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Abstract. We study the extended Frobenius problem for sequences of
the form {fa+fn}n∈N, where {fn}n∈N is the Fibonacci sequence and fa
is a Fibonacci number. As a consequence of this study, we show that the
family of numerical semigroups associated with these sequences satisfies
Wilf’s conjecture.
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1. Introduction

Let S ⊆ N be the set generated by the sequence of positive integers (a1, . . . , ae),
that is, S = 〈a1, . . . , ae〉 = a1N + · · · + aeN. If gcd(a1, . . . , ae) = 1, then it
is well known that S has a finite complement in N. This fact leads to the
classical problem in additive number theory called the Frobenius problem:
what is the greatest integer F(S) which is not an element of S? Although
this problem is solved for e = 2 (see [15]), we have that it is not possible to
find a polynomial formula to compute F(S) if e ≥ 3 (see [4]). Therefore, many
efforts have been made to obtain partial results or to develop algorithms to
get the answer to this question (see [12]).

Another interesting question is to compute the cardinality g(S) of the
set N \ S. Sometimes, finding formulas for F(S) and g(S) is known as the
extended Frobenius problem.

Let us recall that the Fibonacci sequence is given by the recurrence
relation fn+2 = fn+1 + fn for n ≥ 0 and the initial conditions f0 = 0, f1 = 1.
This sequence has been widely studied and is present in many real phenomena
(for a popular paper, see [7]).
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Among others, the main goal of this work is to solve the extended
Frobenius problem for S generated by Fibonacci sequences incremented by
a Fibonacci number, that is, if {f0, f1, . . . , fn, . . .} is the Fibonacci sequence
and fa is a Fibonacci number, then we will consider S(a) = 〈fa + f0, fa +
f1, . . . , fa + fn, . . .〉. Thus, our work can be considered along the lines of
[6,10,11]. By the way, observe that these authors always take sequences of
three numbers while we do not.

To achieve our purpose, we will use the theory of numerical semigroups
(see Sect. 2 for several results of this theory), which is closely related to
the Frobenius problem. Indeed, the sets S(a) defined above are numerical
semigroups.

Let us now summarize the main results obtained. First, in Proposi-
tion 3.5, we give the minimal finite subsequence of {fa + f0, fa + f1, . . . , fa +
fn, . . .} that generates S(a). Afterwards, in Theorem 4.6, and using the Zeck-
endorf decomposition, we explicitly show the Apéry sets related to those
numerical semigroups. From here, in Theorems 5.6 and 6.7, we obtain the
formulas to solve the extended Frobenius problem. Specifically, we have that
F(S(a)) =

⌊
a−1
2

⌋
fa − 1 and g(S(a)) = a−2

5 fa + a
5fa−2. Finally, in Corol-

lary 6.10, and as a derived consequence, we prove that the numerical semi-
groups S(a) satisfy Wilf’s conjecture (see [16]).

Let us observe that Zeckendorf decomposition has been crucial to achiev-
ing the objectives proposed in this work. The relationship between this family
of numerical semigroups and number theory and combinatorics through par-
titions of integers is thus clear. On the other hand, thanks to the explicit
knowledge of the Apéry sets, we have a better understanding of the struc-
ture of these semigroups and future research in fields of mathematics such
as algebraic geometry and coding theory can be considered. See [2,3] (and
references therein) for examples of ways forward.

2. Preliminaries (on Numerical Semigroups)

Let Z be the set of integers and N = {z ∈ Z | z ≥ 0}. A submonoid of
(N,+) is a subset M of N such that is closed under addition and contains
the zero element. A numerical semigroup is a submonoid of (N,+) such that
N\S = {n ∈ N | n �∈ S} is finite.

Let S be a numerical semigroup. From the finiteness of N \ S, we can
define two invariants of S. Namely, the Frobenius number of S is the greatest
integer that does not belong to S, denoted by F(S), and the genus of S is
the cardinality of N \ S, denoted by g(S).

If X is a non-empty subset of N, then we denote by 〈X〉 the submonoid
of (N,+) generated by X, that is,

〈X〉 =
{
λ1x1 + · · · + λnxn | n ∈ N \ {0}, x1, . . . , xn ∈ X, λ1, . . . , λn ∈ N

}
.

It is well known (see Lemma 2.1 of [13]) that 〈X〉 is a numerical semigroup
if and only if gcd(X) = 1.

If S is a numerical semigroup and S = 〈X〉, then we say that X is a
system of generators of S. Moreover, if S �= 〈Y 〉 for any subset Y � X,
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then we say that X is a minimal system of generators of S. In Theorem 2.7
of [13], it is shown that each numerical semigroup admits a unique minimal
system of generators and that such a system is finite. We denote by msg(S)
the minimal system of generators of S. The cardinality of msg(S), denoted
by e(S), is the embedding dimension of S.

The (extended) Frobenius problem for a numerical semigroup S consists
of finding formulas that allow us to compute F(S) and g(S) in terms of
msg(S). As in the case of the Frobenius problem for sequences, such formulas
are well known for e(S) = 2 (see [15]), but it is not possible to find polynomial
formulas when e(S) ≥ 3 (see [4]), except for particular families of numerical
semigroups.

For n ∈ S \ {0}, a very useful tool to describe a numerical semigroup
S is the set Ap(S, n) = {s ∈ S | s − n �∈ S}, called the Apéry set of n in S
(after [1]). The following result is Lemma 2.4 of [13].

Proposition 2.1. Let S be a numerical semigroup and n ∈ S \ {0}. Then the
cardinality of Ap(S, n) is n. Moreover,

Ap(S, n) = {w(0) = 0, w(1), . . . , w(n − 1)},

where w(i) is the least element of S congruent with i modulo n.

The knowledge of Ap(S, n) allows us to solve the problem of membership
of an integer to the numerical semigroup S. Thus, if x ∈ Z, then x ∈ S if and
only if x ≥ w(x mod n). Moreover, we have the following result from [14].

Proposition 2.2. Let S be a numerical semigroup and let n ∈ S \ {0}. Then
1. F(S) = max(Ap(S, n)) − n,
2. g(S) = 1

n (
∑

w∈Ap(S,n) w) − n−1
2 .

From this proposition, it is clear that we get the solution to the Frobe-
nius problem for S if we have an explicit description of Ap(S, n).

3. The Minimal System of Generators of S(a)

From the definition of S(a), it is clear that if a ∈ {0, 1, 2}, then S(a) = N.
Therefore, in what follows, and unless otherwise indicated, we will assume
that a ∈ N \ {0, 1, 2}.

In this section, our main objective will be to determine the minimal
system of generators of S(a) = 〈fa + f0, fa + f1, . . . , fa + fn, . . .〉.

First of all, let us observe that gcd{fa+f0, fa+f1} = gcd{fa, fa+1} = 1
and, therefore, S(a) is a numerical semigroup.

Let us see several results that are necessary to achieve our purpose.

Lemma 3.1. [8, p. 107] If i ∈ N, then fa+i = fi+1fa + fifa−1.

Lemma 3.2. If i ∈ N, then fa + fa+i ∈ 〈fa + f0, fa + fa−1〉.
Proof. By Lemma 3.1, we have that fa + fa+i = (fi+1 + 1)fa + fifa−1. Now,
since f0 = 0, then fa+fa+i = (fi−1+1)(fa+f0)+fi(fa+fa−1). Consequently,
fa + fa+i ∈ 〈fa + f0, fa + fa−1〉. �
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The following result is Lemma 2.3 of [13].

Lemma 3.3. If S is a numerical semigroup and S∗ = S \ {0}, then msg(S) =
S∗ \ (S∗ + S∗).

If S is a numerical semigroup, then the multiplicity of S is the least
positive integer belonging to S, denoted by m(S).

The following lemma is an immediate consequence of Lemma 3.3.

Lemma 3.4. If X is a system of generators of a numerical semigroup S and
X ⊆ {m(S),m(S) + 1, . . . , 2m(S) − 1}, then X = msg(S).

We are now ready to show the announced result on the minimal system
of generators of S(a).

Proposition 3.5. We have that msg(S(a)) = {fa +f0, fa +f2, . . . , fa +fa−1}.
Proof. By Lemma 3.2, we deduce that {fa + f0, fa + f2, . . . , fa + fa−1} is
a system of generators of S(a). Since m(S(a)) = fa + f0 = fa and fa =
fa + f0 < fa + f2 < . . . < fa + fa−1 < 2fa, by applying Lemma 3.4, we
conclude the proof. �

An immediate consequence of the previous proposition is the following
result.

Corollary 3.6. The embedding dimension of S(a) is e(S(a)) = a − 1.

Example 3.7. By definition, S(7) = 〈13+0, 13+1, 13+2, 13+3, 13+5, 13+
8, 13+13, 13+21, 13+34, . . .〉. By Proposition 3.5, we know that msg(S(7)) =
{13, 14, 15, 16, 18, 21} and, therefore, e(S(7)) = 6.

It is clear that {fn | n ≥ a} ⊆ 〈fa, fa+1〉 and that {fa, fa+1} ⊆ S(a).
Therefore, we have the following result.

Proposition 3.8. We have that {fn | n ≥ a} ⊆ S(a).

4. The Apéry Set of S(a)

Our main objective in this section is to prove Theorem 4.6, which describes
Ap(S(a), fa).

It is well-known that every non-negative integer can be uniquely repre-
sented as a sum of non-consecutive Fibonacci numbers (see [17]), the so-called
Zeckendorf decomposition. Moreover, since no other one has fewer summands,
Zeckendorf decomposition is minimal (see [5]). We summarise both facts in
the following lemma.

Lemma 4.1. If x ∈ N \ {0}, then there exists a unique k ∈ N \ {0, 1} such
that x =

∑k
i=2 bifi with (b2, . . . , bk) ∈ {0, 1}k−1, bk = 1, and bibi+1 = 0 for

all i ∈ {2, . . . , k − 1}. Moreover, if x =
∑k′

i=2 cifi with (c2, . . . , ck′) ∈ N
k′−1

and k′ ∈ N, then
∑k

i=2 bi ≤ ∑k′

i=2 ci.
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If x ∈ N, then we denote by

β(x) = min

{
l∑

i=2

bi

∣
∣
∣
∣ x =

l∑

i=2

bifi, with (b2, . . . , bl) ∈ N
l−1, l ≥ 2

}

.

Remark 4.2. By Lemma 4.1, it is clear that if x =
∑k

i=2 bifi is the Zeckendorf
decomposition of x ∈ N \ {0}, then β(x) =

∑k
i=2 bi. Moreover, β(0) = 0.

To prove Theorem 4.6, we need the following result.

Lemma 4.3. If a ∈ N \ {0, 1, 2}, (d2, . . . , da−1) ∈ N
a−2, and

∑a−1
i=2 difi ≥ fa,

then there exists (c2, . . . , ca−1) ∈ N
a−2 such that

∑a−1
i=2 difi = fa +

∑a−1
i=2 cifi

and
∑a−1

i=2 ci <
∑a−1

i=2 di.

We will show the proof of the above lemma in two steps. In the first
(Lemma 4.4), we obtain the result directly for some cases. In the second
(Lemma 4.5), we prove it by mathematical induction for the remaining ones.

Lemma 4.4. Let a ∈ N\{0, 1, 2, 3} and
∑a−1

i=2 bifi ≥ fa, with (b2, . . . , ba−1) ∈
N

a−2. If (ba−2 ≥ 1 and ba−1 ≥ 1) or (ba−2 = 0 and ba−1 ≥ 2), then we have
that

∑a−1
i=2 bifi − fa =

∑a−1
i=2 cifi, with (c2, . . . , ca−1) ∈ N

a−2 and
∑a−1

i=2 ci <
∑a−1

i=2 bi.

Proof. Let us observe that
a−1∑

i=2

bifi − fa =
a−1∑

i=2

bifi − fa−2 − fa−1 =
a−1∑

i=2

bifi + fa−3 − 2fa−1.

Now, if ba−2 ≥ 1 and ba−1 ≥ 1, then
∑a−1

i=2 bifi − fa =
∑a−1

i=2 cifi, with
ci = bi for 2 ≤ i ≤ a − 3, ca−2 = ba−2 − 1, and ca−1 = ba−1 − 1. Thus, in this
case, the result is proven.

Similarly, if ba−2 = 0 and ba−1 ≥ 2, then
∑a−1

i=2 bifi − fa =
∑a−1

i=2 cifi,
with ci = bi for 2 ≤ i ≤ a − 4, ca−3 = ba−3 + 1, ca−2 = ba−2 = 0, and
ca−1 = ba−1 − 2. So, this case is also proven. �

Lemma 4.5. Let a ∈ N \ {0, 1, 2} and
∑a−1

i=2 bifi ≥ fa, with (b2, . . . , ba−1) ∈
N

a−2. Then we have that
∑a−1

i=2 bifi − fa =
∑a−1

i=2 cifi, with (c2, . . . , ca−1) ∈
N

a−2 and
∑a−1

i=2 ci <
∑a−1

i=2 bi.

Proof. We are going to prove the lemma using induction on a.
(Basis.) We first analyse the cases a = 3 and a = 4.
Let us take a = 3. Then

∑a−1
i=2 bifi = b2f2 = b2. Thus, having in mind

that f2 = 1, if b2f2 ≥ f3, then b2 ≥ f3. Therefore, b2f2 − f3 = c2f2 with
c2 = b2 − f3.

Now, if a = 4, then
∑a−1

i=2 bifi = b2f2 + b3f3. Since f2 = 1, f3 = 2 and
f4 = 3, we have that if b2f2 + b3f3 ≥ f4, then b2 + 2b3 ≥ 3. Consequently,
(b2, b3) ∈ B = N

2\{(0, 0), (1, 0), (0, 1), (2, 0)}. Let us see two particular cases
of elements in B.
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1. If (b2, b3) = (k, 0), k ≥ 3, then b2f2 + b3f3 − f4 = c2f2 + c3f3 with
c2 = b2 − 3 and c3 = 0.

2. In any other case, Lemma 4.4 applies.
(Induction hypothesis.) We now suppose that a ≥ 5,

∑a−1
i=2 bifi ≥ fa,

and that the statement is true for all k ∈ {3, 4, . . . , a − 1}.
(Induction step.) In light of Lemma 4.4, we need only consider three

cases. Moreover, we recall that
∑a−1

i=2 bifi − fa =
∑a−1

i=2 bifi − fa−2 − fa−1.

1. If ba−2 ≥ 1 and ba−1 = 0, then
∑a−1

i=2 bifi −fa =
∑a−2

i=2 b′
ifi −fa−1, with

b′
i = bi for 2 ≤ i ≤ a − 3 and b′

a−2 = ba−2 − 1. Now, by the induction
hypothesis for k = a − 1, the result is proven in this case.

2. If ba−2 = 0 and ba−1 = 1, then
∑a−1

i=2 bifi − fa =
∑a−3

i=2 bifi − fa−2.
Then, by the induction hypothesis for k = a − 2, the case is proven.

3. If ba−2 = ba−1 = 0, then
∑a−1

i=2 bifi−fa =
∑a−3

i=2 bifi−fa−2−fa−1. Now,
by the induction hypothesis for k = a−2 (recall that

∑a−3
i=2 bifi−fa−2 ≥

fa−1 > 0) and k = a − 1, it follows that
∑a−3

i=2 bifi − fa−2 − fa−1 =
∑a−2

i=2 b′
ifi − fa−1 =

∑a−1
i=2 cifi, with b′

a−2 = ca−1 = 0 and
∑a−1

i=2 ci =
∑a−2

i=2 ci <
∑a−2

i=2 b′
i =

∑a−3
i=2 b′

i <
∑a−3

i=2 bi =
∑a−1

i=2 bi. Therefore, this
case is proven.

�

Theorem 4.6. Let a ∈ N\{0, 1, 2}. If x ∈ {0, 1, . . . , fa−1} and Ap(S(a), fa) =
{w(0) = 0, w(1), . . . , w(fa − 1)}, then w(x) = β(x)fa + x.

Proof. The result is trivial for x = 0. So let us suppose that x ∈ {1, . . . , fa −
1}.

If x =
∑k

i=2 bifi is the Zeckendorf decomposition of x, then k < a and
β(x)fa + x =

∑k
i=2 bi(fa + fi) ∈ S(a). Moreover, β(x)fa + x ≡ x (mod fa).

Therefore, w(x) ≤ β(x)fa + x.
We now suppose that w(x) =

∑a−1
i=2 b′

i(fa + fi), with (b′
2, . . . , b

′
a−1) ∈

N
a−2. Let us note that

∑a−1
i=2 b′

ifi = x + αfa with α ∈ N. If α ≥ 1, then we
can apply Lemma 4.3 and get that there exists (c2, . . . , ca−1) ∈ N

a−2 such
that w(x) =

∑a−1
i=2 ci(fa + fi) + fa

(
1 +

∑a−1
i=2 (b′

i − ci)
)
, with

∑a−1
i=2 (b′

i −
ci) > 0. Therefore, w(x) − fa ∈ S(a), in contradiction with the fact that
w(x) ∈ Ap(S(a), fa). Thus, we have

∑a−1
i=2 b′

ifi = x and, in consequence,

w(x) =
(∑a−1

i=2 b′
i

)
fa + x. Finally, from the definition of β(x), we can easily

conclude that w(x) ≥ β(x)fa + x. �

Example 4.7. By Example 3.7, we have that S(7) = 〈13, 14, 15, 16, 18, 21〉.
Furthermore, from Theorem 4.6 and the corresponding Zeckendorf decompo-
sitions, we deduce that

• 1 = f2; 2 = f3; 3 = f4; 5 = f5; 8 = f6 ⇒ β(1) = β(2) = β(3) = β(5) =
β(8) = 1 ⇒ w(1) = 14; w(2) = 15; w(3) = 16; w(5) = 18; w(8) = 21;

• 4 = f4 + f2; 6 = f5 + f2; 7 = f5 + f3; 9 = f6 + f2; 10 = f6 + f3; 11 =
f6 + f4 ⇒ β(4) = β(6) = β(7) = β(9) = β(10) = β(11) = 2 ⇒ w(4) =
30; w(6) = 32; w(7) = 33; w(9) = 35; w(10) = 36; w(11) = 37;
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• 12 = f6 + f4 + f2 ⇒ β(12) = 3 ⇒ w(12) = 51.

5. The Frobenius Number of S(a)

The main aim of this section is to prove Theorem 5.6, which provides us with
a formula for the Frobenius number of S(a) as a function of a and fa. For
this, we need some previous results.

If x ∈ N, then we denote by γ(x) = max{l ∈ N | fl ≤ x}.

Remark 5.1. By Lemma 4.1, it is clear that if x =
∑k

i=2 bifi is the Zeckendorf
decomposition of x ∈ N \ {0}, then γ(x) = k. Moreover, γ(0) = 0.

The following result is an immediate consequence of Remarks 4.2 and 5.1
and the definitions of β(x) and γ(x).

Lemma 5.2. If x ∈ N\{0}, then β(x) = β
(
x − fγ(x)

)
+ 1.

Since Zeckendorf decompositions do not admit consecutive Fibonacci
numbers as addends, we easily have the following result.

Lemma 5.3. If x ∈ N \ {0}, then γ
(
x − fγ(x)

) ≤ γ(x) − 2.

We can give β(x) very easily in some cases. For example, if a ∈ N\{0},
then β(fa) = 1. Let us see another case. As usual, �x� = max{z ∈ Z | z ≤ x}.

Lemma 5.4. If a ∈ N\{0}, then β(fa − 1) =
⌊

a−1
2

⌋
.

Proof. We will argue by mathematical induction on a. First, observe that the
result is true for a ∈ {1, 2}. Now, by Lemma 5.2, if a ≥ 3, then β(fa − 1) =
β(fa −1−fa−1)+1 = β(fa−2−1)+1. Therefore, by the induction hypothesis
on a − 2, we have that β(fa − 1) =

⌊
a−3
2

⌋
+ 1 =

⌊
a−1
2

⌋
. �

In the general case, we can show an upper bound.

Lemma 5.5. If x ∈ N, then β(x) ≤
⌊

γ(x)
2

⌋
.

Proof. We will use mathematical induction on x. First, the result is trivially
true for x ∈ {0, 1, 2}. Now, let us suppose that x ≥ 3 and that β(y) ≤

⌊
γ(y)
2

⌋

for all y < x. Then, by Lemmas 5.2 and 5.3, we have that

β(x) = β
(
x − fγ(x)

)
+ 1 ≤

⌊
γ

(
x − fγ(x)

)

2

⌋

+ 1 ≤
⌊

γ(x) − 2
2

⌋
+ 1 =

⌊
γ(x)

2

⌋
.

�

We are ready to show the announced theorem.

Theorem 5.6. If a ∈ N \ {0, 1, 2}, then F(S(a)) =
⌊

a−1
2

⌋
fa − 1.

Proof. If x ∈ {0, 1, . . . , fa−1}, then γ(x) ≤ a−1. Thus, from Theorem 4.6 and
Lemmas 5.4 and 5.5, we deduce that max (Ap(S(a), fa)) =

⌊
a−1
2

⌋
fa +fa −1.

By Proposition 2.2, we now conclude that F(S(a)) =
⌊

a−1
2

⌋
fa − 1. �
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Example 5.7. By Example 3.7, we have that S(7) = 〈13, 14, 15, 16, 18, 21〉.
From Theorem 5.6, we get that F(S(7)) =

⌊
7−1
2

⌋
f7 − 1 = 38.

Since e(S(a)) = a−1 and m(S(a)) = fa, we can reformulate Theorem 5.6
as follows.

Corollary 5.8. If a ∈ N \ {0, 1, 2}, then F(S(a)) =
⌊
e(S(a))

2

⌋
m(S(a)) − 1.

Remark 5.9. It is easy to check that Theorem 5.6 and Corollary 5.8 are also
true for a = 2.

6. The Genus of S(a)

In this section, we will give a formula for the genus of S(a). As usual, if A
is a set, then we denote by #(A) the cardinality of A. Moreover, if m,n ∈ N

and m ≤ n − 2, then we denote by Fn(m) the set

{X ⊆ {2, . . . , n − 1} | #(X) = m and no two consecutive integers belong to X}.

It is clear that #(Fn(m)) = 0 for all m > n−1
2 . In other cases, we have a

classical result on counting subsets.

Lemma 6.1. [9, Lemma 1] If m,n ∈ N\{0} and m ≤ n−1
2 , then #(Fn(m)) =(

n−1−m
m

)
.

Remark 6.2. The Zeckendorf decomposition gives us a bijection between the
sets {1, . . . , fa − 1} and F(a) = Fa(1) ∪ · · · ∪ Fa

(⌊
a−1
2

⌋)
. Indeed, if x ∈

{1, . . . , fa−1} has the Zeckendorf decomposition
∑k

i=2 bifi (k < a, (b2, . . . , bk) ∈
{0, 1}k−1, bk = 1, and bibi+1 = 0 for all i ∈ {2, . . . , k − 1}), then we can asso-
ciate x with the set B(x) ∈ Fa(β(x)) consisting of all subscripts j such that

bj = 1. Therefore, from the well-known equality fa =
∑� a−1

2 �
j=0

(
a−1−j

j

)
and

the uniqueness of the Zeckendorf decomposition, the correspondence associ-
ating x to B(x) is the sought bijection.

As a consequence of Theorem 4.6, Lemma 6.1, and Remark 6.2, we have
the following result.

Proposition 6.3. If a ∈ N \ {0, 1, 2}, then

Ap (S(a), fa) \ {0} =

{

(#(B)) fa +
∑

b∈B

fb | B ∈ F(a) \ {∅}
}

.

Moreover, if {B1, B2} ⊆ F(a)\{∅}, then (#(B1)) fa+
∑

b∈B1
fb = (#(B2)) fa+∑

b∈B2
fb if and only if B1 = B2.

The following result is a consequence of Proposition 2.2.

Lemma 6.4. If S is a numerical semigroup, n ∈ S \{0}, {k1, k2, . . . , kn−1} ⊆
N, and Ap(S, n) = {0, k1n + 1, k2n + 2, . . . , kn−1n + n − 1}, then g(S) =
k1 + k2 + · · · + kn−1.

By Theorem 4.6 and Lemma 6.4, we can deduce the following result.
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Lemma 6.5. If a ∈ N \ {0, 1, 2}, then g(S(a)) =
∑fa−1

x=1 β(x).

Let B(x) be the set associated to x ∈ {1, . . . , fa − 1} in Remark 6.2.
Then it is clear that #(B(x)) = β(x). Together with Proposition 6.3 and
Lemma 6.5, this fact leads to the following result.

Proposition 6.6. If a ∈ N \ {0, 1, 2}, then g(S(a)) =
∑� a−1

2 �
i=1 i

(
a−1−i

i

)
.

Indeed, we can explicitly compute the summation of the above propo-
sition.

Theorem 6.7. If a ∈ N \ {0, 1, 2}, then g(S(a)) = a−2
5 fa + a

5fa−2.

Proof. Let us first see that if a ≥ 5, then

g(S(a)) = g(S(a − 1)) + g(S(a − 2)) + fa−2.

Let us take a = 2k + 3 for k ∈ N \ {0}. Then, by Proposition 6.6, we
have that g(S(a)) = g(S(2k + 3)) =

∑k+1
i=1 i

(
2k+2−i

i

)
and, hereafter,

g(S(2k + 3)) =
k∑

i=1

i

[(
2k + 1 − i

i

)
+

(
2k + 1 − i

i − 1

)]
+ (k + 1)

(
k + 1
k + 1

)

=
k∑

i=1

i

(
2k + 1 − i

i

)
+

k∑

i=1

i

(
2k + 1 − i

i − 1

)
+ (k + 1)

(
k

k

)

= g(S(2k + 2)) +
k+1∑

i=1

i

(
2k + 1 − i

i − 1

)

= g(S(2k + 2)) +
k∑

i=0

i

(
2k − i

i

)
+

k∑

i=0

(
2k − i

i

)

= g(S(2k + 2)) + g(S(2k + 1)) + f2k+1.

If a = 2k + 4, with k ∈ N\{0}, the equality check is similar, so we omit
it.

We use mathematical induction to conclude that g(S(a)) = a−2
5 fa +

a
5fa−2. Thus, we easily have the equality for a = 3 and a = 4. Now, if a ≥ 5
and we assume that the equality is true for all k ∈ {3, 4, . . . , a − 1}, then
g(S(a)) = g(S(a− 1)) + g(S(a− 2)) + fa−2

=
a− 3

5
fa−1 +

a− 1

5
fa−3 +

a− 4

5
fa−2 +

a− 2

5
fa−4 + fa−2

=
a− 2

5
(fa−1 + fa−2) +

a

5
(fa−3 + fa−4)− fa−1 − 3fa−2 + fa−3 + 2fa−4

5

=
a− 2

5
fa +

a

5
fa−2,

since that fa−1 − 3fa−2 + fa−3 + 2fa−4 = −2fa−2 + 2fa−3 + 2fa−4 = 0. �

Example 6.8. By Example 3.7, we know that S(7) = 〈13, 14, 15, 16, 18, 21〉.
From Theorem 6.7, we have that g(S(7)) = f7 + 7

5f5 = 13 + 7 = 20.

Remark 6.9. It is easy to check that Theorem 6.7 is also true for a = 2.
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Since we know explicit expressions for the embedding dimension, the
Frobenius number, and the genus of S(a), we can check that this family of
numerical semigroups satisfies Wilf’s conjecture (see [16]). If S is a numerical
semigroup, then we denote by n(S) the cardinality of the set {s ∈ S | s <
F(S)}.

Corollary 6.10. If a ∈ N, then F(S(a)) + 1 ≤ e(S(a))n(S(a)).

Proof. If a ∈ {0, 1, 2}, then S(a) = N and, therefore, the result is obvious.
If a ≥ 3, we use an equivalent inequality. Indeed, since g(S) + n(S) =

F(S) + 1 for any numerical semigroup S, then

F(S) + 1 ≤ e(S)n(S) ⇔ e(S)g(S) ≤ (e(S) − 1) (F(S) + 1) .

Now, by Corollary 3.6, Theorems 5.6, and 6.7, we have that

e(S(a))g(S(a)) ≤ (e(S(a)) − 1) (F(S(a)) + 1) ⇔

(a − 1)
(a − 2)fa + afa−2

5
≤ (a − 2)

⌊
a − 1

2

⌋
fa.

The last inequality follows by direct verification for a ∈ {3, . . . , 10}. If a ≥ 11,
since fa−2 ≤ fa, it is enough to see that 2(a − 1)2 ≤ 5

2 (a − 2)2, which is
equivalent to 20 ≤ (a − 6)2. �
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dalućıa (ProyExcel-00868)” and by the Junta de Andalućıa Grant Number
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[12] Ramı́rez Alfonśın, J.L.: The Diophantine Frobenius Problem, Oxford Lectures
Series in Mathematics and its Applications, vol. 30 (Oxford Univ. Press, Ox-
ford) (2005)
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José Carlos Rosales
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