions of the Thesis explained in Chapter 4
and Chapter 5.

3.7. Concluding Remarks and Outlook

This chapter has elaborated on the research area known as Evolutionary
Multitask Optimization. Framed within the wider Transfer Optimization
field, the main goal of this incipient paradigm is to exploit the knowledge
learned throughout the optimization of one problem towards addressing other
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related or unrelated problems, so that they are solved more effectively than
in isolation. The relative youth of this area clashes with the high amount of
contributions reported by the community in recent years. Consequently, this
study aims at analyzing the past, present and future of this area, emphasizing
on the methodological patterns, practices and biologically-inspired concepts
followed by the community when designing new evolutionary approaches for
multitask optimization.

To this end, the essentials of evolutionary multitasking are first visited,
establishing mathematical grounds that allow discerning the aforementioned
methodological patterns in subsequent discussions. Furthermore, a clear
distinction between multitask optimization, multi-objective optimization
and multitask learning has been done. Departing from these prior definitions,
a systematic review of the literature related to EM has been performed,
focusing on remarkable studies published in the last few years, and establish-
ing a landmark taxonomy that allows the audience to easily understand the
algorithmic choices mostly embraced in the reviewed bibliography. Specif-
ically, this study has informed about the prominent role of multifactorial
optimization and multipopulation multitasking approaches. Also, a method-
ological analysis of the different phases followed when designing EM solvers
has been conducted, and briefly paused at several fundamental issues that re-
main without an informed answer: plausibility of the multitasking paradigm,
overlapping algorithmic designs with solvers from other optimization areas,
and comparison studies not answering the right questions. Finally, these
thoughts have built upon the critical literature analysis conducted to initiate
a discussion around research niches and challenges that remain insufficiently
addressed to date. On a prescriptive note, each of such identified challenges
has been associated with several possible research directions, which should
inspire efforts in years to come.

The rest of the Thesis delves into the technical contributions carried out
based on the opportunities identified in the literature reviews conducted in
Chapter 2 and Chapter 3.
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4
A D A P T I V E M U LT I FA C T O R I A L
E V O L U T I O N A RY O P T I M I Z AT I O N
F O R M U LT I TA S K
R E I N F O R C E M E N T L E A R N I N G

“In attempting the feat, one proves their courage.”
- Hollow Knight

4.1. Introduction

Historically, EDL has shown to be a good substitute to traditional RL
training techniques [46, 283]. A usual way to tackle the evolution of neural
networks’ structure and/or parameters is NeuroEvolution (NE [36, 118]).
This research area takes advantage of EAs to work towards evolving diverse
and well-performing neural networks. Although it has been applied to RL
and video-game playing [61, 507, 116, 508], NE has also been used in other
fields such as image classification [40, 509, 56], unveiling the potential of this
kind of evolutionary approaches in the current Machine Learning context
[510]. In fact, the spectrum of Evolutionary algorithms applied to DL is
prominently expanding [280, 511, 257, 259], with knowledge transfer and
multitask learning among the main challenges currently under the focus of
EDL [504].

RL is known to require exploring huge search spaces in order to find
good policies, capable of representing the behaviors required for solving a
given task. For this reason, the knowledge acquired from previously trained
problems is of utmost value for its exploitation in new tasks that share some
amount of information. This exchange of knowledge is widely known as
Transfer Learning (TL). In its seminal form, TL is realized by importing the
parameters of a pretrained neural network for an untrained model devised
for a task that share some similarities with the trained network domain.
Although there is no holistic way to measure in advance the similarities
between two tasks, transferring information between them has been proven
to be beneficial for a myriad of learning problems.

Among such problems, this chapter focuses on multitask RL, in which
the objective is to train a model or a set of models that can generalize
to multiple RL tasks [512]. Hence, the design goal is to quickly adapt the

107



108 adaptive mfea for multitask rl

model to previously unseen problem instances by taking advantage of the
knowledge captured during the training phase. For instance, in multi-headed
approaches [513] this information can be exchanged in the form of shared
neural layers, or by means of distilled policies [514] as in multi-model
approaches. Other strategies for promoting exploration in RL consist of
the hybridization of the model with Evolutionary Computation, yielding
the concept of Evolutionary RL. In this line of work, data diversification is
generated in [515] by an evolutionary process, in which a model is partially
learned using backpropagation, and partially evolved using the information of
the gradient generated in the training phase. In another related contribution
[257], diversity and exploration is enhanced by collaboratively evolving a set
of agents using Evolutionary Computation, so that collaborative agents are
able to perform tasks that failed to perform individually. EAs also provide
many opportunities to promote the diversity of solutions. An example can
be found in [282], where RL maze navigation task is evolved via DE while
taking advantage of the diversity generated by the novelty search mechanism
to avoid stagnation. Similarly, novelty search has been applied in [516] to
increase diversity on evolving different types of walkers.

In all the above contributions the goal is to design efficient TL techniques
that contribute to the effective transfer of knowledge between neural networks
devised for different tasks. In this context, the last decade has witnessed the
advent of new strategies to perform knowledge sharing between optimization
tasks: the TO, introduced in Chapter 3 of this Thesis. This first technical
contribution of the Thesis falls beneath the scope of EM, which gravitates
on solving multiple problems simultaneously by exploiting their underlying
synergistic relationships. The Thesis has already exposed that EM resorts
to concepts and operators from Evolutionary Computation to implement
multitasking optimization, with MFO as the most echoing formulation of the
multitasking optimization problem considered by the research community
working in EM. MFO was first introduced in [34] to formulate the transfer of
knowledge between a set of simultaneously solved optimization problems. To
realize this strategy, Multi Factorial Evolutionary Algorithm (MFEA) and its
improved variant MFEA-II were proposed to adapt the parameters guiding
the knowledge transfer among tasks, thereby reducing negative interactions
between unrelated problems.

The work presented in this chapter adapts the search mechanisms of
MFEA to multitask RL scenarios, including the adaptation of the parameters
dictating the exchanged knowledge among tasks during the search. Specifi-
cally, the evolutionary approach designed and implemented for multitask RL,
coined as A-MFEA-RL, builds on the logic behind MFEA, but includes new
algorithmic ingredients that establish itself as a new algorithm. A-MFEA-RL
is able to effectively operate over search spaces with large dimensions, such
as those spanned by the trainable parameters (weights and biases) of neural
networks. At the same time, operators of A-MFEA-RL are designed to foster
layer-wise TL between several RL models evolved simultaneously. For this
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purpose, A-MFEA-RL is provided with the skills of every individual to decide
which models and layers are more beneficial when shared for a given task.

In order to assess the performance of the proposed approach, an extensive
experimentation is conducted seeking to answer three research questions
around its adaptation capabilities, its comparison to other state-of-the-art
approaches and its scalability with the number of tasks. Experiments are
carried out over the MT-10 and MT-50 sets of robotic manipulation tasks
comprising the Metaworld framework [517], both with and without initializing
at random the initial state of each scenario at each episode. The comparison
of A-MFEA-RL to state-of-the-art multitask RL is conclusive: A-MFEA-RL not
only gets competitive results with respect to such avant-garde modeling
counterparts, but also excels at effectively transferring knowledge among
synergistically related RL tasks.

The rest of the chapter is organized as follows. In Section 4.1.1 the state
of the art on evolutionary RL and multitask learning is analyzed, whereas
Section 4.1.2 and Section 4.1.3 establishes fundamental definitions and
concepts of RL and MFO. Section 4.1.2 describes in detail the proposed
A-MFEA-RL approach, its search space and the rationale for the design of
its operators. Next, Section 4.3 presents the experimental setup, poses the
research questions to be answered, and discusses the obtained results. Finally,
concluding remarks are given in Section 4.4.

4.1.1. Related Work
This section reviews the state of the art, departing from traditional ap-

proaches to multitask RL, and arriving at multitask evolutionary algorithms
applied to multitask RL, stressing on how knowledge is transferred within
each strategy.

There are multiple ways to share knowledge in non-evolutionary multitask
RL. Multitask multi-headed networks [517, 513] are designed so that a part
of the network is shared among all tasks. This shared part is in charge of
providing a cross-task generalization capability to the overall model, whereas
task-specific heads (typically, some few neural layers) are attached to the
shared model. In this way, when facing a new task the model is trained
by taking advantage of the knowledge persisted in the shared part of the
model. Instead of sharing a part of a model, in [518] policies are encoded as
modular neural networks, and annotated under sketches (a representation of
a combination of sub-policies). When a new sketch is given, the previously
stored knowledge is retrieved and used in the form of modules to make the
agent resolve the task successfully. Other works such as DISTRAL [514]
have studied the possibility to train multiple environments simultaneously
by distilling the knowledge generated over each tasks to a shared policy. This
shared policy is fed back in by virtue of a mechanism where the generated
knowledge is transferred to the rest of RL models.

Shifting the focus towards evolutionary knowledge transfer, many ap-
proaches conduct genetic knowledge transfer based on different strategies.
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In [348] and [519] memes are proposed as knowledge sharing enablers in a
culture-inspired evolutionary optimization approach. Memes are considered
building blocks that are able to communicate with each other via cultural
operators, such as assimilation and imitation. In [519], the so-called Fusion
Architecture for Learning and Cognition (FALCON) is introduced. In this
work, memes represent neural networks, which are updated following the
meme internal evolution and meme external evolution processes. The idea
behind this approach is to make agents act as learners or teachers. When a
learner chooses a teacher, meme external evolution is applied, and knowledge
is transferred between them in the form of memes. Additionally, agents are
allowed to learn individually using backpropagation by means of the meme
internal evolution, by which memes are also updated. In [520] agents are
sequentially evolved so that they can adapt to play a wide set of Atari games
reusing knowledge acquired from previously evolved tasks. Also for Atari
game playing, the work in [521] focuses on evolving task-specific agents and
a multitask agent able to excel in a small set of Atari games simultaneously.
A different approach to knowledge transfer is introduced in [522], in which a
large-sized network is trained via backpropagation to learn multiple tasks.
Tasks are embedded in the model, and critical forgetting is avoided by the
evolution of agents that determine which subset of parameters are excluded
from the gradient update. The approach is tested over a variety of supervised
and RL tasks. A similar approach to the one proposed in this chapter is
presented in [523], where knowledge is transferred among networks and the
inputs and outputs are adapted while the internal structure is evolved via
NE. The recurrent networks’ structure is evolved by an adaptation of the
EXAMM NE technique, and trained via backpropagation. Finally, evolved
RNNs are used for transfer learning in two different scenarios, namely, coal-
fired power plant (2 tasks) and aviation (3 tasks). Results showed that the
evolved RNN architectures were beneficial for transfer learning among tasks.

It is often the case that EM methods deal with large-scale optimization
problems due to the dimensions of the evolved networks. In these scenarios,
a common approach is to split the problem to be solved into sub-problems of
lower dimensionality. In [434], MFEA is used along with random embeddings
to evolve large-scale continuous variable problems, performing knowledge
transfer by using the implicit genetic transfer of MFEA operators. Therein,
the problem is split into many sub-tasks, which are simultaneously evolved.

Next, works where MFEA is used for evolving problems related to Evolu-
tionary Multitask RL are revised. In [17], the intrinsic knowledge transferred
by MFEA is used to efficiently discover the best paths for multi-UAV path
planning tasks. Similarly, in [407] multiple mobile agents for path planning
tasks are simultaneously evolved by MFEA, which is nourished with external
information (individual gradients) of the optimal direction for each agent.
Finally, the works in [511, 314] introduce a modular network that is evolved
by means of MFEA, with the avail of the implicit knowledge exchange over
the unified search space. This search space is designed so that the evolved
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network can be encoded as a set of smaller networks (modules). The approach
is tested over 4, 6 and 8-bit parity problems.

Despite the multiplicity of knowledge transfer methodologies reviewed
above (multitask RL, memetic evolution, hybrid approaches, multifactorial
optimization or NE), very few of them, if any, is able to automatically decide
during the search the amount of knowledge to be transferred between tasks.
In most approaches the relationship between tasks is assumed to be known
beforehand, and/or the number of tasks evolved is small. The reason is the
inherent difficulty of measuring those relationships without actually solving
the tasks in question. Furthermore, it also turns impractical to manually
discover these relations when the number of tasks grows. In [524], an attempt
at gauging the shared inter-task knowledge in multitask RL is presented over
the Metaworld and CelebA frameworks. Therefore, adapting the transfer
of knowledge between models emerges as a natural step in the context of
evolutionary multitask RL.

This chapter of the Thesis considers specifically the optimization of the
trainable parameters (Problem 4) of deep neural networks used for RL. In
this task, the outputs of the neural network encode the actions that conform
the behavioral policy πθ of an agent when interacting with an environment
env. Depending on the stimuli received by the network at its input (in
a diversity of forms, from signals to images captured by the agent), its
parameters θ establish how the stimuli is translated to actions, mapping the
behavior of the agents to successfully achieve a goal set for the environment
at hand. Single-task settings have been usually approached by traditional
RL algorithms such as proximal policy optimization or actor-critic methods.
However, Evolutionary Computation can take a step further when solving
for θ thanks to their parallel nature, exploration skills and flexibility to be
hybridized with problem-specific knowledge [283].

The optimization problem tackled in evolutionary Deep RL can be mathe-
matically formulated as:

max
θ∈θ

fr(state(env, S; πθ)), (4.1)

where fr(·) is defined, without loss of generality, as the median value of the
reward function associated to the state reached when the agent applies the
policy πθ on the environment env for a certain amount of steps S. In other
words, the objective is to find the neural parameters θ that make the policy
πθ of the agent best solve the task portrayed in the environment env. It
is important to note that the reward function is often determined by the
environment and the task under consideration.

4.1.2. Multifactorial Evolutionary Algorithm
As stated in Section 3.3.2, MFEA is arguably the most renowned algorithm

under the scope of multitask optimization. MFEA was proposed to simulta-
neously evolve a set of K optimization problems or tasks T = {T1, . . . , TK},
each defined by its particular boundaries, dimensions and fitness functions.
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The main idea underlying this algorithm is to define an unified search space
X U , so that an encoded candidate x ∈ X U can be decoded and evaluated
into any of the K tasks, as it has been previously defined in Section 3.2.

Although the definitions introduced in Section 3.2 are common to all
multifactorial optimization methods, the differential aspects of MFEA and its
successor MFEA-II are their search operators (Simulated Binary Crossover,
Polynomial Mutation and Elitist Selection), which rely on three main con-
cepts:

Vertical cultural transmission, under which each offspring individual in-
herits the skill factor τ p of one of their parents.

Assortative mating, by which candidates of same skill factor τ p are more
likely to exchange genetic material.

Transfer matrix (RMP ), composed by elements rmpk,k′ (with k, k′ ∈
{1, . . . , K}) representing the probability to perform genetic knowledge
transfer between two candidates with skill factors k and k′ (defined in
MFEA-II [374]).

Since its inception, MFEA and MFEA-II have gained increasing popularity
within the community [525, 458, 392]. Nonetheless, they have been scarcely
used for simultaneously training neural networks [511]. This is mainly due
to two causes, both related to the design of the unified space X U . First, the
RMP matrix featured by MFEA-II is not well suited to allow for knowledge
transfer over unified search spaces with a layered structure underneath, but
rather defines the transfer procedure uniformly over the entire genotype of
solutions. On the other hand, architectural differences between the networks
to be evolved for every task, such as layers’ number and size, must be taken in
account when designing the unified space. Both considerations are addressed
in the proposed A-MFEA-RL.

4.1.3. Transfer Learning
As stated in Section 1.1, TL refers to the way in which knowledge learned

by a model when addressing a certain task is reused as the starting point for
the construction of a model for another task. There are many approaches
that conduct TL between neural networks under diverse strategies, namely,
instance-based, mapping-based, adversarial-based and network-based [526].
Network-based approaches have been widely applied in image recognition,
single-task RL [527, 528] and multitask RL [512, 514]. These approaches
hinge on reutilizing pretrained parts of a neural network (layers) used to
solve a task for expediting the convergence of another model for a second
task. To this end, some layers from the network of the source task are copied
to the model to be learned for the target domain, for which the latter must
ensure strict neural architectural similarities with the network from which
the knowledge is imported. Once copied, parameters of such transferred
layers are often kept fixed, whereas the remaining layers are trained regularly
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via gradient backpropagation. The contribution of the transferred knowledge
is constrained by the amount of information that tasks from the source and
target domains have in common. The more similar the domains are, the
more knowledge can be transferred between them. When this knowledge
exchange entails an improvement of the target task, the transfer is said to
be positive. Contrarily, knowledge transfer from an unrelated source domain
can hinder the training process in the target domain, resulting in what is
known as negative transfer [529, 530].

Even if TL is conceptually simple to implement, there is no consensus on
how to measure the similarity between two tasks. This makes the decision
on how much information to transfer uninformed, and often achieved as
a result of successive performance-driven trials. Despite this caveat, TL
can be very useful for RL [531], allowing agents to adapt quickly to new
environments. When dealing with extremely complex behavioral policies,
agents often require gradual RL, by which the agent is sequentially trained to
learn progressively more complex tasks. Past knowledge (policies) is reused
by means of TL towards achieving good policies for the most convoluted
task faster [532]. The A-MFEA-RL approach described in what follows aims
indeed at this goal, by providing core modifications of the unified space,
crossover operator and knowledge transfer criteria towards realizing an
adaptive network-based TL mechanism.

4.2. Proposed approach: A-MFEA-RL

This section delves into A-MFEA-RL, the proposed evolutionary multi-
tasking approach capable of evolving multiple RL models simultaneously,
disregarding whether the tasks for which they are devised are related to each
other. The section stresses on the intuition followed to endow A-MFEA-RL
with the capability to avoid negative transfers and favor the exchange of
knowledge between synergistic tasks. This specific focus on the adaptability
of A-MFEA-RL is complemented with specific details on the design of the
unified space (Section 4.2.1), the adaptation of the crossover operator (Sec-
tion 4.2.2) and how adaptive TL is updated during the multitasking search
process (Section 4.2.3). A reference pseudocode of A-MFEA-RL is given in
algorithm 1.

4.2.1. Design of the Unified Search Space
As has been mentioned in Section 4.1.2, knowledge transfer between

simultaneously evolved RL models is carried out over the unified space X U .
This unified space must be designed properly to account for the distribution
and size of the neural networks it represents when decoded for every RL
task. Therefore, the goal is to derive a unified space in which model-based
transfer learning can be easily implemented.

A-MFEA-RL is designed so that K different models, that behave as map-
pers between policies and environments, are simultaneously evolved. Let
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M = {MT1
θp , MT2

θp , . . . , MTK
θp } be the set of models decoded from the evolved

parameters θp ≡ xp ∈ X U for solving RL tasks T = {T1, T2, . . . , TK},
respectively. Any of these models MTk

θp can be defined as a set of layers
{L1

k, L2
k, . . . , Lφk

k }, where φk stands for the number of layers of the model
selected to undertake task Tk. The unified space must be designed so that
it represents the layers of all models MTk

θp ∀k ∈ {1, . . . , K}, allowing for
the transfer of knowledge among tasks. Therefore, an encoded candidate
xp ∈ X U is divided in two parts:

A set of φsh layers that are common to all models, defined as

Lsh = {Lsh,1, . . . , Lsh,φsh}, (4.2)

where φsh is the number of shared layers, and |Lsh,ℓ| = maxk |Lℓ
k| for

ℓ ∈ {1, . . . , φsh}, with | · | denoting number of parameters. In what follows
superscript ℓ will be used to denote layer index.

A second set of layers Lsp = {Lsp
k }K

k=1, which is composed by the concatena-
tion of the layers Lsp

k = {Lsp,1
k , . . . , L

sp,φsp,k

k }K
k=1 that are specific for every

task Tk, and hence do not take part in the transfer learning mechanism.
Here, φsp,k denotes the number of task-specific layers for task Tk, such
that φsh + φsp,k = φk.This permits to discern between transferable layers
(1 ≤ ℓ ≤ φsh}) and non-transferable, task-specific layers (corr. ℓ > ϕsh).

Therefore, the dimensionality of the parameters evolved by A-MFEA-RL is
given by:

|xp| =
φsh∑
ℓ=1
|Lsh,ℓ|+

K∑
k=1

φsp,k∑
ℓ′=1
|Lsp,ℓ′

k |, (4.3)

where the first term corresponds to the aggregate number of parameters of
the shared layers, and the second term represents the sum of the parameters
of all individual layers that do not participate in the knowledge sharing part.

Now that the unified search space is defined, it is time to define how
parameters belonging to the layers {L1

k, . . . , Lφk
k } of the model devised for

task Tk are decoded from xp ∈ X U . Since candidates may represent neural
networks of different number of layers and/or neurons within each layer, the
location of task-specific parameters inside the encoded individual xp has to
be carefully designed so that weights from a model and biases from another
do not overwrite each other when TL is performed. Otherwise, the transfer
will be incoherent and counterproductive for the search [533].

To circumvent this issue, a clear distinction between weights wℓ
k and biases

bℓ
k of layer Lℓ

k is defined, so that the transfer of knowledge considers the
potentially different network architectures among tasks. To mathematically
define this tailored decoding process, two mapping functions are designed,
these functions translate xp to wℓ

k and bℓ
k for ℓ ∈ {1, . . . , φsh + ∑K

k=1 φsp,k},
expressed as λℓ

k,w(·) and λℓ
k,b(·), such that λℓ

k,w(xp) = wℓ
k and λℓ

k,b(xp) = bℓ
k.
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Algorithm 1: Proposed A-MFEA-RL.
1 T ← set of tasks {T1, T2, . . . , TK} and K = |T |
2 Define number of individuals per task as Pk

3 Define unified search space X U and mapping functions λℓ
k,w(·) and

λℓ
k,b(·) for every task Tk (Section 4.2.1)

4 Generate a population P of P = ∑K
k=1 Pk candidates {xp}P

p=1, with
xp ∈ X U

5 Assign every xp a skill factor τ p ∈ {1, . . . , K}, maintaining the
representation of all tasks in the population as per {Pk/P}K

k=1
6 Set rmpℓ

k,k′ = rmpini and rmpℓ
k,k = 1 ∀ℓ and k ̸= k′

7 Evaluate every xp over task Tτp (Section 4.2.4)
8 Set gen = 1
9 while gen ≤ maxGen do

10 Couple all individuals {xp}P
p=1 in pairs at random

11 Offspring population Q ← ∅
12 Set Cℓ,+

k,k′ = Cℓ,−
k,k′ = 0

13 for each coupled pair of individuals xp, xp′ do
14 Select a subset of the shared layers Lsh for crossover as per

rmpℓ
τp,τp′

15 if at least one layer to be exchanged then
16 xp

o, xp′
o ← SBX(xp, xp′) (Section 4.2.2)

17 τ p
o ← randomChoice(τ p, τ p′)

18 τ p′
o ← randomChoice(τ p, τ p′)

19 else
20 xp

o ← polMut(xp), xp′
o ← polMut(xp′)

21 τ p
o ← τ p, τ p′

o ← τ p′

22 end
23 Evaluate xp

o on Tτp
o

(Section 4.2.4)
24 Evaluate xp′

o on T
τp′

o

25 Update Cℓ,+
k,k′ , Cℓ,−

k,k′ for k = τ p and k′ = τ p′

26 Store offspring: Q ← Q∪ {xp
o, xp′

o }
27 end
28 Create combined population P ′ ← P ∪Q
29 Build the new population P ⊂ P ′ by retaining the best individuals

as per their scalar fitness φp, and maintaining the task
distribution ({Pk/P}K

k=1)
30 Update rmpℓ

k,k′ based on Cℓ,+
k,k′ and Cℓ,−

k,k′ ∀k, k′, ℓ (Section 4.2.3),
and set gen = gen + 1

31 end
32 Return the best individual in P for each task Tk

Clearly, the total number of parameters of the ℓ-th layer of the model
constructed for task Tk is given by |Lℓ

k| = |wℓ
k|+ |bℓ

k|. It should be also noted
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Figure 4.1: Schematic diagram illustrating: (left) how the unified search space X U is
structured in a layer-wise manner, including how it is decoded for two different tasks
T1 and T2; and (right) how those decoded individuals yield two RL models with partly
shared weights and biases.

that for some layers in xp, |wℓ
k| = |bℓ

k| = 0, i.e., not all mapping functions
impose that the model for the task at hand should be assigned weights and
biases from all layers represented in xp. This holds for Tk and any task-
specific layer Lsp,ℓ

k′ with k′ ̸= k. Summarizing, the mapping functions λℓ
k,w(·)

and λℓ
k,b(·) allow translating every candidate xp to the specific network

architecture for every task.
Following the schematic example shown in Figure 4.1 for K = 2 tasks,

first can be noted that weights and biases in every layer represented in
xp are isolated from each other by the aforementioned mapping functions.
Furthermore, it is straightforward to see that when ℓ ∈ {1, . . . , φsh} (namely,
the shared layers), weights wℓ

k and biases bℓ
k decoded for task Tk overlap with

those defined for task Tk′ . Hence, this decoding process eases the transfer of
knowledge among tasks via TL, as task-specific models, when decoded and
built from xp, share part of their weights and biases in the shared layers.
Furthermore, another advantage of the designed unified search strategy is
that, once layers, weights and biases are arranged in the genotype of xp, the
evolved networks are not restricted to be architecturally identical for them
to exchange information and achieve effective TL.

4.2.2. Search Operators
As in MFEA and MFEA-II, A-MFEA-RL resorts to the Simulated Binary

Crossover (SBX) operator, which has been adapted to work in a layer-
wise fashion and designed to transfer only valid information. Following the
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notation introduced in the previous section, let xp and xp′ be two candidates
encoded in the unified search space X U , with τ p and τ p′ indicating their
skill factors. Assuming that τ p ̸= τ p′ , the potentially different network
architectures makes it necessary to discriminate the amount of knowledge
xp and xp′ can effectively share at each layer.

To this end, the SBX operator is only applied to the decision variables
belonging to the set of shared layers Lsh of both xp and xp′ . However, not all
shared layers inside Lsh are selected for crossover. Instead, those shared layers
whose exchange has been shown to be beneficial during the search should be
selected with high probability for crossover. Conversely, the algorithm should
avoid selecting those shared layers that, when involved in previous mating
processes, have yielded worse offspring than their parents. Furthermore, the
different skill factors τ p and τ p′ of the individuals should also influence which
shared layers should be eligible for the crossover operator.

In order to implement this two-fold adaptability, A-MFEA-RL resorts to
a modified version of the so-called transfer matrix RMP introduced in
MFEA-II [374]. In its seminal form, each entry rmpk,k′ of this K ×K matrix
establishes the probability of two individuals with skill factors τ p = k and
τ p′ = k′ exchange knowledge through crossover. However, in A-MFEA-RL
the RMP matrix is scaled up to a tensor of dimensions K ×K × Lsh so
as to model not only the relationships between tasks, but also between
shared layers. Accordingly, entries in the RMP matrix are now denoted
as rmpℓ

k,k′ , where ℓ ∈ {1, . . . , φsh} and k, k′ ∈ {1, . . . , K}. These entries
of RMP are used in A-MFEA-RL as the probability that the optimization
variables belonging to shared layer ℓ are selected for crossover between a pair
of parent individuals xp and xp′ with skill factors τ p and τ p′ , respectively.

Based on concepts from TL, the amount of information two individuals
qualified for the same skill task Tk should exchange as much information as
possible. This is imposed by forcing rmpℓ

k,k = 1.0 ∀k, ℓ. Another restriction
arises from the case where the neural network decoded for task Tk comprises
less layers than the amount of shared layers (e.g. when φk < φsh. In this
case, since shared layers beyond φk do not contain any knowledge about the
task Tk, they should not be shared with other individuals. Thereby, rmpℓ

k,k′

and rmpℓ
k′,k are fixed to 0 for any k′ and ℓ ∈ {φk + 1, . . . , φsh}.

On the other hand, the mutation operator adopted in A-MFEA-RL is the
classical polynomial mutation, which provides an additional level of diversity
during the search and helps the algorithm escape from local optima. It is
important to note that unlike the original MFEA, crossover and mutation
operators are not sequentially (i.e. crossover + mutation) applied during
offspring generation. Instead, candidates are only recombined or mutated
depending on whether any layer has been selected for crossover among the
parent individuals. The reason for this modified application of evolutionary
operators is that the mutation of previously mated candidates may induce
noise into the knowledge transferred among individuals, leading to a worse
convergence of the overall algorithm.
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With the modified crossover operator described in this section, A-MFEA-RL
is able to effectively implement TL between the networks decoded from
the unified search space X U for every task. One of the major advantages
resulting from this specialized crossover is that the knowledge transfer is held
coherently even if such networks comprise different number of layers and/or
varying number of neurons. However, an additional degree of adaptation is
still needed for the crossover operator to promote the exchange of knowledge
between tasks found out to complement each other during the search. This is
realized by means of a procedure devised to update the adaptive knowledge
transfer mechanism performed by the modified crossover operator, which is
detailed next.

4.2.3. Adaptive Knowledge Transfer
As stated previously, in A-MFEA-RL the modified SBX crossover operates

on the basis of a RMP matrix, whose entries rmpℓ
k,k′ establish the probability

of two individuals with different skill factors to select a shared layer for their
mating. This allows mimicking the traditional way to of implementing TL
between neural networks, which relies on the copy of part of the parameters
of a source network to a target network, the latter getting advantage of
this transferred knowledge. However, this probabilistic knowledge transfer
criterion should adapt the values of rmpℓ

k,k′ during the search, so that the
updated values would favor future crossovers when proven to contribute to
a successful knowledge transfer (i.e. better offspring that their parents).

Proceeding now with the explanation of how rmpℓ
k,k′ values are updated,

first, whenever two candidates xp and xp′ with skill factors τ p = k and
τ p′ = k′ are selected for crossover, a φsh-length binary mask m = {mℓ}φsh

ℓ=1
is computed to indicate the shared layers that are chosen for the knowledge
transfer process. This mask is computed as:

mℓ =

 1 if rand < rmpℓ
k,k′ ,

0 otherwise,
(4.4)

where rand is the realization of a continuous random variable uniformly
distributed over R[0, 1]. Then, only weights and biases of those shared layers
for which mℓ = 1 are selected for standard SBX crossover. This process is
done independently for every pair of individuals selected for mating. After
mating, two counters Cℓ,+

k,k′ and Cℓ,−
k,k′ , both initialized to 0 at the beginning

of each generation, count the times the fitness of an offspring individual is
better (+) or worse (−) than that of its parents. Once all coupled pair of
parent individuals have been processed, the values of the RMP are updated
as:

rmpl
k,k← cliprmpmax

rmpmin

(
rmpl

k,k−α · Cℓ,−
k,k′ + β · Cℓ,+

k,k′

)
(4.5)

where α, β ∈ R(0, 1) represent the increase (decrease) that a positive (neg-
ative) knowledge transfer imprints on the value of rmpℓ

k,k′ value. In order



4.3 experimental setup & results 119

to avoid that rmpℓ
k,k′ eventually reaches 0 ∀k′, ℓ for a given task Tk, lower

(rmpmin) and upper (rmpmax) bounds are imposed in the value of rmpℓ
k,k′ by

means of a clipping function clipb
a(x) .= max{b, min{a, x}}. This prevents

the algorithm from falling into a state where a task does not share/import
any knowledge.

4.2.4. Evaluation Criterion
Evolved candidates are evaluated in A-MFEA-RL by assessing how the

decoded neural networks, which represent the behavioral model of the agent,
performs for the task Tk defined in its environment. A reward function fr(·)
provides the algorithm with a numerical value that quantifies the quality of
the agent when undertaking the task. This reward function takes a central
role in the definition of the loss function defined for training neural RL
models via gradient backpropagation. The achievement of high reward values
is directly linked to the successful completion of the task. Therefore, the
choice of the reward function value reached by the decoded model for a
maximum number of steps S seems a reasonable choice.

Nevertheless, relying on a single reward score achieved by the agent for
the task Tk could not be representative enough of its performance. Therefore,
each candidate is evaluated over E different episodes, so that the fitness value
Fk(xp

k) of the individual xp
k decoded from xp ∈ X U for task Tk is computed

as the median value of the E reward values obtained after S steps simulated
for each episode.

4.3. Experimental Setup & Results

As a result of its tailored design, A-MFEA-RL addresses the goal of si-
multaneously evolving multiple RL agents, automatically discovering and
exploiting inter-task synergies, and effectively avoiding negative knowledge
transfer. In order to assess and validate these claims, this section aims to
present and discuss on the results of an extensive simulation setup designed
to give an informed response to five research questions (RQ):

RQ1: Can A-MFEA-RL efficiently exploit positive inter-task synergies, and
elude negative knowledge transfer?

RQ2: Does A-MFEA-RL perform competitively compared to existing multi-
task RL approaches?

RQ3: Does A-MFEA-RL scale up nicely when more RL tasks are simultane-
ously evolved?

RQ4: Does the adaptive knowledge transfer of A-MFEA-RL provide any
gain with respect to other baseline knowledge transfer methods?

RQ5: Is the computational cost of A-MFEA-RL competitive with respect to
other multitask RL methods?
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While answers given to RQ1 and RQ3 may serve as a way to validate the
performance of the algorithm and the concepts introduced throughout the
paper, RQ2, RQ4, and RQ5 are devoted to the comparison of A-MFEA-RL
to other state-of-the-art multitask RL methods:

Multitask Proximal Policy Optimization (M-PPO) [534].

Multitask Trust Region Policy Optimization (M-TRPO) [535].

Task Embeddings (TE) [536].

Multitask Soft Actor Critic (M-SAC) [513].

Multitask Multi-head Soft Actor Critic (M-M-SAC) [513].

Shallow Multitask Reinforcement Learning with Soft Modularization (S-
MRL-SM) [537].

Deep Multitask Reinforcement Learning with Soft Modularization (D-MRL-
SM) [537].

The experimentation is built upon the Metaworld framework [517], which
implements a set of 50 robot arm based tasks (Figure 4.2) modeled and run
over the MuJoCo physics simulator [538]. Tasks Tk in Metaworld are designed
so that all of them feature some degree of similarity to each other, while
being sufficiently diverse to ensure meaningful studies related to multitask
learning. Further details about the environment and tasks can be found
in [517]. These Metaworld environments allow evaluating the performance
of developed RL agents in a given multitasking configuration, yielding a
comprehensive playground where to gauge the performance of the proposed
A-MFEA-RL. This evaluation is done in terms of the average success rate
achieved by each approach over E = 300 test episodes.

Figure 4.2: Images illustrating the window close and drawer open tasks of the Metaworld
framework. The ending state of a successfully completed episode is shown in the nested
image on the bottom left corner of every plot.

Among the totality of 50 environments embedded in Metaworld, some of
them are relatively more complicated than others for a RL agent to solve
them successfully. Accordingly, the 50 environments are divided in EASY,
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MEDIUM and HARD, based on the number of subtasks needed for the comple-
tion of their corresponding task. The definition of this level of complexity
permits to define three different architectures of the neural network to be
evolved by A-MFEA-RL, which dictates how individuals xp from the unified
search space X U are decoded. Details on these task complexity-dependent
architectures are listed in Table 4.1, along with their average number of
trainable parameters (weights and biases).

Table 4.1: Network architectures for every task complexity level. All layers are fully
connected comprising the indicated number of neurons, whereas + denotes layer concate-
nation.

Complexity Neural architecture Parameters

Easy 256 + 128 + 128 + output layer ∼ 54K
Medium 256 + 128 + 128 + 128 + output layer ∼ 70K

Hard 256 + 128 + 128 + 128 + 128 + output layer ∼ 87K

A summary of the parameters of A-MFEA-RL configured for all simulations
is listed in Table 4.2. The value of start_rmp is high to ensure a high number
of transfers in early stages of the evolutionary process and thereby, feed
the rmpℓ

k,k′ tensor with potentially successful crossovers. The imbalanced
values imposed on alpha and beta serve as a heuristic way to grant more
importance to synergistic relationships than to negative knowledge transfers.
The selected population size Pk, number of generations maxGen and the
number of evaluation episodes E leave the overall number of processed
samples (6 · 106) significantly below those used in the rest of multitask
RL counterparts (15 · 106). Parameter values for the rest of multitask RL
methods considered in RQ2, RQ3 and RQ5 are equal to those utilized in
the publications where they were first presented.

Table 4.2: Parameters used in the experiments.

Parameter Value Parameter Value

Pk 60 for all tasks (i.e. P = 60K) rmpmin 0.15
E 300 episodes rmpmax 0.95

maxGen 600 (RQ1), 1000 (RQ2 to RQ5) α 0.01
start_rmp 0.80 β 0.10

The experimentation runs over a computer equipped with four Intel
Xeon Gold 5120 processors running at 2.2 GHz and 1 Tb of RAM. For
the sake of computational efficiency and to fully leverage the availability of
multiple processing cores, a highly parallel implementation of A-MFEA-RL
has been used, which has been made available in a public repository (https:
//git.code.tecnalia.com/aritz.martinez/a-mfea-rl) along with the
scripts generating the results discussed in the paper.

Considering this simulation setup, the next sections elaborate on empirical
evidence aimed to address the five research questions formulated above.
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4.3.1. RQ1: Can A-MFEA-RL Efficiently Exploit Positive
Inter-task Synergies and Elude Negative Knowledge
Transfer?

The main goal of RQ1 is to verify whether A-MFEA-RL is able to effectively
promote the exchange of information (through crossover) between synergistic
tasks, as well as to avoid negative knowledge transfer among tasks that are
unrelated. To this end, the scenario designed is simple and it is composed
by 5 different tasks, each repeated twice, so that a total of K = 10 tasks
are simultaneously evolved. The reason of this simplistic design is two-fold.
On the one hand, it allows for clear insights shed over the purpose of the
experiment (transferability). On the other hand, the fact that tasks are
duplicated ensures that there are sets of tasks for which the algorithm should
promote maximum knowledge transfer. This should be clearly noticed when
analyzing the output of A-MFEA-RL. We hereafter denote such duplicated
tasks as twin tasks.

In Figure 4.3, inter-task and intra-task relationships are represented quan-
titatively as a bubble plot matrix linking every pair of tasks. Specifically,
the radius of every bubble plot is proportional to the number of successful
crossovers wherein an individual specialized for the helping task (indicated in
the X axis) improved the fitness of another individual skilled for the helped
task (corr. Y axis). Each of such bubble plots is further divided depending on
the relative number of times every neural layer participated in the knowledge
transfer enabled by the crossover. Bubble plots in the diagonal indicate the
relative number of times each individual improved via inter-task or intra-task
crossover (namely, between individuals specialized in the same task).

First of all, Figure 4.3 evinces that A-MFEA-RL promotes mating individu-
als belonging to every pair of twin tasks, fact that validates the capability to
find synergistic tasks sought for the algorithm. Indeed, the crossover between
twin tasks is the most effective among the totality of considered tasks, as
shown by the highest radii of bubbles relating a task with its twin. Inter-
estingly, the bubble plot matrix unveils some other synergistic relationships
between tasks that conform to intuition and as such, deserve to be mentioned.
To begin with, the drawer-close environment benefits from mating with
door-open and window-close, as the latter two comprise approaching and
pushing movements similar to those needed for closing the drawer. Like-
wise, pausing at window-close, the environment is prone to leverage the
crossover with individuals skilled at drawer-close and door-open. These
synergies are also observed between drawer-close and door-open, further
validating the proficiency of A-MFEA-RL in encouraging transfer learning
between positively related environments.

When focusing on how the above knowledge exchange is distributed over
layers of the networks involved in the transfer, just recall that A-MFEA-RL
extended the definition of the RMP matrix towards deciding which layers
to enter the crossover operation. This is noted, for instance, in the transfer
between button-press twin tasks, where the first layer participates in most
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Figure 4.3: Bubble plot matrix showing the amount of knowledge transferred between
tasks involved in RQ1, for every layer of the neural networks of the evolved agents.

of the crossovers. On the contrary, for the reach twin tasks A-MFEA-RL
tends to perform crossover over the third and fourth layers. Given the
relative simplicity of this task, this suggests that most of the other tasks
contribute coherently to the knowledge required for the first layers of the
network (specially door-open). Therefore, crossovers among individuals of
twin reach tasks aim to complement the knowledge not transferred from
the rest of tasks.

Nevertheless, this transferability analysis should also account for the suc-
cess of the evolved agents when facing the RL tasks considered in RQ1. To this
end, Table 4.3 summarizes the success rates (in %) of all environments, where
a noteworthy effect can be observed regarding reach (the less successfully
solved environment). The goal in this environment is to reach a goal whose
position changes between episodes. As many other tasks require approaching
an object before performing an action and completing the episode, intuitively
reach should synergistically contribute to the progressive improvement of
other environments. Surprisingly, the only task aided by reach is its own
twin task. Bearing in mind its worse success rate, this unexpected result
posits that the information stored in the population is more valuable when
its contained individuals achieve high levels of success. Thus, individuals
specialized for tasks that converge slower, when mated, contribute to the
produced offspring in terms of exploration. As they progressively achieve
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higher rewards and success rates, such individuals start contributing with
valuable information to the mating process.

Table 4.3: Success rate of tasks evolved in RQ1.

Task name Twin #1 Twin #2

reach 86.3% 86.6%
drawer-close 100% 100%
button-press 97.6% 99.3%
door-open 100% 100%
window-close 100% 100%

To sum up, they can be witnessed several clear synergies between tasks in
this first experimental setup, not only between twin tasks, but also a/cross
different tasks that can be intuitively expected to maintain a degree of rela-
tionship (e.g. window-close and drawer-close). Quality and transferability
have also been proven to be coupled to each other, in that knowledge transfer
allows for improved specialization of the destination (helped) task whenever
the model of the source (helping) task solves its environment satisfactorily.

4.3.2. RQ2: Does A-MFEA-RL Perform Competitively Compared
to Existing Multitask RL Approaches?

We turn the focus on RQ2, which aims to compare A-MFEA-RL to other
state-of-the-art RL approaches suited for multitask environments. For this
purpose, the multitask scenario designed is similar to the one used in [537],
extending the so-called MT-10 problem proposed in [517] so that the goal
and object positions are set at random between different episodes. This
extension leads to two scenarios: 1) the fixed MT-10, comprising 10 different
environments whose tasks are fixed; and 2) the randomized MT-10 (labeled
as MT-10-R), which permits to evaluate the capability of the evolved agents
to generalize to potentially unseen environments. The elements that change
between episodes in the randomized MT-10-R vary depending on the task,
and are described in [517].

This discussion follows the same flow as the one made in the previous
subsection for RQ1. Accordingly, the helping tasks that contributed most for
the improvement of individuals specialized in other helped tasks are analyzed.
From Figure 4.4 it can be observed that drawer-close, button-press,
window-close and door-open are the top tasks in terms of successful
crossovers with the rest of tasks. This fact is in full accordance with the
conclusions drawn in [524], where some Metaworld tasks (reach, push,
button-press-topdown, window-open and window-close) are co-trained
in different combinations to quantitatively analyze the degree of overlap
of their knowledge. In this recent study, such tasks are found to be very
positively related to each other, which is also concluded from Figure 4.4.
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Moreover, reach and push clearly prefer to mate with button-press or
window-close rather than exchanging information with window-open, facts
that are also among the findings reported in [524].
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Figure 4.4: Bubble plot matrix showing the amount of knowledge transferred between
tasks in MT-10-R.

Interestingly, there are two environments for which A-MFEA-RL was un-
able to find good policies, yielding null success rates: pick-place and
peg-insert-side. By analyzing closely the synergies of the rest of tasks
with these two complex environments, it is found that almost any other task
contributes with the exchange of its knowledge. Among the tasks helping
these two environments, window-close and drawer-close are the ones gen-
erating more positive transfers. In addition, conclusions held in RQ1 also
apply to this second setup, as per the synergies noted between drawer-close,
window-close and door-close.

Following the previous discussion, Table 4.4 lists the average success
rates achieved by A-MFEA-RL in the MT-10 and MT-10-R scenarios. Also
are included for comparison the average success rates achieved by M-PPO,
M-TRPO, TE, M-SAC, M-M-SAC, S-MRL-SM and D-MRL-SM over the
environments. To this comparison, they are also added the results of a single-
task Soft Actor Critic (SAC) agent trained over 6 · 106 samples per task and
the neural architectures in Table 4.1 for guaranteeing a fair comparison to
A-MFEA-RL. These results are complemented by those in Table 4.5, which
shows the success rates for every task and the top three algorithms in this
benchmark (i.e., S-MRL-SM, D-MRL-SM and A-MFEA-RL).
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Table 4.4: Success rate of tasks evolved for RQ2: MT-10 and MT-10-R.

Algorithm MT-10 MT-10-R

Single-task SAC 79.2% 66.5%
M-PPO [534] 25.0% -
M-TRPO [535] 29.0% -
TE [536] 30.0% -
M-SAC [513] 53.3% 44.4%
M-M-SAC [513] 71.6% 57.7%
S-MRL-SM [537] 73.3% 74.5%
D-MRL-SM [537] 73.2% 67.9%

A-MFEA-RL (proposed) 80.0% 73.9%

Focusing first on single-task SAC, it attains competitive results in MT-10
that degrade when the RL tasks are not fixed (i.e. MT-10-R). This exposes
that SAC requires to be trained over more frames to overcome its relatively
low exploratory skills and the lack of knowledge transfer from other tasks.
Furthermore, SAC requires a separate training process for every task, which
incurs a significantly higher computational cost than A-MFEA-RL and other
multitask approaches in the benchmark. Focusing on MT-10, the first three
approaches (M-PPO, M-TRPO and TE) render average success rates notably
below those yielded by M-SAC. Since the randomness of initial conditions
imposed by MT-10-R makes the RL tasks harder to be solved, agents evolved
for these three environments are expected to perform even worse. Therefore,
M-PPO, M-TRPO and TE are left as baselines, and the discussion is centered
on the last four schemes (M-SAC, M-M-SAC, S-MRL-SM and D-MRL-SM),
which have been contributed to the community more recently than the
former [513, 537].

This being said, A-MFEA-RL achieves the best average success rate (80%)
for the fixed MT-10 scenario, which throws evidence on its competitiveness
even if, as stated before, the algorithm was unable to find good policies for
the pick-place and peg-insert-side tasks. Indeed, the average score of
A-MFEA-RL surpasses that of the second best approach in the benchmark by
more than 6%. When the complexity of the scenario is increased by random-
izing objects’ and goal’s positions (MT-10-R), S-MRL-SM outperforms the
rest of state-of-the-art multitask learning counterparts. However, the average
success rate of A-MFEA-RL gets very close (within a gap of less than 1%), a
remarkable achievement given that A-MFEA-RL evolves significantly smaller
networks (|xp| ∼ 87K parameters) than the ones in M-M-SAC (∼ 327K),
S-MRL-SM and D-MRL-SM (∼ 270K).

Summarizing, experiments aimed at answering RQ2 have revealed that
A-MFEA-RL elicits a competitive performance when compared to avant-
garde multitask RL algorithms, both when the environments are fixed (MT-
10 ) and when the goal is to train agents that generalize well when facing
diverse environments (MT-10-R). As in the experiments for RQ1, synergies
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Table 4.5: Success rates per task (%) obtained by the top three algorithms over MT-10,
MT-10-R (RQ2), MT-50 and MT-50-R (RQ3). A stands for S-MRL-SM, B for D-MLR-SM
and C for A-MFEA-RL. Complexity is denoted as E (Easy), M (Medium) and H (Hard).

MT-10 MT-10-R MT-50 MT-50-R
Environment name
(complexity) A B C A B C A B C A B C

assembly (H) - - - - - - 0 0 0 0 0 0
basketball (H) - - - - - - 0 0 0 22 33 0
bin picking (H) - - - - - - 0 0 0 0 0 11
box close (H) - - - - - - 44 44 0 22 33 0
button press topdown (M) 100 100 100 100 89 91 100 100 100 100 100 97
button press topdown wall
(H) - - - - - - 67 78 100 67 100 100
button press (M) - - - - - - 44 67 100 44 55 100
button press wall (H) - - - - - - 100 100 100 100 100 98
coffee button (H) - - - - - - 44 78 100 56 89 100
coffee pull (M) - - - - - - 78 100 0 100 100 70
coffee push (M) - - - - - - 78 89 100 89 89 40
dial turn (H) - - - - - - 100 100 100 100 100 99
disassemble (H) - - - - - - 0 0 0 0 0 0
door close (H) - - - - - - 78 56 100 78 55 100
door lock (H) - - - - - - 89 100 100 89 89 100
door open (H) 100 33 100 100 100 100 78 67 100 67 67 100
door unlock (M) - - - - - - 78 89 100 89 100 100
drawer close (H) 100 100 100 100 100 100 79 89 100 67 78 100
drawer open (H) 0 33 100 33 0 99 22 33 100 22 44 98
faucet close (M) - - - - - - 100 67 100 78 44 81
faucet open (M) - - - - - - 89 89 100 89 67 91
hammer (H) - - - - - - 33 56 100 11 67 100
hand insert (M) - - - - - - 100 100 100 100 100 100
handle press side (H) - - - - - - 0 11 100 100 33 40
handle press (H) - - - - - - 89 78 60 100 78 35
handle pull side (H) - - - - - - 56 67 0 56 89 0
handle pull (H) - - - - - - 89 100 0 78 100 0
lever pull (M) - - - - - - 0 0 0 0 0 0
peg insert side (H) 67 33 0 56 56 0 0 22 0 44 33 0
peg unplug side (H) - - - - - - 100 100 0 100 100 0
pick out of hole (H) - - - - - - 0 0 0 0 0 0
pick place (H) 66 100 0 0 0 0 44 11 0 33 11 0
pick place wall (H) - - - - - - 44 33 0 33 0 10
plate slide back side (M) - - - - - - 100 89 40 78 89 45
plate slide back (M) - - - - - - 67 89 100 89 100 58
plate slide side (M) - - - - - - 100 89 100 55 100 100
plate slide (M) - - - - - - 33 100 100 78 78 77
push back (E) - - - - - - 89 100 0 89 100 71
push (E) 100 100 100 78 67 59 44 89 100 78 33 47
push wall (M) - - - - - - 56 33 100 55 44 47
reach (E) 100 100 100 100 100 91 100 100 100 100 100 98
reach wall (E) - - - - - - 100 100 100 100 100 98
shelf place (H) - - - - - - 0 0 0 44 55 0
soccer (E) - - - - - - 67 78 0 55 33 48
stick pull (H) - - - - - - 11 33 0 11 44 79
stick push (H) - - - - - - 0 0 0 11 0 100
sweep into (E) - - - - - - 100 78 100 67 89 80
sweep (E) - - - - - - 100 89 100 100 67 74
window close (H) 33 33 100 100 78 100 67 44 100 89 44 100
window open (H) 67 100 100 78 89 99 11 67 100 44 78 93
Average success rate 73.3 73.2 80.0 74.5 67.9 73.9 57.3 62.0 60.0 61.5 62.1 59.7

between tasks discovered by A-MFEA-RL have been found to remain in close
accordance with those recently reported in [524]. In the next section this
experimentation is scaled up to 50 simultaneously evolved tasks, towards
ascertaining whether the competitive performance of A-MFEA-RL holds in
more populated multitasking setups.
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4.3.3. RQ3: Does A-MFEA-RL Scale Up Nicely When More RL
Tasks are Simultaneously Evolved?

Throughout this subsection research question RQ3 is addressed, which
aims to elucidate whether A-MFEA-RL contends with the rest of multitask RL
methods when the number of simultaneously solved tasks K increases. To
this end, the simulation setup is extended with the rest of the environments
included in Metaworld, amounting up to K = 50 tasks, both with fixed
(MT-50 ) and random (MT-50-R) initialization for each simulated episode.
It is important to note that this extended set of experiments imposes signifi-
cantly higher computational scales on A-MFEA-RL, which now operates on a
population of P = ∑

k Pk = 3000 individuals evolved over 1000 generations.

Table 4.6: Success rate of tasks evolved for RQ3: MT-50 and MT-50-R.

Algorithm MT-50 MT-50-R

M-PPO [534] 9.0% -
M-TRPO [535] 22.9% -
TE [536] 15.3% -
M-SAC [513] 26.2% 25.7%
M-M-SAC [513] 28.6% 29.0%
S-MRL-SM [537] 57.3% 61.5%
D-MRL-SM [537] 62.0% 62.1%

A-MFEA-RL (proposed) 60.0% 59.7%

Concentrating the analysis on the success rates attained by all the methods
in the benchmark, which are summarized in Table 4.6, from where it can
be drawn that in MT-50, A-MFEA-RL achieves once again results close to
the state of the art, outperforming M-PPO, M-TRPO, TE, M-SAC and
M-M-SAC by a large margin. When turning the focus towards the more
demanding MT-50-R scenario, the average success rate of A-MFEA-RL results
to be more than double that of M-SAC and M-M-SAC. For both MT-50
and MT-50-R, A-MFEA-RL gets very close to the success rates scored by
S-MRL-SM and D-MRL-SM, which, as stated before, must be considered a
good result considering that the evolved agents have approximately 70% less
trainable parameters than the multitask RL models underneath S-MRL-SM
and D-MRL-SM.

Rounding up the discussion, the focus is set on the per-task results
obtained for these extended simulation setups, which are listed in Table 4.5.
It can be noted that A-MFEA-RL is unable to solve any of the tasks that
involve grasping or picking an object (e.g. assembly or peg-insert-wide),
suggesting that further research efforts are needed for A-MFEA-RL to solve
complex tasks, specially those that imply the concatenation of grasping and
movement actions over time. Nevertheless, most of the remaining tasks are
correctly solved, and the success rates achieved concur with the experiments
conducted in RQ2. Therefore, it is fair to conclude that in terms of optimality,
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A-MFEA-RL scales up nicely when dealing with densely populated multitask
scenarios. RQ5 will later revolve on whether this scalability can be also met
in terms of computational cost.

4.3.4. RQ4: Does the Adaptive Knowledge Transfer of
A-MFEA-RL Provide any Gain With Respect to Other
Baseline Knowledge Transfer Methods?

This research question is devised to examine the contribution of the adap-
tive knowledge transfer performed in A-MFEA-RL. Specifically, A-MFEA-RL
is compared to two different baselines: 1) random knowledge transfer (i.e.
rmpℓ

k,k′ = 1 ∀k, k′) and 2) no knowledge transfer (rmpℓ
k,k′ = 0 ∀k, k′ : k ̸= k′).

Moreover, an adaptation of the traditional MFEA has been added to the
comparison, this adaptation has been tuned to utilize the same unified space
than A-MFEA-RL. Therefore, the main differences between the adapted MFEA
and aca-mfea-rl are the non-adaptive knowledge sharing and how operators
are applied in the crossover stage (crossover + mutation in MFEA versus
only layer-wise crossover in A-MFEA-RL). Results are reported from the best
performance achieved by MFEA over a uniform 0.1-spaced grid of rmp values
over the range [0.1, 0.9]. The selected value (rmp = 0.3) is close to those often
encountered in works resorting to MFEA in multitask optimization settings,
and is considered to provide with sufficient genetic knowledge exchange over
the evolution [34]. The adaptive version of MFEA (MFEA-II) is not included
in the comparison due to known shortcomings of the probability density
estimation featured by MFEA-II in search spaces of large dimensionality.

Table 4.7: Comparing A-MFEA-RL to fixed RMP values and MFEA. The success rates
for all tasks can be found in the git repository related to this project.

MT-10-R MT-50-R

No knowledge transfer (rmpℓ
k,k′ = 0) 73.2% 29.7%

Random knowledge transfer (rmpℓ
k,k′ = 1) 63.4% 35.3%

MFEA (rmp = 0.3) [34] 63.1% 26.2%

A-MFEA-RL (adaptive) 73.9% 59.7%

Table 4.7 summarizes the results of the experiments run for answering RQ4.
In this table it can be first observed that in MT-10-R the performance of the
adaptive approach is similar to that evolving all tasks in parallel without
any knowledge transfer. However, the performance is more than 10% better
when compared to its random transfer counterpart, showing the impact of
negative knowledge transfer. This effect is greatly intensified in the MT-50-R
scenario, where none of the baseline approaches achieves success rates close
to those obtained by A-MFEA-RL. Here, two meaningful shortcomings of
the non-adaptive approaches are drawn. On the one hand, when knowledge
transfer is removed candidates are not allowed to be transferred among
tasks, since their skill factor remains fixed over the search. There emerges
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the importance of an adaptive version that allows evolved candidates to
meet their most suitable task. On the other hand, if knowledge transfer is
held at random, the evolutionary search is affected by negative transfers. In
both cases the performance decays to nearly half of the success rate scored
by A-MFEA-RL.

When it comes to A-MFEA-RL and MFEA, it is remarkable that the perfor-
mance of MFEA is similar to that of random knowledge transfer, and lower
than than of no knowledge transfer. Since MFEA utilizes the same unified
search space of A-MFEA-RL, its differences with respect to A-MFEA-RL lie
essentially on its operators. On the one hand, the thoughts on how the
Gaussian Mutation operator affects evolution are corroborated. Applying the
mutation operator after mating individuals waste the inherited knowledge
generated during the crossover. On the other hand, the simulated binary
crossover does not account for the layer-wise structure of the unified search
space, hindering even further the convergence of the evolutionary search.
This observation buttresses the need for an adapted search space, evolution-
ary operators and knowledge transfer that lie at the core of the proposed
A-MFEA-RL.

4.3.5. RQ5: Is the Computational Cost of A-MFEA-RL
Competitive with Respect to Other Multitask RL
Methods?

The experiments end by delving into the analysis of the computational cost
required by A-MFEA-RL to evolve the tasks under MT-10-R, MT-50-R and
single task settings. A-MFEA-RL is compared to that of M-SAC [513], adapted
so that an epoch in M-SAC is comparable to a generation in A-MFEA-RL in
terms of the number of network updates and number of frames processed
by one candidate at each generation. In terms of processed observations, at
each epoch 300 episodes are used for evaluating every individual, yielding a
total of 60 · 103 frames per candidate. Note that this configuration has been
used exclusively for addressing RQ5 with an equal computational budget for
both approaches. The discussion also considers M-SAC deployed on a Tesla
V100 SXM2 GPU.

Table 4.8 collects the runtime statistics (average ± standard deviation)
required to evolve one generation in A-MFEA-RL and to train one epoch
in M-SAC. Statistics of train_time corresponds to the action of changing
networks’ parameter values. As such, in A-MFEA-RL train_time is defined
as the time elapsed between the generation of new offspring, whereas in M-
SAC it is the time taken for backpropagating gradients. On the other hand,
eval_time is the time taken to evaluate the performance of the network. This
entails evaluating the fitness function for the whole population in A-MFEA-RL,
while in M-SAC the network is evaluated for E = 3 episodes on each epoch,
computing the success rate of the network as the mean of the last 100 epochs.
As expected, both approaches require similar runtimes to complete an epoch:
in A-MFEA-RL most of the time is consumed by the evaluation of the models,
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Table 4.8: Average ± standard deviation of the runtime required by A-MFEA-RL, M-SAC
to process the same amount of frames per epoch. Time reported in seconds and per
epoch/generation.

A-MFEA-RL

Single Task MT10 MT50

train_time 3.6e-1±6.4e-2 4.2±7.4e-1 19.5±6.1e-1
eval_time 23.53±4.68 216.9±2.26 1036.3±8.7

M-SAC

Single Task MT10 MT50

train_time 34.82±4.27 389.53±7.5 1933.26±12.5
eval_time 2e-3±3e-4 5.23e-3 ± 8.9e-4 2e-1±3e-3

M-SAC-GPU

Single Task MT10 MT50

train_time 2.9±3.2e-2 42.78±11.76 301±16.28
eval_time 1.2e-3±1.3e-4 3.1e-3±4.7e-4 1e-2±7.8e-4

yet training_time is also significant and increases on a par with the number
of simultaneously evolved tasks. Interestingly, dramatic runtime drops appear
when M-SAC is run on GPU. This result engages with current trends on
Evolutionary Computation aimed at implementing mmeta-heuristics on GPU
processors [303], and stimulates future efforts towards GPU implementations
of evolutionary multitask approaches to benefit from the computational
efficiency of these massively parallel hardware architectures.

4.4. Conclusions

This chapter has elaborated on multitask RL, which aims at simultane-
ously learning to perform multiple tasks by exploiting the potential synergies
existing among them. In this context, A-MFEA-RL has been presented, an
evolutionary multitasking algorithm that has been adapted to deal with
multitask RL environments via multifactorial evolutionary search princi-
ples. Its design has been shown to incorporate several key adaptations to
allow for knowledge transfer among agents characterized by different neural
network architectures. To begin with, the unified search space over which
the evolutionary search is performed is designed in a layer-wise fashion,
such that part of the genotype representing the weights and biases of every
layer is shared across individuals. Furthermore, A-MFEA-RL also features an
adaptive mechanism to update the probability that two individuals exchange
knowledge contained in every layer along the search. These novel algorithmic
ingredients give rise to an evolutionary multitasking approach that leverages
positive relationships between tasks, and eludes negative intertask knowledge
transfer.



132 adaptive mfea for multitask rl

These properties sought for A-MFEA-RL have been assessed over an ex-
tensive experimental setup comprising a maximum of 50 RL tasks. Results
obtained over three different scenarios have been conclusive in regard to
the capability of A-MFEA-RL to discover and exploit synergistic relation-
ships between the tasks being solved. Furthermore, A-MFEA-RL has also
been proven to scale smoothly with the number of evolved tasks, and to
perform competitively when compared to other state of the art approaches
for multitask RL, both in terms of the quality of the produced solutions (RL
agents) and their computational cost.
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Z E R O - S H O T
M E TA - R E I N F O R C E M E N T
L E A R N I N G U S I N G
E V O L U T I O N A RY M U LT I TA S K
O P T I M I Z AT I O N

“Sometimes it’s hard to tell the difference between
determination and stubbornness, isn’t it?”

- Celeste

5.1. Introduction

Up to this chapter, the Thesis has set clear that EM has attracted great
efforts from the optimization community over recent years. This area has
pioneered the exploitation of knowledge shared between related optimization
problems. As stated in Chapter 3, there exists a noted lack of practical
applications of EM. Some exceptions can be found in a few practical works,
the most representative being [511], which uses EM to support the simulta-
neous training of several DL models. However, this general lack of practical
applications of EM is a sign of the youth of this research area.

Throughout this Thesis, EM has been successfully applied to train multiple
DL models simultaneously (Section 3.3.2), while their synergies are efficiently
computed and leveraged to perform positive knowledge transfer between RL
tasks. The approach introduced in Chapter 4 considers a large multitask
learning scenario consisting of up to 50 tasks. Moreover, models evolved via a
EM approach were found to perform on par with other DL-based approaches
tailored to deal with multitask settings, evincing a promising future for this
kind of approaches and the need for further research in this direction.

Despite the drawbacks of EDL when tackling large search spaces, population-
based mmeta-heuristics have demonstrated their effectiveness at finding
diverse and well-performing solutions, also taking advantage of previously
evolved knowledge to boost the convergence of related problems over time
(dynamic optimization). These traits can also be considered as a form of
evolvability. Even if there is not a clear definition of this term, some works
[539, 540] define evolvability as the time (or number of generations) an
algorithm required to adapt itself to a change in the fitness landscape. This

133
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is a desirable skill for evolutionary meta-learning, where the fitness landscape
is spanned by new modeling tasks that appear over time. In this envisaged
scenario, evolutionary algorithms used to optimize and evolve models over
time could provide the evolvability needed to retain and reuse knowledge
among prevalent and newly emerging tasks.

The contribution made in this chapter introduces an extension of the
proposal made in Chapter 4, so that the knowledge derived from a multitask
configuration can be analyzed and reused to solve previously unseen RL
tasks faster. A novel approach denoted as Adaptive Meta-learning MFEA
(Adaptive Meta-Learning MFEA (AML-MFEA)) is designed to cope with this
alternative scenario, incorporating the following modifications with respect
to its predecessor:

The module that computes task similarities is updated. Now, the so-called
Centered Kernel Alignment (CKA) distance metric [331] is adopted to
measure the similarity between evolved RL agents, in addition to the
efficacy of historical crossovers previously considered. This endows the
algorithm with the capacity to perform a two-fold weighted similarity
search, historical and behavioral, taking in consideration the success rate
of each task.

Evolutionary meta-learning is approached by means of a bi-level opti-
mization method that detects behaviorally similar tasks dynamically, and
combine them into a new evolutionary process. This turns the approach
into a bi-level optimization process similar to meta-learning, where the
inner evolutionary loop tasks are jointly evolved, whereas in the outer
loop the meta-tasks1 are dynamically trained.

A new experimentation setup evaluates the knowledge derived from the
outer loop (i.e., meta-tasks) in newly arising tasks and for the most de-
manding meta-learning scenarios: Few-Shot [541] and Zero-Shot [542]. In
Few-Shot, the model is granted a few generations to evolve the knowl-
edge as per the feedback from the unseen tasks, while in Zero-Shot new
tasks are evaluated directly, without any type of feedback nor adaptation
whatsoever.

The rest of the chapter can be summarized as follows: in Section 5.2, works
related to evolutionary multitasking are reviewed. Section 5.3 states the
mathematical problem under scope, whereas Section 5.4 delves into the pro-
posed approach, describing how the knowledge is consolidated, represented
and adapted to Zero-/Few-shot Learning. In Section 5.5 the experimen-
tal setup and results are discussed. Finally, Section 5.6 elaborates on the
conclusions drawn from this chapter.

1 In subsequent elaborations the term meta-task will be used to refer to the average RL
task faced by the representative of a group of RL models with similar behaviors. In this
regard, meta-task and the representative model of the group – namely, the meta-model –
will be used indistinctly, as its meaning can be inferred from the context.
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5.2. Related Work

Before describing the proposed AML-MFEA algorithm, we briefly revisit
how MFEA can be adapted to evolve neural agents for RL (Section 5.2.1),
the different ways in which meta-learning with neural networks has been
studied so far (Section 5.2.2), and the few works that have been reported so
far in the crossroads between evolutionary computation and meta-learning
(Section 5.2.3).

5.2.1. Revisiting Adaptive MFEA for Reinforcement Learning
This chapter departs from the algorithm presented in Chapter 4, A-MFEA-RL.

In this section A-MFEA-RL is briefly revisited in order to make the rest of
the chapter easy to follow. Three are the cores empowering A-MFEA-RL: i)
MFEA as the evolutionary engine performing the search in the multitask
configuration; ii) the adaptive knowledge transfer module guided by the
layer-wise rpm matrix; and iii) the crossover and mutation operators specifi-
cally designed to accommodate and exploit the layered neural architecture
of the RL models.

The multitasking problem in A-MFEA-RL is tackled by means of MFEA
(see Section 4.1.2), where a set of tasks T = {T1, T2, . . . , TK} are evolved
simultaneously. Each solution xp ∈ X U represents the weights and bias
of the model assigned to a task M = {MT1 , MT2 , . . . , MTK} encoded into
the designed unified search space, which allows the approach to perform
layer-wise TL automatically even if network structures are not identical. In
order to encourage positive TL, synergies between each layer of every task
are dynamically computed on each generation of A-MFEA-RL and stored as a
matrix. This matrix consists of rmpℓ

k,k′ entries for each task pair k ̸= k′ and
layer l. Additionally, the SBX crossover and polynomial mutation operators
are adapted to facilitate layer-wise automatic knowledge transfer between
tasks. As a result, A-MFEA-RL showed similar levels of performance when
compared to other traditional RL approaches facing the same complex RL
tasks, in terms of success rate and complexity. Departing from these outcomes,
we arrived at the conclusion that RL in multitask settings were a promising
path to follow, flowing into the research presented in this chapter.

This brief recapitulation establishes the grounds of this chapter. In what
follows a review of the field of meta-learning and evolutionary meta-learning
is performed, framing this work within trends identified in these areas.

5.2.2. Meta-learning with Neural Networks
Meta-learning is a challenging paradigm in DL which is designed to learn

from how different algorithms learn in order to leverage that knowledge
and improve the learning performance of new tasks, typically by means
of a bi-level optimization process. Meta-learning has been a very prolific
research area recently, having being tackled from different perspectives; 1)
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Optimization-based, 2) model-based and 3) metric-based. It has been also
applied to multiple fields such as image recognition, unsupervised learning or
RL. For an in-depth explanation of the concepts introduced before, the reader
is referred to [543]. Besides, metalearning has been proven to be closely
related to multitasking: in [544] an exhaustive theoretical examination is
performed, concluding that fast adaptation and efficient training can be
achieved simultaneously by means of the mixture of these paradigms. An
interesting instance of multitasking meta-learning is presented in [545], where
authors adopt Model Agnostic Meta-learning (MAML [546]), an optimization-
based meta-learning approach, and train the meta-learner with different
multitask combinations. Unlike other approaches, the tasks considered can
be from different domains (i.e. regression or classification). More examples
of multitask meta-learning are collected in [547].

One of the limitations of multitasking for RL resides in the lack of a quality
benchmark comprising a variety of related and unrelated tasks, limitation
inherited in multitask meta-learning. For the scope of this work, Meta-
World, the benchmark introduced in [517] that was used in Chapter 4, is
adopted. Meta-World is designed for multitask and meta- RL, comprising 50
robotic manipulation tasks created with the Mujoco physics simulator engine.
Meta-World provide the baseline algorithms for multitask and meta-learning,
being MAML, RL2 [548] and Probabilistic Embeddings for Actor-critic meta-
RL (PEARL) [549] the algorithms employed to conduct the experiments on
meta-learning. In this work, Meta-World is adopted as framework due to the
complexity of its tasks even for traditional meta-learning algorithms, and
because of the dimensionality and close connection to real-world RL robotic
applications.

5.2.3. Evolutionary Meta-learning
Since the rise of EDL, stimulated by parallel achievements in meta-learning,

evolutionary meta-learning has been approached from very distinct perspec-
tives. By definition, meta-learning can be considered as an optimization
problem and therefore, either the inner or the outer loop are typically re-
placed by an evolutionary algorithm. For instance, in [550] authors use
Evolution Strategy (ES) to perform a meta-search of the parameters of a
loss function that is used to train RL agents faster than other policy gradient
methods. Applications that make an out-of-the-box use of evolutionary meta-
learning can be found in [551], where the proposed meta-learning approach
is able to automatically prune the channels of complex DL models. Other
approaches attempt at finding the best performing set of algorithms for a
task [552], or at realizing them as an ensemble of simple learners [553].

Even if the applications of evolutionary meatalearning are diverse, when
shifting the discussion onto those approaches optimizing RL models, a bunch
of proposals can be found, all seeking to evolve agents that adapt quickly
to new tasks. This is commonly approached by means of ES [505] as an
alternative to train RL agents, due to its proficiency when handling and
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optimizing multiple solutions in parallel, its efficient exploration skills and
its ability to find solutions prone to adaptation. Embracing the search for
solutions with evolvability skills, the work in [554] presents a meta-learning
approach that pursues to evolve behaviors that adapt quickly (i.e. within
a few SGD training steps) to new tasks, which is conceptually similar to
MAML.

Evolutionary meta-learning has also been applied to real-world problems.
Authors in [555] train a walking hexpod robot by means of ES-MAML,
replacing the outer loop of MAML by ES. The method is trained off-line using
the Minitaur robot simulator. Experimental results show that the algorithm
is able to adapt under noisy scenarios, which can be extrapolated to the real
hexapod robot facing physical variations like different battery voltages or
different type of defects on the legs. Also related to a continual adaptation of
the agent’s behavior is the contribution presented in [556]. There, a bipedal
walker is trained in such a way that its legs enlarge during execution and the
network needs to be adapted by one of the three configurations presented;
pure RL, pure EA or RL+EA. Results show that training the network with
the configuration of RL+EA renders more diverse and best performing agents,
while using pure EAs the approach fails to learn good behavioral policies.

Unlike the articles discussed in this section, the approach introduced in
this chapter is, to the best of our knowledge, the first work introducing a
full gradient-free evolutionary multitask approach for evolutionary meta-
learning (AML-MFEA). By means of MFEA, the multitasking scenario and the
redesigned affinity module, AML-MFEA is able to evolve tasks simultaneously
while their relationships are dynamically computed. Evolving all tasks to-
gether enables the exploration of a large set of diverse yet qualified solutions
that can help target tasks escape from local optima. However, completely
different solutions (i.e., neural networks) might lead to agents encoding
similar behaviors. For this reason, the affinity module is modified so that it
takes in account both the historical effectiveness of inter-task crossovers and
the distance among the behaviors encoded in the solution vectors. Finally,
successfully evolved tasks are considered as the base to create meta-tasks,
guided by the behavioral distance metric coined as Centered Kernel Align-
ment (CKA [331]). The following sections delve into the technical aspects of
AML-MFEA, performing a detailed description of all its components.

5.3. Problem Statement

In this section the problem of evolutionary multitask for evolutionary
meta-learning is mathematically formulated. For this purpose we start sim-
ilarly to Section 5.2.1, by defining K tasks T = {T1, T2, . . . , TK} that are
simultaneously evolved by an EM approach. A best encoded solution can-
didate x∗

k
(t) ∈ χU is assigned to each task, representing the parameters of

the best performing model found so far for task k in generation t, yielding a
set of best candidates B(t) = {x∗

1, x∗
2, . . . , x∗

k}(t). B is composed by the best
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solution of each task, and can be regarded as the knowledge base provided
to the outer evolutionary process (i.e. meta-learning).

Therefore, some fundamental issues reside under this configuration: i)
Does B contain meta-knowledge? If so, what are the conditions to detect
it?; ii) How can this knowledge be extracted and preserved over t?; and iii)
How can meta-knowledge be dynamically updated over t? To address these
questions, AML-MFEA introduces the concept of meta-task. Tasks that are
dynamically created from the synergies exposed in the multitask scenario and
separately evolved with their own population P M

n , episodes per task EM and
the aim of generating a set of N meta-tasks J (t) = {J1, J2, . . . , JN}(t). Each
meta-task comprises the knowledge of different simple tasks, and provides
an enhanced evolvability to make new tasks be solved and/or be updated
faster. Additionally, each meta-task is composed by the information about
the tasks that created the group in which it is going to be evaluated, as well
as their best solution.

We now proceed by introducing and describing the proposed approach,
whose modifications with respect to A-MFEA-RL aim to tackle the questions
posed above.

5.4. Proposed Approach: AML-MFEA

This section is devised to describe all technical aspects of AML-MFEA and
all the components that allow the algorithm scale to extract and build a
set of meta-knowledge groups derived from the knowledge of the multitask
scenario. Figure 5.1 provides a general overview of the algorithm.

We begin from the bottom of Figure 5.1. The K tasks comprising the
multitask learning configuration are evolved simultaneously by means of
MFEA by means of the adaptive knowledge sharing strategy described in
Section 5.4.1. In order to create meta-tasks (Section 5.4.2), at each generation
t, the best candidates {x∗

k}K
k=1 are filtered based on their success rate by a

threshold ϕ, their behavioral synergies are computed and, if any group has
to be created or updated, they are refreshed. In what follows, each part of
the algorithm is thoroughly detailed.

5.4.1. Updated Adaptive Knowledge Transfer Strategy
One of the core elements of AML-MFEA is the adaptive strategy adopted

in MFEA, which enables an effective knowledge share between tasks. Unlike
the layer-wise RMP matrix adopted for A-MFEA-RL, and stimulated by the
results gathered in A-MFEA-RL, the RMP matrix in computed in a different
fashion. So, the values comprising the RMP matrix can be defined as scalar
values rmpk,k′ ∈ R(0, 1) with k ̸= k′ where k and k′ denotes the indexes of
the tasks for which the similarity is being computed. For each generation,
each value in the RMP matrix is updated in a two-fold way. On the one
hand, the generational efficiency of the crossover operator is considered. On
the other hand, a neural network behavioral similarity metric coined as CKA
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Figure 5.1: General overview of AML-MFEA general overview. In the middle of the
diagram, the task filter (sr ≥ ϕ) separates the multitasking (bottom) and meta-learning
(top) scenarios. Two different generations of the algorithm are represented, separated by
ellipses. On the left, some of the best candidates in the multitask scenario do not meet
the conditions to be input to the meta-learning scenario (red dashed lines), while other
candidates fulfill them in the last generation (purple dashed lines), so it is not required
to perform any meta-task update. On the right, a new task meets the condition (green
line), therefore, it is taken into account in the meta-task creation process, from where J t′

3
is dynamically created.

is implemented to find tasks that behave similarly as per this measure. This
two-fold similarity measure transforms the old rmpk,k′ into a weighted sum of
these two factors, adopting the success rate as the weight balancing between
them, and clipping the resulting value between rmpmax and rmpmin by the
same clip function previously defined in Section 4.2.3. Mathematically:

rmpk,k′ = cliprmpmax
rmpmin

(
(1− sr) · rpmhist

k,k′ + sr · rpmcka
k,k′

)
(5.1)

where sr denotes the success rate of the source task (i.e. the task with index
k). Next, both mechanisms are detailed.

First, to take in consideration the historical efficiency of the crossover
operator, two counters C+

k,k′ and C−
k,k′ are set to 0 at each generation. This

resembles what was done in A-MFEA-RL except for the layered structure
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(Section 4.2.3). These counters are used to record the times an offspring
candidate’s fitness is better (+) or worse (−) than that of its parent. Once
all individuals are evaluated, the next formula is applied:

rmphist
k,k ← rmphist

k,k −α · C−
k,k′ + β · C+

k,k′ (5.2)

where α, β ∈ R(0, 1) are parameters used to control the effect of each counter
in the rmphist

k,k′ update.
The reason to use a second factor to compute rmpk,k′ is the need for finding

and establishing connections between tasks that behave similarly, from which
meta-knowledge can be derived. However, it is known that completely different
network encodings can yield similar results and behaviors [557]. Therefore,
either rmphist

k,k′ or any distance metric searching over the solution space X U

may not be a reliable way to test if models for two different tasks behave
equally. Consequently, the exploration should be conducted over a behavioral
search space.

For that purpose, the CKA similarity metric is adopted, CKA is able to
measure the relationships between tasks using their representational matrices
(i.e. the output of each layer of the neural hierarchy). However, it is of utmost
importance to ensure that any pair of tasks to be compared have learned an
acceptable representation of the environment in which they are trained (i.e.,
they feature a high success rate). Otherwise, CKA may not fulfill its purpose
within the proposed algorithm due to the inexperience of the agents.

Therefore, defining a function cka(x∗
k, x∗

k′ , l) that computes the similarity
of two - best - solutions corresponding to two different tasks (i.e. k ̸= k′)
and layer l, rmpcka

k,k′ can be defined as:

rmpcka
k,k′ = 1

Lk

Lk∑
l=1

cka(x∗
k, x∗

k′ , l) ∀ k, k′ ∈ N(1, K), (5.3)

where Lk represents the number of layers of the network encoded in the
solution vector x∗

k. In [331] two versions of CKA are introduced, linear
and RBF kernel. As stated in that work, both linear and kernel versions
give similar outcomes in practice, hence, we adopt the same strategy as in
[331] and use the linear version of CKA for AML-MFEA. Finally, it should
be clarified that, mostly, cka(x∗

k, x∗
k′ , l) ̸= cka(x∗

k′ , x∗
k, l) mainly because of

different network structures (i.e. Lk ̸= Lk′), thus, k′ is decoded to k and cka
computed from the representational matrices of both tasks evaluated for the
first task during some episodes. Additionally, evaluating network similarities
over a set of episodes helps in the detection of similarities along any step
within the episodes.

To finish, we note that, by means of the success rate sr, the rmpk,k′

value balances smoothly between rmphist
k,k′ and rmpcka

k,k′ . This strategy allows
the algorithm to automatically drift from exploring in the solution space
considering the historical efficiency of inter-task crossovers (sr ⪅ 0.4) to the
exploitation of similar tasks in the behavioral space detected by means of
CKA (sr ⪆ 0.8).
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5.4.2. Meta-Knowledge Consolidation
We now describe the meta-knowledge consolidation process, from the

conditions required for a task to take part in that process to the creation of
meta-tasks. For the consolidation of meta-knowledge the basic piece of data
provided to AML-MFEA is the best candidate set B(t), the RMP matrix and
the success rates of each task, all of them evaluated for generation t. The first
step towards detecting different meta-knowledge groups is to exclude from
the computation those models that do not perform well for their tasks. This
is made by means of a threshold parameter ϕ ∈ N(0, 1), which represents
the minimum sr value for a task to be considered to generalize acceptably
to the environment they are aiming to solve.

Therefore, B(t)
skf can be defined as the set of indexes of each task for which

an individual in B(t) encodes significant knowledge. We define any possible
combination of tasks as Gn, where n represents the order of the groups. For
example, let B(t)

skf = {1, 5, 8} be the indexes of the tasks where sr ≥ ϕ in t,
then, for n = 3 the resulting possible meta-tasks will be of order 3 and 2 (i.e.
n ≤ |B(t)

skf |), the group of order 3 is G3 ≡ {(1, 5, 8)}, while for n = 2 include
all combination of length 2:

G2 ≡ {(1, 1), (1, 5), (1, 8), (5, 1), (5, 5), (5, 8), (8, 1), (8, 5), (8, 8)}. (5.4)
Once all possible meta-tasks of order n are computed, we check if all

coupled values on each group meet the condition of rmpcka
k,k′ ≥ γ. If so, a new

meta-group is created. Let γ be a parameter that determines the amount
of synergy required among tasks compounding the group Gn ⊆ Bskf . By
means of this parameter, the generalization difficulty can be tuned: when
γ << 1, the algorithm will create bigger groups but less behaviors will be
detected. Conversely, when γ ≈ 1, the algorithm will only create groups of
virtually repeated tasks. The process of meta-group creation is formalized in
algorithm 2.

When a group is created, it is important to notice that the indexes
conforming that group are excluded for the next loop. The reason is that it
is preferable to create more groups comprising a great variety of tasks and
better generalization skills than small groups compounded by behaviorally
similar models.

5.4.3. Meta-Group Training and Evaluation
After following the process described in the last section to create the set
J (t) of meta-tasks, we proceed by explaining the process to train them, and
how the selection of best individuals is performed. This section delves into the
relevant aspects that make possible to learn agents with good generalization
skills. First of all, it must be clarified that the network structure for each
meta-task is predefined and made equal for all of them (as is specified in
Section 5.5).

The training process of the evolutionary meta-learning layer proposed in
this chapter can be directly compared to the outer loop of many traditional
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Algorithm 2: Meta-group creation process.
1 Input: B(t)

skf , the set of groups containing meta-task indexes
2 Initialize meta-tasks as J (t) ← ∅
3 Set n = |B(t)

skf |
4 while n ≥ 2 or |B(t)

skf | ≥ 2 do
5 Compute groups of order n→ Gn

6 for each group G ∈ Gn do
7 if if rmpk,k′ ≥ γ for each coupled (k, k′) ∈ G then
8 Create a new meta-group
9 Update J (t) ← J (t) ∪G

10 Delete indexes in G from B(t)
skf for next iteration

11 end
12 n← n− 1
13 end
14 Return: J (t) (the set of updated meta-tasks)

meta-learning approaches. However, unlike those methods, our purpose is not
to construct a single model with superior generalization skills. By contrast,
AML-MFEA aims to automatically detect those tasks that exhibit similar
behaviors, so as to identify as many meta-models (see Footnote 1 in this
chapter) as distinct behaviors are detected in the inner loop (multitasking),
constructing a database of generalized behavioral patterns.

Every time a new meta-task is created a new evolutionary process is started.
Each group is evolved separately, this is because each group is intended to
encode different behaviors and thus, sharing knowledge between them should
be avoided. Therefore, each task is in charge of evolving their own population,
with its size and network architecture being defined beforehand. Meta-tasks
are evaluated using the same operators as the multitask approach: SBX
crossover, Polynomial Mutation and Elitist Selection. However, even if the
fitness of meta-solutions is computed as in Section 4.2.4, here each meta-task
is evaluated on each of the tasks assigned to them. This yields a fitness value
for each of the environments fJ = {f(xJ , k)}∀k ∈ J , being J a meta-task
sampled from J (t), and xJ an encoded solution belonging to the population
PJ of that meta-task. Then, when all individuals in J are evaluated, they are
ranked for each task in which they have been evaluated, and then ordered by
the sum of their ranks (lower is better). However, matches may occur with
this approach. To resolve them, the standard deviation of their rank positions
is computed as a match breaking criterion. Consequently, the winner will be
the solution that provides a more consistent generalization across all tasks.

In order to alleviate the computational cost derived from evaluating all
tasks for each meta-task, the population is initialized with the best individuals
of each task in the meta-task {x∗

k∀k ∈ N(0, K) : k ∈ J}. With this simple
strategy, meta-tasks are provided with the best valuable knowledge derived
from the multitasking environment up to that generation.
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5.4.4. Inference in Zero-Shot and Few-Shot Learning
After describing the extraction of knowledge and training of meta-tasks,

we proceed by examining how the archive of meta-knowledge (J (t)) faces
new tasks for the two challenging scenarios presented before: zero-shot and
few-shot learning. Although they are widely used techniques, there are some
considerations in AML-MFEA that should be emphasized. In AML-MFEA each
meta-task/meta-model Jn can be treated as an expert within a mixture
of experts ensemble [558]. Each expert has an assigned weight W, where
W = {W1, W2, . . . , Wn}, with n denoting the number of meta-tasks in J (t).
These parameters are in charge of guiding the contribution of each expert
to the resulting aggregated action, and they are dynamically computed over
episodes (weighted zero-shot) or set fixed (zero-shot). At inference time,
each expert is fed with the same input (the observation of the new unseen
environment). Figure 5.2 depicts a diagram describing how zero and few-shot
learning are approached by AML-MFEA.
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Figure 5.2: Diagram showing how inference is done by AML-MFEA when a new RL task
arrives. The new environment provides the observation that each expert/model processes
and evaluates. The action issued by each expert at

n is then weighted to yield a
′,t
n depending

of the configuration (zero or few-shot). Finally, the action returned to the new environment
is computed (at) as the mean of each component in a

′,t
n .

Following Figure 5.2, three configurations are designed:

Zero-Shot learning: new tasks are evaluated for λ episodes using only the
knowledge in the set of meta-tasks (i.e. W = {1}n). In this configuration
no parameters are updated, nor meta-tasks nor experts’ weights.

Weighted Zero-Shot learning: in this configuration the weights W of the
ensemble are updated over a set of evaluated episodes λ. The update is
performed at the end of each episode considering the mean reward of each
expert. The parameters of the meta-tasks are not updated (i.e., they are
kept fixed to their values evolved during training).

Few-Shot learning: in this last configuration, AML-MFEA runs for some
generations κ. We note that unlike in the other two configurations, in few-
shot learning AML-MFEA evolves a new solution assigned to the new task.
The knowledge in J (t) is leveraged by using it in the initialization of the
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population. Even if the algorithm runs for some generations, meta-tasks
are not updated.

5.5. Experimental Setup & Results

By virtue of its design, AML-MFEA is able to dynamically detect task
similarities at two levels, namely, over solution and behavioral spaces. This
allows the multitask approach to generate valuable knowledge that is gathered
and updated on-line to create meta-groups, as a basis to perform meta-
learning. This section presents and discuss the results of a experimental
setup designed to answer three research questions:

RQ1: Is the knowledge consolidation performed by AML-MFEA robust?

RQ2: Is AML-MFEA competitive in zero-shot and few-shot learning when
compared to traditional meta-learning approaches?

RQ3: Is AML-MFEA computationally efficient?

In order to assess the performance of AML-MFEA the MuJoCo physics
simulator based Metaworld benchmark is used. Recalling the description
from Section 4.3, MetaWorld is a benchmark for multitask learning and meta
learning that provides 50 tasks that share some degree os similarities with
others, however, they guarantee to be different enough to test meta-learning
and multitasking approaches. As in A-MFEA-RL, the evaluation of the tasks
is performed as the mean reward and success rate for E = 300 episodes. Also
in MetaWorld, authors provide several baselines against which to contrast
new approaches, which are adopted for our experiments:

RL2 [548], which uses a slow RL algorithm to guide the training process of
a fast RL algorithm. The former operates at a slower time-scale, producing
agent policies that act as a supervisor for its fast counterpart. By contrast,
the fast RL algorithm refreshes its learned policy in real time based on the
feedback from the environment, hence quickly adapting to environmental
changes and allowing for the exploration of new policies. As a result, RL2

benefits from the stability and robustness of a slow RL approach with the
agility and adaptability of a fast learning technique.

Model Agnostic Meta-learning [546], which uses gradient-based optimiza-
tion to learn a good initialization of the model parameters that can be
quickly adapted to newly emerging tasks. The underlying idea behind
MAML is to find a model that performs well on a wide range of tasks. This
is accomplished by computing and using the gradient updates for each
task to fine-tune the model for a new task.

Probabilistic Embeddings for Actor-critic meta-RL [549], which relies on
an actor-critic agent architecture. PEARL learns a mapping from the space
spanned by observations to a lower-dimensional probabilistic embedding
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that is suitable for policy learning. To this end, a variational objective
is formulated to balance between information preserving in dimension
reduction process, and the utility of the embedding space to learn new
policies.
Following the categorization made in Section 4.3, tasks are divided as

per their complexity (EASY, MEDIUM and HARD). Their architectures are kept
to the same as the ones presented in Section 4.3. However, a new network
architecture is defined for the meta-learning layer in AML-MFEA and due to
the definition of meta-tasks. This is not trivial, as an oversized network can
learn to separate all the tasks in the meta-task and overfit them, providing less
generalization capability for the overall approach. Conversely, an undersized
network could be unable to condense all the information encoded on each task
in the meta-tasks, yielding bad outcomes. Thus, considering that tasks labeled
as HARD are the ones that solve more complex tasks, and in consecuence are
composed by more diverse behaviors (e.g., reach, push, press a button),
the chosen neural network architecture is the one designed to encode HARD
tasks. Thus, the composition and size of networks assigned to meta-tasks is
that of the agent that learns to solve HARD environments. The list of network
architectures is detailed in Table 5.1.

Table 5.1: Network architectures for every task complexity level. All layers are fully
connected, comprising the indicated number of neurons (+ denotes layer concatenation).

Complexity Neural architecture Parameters

EASY 256 + 128 + 128 + output layer (S: Small) ∼ 54K
MEDIUM 256 + 128 + 128 + 128 + output layer (M: Medium) ∼ 70K
HARD 256 + 128 + 128 + 128 + 128 + output layer (B: Big) ∼ 87K

Meta-task 256 + 128 + 128 + 128 + 128 + output layer ∼ 87K

In our experiments, the whole set of parameters to be defined at the
multitask level are enumerated in Table 5.2, together with all the new
parameters introduced for AML-MFEA.

Table 5.2: Parameters used in the experiments.

Parameter Value Parameter Value

Pk 60 for all tasks (i.e. P = 60K) rmpmin 0.15
E 300 episodes rmpmax 0.95

maxGen 600 (RQ1), 1000 (RQ2, RQ3) α 0.01
start_rmp 0.80 β 0.10

P M
n 2 · |B(t)

skf | EM 300
λ 60 κ 60
γ 0.8 ϕ 0.5

starting W {1}n

Regarding the population of each meta-task P M
n , it is configured to guar-

antee that meta-tasks are able to evolve with the lowest additional computa-
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tional budget. It was empirically found out that twice the size of the formed
meta-task group is a good approximation. To run the experimentation, a
server equipped with four Intel Xeon Gold 5120 2.2 GHz processors and 1
Tb of RAM was used. Python source code implementing AML-MFEA and
reproducing the results reported in what follows has been made available
in https://gitlab.com/Ztira/aml-mfea for the sake of transparency and to
support follow-up research.

5.5.1. Preliminary Analysis of Multitasking Results
From our experience with MetaWorld we already know that there are

tasks that AML-MFEA will not be able to solve. For that reason, the amount
of tasks with which it is trained is 32, setting aside 5 tasks for testing.
For this experimentation AML-MFEA runs over 1, 000 generations with the
configuration provided in Table 5.2. Table 5.3 presents the results of the
multitasking scenario (B(t)), which exposes the basic knowledge required by
AML-MFEA to perform meta-learning.

Table 5.3: List of the environments evolved by AML-MFEA, achieved success rate after
1000 generations and network architecture complexity.

Environment/task name Success rate Network size
button-press-topdown 0.92 Medium
button-press-topdown-wall 0.92 Big
button-press 1.0 Medium
button-press-wall 1.0 Big
coffee-button 1.0 Big
coffee-push 0.53 Medium
dial-turn 1.0 Big
door-close 0.95 Big
door-open 0.93 Big
drawer-close 1.0 Big
drawer-open 1.0 Big
faucet-open 1.0 Medium
faucet-close 1.0 Medium
hammer 1.0 Big
handle-press-side 0.98 Big
handle-press 0.82 Big
handle-pull-side 0.84 Big
handle-pull 0.98 Big
lever-pull 0.2 Medium
reach 0.88 Small
push-back 0.34 Small
push 0.29 Small
plate-slide 0.95 Medium
plate-slide-side 1.0 Medium
plate-slide-back-side 1.0 Medium
peg-unplug-side 0.35 Big
soccer 0.58 Small
push-wall 0.49 Medium
reach-wall 0.90 Small
sweep-into 0.56 Small
window-open 1.0 Big
window-close 1.0 Big

If one analyzes the success rates of each tasks, it is straightforward to
notice that it is very low for some tasks, and will not contribute positively
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to the meta-task creation procedure (i.e., lever-pull, push-back, push
and peg-unplug-side). On the contrary, others will narrowly pass the
filter sr ≥ 0.5 (namely, coffee-push, soccer and sweep-into). These
environments will give clear insights about the internals of AML-MFEA in
the next section.

5.5.2. RQ1: Is the knowledge consolidation performed by
AML-MFEA robust?

This first research question checks whether the knowledge learned by the
proposed meta-learning approach is robust, and if the groups embodied in
the discovered meta-tasks qualitatively conform to intuition. To do this, two
experiments are conducted. The first one is a “toy” experiment compris-
ing 6 repeated environments (window-open, window-close, faucet-open,
faucet-close, button-press and button-press-wall), amounting up to
12 tasks. In the second experiment, AML-MFEA faces a more realistic scenario
covering all the environments detailed in Table 5.3.

Table 5.4: Meta-tasks derived from the environments evolved in the “toy-example” experi-
ment. In brackets the complexity of each network architecture is represented as S (small),
M (medium), and B (Big).

Env. Name (Complexity) Meta Success Rate
(meta-model)

Base Success Rate
(individual models)

Group 1 window-close (Big) 1.0 1.0
window-close-2 (Big) 1.0 1.0

Group 2

faucet-close (Medium) 0.93 1.0
faucet-close-2 (Medium) 0.93 1.0
faucet-open (Medium) 1.0 1.0
faucet-open-2 (Medium) 1.0 1.0
button-press-wall (Big) 1.0 1.0
button-press-wall-2 (Big) 1.0 1.0

Group 3 window-open (Big) 1.0 1.0
window-open-2 (Big) 1.0 1.0

Results shown in Table 5.4 demonstrates that AML-MFEA is able to
correctly detect coupled tasks and cluster them in groups containing, at
least, those twin tasks. It is remarkable that the synergies between the
button-press environments are not detected, which suggests that both
environments are solved by slightly different behaviors. In fact, a visual
exploration of how the two evolved agents solve this environment supports
this statement: the agents solve the task in different behavioral ways: one
proceeds straight ahead, whereas the other by executing a quick side-to-side
movement. Similarly, the three tasks gathered in Group 2 seem counter-
intuitive, since faucet-open and faucet-close can be thought to require
agents that behave in an opposite way. However, once again a quick visual
exploration of the behavior of both evolved agents clarifies this surprising
result: Faucet-close is solved by the same behavior, but not touching the
handle of the faucet, but its back part. This is illustrated in Figure 5.3.
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Faucet-close + novel behaviour

Figure 5.3: Snapshots showing how faucet-open and faucet-close are jointly solved
by the discovered meta-task. To close the faucet, the meta-model learns to solve it in an
innovative way.

In what refers to the second more realistic experiment, Table 5.5 presents
the meta-groups learned over the entire set of environments under considera-
tion. There, seven groups built from the results of the multitask scenario
are portrayed. In order to make a deeper analysis of the nature of the tasks,
and how it affects the meta-tasks’ efficacy, the success rate of each task in
every meta-task is added.

Table 5.5: Groups created from the results in Table 5.3. In brackets the complexity of
each environment is represented as S = Small, M = Medium and B = Big.

Env. Name (Complexity) Meta Success Rate
(meta-model)

Base Success Rate
(individual models)

Group 1 button-press-wall (B) 0.95 1.0
window-open (B) 1.0 1.0

Group 2 button-press (M) 0.92 1.0
handle-press (B) 0.83 0.82

Group 3 reach (S) 0.94 0.88
reach-wall (S) 1.0 0.9

Group 4
button-press-topdown (M) 0.94 0.92
button-press-topdown-wall (B) 0.94 0.92
hammer (B) 0.0 1.0

Group 5 soccer (S) 0.2 0.58
sweep-into (S) 0.57 0.56

Group 6
drawer-open (B) 0.0 1.0
faucet-open (M) 0.94 1.0
plate-slide (M) 0.95 0.95
plate-slide-side (M) 0.0 1.0

Group 7 coffee-push (M) 0.23 0.53
plate-slide-back-side (M) 0.22 1.0

Results in Table 5.5 lead to interesting, and coherent insights on the
importance of a valuable knowledge basis to perform this type of evolution-
ary meta-learning. We start the discussion with Group 1, compounded by
button-press-wall and window-open. A glance at how tasks are solved2

2 Videos of agents solving the tasks can be visualized in https://meta-world.github.io/
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even if the end of the episodes for both environments is quite different
from each other. The start of the episode and until button-press-wall
completes, both are exceptionally similar. Thus, it can be intuitively thought
that window-open contains button-press-wall within its behavioral space
(i.e., their joint cka value is close to 1). Additionally, it can be observed that
two models with a large architectural size can be merged into a single model
of the same dimensions (i.e., a model with half the number of parameters)
that performs almost equally.

A similar reasoning can be done in what refers to Group 2, where
button-press and handle-press are jointly evolved. Here, results show
that both environments can be grouped successfully. However, as in the first
experiment conducted in this section, a visual analysis of the behavior of
their evolved agents reveal that they solve them using the same template.
Another remarkable fact is that for this experiment, as in the previous
“toy” experiment, button-press and button-press-wall are assigned to
different groups even if they can be very similar to each other. This evinces
that the algorithm is stable for different scenarios.

We now focus on Group 3 and Group 4. In both cases, the environments
grouped as similar as per the similarity of their evolved agents are the
version with and without wall of reach and button-press-topdown. This
again echoes the effectiveness of the proposed adaptive similarity metric
(Section 5.4.1) when finding tasks that behave similarly. However, while
Group 3 is able to perform even better than their detached alternatives,
in Group 4 the information of hammer is absolutely lost. A visual analysis
of how hammer is solved by its evolved agent displays that, even if the
agent reaches maximum success rate, it solves the environment by exploiting
some design failures of the environment itself, rather than by following the
expected behavior.

Some examples of the negative effect that an under-evolved task can
induce in the meta-task can be noticed in Group 5 and Group 7. In the
former, tasks soccer and sweep-into seem to be visually similar to each
other. Unfortunately, the meta-task is unable to merge both models into
a single one. Ending with Group 6, faucet-open and plate-slide are
clearly behaviorally similar. However, drawer-open and plate-slide-side
only show similarities for some early steps of the episode. This limitation is
introduced by the computation of cka and its dependency to different episode
lengths. To be more specific, this effect is clearly visible on drawer-open,
where the way to the handle of the drawer is similar to the behavior in
faucet-open or plate-slide, but the way back to opening the drawer is
not mirrored in any of the other tasks. The reason why plate-slide-side
is in Group 6 is not trivial, and would need further analysis of AML-MFEA
to derive the environmental artifacts producing this unexpected result.

Throughout this section, an assessment of the quality of created meta-tasks
has been done. In general, the approach has been proven to expose good
performance at finding behaviorally similar tasks. In the next section, the
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generalization skills of the agents involved in the meta-tasks is tested over
the zero-shot and few-shot scenarios introduced previously.

5.5.3. RQ2: Is AML-MFEA competitive in zero-shot and few-shot
learning when compared to traditional meta-learning
approaches?

This section is devised to answer the question of how learned meta-tasks
generalize to new tasks in some of the most complex meta-learning configura-
tions: zero-shot and few-shot. Departing from the configurations introduced
in Section 5.4.4, this section first compares zero-shot and weighted zero-
shot learning to check if new tasks leverage the generated meta-knowledge
(embodied in the meta-models of the meta-tasks) properly. Next, results
over the weighted zero-shot and few-shot learning are contrasted to other
state-of-the-art meta-learners (R2, MAML and PEARL), all introduced in
Section 5.2.3. To this end, two setups are considered: one designed ad-hoc
based on the reduced set of tasks considered in Table 5.3, from which 5
tasks have been left out as newly unseen tasks; and a second one, following
the distribution of training and test tasks imposed by the so-called ML-45
benchmark described in the seminal work of MetaWorld [517]. The purpose
of the first experiment is to place value on the proposed algorithm with
respect to a randomly initialized model focusing on zero-shot scenarios. The
second experiment aims to ascertain whether these results are competitive
with respect to avant-garde non-evolutionary alternatives.

Table 5.6: Results obtained for the first meta-learning scenario devised to answer RQ2.

Environment Zero-Shot Weighted
Zero-Shot Random

window-open 0.6 1.0 0.0
button-press-topdown 0.0 0.91 0.0
dial-turn 0.34 0.45 0.0
door-open 0.0 0.0 0.0
drawer-open 0.0 0.0 0.0

Outcomes in Table 5.6 show a clear distinction between the approaches
considered, being weighted zero-shot the absolute winner and random the
worst (considered the simplest baseline to perform zero-shot learning). How-
ever, for tasks door-open and drawer-open, similar results are obtained by
zero-shot and random, giving an insight about the need for guiding new
tasks by the weighted version of zero-shot AML-MFEA. Due to the design of
meta-tasks, they will encode very varied behaviors. Thus, with the arrival of
a new task, opposite behaviors will negatively affect the predicted action,
leading the model to poor results.

Results for the second experiment related to RQ2 are shown in Table 5.7,
which summarizes the success rates obtained by AML-MFEA and the rest of
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Table 5.7: Results obtained over the ML-45 meta-learning scenario of MetaWorld. In the
table, n.r. stands for not reported in [517].

RL2 PEARL MAML AML-MFEA

Zero-
shot

Few-
shot

Zero-
shot

Few-
shot

Zero-
shot

Few-
shot

Zero-
shot

Few-
shot

bin-picking n.r. 0.11 n.r. 0.004 n.r. 0.0 0.0 0.0
door-unlock n.r. 0.57 n.r. 0.42 n.r. 0.7 0.022 0.21
hand-insert n.r. 0.28 n.r. 0.30 n.r. 0.0 0.0 0.13
door-lock n.r. 0.35 n.r. 0.32 n.r. 0.9 0.0 0.75
box-close n.r. 0.31 n.r. 0.04 n.r. 0.0 0.01 0.1

Mean 0.02 0.33 0.01 0.22 0.03 0.32 0.006 0.24

meta-learning techniques over the test RL tasks defined in the ML-45 scenario
of MetaWorld. Here, the weighted version of AML-MFEA is considered for
the zero-shot scenario. In this table we first observe that the average success
rate attained by all approaches in the comparison is very low in the zero-shot
scenario, whereas allowing the models to update on a few samples delivered
by the test environments (few-shot scenario) yields notable average success
rate improvements. In more detail, the average score achieved by PEARL lags
slightly behind that of AML-MFEA in the few-shot setting, as this algorithm
fails to generalize properly when solving the door-lock task. Interestingly,
MAML seems to outperform AML-MFEA on average, but an inspection of the
success rates per task uncovers that MAML fails to solve 3 out of the 5 tasks.
This variability suggests that the performance of MAML might degrade when
facing other set of unseen tasks. In line with the statements in the MetaWorld
original publication, RL2 performs best on average in the few-shot setting,
outperforming the rest of algorithms across all tasks except door-lock. For
the zero-shot setup, only average scores were reported in [517]. Even so, the
proposed AML-MFEA fails to perform competitively. This low performance
can be due to different reasons, e.g. the lack of information to properly gauge
the relevance that each of the meta-models should have when voting their
predicted policies. More research is needed in this regard, which will be
discussed in the closing part of this Thesis.

5.5.4. RQ3: Is AML-MFEA computationally efficient?
Meta-learning is, by nature, computationally demanding, mainly due to

its bi-level training architecture (i.e inner loop and outer loop). The inner
loop implies training on a wide set of tasks from which the outer loop learns,
hence the computational cost of the inner loop depends of the number of
tasks considered for training. For this reason, most of the contributions in
the related literature do not report any results in terms of efficiency (training
time). Moreover, it is remarkable that the time elapsed to train a meta-
learning approach also depends on the available computational resources,
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the parallel implementation of agents, and the device on which the learning
algorithms are deployed (CPU, GPU or TPU).

Figure 5.4: Distribution of the training time of AML-MFEA for one generation.

The implementation of AML-MFEA furnished in this Thesis does not run
over any GPU/TPU processor. However, each of its agents runs in parallel.
As a result, the computational cost of AML-MFEA decreases drastically, but
still remains costly. As illustrated in Figure 5.4, 77.4% of the time AML-MFEA
evaluates the tasks in the multitasking scenario, what amounts to almost
864 seconds per generation. The most costly operation in AML-MFEA is
the evaluation of candidate solutions on each environment/task, since the
multitask, cka and the meta-tasks computation involve evaluating candidates.
Training meta-tasks consumes 13.7% of the total generation time (i.e., 152.77
seconds), whereas computing the cka measure of 32 tasks takes 99 seconds,
which is a relevant amount that relates to the number of episodes used
to measure the similarity of the networks. Even if the time elapsed to
evolve multiple tasks at the same time cannot compete with traditional RL
multitask algorithms running on GPU (see Table 4.8), AML-MFEA requires
a minimal extra amount of time. Thus, the overall AML-MFEA could not be
deemed computationally efficient with respect to other traditional multitask
approaches, but the designed meta-learning module can be considered to be
efficient as it is designed to be effective by performing meta-learning with
few additional candidates. However, considering unlimited resources, this
time will linearly increase by ≈ 1.3 seconds per evaluated candidate.

5.6. Conclusions and Research Directions

This chapter has presented AML-MFEA, an evolutionary meta-learning
approach relying on evolutionary multitask optimization. AML-MFEA is able
to simultaneously evolve multiple tasks whose synergies are dynamically
computed. A similarity detection module between models evolved for every
task allows AML-MFEA to detect similarities between tasks, not only based on
the efficacy of inter-task crossovers, but also in what refers to the behavioral
space, using the network similarity metric CKA for this latter purpose. By
combining these two factors into a single metric, similar tasks can be detected
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and grouped into meta-groups. A different optimization process that imitates
the outer loop of traditional meta-learning architectures is then performed
to hold different network behaviors that could be used to train new tasks
more efficiently.

To assess the performance of AML-MFEA, an extensive experimental setup
is designed, comprising up to 32 tasks that are simultaneously evolved,
leading to a total of 7 meta-groups. Throughout the experimentation the
robustness of the consolidated knowledge has been tested. Results show that
the discovered task groups not only meet human intuition regarding how
two grouped tasks are solved, but also permit to identify alternative ways
by which an agent can learn to solve a task by exploiting tweaks in the
environments under consideration. The competitiveness of AML-MFEA in
zero-shot and few-shot learning has been assessed, showing that it performs
on average competitively with respect to other methods from the state of
the art, yet still being far from the unrivaled generalization scores of tier-
one methods. Finally, AML-MFEA has been analyzed from the perspective of
computational efficiency viewpoint. Conclusions in this regard go in line with
those of the previous chapter, namely, the overall computational complexity
of AML-MFEA is notably higher than that of other approaches. However,
the meta-learning processing layer added on top of the multitask layer does
not add a significant computational penalty to the overall time cost of the
proposed approach.
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6
F I N A L R E M A R K S

“We can appreciate the entire journey by
looking back at how far we have come.”

– Antichamber

6.1. Conclusions

This Thesis has revolved around the combination of evolutionary com-
putation and DL, which has become increasingly relevant in recent years
due to the complexity of the optimization problems that can be formulated
under this family of models. Indeed, evolutionary computation is comprised
by a diverse landscape of algorithms capable of optimizing complex non-
linear problems thanks to gradient-free search mechanisms, such as those
underneath genetic algorithms. DL allows for powerful representations of
complex data spaces through layered structures of artificial neurons and neu-
ral processing units. The fact that the topology selection, hyper-parametric
tuning and parameter training of these networks are optimization problems
has paved the way for evolutionary computation to address such problems
efficiently. By combining these two areas, it is possible to optimize the
architecture and parameters of DL models in both an efficient and effective
manner. The research work condensed in this Thesis has aimed to shed light
on this technological crossroads from a twofold perspective: i) a study of
the related literature, stepping beyond a simple recollection of contributions
to offer insights supported by side experiments and prospects motivated
by the lessons learned therefrom; and ii) an exploration of other scenarios
where evolutionary computation can make a difference in the adaptability
and performance of DL models.

While combining Evolutionary Computation and Deep Learning holds
significant promise, it is important to note its limitations and drawbacks.
This has been the goal of Chapter 2, starting from a taxonomy of the opti-
mization problems that have been solved in the literature with metaheuristic
optimization algorithms. After the critical review of the literature follow-
ing the defined taxonomy, several insights supported by experiments have
been identified in EDL. The first is that, indeed, evolutionary computation
can boost the search for optimal topology and hyper-parameter settings in
modeling tasks approached by DL models. By contrast, current efforts to
use evolutionary computation for trainable parameter optimization (model
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training) fall short when dealing with realistic network sizes. Experiments
with evolutionary techniques suited to deal with large-scale optimization
problems have been proven to perform subpar with respect to gradient
backpropagation solvers. Based on these experimental observations and
other caveats identified in the reviewed literature, Chapter 2 has finished by
outlining several research directions of interest for the community, among
which two have spurred the rest of the Thesis: i) the exploitation of problem-
specific knowledge during the search; and ii) the potential of EM to foster
the exchange of knowledge between different instances of problems related
to DL.

Chapter 3 follows up the advocated potential of EM by inspecting what
has been done in this recent subarea of evolutionary computation. EM
refers to a type of optimization algorithms that evolve multiple solutions at
the same time for a number of related optimization tasks. As opposed to
traditional EAs, which focus on evolving a single solution for a single task, the
process of evolving solutions for multiple tasks can lead to a more efficient
and effective optimization process, as solutions that are suited to multiple
tasks simultaneously can be explored. As per the thorough literature review
in Chapter 3, EM has been applied to a variety of application scenarios,
including machine learning. In this context, renowned success histories on the
combination of evolutionary computation and RL have been motivational to
explore the possibilities to leverage EM to realize and expedite the transfer of
knowledge in RL setups comprising several tasks, as it occurs in multitask RL
and meta-RL. RL algorithms train agents to make decisions in an environment
by maximizing a reward signal, while Evolutionary Computation provides
a means to optimize the agent’s policy through evolutionary search. When
the policy is produced by a DL model that maps observations to actions,
the use of EM to evolve the trainable parameters of different models can
realize an implicit knowledge transfer between such models, realizing a sort
of evolutionary TL.

Chapter 4 has tackled the use of evolutionary multitask for multitask
RL, which aims to train agents that perform multiple tasks simultaneously,
where the goal is to leverage the knowledge gained from one task to improve
performance on another task. TL has emerged as a promising approach in
this context, allowing agents to share common knowledge and representa-
tions between tasks, thereby improving the overall performance and sample
efficiency. By leveraging transfer learning, the agent can take advantage
of the knowledge gained from one task to quickly adapt to new tasks, re-
ducing the amount of training data required and speeding up the learning
process. Specifically, the Thesis at this point has proposed an adaptive EM
approach that estimates the amount of knowledge transferred indirectly
between RL tasks. This estimation evolves during the evolutionary search,
so that synergistic relationships can be tailored as per the convergence of
the search and the maturity of the policies embodied in the evolved models.
Experimentally it has been found out that when it comes to performance,
the proposed algorithm can rival other modern non-evolutionary methods
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multitask RL. Unfortunately, the high computational cost of running an
evolutionary search makes the proposed approach an unfeasible replacement
for other methods whenever computational efficiency enters the picture as
another criterion to be met.

Next, Chapter 5 has built upon its predecessor to address the meta-
RL setup, where the goal is to train a set of behaviors (models) able to
help agents to quickly adapt to new tasks with minimal data. TL has
emerged as a promising approach in meta-RL, allowing the agent to leverage
prior knowledge from related tasks to improve its performance in new
environments. Additionally, TL can be used to improve the efficiency of the
meta-learning process itself, allowing the agent to learn more effectively from
past experiences. Chapter 5 has capitalized on this idea to assess whether the
transfer of knowledge between training tasks efficiently realized by EM can
be processed further to infer behavioral commonalities between the learned
models, which can serve as a knowledge base to address newly arising tasks
more effectively. In doing so, a measure of similarity between neural networks
has been adopted to compare the evolved agent models and group them in
meta-tasks, i.e., tasks whose evolved models behave similarly to each other
as per their trainable parameters. The inference of such meta-tasks yields an
ensemble of agents with which to solve new unseen tasks in a robust fashion,
considering all typical behaviors of models learned for the training tasks.
Experimental results have exposed, on one hand, that the composition of
meta-tasks conform to intuition, successfully grouping tasks whose solutions
(paths) can be thought to be related to each other. By contrast, in zero- and
few-shot learning scenarios the proposed approach performs competitively
with respect to other non-evolutionary approaches, but is still far from the
generalization performance of the best known method in this area (RL2).

An overarching conclusion drawn from the findings reported in the Thesis
is that EDL is an area full of lights and shadows. Light emanates from the
automated construction of DL architectures (Auto-ML) and hyper-parameter
tuning, as the Thesis has clearly exposed. Unfortunately, end-to-end evo-
lutionary training of realistically sized DL models cannot compete with
gradient backpropagation approaches. However, recent developments in the
use of evolutionary computation to construct models based on processing
primitives (AutoML-zero [559]), continual/lifelong machine learning [560] or
the diversification of behaviors for evolved models (Quality-diversity opti-
mization [561]) have reignited the interest in the adaptability of machine
learning models through evolution. This Thesis has advanced in this direc-
tion, proving that machines can autonomously improve their learning process
by exploiting synergies between tasks through evolution, reducing the data
required for the purpose and producing models prepared to cope with unseen
tasks. Multitasking and generalization towards the unknown, together with
other properties such as multi-modality and knowledge representation, per-
sistence and retrieval, are within the desiderata of General Purpose Artificial
Intelligence (GPAI). This Thesis and contributions in years to come will
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surely showcase the crucial role expected for evolutionary computation in
the design of models addressing this paradigm.

6.2. List of Publications

The research conducted while pursuing this Thesis has given rise to several
publications in conferences and journals, which are listed below:

Journal publications:

• Aritz D. Martinez, Javier Del Ser, Esther Villar-Rodriguez, Eneko
Osaba, Javier Poyatos, Siham Tabik, Daniel Molina, Francisco Herrera,
“Lights and shadows in Evolutionary Deep Learning: Taxonomy, critical
methodological analysis, cases of study, learned lessons, recommenda-
tions and challenges”, Information Fusion, Vol. 67, pp. 161–194, 2021.
JCR: 17.564 (ranking: 4/145, Q1, COMPUTER SCIENCE, ARTIFI-
CIAL INTELLIGENCE).

• Aritz D. Martinez, Javier Del Ser, Eneko Osaba, Francisco Herrera,
“Adaptive multifactorial evolutionary optimization for multitask rein-
forcement learning”, IEEE Transactions on Evolutionary Computation,
Vol. 26, N. 2, pp. 233–247, 2021. JCR: 16.497 (ranking: 5/145, Q1,
COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE).

• Eneko Osaba, Javier Del Ser, Aritz D. Martinez, Amir Hussain, “Evolu-
tionary multitask optimization: a methodological overview, challenges,
and future research directions”, Cognitive Computation, Vol. 14, N.
3, pp. 927–954, 2022. JCR: 4.890 (ranking: 49/145, Q2, COMPUTER
SCIENCE, ARTIFICIAL INTELLIGENCE).

Contributions to conferences:
• Aritz D. Martinez, Eneko Osaba, Javier Del Ser, Francisco Herrera,

“Simultaneously evolving deep reinforcement learning models using mul-
tifactorial optimization”, IEEE Congress on Evolutionary Computation
(CEC), pp. 1–8, 2020.

In addition to the publications related to the Thesis, the author has
also actively collaborated in other research works, leading to the following
publications:

Journal publications:

• Javier Poyatos, Daniel Molina, Aritz D. Martinez, Javier Del Ser,
Francisco Herrera, “EvoPruneDeepTL: An evolutionary pruning model
for transfer learning based deep neural networks”, Neural Networks, Vol.
158, pp. 59–82, 2023. JCR: 9.657 (ranking: 16/145, Q1, COMPUTER
SCIENCE, ARTIFICIAL INTELLIGENCE).
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• Eneko Osaba, Javier Del Ser, Aritz D. Martinez, Jesus L Lobo, Francisco
Herrera, “AT-MFCGA: An adaptive transfer-guided multifactorial
cellular genetic algorithm for evolutionary multitasking”, Information
Sciences, Vol. 570, pp. 577–598, 2021. JCR: 8.233 (ranking: 16/164,
Q1, COMPUTER SCIENCE, INFORMATION SYSTEMS).

• Aritz D. Martinez, Eneko Osaba, Miren Nekane Bilbao, Javier Del Ser,
“Let nature decide its nature: On the design of collaborative hyperheuris-
tics for decentralized ephemeral environments”, Future Generation
Computer Systems, Vol. 88, pp. 792–805, 2018. JCR: 5.768 (ranking:
8/105, Q1, COMPUTER SCIENCE, THEORY & METHODS).

Contributions to conferences:

• Eneko Osaba, Javier Del Ser, Aritz D. Martinez, Jesus L Lobo, Antonio
J Nebro, Xin-She Yang, “MO-MFCGA: Multiobjective multifactorial
cellular genetic algorithm for evolutionary multitasking”, IEEE Sym-
posium Series on Computational Intelligence (SSCI), pp. 1–8, 2021.

• Eneko Osaba, Javier Del Ser, Aritz D. Martinez, Jesus L Lobo, “A
multifactorial cellular genetic algorithm for multimodal multitask opti-
mization”, IEEE Congress on Evolutionary Computation (CEC), pp.
1–8, 2022.

• Alain Andres, Esther Villar-Rodriguez, Aritz D. Martinez, Javier Del
Ser, “Collaborative exploration and reinforcement learning between
heterogeneously skilled agents in environments with sparse rewards”,
International Joint Conference on Neural Networks (IJCNN), pp. 1–10,
2021.

• Javier Del Ser, Eneko Osaba, Aritz D. Martinez, Miren Nekane Bilbao,
Javier Poyatos, Daniel Molina, Francisco Herrera, “More is not always
better: insights from a massive comparison of meta-heuristic algorithms
over real-parameter optimization problems”, IEEE Symposium Series
on Computational Intelligence (SSCI), pp. 1–7, 2021.

• Eneko Osaba, Aritz D. Martinez, Akemi Galvez, Andres Iglesias, Javier
Del Ser, “dMFEA-II: An adaptive multifactorial evolutionary algorithm
for permutation-based discrete optimization problems”, Genetic and
Evolutionary Computation Conference Companion, pp. 1690–1696,
2020.

• Eneko Osaba, Aritz D. Martinez, Jesus L Lobo, Javier Del Ser, Fran-
cisco Herrera, “Multifactorial cellular genetic algorithm (MFCGA):
Algorithmic design, performance comparison and genetic transferability
analysis”, IEEE Congress on Evolutionary Computation (CEC), pp.
1–8, 2020 (finalist, Best Paper Award)

• Aritz D. Martinez, Eneko Osaba, Izaskun Oregi, Iztok Fister, Iztok
Fister, Javier Del Ser, “Hybridizing differential evolution and novelty
search for multimodal optimization problems”, Genetic and Evolution-
ary Computation Conference Companion, pp. 1980–1989, 2019.
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6.3. Future Research Lines

Several research lines can be outlined departing from the insights, lessons
learned and identified niches during the course of investigation:

To begin with, the Thesis has identified several grand challenges in the
wide fields of EM and EDL. Evolutionary trainable parameter optimization
(model training) is among the problems in DL that requires rethinking
what has to be optimized, and how. Interestingly, evolutionary model
training has given rise to trained models that quickly overfit the training
data. A question emerges at this point: does this result mean that the
evolutionary algorithm in use is a worse solver for the problem at hand,
or instead a call for reflection around what has to be optimized? Or is it a
worse performance of gradient backpropagation algorithms an implicit way
of regularizing the trained model? This question lacks a clear answer. In
this regard, methods that blend easily into the evolutionary search could
effectively overcome this observed phenomenon by avoiding an overfitting
regime of the evolved parameters during the evolutionary process. The
lottery ticket hypothesis [562], pruning methods over the search [563] or
including learnable parametric formulations of the loss function to be
optimized [564] can be interesting research directions to follow.

Another caveat discussed in the Thesis is the computational cost associated
to the use of evolutionary algorithms for trainable parameter optimization
process, which can be quite demanding for large and complex neural
networks. To address these limitations, the hybridization of evolutionary
computation with local search heuristics that exploit the layered structure
of neural networks can be investigated. Experiments done in this Thesis
around scheduling the evolutionary search across the layers of the DL
model (Section 2.6.4 in Chapter 2) have not been conclusive. Neverthe-
less, more elaborated schedules can be proposed, asynchronously leaping
between layers based on the stagnation of the evolutionary search for
every layer. In what refers to the computational cost, we foresee that the
increasing relevance of EDL will spur the creation of software libraries with
implementations of evolutionary solvers suitable to be deployed in multi-
core computing devices, including graphical (GPU) and tensor (TPU)
processing units. This, together with a parallel deployment of the fitness
function to be evaluated for every use case, will guarantee the efficiency
required for EDL to scale up nicely and become a realistic choice.

Although the Thesis has dealt with two different modeling tasks (super-
vised and RL), the applicability of evolutionary computation and EM to
other problems can be also worthwhile to be explored, as it has been
analyzed in the literature review carried out in Section 2.3 (Figure 2.3).
When learning to synthesize new examples from data distributions that re-
semble each other, one could expect that early modeled knowledge should
be transferred among different generative models. In an envisioned setup
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comprising simultaneously evolved generative neural neworks (GANs),
knowledge that is common to the training dataset of each task should be
exploitable through EM, reaching higher levels of quality in the synthetic
samples in potentially shorter training latencies.

When focusing on multitask and meta-RL, the behavioral diversity of
evolved agents could be added as another objective to be optimized through
multi-factorial techniques. In this vein, quality-diversity optimization [565]
could span new possibilities to jointly consider the fitness of evolved agents
(i.e., their proficiency when solving their RL task) and the generation of
models that learn to solve them differently (diversity). This could help the
evolutionary process arrive at diverse solutions that represent different
ways in which each task can be solved, even by exploiting tweaks in the
implementation of the environments as the ones detected in this Thesis.

Despite its undoubted theoretical utility, the assumptions made in zero-
shot and few-shot learning about the unseen tasks can be often relaxed in
practice. It is often the case that some meta-knowledge about test tasks is
available before the meta-learning model attempts to solve them. The form
in which this meta-knowledge is realized is largely application-dependent.
For instance, in industrial prognosis it is unrealistic to think that the
prognostic model will be asked to predict the probability of failure of a new
machine whose purpose is absolutely different than the other machines
existing in the plant. However, one may know the specific purpose for
which the new machine will be placed in production. This meta-knowledge
can be used to tailor how the meta-learning model tackles it, especially
in the zero-shot learning scenario. In regard to the AML-MFEA approach
proposed in Chapter 5, we envision that this meta-knowledge could be
used to refine the weights associated to the policy averaging mechanism
of the meta-task ensemble.

Finally, further investigations are needed to endow EM methods for multi-
task and meta-RL with the functionalities expected for more demanding
modeling scenarios, including continual learning (knowledge retention,
persistence and retrieval over time), open-world recognition/learning (re-
jection, characterization and consolidation of unknown knowledge into the
model) and GPAI (multi-modal data and heterogeneous learning tasks).
In all these paradigms the evolvability of the model is a must to accom-
modate the changes in terms of the task and/or the samples/data that
the machine collects from its environment. Furthermore, TL is a key for
knowledge characterization, storage and retrieval, since the commonalities
between prevalent tasks can surely bias what knowledge must be persisted
and recovered over time. These functional requirements expected for the
next generation of Artificial Intelligence models unleashes a promising
playground for EM in forthcoming years.
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