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TRAVELING WAVES FOR A FISHER-TYPE
REACTION-DIFFUSION EQUATION WITH A FLUX IN
DIVERGENCE FORM

MARGARITA ARIAS AND JUAN CAMPOS

ABSTRACT. Analysis of the speed of propagation in parabolic operators is fre-
quently carried out considering the minimal speed at which its traveling waves
move. This value depends on the solution concept being considered.

We analyze an extensive class of Fisher-type reaction-diffusion equations
with flows in divergence form. We work with regular flows, which may not meet
the standard elliptical conditions, but without other types of singularities.

We show that the range of speeds at which classic traveling waves move is
an interval unbounded to the right. Contrary to classic examples, the infimum
may not be reached. When the flow is elliptic or over-elliptic, the minimum
speed of propagation is achieved.

The classic traveling wave speed threshold is complemented by another
value by analyzing an extension of the first order boundary value problem to
which the classic case is reduced. This singular minimum speed can be justified
as a viscous limit of classic minimal speeds in elliptic or over-elliptic flows.

We construct a singular profile for each speed between the minimum sin-
gular speed and the speeds at which classic traveling waves move. Under
additional assumptions, the constructed profile can be justified as that of a
traveling wave of the starting equation in the framework of bounded variation
functions.

We also show that saturated fronts verifying the Rankine-Hugoniot condi-
tion can appear for strictly lower speeds even in the framework of bounded
variation functions.

1. INTRODUCTION

In 1927, Fisher [31] showed that the speed of propagation of the operator asso-
ciated with the equation

(1) u; = dug, + ku(l —u), d>0k>0,

coincides with the minimal speed at which its traveling waves move, o* = 2v/dk,
thus justifying what is claimed by Luther in 1906, see [38]. In the wake of this
pioneering work, analysis of the speed of propagation in parabolic operators is
frequently carried out considering the possible speeds at which its traveling waves
move.
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Here we consider a reaction-diffusion equation of the form

(2) u; = (a(u, ug))e + f(u),

with a flow in divergence form and a reaction term, f, of the logistic type with
carrying capacity 1, so that u =0 and u = 1 are constant solutions of .

As for the flux, a is a continuous map on a relative open subset Q of [0,1] x R.
This open set is written as the strip between two maps wy : [0, 1] — [—o00, 0] with
—00 < w_(u) < wy(u) < +oo, i. €.,

Q= {(u,s) €R*: ue[0,1], w_(u) <s<wi(u)}

Saying that € is an open subset relative to [0,1] x R is equivalent to stating that
w4 is lower semicontinuous and w_ upper semicontinuous. Furthermore, we will
always assume symmetry in the second argument,

(3) —a(u,s) =alu,—s), u€0,1], w_(u) < s < wy(u),

and in particular, w_(u) = —w4 (u), for any u € [0, 1].

The map s € (w—(u),wy(u)) = a(u, s) will be assumed to be increasing so that
the limits

at(u):= lim a(u,s)
s—wy (u)

always exist. The meaning of a; and a_ is clear: these functions respectively
indicate the maximum flow allowed to the right and left for each concentration
level u. To avoid some pathological cases we will consider that

(4) ay(u) =00, when wy(u) < oco.

and by symmetry the analogous casa for a_.

In general, a traveling wave, TW from now on, is a function of the form
(5) u(t,z) = u(z + ot),

which is a solution of in a sense to be specified. The function u : R — [0,1] is
called the profile of the wave and ¢ € R is the speed at which it moves. We always
look for a monotone profile. A classic TW is obtained by enforcing the profile to be
strictly monotone and C?(RR). To be precise we consider only the increasing case,
so that the TW moves to the right when o > 0, or to the left when o < 0. Other
authors usually work with decreasing TWs and look for u(t,z) = u(z — ot). It is
clear that both theories are equivalent. If no growth restrictions are imposed, the
same TW can be found moving at opposite speeds. The study of non-monotonous
TWs is part of a different theory and is beyond the scope of this work.

The existence of TWs in with constant linear diffusion, a(u,s) = ds, d > 0,
and logistic reaction was proven almost simultaneously by Fisher [3I] and Kol-
mogorov, Petrosvky and Piscunov [36] in their seminal works in 1927.

They proved that for each o € [2m, 00), there is a TW fulfilling the evolution
law in the classic sense. The corresponding profile connects the two equilibria,
u =0 and u = 1, of the associated kinetic equation, u; = ku(l — u).

The above results extend to more general reaction terms. In particular, for

(6) w=dug, + f(u), d>0,
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with f being a regular function so that the corresponding kinetic equation, u; =
f(u), is of the logistic type with carrying capacity 1, i.e.

(7) fecto,1]and f(0) = f(1) =0, f(u) >0, u € (0,1).

Under these conditions, there exists a positive value, o* = o*(f), such that @
has a TW moving at speed o, if and only if o € [0*, 00), see [0} [1].

The value ¢* is not always calculable. Explicit expressions or interesting char-
acterizations even for more general reaction terms can be seen, among others, in
[T, B 26 29, [35, [40]. In any event, the lower estimate

(8) o* > 24/d f(0)

is fulﬁlle In particular, TWs do not exist when f (0) = +o0.

Our interest focuses on the flux a rather than on the reaction term. Therefore,
from now on we will always assume that f verifies @, although less restrictive
conditions can be considered.

While classic TWs may appear with more general flows, when the flow presents
degenerations, these classic TWs usually coexist with other types of TWs. For ex-
ample, the appearance of so-called sharp-type TWs —TWs with continuous profiles,
not necessarily differentiable, and not strictly monotonous— is shown in [39] [41], 30,
33, 26l 27, 28] [§]. Furthermore, discontinuous wave profiles may also appear, as in
the case of the so-called entropic TWs, see [3, 20] [19] 22] 23] B2, 21]. In all these
cases, the concept of solution is intimately linked to the existence of an appropriate
theory for the initial values problem.

We will state that the flux a :  — R is regular if it verifies

(H,) a € CHQ) and %(u,s) >0, (u,s) €

When the flux is regular, a classic phase space analysis allows us to prove the
existence of a value o, so that has a classic TW connecting the two equilibria,
0 and 1, and traveling at speed o for each ¢ > o,.. The corresponding profile is
unique (except for translations) and there are no classic TWs traveling at speed
0 < o < o, see Theorem To do this we use techniques similar to those of,
for example, [17) [I8| 19} (20, 22} 24, 26], [32], B3] B39 41]: we first transform the TW
problem in a phase space analysis of a dynamical system and then reduce it to a
scalar boundary value problem.

Specifically, taking

(9) D={(u,v) €[0,1] x R:a_(u) <v<ay(u)},

the existence of classic TWs is equivalent to finding a solution to the boundary
value problem

y_ _fw)
(10) V=0-07y WV)eD
V0)=V(1)=0<V(u), ue(0,1),
where g : D — R, s = g(u,V) is obtained by solving for s € (w_(u),w4(u)) the
equality a(u,s) = V. This is the main objective of Section

d

dE OF %, while * will always indicate %.

lThroughout this work we will denote by ’
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The threshold value o, is singular. It can either be: there is a classic TW
traveling at speed o,., as in where o, = o*; or such a classic TW does not exist,
see Proposition In the latter case, o, is not a minimum but an infimum of the
propagation speeds of the classic TWs.

The analysis of TWs carried out in [20} [19], shows that there can be a non-empty
interval of speeds, [0ent; Tsmooth), for which the associated profile must be found
in the framework of bounded variation functions. The value ogmo0tn there plays a
role similar to that of o,.. However, in our case, even imposing the continuity of the
functions a4 and a_, see hypothesis (H.) in Section [3] the framework of bounded
variation functions may not suffice to give full meaning to the possible profiles.

In this work we define a value, o, equivalent to o,:, not associated with the
speed of a TW, but analyzing a constant extension of to all [0,1] x R. This is
the purpose of Section

A first approximation to understand the role of o is made in Section @] We say
that a regular flux a is elliptic if there are two constants, 0 < k1 < ks, so that

(11) k1s® < a(u,s)s < kys>.
If only the inequality on the left holds, that is, if
(12) k1s* < a(u,s) s,

for some k; > 0, we say that a is over-elliptic.
In both cases, ay(u) = oo for all u € [0, 1], and problem does not support
extension. Therefore, o5 = 0.

Whatever the regular flux a, the viscosity approximations of ,
w; = (a(u,uy))z + Uz + f(u),

correspond to fluxes a®(u, s) = a(u, s) + s, which are always over-elliptic. There-
fore, only a value 0 = o = o is obtained for each flux a®. The main result of
this section, Theorem states

o — o5, € = 0.

This is the first result that justifies the fact that o is more significant than o,.

We believe that when the operator is over-elliptic, its propagation speed is de-
termined by the classic TWs. Note that when there are levels of super-diffusion,
that is, there are values u € [0, 1] where w4 (u) < oo, the Cauchy problem associ-
ated with equation is not well understood. Some typical examples under these
conditions are covered in [23].

As happens in the classic equation @, when a is over-elliptic has a classic TW
moving at speed o,.. In this case, we can speak of a minimal speed of propagation.
See Remark

Sections [p] and [6] focus on the construction of a profile traveling at speed o, when
o is between o5 and o,.. For this purpose we follow the same line as Theorem [2.1
Additional hypotheses are necessary to give meaning to the solution built in the
setting of bounded variation functions, see Theorem [6.2}

Note that the initial values problem for this kind of operator is far from being
well understood; [2] deals with a very similar operator but without reaction terms



REACTION-DIFFUSION EQUATIONS WITH A FLUX IN DIVERGENCE FORM 5

and in a bounded interval. We believe that an argument analogous to that of [3]
can be used in this case, but at the time of writing this work we are not able to
solve some technicalities in the construction of the required proof.

The concept of entropy solution introduced in [12, 13} 2] allows us to justify that
the obtained singular profile generates a solution of our reaction-diffusion equation.
This concept has also recently been used in systems —see [I0, [I1]- and it is a current
research topic.

We dedicate Section[5]to briefly developing the necessary theory for this purpose.
To do so, we need an additional condition on the growth of the flux, see (H,) below,
which in particular implies wy(u) = oo, u € [0,1], and prevents the existence of
superdiffusion levels.

All the results thus far presented have been limited to regular fluxes. When
there exists some ug € [0, 1] so that a(ug,s) = 0 for any s € R, that is, such that
a—(up) = ay(ug) = 0, the regularity of the flux is lost. If that happens we will say
that level ug is totally degenerate; and a totally degenerate levels subset can be
defined such as

Lig ={u€[0,1] : a(u,s) =0, for any s € R}.

As examples of non-regular flows we can consider the flows in [3], 20} [19] 22] 23],
since in all these cases 0 € Lyy. The same occurs in the doubly nonlinear diffusion
operator considered in [8 0] when m > 1.

The existence of totally degenerate levels —and particularly that 0 € L;4— is often
related to the appearance of sharp-type TWs with a profile of half-ray support. This
is the case when a(u, s) = us, see [14], or in the doubly nonlinear diffusion operator,
see [8,[9]. References on this topic can be found in [45]. The flux-saturated operators
[3, 4, [34] also present this phenomenon.

Likewise, we obtain an interesting lower estimate (see Remark |A.2)):

da :
s > 24/ 5=(0,0) £(0).
7, 2 2/ 52(0,0) §(0)
Note that when a(u,s) = ds this estimate remains ().
Finally, in Appendix [A] we include some technical results on a singular initial

value problem that are required throughout this work.

Some remarks on speed of propagation. As previously stated, in 1906 Luther,
[38], established that the speed of propagation of a chemical wave is given by a
simple formula, o = 2v/d k, where d is the diffusion coefficient and k is a constant
depending on the concentration. (See [42] for a more detailed discussion.)

However, Luther’s idea of speed of propagation was never easy to interpret, as
noted in [42]. Having fixed an initial distribution ug(z) > 0, (6) has a unique
solution u defined on (¢,z) € [0,00) x R that satisfies u(0,z) = ug(x), as long
as f is a regular function with f(0) = 0. The maximum principle states that
u(t,x) > 0,t >0, x € R. We then have that the speed of propagation is infinite,
which is counterproductive: a chemical substance initially confined in a bottle, after
breaking, should immediately spread to the entire region, however large it might
be.
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Consider as initial data a Heaviside function, i.e., ug(z) = 0 if x < 0 and
ug(z) = 1if x > 0. The solution of with u(0,z) = ug(x) —which satisfies
0 < u(t,z) < 1,t > 0,z € R thanks to the comparison principle- immediately
becomes a strictly increasing continuous function on z going from 0 to 1 for each
t > 0. Then, it is posible to fix a position, z.(t), such that u(¢,z.(¢)) = ¢, t > 0,
for any concentration, ¢ € (0,1). In [36] it is proven that

lim z.(t) = 2Vdk,
t— oo

and the level ¢ is not relevant. The value o™ = 2v/d k therefore defines, in a certain
sense, a speed of propagation.

Let us think in terms of the spread of infections, so common when working with
equation . Let us take a fixed point zg on the real line and start moving at a
certain speed o. Given a particular solution u(t, ) of , the limit

(13) tlggo u(t,zo + ot)

tells us whether or not we are escaping contagion when we move at that speed. In
[6 [7] it is shown that if the initial infection is localized, i.e., if u(0, 2) has nonempty
compact support, this last limit is 0 when |o| > ¢* and 1 when |o| < o*. Therefore,
moving faster than ¢* we escape infection. Hence, calling such a minimum value
speed of escape makes perfect sense.

In general, we can define this speed of escape, o*, as follows: we consider the
values o € R verifying

(P) whichever is the solution u of with initial data of compact support and
0 <wu(0,z) <1,z €R, and for any z¢ € R,

tlgglo u(t, zg + ot) =0,

and we define
(14) o* =inf{|o|: o verifies (P)}.

When working with flux-saturated operators, two levels appear, Tgmootn and
Oent, Which correspond with o, and o, respectively. In the framework of [19, [20],
a comparison principle like that of [3] allows us to show 0* < geps.

It could happen that for a value ¢ < g, there were a TW with an entropic
profile. These entropic solutions should probably have a Cantorian singular part in
the derivative. Obviously the same comparison principle would assure us that o* <
&. Although not proven, such solutions do not seem to exist in this environment.
See Remark 3 in [22]. Presumably, here 0* = gps.

The definition in our case has an intrinsic problem: the definition of the
solution of the Cauchy problem with initial data of compact support. In addition,
this theory would need a good comparison principle of solutions, which is also
unknown for this type of operators. We will address these issues in future work.

2. CLASSIC TRAVELING WAVES

In this section we will assume that the flux in equation is regular, i.e., function
a : Q — R verifies (H,). We look for classic TWs, that is, solutions of of the
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form u(t,z) = u(x + ot) for which the profile u € C?(R). In this case, it is easy to
see that the profile u satisfies the second order ODE

(15) (a(u,u'))" = ou + f(u) =0,

for all £ € R. Variable £ = x + ot stands for the wave coordinate. Note that o is
also an unknown of the problem.

As the flux a in is defined only in the strip 2, a wave profile has to satisfy
(u(),u(§)) € N for any £ € R. It is standard to show that wave profiles of classic
TWs are monotone solutions of (I5)): if u(t,z) = u(x + ot) is not the equilibria
u=0o0ru=1,then ¢ # 0 and v (§) # 0, £ € R. We are going to look for
increasing TWs, so that u(—oc0) = 0 and u(+o00) = 1. A simple integration shows
that if an increasing classic TW exists, ¢ > 0.

Our aim is to show the following

Theorem 2.1. Suppose (H,.), then there exists o, > 0 such that equation (@ has a
classic TW that moves at speed o, for each o > o,.. Moreover, there are not classic
TWs moving at a speed o < oy.

Remark 2.2. Case 0 = o, is peculiar. There are examples where will have a
classic TW moving at speed o, and others where there is no such solution. As we
shall see when a is over-elliptic, there is always a classic TW moving at speed o,..
In Remark[3.6] we shall see an example where no classic TWs move at speed o..

In order to prove Theorem let us consider the set D defined in (9). On the
hypotheses of Theorem function g : D - R, (u,v) — g(u,v), defined by
(16) a(u, g(u,v)) = v,
is a Cl-function that satisfies %(u, v) > 0, (u,v) € D, and is equivalent to
the system
(17) U/ :g(u7v)7

o = og(u,v) — f(u).

We look for a solution (u,v) of defined on R connecting the equilibria (0, 0)

and (1,0), i.e., satisfying

lim (u(£),v(€)) = (0,0), lim (u(§),v(§)) = (1,0),

§——o0 =400

and such that
(w(&),v()) € Dy :={(u,v) € D : v >0}, forall £ €R.
Note that if (u,v) is a solution of (I7), while (u,v) € D, the function V (u) defined
by v(€) = V(u(€)) satisfies the first order ODE
(18) V=1U(u,V,0),
where ¥ : Dy X [0,+00) — R is defined by
f(u)

9(u, V)’
Proposition 2.3. On the hypotheses of Theorem given o > 0 there exist

ay € [0,1) and V, € C((ao,1]) N CH (a0, 1)) with V, satisfying (18) in (o, 1),
Vo(1) =0 and V,(u) > 0, u € (g, 1). Moreover, this function is unique.

U(u,V,0) =0 —
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Proof. Let us denote R(u) = V(u)? with V being a positive solution of . Then,
R—2VV—2\/T%<a—f(”)>.

g(u,VR)
By the hypothesis on a, having fixed u € [0, 1] there exists
L) da
(19) lmy o = Ty =00

Hence, taking Q:={(w,R) € [0,1]] xR :u € [0,1], —0o < R < (ay(u))?}, the
function @ : 2 x R — R defined by
0. Rio) { =2 (u) 52 (v, 0), R<0,
u,R;0) = 9
2@(0 g(u\/»)) 0 < R < (ay(u))?,

is continuous and the Cauchy problem
(20) R=®(u,R;0), R(1)=0,

has a solution for each ¢ > 0. We are going to prove that this solution is unique to
the left of 1.

Suppose R;, i = 1,2 are two local solutions defined on a common interval
(¢,1], for some ¢ € [0, 1), thus

Ry (u) = Ra(u) u € (g,1].

Indeed, take V;(u) := \/R;(u), i = 1,2, and define ¢(u) := (Vi (u) — Va(u))?. ¢ €
Cl(e,1)NC (e, 1], p(u) > 0,u € (g,1], and for all u € (¢,1),

. 1 1

$0) = =20 @A) Vo) (s = o) 20

since function %(u,v) > 0, (u,v) € D, and f(u() 0 0,u € (0,1). Then ¢ is
&

increasing in (g,1]. But ¢(1) =0, so p(u) =0,u €

The map R, : (o, 1] — [0,00) is now well defined as the maximal solution to
the left of problem (20]). Let us see that R,(u) > 0, u € (ap, 1).

Ry(u) > 0, u € (ay,1) since if, on the contrary, there is @ € (ay,1) with
Ry (1) <0, then R,(u) < 0 for any u € (@, 1), because otherwise, taking ug € (@, 1)
with R,(up) =0 and R,(u) < 0 for any u € (4, uo),

ug

R(uo):R(ﬂ)—/ 2f() % (r,0)dr < 0.

Repeating the same argument with ug = 1 we arrive at a contradiction if R, (u) <
0, u € (4,1). Hence, R,(u) >0, u € (ay, 1).
Now if R, (1) = 0, for some @ € (a,,1), then R'(u) = —2f(u )a“(u 0) < 0 and
Ry(u) <0, u € (@,u+ §), which is not possible as we have just proven.
O

Proposition 2.4. On the hypotheses of Theorem[2-]]
e For each o > 0 there exists

Volag) = hm Vo(u) > ay(ay),

u—at

and 0 < Vy(a,) < 400.
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o If0 <0y <09, then ay, > a,, and Vy, (u) > V,,(u), v € (ag,,1).

Proof. To prove the first assertion, it is enough to observe that

Vo(u) <o, u € (ay,1).

The inequality is a consequence of the results on prolongation of solutions of ODE
applied to .

We will prove the second statement using the functions R,. Having fixed 0 <
01 < 02, Ry, is a sub-solution of with o = 05. Since uniqueness ensures that
the solution and sub-solutions are ordered, oy, > @y, and Ry, (u) > Ry, (u), u €
(at,,1). To obtain the strict inequality note that R, (u) < Rg,(u), for any u €
(0o, , 1) with Ry, (u) = Ry, ().

O

Let us choose ¢ > 0 such that
ay(u) > ¢, uelo1],
which exists since a4 is lower-semicontinuous and (H,.). By we can take C' > 0

with
2vf(u)
g(u,v)

< C, u € [0,1],v € (0,¢].

Lemma 2.5. If 0 > % then a, = 0. Moreover, there exists o1 > % such that
V5(0) =0,
for any o > oy.

Proof. Since R, (1) = 0, there exists 0 < § < 1 such that R, (u) < ¢*, u € [4,1] and
therefore, R,(u) > 204/ Ry (u) — C, that is, R, is an upper-solution of equation

(21) R=20VR—-C

as long as R, (u) < ¢2. But since Ry = (%)2 is an equilibrium of equation
and R, (1) =0,

o2
o nys ’ 57 1].
R(u)<<20> u € [0,1]
Therefore, if o > % we have % < (, and we can set § = 0. Then, a, = 0.

To prove the other statement, take n > 0 large enough for

(22) lim L)

= k(n) < oo,
u—0+ g(u, nu) (n) < o0

to exist. Note that such a limit exists when 7 > 0 is large enough, because g, (0, 0) >
0. Define

f(u)
oo:=max{n+ ————:u € (0,1, nu < > 0,
and take
= max{o —C}
o1 = 0724 .

Then, if 0 > 01, oy, = 0. Moreover, R,(0) = 0, because of
d(u) := (nu)? — Ry(u) > 0, u € (0,1].
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Indeed, if there exists ug € (0, 1) so that d(ug) < 0, since d(1) > 0, we can define
u* :=sup{u € (0,1] : d(u) <0} > 0.
Then, d(u*) = 0 and d(u*) > 0, but

d(ut) = 220t — 0B (o — —2) ) Lo — o p L)y

g9(u*, / Ro(u*)) g(u*, nu)
Yet (nu*)? = R, (u*) < ¢?, because 0 > a¢. Hence, if 0 > oy, d(u*) < 0, which is
a contradiction. O
Proof of Theorem [2.1. We define
(23) or :=1inf{oc >0: a, =0 and V,(0) =0}.

By Lemma [2.5] o, is well defined. We will first prove that o, > 0. Suppose, by
the contrary, that o, = 0 and take {0,} as a sequence decreasing to 0. Since, by
definition, V,_ (0) =0 and V, < o,, we have

0<V,, (u) <onu, ue(0,1).

So, V,, (u) — 0, u € (0,1) and therefore, R, (u) — 0, u € (0,1). Still, continuous
dependence, coupled with the uniqueness of the solution, implies that R, (u) —
Ro(u) > 0 for u € (ag,1). Hence, o, > 0.

Given ¢ > o, V, is defined in [0, 1], and 0 < V,(u) < ay(u), u € (0,1). Hence,
we can consider the Cauchy problem

u/ = g(u7 VU(u))7
(24) { u(0) = uo,
for each ug € (0,1). To solve (24)), we define the function
v dv
25 Gau::/ Y we(0,1).
29) AR N TCAA) o1

It is clear that G, € C'(0,1) and G (u) >0, ue(0,1).

_ 1
g,V (u)

Let us denote
¢, = lim Gy(u) and ¢F = lim G, (u).

u—0t u—1—
Then, —0o < ¢, < 0 < & < +00. The function u, : (£,,¢5) — (0,1) defined by
uq(€) = G1(6),

is the solution of we are looking for. Indeed, by the implicit function theorem,
it is clear that u, € C'(&;,&)),

u:;(g) = g(ua(§)7va(ud(§)))7 §€ (50_'7§;—)?

and u,(0) = uo, i.e., uy is the solution of (24). Moreover, taking v,(§) = Vi (u,(£)),
v, € CHE,,EF) and

04(6) = Vil @) ) = (7~ ~— T 000,V un () =
= 90 (€),00(6) ~ s €), € € (&5 €9,
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we find that (u,,v,) is a solution of (17)). By definition,
lim u,(§) =0 and lim+ uy(€) = 1.

§—¢o §—¢s
Moreover, (§;,£4) = R. Indeed, if, for instance, £ < +oo, since ul ({f) =
9(1,0) =0, u, is the solution on that satisfies u(¢) =1, «/(£F) = 0 and, by
the uniqueness of solution of the Cauchy problem, u, = 1, in contradiction with
ue(0) = ug € (0,1).

The last statement of Theorem is a consequence of the definition of o.
O

Remark 2.6. Note that the profile of the TW built in Theorem[2.1] is unique except
for horizontal displacements of the independent variable.

The following result will be useful in the next Section.

Lemma 2.7. On the hypotheses of Theorem equation with o = o, has a
classic TW solution if and only if oy, = 0.

Proof. As we have seen in the proof of Theorem [2.1] has a classic TW solution
if and only if @, = 0 and V,(0) = 0.

When a,, = 0, V,, (u) is defined in (0, 1]. Moreover, for all o > o, V,(u) <
ou, u € [0,1] since V,(0) = 0. Taking limits in this last expression we have
Vs, (1) < o,u. Hence, V, (0) = 0.

r

]

3. THE EXTENDED FIRST ORDER EQUATION

In this Section we are going to extend equation to values where V' > a (u).
In this way we will define a value 0 < o, < o, in a similar way as but using
solutions of this extension of . To do so, we will need some more regularity in
D. Specifically, in addition to (H,), we will also assume

(H.) The map a4 : [0,1] — [0, 00] is continuous.

We define
L ay(u

(26) H(u,V) = { 8,(?«‘/)’ ?/;Zj(u)f( );
and ¥, : [0,1] x (0,00) x [0,00) = R
(27) U.(u,V,0) =0 — f(u)H(u,V).

Now we consider the Cauchy problem
(28) V="0.(u,V,0), V(1)=0.
Lemma 3.1. The map H : [0,1] x (0,00) — R is continuous. Moreover,
(29) Vli_r)]noo’;'-[(u7 V) =0,

uniformly on u € [0, 1].
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Proof. Continuity of H is equivalent to the following property:

Given any sequence {Vy,}nen C C([0,1]) that converges uniformly to Vo, with
Vo(u) > 0 for u € [0,1], one has H(u, V,,(u)) = H(u, Vo(u)) uniformly on [0,1].

Let us see that this property holds. We can assume, without loss of generality,
that the sequence {V,,} is monotone. Having in mind that, fixed u € [0, 1], the map
V € (0,400) — H(u, V) € R is continuous,

H(u, Vi (u)) = H(u, Vo(u)), u € [0,1].

Using the continuity of a, it is clear that H(u, V;,(u)) is continuous for each n € N
fixed. Uniform convergence is then a consequence of Dini’s Theorem.

To prove the second statement we proceed in a similar way. We need only to
prove ([29)) for any w € [0, 1]; uniform convergence follows from Dini’s Theorem. To
prove for any w € [0, 1] we can assume that a4 (u) = co because otherwise it is
evident. But when a (u) = oo,

Jim g(u, V) = lim g(u, au, s)) = oo

since g(u, a(u,s)) = s for all s € (0,a4(u)). Thus, holds.
(I

Then ¥, continuously extends function ¥ to all [0,1] x (0,00) x [0,00). The
following Lemma improves the first statement of Proposition and it allows us
to extend the function V, to a solution of defined over the entire interval [0, 1].

Lemma 3.2. If a, >0, Vy(a,) = ay(as) € (0,00).

Proof. Since ay is continuous and V, (u) < ay(u), u € (e, 1), by Proposition [2.4]
we have V, () = a(a,). That V() < 00 is a consequence of Lemma[3.1] since
U is bounded for large V.

(]

Proposition 3.3. For any o > 0 there is only one function V, € C([0,1]) N
C1((0,1)) that satisfies (@ Moreover,
e V,(u)>0, ue(0,1),
o the map (u,o0) € [0,1] x [0, +00) — V,(u) € [0, +00) is continuous, and
e for each u € (0,1), the map o € [0,4+00) — V,(u) € [0,+00) is strictly
decreasing.

Proof. The key idea is to extend to all [0,1] x R x [0, +00) in a similar way as
V.. We define

®(u,R,0), R < (ay(u))?
(30) ®e(u, R, 0) = { 20v/R, R> (ai(u))?

The continuity of H guarantees us that ®. : [0,1] x R x [0, +00) — R is continuous
and again the map R — ®.(u, R, o) is decreasing when u and o are fixed. Analo-
gously to the proof of Proposition we obtain the existence and uniqueness to
the left of the solution of the Cauchy problem

(31) R =, (u,R,0), R(1) =0,
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which we denote as R,(u). Moreover, R,(u) > 0 where it is defined, and the
growth on R of ®.(u, R, o) ensures it is defined on [0, 1]. Finally, V,(u) = \/Rs(u)
is the solution sought.

Continuity of the map (u,o) € [0,1] x [0,400) — V,(u) € [0,+00) is a conse-
quence of the continuous dependence with respect to o of the solution of and
monotony is proven as in Proposition [2.4]

O

Then, it makes sense to define

(32) os :=min{oc >0: V,(0) =0}.

Remark 3.4. It is evident that o5 < o,.. Moreover, o, > 0 since Vo(u) > 0 in
[0,1). This hold since Vo(u) <0, u € (0,1), Vo(u) <0, u € (ag,1) and Vo(1) = 0.

Proposition 3.5. If equation (@ has a classic TW moving at speed o, then o5 =
o

Proof. As we well know, that equation has a classic TW moving at speed o, is
equivalent to with ¢ = o, has a classic solution with u(—o00) = 0 and u(4o00) =
1. In that case, a,, = 0 and V,, (u) = V,, (u) < ay(u) for all w € [0,1]. Hence, by
continuity, there exists ¢ > 0 so that V,(u) < ay(u) when o € (0, —€,0, +¢€) and
V,(u) = V,(u). If 05 < o, there would be o5 < o < o, so that 0 = V,(0) = V,,(0),
in contradiction with the definition of o,..

O

Remark 3.6. In Remark we will show an example where o5 < o.. As a
consequence of Proposition[3.5, the reaction-diffusion equation constructed does not
have a classic TW moving at speed o, as we claimed in Remark[2.9

Remark 3.7. Note that when a flux a satisfies (H,) and also a4 (u) = 400, for all
u € [0,1], condition (H,) is trivially fulfilled. Furthermore, since in this case the
function ¥ does not admit extension, o, = 0. According to Lemma|3.2, a, = 0
for any o > 0 and —as a consequence of Lemma equation has a classic TW
moving at speed o if and only if 0 > 0, = 0.

4. VISCOSITY APPROXIMATIONS

In order to better understand the meaning of o, in this section we are going to
work with viscosity approximations of the reaction-diffusion equation . We will
assume throughout the section that flux a satisfies (H,) and (H,).

The viscosity equation associated to can be defined as

(33) w = (a(u,ug) +eug), + f(u), t >0, z € R,

with € being a positive parameter.

If we denote a®(u, s) := a(u, s) + €s, when the flux a is bounded, the viscosity
approximation a® is elliptic for all € > 0; but in general we can only ensure a®
is over-elliptic. In any case, having fixed ¢ > 0, a5 (u) = +o0, u € [0,1] and, by
Lemma o = of for all € > 0, where o7 and o¢ denote the values of o, and oy
for the flux a®*. We will keep the notations o, and o for the original flux a.

Our aim is to prove
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Theorem 4.1. Suppose (H,) and (H.). Then

o
ligy o7 = .

Throughout the section we will use notations similar to those used in the previous
ones with the super-index ¢ indicating that we refer to the flux a° instead of to a.

Lemma 4.2. Let 0 < €1 < €3 be fized. Then Vy(u) < VEr(u) < VE2(u) for any
u € 1[0,1].
Proof. We will first show that V1 (u) < VE2(u). By definition,
a® (u, g7 (u,0)) = a* (u, g (u, v)), (u,v) € R?,
that is,
(34)  a(u, g (u,v)) — a(u, g5 (u,v)) = €29 (u,v) — 16" (u,v), (u,v) € R

Since %2 (u,s) >0, (u,s) € R? and a(u,0) =0, u € R, we have that

9" (u,v) > g% (u,v), u € R, v > 0.
Indeed, if ¢°* (u,v) < g°2(u,v), then
a(u, g°* (u,v)) — a(u, g°*(u, v)) < 0.
But by definition, for all u € R, i = 1,2, ¢°(u,v) > 0 when v > 0, hence
(35) €19 (u,v) < €292 (u,v), u € R, v > 0,
which contradicts .
Therefore, by (35)), given o > 0 fixed,
o (u, R;0) > ®°2(u, R;0), v € (0,1), R > 0,
and RZ' is a upper-solution of the Cauchy problem
R = &*2 (u, R;o), R(1) =0,
S0
(36) R (u) < R2?(u), uw e (0,1).

Then V2 (u) < VE2(u) for any u € [0,1].
It only remains to show V,(u) < VE(u) for any € > 0 and u € [0,1]. And this
holds since

fW) ] o— iRy 0<V <as(w),
g (u, V) o V> ay(u)
) 5 - W4

ie. U(u,V,0) < U.(u,V,0), u € (0,1) with a similar proof. O
Proof of Theorem[{.1 Using Lemma [£.2] the map ¢ — o is decreasing and

lim o > o,.
es0 T 7F

To prove the conclusion we need to show that
lim Vi (u) = Vo (u),
uniformly in « € [0,1]. This fact is a consequence of having

. 5 _ g(u,V), 0<V<a+(u)a
;g%g (w, V) = { 00, V > ay(u).
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So
lim U¢(u,V,0) = U (u,V,0),

e—0
and this limit is uniform in the compact subset of [0, 1] x R using an argument as
in Lemma which combines the well known Dini Theorem.
|

5. FLUX-SATURATED SOLUTIONS IN THE BV (R) FRAMEWORK

In this section we briefly include some general facts related to entropy solutions
on the line [I2] 13} 2]. In order not to go into topics related to bounded variation
functions in several variables, we will work only within the framework of TWs.

Given u € BV (R), we will denote as Du its derivative in the sense of the distri-
butions. It is well known that

Du = ul, + Dsu,

where ], is the usually called Radon-Nikodym derivative of w and it is defined
as the absolutely continuous part of Du with respect to the Lebesgue measure
in R, and D,u is the so-called singular part. One has that u}, € L'(R) and
lul,llnr < TV (u), where TV (u) is the total variation of w.

A TW profile u is a distributional solution of (I5)), if u € BV (R) and satisfies

(37) / [a(u(€), . (€)) — ou(€)l'(€) de = / F(ul€))pl€) de.

for all ¢ € D(R), where D(R) represents Swartz’s class of test functions. Note that

this definition requires that a(u,u,,) € L}, .(R), so it is standard to impose

(Hy) la(u, s)| < als| 4+ a, u € [0,1], s € R for some constants a,a > 0.

Since u and f(u) are bounded, both sides of the equality in make sense for
any ¢ € D(R). Hence, the function

h(€) = a(u(§), up, (£)) — ou(§)
belongs to W' (R) and there exists h € C(R), such that

loc

h(&) = h(§), a.e. £ €R.

Theorem 5.1. Assume (H,) and (H,) and let w € BV(R) N CY(R\ S) with S
being a finite set. The following statements are equivalent:

(1) w is a distributional solution of (15).

(2) ue C?(R\ S) satisfies for all £ € R\ S and the function
h(€) = a(u(),u(€)) — ou(§), £ €R\S,

admits a continuous extension to R, where u’ denotes the classic derivative
defined in R\ S.

Proof. If w is a distributional solution of (15)), as u.,(£) = v/(£) a.e. £ in R, one
has that h(§) = ﬁ({) a.e. £ in R. Then, since S is finite, » admits a continuous
extension to R by definition. Moreover, if I is one of the open intervals of R\ S,
taking ¢ € D(I), since a(u(-),u'(-)) € C*(I), we obtain u € C?(I), and it satisfies

foralleI.

The reciprocal is a consequence of the following known result:
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Lety € C(I)NCYI\ S) be a function with y' € L>(I), where I is a bounded
interval of R and S is a finite set. Then, y € WL>°(I) and its weak derivative
coincides with its classic derivative.

O
In the framework of Theorem we will say that a point £ € S is saturated if
(38) lim v/ (€) = +o00
¢
and

lim (€)== u() < lim u(€) == v(é).

ISai3n £—¢T
Note that this condition takes into consideration that we look for increasing TWs.
Saturated points can also be defined when u(é) > I/(f), changing the derivative
condition to be —oo. The saturation property has already been raised in the
literature, see [3] 12} 13| 201 19, 22]. In [12] 43} [37, [16], 15] it can be seen how regular
solutions may generate this type of vertical front.

We will say u is a flux-saturated profile of if it is a distributional solution
of this equation and saturates all the points in S.

Again here the concept is simplified by the fact that S is finite. When u €
BV (R), the lateral limits that determine u(£) and v(€) are always well defined.
However, the sense of the limit in the saturation condition should be clarified
in general, since wu!.,, is only defined almost everywhere.

Nor is the meaning of the singular set always clear. When v € BV (R), in a sense
the singular set is defined as the support of Dsu. If § is finite and é € S is a point
of continuity of u, that is, u(€) = v/(€), then € ¢ supp(Dsu) where supp(Dsu) is the
topological support of Dgu.

Another thing to keep in mind is that, as a consequence of the definition of
distributional solution, we do not need to impose a saturation property at a point
of continuity f € §. Hence, if we decompose Dyu = Dju + D.u where D and D,
denote, respectively, the jump and the Cantor parts of Dy, we are only imposing
a condition on Dju because a saturated point e supp(Dsu) only if ,u(é) < V(é)
Theorem and Lemma [6.3| imply that

a+ (&) = ov() = ar(u(é)) — on(é),
that is
a+(u(£)A) - a+§/~¢(€))
V() — n(§)
which is the so-called Rankine-Hugoniot condition.

The concept of entropy solution in [3, 2, 20, [I9] entails control of the two parts
of Dsu. However in [I2), 13] the conditions are relaxed and only control of the D;

(39) o=

part is necessary: at every jump discontinuity point é ,

at(u) — a+(u(£)) a+(1/(£)) — a+(,u(é)) for amv 1 -
—nd - o y u € (u(E). (&),

must be met. We will refer to this condition as the Bertsch-Dal Passo condition.

(40)
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6. FLUX-SATURATED PROFILES MOVING AT SPEED 0 € [0g,0,]

In this section we are going to show the existence of non-classic TWs for that
move at speed either o € [05,0,) or ¢ = 0., when a classic TW moving at this
value does not exist.

We will assume (H,.) and (H.), so that, analogously to what was done in Theorem
[2:1] when o > o the TW profile will be defined by solving the initial value problem

(41) { Z/(S i(Z’O],/U(u))a

for some ug € (0,1) fixed, where V), is the solution of the Cauchy problem . To
do so, we define G, : (0,1) = R,
(42) Go(u) = / H(6, Vo (8))d6,

uo

with H defined in .
Lemma 6.1. Let o > o, be fized. Then, G, is a non-decreasing C"-function with
G,(0) = —00, Go(1) = +o0.
Moreover, the set of critical leves of G, is compact.
Proof. By definition,
G (1) = H(u, Vo (u)), u € (0,1),
50, Go(u) > 0 and G,(u) > 0 if and only if V,(u) < ay(u). Moreover, since
o > 05, Vo(0) = Vs(1) = 0. Therefore there exist 0 < p < v < 1 such that
Go(u) >0, u € (0,u) U(r,1). Then, if we denote
S, ={¢€R:3ue (0,1)with Gy(u) = Eand G,(u) =0},

S, C G, ([, v]) and it is a compact set.

Let us see that G,(1) = 4o00. The proof that G,(0) = —oo is similar. Let
@ € (v,1) be fixed and take v as the unique solution of the Cauchy problem

(43) { Z/(o:) i(f—j.vo(v))’

One can prove that v is well defined on [0,00) and v(§) — 1 when £ — oo. Inte-
grating in between 0 and ¢ we obtain

v(&) ds
L v =t

and taking the limit as £ — oo,

/1 s _
u 9(67V0(5)) B .

Therefore,

B w dd
Go(u) = Go(q) "‘/ﬂ 9(5,V,(0))

as u — 1.
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Hence, the solution of will be the function implicitly defined by

(44) Go(us(§)) =& E€R.

By Sard’s Lemma, the set of critical levels of G, has measure zero and
defines a single-valued function for £ € R\ S,.

Theorem 6.2. Suppose (H,), (H.) and (Hy). Given o € [05,0,] so that S, is a
nonempty finite set, the function u, defined by s a flur-saturated solution of

(L5).

As we have just seen in the previous section, we need hypothesis (H) in order to
make sense of the concept of flux-saturated solution of . Note that in particular
this condition implies that w, (u) = oo, u € [0,1].

Proof. Let S, = {&1,&2,...,&n} be the set of critical levels of G,, by the inverse
function theorem, defines a unique function, u, : R\S, — (0,1) , that is
C1(R\S,). Using a similar argument to that used in the proof of Theorem we
can show that u, solves in R\S,.

To prove u, is the required flux-saturated solution we need to show that it is a
distributional solution of this equation that saturates all the points in S,, i.e., we
have to prove that

u;(fk) = +OO7 k= 1727"' y 1y
and the function
h(&) = a(us(§), up(§)) — ous(§), & € R\S,,
admits a continuous extension to R. See Theorem (.11
For any k € {1,--- ,n} we denote
o (&) = pis o () = i

If pp < vg then G, (u) = & for u € [k, vi]; and if v, = py it has to be a critical
point. In any case, the first condition follows from applying the inverse function
theorem to since g},(ﬂk) = Qo(yk) =0.

To see the continuity of A we will need the following result, which we will prove
below.

Lemma 6.3. Let {(up, sp) }pen C [0,1] X (0,+00) be a sequence with s, < wy(up),
up = ug € [0,1] and s, = +00. Then, a(up, s,) = a4 (ug) as p — oo.
Since u, saturates the operator, that is, u/ () = 400, by Lemma
hEy) = ag(pr) — opk, (&) = ar (i) — ovg.
So, condition h(&;; ) = h(&F) is written as
at(ve) = aq-(pw) = o(Vie — pk)-
When pp, = vi, the equality is evident. If py < v, since Vi (u) > aq(u), u € [ug, Vi),

we have V,(u) = 0, u € [ug,vi]. Hence, Vy (1) — Vo(vi) = o(usx — 1), but, by
construction,

Vo (pr) = ay (pe), Vo(ve) = ay(vk),
which gives us the desired equality.
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Proof of Lemma[6.3 Since s, < wi(up), for each p € N we have a(uy,s,) <
a4 (up). Suppose there exists a sub-sequence, {(up,, Sp,)} so that

lii’na(upk,spk) =1 < a4(up).
Then, (ug,!) € D and therefore

Spr = g(upk7a’(u’pk78pk)) - g(anl) < 00,

in contradiction with our hypothesis.
|

Proposition 6.4. The profile u, obtained in Theorem[6.9 satisfies the Bertsch-Dal
Passo condition.

Proof. Take f € S,, and suppose
u(E) = Tim u,() < lim (&) == v(d),

If u € (u(§),v(€)] then QUA(u = ¢. Therefore, G,(u) = 0 and V,(u) > a4 (u).

)
Hence, for any u € (v(€), u(€)],
ay(u) — a+fV(§)) < Yolu) - Vo (v(§)) _ Vo(ul&) - Vof”(f))

u— v(é) u—v(€) (&) —v(f)

since V,(u) = o for any u € [v(€), u(€)]. Because by construction,
a

)

Vo (r(€)) = a4 (1(€)), Vo (n(8)) = as(u(é)),

one has that is verified.
O

Remark 6.5. It seems that the fluz-saturated solution of verifying the Bertsch-
Dal Passo condition is unique; and therefore, in the conditions of Theorem[6.3, the
profile of the TW that moves at this speed o has to be the solution of .

To finish this section we will show some criteria that indicate that the framework
of Theorem [6.2]is quite standard when the flux a satisfies (H,.), (H.) and (H,).

Proposition 6.6. Suppose moreover that ay has derivative at the points where
a4 (u) < 400 and let o € [04,0,] so that the set

Wo ={uel0,1]: ay(u) < 400, ay(u) =0}
is finite, then S, is a finite set.

Proof. If S, is nonempty, given ¢ € S,, since G, is monotone, the set {u € (0,1) :
Go(u) = &} is necessarily a nonempty compact interval. Let [, v] with 0 < p <
v < 1 be this set. We are going to prove there is a point in W, N [, v].

Indeed, when p < v, since Go(u) = 0 for any u € (u,v), we have ay (u) <
Vo(u), v € (pu,v). Let us see that ay(pu) = Vo(p) and ay(v) = V,(v). If, for
instance, ay(u) < V,(u), by continuity we can find an interval (1 — &, 1) so that
ay(u) < Vy(u) for any u € (u — €, ) and then G,(u) = 0 for any u € (p — &, ).
Therefore G, (u) = £ for all u € (u—e, pl, in contradiction with [u, v] = {u € (0,1) :
Go (u) = 6} .

Hence, for any u € [u,v], Vo (u) = o since ay(u) < V,(u). Then

Vo (V) = Vo (p)
v—p

:0"
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that is,

at(v) — a+(l~t).
v—p

The conclusion follows from the Mean Value Theorem.

g =

The case v = p is a bit more complicated. Since ay (1) = Vo (1), Vy(p) = o.
If, for instance, a4 (u) > o, there exists € > 0 so that ay(u) > V,(u) for any
u € (u—e,p). Hence, G,(u) = 0 for any u € (u — &, ] and G,(u) = & for all
u € (u — €, p, in contradiction with [u,v] = {u € (0,1) : G,(u) = £}. Analogously,
we have that a4 (i) £ o, s0 ay(p) = o.

]

We also have the following result:

Theorem 6.7. Suppose (H,), (H.), (Hy) and that ay is convex in [0,1]. Then
for any o > o4, the set S, is either empty or a singleton. As a consequence, there
is always a classic or a flur-saturated TW moving at speed o for any o > 0.

Proof. Take U = {u € [0,1] : ay(u) > Vo(u)}. We are going to show that if
U # [0,1] then U = [0, ) U (v, 1] for some 0 < p < v < 1.
Suppose U # [0, 1] and consider the two auxiliary functions

wa(u) = ay(u) — ou, u € [0,1],
oy (u) = Vo (u) — ou, u € [0,1],

so that U = {u € [0,1] : @q(u) > ¢,(u)}. Now define

= minfu € (0,1) 5 palu) < o (w)},
v:=max{u € (0,1) : pa(u) < p,(u)},
since
(pa(()) = CL+(O) >0= va<0),
Qpa(l) = CL+(1) —0>—0= (pv(l)7
we have 0 < 4 < v < 1. We only need to show that

Pa(u) < pu(u), u € [p,v].

Since V,(u) < o, the function ¢, is non-increasing. Therefore, @, (1) > @, (v)
and, since by construction ¢, (1) = @.(u) and ¢, (v) = pa(v), we have @, () >
va(V). If wo(p) = @a(v), @, is constant and the result is a consequence of the
convexity of ¢g.

Suppose then @, (1) > @4 (V). Since @, is convex, ¢, (1) = @q (1) and @, (u) =0
because V,(u) = o as long as V,(u) > a4 (u), hence there exists ¢ > 0 so that
0a(u) < @y(u), u € [p, p + £]. But in this case, V,(u) > a4 (u), u € [y, p + €] and
¥y(u) = 0. Consequently, ¢, is constant in [p, v], in contradiction with ¢, (v) =
Pa(V).

(]

7. THE ULTRA DEGENERATE CASE

The main aim of this section is to obtain an example where equation has a
flux-saturated solution for a value 0 = & with 0 < & < g4. The example we propose
satisfies the hypotheses (H,), (H.) and (H,), so the regularity of the functions a
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and f does not seem to be relevant. The built flux-saturated profile does not meet
the Bertsch-Dal Passo condition —this seems to be the main question.

To arrive at to the desired example, we need to extend the work environment
and allow totally degenerate levels. As we said in the Introduction, they are levels
where a(u,s) = 0 for all s € R and we denote as L;q the set of totally degenerate
levels of our flux.

7.1. The ultra degenerate framework. For the sake of simplicity we will con-
sider 2 = [0,1] xR, so that a € C*(]0, 1] x R). With respect to the reaction term, f,
we will consider, as usual, that it satisfies . In addition to (H.), we will assume

(C1) The totally degenerate levels set, L4, is the union of a finite number of

intervals.

(C2) For any u ¢ Ly and s € R, %(u, s) > 0.

(C3) a(u,0) =0 for any u € [0,1] and there exists M > 0 such that %(u, s)| <

M, uwel0,1], seR.

As a consequence of (C2), the maps a4 and a_ are well defined and a4 (u) =
a_(u) =0 for any u € Lyg.

(C1) ensures that the number of times that the function a; goes from being
positive to zero is finite and avoids pathological cases. As for (C3), it is a condition
of growth of a(u, s) with respect to s stronger than (H,) that we will need later.

Under these conditions, the set D = {(u,v) € ([0,1] \ Lig) X R : a_(u) < v <
a4 (u)} is still an open subset relative to [0, 1] x R and function g is well defined on
D.

As in the regular case, the question is to solve for some ug € (0,1) where
V : [0,1] — R is a continuous function, which is a formal solution of with
V() =V(1) =0, V(u) >0, u e (0,1). To construct this formal solution we follow
the same guidelines as in the regular case. Hence, we consider the function R(u) =
V(u)?, which must satisfy the extended problem (31, in addition to R(0) = 0 and
R(u) >0, u € [0,1].

The equation in must be understood in the Carathéodory sense. See [25]
for a precise definition.

Lemma 7.1. For each o > 0, the initial value problem has a unique solution in
the sense of Carathéodory, R,. Moreover, R, € C([0,1]) and Ry (u) > 0, u € [0,1].

Proof. First we are going to check that ®. satisfies Carathéodory conditions for
each o > 0 fixed, see [25]. Since g—‘;(u,O) = 0 when u € Ly, (C3) ensures that the
function

ReR— P (u,R;0) ER
is continuous for any u € [0, 1]. On the other hand,

1

g(u,v) > i € [0,1]\ Lta, 0 < v < ay(u).

Therefore, taking M > max{ f(u)M, f(u)%(u, 0), u € [0,1]}, we have

|®.(u, R;0)| < ov/|R|+ M, uec[0,1], R €R.

Theorem 1.1, Chapter 2, in [25] allows us to affirm the existence of a solution of
in the sense of Carathéodory. Furthermore, the sub-linear growth in R ensures that
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it can be extended to the entire interval [0,1]. Note that a Carathéodory solution
means a continuous function R € C[0, 1] that satisfies

R(u) = —/ D, (7,R(7);0)dr, v € [0,1].

In particular, if u; < usg,

U2
R(uz) = R(u1) + / B.(r, R(r):0) dr.
uq
An argument similar to the one made in the proof of Proposition [2.3] shows that if
R(up) < 0 for some 0 < ug < 1, then R(u) < R(up), u € [up, 1]. In particular, we
would have R(1) < 0, which is a contradiction. Then, R(u) > 0, u € [0,1].

. (-,-;0) is obviously continuous in int(L:s) X R. Arguments similar to those
used in the previous sections based on Lemma allow us to show the continuity
of this function when u € [0, 1]\ L¢q. Therefore, R is C* in [0, 1]\ F', where F is the
finite set formed by the end points of the intervals in L;q, and so, it is a classic
solution of the differential equation in in [0,1]\F. Moreover, since R(u) = 0
implies R(u) < 0, R(u) > 0 for any u € (0, 1)\ Lyq.

To finish the proof, let us see that the solution of is unique. Suppose that
R1 and Ry are two solutions of and consider the function

o) = (VRiw) — VRaw)

v € C([0,1]) and ¢(u) > 0, u € [0,1]. As ¢(1) = 0 we only have to show that
$(u) > 0 when u € (0,1) except for a finite number of points.

Suppose first that u ¢ Liq, whereby R;(u) > 0,7 = 1,2. Since the roles of R4
and Ry can obviously be interchanged, we have three possible cases:

e Ri(u) < ay(u),i=1,2. In this case,

1 1
(o VRa@) g, Mu))) -0

since g(u,v) is increasing its second variable.
e Ri(u) < ay(u) < Ro(u), then

P(u) = 2 (VRa(w) — VRi(w))

o a;(u) < R;(u), i =1,2, in which case

o) = 0.
The case u € Ly is more delicate. When u € L\ F', then u € (p,v) C Lyg and

Ri(u) = 20/Ri(u), u € (p,v), i =1,2.

Since equation R = 20V/R has uniqueness on the right, there are several possibili-
ties. We can assume the existence of uy < ug € [u, v] with

o(u) = =2f(u) (VRL(W) = VRa(w)) (g

f(u)

——>0.
9(u; /Ra(u))

Ri(u) =0=TRa(u), if p<wu<u,
Ri(u) > 0=Ra(u), if up < u < ug,
Ri(u) >0, Rao(u) >0, ifu<u<uw.
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Therefore,
0 If p <u <y,
P(u) =19 20y/Ri(u) Ifu <u<ug,
0 If us <u < wv.

So, there exists ¢(u) and ¢(u) > 0 except at a maximum of four points for each
interval of L;q.
We have shown that has only one solution in the sense of Carathéodory,
which we will denote as R, .
|

Now, for each o > 0, we define the function, V, : [0,1] — [0,00) as
Vo(u) = VRs(u),

with R, the only solution of given by the previous Lemma. V, is continuous,
V(1) =0, and for any u € (0,1) with V,(u) > 0, it verifies

f(w)
(45) Vo) =4 7 sy 0 <Volu) <ay(u),
o, Vo (u) > ay(u).

Furthermore, it can be proven that the map (o, u) € [0,400) x [0,1] — V,(u) €
[0, +00) is continuous and decreasing on o for each u € [0,1]. To do this, we use
function R, (u) again. The uniqueness of solution of the Cauchy problem is
essential.

It is not clear, but it appears to be true, probably with some additional condition,
that V,(0) = 0 if o is large enough. In any case, if a is non-trivial, that is, if
L4 # [0,1], we can check that V(0) > 0. So, we can define

(46) os :=min{oc >0:V,(0) =0} >0,

but it could be infinite, and V,(0) = 0 for all o > 0.

When o > o, we can give a formal sense to V,(u). The question is to solve (44))
with G, defined as . Care must be taken with the function H defined in (26)),
since for u ¢ L, H(u,0) = co. Although we have shown that V,(u) > 0 for all
u € (0,1)\Ltq, we could have integrability problems. Note that except for a finite
set, f(u)H(u, Vy(u)) = Vy(u) — o, and the last expression has a bounded primitive,
so in compact intervals of [0, 1], H(u, Vy(u)) is integrable.

G, is constant in any interval [u, v] C Lyg since Go(u) = 0, u € (u,v). Adding
the critical levels of G, outside of L;gq, we can solve in a full measure subset of
the interval

I'={(eR: 3ue(0,1), Go(u) = ¢}

Extending w by 0 if I is bounded below or by 1 if I is bounded above, we will
have a function defined a.e. in R that is a formal solution of (4I)).

Remark 7.2. We think that, probably under certain additional hypotheses, it could
be proven that os is the limit of the speed of propagation for the corresponding
viscosity equation as in the regular case (H,.).
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7.2. Some toy examples. The purpose of this subsection is to show examples
where o4 < 0o. The main objective is to get to Example 4, where the existence
of saturated profiles with a single jump saturation point is shown. Although the
constructed operator does not verify (H,), a small perturbation argument allows
us to modify it and obtain one that meets this condition, as we will see in the
next subsection. Examples 1, 2 and 3, while interesting in themselves, have been
introduced to make it easier for the reader to understand how the parameters shown
in Example 4 are defined.

Similar examples of discontinuous profiles with a single point of discontinuity
can be found in [19, 20]. In those cases, however, a™(0) = 0 and the perturbation
argument use regularity at w =0 and u = 1.

Although we could work with more general operators, we are going to limit
ourselves to cases where

a(u, ) = D(u)¢(s)
defined on © = [0,1] x R with

e the diffusion term D : [0,1] — [0,00) a C%2—function and
o the flux limiter ¢ : R — (—1,1) a regular function with ¢(0) = 0, ¢'(s) >

0, s € R and limg_ 4 ¢(s) = 1.
For example, we can think of
S
(s)=——75,p22
(1+ [slr)?

or
o(s) = %arctan(s).
Therefore a4 (u) = D(u) and the set of totally degenerated levels is
Lig={uel0,1]: D(u)=0}.

In the examples that follow, the role of ¢ is not relevant. We may proceed as if
we were considering the same in all of them, so that D determines the flux function.

Example 1.- Take u; € (0,1) and consider D; € C?[0,1] with D;(u) = 0 when
0<wu<wu and Dy(u) > 0if u; <u < 1. We have

Ltd = [07 ul]

and all the points in (u1,1] are regular levels. Therefore, as has been done in
the previous sections, it can be proven that for all o > 0 there exists a, € [0,1)
so that 0 < V,(u) < ay(u) = Di1(u), u € (ay,1). Moreover, when a, > wuy,
Vo(0s) = D1(ay) > 0.

The function o € [0,00) = a, € [0,1) is decreasing and, as in the regular case,
a priori we can only guarantee that it is upper semi-continuous, i.e., for any og > 0

limsup ap < Q-
ag—0Q

Lemma 7.3. Equation o = D, (o) has a unique root 7 > 0, and s > uy for any
o €1[0,7]. The map o € [0,7] = oy € (u1,1) is continuous. Moreover, ay = uy for
any o > T.
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Proof. Just using monotony we can take a value 7 > 0, such that o > D;(a,,) when
o> 7 and 0 < Di(a,) when o < 7. Moreover, since Ro(u) > 0, u € [0,1), and
agp > uy, then 7 > 0.

When o < 7, the intersection between V, and D; is transversal and, therefore,
@, is continuous in ¢. Furthermore, the upper semi-continuity plus monotony
provides the continuity to the left of o, at ¢ = 7. Using continuity to the left in
o = 7 we obtain that 7 = D (ay) > 0.

Finally, when ¢ > 7 if ay > uy, since o > D (ay), the function d(u) = Vy(u) —
D (u) satisfies d(a,) = 0 and d(a,) > 0. So, for some & > 0, Vy(u) > Dy (u), u €
(o, a5 + €), in contradiction with the definition of a,. Hence, oy = u.

O

As a consequence of Lemma if o > 7, Vy(u) =0 for any u € [0,u1]. In
particular, o5 < 7 and it is finite. We are going to complete a description of V, (u)
in the case o < 7. Define

B, is the ordinate of the intersection with the horizontal axis of the line through
point (s, Vy(a,)) with slope o. If 8, < uj, using the uniqueness of solution and
the convexity of D;, we have

Vo-(u) = O'(U - O‘U) + Vo(ao)a max{O,Ba} <u<a,.
Hence, if 8, > 0, V,(u) = 0 for u € [0,5,] and 0 > 0,. When 8, < 0, V,(0) > 0

and o < 0s. Note that 5, — —oco if 0 — 0, so B, < 0 when ¢ is small enough.
The map o € (0,00) — a, € [0,1) has a jump discontinuity at ¢ = 7. How-
ever, its restriction to (0, 7] is continuous. Therefore, the map o € (0,7) — S, is

continuous and we can obtain o by solving 8, = 0 with o € (0, 7).
Lemma 7.4. The map o € (0,7) — B, is strictly decreasing.

Proof. When o € (0,7), V, transversely crosses D; at u = «a, and we can always
find @ < o, such that V, (@) > D1(a). So
/80 =u-— VU (U) )

g

since V,(u) is a line in the interval (&, o). This formula allows us to obtain the
strict monotonicity from the monotonicity of V, on small intervals.
(I

If o = 7, the line V = 7(u — a;) + V-(a,) is tangent to the curve ¥V = Dj(u)
and V; cannot cross D; in (u,,) since Dl(u) < 7. When o < 7, the line
V =o(u—a,)+V,(as) intersects curve ¥V = D;(u) on a second point u* € (85, oy)
and Ve (u) = o(u — o) + Vo(a), u* < u < a,. Moreover, 0 < V,(u) < D;(u) for

u € (u1,u*). In any case, V,(u) =0, u € [0, u1]. We leave the details for the reader.
Example 2.- Take now uz € (0,1) and consider Dy € C?[0,1] with Da(u) = 0
when us <u <1 and Dy(u) >0 when 0 < u < ug. Now,

Ltd = [Ug, 1]

and all the points in [0,u3) are regular levels. Under these conditions, V,(u) =
0, u € [ug,1] for all 0 > 0. If u € (0,uz), V, € C1((0,u2)) and 0 < V, (u).
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FIGURE 1. Example 1. (a): V, for ¢ < os. (b), (c¢) and (d): V, for
o > os. (b) corresponds to 0 < 7 and 0 < 8- < u1, (c) corresponds to
o <7 and u1 < B, and (d) corresponds to o > 7. In the small inset,
the respective flux-saturated profiles proposed by subsection

Lemma 7.5. For any o > 0,
Vo (u) < Da(u), u € (0,usz).

Proof. Since Dy is strictly decreasing in (0, us), if V,(ug) > Da(ug) for some ug €
(0,uz), then V,(u) = o for ugp < u < 1, in contradiction to V,(u) =0, u € [uz, 1].
O

Now we argue as in Lemma [2.5] and compute for each n > 0
fw)
g(u, nu)
where T = {u € (0,us2) : nu < Dy(u)}, which in this case is an interval away from

Liq. It is shown as in Lemma that V,(0) = 0 for all ¢ > 0¢. In particular,
0s < 0g < 00.

(47) oo := max{n + ru €l < oo,

Example 3.- We are now going to combine the two previous examples. Take
0 < ug < wup <1 and define
Dy(u), wu € [0,uz),
D(u) =14 0, u € [ug,u],
Di(u), we€ (ug,1].

Fixing ¢ > 0, we will denote as V[(,l) the function determined in Example 1. By
Lemma @ we can obtain a value & < 7 such that 85 = us. We will also denote

as ng) and ng) the values of o4 and V, obtained in Example 2.

If o > G, V, has the expression
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FI1GURE 2. Example 2. (a): V, when ¢ < 0. (b): V, when o > os.
In the small inset, the profile of the flux-saturated profile.

Vi (), ue (8,.1],
(48) Va(u) = 0, S [u27ﬂa]a
) (u), u€|0,us).

So, if 0 > max{&,gg)}, V,(0) = 0 and o, is finite. On the other hand, if
o< min{&,a§2)}, then S, < ug and V,(u) = Vél)(u) on a interval (v, 1] where
By < Vo < ug is the abscissa of the point where the line V = o(u — o) + Vo ()
intersects the curve V = Dy(u). Then V,(u2) > 0 and so V,(u) > VP (u) for
u € (0,uz). Therefore, V,(0) > V2(0) > 0, and o, > min{c, 0£2)}.

u2 g, wm Qg 1

FIGURE 3. V, in Example 3 when (a): ¢ < min{g, 022)}. (b): o >
max{&,05(2)}. In the small inset, the profile of the flux-saturated pro-

file.

Example 4.- Now we will modify Example 3 so that V,_(u) > 0 for all u € (0,1)
and there are two values 0 < v < a < 1 so that V,_(u) > D(u) for any u € (v, a),
and V,_(u) < D(u) for any u € [0,v) U (a, 1].
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Consider D as in Example 3 with 0§2) < ¢. This condition can be obtained by
the following procedure:

Fixing u; € (0,1) and D; as in Example 1, we choose 0 < us < u; and we

determine 6. Now we find Dy as in Example 2 so that the value oy defined by

verifies 0g < &. Then, ag) <op<a.

So, 05 € [0§2),&]. Otherwise, when o = &, by we have Vs (u) = Vég)(u) for
u € [0, uz] and V(gz) (0) = 0, since o? < 5. Therefore, 05 < &, s0 B, < ug and
V,. (u) = V(E-l)(u) >0 in u € [ug,1). Since V,_(0) = 0, there must be 7 so that

Da(y) = Vo. (),
and
Vo, (u) = 05(u — aq,) + Vo, (00, ), u € [7,00,].
Obviously, V,_(u) < Da(u) for u € [0,7) as in Example 3. Taking o = a,,, we have

s

the desired condition.

7.3. A one-parameter class of regular examples. The purpose of this subsec-
tion is to show that flux-saturated profiles can appear for values of ¢ < o5. To do
this, we are going to build a one-parameter family of diffusion functions from the
function D of Example 4, so that the resulting flux functions satisfy the hypotheses
(H,) and (H.). Thus, their corresponding o, are the limits when € — 0 of the
minimum speed of propagation for classic TW's of the viscosity approximations of
the aforementioned reaction-diffusion equations, see . Furthermore, the viscos-
ity approximations that appear are uniformly elliptical, in which case everything
seems to work fine.

It would appear that the Bertsch-Dal Passo condition prevents this situa-
tion; but this question will be analyzed in future works.

Consider a(u,s) = D(u)¢(s) as in Example 4. To simplify the notation, let us
denote as & and 7'(u) the corresponding values of o, and V,_(u), respectively, for
this flux function a. We know that

Y(u) >0, ue(01).
and that there exist 0 < v < ug < u; < a < 1, so that 7 (u) > D(u) when u € (v, )
and 7'(u) < D(u) if w € [0,7) U (o, 1].

Consider now D : [0,1] — [0,00) as a C*-function so that the support of Disa
compact set, [0, k], with v < § < ugs < u; < k < a.
Given A > 0, we define a*(u, s) = D*(u)$(s) where

D*(u) = D(u) + AD(u).

It is obvious that the flux function a*(u, s) fulfills the hypotheses of Theorems
andfor each A > 0. Let us respectively call o', o and V) the corresponding
values of o,., o, and the function V,(u) solution of for this flux function a*.

When A is small enough,

(49) a’ (u) = D*(u) < T(u) for any u € (v, ).
Therefore, 0 < & and V2 (u) = T (u).
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D/\

D)\

:

FIGURE 4. Sketch of the graphs of the functions D, in black, 7', in
red, D, in blue and D* on the compact set [J, k] when \ is either
small, in green, or large, in orange. Outside of [, x], D = D for
all \.

Lemma 7.6. With the notations of Example 3, assume that

(50) 21/ Da(0)¢'(0)f(0) < o?.

Then o = & for any X satisfying .

Proof. Tt is a consequence of Theorem [A.3] since in such a case

(51) 0) =2+ ¢—D2 #(0)£(0).

O

Remark 7.7. When X is small enough for [49) to hold, o2 < o7, since there exist
values u € (0,1), for which Vs(u) > a? (u); and this also happens when o is near

enough to & by continuity. In this case, there is no classic TW moving at speed o)
as stated in Remark[3.6.

Moreover, if for a A, is fullfiled we have
G5 (u) = G5 (u), u € (0,1).
Then, the corresponding profile u; : R — (0,1), provided by Theorem for
a = a* and o = &, is singular and does not depend on . The singular set S5 is a
singleton and u;s satisfies the Rankine-Hugoniot condition.

This shows that even when A is such that does not hold, uz is still a singular
solution in the sense of Section[f] The following Lemma completes our construction.

Lemma 7.8. & < o) when X is large enough.
Proof. Since T'(u) = du+ ¢, u € [y,a], for some ¢ € R, when A is large enough
(52) D)‘(u) >ou+¢, u € [ug,us].

So T'(u) is not a solution of (28)) with a = a*.
But V2(u) = T (u) when u 6 [a 1] because D* = D on [a, 1]. Moreover,

V;‘(u) >au+¢, uc€ly,al,
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since V2 (u) < o and, by (52), the last inequality has to be strict at some point in
[ur, uz]. Then, V3(y) > ay +¢=7(y).
By , Proposition allows us to affirm that V2(0) > 0 and, therefore,
& < o when ) is large enough.
([l

Remark 7.9. We know that in the regular case, i.e., when the flur function a
verifies (H,.), the profiles of classic TW solutions of equation are unique up to
translations of the independent variable, see Remark [2.6

The next example shows that when we deal with singular profiles, the answer is
not so simple, even if a verifies (H,) and (H.). Here we sketch a construction
of two singular profiles, Uy and Us, that are not a translations of the independent
variable for the same fluz and moving at the same speed.

Now let us take & > & close enough to & so that the function T'(u) = Vs (u)
has a similar shape to 1'(u), that is T'(u) > 0, u € (0,1), and there exist 0 < 4 <
uy < up < @& < 1, so that T'(u) > D(u) when u € (%,4) and T(u) < D(u) if
u € [0,%) U (&,1] but, by Theorem- with

(53) )< \/ - — D2(0)6(0)£(0)

because of & > 4. R A
Taking D and D* as before, we have that ¥(u) = V2 (u) for each A < \, where

\ is the first positive value for which
D u) < 6u+¢ ue (4,a),

and the equality holds for at least some @ € (¥, &).

If we denote as U; (&) the function defined by when V, = T, Uj is a singular
solution of with a = a*, for each 0 < XA < . Actually, U is a singular profile of
with a = a*, for each A > 0, but when \ > 5\7 T does not satisfy the equation
in . Therefore, if A > A with A sufficiently close to it, we have O'é\ < 7, and
there must be another singular profile, Us := u5 built from Vg‘.

Since A > A, T'(0) = 6t 4 ¢ < DS‘(ﬁ)7 @ is on the middle of a jump of U; and is
a regular point of Vg‘, so @ is in the range of Us.

APPENDIX A. SOLUTIONS OF A SINGULAR CAUCHY PROBLEM

We present here some results on solutions of a singular initial value problem of
the form

54 et

where o is a positive constant and v : [0,]? — (0,00) a continuous function.

We say that a continuous function, V' : [0,e) — [0,00), & < §, is a local solution
to the right of if V(0) = 0 and for each u € (0,¢), V(u) > 0, there exists V (u)
and it satisfies the differential equation.

Denoting o = v(0,0), one has:
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Lemma A.1. Suppose has a local solution to the right, V. Then, o > 2,/7.
Moreover, there exists V(0) = w and it is a solution of
(55) w? — ow + 7y = 0.
Proof. Let V be a local solution to the right of and take p as a solution of the
scalar first order ODE
p'=-V(p), p€(0,¢).

Since V(u) > 0, u € (0,¢), it is clear that p is a decreasing function defined in
(a,+00) and p(t) — 0 when ¢ — co. Moreover, since V € C'}(0,¢) and solves (54)),
writing y(t) = v(p(t), —p'(1)),

¥(t) = y0, t = 400
and p satisfies the linear second order ODE

p'—op +y()p =0, t € (a,+c0).

Pt _ V(p(t)

Hence, denoting r(t) = — ORI O 0, it is a solution of the Riccati equation
(56) r'(t) =1 (t) — or(t) + (1),

and r'(t) > —%2 + 7(t), which is the minimum of the parabola that defines this
Riccati equation.

Therefore, if 0 < 2,/70 , 7/(t) has to be positive when ¢ is large enough and we
have two alternatives:

(1) either limy oo r(t) = 7 > 0, which is not possible because 7 should be a
root of the equation , which has no real roots if o < 2,/70,

(2) or limy_ o r(t) = +00, but in this case :;((?) — last— +o0o and :;((?) >
C > 0 for t large enough. In particular, r(t) would be greater than the

solution of a Ricatti equation whose solutions explode in finite time.
So, if there exists a local solution to the right of , then o > 2,/70.

When o > 2, /70, equation has at least a real root. Take rg above the largest
of the roots of |) that is, ro > § + /02 — 4. Then, 78 —org+o > 0 and there
exists tp > 0 so that 73 — arg +y(t) > 0, t > to.
Again we have two options:
(1) either there exist ¢t > to with r(¢1) > 7o, and then r'(¢) > 0 when ¢t > ¢;
and we would get a contradiction as in the previous case,
(2) or r(t) <rg, t >1t, and, in particular, it is bounded to the right.
We are going to show that there exists
lim r(t).

t—o0

Otherwise, there would be an increasing sequence, t,, — oo, and two values, r; <
ry < 79, 80 that r(te,) — 71 and r(ten1) — re. Let 7 €]ry,7o[ so that #2 —
oF + v # 0, for instance, 72> — o7 + 79 < 0. The other case is similar. Take
t* > to so that 7 — oF + y(t) < 0, t € (t*,00). Then, if r(t) = 7 for some
t > t*, necessarily r’'(t) < 0, which contradicts the existence of the sequence with
the desired conditions.
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Once we know there exists lim;_,o, r(t) = w, taking now a sequence {t,} with
7' (t,) — 0 and taking limits in (56]), we obtain that w is a root of (55). But

= lim r(¢) = lim _p’(t) — 1 V(p(t)) — lim M
(57) w = tl—>oo (t) t1—>oo p(t) tl—mo p(t) ;%0 p

=V(0).

O
Bearing in mind that for equation , Yo = %(O, 0)f'(0), the previous result
provides an estimate for o.

Corollary A.2. Assuming that (H.) and (H,.) are fulfilled, then

7. > 2/ 92(0,0)f(0).

In the ultra degenerate case, Section@ this condition holds when 0 ¢ Lyg4.
This estimate is the equivalent of we spoke about in the Introduction.
Theorem A.3. Assume (H.) and (H,),

oa :
24/ =—1(0,0)f(0
o> 2/ 52(0,0)/(0),
and 0 > os. Then o = o4 if and only if
. o o2  Oa .
Vo (0) = stV T~ g(0,0)f(O).
Proof. By the monotony of V,, with respect to o, if we denote
Wy = lim M,
u—0 u

w, is decreasing with respect to 0. We are going to show that

o o2 Oa .
0> 05 & W < o+ Z—g(O,O)f(O).
If o > 0o,
o o2  Oa .

for some o > o, taking & € (05,0)

o o2  Oa . o 02 Oa :
- > = — _—— — _——
Wy 2 Wy = 3 + T (0,0)f(0) > 5 + \/ 1 9 (0,0)£(0),

which is not possible by Lemma[A7T] Hence,

o o2  Oa .
Let us now see that if
o o2  Oa .
(58) Ws < 5 + I - %(0,0)f(())

then V5(0) = 0 for 6 next to o and, therefore, o > 0.

Indeed, let

o o2  Oa .

57 I—%(O’O)f(0)<77<§
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be fixed. Then

9 )
7 o+ 52 (0,0)/(0) <0,
and there exists § > 0, so that
da ¢
22(0,0)f(0
0<n<o—20— M.
n
But P .
L W) R0.040)
u=0t g(u, nu) U] ’
thus, fixed § > 0, there exists € > 0 so that
f(u)
59 <o—0-— , u € (0,¢).
(59) n PR (0,€)

The above inequality allows us to affirm that the function V(u) = nu is a strict
sub-solution of when ¢ > o — §. Then, if Vs(ug) < nug for some uy € (0,¢),
we necessarily have that V5(0) = 0, so that & > o, and, therefore, o > oy.

The existence of such a ug for values of & close to ¢ is a consequence of the
continuous dependence on ¢ of V,, since, by Lemma and , w, has to be the
smaller root of with vy = %(0, 0)£(0). So, wy < n and, therefore, V, (u) < nu
for values of u close to 0. Thus, Vs(ug) < nug for some ug € (0,¢) if & is close
enough to o.

O

Remark A.4. Theorem[A.d s still true in the ultra degenerate case when 0 ¢ Lyq
and o4 < 400.

Returning to the general environment of , one has

Proposition A.5. Suppose v is Lipschitz-continuous with respect to V and o >
2./70. Then, the local solution to the right of verifying

. 2 _4
(60) V(0) = w
exists and it is unique.

Proof. Let us look at uniqueness first. Suppose V is a local solution to the right of
and write T'(u) = Y then

u

uT:a—T—M, u € (0,¢)
and taking R = T2 we have
(61) gR =o0VR—R—~(u,uvVR), ue (0,e).

Calling w, = 2V =50 VU;_MO, by we have T'(0) = wy and R(0) = w? > 0.
Denote
U(u, R) = oVR — R — v(u,uVR).
U(u, R) = Uy (R)—Vs(u, R), where ¥ (R) = 0/R—R and ¥s(u, R) = —y(u,uvR).
Hence,
o

Uy (wk) = wl 1<0 and |Uy(u, Ry) — Wo(u, Ry)| < uL|\/Ry — /Ry,
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since, by hypothesis, there exists L > 0 so that
y(u, V2) = y(u, Vi)| < LIV = VA, w, V1, V2 € [0, 6].

So, there exists 0 < £ < ¢, with (wi — &, wi +£&) C(0,9) and 5 > 0 so that

(62) U (u, Ry) — W(u, Ry) < —0

for all u € (0,€) and w3 — & < Ry < Ry <w? +

(R2 - Rl)u
€

Therefore, if V7,V are two local solutions to the right of (54]) defined in a
common interval, (0,¢), both verifying ; and R; and Ry the functions defined
as before which are solutions of and satisfy R1(0) = Ro(0) = w?, making ¢
smaller if necessary, we can suppose

wi — & < Ry(u), Ro(u) < wi + ¢, u e (0,8).
If, for instance, there exists ug € (0,€) so that Ra(ug) < Ri(uo), by (61)), D(u) =
Ry (u) — Ry(u) verifies
1

D< D,
u

as long as it is positive. Hence,
D(u) > D(up) >0, u € (0,u)
in contradiction with D(0) = 0.

To prove the existence, note that

o < 2
e 2
9 U”Yo,
so the function V(u) = $u is a sub-solution of in a neighborhood of 0. Hence,
for all 0 < Vy < 9§, the unique solution of the regular initial value problem
V =0 — %W(Ua V)a
V(0) =V,

satisfies V' (u) > u and also V' (u) <V + ou, since v is positive.
Taking limit as V — 0, we obtain a solution of defined in a neighborhood
to the right of 0 that verifies u < V(u) < ou and, by Lemma .

To finish, observe that if we denote
7 = max{y(u, V) : (u,V) € [0,6]*},

having chosen € < %‘5, every solution of the initial value problem

V=0—%yuV)
63 V b )
(63) { V(up) = Vo.
with 0 < Vg < § and 0 < ug < ¢, is defined in [0, ug]). Moreover,

Proposition A.6. In the hypotheses of Proposition [A25, suppose moreover that
the corresponding solution of , V, is defined in [0,¢). Then

o If Vo > V(ug), the solution of (@) verifies V(0) > 0.
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o When Vo < V(ug) the solution of (@) verifies and

V(0) = o — /o2 7470.

- 2

Proof. 1t is a consequence of the uniqueness of solution of the initial value problem
(63) when Vy # 0 and in view of Proposition
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