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Abstract. Analysis of the speed of propagation in parabolic operators is fre-
quently carried out considering the minimal speed at which its traveling waves

move. This value depends on the solution concept being considered.

We analyze an extensive class of Fisher-type reaction-diffusion equations
with flows in divergence form. We work with regular flows, which may not meet

the standard elliptical conditions, but without other types of singularities.

We show that the range of speeds at which classic traveling waves move is
an interval unbounded to the right. Contrary to classic examples, the infimum

may not be reached. When the flow is elliptic or over-elliptic, the minimum

speed of propagation is achieved.
The classic traveling wave speed threshold is complemented by another

value by analyzing an extension of the first order boundary value problem to
which the classic case is reduced. This singular minimum speed can be justified

as a viscous limit of classic minimal speeds in elliptic or over-elliptic flows.

We construct a singular profile for each speed between the minimum sin-
gular speed and the speeds at which classic traveling waves move. Under

additional assumptions, the constructed profile can be justified as that of a

traveling wave of the starting equation in the framework of bounded variation
functions.

We also show that saturated fronts verifying the Rankine-Hugoniot condi-

tion can appear for strictly lower speeds even in the framework of bounded
variation functions.

1. Introduction

In 1927, Fisher [31] showed that the speed of propagation of the operator asso-
ciated with the equation

(1) ut = duxx + ku(1− u), d > 0 k > 0,

coincides with the minimal speed at which its traveling waves move, σ∗ = 2
√
dk,

thus justifying what is claimed by Luther in 1906, see [38]. In the wake of this
pioneering work, analysis of the speed of propagation in parabolic operators is
frequently carried out considering the possible speeds at which its traveling waves
move.
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2 ARIAS AND CAMPOS

Here we consider a reaction-diffusion equation of the form

(2) ut = (a(u,ux))x + f(u),

with a flow in divergence form and a reaction term, f , of the logistic type with
carrying capacity 1, so that u = 0 and u = 1 are constant solutions of (2).

As for the flux, a is a continuous map on a relative open subset Ω of [0, 1]× R.
This open set is written as the strip between two maps ω± : [0, 1]→ [−∞,∞] with
−∞ ≤ ω−(u) < ω+(u) ≤ +∞, i. e.,

Ω = {(u, s) ∈ R2 : u ∈ [0, 1], ω−(u) < s < ω+(u)}.

Saying that Ω is an open subset relative to [0, 1] × R is equivalent to stating that
ω+ is lower semicontinuous and ω− upper semicontinuous. Furthermore, we will
always assume symmetry in the second argument,

(3) − a(u, s) = a(u,−s), u ∈ [0, 1], ω−(u) < s < ω+(u),

and in particular, ω−(u) = −ω+(u), for any u ∈ [0, 1].
The map s ∈ (ω−(u), ω+(u))→ a(u, s) will be assumed to be increasing so that

the limits

a±(u) := lim
s→ω±(u)

a(u, s)

always exist. The meaning of a+ and a− is clear: these functions respectively
indicate the maximum flow allowed to the right and left for each concentration
level u. To avoid some pathological cases we will consider that

(4) a+(u) =∞, when ω+(u) <∞.

and by symmetry the analogous casa for a−.

In general, a traveling wave, TW from now on, is a function of the form

(5) u(t, x) = u(x+ σt),

which is a solution of (2) in a sense to be specified. The function u : R → [0, 1] is
called the profile of the wave and σ ∈ R is the speed at which it moves. We always
look for a monotone profile. A classic TW is obtained by enforcing the profile to be
strictly monotone and C2(R). To be precise we consider only the increasing case,
so that the TW moves to the right when σ > 0, or to the left when σ < 0. Other
authors usually work with decreasing TWs and look for u(t, x) = u(x − σt). It is
clear that both theories are equivalent. If no growth restrictions are imposed, the
same TW can be found moving at opposite speeds. The study of non-monotonous
TWs is part of a different theory and is beyond the scope of this work.

The existence of TWs in (2) with constant linear diffusion, a(u, s) = ds, d > 0,
and logistic reaction was proven almost simultaneously by Fisher [31] and Kol-
mogorov, Petrosvky and Piscunov [36] in their seminal works in 1927.

They proved that for each σ ∈ [2
√
d k,∞), there is a TW fulfilling the evolution

law (1) in the classic sense. The corresponding profile connects the two equilibria,
u = 0 and u = 1, of the associated kinetic equation, ut = k u(1− u).

The above results extend to more general reaction terms. In particular, for

(6) ut = duxx + f(u), d > 0,
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with f being a regular function so that the corresponding kinetic equation, ut =
f(u), is of the logistic type with carrying capacity 1, i.e.

(7) f ∈ C1[0, 1] and f(0) = f(1) = 0, f(u) > 0, u ∈ (0, 1).

Under these conditions, there exists a positive value, σ∗ = σ∗(f), such that (6)
has a TW moving at speed σ, if and only if σ ∈ [σ∗,∞), see [6, 7].

The value σ∗ is not always calculable. Explicit expressions or interesting char-
acterizations even for more general reaction terms can be seen, among others, in
[1, 5, 26, 29, 35, 40]. In any event, the lower estimate

(8) σ∗ ≥ 2

√
d ḟ(0)

is fulfilled1. In particular, TWs do not exist when ḟ(0) = +∞.
Our interest focuses on the flux a rather than on the reaction term. Therefore,

from now on we will always assume that f verifies (7), although less restrictive
conditions can be considered.

While classic TWs may appear with more general flows, when the flow presents
degenerations, these classic TWs usually coexist with other types of TWs. For ex-
ample, the appearance of so-called sharp-type TWs –TWs with continuous profiles,
not necessarily differentiable, and not strictly monotonous– is shown in [39, 41, 30,
33, 26, 27, 28, 8]. Furthermore, discontinuous wave profiles may also appear, as in
the case of the so-called entropic TWs, see [3, 20, 19, 22, 23, 32, 21]. In all these
cases, the concept of solution is intimately linked to the existence of an appropriate
theory for the initial values problem.

We will state that the flux a : Ω→ R is regular if it verifies

(Hr) a ∈ C1(Ω) and
∂a

∂s
(u, s) > 0, (u, s) ∈ Ω.

When the flux is regular, a classic phase space analysis allows us to prove the
existence of a value σr, so that (2) has a classic TW connecting the two equilibria,
0 and 1, and traveling at speed σ for each σ > σr. The corresponding profile is
unique (except for translations) and there are no classic TWs traveling at speed
0 ≤ σ < σr, see Theorem 2.1. To do this we use techniques similar to those of,
for example, [17, 18, 19, 20, 22, 24, 26, 32, 33, 39, 41]: we first transform the TW
problem in a phase space analysis of a dynamical system and then reduce it to a
scalar boundary value problem.

Specifically, taking

(9) D = {(u, v) ∈ [0, 1]× R : a−(u) < v < a+(u)},

the existence of classic TWs is equivalent to finding a solution to the boundary
value problem

(10)

{
V̇ = σ − f(u)

g(u,V ) , (u, V ) ∈ D
V (0) = V (1) = 0 < V (u), u ∈ (0, 1),

where g : D → R, s = g(u, V ) is obtained by solving for s ∈ (ω−(u), ω+(u)) the
equality a(u, s) = V . This is the main objective of Section 2.

1Throughout this work we will denote by ′ d
dξ

or d
dt

, while ˙ will always indicate d
du

.
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The threshold value σr is singular. It can either be: there is a classic TW
traveling at speed σr, as in (1) where σr = σ∗; or such a classic TW does not exist,
see Proposition 2.7. In the latter case, σr is not a minimum but an infimum of the
propagation speeds of the classic TWs.

The analysis of TWs carried out in [20, 19], shows that there can be a non-empty
interval of speeds, [σent, σsmooth), for which the associated profile must be found
in the framework of bounded variation functions. The value σsmooth there plays a
role similar to that of σr. However, in our case, even imposing the continuity of the
functions a+ and a−, see hypothesis (Hc) in Section 3, the framework of bounded
variation functions may not suffice to give full meaning to the possible profiles.

In this work we define a value, σs, equivalent to σent, not associated with the
speed of a TW, but analyzing a constant extension of (10) to all [0, 1]×R. This is
the purpose of Section 3.

A first approximation to understand the role of σs is made in Section 4. We say
that a regular flux a is elliptic if there are two constants, 0 < k1 < k2, so that

(11) k1s
2 ≤ a(u, s) s ≤ k2s

2.

If only the inequality on the left holds, that is, if

(12) k1s
2 ≤ a(u, s) s,

for some k1 > 0, we say that a is over-elliptic.
In both cases, a+(u) = ∞ for all u ∈ [0, 1], and problem (10) does not support

extension. Therefore, σs = σr.

Whatever the regular flux a, the viscosity approximations of (2),

ut = (a(u,ux))x + εuxx + f(u),

correspond to fluxes aε(u, s) = a(u, s) + εs, which are always over-elliptic. There-
fore, only a value σε = σεs = σεr is obtained for each flux aε. The main result of
this section, Theorem 4.1, states

σε → σs, ε→ 0.

This is the first result that justifies the fact that σs is more significant than σr.

We believe that when the operator is over-elliptic, its propagation speed is de-
termined by the classic TWs. Note that when there are levels of super-diffusion,
that is, there are values u ∈ [0, 1] where ω+(u) < ∞, the Cauchy problem associ-
ated with equation (2) is not well understood. Some typical examples under these
conditions are covered in [23].

As happens in the classic equation (6), when a is over-elliptic (2) has a classic TW
moving at speed σr. In this case, we can speak of a minimal speed of propagation.
See Remark 3.7.

Sections 5 and 6 focus on the construction of a profile traveling at speed σ, when
σ is between σs and σr. For this purpose we follow the same line as Theorem 2.1.
Additional hypotheses are necessary to give meaning to the solution built in the
setting of bounded variation functions, see Theorem 6.2.

Note that the initial values problem for this kind of operator is far from being
well understood; [2] deals with a very similar operator but without reaction terms
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and in a bounded interval. We believe that an argument analogous to that of [3]
can be used in this case, but at the time of writing this work we are not able to
solve some technicalities in the construction of the required proof.

The concept of entropy solution introduced in [12, 13, 2] allows us to justify that
the obtained singular profile generates a solution of our reaction-diffusion equation.
This concept has also recently been used in systems –see [10, 11]– and it is a current
research topic.

We dedicate Section 5 to briefly developing the necessary theory for this purpose.
To do so, we need an additional condition on the growth of the flux, see (Hg) below,
which in particular implies ω+(u) = ∞, u ∈ [0, 1], and prevents the existence of
superdiffusion levels.

All the results thus far presented have been limited to regular fluxes. When
there exists some u0 ∈ [0, 1] so that a(u0, s) = 0 for any s ∈ R, that is, such that
a−(u0) = a+(u0) = 0, the regularity of the flux is lost. If that happens we will say
that level u0 is totally degenerate; and a totally degenerate levels subset can be
defined such as

Ltd = {u ∈ [0, 1] : a(u, s) = 0, for any s ∈ R}.

As examples of non-regular flows we can consider the flows in [3, 20, 19, 22, 23],
since in all these cases 0 ∈ Ltd. The same occurs in the doubly nonlinear diffusion
operator considered in [8, 9] when m > 1.

The existence of totally degenerate levels –and particularly that 0 ∈ Ltd– is often
related to the appearance of sharp-type TWs with a profile of half-ray support. This
is the case when a(u, s) = us, see [14], or in the doubly nonlinear diffusion operator,
see [8, 9]. References on this topic can be found in [45]. The flux-saturated operators
[3, 4, 34] also present this phenomenon.

Likewise, we obtain an interesting lower estimate (see Remark A.2):

σs ≥ 2

√
∂a

∂s
(0, 0) ḟ(0).

Note that when a(u, s) = ds this estimate remains (8).
Finally, in Appendix A we include some technical results on a singular initial

value problem that are required throughout this work.

Some remarks on speed of propagation. As previously stated, in 1906 Luther,
[38], established that the speed of propagation of a chemical wave is given by a

simple formula, σ = 2
√
d k, where d is the diffusion coefficient and k is a constant

depending on the concentration. (See [42] for a more detailed discussion.)
However, Luther’s idea of speed of propagation was never easy to interpret, as

noted in [42]. Having fixed an initial distribution u0(x) ≥ 0, (6) has a unique
solution u defined on (t, x) ∈ [0,∞) × R that satisfies u(0, x) = u0(x), as long
as f is a regular function with f(0) = 0. The maximum principle states that
u(t, x) > 0, t > 0, x ∈ R. We then have that the speed of propagation is infinite,
which is counterproductive: a chemical substance initially confined in a bottle, after
breaking, should immediately spread to the entire region, however large it might
be.
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Consider as initial data a Heaviside function, i.e., u0(x) = 0 if x < 0 and
u0(x) = 1 if x ≥ 0. The solution of (1) with u(0, x) = u0(x) –which satisfies
0 < u(t, x) < 1, t > 0, x ∈ R thanks to the comparison principle– immediately
becomes a strictly increasing continuous function on x going from 0 to 1 for each
t > 0. Then, it is posible to fix a position, xc(t), such that u(t, xc(t)) = c, t > 0,
for any concentration, c ∈ (0, 1). In [36] it is proven that

lim
t→∞

x′c(t) = 2
√
d k,

and the level c is not relevant. The value σ∗ = 2
√
d k therefore defines, in a certain

sense, a speed of propagation.

Let us think in terms of the spread of infections, so common when working with
equation (1). Let us take a fixed point x0 on the real line and start moving at a
certain speed σ. Given a particular solution u(t, x) of (1), the limit

(13) lim
t→∞

u(t, x0 + σt)

tells us whether or not we are escaping contagion when we move at that speed. In
[6, 7] it is shown that if the initial infection is localized, i.e., if u(0, x) has nonempty
compact support, this last limit is 0 when |σ| > σ∗ and 1 when |σ| < σ∗. Therefore,
moving faster than σ∗ we escape infection. Hence, calling such a minimum value
speed of escape makes perfect sense.

In general, we can define this speed of escape, σ∗, as follows: we consider the
values σ ∈ R verifying

(P) whichever is the solution u of (2) with initial data of compact support and
0 ≤ u(0, x) ≤ 1, x ∈ R, and for any x0 ∈ R,

lim
t→∞

u(t, x0 + σt) = 0,

and we define

(14) σ∗ = inf{ |σ| : σ verifies (P )}.
When working with flux-saturated operators, two levels appear, σsmooth and

σent, which correspond with σr and σs, respectively. In the framework of [19, 20],
a comparison principle like that of [3] allows us to show σ∗ ≤ σent.

It could happen that for a value σ̄ < σent there were a TW with an entropic
profile. These entropic solutions should probably have a Cantorian singular part in
the derivative. Obviously the same comparison principle would assure us that σ∗ ≤
σ̄. Although not proven, such solutions do not seem to exist in this environment.
See Remark 3 in [22]. Presumably, here σ∗ = σent.

The definition (14) in our case has an intrinsic problem: the definition of the
solution of the Cauchy problem with initial data of compact support. In addition,
this theory would need a good comparison principle of solutions, which is also
unknown for this type of operators. We will address these issues in future work.

2. Classic traveling waves

In this section we will assume that the flux in equation (2) is regular, i.e., function
a : Ω → R verifies (Hr). We look for classic TWs, that is, solutions of (2) of the
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form u(t, x) = u(x+ σt) for which the profile u ∈ C2(R). In this case, it is easy to
see that the profile u satisfies the second order ODE

(15) (a(u, u′))′ − σu′ + f(u) = 0,

for all ξ ∈ R. Variable ξ = x + σt stands for the wave coordinate. Note that σ is
also an unknown of the problem.

As the flux a in (2) is defined only in the strip Ω, a wave profile has to satisfy
(u(ξ), u′(ξ)) ∈ Ω for any ξ ∈ R. It is standard to show that wave profiles of classic
TWs are monotone solutions of (15): if u(t, x) = u(x + σt) is not the equilibria
u = 0 or u = 1, then σ 6= 0 and u′(ξ) 6= 0, ξ ∈ R. We are going to look for
increasing TWs, so that u(−∞) = 0 and u(+∞) = 1. A simple integration shows
that if an increasing classic TW exists, σ > 0.

Our aim is to show the following

Theorem 2.1. Suppose (Hr), then there exists σr > 0 such that equation (2) has a
classic TW that moves at speed σ, for each σ > σr. Moreover, there are not classic
TWs moving at a speed σ < σr.

Remark 2.2. Case σ = σr is peculiar. There are examples where (2) will have a
classic TW moving at speed σr and others where there is no such solution. As we
shall see when a is over-elliptic, there is always a classic TW moving at speed σr.
In Remark 3.6 we shall see an example where no classic TWs move at speed σr.

In order to prove Theorem 2.1, let us consider the set D defined in (9). On the
hypotheses of Theorem 2.1, function g : D → R, (u, v) 7→ g(u, v), defined by

(16) a(u, g(u, v)) = v,

is a C1-function that satisfies ∂g
∂v (u, v) > 0, (u, v) ∈ D, and (15) is equivalent to

the system

(17)

{
u′ = g(u, v),
v′ = σg(u, v)− f(u).

We look for a solution (u, v) of (17) defined on R connecting the equilibria (0, 0)
and (1, 0), i.e., satisfying

lim
ξ→−∞

(u(ξ), v(ξ)) = (0, 0), lim
ξ→+∞

(u(ξ), v(ξ)) = (1, 0),

and such that

(u(ξ), v(ξ)) ∈ D+ := {(u, v) ∈ D : v > 0}, for all ξ ∈ R.
Note that if (u, v) is a solution of (17), while (u, v) ∈ D+, the function V (u) defined
by v(ξ) = V (u(ξ)) satisfies the first order ODE

(18) V̇ = Ψ(u, V, σ),

where Ψ : D+ × [0,+∞)→ R is defined by

Ψ(u, V, σ) := σ − f(u)

g(u, V )
.

Proposition 2.3. On the hypotheses of Theorem 2.1, given σ ≥ 0 there exist
ασ ∈ [0, 1) and Vσ ∈ C((ασ, 1]) ∩ C1((ασ, 1)) with Vσ satisfying (18) in (ασ, 1),
Vσ(1) = 0 and Vσ(u) > 0, u ∈ (ασ, 1). Moreover, this function is unique.
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Proof. Let us denote R(u) = V (u)2 with V being a positive solution of (18). Then,

Ṙ = 2V V̇ = 2
√
R

(
σ − f(u)

g(u,
√
R)

)
.

By the hypothesis on a, having fixed u ∈ [0, 1] there exists

(19) lim
v→0

f(u)v

g(u, v)
=

f(u)
∂g
∂v (u, 0)

= f(u)
∂a

∂s
(u, 0).

Hence, taking Ω̃ := {(u,R) ∈ [0, 1] × R : u ∈ [0, 1], −∞ < R < (a+(u))2}, the

function Φ : Ω̃× R→ R defined by

Φ(u,R;σ) =

{
−2f(u)∂a∂s (u, 0), R ≤ 0,

2
√
R
(
σ − f(u)

g(u,
√
R)

)
, 0 < R < (a+(u))2,

is continuous and the Cauchy problem

(20) Ṙ = Φ(u,R;σ), R(1) = 0,

has a solution for each σ ≥ 0. We are going to prove that this solution is unique to
the left of 1.

Suppose Ri, i = 1, 2 are two local solutions (20) defined on a common interval
(ε, 1], for some ε ∈ [0, 1), thus

R1(u) = R2(u) u ∈ (ε, 1].

Indeed, take Vi(u) :=
√
Ri(u), i = 1, 2, and define ϕ(u) := (V1(u) − V2(u))2. ϕ ∈

C1(ε, 1) ∩ C(ε, 1], ϕ(u) ≥ 0, u ∈ (ε, 1], and for all u ∈ (ε, 1),

ϕ̇(u) = −2f(u)(V1(u)− V2(u))

(
1

g(u, V1(u))
− 1

g(u, V2(u))

)
≥ 0,

since function ∂g
∂v (u, v) > 0, (u, v) ∈ D, and f(u) > 0, u ∈ (0, 1). Then ϕ is

increasing in (ε, 1]. But ϕ(1) = 0, so ϕ(u) = 0, u ∈ (ε, 1].

The map Rσ : (ασ, 1] → [0,∞) is now well defined as the maximal solution to
the left of problem (20). Let us see that Rσ(u) > 0, u ∈ (ασ, 1).
Rσ(u) ≥ 0, u ∈ (ασ, 1) since if, on the contrary, there is ū ∈ (ασ, 1) with

Rσ(ū) < 0, then Rσ(u) < 0 for any u ∈ (ū, 1), because otherwise, taking u0 ∈ (ū, 1)
with Rσ(u0) = 0 and Rσ(u) < 0 for any u ∈ (ū, u0),

R(u0) = R(ū)−
∫ u0

ū

2f(τ)
∂a

∂s
(τ, 0) dτ < 0.

Repeating the same argument with u0 = 1 we arrive at a contradiction if Rσ(u) <
0, u ∈ (ū, 1). Hence, Rσ(u) ≥ 0, u ∈ (ασ, 1).

Now if Rσ(ū) = 0, for some ū ∈ (ασ, 1), then R′(ū) = −2f(ū)∂a∂s (ū, 0) < 0 and
Rσ(u) < 0, u ∈ (ū, ū+ δ), which is not possible as we have just proven.

�

Proposition 2.4. On the hypotheses of Theorem 2.1

• For each σ ≥ 0 there exists

Vσ(ασ) := lim
u→α+

σ

Vσ(u) ≥ a+(ασ),

and 0 ≤ Vσ(ασ) ≤ +∞.
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• If 0 ≤ σ1 < σ2, then ασ1
≥ ασ2

and Vσ1
(u) > Vσ2

(u), u ∈ (ασ1
, 1).

Proof. To prove the first assertion, it is enough to observe that

V̇σ(u) ≤ σ, u ∈ (ασ, 1).

The inequality is a consequence of the results on prolongation of solutions of ODE
applied to (20).

We will prove the second statement using the functions Rσ. Having fixed 0 <
σ1 < σ2, Rσ1 is a sub-solution of (20) with σ = σ2. Since uniqueness ensures that
the solution and sub-solutions are ordered, ασ1 ≥ ασ2 and Rσ1(u) ≥ Rσ2(u), u ∈
(ασ1 , 1). To obtain the strict inequality note that Ṙσ1(u) < Ṙσ2(u), for any u ∈
(ασ1

, 1) with Rσ1
(u) = Rσ2

(u).
�

Let us choose ζ > 0 such that

a+(u) > ζ, u ∈ [0, 1],

which exists since a+ is lower-semicontinuous and (Hr). By (19) we can take C > 0
with

2vf(u)

g(u, v)
< C, u ∈ [0, 1], v ∈ (0, ζ].

Lemma 2.5. If σ > C
2ζ then ασ = 0. Moreover, there exists σ1 >

C
2ζ such that

Vσ(0) = 0,

for any σ > σ1.

Proof. Since Rσ(1) = 0, there exists 0 ≤ δ < 1 such that Rσ(u) < ζ2, u ∈ [δ, 1] and

therefore, Ṙσ(u) > 2σ
√
Rσ(u)− C, that is, Rσ is an upper-solution of equation

(21) Ṙ = 2σ
√
R− C

as long as Rσ(u) < ζ2. But since R0 =
(
C
2σ

)2
is an equilibrium of equation (21)

and Rσ(1) = 0,

Rσ(u) <

(
C

2σ

)2

, u ∈ [δ, 1].

Therefore, if σ > C
2ζ we have C

2σ < ζ, and we can set δ = 0. Then, ασ = 0.

To prove the other statement, take η > 0 large enough for

(22) lim
u→0+

f(u)

g(u, ηu)
= k(η) <∞,

to exist. Note that such a limit exists when η > 0 is large enough, because gv(0, 0) >
0. Define

σ0 := max{η +
f(u)

g(u, ηu)
: u ∈ (0, 1], ηu ≤ ζ } > 0,

and take

σ1 = max{σ0,
C

2ζ
}.

Then, if σ > σ1, ασ = 0. Moreover, Rσ(0) = 0, because of

d(u) := (ηu)2 −Rσ(u) > 0, u ∈ (0, 1].



10 ARIAS AND CAMPOS

Indeed, if there exists u0 ∈ (0, 1) so that d(u0) ≤ 0, since d(1) > 0, we can define

u∗ := sup{u ∈ (0, 1] : d(u) ≤ 0 } > 0.

Then, d(u∗) = 0 and ḋ(u∗) ≥ 0, but

ḋ(u∗) = 2η2u∗ − 2
√
Rσ(u∗)(σ − f(u∗)

g(u∗,
√
Rσ(u∗))

) = 2ηu∗(η − σ +
f(u∗)

g(u∗, ηu∗)
).

Yet (ηu∗)2 = Rσ(u∗) < ζ2, because σ > σ0. Hence, if σ > σ1, ḋ(u∗) < 0, which is
a contradiction. �

Proof of Theorem 2.1. We define

(23) σr := inf{σ > 0 : ασ = 0 and Vσ(0) = 0 }.

By Lemma 2.5, σr is well defined. We will first prove that σr > 0. Suppose, by
the contrary, that σr = 0 and take {σn} as a sequence decreasing to 0. Since, by

definition, Vσn(0) = 0 and V̇σn ≤ σn, we have

0 < Vσn(u) ≤ σnu, u ∈ (0, 1).

So, Vσn(u)→ 0, u ∈ (0, 1) and therefore, Rσn(u)→ 0, u ∈ (0, 1). Still, continuous
dependence, coupled with the uniqueness of the solution, implies that Rσn(u) →
R0(u) > 0 for u ∈ (α0, 1). Hence, σr > 0.

Given σ > σr, Vσ is defined in [0, 1], and 0 < Vσ(u) < a+(u), u ∈ (0, 1). Hence,
we can consider the Cauchy problem

(24)

{
u′ = g(u, Vσ(u)),
u(0) = u0,

for each u0 ∈ (0, 1). To solve (24), we define the function

(25) Gσ(u) :=

∫ u

u0

dϑ

g(ϑ, Vσ(ϑ))
, u ∈ (0, 1).

It is clear that Gσ ∈ C1(0, 1) and Ġσ(u) = 1
g(u,Vσ(u)) > 0, u ∈ (0, 1).

Let us denote

ξ−σ = lim
u→0+

Gσ(u) and ξ+
σ = lim

u→1−
Gσ(u).

Then, −∞ ≤ ξ−σ < 0 < ξ+
σ ≤ +∞. The function uσ : (ξ−σ , ξ

+
σ )→ (0, 1) defined by

uσ(ξ) = G−1
σ (ξ),

is the solution of (15) we are looking for. Indeed, by the implicit function theorem,
it is clear that uσ ∈ C1(ξ−σ , ξ

+
σ ),

u′σ(ξ) = g(uσ(ξ), Vσ(uσ(ξ))), ξ ∈ (ξ−σ , ξ
+
σ ),

and uσ(0) = u0, i.e., uσ is the solution of (24). Moreover, taking vσ(ξ) = Vσ(uσ(ξ)),
vσ ∈ C1(ξ−σ , ξ

+
σ ) and

v′σ(ξ) = V̇σ(uσ(ξ))u′σ(ξ) =

(
σ − f(uσ(ξ))

g(uσ(ξ), Vσ(uσ(ξ)))

)
g(uσ(ξ), Vσ(uσ(ξ))) =

= σg(uσ(ξ), vσ(ξ))− f(uσ(ξ)), ξ ∈ (ξ−σ , ξ
+
σ ),
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we find that (uσ, vσ) is a solution of (17). By definition,

lim
ξ→ξ−σ

uσ(ξ) = 0 and lim
ξ→ξ+σ

uσ(ξ) = 1.

Moreover, (ξ−σ , ξ
+
σ ) = R. Indeed, if, for instance, ξ+

σ < +∞, since u′σ(ξ+
σ ) =

g(1, 0) = 0, uσ is the solution on (15) that satisfies u(ξ+
σ ) = 1, u′(ξ+

σ ) = 0 and, by
the uniqueness of solution of the Cauchy problem, uσ ≡ 1, in contradiction with
uσ(0) = u0 ∈ (0, 1).

The last statement of Theorem 2.1 is a consequence of the definition of σr.
�

Remark 2.6. Note that the profile of the TW built in Theorem 2.1 is unique except
for horizontal displacements of the independent variable.

The following result will be useful in the next Section.

Lemma 2.7. On the hypotheses of Theorem 2.1, equation (15) with σ = σr has a
classic TW solution if and only if ασr = 0.

Proof. As we have seen in the proof of Theorem 2.1, (15) has a classic TW solution
if and only if ασ = 0 and Vσ(0) = 0.

When ασr = 0, Vσr (u) is defined in (0, 1]. Moreover, for all σ > σr, Vσ(u) ≤
σu, u ∈ [0, 1] since Vσ(0) = 0. Taking limits in this last expression we have
Vσr (u) ≤ σru. Hence, Vσr (0) = 0.

�

3. The extended first order equation

In this Section we are going to extend equation (18) to values where V ≥ a+(u).
In this way we will define a value 0 < σs ≤ σr in a similar way as (23) but using
solutions of this extension of (18). To do so, we will need some more regularity in
D. Specifically, in addition to (Hr), we will also assume

(Hc) The map a+ : [0, 1]→ [0,∞] is continuous.

We define

(26) H(u, V ) =

{ 1
g(u,V ) , 0 < V < a+(u),

0, V ≥ a+(u),

and Ψe : [0, 1]× (0,∞)× [0,∞)→ R

(27) Ψe(u, V, σ) = σ − f(u)H(u, V ).

Now we consider the Cauchy problem

(28) V̇ = Ψe(u,V, σ), V(1) = 0.

Lemma 3.1. The map H : [0, 1]× (0,∞)→ R is continuous. Moreover,

(29) lim
V→∞

H(u, V ) = 0,

uniformly on u ∈ [0, 1].
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Proof. Continuity of H is equivalent to the following property:

Given any sequence {Vn}n∈N ⊂ C([0, 1]) that converges uniformly to V0, with
V0(u) > 0 for u ∈ [0, 1], one has H(u, Vn(u))→ H(u, V0(u)) uniformly on [0, 1].

Let us see that this property holds. We can assume, without loss of generality,
that the sequence {Vn} is monotone. Having in mind that, fixed u ∈ [0, 1], the map
V ∈ (0,+∞) 7→ H(u, V ) ∈ R is continuous,

H(u, Vn(u))→ H(u, V0(u)), u ∈ [0, 1].

Using the continuity of a+, it is clear that H(u, Vn(u)) is continuous for each n ∈ N
fixed. Uniform convergence is then a consequence of Dini’s Theorem.

To prove the second statement we proceed in a similar way. We need only to
prove (29) for any u ∈ [0, 1]; uniform convergence follows from Dini’s Theorem. To
prove (29) for any u ∈ [0, 1] we can assume that a+(u) =∞ because otherwise it is
evident. But when a+(u) =∞,

lim
V→∞

g(u, V ) = lim
s→∞

g(u, a(u, s)) =∞

since g(u, a(u, s)) = s for all s ∈ (0, a+(u)). Thus, (29) holds.
�

Then Ψe continuously extends function Ψ to all [0, 1] × (0,∞) × [0,∞). The
following Lemma improves the first statement of Proposition 2.4 and it allows us
to extend the function Vσ to a solution of (28) defined over the entire interval [0, 1].

Lemma 3.2. If ασ > 0 , Vσ(ασ) = a+(ασ) ∈ (0,∞).

Proof. Since a+ is continuous and Vσ(u) ≤ a+(u), u ∈ (ασ, 1), by Proposition 2.4,
we have Vσ(ασ) = a+(ασ). That Vσ(ασ) <∞ is a consequence of Lemma 3.1, since
Ψ is bounded for large V .

�

Proposition 3.3. For any σ ≥ 0 there is only one function Vσ ∈ C([0, 1]) ∩
C1((0, 1)) that satisfies (28). Moreover,

• Vσ(u) > 0, u ∈ (0, 1),
• the map (u, σ) ∈ [0, 1]× [0,+∞) 7→ Vσ(u) ∈ [0,+∞) is continuous, and
• for each u ∈ (0, 1), the map σ ∈ [0,+∞) 7→ Vσ(u) ∈ [0,+∞) is strictly

decreasing.

Proof. The key idea is to extend (20) to all [0, 1]×R× [0,+∞) in a similar way as
Ψe. We define

(30) Φe(u,R, σ) =

{
Φ(u,R, σ), R < (a+(u))2,

2σ
√
R, R ≥ (a+(u))2.

The continuity of H guarantees us that Φe : [0, 1]×R× [0,+∞)→ R is continuous
and again the map R → Φe(u,R, σ) is decreasing when u and σ are fixed. Analo-
gously to the proof of Proposition 2.3, we obtain the existence and uniqueness to
the left of the solution of the Cauchy problem

(31) Ṙ = Φe(u,R, σ), R(1) = 0,
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which we denote as Rσ(u). Moreover, Rσ(u) > 0 where it is defined, and the

growth on R of Φe(u,R, σ) ensures it is defined on [0, 1]. Finally, Vσ(u) =
√
Rσ(u)

is the solution sought.
Continuity of the map (u, σ) ∈ [0, 1] × [0,+∞) 7→ Vσ(u) ∈ [0,+∞) is a conse-

quence of the continuous dependence with respect to σ of the solution of (31) and
monotony is proven as in Proposition 2.4.

�
Then, it makes sense to define

(32) σs := min{σ ≥ 0 : Vσ(0) = 0 }.
Remark 3.4. It is evident that σs ≤ σr. Moreover, σs > 0 since V0(u) > 0 in

[0, 1). This hold since V̇0(u) ≤ 0, u ∈ (0, 1), V̇0(u) < 0, u ∈ (α0, 1) and V0(1) = 0.

Proposition 3.5. If equation (2) has a classic TW moving at speed σr, then σs =
σr.

Proof. As we well know, that equation (2) has a classic TW moving at speed σr is
equivalent to (15) with σ = σr has a classic solution with u(−∞) = 0 and u(+∞) =
1. In that case, ασr = 0 and Vσr (u) = Vσr (u) < a+(u) for all u ∈ [0, 1]. Hence, by
continuity, there exists ε > 0 so that Vσ(u) < a+(u) when σ ∈ (σr − ε, σr + ε) and
Vσ(u) = Vσ(u). If σs < σr, there would be σs < σ < σr so that 0 = Vσ(0) = Vσ(0),
in contradiction with the definition of σr.

�

Remark 3.6. In Remark 7.7 we will show an example where σs < σr. As a
consequence of Proposition 3.5, the reaction-diffusion equation constructed does not
have a classic TW moving at speed σr, as we claimed in Remark 2.2.

Remark 3.7. Note that when a flux a satisfies (Hr) and also a+(u) = +∞, for all
u ∈ [0, 1], condition (Hc) is trivially fulfilled. Furthermore, since in this case the
function Ψ does not admit extension, σr = σs. According to Lemma 3.2, ασ = 0
for any σ ≥ 0 and –as a consequence of Lemma 2.7– equation (2) has a classic TW
moving at speed σ if and only if σ ≥ σr = σs.

4. Viscosity approximations

In order to better understand the meaning of σs, in this section we are going to
work with viscosity approximations of the reaction-diffusion equation (2). We will
assume throughout the section that flux a satisfies (Hr) and (Hc).

The viscosity equation associated to (2) can be defined as

(33) ut = (a(u,ux) + εux)x + f(u), t > 0, x ∈ R,
with ε being a positive parameter.

If we denote aε(u, s) := a(u, s) + εs, when the flux a is bounded, the viscosity
approximation aε is elliptic for all ε > 0; but in general we can only ensure aε

is over-elliptic. In any case, having fixed ε > 0, aε+(u) = +∞, u ∈ [0, 1] and, by
Lemma 3.7, σεr = σεs for all ε > 0, where σεr and σεs denote the values of σr and σs
for the flux aε. We will keep the notations σr and σs for the original flux a.

Our aim is to prove
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Theorem 4.1. Suppose (Hr) and (Hc). Then

lim
ε→0

σεr = σs.

Throughout the section we will use notations similar to those used in the previous
ones with the super-index ε indicating that we refer to the flux aε instead of to a.

Lemma 4.2. Let 0 < ε1 < ε2 be fixed. Then Vσ(u) ≤ V ε1σ (u) ≤ V ε2σ (u) for any
u ∈ [0, 1].

Proof. We will first show that V ε1σ (u) ≤ V ε2σ (u). By definition,

aε1(u, gε1(u, v)) = aε2(u, gε2(u, v)), (u, v) ∈ R2,

that is,

(34) a(u, gε1(u, v))− a(u, gε2(u, v)) = ε2g
ε2(u, v)− ε1g

ε1(u, v), (u, v) ∈ R2.

Since ∂a
∂s (u, s) > 0, (u, s) ∈ R2 and a(u, 0) = 0, u ∈ R, we have that

gε1(u, v) > gε2(u, v), u ∈ R, v > 0.

Indeed, if gε1(u, v) ≤ gε2(u, v), then

a(u, gε1(u, v))− a(u, gε2(u, v)) ≤ 0.

But by definition, for all u ∈ R, i = 1, 2, gεi(u, v) > 0 when v > 0, hence

(35) ε1g
ε1(u, v) < ε2g

ε2(u, v), u ∈ R, v > 0,

which contradicts (34).
Therefore, by (35), given σ > 0 fixed,

Φε1(u,R;σ) > Φε2(u,R;σ), u ∈ (0, 1), R > 0,

and Rε1σ is a upper-solution of the Cauchy problem

Ṙ = Φε2(u,R;σ), R(1) = 0,

so

(36) Rε1σ (u) < Rε2σ (u), u ∈ (0, 1).

Then V ε1σ (u) ≤ V ε2σ (u) for any u ∈ [0, 1].
It only remains to show Vσ(u) ≤ V εσ (u) for any ε > 0 and u ∈ [0, 1]. And this

holds since

σ − f(u)

gε(u, V )
<

{
σ − f(u)

g(u,V ) , 0 < V < a+(u),

σ, V ≥ a+(u)

i.e. Ψε(u, V, σ) < Ψe(u, V, σ), u ∈ (0, 1) with a similar proof. �

Proof of Theorem 4.1. Using Lemma 4.2, the map ε→ σεr is decreasing and

lim
ε→0

σεr ≥ σs.

To prove the conclusion we need to show that

lim
ε→0

V εσ (u) = Vσ(u),

uniformly in u ∈ [0, 1]. This fact is a consequence of having

lim
ε→0

gε(u, V ) =

{
g(u, V ), 0 < V < a+(u),
∞, V ≥ a+(u).
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So
lim
ε→0

Ψε(u, V, σ) = Ψe(u, V, σ),

and this limit is uniform in the compact subset of [0, 1]× R using an argument as
in Lemma 3.1, which combines the well known Dini Theorem.

�

5. Flux-saturated solutions in the BV (R) framework

In this section we briefly include some general facts related to entropy solutions
on the line [12, 13, 2]. In order not to go into topics related to bounded variation
functions in several variables, we will work only within the framework of TWs.

Given u ∈ BV (R), we will denote as Du its derivative in the sense of the distri-
butions. It is well known that

Du = u′rn +Dsu,

where u′rn is the usually called Radon-Nikodym derivative of u and it is defined
as the absolutely continuous part of Du with respect to the Lebesgue measure
in R, and Dsu is the so-called singular part. One has that u′rn ∈ L1(R) and
‖u′rn‖L1 ≤ TV (u), where TV (u) is the total variation of u.

A TW profile u is a distributional solution of (15), if u ∈ BV (R) and satisfies

(37)

∫
R

[a(u(ξ), u′rn(ξ))− σu(ξ)]ϕ′(ξ) dξ =

∫
R
f(u(ξ))ϕ(ξ) dξ,

for all ϕ ∈ D(R), where D(R) represents Swartz’s class of test functions. Note that
this definition requires that a(u, u′rn) ∈ L1

loc(R), so it is standard to impose

(Hg) |a(u, s)| ≤ ā|s|+ ã, u ∈ [0, 1], s ∈ R for some constants ā, ã > 0.

Since u and f(u) are bounded, both sides of the equality in (37) make sense for
any ϕ ∈ D(R). Hence, the function

h(ξ) := a(u(ξ), u′rn(ξ))− σu(ξ)

belongs to W 1,1
loc (R) and there exists ĥ ∈ C(R), such that

ĥ(ξ) = h(ξ), a.e. ξ ∈ R.

Theorem 5.1. Assume (Hr) and (Hg) and let u ∈ BV (R) ∩ C1(R \ S) with S
being a finite set. The following statements are equivalent:

(1) u is a distributional solution of (15).
(2) u ∈ C2(R \ S) satisfies (15) for all ξ ∈ R \ S and the function

ĥ(ξ) = a(u(ξ), u′(ξ))− σu(ξ), ξ ∈ R \ S,
admits a continuous extension to R, where u′ denotes the classic derivative
defined in R \ S.

Proof. If u is a distributional solution of (15), as u′rn(ξ) = u′(ξ) a.e. ξ in R, one

has that h(ξ) = ĥ(ξ) a.e. ξ in R. Then, since S is finite, ĥ admits a continuous
extension to R by definition. Moreover, if I is one of the open intervals of R \ S,
taking ϕ ∈ D(I), since a(u(·), u′(·)) ∈ C1(I), we obtain u ∈ C2(I), and it satisfies
(15) for all ξ ∈ I.

The reciprocal is a consequence of the following known result:
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Let y ∈ C(I) ∩ C1(I \ S) be a function with y′ ∈ L∞(I), where I is a bounded
interval of R and S is a finite set. Then, y ∈ W 1,∞(I) and its weak derivative
coincides with its classic derivative.

�
In the framework of Theorem 5.1, we will say that a point ξ̂ ∈ S is saturated if

(38) lim
ξ→ξ̂

u′(ξ) = +∞

and

lim
ξ→ξ̂−

u(ξ) := µ(ξ̂) ≤ lim
ξ→ξ̂+

u(ξ) := ν(ξ̂).

Note that this condition takes into consideration that we look for increasing TWs.

Saturated points can also be defined when µ(ξ̂) ≥ ν(ξ̂), changing the derivative
condition (38) to be −∞. The saturation property has already been raised in the
literature, see [3, 12, 13, 20, 19, 22]. In [12, 43, 37, 16, 15] it can be seen how regular
solutions may generate this type of vertical front.

We will say u is a flux-saturated profile of (15) if it is a distributional solution
of this equation and saturates all the points in S.

Again here the concept is simplified by the fact that S is finite. When u ∈
BV (R), the lateral limits that determine µ(ξ̂) and ν(ξ̂) are always well defined.
However, the sense of the limit in the saturation condition (38) should be clarified
in general, since u′rn is only defined almost everywhere.

Nor is the meaning of the singular set always clear. When u ∈ BV (R), in a sense

the singular set is defined as the support of Dsu. If S is finite and ξ̂ ∈ S is a point

of continuity of u, that is, µ(ξ̂) = ν(ξ̂), then ξ̂ /∈ supp(Dsu) where supp(Dsu) is the
topological support of Dsu.

Another thing to keep in mind is that, as a consequence of the definition of
distributional solution, we do not need to impose a saturation property at a point

of continuity ξ̂ ∈ S. Hence, if we decompose Dsu = Dju + Dcu where Dj and Dc

denote, respectively, the jump and the Cantor parts of Ds, we are only imposing

a condition on Dju because a saturated point ξ̂ ∈ supp(Dsu) only if µ(ξ̂) < ν(ξ̂).
Theorem 5.1 and Lemma 6.3 imply that

a+(ν(ξ̂))− σν(ξ̂) = a+(µ(ξ̂))− σµ(ξ̂),

that is

(39) σ =
a+(ν(ξ̂))− a+(µ(ξ̂))

ν(ξ̂)− µ(ξ̂)
,

which is the so-called Rankine-Hugoniot condition.
The concept of entropy solution in [3, 2, 20, 19] entails control of the two parts

of Dsu. However in [12, 13] the conditions are relaxed and only control of the Dj

part is necessary: at every jump discontinuity point ξ̃,

(40)
a+(u)− a+(µ(ξ̂))

u− µ(ξ̂)
≤ a+(ν(ξ̂))− a+(µ(ξ̂))

ν(ξ̂)− µ(ξ̂)
, for any u ∈ (µ(ξ̂), ν(ξ̂)],

must be met. We will refer to this condition as the Bertsch-Dal Passo condition.
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6. Flux-saturated profiles moving at speed σ ∈ [σs, σr]

In this section we are going to show the existence of non-classic TWs for (2) that
move at speed either σ ∈ [σs, σr) or σ = σr, when a classic TW moving at this
value does not exist.

We will assume (Hr) and (Hc), so that, analogously to what was done in Theorem
2.1, when σ ≥ σs the TW profile will be defined by solving the initial value problem

(41)

{
u′ = g(u,Vσ(u)),
u(0) = u0,

for some u0 ∈ (0, 1) fixed, where Vσ is the solution of the Cauchy problem (28). To
do so, we define Gσ : (0, 1)→ R,

(42) Gσ(u) :=

∫ u

u0

H(δ,Vσ(δ))dδ,

with H defined in (26).

Lemma 6.1. Let σ ≥ σs be fixed. Then, Gσ is a non-decreasing C1-function with

Gσ(0) = −∞, Gσ(1) = +∞.

Moreover, the set of critical leves of Gσ is compact.

Proof. By definition,

Ġσ(u) = H(u,Vσ(u)), u ∈ (0, 1),

so, Ġσ(u) ≥ 0 and Ġσ(u) > 0 if and only if Vσ(u) < a+(u). Moreover, since
σ ≥ σs, Vσ(0) = Vσ(1) = 0. Therefore there exist 0 < µ < ν < 1 such that

Ġσ(u) > 0, u ∈ (0, µ) ∪ (ν, 1). Then, if we denote

Sσ = {ξ ∈ R : ∃u ∈ (0, 1) with Gσ(u) = ξ and Ġσ(u) = 0 },

Sσ ⊂ Gσ([µ, ν]) and it is a compact set.

Let us see that Gσ(1) = +∞. The proof that Gσ(0) = −∞ is similar. Let
ū ∈ (ν, 1) be fixed and take v as the unique solution of the Cauchy problem

(43)

{
v′ = g(v,Vσ(v)),
v(0) = ū.

One can prove that v is well defined on [0,∞) and v(ξ) → 1 when ξ → ∞. Inte-
grating in (43) between 0 and ξ we obtain∫ v(ξ)

ū

dδ

g(δ,Vσ(δ))
= ξ,

and taking the limit as ξ →∞,∫ 1

ū

dδ

g(δ,Vσ(δ))
=∞.

Therefore,

Gσ(u) = Gσ(ū) +

∫ u

ū

dδ

g(δ,Vσ(δ))
→∞,

as u→ 1.
�
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Hence, the solution of (41) will be the function implicitly defined by

(44) Gσ(uσ(ξ)) = ξ, ξ ∈ R.

By Sard’s Lemma, the set of critical levels of Gσ has measure zero and (44)
defines a single-valued function for ξ ∈ R \ Sσ.

Theorem 6.2. Suppose (Hr), (Hc) and (Hg). Given σ ∈ [σs, σr] so that Sσ is a
nonempty finite set, the function uσ defined by (44) is a flux-saturated solution of
(15).

As we have just seen in the previous section, we need hypothesis (Hg) in order to
make sense of the concept of flux-saturated solution of (15). Note that in particular
this condition implies that ω+(u) =∞, u ∈ [0, 1].

Proof. Let Sσ = {ξ1, ξ2, ..., ξn} be the set of critical levels of Gσ, by the inverse
function theorem, (44) defines a unique function, uσ : R\Sσ → (0, 1) , that is
C1(R\Sσ). Using a similar argument to that used in the proof of Theorem 2.1, we
can show that uσ solves (15) in R\Sσ.

To prove uσ is the required flux-saturated solution we need to show that it is a
distributional solution of this equation that saturates all the points in Sσ, i.e., we
have to prove that

u′σ(ξk) = +∞, k = 1, 2, · · · , n,
and the function

h(ξ) = a(uσ(ξ), u′σ(ξ))− σuσ(ξ), ξ ∈ R\Sσ,

admits a continuous extension to R. See Theorem 5.1.
For any k ∈ {1, · · · , n} we denote

uσ(ξ−k ) := µk, uσ(ξ+
k ) := νk.

If µk < νk then Gσ(u) = ξk for u ∈ [µk, νk]; and if νk = µk it has to be a critical
point. In any case, the first condition follows from applying the inverse function
theorem to (44) since Ġσ(µk) = Ġσ(νk) = 0.

To see the continuity of h we will need the following result, which we will prove
below.

Lemma 6.3. Let {(up, sp)}p∈N ⊂ [0, 1]× (0,+∞) be a sequence with sp < ω+(up),
up → u0 ∈ [0, 1] and sp → +∞. Then, a(up, sp)→ a+(u0) as p→∞.

Since uσ saturates the operator, that is, u′σ(ξk) = +∞, by Lemma 6.3,

h(ξ−k ) = a+(µk)− σµk, h(ξ+
k ) = a+(νk)− σνk.

So, condition h(ξ−k ) = h(ξ+
k ) is written as

a+(νk)− a+(µk) = σ(νk − µk).

When µk = νk the equality is evident. If µk < νk, since Vσ(u) ≥ a+(u), u ∈ [µk, νk],

we have V̇σ(u) = σ, u ∈ [µk, νk]. Hence, Vσ(µk) − Vσ(νk) = σ(µk − νk), but, by
construction,

Vσ(µk) = a+(µk), Vσ(νk) = a+(νk),

which gives us the desired equality.
�
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Proof of Lemma 6.3. Since sp < ω+(up), for each p ∈ N we have a(up, sp) <
a+(up). Suppose there exists a sub-sequence, {(upk , spk)} so that

lim
k
a(upk , spk) = l < a+(u0).

Then, (u0, l) ∈ D and therefore

spk = g(upk , a(upk , spk))→ g(u0, l) <∞,
in contradiction with our hypothesis.

�

Proposition 6.4. The profile uσ obtained in Theorem 6.2 satisfies the Bertsch-Dal
Passo condition.

Proof. Take ξ̂ ∈ Sσ, and suppose

µ(ξ̂) := lim
ξ→ξ̂−

uσ(ξ) < lim
ξ→ξ̂+

uσ(ξ) := ν(ξ̂).

If u ∈ (µ(ξ̂), ν(ξ̂)] then Gσ(u) = ξ̂. Therefore, Ġσ(u) = 0 and Vσ(u) ≥ a+(u).

Hence, for any u ∈ (ν(ξ̂), µ(ξ̂)],

a+(u)− a+(ν(ξ̂))

u− ν(ξ̂)
≤ Vσ(u)− Vσ(ν(ξ̂))

u− ν(ξ̂)
=
Vσ(µ(ξ̂))− Vσ(ν(ξ̂))

µ(ξ̂)− ν(ξ̂)
,

since V̇σ(u) = σ for any u ∈ [ν(ξ̂), µ(ξ̂)]. Because by construction,

Vσ(ν(ξ̂)) = a+(ν(ξ̂)), Vσ(µ(ξ̂)) = a+(µ(ξ̂)),

one has that (40) is verified.
�

Remark 6.5. It seems that the flux-saturated solution of (15) verifying the Bertsch-
Dal Passo condition is unique; and therefore, in the conditions of Theorem 6.2, the
profile of the TW that moves at this speed σ has to be the solution of (44).

To finish this section we will show some criteria that indicate that the framework
of Theorem 6.2 is quite standard when the flux a satisfies (Hr), (Hc) and (Hg).

Proposition 6.6. Suppose moreover that a+ has derivative at the points where
a+(u) < +∞ and let σ ∈ [σs, σr] so that the set

Wσ = {u ∈ [0, 1] : a+(u) < +∞, ȧ+(u) = σ}
is finite, then Sσ is a finite set.

Proof. If Sσ is nonempty, given ξ ∈ Sσ, since Gσ is monotone, the set {u ∈ (0, 1) :
Gσ(u) = ξ} is necessarily a nonempty compact interval. Let [µ, ν] with 0 < µ ≤
ν < 1 be this set. We are going to prove there is a point in Wσ ∩ [µ, ν].

Indeed, when µ < ν, since Ġσ(u) = 0 for any u ∈ (µ, ν), we have a+(u) ≤
Vσ(u), u ∈ (µ, ν). Let us see that a+(µ) = Vσ(µ) and a+(ν) = Vσ(ν). If, for
instance, a+(µ) < Vσ(µ), by continuity we can find an interval (µ − ε, µ) so that

a+(u) < Vσ(u) for any u ∈ (µ − ε, µ) and then Ġσ(u) = 0 for any u ∈ (µ − ε, µ).
Therefore Gσ(u) = ξ for all u ∈ (µ−ε, µ], in contradiction with [µ, ν] = {u ∈ (0, 1) :
Gσ(u) = ξ}.

Hence, for any u ∈ [µ, ν], V̇σ(u) = σ since a+(u) ≤ Vσ(u). Then

Vσ(ν)− Vσ(µ)

ν − µ
= σ,
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that is,

σ =
a+(ν)− a+(µ)

ν − µ
.

The conclusion follows from the Mean Value Theorem.

The case ν = µ is a bit more complicated. Since a+(µ) = Vσ(µ), V̇σ(µ) = σ.
If, for instance, ȧ+(µ) > σ, there exists ε > 0 so that a+(u) > Vσ(u) for any

u ∈ (µ − ε, µ). Hence, Ġσ(u) = 0 for any u ∈ (µ − ε, µ] and Gσ(u) = ξ for all
u ∈ (µ− ε, µ], in contradiction with [µ, ν] = {u ∈ (0, 1) : Gσ(u) = ξ}. Analogously,
we have that ȧ+(µ) ≮ σ, so ȧ+(µ) = σ.

�

We also have the following result:

Theorem 6.7. Suppose (Hr), (Hc), (Hg) and that a+ is convex in [0, 1]. Then
for any σ ≥ σs, the set Sσ is either empty or a singleton. As a consequence, there
is always a classic or a flux-saturated TW moving at speed σ for any σ ≥ σs.

Proof. Take U := {u ∈ [0, 1] : a+(u) > Vσ(u)}. We are going to show that if
U 6= [0, 1] then U = [0, µ) ∪ (ν, 1] for some 0 < µ ≤ ν < 1.

Suppose U 6= [0, 1] and consider the two auxiliary functions

ϕa(u) = a+(u)− σu, u ∈ [0, 1],
ϕv(u) = Vσ(u)− σu, u ∈ [0, 1],

so that U = {u ∈ [0, 1] : ϕa(u) > ϕv(u)}. Now define

µ := min{u ∈ (0, 1) : ϕa(u) ≤ ϕv(u)},
ν := max{u ∈ (0, 1) : ϕa(u) ≤ ϕv(u)},

since
ϕa(0) = a+(0) > 0 = ϕv(0),
ϕa(1) = a+(1)− σ > −σ = ϕv(1),

we have 0 < µ ≤ ν < 1. We only need to show that

ϕa(u) ≤ ϕv(u), u ∈ [µ, ν].

Since V̇σ(u) ≤ σ, the function ϕv is non-increasing. Therefore, ϕv(µ) ≥ ϕv(ν)
and, since by construction ϕv(µ) = ϕa(µ) and ϕv(ν) = ϕa(ν), we have ϕa(µ) ≥
ϕa(ν). If ϕa(µ) = ϕa(ν), ϕv is constant and the result is a consequence of the
convexity of ϕa.

Suppose then ϕa(µ) > ϕa(ν). Since ϕa is convex, ϕv(µ) = ϕa(µ) and ϕ̇v(µ) = 0

because V̇σ(u) = σ as long as Vσ(u) ≥ a+(u), hence there exists ε > 0 so that
ϕa(u) ≤ ϕv(u), u ∈ [µ, µ+ ε]. But in this case, Vσ(u) ≥ a+(u), u ∈ [µ, µ+ ε] and
ϕ̇v(u) = 0. Consequently, ϕv is constant in [µ, ν], in contradiction with ϕv(ν) =
ϕa(ν).

�

7. The ultra degenerate case

The main aim of this section is to obtain an example where equation (15) has a
flux-saturated solution for a value σ = σ̄ with 0 < σ̄ < σs. The example we propose
satisfies the hypotheses (Hr), (Hc) and (Hg), so the regularity of the functions a
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and f does not seem to be relevant. The built flux-saturated profile does not meet
the Bertsch-Dal Passo condition –this seems to be the main question.

To arrive at to the desired example, we need to extend the work environment
and allow totally degenerate levels. As we said in the Introduction, they are levels
where a(u, s) = 0 for all s ∈ R and we denote as Ltd the set of totally degenerate
levels of our flux.

7.1. The ultra degenerate framework. For the sake of simplicity we will con-
sider Ω = [0, 1]×R, so that a ∈ C1([0, 1]×R). With respect to the reaction term, f ,
we will consider, as usual, that it satisfies (7). In addition to (Hc), we will assume

(C1) The totally degenerate levels set, Ltd, is the union of a finite number of
intervals.

(C2) For any u /∈ Ltd and s ∈ R, ∂a
∂s (u, s) > 0.

(C3) a(u, 0) = 0 for any u ∈ [0, 1] and there exists M > 0 such that |∂a∂s (u, s)| ≤
M, u ∈ [0, 1], s ∈ R.

As a consequence of (C2), the maps a+ and a− are well defined and a+(u) =
a−(u) = 0 for any u ∈ Ltd.

(C1) ensures that the number of times that the function a+ goes from being
positive to zero is finite and avoids pathological cases. As for (C3), it is a condition
of growth of a(u, s) with respect to s stronger than (Hg) that we will need later.

Under these conditions, the set D = {(u, v) ∈ ([0, 1] \ Ltd) × R : a−(u) < v <
a+(u)} is still an open subset relative to [0, 1]×R and function g is well defined on
D.

As in the regular case, the question is to solve (41) for some u0 ∈ (0, 1) where
V : [0, 1] → R is a continuous function, which is a formal solution of (28) with
V(0) = V(1) = 0, V(u) ≥ 0, u ∈ (0, 1). To construct this formal solution we follow
the same guidelines as in the regular case. Hence, we consider the function R(u) =
V(u)2, which must satisfy the extended problem (31), in addition to R(0) = 0 and
R(u) ≥ 0, u ∈ [0, 1].

The equation in (31) must be understood in the Carathéodory sense. See [25]
for a precise definition.

Lemma 7.1. For each σ ≥ 0, the initial value problem (31) has a unique solution in
the sense of Carathéodory, Rσ. Moreover, Rσ ∈ C([0, 1]) and Rσ(u) ≥ 0, u ∈ [0, 1].

Proof. First we are going to check that Φe satisfies Carathéodory conditions for
each σ ≥ 0 fixed, see [25]. Since ∂a

∂s (u, 0) = 0 when u ∈ Ltd, (C3) ensures that the
function

R ∈ R 7→ Φe(u,R;σ) ∈ R
is continuous for any u ∈ [0, 1]. On the other hand,

g(u, v) ≥ 1

M
v, u ∈ [0, 1] \ Ltd, 0 < v < a+(u).

Therefore, taking M̃ ≥ max{f(u)M,f(u)∂a∂s (u, 0), u ∈ [0, 1]}, we have

|Φe(u,R;σ)| ≤ σ
√
|R|+ M̃, u ∈ [0, 1], R ∈ R.

Theorem 1.1, Chapter 2, in [25] allows us to affirm the existence of a solution of (31)
in the sense of Carathéodory. Furthermore, the sub-linear growth in R ensures that
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it can be extended to the entire interval [0, 1]. Note that a Carathéodory solution
means a continuous function R ∈ C[0, 1] that satisfies

R(u) = −
∫ 1

u

Φe(τ,R(τ);σ) dτ, u ∈ [0, 1].

In particular, if u1 < u2,

R(u2) = R(u1) +

∫ u2

u1

Φe(τ,R(τ);σ) dτ.

An argument similar to the one made in the proof of Proposition 2.3 shows that if
R(u0) < 0 for some 0 < u0 < 1, then R(u) ≤ R(u0), u ∈ [u0, 1]. In particular, we
would have R(1) < 0, which is a contradiction. Then, R(u) ≥ 0, u ∈ [0, 1].

Φe(·, ·;σ) is obviously continuous in int(Ltd) × R. Arguments similar to those
used in the previous sections based on Lemma 3.1 allow us to show the continuity
of this function when u ∈ [0, 1]\Ltd. Therefore, R is C1 in [0, 1]\F , where F is the
finite set formed by the end points of the intervals in Ltd, and so, it is a classic
solution of the differential equation in (31) in [0, 1]\F . Moreover, since R(u) = 0

implies Ṙ(u) < 0, R(u) > 0 for any u ∈ (0, 1)\Ltd.

To finish the proof, let us see that the solution of (31) is unique. Suppose that
R1 and R2 are two solutions of (31) and consider the function

ϕ(u) =
(√
R1(u)−

√
R2(u)

)2

.

ϕ ∈ C([0, 1]) and ϕ(u) ≥ 0, u ∈ [0, 1]. As ϕ(1) = 0 we only have to show that
ϕ̇(u) ≥ 0 when u ∈ (0, 1) except for a finite number of points.

Suppose first that u /∈ Ltd, whereby Ri(u) > 0, i = 1, 2. Since the roles of R1

and R2 can obviously be interchanged, we have three possible cases:

• Ri(u) < a+(u), i = 1, 2. In this case,

ϕ̇(u) = −2f(u)
(√
R1(u)−

√
R2(u)

)( 1

g(u,
√
R1(u))

− 1

g(u,
√
R2(u))

)
> 0,

since g(u, v) is increasing its second variable.
• R1(u) < a+(u) ≤ R2(u), then

ϕ̇(u) = 2
(√
R2(u)−

√
R1(u)

) f(u)

g(u,
√
R1(u))

> 0.

• a+(u) ≤ Ri(u), i = 1, 2, in which case

ϕ̇(u) = 0.

The case u ∈ Ltd is more delicate. When u ∈ Ltd\F , then u ∈ (µ, ν) ⊂ Ltd and

Ṙi(u) = 2σ
√
Ri(u), u ∈ (µ, ν), i = 1, 2.

Since equation Ṙ = 2σ
√
R has uniqueness on the right, there are several possibili-

ties. We can assume the existence of u1 ≤ u2 ∈ [µ, ν] with R1(u) = 0 = R2(u), if µ < u < u1,
R1(u) > 0 = R2(u), if u1 < u < u2,
R1(u) > 0,R2(u) > 0, if u2 < u < ν.



REACTION-DIFFUSION EQUATIONS WITH A FLUX IN DIVERGENCE FORM 23

Therefore,

ϕ̇(u) =


0 If µ < u < u1,

2σ
√
R1(u) If u1 < u < u2,

0 If u2 < u < ν.

So, there exists ϕ̇(u) and ϕ̇(u) ≥ 0 except at a maximum of four points for each
interval of Ltd.

We have shown that (31) has only one solution in the sense of Carathéodory,
which we will denote as Rσ.

�

Now, for each σ ≥ 0, we define the function, Vσ : [0, 1]→ [0,∞) as

Vσ(u) =
√
Rσ(u),

with Rσ the only solution of (31) given by the previous Lemma. Vσ is continuous,
Vσ(1) = 0, and for any u ∈ (0, 1) with Vσ(u) > 0, it verifies

(45) V̇σ(u) =

{
σ − f(u)

g(u,Vσ(u)) , 0 < Vσ(u) < a+(u),

σ, Vσ(u) > a+(u).

Furthermore, it can be proven that the map (σ, u) ∈ [0,+∞)× [0, 1] 7→ Vσ(u) ∈
[0,+∞) is continuous and decreasing on σ for each u ∈ [0, 1]. To do this, we use
function Rσ(u) again. The uniqueness of solution of the Cauchy problem (31) is
essential.

It is not clear, but it appears to be true, probably with some additional condition,
that Vσ(0) = 0 if σ is large enough. In any case, if a is non-trivial, that is, if
Ltd 6= [0, 1], we can check that V0(0) > 0. So, we can define

(46) σs := min{σ > 0 : Vσ(0) = 0 } > 0,

but it could be infinite, and Vσ(0) = 0 for all σ ≥ σs.

When σ ≥ σs, we can give a formal sense to Vσ(u). The question is to solve (44)
with Gσ defined as (42). Care must be taken with the function H defined in (26),
since for u /∈ Ltd, H(u, 0) = ∞. Although we have shown that Vσ(u) > 0 for all
u ∈ (0, 1)\Ltd, we could have integrability problems. Note that except for a finite

set, f(u)H(u,Vσ(u)) = V̇σ(u)−σ, and the last expression has a bounded primitive,
so in compact intervals of [0, 1], H(u,Vσ(u)) is integrable.

Gσ is constant in any interval [µ, ν] ⊂ Ltd since Ġσ(u) = 0, u ∈ (µ, ν). Adding
the critical levels of Gσ outside of Ltd, we can solve (44) in a full measure subset of
the interval

I := {ξ ∈ R : ∃u ∈ (0, 1), Gσ(u) = ξ}.

Extending u by 0 if I is bounded below or by 1 if I is bounded above, we will
have a function defined a.e. in R that is a formal solution of (41).

Remark 7.2. We think that, probably under certain additional hypotheses, it could
be proven that σs is the limit of the speed of propagation for the corresponding
viscosity equation as in the regular case (Hr).
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7.2. Some toy examples. The purpose of this subsection is to show examples
where σs < ∞. The main objective is to get to Example 4, where the existence
of saturated profiles with a single jump saturation point is shown. Although the
constructed operator does not verify (Hr), a small perturbation argument allows
us to modify it and obtain one that meets this condition, as we will see in the
next subsection. Examples 1, 2 and 3, while interesting in themselves, have been
introduced to make it easier for the reader to understand how the parameters shown
in Example 4 are defined.

Similar examples of discontinuous profiles with a single point of discontinuity
can be found in [19, 20]. In those cases, however, a+(0) = 0 and the perturbation
argument use regularity at u = 0 and u = 1.

Although we could work with more general operators, we are going to limit
ourselves to cases where

a(u, s) = D(u)φ(s)

defined on Ω = [0, 1]× R with

• the diffusion term D : [0, 1]→ [0,∞) a C2−function and
• the flux limiter φ : R → (−1, 1) a regular function with φ(0) = 0, φ′(s) >

0, s ∈ R and lims→±∞ φ(s) = ±1.

For example, we can think of

φ(s) =
s

(1 + |s|p)
1
p

, p ≥ 2

or

φ(s) =
2

π
arctan(s).

Therefore a+(u) = D(u) and the set of totally degenerated levels is

Ltd = {u ∈ [0, 1] : D(u) = 0 }.

In the examples that follow, the role of φ is not relevant. We may proceed as if
we were considering the same in all of them, so that D determines the flux function.

Example 1.- Take u1 ∈ (0, 1) and consider D1 ∈ C2[0, 1] with D1(u) = 0 when

0 ≤ u ≤ u1 and D̈1(u) > 0 if u1 < u ≤ 1. We have

Ltd = [0, u1]

and all the points in (u1, 1] are regular levels. Therefore, as has been done in
the previous sections, it can be proven that for all σ ≥ 0 there exists ασ ∈ [0, 1)
so that 0 < Vσ(u) < a+(u) = D1(u), u ∈ (ασ, 1). Moreover, when ασ > u1,
Vσ(ασ) = D1(ασ) > 0.

The function σ ∈ [0,∞) → ασ ∈ [0, 1) is decreasing and, as in the regular case,
a priori we can only guarantee that it is upper semi-continuous, i.e., for any σ0 ≥ 0

lim sup
σ→σ0

ασ ≤ ασ0 .

Lemma 7.3. Equation σ = Ḋ1(ασ) has a unique root τ > 0, and ασ > u1 for any
σ ∈ [0, τ ]. The map σ ∈ [0, τ ]→ ασ ∈ (u1, 1) is continuous. Moreover, ασ = u1 for
any σ > τ .
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Proof. Just using monotony we can take a value τ ≥ 0, such that σ > Ḋ1(ασ) when

σ > τ and σ < Ḋ1(ασ) when σ < τ . Moreover, since R0(u) > 0, u ∈ [0, 1), and
α0 > u1, then τ > 0.

When σ < τ , the intersection between Vσ and D1 is transversal and, therefore,
ασ is continuous in σ. Furthermore, the upper semi-continuity plus monotony
provides the continuity to the left of ασ at σ = τ . Using continuity to the left in
σ = τ we obtain that τ = Ḋ1(ατ ) > 0.

Finally, when σ > τ if ασ > u1, since σ > Ḋ1(ασ), the function d(u) = Vσ(u)−
D1(u) satisfies d(ασ) = 0 and ḋ(ασ) > 0. So, for some ε > 0, Vσ(u) > D1(u), u ∈
(ασ, ασ + ε), in contradiction with the definition of ασ. Hence, ασ = u1.

�
As a consequence of Lemma 7.3, if σ > τ, Vσ(u) = 0 for any u ∈ [0, u1]. In

particular, σs ≤ τ and it is finite. We are going to complete a description of Vσ(u)
in the case σ ≤ τ . Define

βσ = ασ −
Vσ(ασ)

σ
.

βσ is the ordinate of the intersection with the horizontal axis of the line through
point (ασ,Vσ(ασ)) with slope σ. If βσ ≤ u1, using the uniqueness of solution and
the convexity of D1, we have

Vσ(u) = σ(u− ασ) + Vσ(ασ), max{0, βσ} ≤ u ≤ ασ.

Hence, if βσ ≥ 0, Vσ(u) = 0 for u ∈ [0, βσ] and σ ≥ σs. When βσ < 0, Vσ(0) > 0
and σ < σs. Note that βσ → −∞ if σ → 0, so βσ < 0 when σ is small enough.

The map σ ∈ (0,∞) → ασ ∈ [0, 1) has a jump discontinuity at σ = τ . How-
ever, its restriction to (0, τ ] is continuous. Therefore, the map σ ∈ (0, τ) → βσ is
continuous and we can obtain σs by solving βσ = 0 with σ ∈ (0, τ).

Lemma 7.4. The map σ ∈ (0, τ)→ βσ is strictly decreasing.

Proof. When σ ∈ (0, τ), Vσ transversely crosses D1 at u = ασ and we can always
find ū < ασ such that Vσ(ū) > D1(ū). So

βσ = ū− Vσ(ū)

σ
,

since Vσ(u) is a line in the interval (ū, ασ). This formula allows us to obtain the
strict monotonicity from the monotonicity of Vσ on small intervals.

�

If σ = τ , the line V = τ(u − ατ ) + Vτ (ατ ) is tangent to the curve V = D1(u)

and Vτ cannot cross D1 in (u1, ατ ) since Ḋ1(u) < τ . When σ < τ , the line
V = σ(u−ασ)+Vσ(ασ) intersects curve V = D1(u) on a second point u∗ ∈ (βσ, ασ)
and Vσ(u) = σ(u− ασ) + Vσ(ασ), u∗ ≤ u ≤ ασ. Moreover, 0 < Vσ(u) < D1(u) for
u ∈ (u1, u

∗). In any case, Vσ(u) = 0, u ∈ [0, u1]. We leave the details for the reader.

Example 2.- Take now u2 ∈ (0, 1) and consider D2 ∈ C2[0, 1] with D2(u) = 0

when u2 ≤ u ≤ 1 and D̈2(u) > 0 when 0 < u < u2. Now,

Ltd = [u2, 1]

and all the points in [0, u2) are regular levels. Under these conditions, Vσ(u) =
0, u ∈ [u2, 1] for all σ ≥ 0. If u ∈ (0, u2), Vσ ∈ C1((0, u2)) and 0 < Vσ(u).
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Figure 1. Example 1. (a): Vσ for σ < σs. (b), (c) and (d): Vσ for
σ ≥ σs. (b) corresponds to σ ≤ τ and 0 ≤ βσ ≤ u1, (c) corresponds to
σ ≤ τ and u1 < βσ and (d) corresponds to σ > τ . In the small inset,
the respective flux-saturated profiles proposed by subsection 7.1

Lemma 7.5. For any σ ≥ 0,

Vσ(u) < D2(u), u ∈ (0, u2).

Proof. Since D2 is strictly decreasing in (0, u2), if Vσ(u0) ≥ D2(u0) for some u0 ∈
(0, u2), then V̇σ(u) = σ for u0 < u < 1, in contradiction to Vσ(u) = 0, u ∈ [u2, 1].

�

Now we argue as in Lemma 2.5, and compute for each η > 0

(47) σ0 := max{η +
f(u)

g(u, ηu)
: u ∈ I} <∞,

where I = {u ∈ (0, u2) : ηu < D2(u)}, which in this case is an interval away from
Ltd. It is shown as in Lemma 2.5 that Vσ(0) = 0 for all σ ≥ σ0. In particular,
σs ≤ σ0 <∞.

Example 3.- We are now going to combine the two previous examples. Take
0 < u2 < u1 < 1 and define

D(u) =

 D2(u), u ∈ [0, u2),
0, u ∈ [u2, u1],
D1(u), u ∈ (u1, 1].

Fixing σ ≥ 0, we will denote as V(1)
σ the function determined in Example 1. By

Lemma 7.4, we can obtain a value σ̃ < τ such that βσ̃ = u2. We will also denote

as σ
(2)
s and V(2)

σ the values of σs and Vσ obtained in Example 2.

If σ ≥ σ̃, Vσ has the expression
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Figure 2. Example 2. (a): Vσ when σ < σs. (b): Vσ when σ > σs.
In the small inset, the profile of the flux-saturated profile.

(48) Vσ(u) =


V(1)
σ (u), u ∈ (βσ, 1],

0, u ∈ [u2, βσ],

V(2)
σ (u), u ∈ [0, u2).

So, if σ ≥ max{σ̃, σ(2)
s }, Vσ(0) = 0 and σs is finite. On the other hand, if

σ < min{σ̃, σ(2)
s }, then βσ < u2 and Vσ(u) = V(1)

σ (u) on a interval (γσ, 1] where
βσ < γσ < u2 is the abscissa of the point where the line V = σ(u − ασ) + Vσ(ασ)

intersects the curve V = D2(u). Then Vσ(u2) > 0 and so Vσ(u) ≥ V(2)
σ (u) for

u ∈ (0, u2). Therefore, Vσ(0) ≥ V(2)
σ (0) > 0, and σs ≥ min{σ̃, σ(2)

s }.

Figure 3. Vσ in Example 3 when (a): σ < min{σ̃, σ(2)
s }. (b): σ ≥

max{σ̃, σs(2)}. In the small inset, the profile of the flux-saturated pro-

file.

Example 4.- Now we will modify Example 3 so that Vσs(u) > 0 for all u ∈ (0, 1)
and there are two values 0 < γ < α < 1 so that Vσs(u) > D(u) for any u ∈ (γ, α),
and Vσs(u) < D(u) for any u ∈ [0, γ) ∪ (α, 1].
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Consider D as in Example 3 with σ
(2)
s < σ̃. This condition can be obtained by

the following procedure:
Fixing u1 ∈ (0, 1) and D1 as in Example 1, we choose 0 < u2 < u1 and we

determine σ̃. Now we find D2 as in Example 2 so that the value σ0 defined by (47)

verifies σ0 < σ̃. Then, σ
(2)
s ≤ σ0 < σ̃.

So, σs ∈ [σ
(2)
s , σ̃]. Otherwise, when σ = σ̃, by (48) we have Vσ̃(u) = V(2)

σ̃ (u) for

u ∈ [0, u2] and V(2)
σ̃ (0) = 0, since σ

(2)
s < σ̃. Therefore, σs < σ̃, so βσs < u2 and

Vσs(u) = V(1)
σs (u) > 0 in u ∈ [u2, 1). Since Vσs(0) = 0, there must be γ so that

D2(γ) = Vσs(γ),

and

Vσs(u) = σs(u− ασs) + Vσs(ασs), u ∈ [γ, ασs ].

Obviously, Vσs(u) < D2(u) for u ∈ [0, γ) as in Example 3. Taking α = ασs we have
the desired condition.

7.3. A one-parameter class of regular examples. The purpose of this subsec-
tion is to show that flux-saturated profiles can appear for values of σ < σs. To do
this, we are going to build a one-parameter family of diffusion functions from the
function D of Example 4, so that the resulting flux functions satisfy the hypotheses
(Hr) and (Hc). Thus, their corresponding σs are the limits when ε → 0 of the
minimum speed of propagation for classic TW’s of the viscosity approximations of
the aforementioned reaction-diffusion equations, see (33). Furthermore, the viscos-
ity approximations that appear are uniformly elliptical, in which case everything
seems to work fine.

It would appear that the Bertsch-Dal Passo condition (40) prevents this situa-
tion; but this question will be analyzed in future works.

Consider a(u, s) = D(u)φ(s) as in Example 4. To simplify the notation, let us
denote as σ̄ and Υ (u) the corresponding values of σs and Vσs(u), respectively, for
this flux function a. We know that

Υ (u) > 0, u ∈ (0, 1).

and that there exist 0 < γ < u2 < u1 < α < 1, so that Υ (u) > D(u) when u ∈ (γ, α)
and Υ (u) < D(u) if u ∈ [0, γ) ∪ (α, 1].

Consider now D̃ : [0, 1]→ [0,∞) as a C2-function so that the support of D̃ is a
compact set, [δ, κ], with γ < δ < u2 < u1 < κ < α.

Given λ > 0, we define aλ(u, s) = Dλ(u)φ(s) where

Dλ(u) = D(u) + λD̃(u).

It is obvious that the flux function aλ(u, s) fulfills the hypotheses of Theorems
2.1 and 4.1 for each λ > 0. Let us respectively call σλr , σ

λ
s and Vλσ the corresponding

values of σr, σs and the function Vσ(u) solution of (28) for this flux function aλ.

When λ is small enough,

(49) aλ+(u) = Dλ(u) ≤ Υ (u) for any u ∈ (γ, α).

Therefore, σλs ≤ σ̄ and Vλσ̄ (u) = Υ (u).
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Figure 4. Sketch of the graphs of the functions D, in black, Υ , in
red, D̃, in blue and Dλ on the compact set [δ, κ] when λ is either
small, in green, or large, in orange. Outside of [δ, κ], Dλ = D for
all λ.

Lemma 7.6. With the notations of Example 3, assume that

(50) 2

√
D2(0)φ′(0)ḟ(0) < σ(2)

s .

Then σλs = σ̄ for any λ satisfying (49).

Proof. It is a consequence of Theorem A.3, since in such a case

(51) Υ̇ (0) =
σ̄

2
+

√
σ̄2

4
−D2(0)φ′(0)ḟ(0).

�

Remark 7.7. When λ is small enough for (49) to hold, σλs < σλr , since there exist
values u ∈ (0, 1), for which Vσ̄(u) > aλ+(u); and this also happens when σ is near

enough to σ̄ by continuity. In this case, there is no classic TW moving at speed σλr
as stated in Remark 3.6.

Moreover, if for a λ, (49) is fullfiled we have

Gλσ̄ (u) = Gσ̄(u), u ∈ (0, 1).

Then, the corresponding profile uσ̄ : R → (0, 1), provided by Theorem 6.2 for
a = aλ and σ = σ̄, is singular and does not depend on λ. The singular set Sσ̄ is a
singleton and uσ̄ satisfies the Rankine-Hugoniot condition.

This shows that even when λ is such that (49) does not hold, uσ̄ is still a singular
solution in the sense of Section 5. The following Lemma completes our construction.

Lemma 7.8. σ̄ < σλs when λ is large enough.

Proof. Since Υ (u) = σ̄u+ c̄, u ∈ [γ, α], for some c̄ ∈ R, when λ is large enough

(52) Dλ(u) > σ̄u+ c̄, u ∈ [u1, u2].

So Υ (u) is not a solution of (28) with a = aλ.
But Vλσ̄ (u) = Υ (u) when u ∈ [α, 1] because Dλ = D on [α, 1]. Moreover,

Vλσ̄ (u) ≥ σ̄u+ c̄, u ∈ [γ, α],



30 ARIAS AND CAMPOS

since V̇λσ̄ (u) ≤ σ and, by (52), the last inequality has to be strict at some point in
[u1, u2]. Then, Vλσ̄ (γ) > σ̄γ + c̄ = Υ (γ).

By (51), Proposition A.6 allows us to affirm that Vλσ̄ (0) > 0 and, therefore,
σ̄ < σλs when λ is large enough.

�

Remark 7.9. We know that in the regular case, i.e., when the flux function a
verifies (Hr), the profiles of classic TW solutions of equation (2) are unique up to
translations of the independent variable, see Remark 2.6.

The next example shows that when we deal with singular profiles, the answer is
not so simple, even if a verifies (Hr) and (Hc). Here we sketch a construction
of two singular profiles, U1 and U2, that are not a translations of the independent
variable for the same flux and moving at the same speed.

Now let us take σ̂ > σ̄ close enough to σ̄ so that the function Υ̂ (u) = Vσ̂(u)

has a similar shape to Υ (u), that is Υ̂ (u) > 0, u ∈ (0, 1), and there exist 0 < γ̂ <

u2 < u1 < α̂ < 1, so that Υ̂ (u) > D(u) when u ∈ (γ̂, α̂) and Υ̂ (u) < D(u) if
u ∈ [0, γ̂) ∪ (α̂, 1] but, by Theorem A.3, with

(53)
˙̂
Υ (0) <

σ̂

2
+

√
σ̂2

4
−D2(0)φ̇(0)ḟ(0)

because of σ̂ > σ̄.
Taking D̃ and Dλ as before, we have that Υ̂ (u) = Vλσ̂ (u) for each λ ≤ λ̂, where

λ̂ is the first positive value for which

Dλ̂(u) ≤ σ̂u+ c̄, u ∈ (γ̂, α̂),

and the equality holds for at least some û ∈ (γ̂, α̂).

If we denote as U1(ξ) the function defined by (44) when Vσ = Υ̂ , U1 is a singular

solution of (15) with a = aλ, for each 0 ≤ λ ≤ λ̂. Actually, U1 is a singular profile of

(15) with a = aλ, for each λ > 0, but when λ > λ̂, Υ̂ does not satisfy the equation

in (28). Therefore, if λ̃ > λ̂ with λ̃ sufficiently close to it, we have σλ̃s < σ̂, and

there must be another singular profile, U2 := uλ̃ built from V λ̃σ̂ .

Since λ̃ > λ̂, Υ̂ (û) = σ̂û+ c̄ < Dλ̃(û), û is on the middle of a jump of U1 and is

a regular point of V λ̃σ̂ , so û is in the range of U2.

Appendix A. Solutions of a singular Cauchy problem

We present here some results on solutions of a singular initial value problem of
the form

(54)

{
V̇ = σ − u

V γ(u, V ),
V (0) = 0.

where σ is a positive constant and γ : [0, δ]2 → (0,∞) a continuous function.
We say that a continuous function, V : [0, ε)→ [0,∞), ε ≤ δ, is a local solution

to the right of (54) if V (0) = 0 and for each u ∈ (0, ε), V (u) > 0, there exists V̇ (u)
and it satisfies the differential equation.

Denoting γ0 = γ(0, 0), one has:
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Lemma A.1. Suppose (54) has a local solution to the right, V . Then, σ ≥ 2
√
γ0.

Moreover, there exists V̇ (0) = w and it is a solution of

(55) w2 − σw + γ0 = 0.

Proof. Let V be a local solution to the right of (54) and take ρ as a solution of the
scalar first order ODE

ρ′ = −V (ρ), ρ ∈ (0, ε).

Since V (u) > 0, u ∈ (0, ε), it is clear that ρ is a decreasing function defined in
(α,+∞) and ρ(t)→ 0 when t→∞. Moreover, since V ∈ C1(0, ε) and solves (54),
writing γ(t) = γ(ρ(t),−ρ′(t)),

γ(t)→ γ0, t→ +∞

and ρ satisfies the linear second order ODE

ρ′′ − σρ′ + γ(t)ρ = 0, t ∈ (α,+∞).

Hence, denoting r(t) = −ρ
′(t)
ρ(t) = V (ρ(t))

ρ(t) > 0, it is a solution of the Riccati equation

(56) r′(t) = r2(t)− σr(t) + γ(t),

and r′(t) ≥ −σ
2

4 + γ(t), which is the minimum of the parabola that defines this
Riccati equation.

Therefore, if σ < 2
√
γ0 , r′(t) has to be positive when t is large enough and we

have two alternatives:

(1) either limt→∞ r(t) = r̄ > 0, which is not possible because r̄ should be a
root of the equation (55), which has no real roots if σ < 2

√
γ0,

(2) or limt→∞ r(t) = +∞, but in this case r′(t)
r2(t) → 1 as t → +∞ and r′(t)

r2(t) ≥
C > 0 for t large enough. In particular, r(t) would be greater than the
solution of a Ricatti equation whose solutions explode in finite time.

So, if there exists a local solution to the right of (54), then σ ≥ 2
√
γ0.

When σ ≥ 2
√
γ0, equation (55) has at least a real root. Take r0 above the largest

of the roots of (55), that is, r0 >
σ
2 +

√
σ2 − 4γ0. Then, r2

0−σr0 +γ0 > 0 and there

exists t0 > 0 so that r2
0 − σr0 + γ(t) > 0, t ≥ t0.

Again we have two options:

(1) either there exist t1 ≥ t0 with r(t1) ≥ r0, and then r′(t) > 0 when t > t1
and we would get a contradiction as in the previous case,

(2) or r(t) < r0, t ≥ to and, in particular, it is bounded to the right.

We are going to show that there exists

lim
t→∞

r(t).

Otherwise, there would be an increasing sequence, tn → ∞, and two values, r1 <
r2 ≤ r0, so that r(t2n) → r1 and r(t2n+1) → r2. Let r̄ ∈]r1, r2[ so that r̄2 −
σr̄ + γ0 6= 0, for instance, r̄2 − σr̄ + γ0 < 0. The other case is similar. Take
t∗ ≥ t0 so that r̄2 − σr̄ + γ(t) < 0, t ∈ (t∗,∞). Then, if r(t) = r̄ for some
t ≥ t∗, necessarily r′(t) < 0, which contradicts the existence of the sequence with
the desired conditions.
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Once we know there exists limt→∞ r(t) = w, taking now a sequence {tn} with
r′(tn)→ 0 and taking limits in (56), we obtain that w is a root of (55). But

(57) w = lim
t→∞

r(t) = lim
t→∞

−ρ
′(t)

ρ(t)
= lim
t→∞

V (ρ(t))

ρ(t)
= lim
ρ→0

V (ρ)

ρ
= V̇ (0).

�
Bearing in mind that for equation (18), γ0 = ∂a

∂s (0, 0)f ′(0), the previous result
provides an estimate for σs.

Corollary A.2. Assuming that (Hc) and (Hr) are fulfilled, then

σs ≥ 2

√
∂a

∂s
(0, 0)ḟ(0).

In the ultra degenerate case, Section 7, this condition holds when 0 /∈ Ltd.

This estimate is the equivalent of (8) we spoke about in the Introduction.

Theorem A.3. Assume (Hc) and (Hr),

σ > 2

√
∂a

∂s
(0, 0)ḟ(0),

and σ ≥ σs. Then σ = σs if and only if

V̇σ(0) =
σ

2
+

√
σ2

4
− ∂a

∂s
(0, 0)ḟ(0).

Proof. By the monotony of Vσ with respect to σ, if we denote

wσ := lim
u→0

Vσ(u)

u
,

wσ is decreasing with respect to σ. We are going to show that

σ > σs ⇔ wσ <
σ

2
+

√
σ2

4
− ∂a

∂s
(0, 0)ḟ(0).

If σ > σs

wσ =
σ

2
+

√
σ2

4
− ∂a

∂s
(0, 0)ḟ(0)

for some σ > σs, taking σ̃ ∈ (σs, σ)

wσ̃ ≥ wσ =
σ

2
+

√
σ2

4
− ∂a

∂s
(0, 0)ḟ(0) >

σ̃

2
+

√
σ̃2

4
− ∂a

∂s
(0, 0)ḟ(0),

which is not possible by Lemma A.1. Hence,

wσ <
σ

2
+

√
σ2

4
− ∂a

∂s
(0, 0)ḟ(0).

Let us now see that if

(58) wσ <
σ

2
+

√
σ2

4
− ∂a

∂s
(0, 0)ḟ(0).

then Vσ̃(0) = 0 for σ̃ next to σ and, therefore, σ > σs.

Indeed, let

σ

2
−
√
σ2

4
− ∂a

∂s
(0, 0)ḟ(0) < η <

σ

2
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be fixed. Then

η2 − ση +
∂a

∂s
(0, 0)ḟ(0) < 0,

and there exists δ > 0, so that

0 < η < σ − 2δ −
∂a
∂s (0, 0)ḟ(0)

η
.

But

lim
u→0+

f(u)

g(u, ηu)
=

∂a
∂s (0, 0)ḟ(0)

η
,

thus, fixed δ > 0, there exists ε > 0 so that

(59) η < σ − δ − f(u)

g(u, ηu)
, u ∈ (0, ε).

The above inequality allows us to affirm that the function V (u) = ηu is a strict
sub-solution of (18) when σ̃ > σ − δ. Then, if Vσ̃(u0) < ηu0 for some u0 ∈ (0, ε),
we necessarily have that Vσ̃(0) = 0, so that σ̃ ≥ σs and, therefore, σ > σs.

The existence of such a u0 for values of σ̃ close to σ is a consequence of the
continuous dependence on σ of Vσ, since, by Lemma A.1 and (58), wσ has to be the

smaller root of (55) with γ0 = ∂a
∂s (0, 0)ḟ(0). So, wσ < η and, therefore, Vσ(u) < ηu

for values of u close to 0. Thus, Vσ̃(u0) < ηu0 for some u0 ∈ (0, ε) if σ̃ is close
enough to σ.

�

Remark A.4. Theorem A.3 is still true in the ultra degenerate case when 0 /∈ Ltd
and σs < +∞.

Returning to the general environment of (54), one has

Proposition A.5. Suppose γ is Lipschitz-continuous with respect to V and σ >
2
√
γ0. Then, the local solution to the right of (54) verifying

(60) V̇ (0) =
σ +

√
σ2 − 4γ0

2
exists and it is unique.

Proof. Let us look at uniqueness first. Suppose V is a local solution to the right of

(54) and write T (u) = V (u)
u , then

uṪ = σ − T − γ(u, uT )

T
, u ∈ (0, ε)

and taking R = T 2 we have

(61)
u

2
Ṙ = σ

√
R−R− γ(u, u

√
R), u ∈ (0, ε).

Calling w+ =
σ+
√
σ2−4γ0
2 , by (60) we have T (0) = w+ and R(0) = w2

+ > 0.
Denote

Ψ(u,R) = σ
√
R−R− γ(u, u

√
R).

Ψ(u,R) = Ψ1(R)−Ψ2(u,R), where Ψ1(R) = σ
√
R−R and Ψ2(u,R) = −γ(u, u

√
R).

Hence,

Ψ̇1(w2
+) =

σ

2w+
− 1 < 0 and |Ψ2(u,R2)−Ψ2(u,R1)| ≤ uL|

√
R2 −

√
R1|,
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since, by hypothesis, there exists L > 0 so that

|γ(u, V2)− γ(u, V1)| ≤ L|V2 − V1|, u, V1, V2 ∈ [0, δ].

So, there exists 0 < ε̃ ≤ ε, with (w2
+ − ε̃, w2

+ + ε̃) ⊂ (0, δ) and δ̃ > 0 so that

(62) Ψ(u,R2)−Ψ(u,R1) ≤ −δ̃(R2 −R1),

for all u ∈ (0, ε̃) and w2
+ − ε̃ < R1 ≤ R2 < w2

+ + ε̃.

Therefore, if V1, V2 are two local solutions to the right of (54) defined in a
common interval, (0, ε), both verifying (60); and R1 and R2 the functions defined
as before which are solutions of (61) and satisfy R1(0) = R2(0) = w2

+, making ε
smaller if necessary, we can suppose

w2
+ − ε̃ < R1(u), R2(u) < w2

+ + ε̃, u ∈ (0, ε̃).

If, for instance, there exists u0 ∈ (0, ε̃) so that R2(u0) < R1(u0), by (61), D(u) =
R2(u)−R1(u) verifies

Ḋ ≤ −2δ̃

u
D,

as long as it is positive. Hence,

D(u) > D(u0) > 0, u ∈ (0, u0)

in contradiction with D(0) = 0.

To prove the existence, note that

σ

2
< σ − 2

σ
γ0,

so the function Ṽ (u) = σ
2u is a sub-solution of (54) in a neighborhood of 0. Hence,

for all 0 < V0 < δ, the unique solution of the regular initial value problem{
V̇ = σ − u

V γ(u, V ),
V (0) = V0,

satisfies V (u) > σ
2u and also V (u) ≤ V0 + σu, since γ is positive.

Taking limit as V0 → 0, we obtain a solution of (54) defined in a neighborhood
to the right of 0 that verifies σ

2u ≤ V (u) ≤ σu and, by Lemma A.1, (60).
�

To finish, observe that if we denote

γ̄ = max{γ(u, V ) : (u, V ) ∈ [0, δ]2},

having chosen ε < σδ
γ̄ , every solution of the initial value problem

(63)

{
V̇ = σ − u

V γ(u, V ),
V (u0) = V0.

with 0 < V0 < δ and 0 < u0 < ε, is defined in [0, u0]. Moreover,

Proposition A.6. In the hypotheses of Proposition A.5, suppose moreover that
the corresponding solution of (54), V̄ , is defined in [0, ε). Then

• If V0 > V̄ (u0), the solution of (63) verifies V (0) > 0.
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• When V0 < V̄ (u0) the solution of (63) verifies (54) and

V̇ (0) =
σ −

√
σ2 − 4γ0

2
.

Proof. It is a consequence of the uniqueness of solution of the initial value problem
(63) when V0 6= 0 and in view of Proposition A.5.

�
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