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Abstract

We summarize recent advances in the application of the equilibrium partition function formalism for the study of the
transport coefficients of relativistic fluids induced by quantum anomalies, at first and second order in the hydrodynamic
expansion. We provide results for theories with Abelian and non-Abelian chiral fermions, and discuss some features
of the corresponding constitutive relations.
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1. Introduction

One of the most fruitful techniques to study out-of-
equilibrium systems is the hydrodynamical approach, in
which it is assumed local thermodynamical equilibrium.
The hydrodynamical systems obey conservation laws of
the energy-momentum tensor and charged currents, and
the expectation values of these quantities are written in
terms of fluid variables in the so-called constitutive re-
lations, which are organized in a derivative expansion.
In the presence of quantum anomalies the currents are
no longer conserved, and this has important effects in
the hydrodynamic description. In addition to the per-
fect fluid and dissipative contributions, new extra terms
appear in the constitutive relations which turn out to be
of non-dissipative nature, i.e. for the charged currents
〈Jµ〉 = nuµ + 〈Jµ〉diss & anom. Two relevant phenomena
appear at first order in the hydrodynamic derivative ex-
pansion as a consequence of chiral anomalies: the chiral
magnetic [1] and chiral vortical [2] effects. They consist
in the generation of electric currents driven by and par-
allel to a magnetic field and a vorticity vector, respec-
tively, i.e. 〈Jµ〉anom = σBBµ + σVωµ. The correspond-
ing susceptibilities are parity (P) odd and time reversal
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(T ) even, the latter implying that they cannot contribute
to entropy production, i.e. ∂t sanom = 0. These coeffi-
cients have been computed in a wide variety of meth-
ods, including kinetic theory [3], Kubo formulae [4],
fluid/gravity correspondence [5] and equilibrium par-
tition function (EPF) formalism [6]. In this work we
will focus on the latter and address the study of the
anomaly-induced contributions to the constitutive rela-
tions in both Abelian and non-Abelian gauge theories.

2. Equilibrium partition function formalism

We begin by giving a brief summary of the EPF for-
malism introduced in [6–9]. Let us consider a relativis-
tic invariant quantum field theory with a time indepen-
dent U(1) gauge connection on the manifold

ds2 = Gµνdxµdxν

= −e2σ(~x)(dt + ai(~x)dxi)2 + gi j(~x)dxidx j , (1)

A = A0(~x)dx0 +Ai(~x)dxi . (2)

The partition function of the system is defined as Z =

Tr exp
(
−

H−µ0Q
T0

)
, where H is the Hamiltonian of the

theory, and Q is the conserved charged associated to
the gauge connection, while T0 and µ0 are the tempera-
ture and chemical potential at equilibrium. The depen-
dence of the partition function on the fields, i.e. log Z =
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W(eσ,A0, ai,Ai, gi j,T0, µ0), should be consistent with
invariance under: i) 3-dim diffeomorphisms; ii) Kaluza-
Klein (KK) transformation [t → t + φ(~x) , ai → ai −

∂iφ(~x)]; and iii) U(1) time-independent gauge transfor-
mations, up to gauge anomalies. In particular, KK in-
variance implies that the dependence in the gauge fields
is only through the KK invariant combinations A0 ≡ A0
and Ai ≡ Ai − aiA0. From the partition function of the
system, one can compute the energy-momentum tensor
and consistent charged currents by performing appropri-
ate t-independent variations. In doing that, one gets [6]

〈Ji〉cons =
T0e−σ
√

g3

δW

δAi
, 〈J0〉cons =−

T0eσ
√

g3

δW

δA0
, (3)

〈T i
0 〉=

T0e−σ
√

g3

(
δW

δai
−A0

δW

δAi

)
, 〈T00〉=−

T0eσ
√

g3

δW

δσ
, (4)

where g3 ≡ det(gi j), and thus W plays the role of a
generating functional for the hydrodynamic constitutive
relations.

3. Abelian anomalies and hydrodynamics

We will present in this section the explicit results
for the constitutive relations of a gas of massless Dirac
fermions with U(1) gauge symmetry. The Lagrangian is

L = −iΨγµ∇µΨ , (5)

where Ψ = (ψL ψR)T is a Dirac spinor, and ∇µ is the
covariant derivative including the gauge field Aµ. The
space-time dependent Dirac matrices are related to the
Minkowski matrices by γµ(x) = eµa(x)γa, where eµa(x) is
the vierbein. We will study the properties of the EPF of
this theory at first and second order in derivatives.

3.1. Anomalous transport at first order
The most general expression of the EPF at first order

in the hydrodynamical expansion compatible with the
symmetries mentioned in Sec. 2 is [6, 9]

W(1) =

∫
d3x
√

g3ε
i jk

[
α1AiF jk + α2Ai f jk + α3ai f jk

]
, (6)

where Fi j = ∂iA j − ∂ jAi and fi j = ∂ia j − ∂ jai, with
coefficients αi = αi(T, ν) where ν ≡ µ/T , with T =

e−σT0 and µ = e−σA0 the out-of-equilibrium tempera-
ture and chemical potential, respectively. The U(1) cur-
rent and energy-momentum tensor of the ideal gas of
Dirac fermions write

Jµ = −ΨγµΨ , (7)

Tµν =
i
4

Ψ

[
γ
µ

−→
∇ν −

←−
∇νγ

µ
+ (µ↔ ν)

]
Ψ . (8)

The expectation values of Jµ and Tµν at equilibrium
may be computed from the thermal Green’s function
〈Tψ(−iτ, ~x)ψ†(0, ~x′)〉β = T0

∑
n e−iωnτG(~x, ~x′, ωn), where

ωn = 2πT0 (n + 1/2), and T denotes time ordering. Af-
ter performing the summation over Matsubara frequen-
cies, one gets from a computation of 〈Ji〉 and 〈T i

0 〉 the
following results for the chiral magnetic and chiral vor-
tical conductivities

σB = Cµ , σV =
1
2

Cµ2 + C2T 2 , (9)

where the coefficients C = 1/(4π2) and C2 = 1/24 are
induced by the chiral anomaly [2, 5] and mixed gauge-
gravitational anomaly [10, 11], respectively. These re-
sults have been obtained in a wide variety of methods,
see e.g. [1, 2, 5, 9–12]. Finally, by using the varia-
tional formulae (3)-(4) with Eq. (6), and after a com-
parison with the explicit expressions of the constitu-
tive relations, one gets α1(T, ν) = −C

6 ν, α2(T, ν) =

− 1
2

(
C
6 ν

2 −C2

)
and α3(T, ν) = 0 [9]. For completeness,

we present below the results for the constitutive rela-
tions in the theory with symmetry group U(1)V ×U(1)A,
i.e. one vector and one axial current with chemical po-
tentials (µ, µ5). These are given by [4]

〈Jµa 〉(1) = (σB)a B
µ + (σV)a ω

µ , (a = V, A) , (10)
〈T µν〉(1) = uµqν + uνqµ , qµ = σBε B

µ + σVε ω
µ , (11)

with

(σB)V =
µ5

2π2 , (σB)A =
µ

2π2 , (12)

(σV)V =
µµ5

2π2 , (σV)A =
µ2 + µ2

5

4π2 +
T 2

12
, (13)

σBε = (σV)V , σVε =
µ5

6π2 (3µ2 + µ2
5) +

µ5

6
T 2 . (14)

Here (σB)V is the chiral magnetic conductivity, (σB)A

describes the generation of an axial current due to a
magnetic field, and (σV)V(A) is the vector(axial) vorti-
cal conductivity. σBε and σVε are chiral magnetic and
vortical conductivities for energy flux, respectively.

3.2. Anomalous transport at second order
Let us study the EPF at second order in the derivative

expansion. The most general expression writes [6]

W(2) =

∫
d3x
√

g3

[
M1gi j∂iT∂ jT + M2gi j∂iν∂ jν

+M3gi j∂iν∂ jT + T 2
0 M4 fi j f i j + M5Fi jF i j + T0M6 fi jF i j

+M7R̃ + N1ε
i jk∂iA0 f jk + T−1

0 N2ε
i jk∂iA0F jk

]
, (15)

where R̃ is the Ricci scalar in 3 dim, with Mi = Mi(T, ν)
and Ni = Ni(T, ν). To get W(2) it is enough to com-
pute 〈J0〉(2) and 〈T00〉(2) including only bilinear terms
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∼ ∂iX∂ jY . The explicit expression of M7 turns out to
be M7 = − 1

144 T − 1
48π2 T ν2 + 1

48π2
1
T M2 log 2, where M

is the renormalization scale (M̄ = 2−3/2eγE M). This co-
efficient is the relevant one for the computation of the
transport coefficients presented below. The results for
the rest of the coefficients in Eq. (15) are in Ref. [9]. The
terms proportional to M2 can be renormalized by adding
an appropriate counterterm. The renormalized effective
action turns out to be not invariant under a Weyl rescal-
ing due to the existence of terms ∝ log M̄2

T 2 . Collecting
these terms, one can identify the anomalous contribu-
tion to the partition function, a result that leads to the
trace anomaly 〈T µ

µ 〉 = − 1
24π2FµνF

µν [13].
The general result of the constitutive relations con-

tains the following terms [14]

〈Jµ〉(2) ⊃ υ1PµαuνRνα + υ2Pµα∇νF
να , (16)

〈Tµν〉(2) ⊃ T
(
κ1R〈µν〉 + κ2uαuβR〈µαν〉β + κ3∇〈µ∇ν〉ν

)
. (17)

After using the variational formulae withW(2), one gets

κ1 =
T
72

+
1

24π2

µ2

T
, κ2 = 2κ1 , κ3 = −

µ

12π2 . (18)

The results for υi are provided in Ref. [9]. The results
presented here for κ1,2 are in agreement with Ref. [15]
after setting µ = 0. On the other hand, κ3 and υ2
have been computed in a holographic model in 5 dim
in Refs. [5, 12, 16], leading to the same parametric de-
pendence for µ � T . Finally, let us mention that the
non-dissipative coefficients calculated above areP-even
and T -even, while the second order coefficients that are
P-odd and T -even vanish, i.e. N1,2 = 0.

4. Non-Abelian anomalies and hydrodynamics

We will study in this section the constitutive relations
within a theory with a non-Abelian chiral anomaly.

4.1. The chiral anomaly

Let us consider a theory of chiral fermions with sym-
metry group U(N f ) × U(N f ), with Lagrangian

L = iψLγ
µ(∂µ−itaAa

L µ)ψL+iψRγ
µ(∂µ−itaAa

R µ)ψR ,(19)

where ta = t†a are the Lie algebra generators. The chiral
anomaly is signaled by the non-invariance of the effec-
tive action iΓ = W under axial gauge transformations.
This leads to the anomaly equation Aa(x)Γ[V,A] =

Ga[V,A], where Ga is the consistent anomaly, and
Aa(x) is the local generator of axial transformations.
We have defined the vector and axial gauge fields

(V,A) byAL ≡ V−A andAR ≡ V+A. The anomaly
also leads to the (non)-conservation law DµJµa (x)cons =

Ga[V,A]. As a consequence, the chiral anomaly has
effects in the hydrodynamic constitutive relations, as it
has been already discussed. The Bardeen form of the
non-Abelian anomaly is [17]

Ga[V,A] =
iNc

16π2 ε
µνρσ ×

×Tr
{
ta
[
VµνVρσ + 1

3AµνAρσ −
32
3 AµAνAρAσ

]
+ 8

3 i(AµAνVρσ +AµVρσAν +VρσAµAν)
]}
, (20)

where Nc is the number of colors, while (Vµν,Aµν) are
the field strengths. Ga includes triangle, square and pen-
tagon one-loop diagrams, in contrast to the Abelian case
in which only triangle diagrams contribute.

4.2. Constitutive relations

The solution of the anomaly equation can be found
by using differential geometry methods based on the
Chern-Simons effective action, with the result [18, 19]

Γ[V, A,G] = −
Nc

32π2

∫
dt d3x

√
g3 ε

i jk ×

× Tr
{32

3
i V0AiA jAk +

4
3

(A0Ai + AiA0)A jk

+4(V0Ai + AiV0)V jk +
8
3
(
A2

0 + 3V2
0
)
Ai∂ jak

}
. (21)

We have neglected the terms related to the mixed gauge-
gravitational anomaly ∼ C2, as these contributions de-
mand a careful study of the Riemann tensor effects in
the anomaly polynomial, see e.g. Ref. [20].

In the (uds) flavor sector of QCD, the conserved
charges are the baryon number B, electric charge Q, and
strangeness S . Then, instead of working in the basis
of the generators of the Cartan subalgebra for N f = 3,
{t0, t3, t8}, it is more convenient to work in the {B,Q, S }
basis, for which we can take the following background
Vµ(~x) = VBµ(~x)B+ VQ µ(~x)Q+ VS µ(~x)S , A0 = AB B and
Ai = 0. Then we can distinguish between the three vec-
tor currents JµB = ΨγµBΨ, Jµem = eΨγµQΨ and JµS =

ΨγµS Ψ, corresponding to the baryonic, electromag-
netic and strangeness currents, respectively. In addition,
we can define the corresponding chemical potentials as
µq = e−σVq 0 (q = B,Q, S ) and µ5 = e−σA0 0. Here, µ5
controls the chiral imbalance of the system [21].

The covariant currents are defined by adding to the
consistent currents the Bardeen-Zumino (BZ) terms, i.e.
Jµcov = Jµcons + JµBZ [22]. These are the physically relevant
currents, as can be argued using the notion of anomaly
inflow [23]. To compute the constitutive relations, let us
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assume that the electromagnetic field is the only propa-
gating field. Then, we can define the physical magnetic
field as Bµ = 1

2 ε
µναβuνVαβ, where the physical potential

is Vµ and its KK invariant form is Vµ, i.e. V0 = V0 and
Vi = Vi − aiV0. Then one has VBµ = 0 = VS µ and
VQ µ = eVµ, and the constitutive relations write [24, 25]

〈Jµem〉cov =
e2Nc

3
√

6π2
µ5B

µ , (22)

qµ =
Nc

3
√

6π2
µ5

[
eµQB

µ +

(
µ2

Q −
1
4
µ2

5

)
ωµ

]
, (23)

where 〈T µν〉 = uµqν+uνqµ. Notice that 〈Jµem〉cov receives
contribution only from the chiral magnetic conductivity.
The absence of a chiral vortical effect in the U(3)V ×

U(3)A case contrasts with the situation in the Abelian
U(1)V × U(1)A model, cf. Sec. 3.1 and Refs. [4, 26].

5. Conclusions

We have studied the anomaly-induced transport ef-
fects in relativistic fluids by using the EPF formalism.
By construction, this method can only account for non-
dissipative effects, i.e. transport coefficients multiply-
ing quantities that survive in equilibrium. In particular,
we have characterized the effects induced by external
magnetic fields and fluid vorticity. In the Abelian case,
the non-dissipative contributions at first order are P-odd
and T -even. However, the situation is slightly differ-
ent at second order, where the P-odd coefficients van-
ish, and the nonzero non-dissipative coefficients turn out
to be P-even and T -even. In the case of non-Abelian
anomalies, we have found that there are contributions to
the constitutive relations at first order from the physical
magnetic field, but no contribution from the vorticity.
While the present study is relevant for the chiral sym-
metric phase of QCD at high temperatures, the compu-
tation has been extended in Refs. [18, 19] to the case
of spontaneous symmetry breaking, leading to relevant
information about the hydrodynamics of the Goldstone
bosons interacting with external fields, with application
to QCD at low temperatures. Finally, let us remark that
this formalism can be used in a wide variety of systems,
including other sectors of the Standard Model [27], su-
perfluids [28], and condensed matter systems [29, 30].
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